Daren Brabham & Erik Bradley | What the Spending Data Tells us About Supercloud
(gentle synth music) (music ends) >> Welcome back to Supercloud 2, an open industry collaboration between technologists, consultants, analysts, and of course practitioners to help shape the future of cloud. At this event, one of the key areas we're exploring is the intersection of cloud and data. And how building value on top of hyperscale clouds and across clouds is evolving, a concept of course we call "Supercloud". And we're pleased to welcome our friends from Enterprise Technology research, Erik Bradley and Darren Brabham. Guys, thanks for joining us, great to see you. we love to bring the data into these conversations. >> Thank you for having us, Dave, I appreciate it. >> Yeah, thanks. >> You bet. And so, let me do the setup on what is Supercloud. It's a concept that we've floated, Before re:Invent 2021, based on the idea that cloud infrastructure is becoming ubiquitous, incredibly powerful, but there's a lack of standards across the big three clouds. That creates friction. So we defined over the period of time, you know, better part of a year, a set of essential elements, deployment models for so-called supercloud, which create this common experience for specific cloud services that, of course, again, span multiple clouds and even on-premise data. So Erik, with that as background, I wonder if you could add your general thoughts on the term supercloud, maybe play proxy for the CIO community, 'cause you do these round tables, you talk to these guys all the time, you gather a lot of amazing information from senior IT DMs that compliment your survey. So what are your thoughts on the term and the concept? >> Yeah, sure. I'll even go back to last year when you and I did our predictions panel, right? And we threw it out there. And to your point, you know, there's some haters. Anytime you throw out a new term, "Is it marketing buzz? Is it worth it? Why are you even doing it?" But you know, from my own perspective, and then also speaking to the IT DMs that we interview on a regular basis, this is just a natural evolution. It's something that's inevitable in enterprise tech, right? The internet was not built for what it has become. It was never intended to be the underlying infrastructure of our daily lives and work. The cloud also was not built to be what it's become. But where we're at now is, we have to figure out what the cloud is and what it needs to be to be scalable, resilient, secure, and have the governance wrapped around it. And to me that's what supercloud is. It's a way to define operantly, what the next generation, the continued iteration and evolution of the cloud and what its needs to be. And that's what the supercloud means to me. And what depends, if you want to call it metacloud, supercloud, it doesn't matter. The point is that we're trying to define the next layer, the next future of work, which is inevitable in enterprise tech. Now, from the IT DM perspective, I have two interesting call outs. One is from basically a senior developer IT architecture and DevSecOps who says he uses the term all the time. And the reason he uses the term, is that because multi-cloud has a stigma attached to it, when he is talking to his business executives. (David chuckles) the stigma is because it's complex and it's expensive. So he switched to supercloud to better explain to his business executives and his CFO and his CIO what he's trying to do. And we can get into more later about what it means to him. But the inverse of that, of course, is a good CSO friend of mine for a very large enterprise says the concern with Supercloud is the reduction of complexity. And I'll explain, he believes anything that takes the requirement of specific expertise out of the equation, even a little bit, as a CSO worries him. So as you said, David, always two sides to the coin, but I do believe supercloud is a relevant term, and it is necessary because the cloud is continuing to be defined. >> You know, that's really interesting too, 'cause you know, Darren, we use Snowflake a lot as an example, sort of early supercloud, and you think from a security standpoint, we've always pushed Amazon and, "Are you ever going to kind of abstract the complexity away from all these primitives?" and their position has always been, "Look, if we produce these primitives, and offer these primitives, we we can move as the market moves. When you abstract, then it becomes harder to peel the layers." But Darren, from a data standpoint, like I say, we use Snowflake a lot. I think of like Tim Burners-Lee when Web 2.0 came out, he said, "Well this is what the internet was always supposed to be." So in a way, you know, supercloud is maybe what multi-cloud was supposed to be. But I mean, you think about data sharing, Darren, across clouds, it's always been a challenge. Snowflake always, you know, obviously trying to solve that problem, as are others. But what are your thoughts on the concept? >> Yeah, I think the concept fits, right? It is reflective of, it's a paradigm shift, right? Things, as a pendulum have swung back and forth between needing to piece together a bunch of different tools that have specific unique use cases and they're best in breed in what they do. And then focusing on the duct tape that holds 'em all together and all the engineering complexity and skill, it shifted from that end of the pendulum all the way back to, "Let's streamline this, let's simplify it. Maybe we have budget crunches and we need to consolidate tools or eliminate tools." And so then you kind of see this back and forth over time. And with data and analytics for instance, a lot of organizations were trying to bring the data closer to the business. That's where we saw self-service analytics coming in. And tools like Snowflake, what they did was they helped point to different databases, they helped unify data, and organize it in a single place that was, you know, in a sense neutral, away from a single cloud vendor or a single database, and allowed the business to kind of be more flexible in how it brought stuff together and provided it out to the business units. So Snowflake was an example of one of those times where we pulled back from the granular, multiple points of the spear, back to a simple way to do things. And I think Snowflake has continued to kind of keep that mantle to a degree, and we see other tools trying to do that, but that's all it is. It's a paradigm shift back to this kind of meta abstraction layer that kind of simplifies what is the reality, that you need a complex multi-use case, multi-region way of doing business. And it sort of reflects the reality of that. >> And you know, to me it's a spectrum. As part of Supercloud 2, we're talking to a number of of practitioners, Ionis Pharmaceuticals, US West, we got Walmart. And it's a spectrum, right? In some cases the practitioner's saying, "You know, the way I solve multi-cloud complexity is mono-cloud, I just do one cloud." (laughs) Others like Walmart are saying, "Hey, you know, we actually are building an abstraction layer ourselves, take advantage of it." So my general question to both of you is, is this a concept, is the lack of standards across clouds, you know, really a problem, you know, or is supercloud a solution looking for a problem? Or do you hear from practitioners that "No, this is really an issue, we have to bring together a set of standards to sort of unify our cloud estates." >> Allow me to answer that at a higher level, and then we're going to hand it over to Dr. Brabham because he is a little bit more detailed on the realtime streaming analytics use cases, which I think is where we're going to get to. But to answer that question, it really depends on the size and the complexity of your business. At the very large enterprise, Dave, Yes, a hundred percent. This needs to happen. There is complexity, there is not only complexity in the compute and actually deploying the applications, but the governance and the security around them. But for lower end or, you know, business use cases, and for smaller businesses, it's a little less necessary. You certainly don't need to have all of these. Some of the things that come into mind from the interviews that Darren and I have done are, you know, financial services, if you're doing real-time trading, anything that has real-time data metrics involved in your transactions, is going to be necessary. And another use case that we hear about is in online travel agencies. So I think it is very relevant, the complexity does need to be solved, and I'll allow Darren to explain a little bit more about how that's used from an analytics perspective. >> Yeah, go for it. >> Yeah, exactly. I mean, I think any modern, you know, multinational company that's going to have a footprint in the US and Europe, in China, or works in different areas like manufacturing, where you're probably going to have on-prem instances that will stay on-prem forever, for various performance reasons. You have these complicated governance and security and regulatory issues. So inherently, I think, large multinational companies and or companies that are in certain areas like finance or in, you know, online e-commerce, or things that need real-time data, they inherently are going to have a very complex environment that's going to need to be managed in some kind of cleaner way. You know, they're looking for one door to open, one pane of glass to look at, one thing to do to manage these multi points. And, streaming's a good example of that. I mean, not every organization has a real-time streaming use case, and may not ever, but a lot of organizations do, a lot of industries do. And so there's this need to use, you know, they want to use open-source tools, they want to use Apache Kafka for instance. They want to use different megacloud vendors offerings, like Google Pub/Sub or you know, Amazon Kinesis Firehose. They have all these different pieces they want to use for different use cases at different stages of maturity or proof of concept, you name it. They're going to have to have this complexity. And I think that's why we're seeing this need, to have sort of this supercloud concept, to juggle all this, to wrangle all of it. 'Cause the reality is, it's complex and you have to simplify it somehow. >> Great, thanks you guys. All right, let's bring up the graphic, and take a look. Anybody who follows the breaking analysis, which is co-branded with ETR Cube Insights powered by ETR, knows we like to bring data to the table. ETR does amazing survey work every quarter, 1200 plus 1500 practitioners that that answer a number of questions. The vertical axis here is net score, which is ETR's proprietary methodology, which is a measure of spending momentum, spending velocity. And the horizontal axis here is overlap, but it's the presence pervasiveness, and the dataset, the ends, that table insert on the bottom right shows you how the dots are plotted, the net score and then the ends in the survey. And what we've done is we've plotted a bunch of the so-called supercloud suspects, let's start in the upper right, the cloud platforms. Without these hyperscale clouds, you can't have a supercloud. And as always, Azure and AWS, up and to the right, it's amazing we're talking about, you know, 80 plus billion dollar company in AWS. Azure's business is, if you just look at the IaaS is in the 50 billion range, I mean it's just amazing to me the net scores here. Anything above 40% we consider highly elevated. And you got Azure and you got Snowflake, Databricks, HashiCorp, we'll get to them. And you got AWS, you know, right up there at that size, it's quite amazing. With really big ends as well, you know, 700 plus ends in the survey. So, you know, kind of half the survey actually has these platforms. So my question to you guys is, what are you seeing in terms of cloud adoption within the big three cloud players? I wonder if you could could comment, maybe Erik, you could start. >> Yeah, sure. Now we're talking data, now I'm happy. So yeah, we'll get into some of it. Right now, the January, 2023 TSIS is approaching 1500 survey respondents. One caveat, it's not closed yet, it will close on Friday, but with an end that big we are over statistically significant. We also recently did a cloud survey, and there's a couple of key points on that I want to get into before we get into individual vendors. What we're seeing here, is that annual spend on cloud infrastructure is expected to grow at almost a 70% CAGR over the next three years. The percentage of those workloads for cloud infrastructure are expected to grow over 70% as three years as well. And as you mentioned, Azure and AWS are still dominant. However, we're seeing some share shift spreading around a little bit. Now to get into the individual vendors you mentioned about, yes, Azure is still number one, AWS is number two. What we're seeing, which is incredibly interesting, CloudFlare is number three. It's actually beating GCP. That's the first time we've seen it. What I do want to state, is this is on net score only, which is our measure of spending intentions. When you talk about actual pervasion in the enterprise, it's not even close. But from a spending velocity intention point of view, CloudFlare is now number three above GCP, and even Salesforce is creeping up to be at GCPs level. So what we're seeing here, is a continued domination by Azure and AWS, but some of these other players that maybe might fit into your moniker. And I definitely want to talk about CloudFlare more in a bit, but I'm going to stop there. But what we're seeing is some of these other players that fit into your Supercloud moniker, are starting to creep up, Dave. >> Yeah, I just want to clarify. So as you also know, we track IaaS and PaaS revenue and we try to extract, so AWS reports in its quarterly earnings, you know, they're just IaaS and PaaS, they don't have a SaaS play, a little bit maybe, whereas Microsoft and Google include their applications and so we extract those out and if you do that, AWS is bigger, but in the surveys, you know, customers, they see cloud, SaaS to them as cloud. So that's one of the reasons why you see, you know, Microsoft as larger in pervasion. If you bring up that survey again, Alex, the survey results, you see them further to the right and they have higher spending momentum, which is consistent with what you see in the earnings calls. Now, interesting about CloudFlare because the CEO of CloudFlare actually, and CloudFlare itself uses the term supercloud basically saying, "Hey, we're building a new type of internet." So what are your thoughts? Do you have additional information on CloudFlare, Erik that you want to share? I mean, you've seen them pop up. I mean this is a really interesting company that is pretty forward thinking and vocal about how it's disrupting the industry. >> Sure, we've been tracking 'em for a long time, and even from the disruption of just a traditional CDN where they took down Akamai and what they're doing. But for me, the definition of a true supercloud provider can't just be one instance. You have to have multiple. So it's not just the cloud, it's networking aspect on top of it, it's also security. And to me, CloudFlare is the only one that has all of it. That they actually have the ability to offer all of those things. Whereas you look at some of the other names, they're still piggybacking on the infrastructure or platform as a service of the hyperscalers. CloudFlare does not need to, they actually have the cloud, the networking, and the security all themselves. So to me that lends credibility to their own internal usage of that moniker Supercloud. And also, again, just what we're seeing right here that their net score is now creeping above AGCP really does state it. And then just one real last thing, one of the other things we do in our surveys is we track adoption and replacement reasoning. And when you look at Cloudflare's adoption rate, which is extremely high, it's based on technical capabilities, the breadth of their feature set, it's also based on what we call the ability to avoid stack alignment. So those are again, really supporting reasons that makes CloudFlare a top candidate for your moniker of supercloud. >> And they've also announced an object store (chuckles) and a database. So, you know, that's going to be, it takes a while as you well know, to get database adoption going, but you know, they're ambitious and going for it. All right, let's bring the chart back up, and I want to focus Darren in on the ecosystem now, and really, we've identified Snowflake and Databricks, it's always fun to talk about those guys, and there are a number of other, you know, data platforms out there, but we use those too as really proxies for leaders. We got a bunch of the backup guys, the data protection folks, Rubric, Cohesity, and Veeam. They're sort of in a cluster, although Rubric, you know, ahead of those guys in terms of spending momentum. And then VMware, Tanzu and Red Hat as sort of the cross cloud platform. But I want to focus, Darren, on the data piece of it. We're seeing a lot of activity around data sharing, governed data sharing. Databricks is using Delta Sharing as their sort of place, Snowflakes is sort of this walled garden like the app store. What are your thoughts on, you know, in the context of Supercloud, cross cloud capabilities for the data platforms? >> Yeah, good question. You know, I think Databricks is an interesting player because they sort of have made some interesting moves, with their Data Lakehouse technology. So they're trying to kind of complicate, or not complicate, they're trying to take away the complications of, you know, the downsides of data warehousing and data lakes, and trying to find that middle ground, where you have the benefits of a managed, governed, you know, data warehouse environment, but you have sort of the lower cost, you know, capability of a data lake. And so, you know, Databricks has become really attractive, especially by data scientists, right? We've been tracking them in the AI machine learning sector for quite some time here at ETR, attractive for a data scientist because it looks and acts like a lake, but can have some managed capabilities like a warehouse. So it's kind of the best of both worlds. So in some ways I think you've seen sort of a data science driver for the adoption of Databricks that has now become a little bit more mainstream across the business. Snowflake, maybe the other direction, you know, it's a cloud data warehouse that you know, is starting to expand its capabilities and add on new things like Streamlit is a good example in the analytics space, with apps. So you see these tools starting to branch and creep out a bit, but they offer that sort of neutrality, right? We heard one IT decision maker we recently interviewed that referred to Snowflake and Databricks as the quote unquote Switzerland of what they do. And so there's this desirability from an organization to find these tools that can solve the complex multi-headed use-case of data and analytics, which every business unit needs in different ways. And figure out a way to do that, an elegant way that's governed and centrally managed, that federated kind of best of both worlds that you get by bringing the data close to the business while having a central governed instance. So these tools are incredibly powerful and I think there's only going to be room for growth, for those two especially. I think they're going to expand and do different things and maybe, you know, join forces with others and a lot of the power of what they do well is trying to define these connections and find these partnerships with other vendors, and try to be seen as the nice add-on to your existing environment that plays nicely with everyone. So I think that's where those two tools are going, but they certainly fit this sort of label of, you know, trying to be that supercloud neutral, you know, layer that unites everything. >> Yeah, and if you bring the graphic back up, please, there's obviously big data plays in each of the cloud platforms, you know, Microsoft, big database player, AWS is, you know, 11, 12, 15, data stores. And of course, you know, BigQuery and other, you know, data platforms within Google. But you know, I'm not sure the big cloud guys are going to go hard after so-called supercloud, cross-cloud services. Although, we see Oracle getting in bed with Microsoft and Azure, with a database service that is cross-cloud, certainly Google with Anthos and you know, you never say never with with AWS. I guess what I would say guys, and I'll I'll leave you with this is that, you know, just like all players today are cloud players, I feel like anybody in the business or most companies are going to be so-called supercloud players. In other words, they're going to have a cross-cloud strategy, they're going to try to build connections if they're coming from on-prem like a Dell or an HPE, you know, or Pure or you know, many of these other companies, Cohesity is another one. They're going to try to connect to their on-premise states, of course, and create a consistent experience. It's natural that they're going to have sort of some consistency across clouds. You know, the big question is, what's that spectrum look like? I think on the one hand you're going to have some, you know, maybe some rudimentary, you know, instances of supercloud or maybe they just run on the individual clouds versus where Snowflake and others and even beyond that are trying to go with a single global instance, basically building out what I would think of as their own cloud, and importantly their own ecosystem. I'll give you guys the last thought. Maybe you could each give us, you know, closing thoughts. Maybe Darren, you could start and Erik, you could bring us home on just this entire topic, the future of cloud and data. >> Yeah, I mean I think, you know, two points to make on that is, this question of these, I guess what we'll call legacy on-prem players. These, mega vendors that have been around a long time, have big on-prem footprints and a lot of people have them for that reason. I think it's foolish to assume that a company, especially a large, mature, multinational company that's been around a long time, it's foolish to think that they can just uproot and leave on-premises entirely full scale. There will almost always be an on-prem footprint from any company that was not, you know, natively born in the cloud after 2010, right? I just don't think that's reasonable anytime soon. I think there's some industries that need on-prem, things like, you know, industrial manufacturing and so on. So I don't think on-prem is going away, and I think vendors that are going to, you know, go very cloud forward, very big on the cloud, if they neglect having at least decent connectors to on-prem legacy vendors, they're going to miss out. So I think that's something that these players need to keep in mind is that they continue to reach back to some of these players that have big footprints on-prem, and make sure that those integrations are seamless and work well, or else their customers will always have a multi-cloud or hybrid experience. And then I think a second point here about the future is, you know, we talk about the three big, you know, cloud providers, the Google, Microsoft, AWS as sort of the opposite of, or different from this new supercloud paradigm that's emerging. But I want to kind of point out that, they will always try to make a play to become that and I think, you know, we'll certainly see someone like Microsoft trying to expand their licensing and expand how they play in order to become that super cloud provider for folks. So also don't want to downplay them. I think you're going to see those three big players continue to move, and take over what players like CloudFlare are doing and try to, you know, cut them off before they get too big. So, keep an eye on them as well. >> Great points, I mean, I think you're right, the first point, if you're Dell, HPE, Cisco, IBM, your strategy should be to make your on-premise state as cloud-like as possible and you know, make those differences as minimal as possible. And you know, if you're a customer, then the business case is going to be low for you to move off of that. And I think you're right. I think the cloud guys, if this is a real problem, the cloud guys are going to play in there, and they're going to make some money at it. Erik, bring us home please. >> Yeah, I'm going to revert back to our data and this on the macro side. So to kind of support this concept of a supercloud right now, you know Dave, you and I know, we check overall spending and what we're seeing right now is total year spent is expected to only be 4.6%. We ended 2022 at 5% even though it began at almost eight and a half. So this is clearly declining and in that environment, we're seeing the top two strategies to reduce spend are actually vendor consolidation with 36% of our respondents saying they're actively seeking a way to reduce their number of vendors, and consolidate into one. That's obviously supporting a supercloud type of play. Number two is reducing excess cloud resources. So when I look at both of those combined, with a drop in the overall spending reduction, I think you're on the right thread here, Dave. You know, the overall macro view that we're seeing in the data supports this happening. And if I can real quick, couple of names we did not touch on that I do think deserve to be in this conversation, one is HashiCorp. HashiCorp is the number one player in our infrastructure sector, with a 56% net score. It does multiple things within infrastructure and it is completely agnostic to your environment. And if we're also speaking about something that's just a singular feature, we would look at Rubric for data, backup, storage, recovery. They're not going to offer you your full cloud or your networking of course, but if you are looking for your backup, recovery, and storage Rubric, also number one in that sector with a 53% net score. Two other names that deserve to be in this conversation as we watch it move and evolve. >> Great, thank you for bringing that up. Yeah, we had both of those guys in the chart and I failed to focus in on HashiCorp. And clearly a Supercloud enabler. All right guys, we got to go. Thank you so much for joining us, appreciate it. Let's keep this conversation going. >> Always enjoy talking to you Dave, thanks. >> Yeah, thanks for having us. >> All right, keep it right there for more content from Supercloud 2. This is Dave Valente for John Ferg and the entire Cube team. We'll be right back. (gentle synth music) (music fades)
SUMMARY :
is the intersection of cloud and data. Thank you for having period of time, you know, and evolution of the cloud So in a way, you know, supercloud the data closer to the business. So my general question to both of you is, the complexity does need to be And so there's this need to use, you know, So my question to you guys is, And as you mentioned, Azure but in the surveys, you know, customers, the ability to offer and there are a number of other, you know, and maybe, you know, join forces each of the cloud platforms, you know, the three big, you know, And you know, if you're a customer, you and I know, we check overall spending and I failed to focus in on HashiCorp. to you Dave, thanks. Ferg and the entire Cube team.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
IBM | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Erik | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
John Ferg | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Erik Bradley | PERSON | 0.99+ |
David | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dave Valente | PERSON | 0.99+ |
January, 2023 | DATE | 0.99+ |
China | LOCATION | 0.99+ |
US | LOCATION | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
50 billion | QUANTITY | 0.99+ |
Ionis Pharmaceuticals | ORGANIZATION | 0.99+ |
Darren Brabham | PERSON | 0.99+ |
56% | QUANTITY | 0.99+ |
4.6% | QUANTITY | 0.99+ |
Europe | LOCATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
53% | QUANTITY | 0.99+ |
36% | QUANTITY | 0.99+ |
Tanzu | ORGANIZATION | 0.99+ |
Darren | PERSON | 0.99+ |
1200 | QUANTITY | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Friday | DATE | 0.99+ |
Rubric | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
two sides | QUANTITY | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
5% | QUANTITY | 0.99+ |
Cohesity | ORGANIZATION | 0.99+ |
two tools | QUANTITY | 0.99+ |
Veeam | ORGANIZATION | 0.99+ |
CloudFlare | TITLE | 0.99+ |
two | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
Daren Brabham | PERSON | 0.99+ |
three years | QUANTITY | 0.99+ |
TSIS | ORGANIZATION | 0.99+ |
Brabham | PERSON | 0.99+ |
CloudFlare | ORGANIZATION | 0.99+ |
1500 survey respondents | QUANTITY | 0.99+ |
second point | QUANTITY | 0.99+ |
first point | QUANTITY | 0.98+ |
Snowflake | TITLE | 0.98+ |
one | QUANTITY | 0.98+ |
Supercloud | ORGANIZATION | 0.98+ |
ETR | ORGANIZATION | 0.98+ |
Snowflake | ORGANIZATION | 0.98+ |
Akamai | ORGANIZATION | 0.98+ |
Andy Thurai, Constellation Research | CloudNativeSecurityCon 23
(upbeat music) (upbeat music) >> Hi everybody, welcome back to our coverage of the Cloud Native Security Con. I'm Dave Vellante, here in our Boston studio. We're connecting today with Palo Alto, with John Furrier and Lisa Martin. We're also live from the show floor in Seattle. But right now, I'm here with Andy Thurai who's from Constellation Research, friend of theCUBE, and we're going to discuss the intersection of AI and security, the potential of AI, the risks and the future. Andy, welcome, good to see you again. >> Good to be here again. >> Hey, so let's get into it, can you talk a little bit about, I know this is a passion of yours, the ethical considerations surrounding AI. I mean, it's front and center in the news, and you've got accountability, privacy, security, biases. Should we be worried about AI from a security perspective? >> Absolutely, man, you should be worried. See the problem is, people don't realize this, right? I mean, the ChatGPT being a new shiny object, it's all the craze that's about. But the problem is, most of the content that's produced either by ChatGPT or even by others, it's an access, no warranties, no accountability, no whatsoever. Particularly, if it is content, it's okay. But if it is something like a code that you use for example, one of their site projects that GitHub's co-pilot, which is actually, open AI + Microsoft + GitHub's combo, they allow you to produce code, AI writes code basically, right? But when you write code, problem with that is, it's not exactly stolen, but the models are created by using the GitHub code. Actually, they're getting sued for that, saying that, "You can't use our code". Actually there's a guy, Tim Davidson, I think he's named the professor, he actually demonstrated how AI produces exact copy of the code that he has written. So right now, it's a lot of security, accountability, privacy issues. Use it either to train or to learn. But in my view, it's not ready for enterprise grade yet. >> So, Brian Behlendorf today in his keynotes said he's really worried about ChatGPT being used to automate spearfishing. So I'm like, okay, so let's unpack that a little bit. Is the concern there that it just, the ChatGPT writes such compelling phishing content, it's going to increase the probability of somebody clicking on it, or are there other dimensions? >> It could, it's not necessarily just ChatGPT for that matter, right? AI can, actually, the hackers are using it to an extent already, can use to individualize content. For example, one of the things that you are able to easily identify when you're looking at the emails that are coming in, the phishing attack is, you look at some of the key elements in it, whether it's a human or even if it's an automated AI based system. They look at certain things and they say, "Okay, this is phishing". But if you were to read an email that looks exact copy of what I would've sent to you saying that, "Hey Dave, are you on for tomorrow? Or click on this link to do whatever. It could individualize the message. That's where the volume at scale to individual to masses, that can be done using AI, which is what scares me. >> Is there a flip side to AI? How is it being utilized to help cybersecurity? And maybe you could talk about some of the more successful examples of AI in security. Like, are there use cases or are there companies out there, Andy, that you find, I know you're close to a lot of firms that are leading in this area. You and I have talked about CrowdStrike, I know Palo Alto Network, so is there a positive side to this story? >> Yeah, I mean, absolutely right. Those are some of the good companies you mentioned, CrowdStrike, Palo Alto, Darktrace is another one that I closely follow, which is a good company as well, that they're using AI for security purposes. So, here's the thing, right, when people say, when they're using malware detection systems, most of the malware detection systems that are in today's security and malware systems, use some sort of a signature and pattern scanning in the malware. You know how many identified malwares are there today in the repository, in the library? More than a billion, a billion. So, if you are to check for every malware in your repository, that's not going to work. The pattern based recognition is not going to work. So, you got to figure out a different way of identification of pattern of usage, not just a signature in a malware, right? Or there are other areas you could use, things like the usage patterns. For example, if Andy is coming in to work at a certain time, you could combine a facial recognition saying, that should he be in here at that time, and should he be doing things, what he is supposed to be doing. There are a lot of things you could do using that, right? And the AIOps use cases, which is one of my favorite areas that I work, do a lot of work, right? That it has use cases for detecting things that are anomaly, that are not supposed to be done in a way that's supposed to be, reducing the noise so it can escalate only the things what you're supposed to. So, AIOps is a great use case to use in security areas which they're not using it to an extent yet. Incident management is another area. >> So, in your malware example, you're saying, okay, known malware, pretty much anybody can deal with that now. That's sort of yesterday's problem. >> The unknown is the problem. >> It's the unknown malware really trying to understand the patterns, and the patterns are going to change. It's not like you're saying a common signature 'cause they're going to use AI to change things up at scale. >> So, here's the problem, right? The malware writers are also using AI now, right? So, they're not going to write the old malware, send it to you. They are actually creating malware on the fly. It is possible entirely in today's world that they can create a malware, drop in your systems and it'll it look for the, let me get that name right. It's called, what are we using here? It's called the TTPs, Tactics, Techniques and procedures. It'll look for that to figure out, okay, am I doing the right pattern? And then malware can sense it saying that, okay, that's the one they're detecting. I'm going to change it on the fly. So, AI can code itself on the fly, rather malware can code itself on the fly, which is going to be hard to detect. >> Well, and when you talk about TTP, when you talk to folks like Kevin Mandia of Mandiant, recently purchased by Google or other of those, the ones that have the big observation space, they'll talk about the most malicious hacks that they see, involve lateral movement. So, that's obviously something that people are looking for, AI's looking for that. And of course, the hackers are going to try to mask that lateral movement, living off the land and other things. How do you see AI impacting the future of cyber? We talked about the risks and the good. One of the things that Brian Behlendorf also mentioned is that, he pointed out that in the early days of the internet, the protocols had an inherent element of trust involved. So, things like SMTP, they didn't have security built in. So, they built up a lot of technical debt. Do you see AI being able to help with that? What steps do you see being taken to ensure that AI based systems are secure? >> So, the major difference between the older systems and the newer systems is the older systems, sadly even today, a lot of them are rules-based. If it's a rules-based systems, you are dead in the water and not able, right? So, the AI-based systems can somewhat learn from the patterns as I was talking about, for example... >> When you say rules-based systems, you mean here's the policy, here's the rule, if it's not followed but then you're saying, AI will blow that away, >> AI will blow that away, you don't have to necessarily codify things saying that, okay, if this, then do this. You don't have to necessarily do that. AI can somewhat to an extent self-learn saying that, okay, if that doesn't happen, if this is not a pattern that I know which is supposed to happen, who should I escalate this to? Who does this system belong to? And the other thing, the AIOps use case we talked about, right, the anomalies. When an anomaly happens, then the system can closely look at, saying that, okay, this is not normal behavior or usage. Is that because system's being overused or is it because somebody's trying to access something, could look at the anomaly detection, anomaly prevention or even prediction to an extent. And that's where AI could be very useful. >> So, how about the developer angle? 'Cause CNCF, the event in Seattle is all around developers, how can AI be integrated? We did a lot of talk at the conference about shift-left, we talked about shift-left and protect right. Meaning, protect the run time. So, both are important, so what steps should be taken to ensure that the AI systems are being developed in a secure and ethically sound way? What's the role of developers in that regard? >> How long do you got? (Both laughing) I think it could go for base on that. So, here's the problem, right? Lot of these companies are trying to see, I mean, you might have seen that in the news that Buzzfeed is trying to hire all of the writers to create the thing that ChatGPT is creating, a lot of enterprises... >> How, they're going to fire their writers? >> Yeah, they replace the writers. >> It's like automated automated vehicles and automated Uber drivers. >> So, the problem is a lot of enterprises still haven't done that, at least the ones I'm speaking to, are thinking about saying, "Hey, you know what, can I replace my developers because they are so expensive? Can I replace them with AI generated code?" There are a few issues with that. One, AI generated code is based on some sort of a snippet of a code that has been already available. So, you get into copyright issues, that's issue number one, right? Issue number two, if AI creates code and if something were to go wrong, who's responsible for that? There's no accountability right now. Or you as a company that's creating a system that's responsible, or is it ChatGPT, Microsoft is responsible. >> Or is the developer? >> Or the developer. >> The individual developer might be. So, they're going to be cautious about that liability. >> Well, so one of the areas where I'm seeing a lot of enterprises using this is they are using it to teach developers to learn things. You know what, if you're to code, this is a good way to code. That area, it's okay because you are just teaching them. But if you are to put an actual production code, this is what I advise companies, look, if somebody's using even to create a code, whether with or without your permission, make sure that once the code is committed, you validate that the 100%, whether it's a code or a model, or even make sure that the data what you're feeding in it is completely out of bias or no bias, right? Because at the end of the day, it doesn't matter who, what, when did that, if you put out a service or a system out there, it is involving your company liability and system, and code in place. You're going to be screwed regardless of what, if something were to go wrong, you are the first person who's liable for it. >> Andy, when you think about the dangers of AI, and what keeps you up at night if you're a security professional AI and security professional. We talked about ChatGPT doing things, we don't even, the hackers are going to get creative. But what worries you the most when you think about this topic? >> A lot, a lot, right? Let's start off with an example, actually, I don't know if you had a chance to see that or not. The hackers used a bank of Hong Kong, used a defect mechanism to fool Bank of Hong Kong to transfer $35 million to a fake account, the money is gone, right? And the problem that is, what they did was, they interacted with a manager and they learned this executive who can control a big account and cloned his voice, and clone his patterns on how he calls and what he talks and the whole name he has, after learning that, they call the branch manager or bank manager and say, "Hey, you know what, hey, move this much money to whatever." So, that's one way of kind of phishing, kind of deep fake that can come. So, that's just one example. Imagine whether business is conducted by just using voice or phone calls itself. That's an area of concern if you were to do that. And imagine this became an uproar a few years back when deepfakes put out the video of Tom Cruise and others we talked about in the past, right? And Tom Cruise looked at the video, he said that he couldn't distinguish that he didn't do it. It is so close, that close, right? And they are doing things like they're using gems... >> Awesome Instagram account by the way, the guy's hilarious, right? >> So, they they're using a lot of this fake videos and fake stuff. As long as it's only for entertainment purposes, good. But imagine doing... >> That's right there but... >> But during the election season when people were to put out saying that, okay, this current president or ex-president, he said what? And the masses believe right now whatever they're seeing in TV, that's unfortunate thing. I mean, there's no fact checking involved, and you could change governments and elections using that, which is scary shit, right? >> When you think about 2016, that was when we really first saw, the weaponization of social, the heavy use of social and then 2020 was like, wow. >> To the next level. >> It was crazy. The polarization, 2024, would deepfakes... >> Could be the next level, yeah. >> I mean, it's just going to escalate. What about public policy? I want to pick your brain on this because I I've seen situations where the EU, for example, is going to restrict the ability to ship certain code if it's involved with critical infrastructure. So, let's say, example, you're running a nuclear facility and you've got the code that protects that facility, and it can be useful against some other malware that's outside of that country, but you're restricted from sending that for whatever reason, data sovereignty. Is public policy, is it aligned with the objectives in this new world? Or, I mean, normally they have to catch up. Is that going to be a problem in your view? >> It is because, when it comes to laws it's always miles behind when a new innovation happens. It's not just for AI, right? I mean, the same thing happened with IOT. Same thing happened with whatever else new emerging tech you have. The laws have to understand if there's an issue and they have to see a continued pattern of misuse of the technology, then they'll come up with that. Use in ways they are ahead of things. So, they put a lot of restrictions in place and about what AI can or cannot do, US is way behind on that, right? But California has done some things, for example, if you are talking to a chat bot, then you have to basically disclose that to the customer, saying that you're talking to a chat bot, not to a human. And that's just a very basic rule that they have in place. I mean, there are times that when a decision is made by the, problem is, AI is a black box now. The decision making is also a black box now, and we don't tell people. And the problem is if you tell people, you'll get sued immediately because every single time, we talked about that last time, there are cases involving AI making decisions, it gets thrown out the window all the time. If you can't substantiate that. So, the bottom line is that, yes, AI can assist and help you in making decisions but just use that as a assistant mechanism. A human has to be always in all the loop, right? >> Will AI help with, in your view, with supply chain, the software supply chain security or is it, it's always a balance, right? I mean, I feel like the attackers are more advanced in some ways, it's like they're on offense, let's say, right? So, when you're calling the plays, you know where you're going, the defense has to respond to it. So in that sense, the hackers have an advantage. So, what's the balance with software supply chain? Are the hackers have the advantage because they can use AI to accelerate their penetration of the software supply chain? Or will AI in your view be a good defensive mechanism? >> It could be but the problem is, the velocity and veracity of things can be done using AI, whether it's fishing, or malware, or other security and the vulnerability scanning the whole nine yards. It's scary because the hackers have a full advantage right now. And actually, I think ChatGPT recently put out two things. One is, it's able to direct the code if it is generated by ChatGPT. So basically, if you're trying to fake because a lot of schools were complaining about it, that's why they came up with the mechanism. So, if you're trying to create a fake, there's a mechanism for them to identify. But that's a step behind still, right? And the hackers are using things to their advantage. Actually ChatGPT made a rule, if you go there and read the terms and conditions, it's basically honor rule suggesting, you can't use this for certain purposes, to create a model where it creates a security threat, as that people are going to listen. So, if there's a way or mechanism to restrict hackers from using these technologies, that would be great. But I don't see that happening. So, know that these guys have an advantage, know that they're using AI, and you have to do things to be prepared. One thing I was mentioning about is, if somebody writes a code, if somebody commits a code right now, the problem is with the agile methodologies. If somebody writes a code, if they commit a code, you assume that's right and legit, you immediately push it out into production because need for speed is there, right? But if you continue to do that with the AI produced code, you're screwed. >> So, bottom line is, AI's going to speed us up in a security context or is it going to slow us down? >> Well, in the current version, the AI systems are flawed because even the ChatGPT, if you look at the the large language models, you look at the core piece of data that's available in the world as of today and then train them using that model, using the data, right? But people are forgetting that's based on today's data. The data changes on a second basis or on a minute basis. So, if I want to do something based on tomorrow or a day after, you have to retrain the models. So, the data already have a stale. So, that in itself is stale and the cost for retraining is going to be a problem too. So overall, AI is a good first step. Use that with a caution, is what I want to say. The system is flawed now, if you use it as is, you'll be screwed, it's dangerous. >> Andy, you got to go, thanks so much for coming in, appreciate it. >> Thanks for having me. >> You're very welcome, so we're going wall to wall with our coverage of the Cloud Native Security Con. I'm Dave Vellante in the Boston Studio, John Furrier, Lisa Martin and Palo Alto. We're going to be live on the show floor as well, bringing in keynote speakers and others on the ground. Keep it right there for more coverage on theCUBE. (upbeat music) (upbeat music) (upbeat music) (upbeat music)
SUMMARY :
and security, the potential of I mean, it's front and center in the news, of the code that he has written. that it just, the ChatGPT AI can, actually, the hackers are using it of the more successful So, here's the thing, So, in your malware the patterns, and the So, AI can code itself on the fly, that in the early days of the internet, So, the AI-based systems And the other thing, the AIOps use case that the AI systems So, here's the problem, right? and automated Uber drivers. So, the problem is a lot of enterprises So, they're going to be that the data what you're feeding in it about the dangers of AI, and the whole name he So, they they're using a lot And the masses believe right now whatever the heavy use of social and The polarization, 2024, would deepfakes... Is that going to be a And the problem is if you tell people, So in that sense, the And the hackers are using So, that in itself is stale and the cost Andy, you got to go, and others on the ground.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Davidson | PERSON | 0.99+ |
Brian Behlendorf | PERSON | 0.99+ |
Andy | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Andy Thurai | PERSON | 0.99+ |
Seattle | LOCATION | 0.99+ |
Kevin Mandia | PERSON | 0.99+ |
100% | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
EU | ORGANIZATION | 0.99+ |
Tom Cruise | PERSON | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Darktrace | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
$35 million | QUANTITY | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
Constellation Research | ORGANIZATION | 0.99+ |
Buzzfeed | ORGANIZATION | 0.99+ |
More than a billion, a billion | QUANTITY | 0.99+ |
GitHub | ORGANIZATION | 0.99+ |
Boston | LOCATION | 0.99+ |
Palo Alto Network | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
tomorrow | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
first step | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Mandiant | ORGANIZATION | 0.99+ |
one example | QUANTITY | 0.99+ |
2024 | DATE | 0.99+ |
ChatGPT | ORGANIZATION | 0.98+ |
CloudNativeSecurityCon | EVENT | 0.98+ |
Bank of Hong Kong | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
ChatGPT | TITLE | 0.98+ |
yesterday | DATE | 0.98+ |
Constellation Research | ORGANIZATION | 0.97+ |
2020 | DATE | 0.97+ |
first | QUANTITY | 0.97+ |
ORGANIZATION | 0.97+ | |
Both | QUANTITY | 0.97+ |
theCUBE | ORGANIZATION | 0.94+ |
Hong Kong | LOCATION | 0.93+ |
one way | QUANTITY | 0.92+ |
Palo | ORGANIZATION | 0.92+ |
Cloud Native Security Con. | EVENT | 0.89+ |
nine yards | QUANTITY | 0.89+ |
CNCF | EVENT | 0.88+ |
AIOps | ORGANIZATION | 0.86+ |
first person | QUANTITY | 0.85+ |
California | ORGANIZATION | 0.78+ |
Issue number two | QUANTITY | 0.75+ |
deepfakes | ORGANIZATION | 0.74+ |
few years back | DATE | 0.74+ |
Boston Studio | LOCATION | 0.73+ |
Bob Muglia, George Gilbert & Tristan Handy | How Supercloud will Support a new Class of Data Apps
(upbeat music) >> Hello, everybody. This is Dave Vellante. Welcome back to Supercloud2, where we're exploring the intersection of data analytics and the future of cloud. In this segment, we're going to look at how the Supercloud will support a new class of applications, not just work that runs on multiple clouds, but rather a new breed of apps that can orchestrate things in the real world. Think Uber for many types of businesses. These applications, they're not about codifying forms or business processes. They're about orchestrating people, places, and things in a business ecosystem. And I'm pleased to welcome my colleague and friend, George Gilbert, former Gartner Analyst, Wiki Bond market analyst, former equities analyst as my co-host. And we're thrilled to have Tristan Handy, who's the founder and CEO of DBT Labs and Bob Muglia, who's the former President of Microsoft's Enterprise business and former CEO of Snowflake. Welcome all, gentlemen. Thank you for coming on the program. >> Good to be here. >> Thanks for having us. >> Hey, look, I'm going to start actually with the SuperCloud because both Tristan and Bob, you've read the definition. Thank you for doing that. And Bob, you have some really good input, some thoughts on maybe some of the drawbacks and how we can advance this. So what are your thoughts in reading that definition around SuperCloud? >> Well, I thought first of all that you did a very good job of laying out all of the characteristics of it and helping to define it overall. But I do think it can be tightened a bit, and I think it's helpful to do it in as short a way as possible. And so in the last day I've spent a little time thinking about how to take it and write a crisp definition. And here's my go at it. This is one day old, so gimme a break if it's going to change. And of course we have to follow the industry, and so that, and whatever the industry decides, but let's give this a try. So in the way I think you're defining it, what I would say is a SuperCloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers. >> Boom. Nice. Okay, great. I'm going to go back and read the script on that one and tighten that up a bit. Thank you for spending the time thinking about that. Tristan, would you add anything to that or what are your thoughts on the whole SuperCloud concept? >> So as I read through this, I fully realize that we need a word for this thing because I have experienced the inability to talk about it as well. But for many of us who have been living in the Confluence, Snowflake, you know, this world of like new infrastructure, this seems fairly uncontroversial. Like I read through this, and I'm just like, yeah, this is like the world I've been living in for years now. And I noticed that you called out Snowflake for being an example of this, but I think that there are like many folks, myself included, for whom this world like fully exists today. >> Yeah, I think that's a fair, I dunno if it's criticism, but people observe, well, what's the big deal here? It's just kind of what we're living in today. It reminds me of, you know, Tim Burns Lee saying, well, this is what the internet was supposed to be. It was supposed to be Web 2.0, so maybe this is what multi-cloud was supposed to be. Let's turn our attention to apps. Bob first and then go to Tristan. Bob, what are data apps to you? When people talk about data products, is that what they mean? Are we talking about something more, different? What are data apps to you? >> Well, to understand data apps, it's useful to contrast them to something, and I just use the simple term people apps. I know that's a little bit awkward, but it's clear. And almost everything we work with, almost every application that we're familiar with, be it email or Salesforce or any consumer app, those are applications that are targeted at responding to people. You know, in contrast, a data application reacts to changes in data and uses some set of analytic services to autonomously take action. So where applications that we're familiar with respond to people, data apps respond to changes in data. And they both do something, but they do it for different reasons. >> Got it. You know, George, you and I were talking about, you know, it comes back to SuperCloud, broad definition, narrow definition. Tristan, how do you see it? Do you see it the same way? Do you have a different take on data apps? >> Oh, geez. This is like a conversation that I don't know has an end. It's like been, I write a substack, and there's like this little community of people who all write substack. We argue with each other about these kinds of things. Like, you know, as many different takes on this question as you can find, but the way that I think about it is that data products are atomic units of functionality that are fundamentally data driven in nature. So a data product can be as simple as an interactive dashboard that is like actually had design thinking put into it and serves a particular user group and has like actually gone through kind of a product development life cycle. And then a data app or data application is a kind of cohesive end-to-end experience that often encompasses like many different data products. So from my perspective there, this is very, very related to the way that these things are produced, the kinds of experiences that they're provided, that like data innovates every product that we've been building in, you know, software engineering for, you know, as long as there have been computers. >> You know, Jamak Dagani oftentimes uses the, you know, she doesn't name Spotify, but I think it's Spotify as that kind of example she uses. But I wonder if we can maybe try to take some examples. If you take, like George, if you take a CRM system today, you're inputting leads, you got opportunities, it's driven by humans, they're really inputting the data, and then you got this system that kind of orchestrates the business process, like runs a forecast. But in this data driven future, are we talking about the app itself pulling data in and automatically looking at data from the transaction systems, the call center, the supply chain and then actually building a plan? George, is that how you see it? >> I go back to the example of Uber, may not be the most sophisticated data app that we build now, but it was like one of the first where you do have users interacting with their devices as riders trying to call a car or driver. But the app then looks at the location of all the drivers in proximity, and it matches a driver to a rider. It calculates an ETA to the rider. It calculates an ETA then to the destination, and it calculates a price. Those are all activities that are done sort of autonomously that don't require a human to type something into a form. The application is using changes in data to calculate an analytic product and then to operationalize that, to assign the driver to, you know, calculate a price. Those are, that's an example of what I would think of as a data app. And my question then I guess for Tristan is if we don't have all the pieces in place for sort of mainstream companies to build those sorts of apps easily yet, like how would we get started? What's the role of a semantic layer in making that easier for mainstream companies to build? And how do we get started, you know, say with metrics? How does that, how does that take us down that path? >> So what we've seen in the past, I dunno, decade or so, is that one of the most successful business models in infrastructure is taking hard things and rolling 'em up behind APIs. You take messaging, you take payments, and you all of a sudden increase the capability of kind of your median application developer. And you say, you know, previously you were spending all your time being focused on how do you accept credit cards, how do you send SMS payments, and now you can focus on your business logic, and just create the thing. One of, interestingly, one of the things that we still don't know how to API-ify is concepts that live inside of your data warehouse, inside of your data lake. These are core concepts that, you know, you would imagine that the business would be able to create applications around very easily, but in fact that's not the case. It's actually quite challenging to, and involves a lot of data engineering pipeline and all this work to make these available. And so if you really want to make it very easy to create some of these data experiences for users, you need to have an ability to describe these metrics and then to turn them into APIs to make them accessible to application developers who have literally no idea how they're calculated behind the scenes, and they don't need to. >> So how rich can that API layer grow if you start with metric definitions that you've defined? And DBT has, you know, the metric, the dimensions, the time grain, things like that, that's a well scoped sort of API that people can work within. How much can you extend that to say non-calculated business rules or governance information like data reliability rules, things like that, or even, you know, features for an AIML feature store. In other words, it starts, you started pragmatically, but how far can you grow? >> Bob is waiting with bated breath to answer this question. I'm, just really quickly, I think that we as a company and DBT as a product tend to be very pragmatic. We try to release the simplest possible version of a thing, get it out there, and see if people use it. But the idea that, the concept of a metric is really just a first landing pad. The really, there is a physical manifestation of the data and then there's a logical manifestation of the data. And what we're trying to do here is make it very easy to access the logical manifestation of the data, and metric is a way to look at that. Maybe an entity, a customer, a user is another way to look at that. And I'm sure that there will be more kind of logical structures as well. >> So, Bob, chime in on this. You know, what's your thoughts on the right architecture behind this, and how do we get there? >> Yeah, well first of all, I think one of the ways we get there is by what companies like DBT Labs and Tristan is doing, which is incrementally taking and building on the modern data stack and extending that to add a semantic layer that describes the data. Now the way I tend to think about this is a fairly major shift in the way we think about writing applications, which is today a code first approach to moving to a world that is model driven. And I think that's what the big change will be is that where today we think about data, we think about writing code, and we use that to produce APIs as Tristan said, which encapsulates those things together in some form of services that are useful for organizations. And that idea of that encapsulation is never going to go away. It's very, that concept of an API is incredibly useful and will exist well into the future. But what I think will happen is that in the next 10 years, we're going to move to a world where organizations are defining models first of their data, but then ultimately of their business process, their entire business process. Now the concept of a model driven world is a very old concept. I mean, I first started thinking about this and playing around with some early model driven tools, probably before Tristan was born in the early 1980s. And those tools didn't work because the semantics associated with executing the model were too complex to be written in anything other than a procedural language. We're now reaching a time where that is changing, and you see it everywhere. You see it first of all in the world of machine learning and machine learning models, which are taking over more and more of what applications are doing. And I think that's an incredibly important step. And learned models are an important part of what people will do. But if you look at the world today, I will claim that we've always been modeling. Modeling has existed in computers since there have been integrated circuits and any form of computers. But what we do is what I would call implicit modeling, which means that it's the model is written on a whiteboard. It's in a bunch of Slack messages. It's on a set of napkins in conversations that happen and during Zoom. That's where the model gets defined today. It's implicit. There is one in the system. It is hard coded inside application logic that exists across many applications with humans being the glue that connects those models together. And really there is no central place you can go to understand the full attributes of the business, all of the business rules, all of the business logic, the business data. That's going to change in the next 10 years. And we'll start to have a world where we can define models about what we're doing. Now in the short run, the most important models to build are data models and to describe all of the attributes of the data and their relationships. And that's work that DBT Labs is doing. A number of other companies are doing that. We're taking steps along that way with catalogs. People are trying to build more complete ontologies associated with that. The underlying infrastructure is still super, super nascent. But what I think we'll see is this infrastructure that exists today that's building learned models in the form of machine learning programs. You know, some of these incredible machine learning programs in foundation models like GPT and DALL-E and all of the things that are happening in these global scale models, but also all of that needs to get applied to the domains that are appropriate for a business. And I think we'll see the infrastructure developing for that, that can take this concept of learned models and put it together with more explicitly defined models. And this is where the concept of knowledge graphs come in and then the technology that underlies that to actually implement and execute that, which I believe are relational knowledge graphs. >> Oh, oh wow. There's a lot to unpack there. So let me ask the Colombo question, Tristan, we've been making fun of your youth. We're just, we're just jealous. Colombo, I'll explain it offline maybe. >> I watch Colombo. >> Okay. All right, good. So but today if you think about the application stack and the data stack, which is largely an analytics pipeline. They're separate. Do they, those worlds, do they have to come together in order to achieve Bob's vision? When I talk to practitioners about that, they're like, well, I don't want to complexify the application stack cause the data stack today is so, you know, hard to manage. But but do those worlds have to come together? And you know, through that model, I guess abstraction or translation that Bob was just describing, how do you guys think about that? Who wants to take that? >> I think it's inevitable that data and AI are going to become closer together? I think that the infrastructure there has been moving in that direction for a long time. Whether you want to use the Lakehouse portmanteau or not. There's also, there's a next generation of data tech that is still in the like early stage of being developed. There's a company that I love that is essentially Cross Cloud Lambda, and it's just a wonderful abstraction for computing. So I think that, you know, people have been predicting that these worlds are going to come together for awhile. A16Z wrote a great post on this back in I think 2020, predicting this, and I've been predicting this since since 2020. But what's not clear is the timeline, but I think that this is still just as inevitable as it's been. >> Who's that that does Cross Cloud? >> Let me follow up on. >> Who's that, Tristan, that does Cross Cloud Lambda? Can you name names? >> Oh, they're called Modal Labs. >> Modal Labs, yeah, of course. All right, go ahead, George. >> Let me ask about this vision of trying to put the semantics or the code that represents the business with the data. It gets us to a world that's sort of more data centric, where data's not locked inside or behind the APIs of different applications so that we don't have silos. But at the same time, Bob, I've heard you talk about building the semantics gradually on top of, into a knowledge graph that maybe grows out of a data catalog. And the vision of getting to that point, essentially the enterprise's metadata and then the semantics you're going to add onto it are really stored in something that's separate from the underlying operational and analytic data. So at the same time then why couldn't we gradually build semantics beyond the metric definitions that DBT has today? In other words, you build more and more of the semantics in some layer that DBT defines and that sits above the data management layer, but any requests for data have to go through the DBT layer. Is that a workable alternative? Or where, what type of limitations would you face? >> Well, I think that it is the way the world will evolve is to start with the modern data stack and, you know, which is operational applications going through a data pipeline into some form of data lake, data warehouse, the Lakehouse, whatever you want to call it. And then, you know, this wide variety of analytics services that are built together. To the point that Tristan made about machine learning and data coming together, you see that in every major data cloud provider. Snowflake certainly now supports Python and Java. Databricks is of course building their data warehouse. Certainly Google, Microsoft and Amazon are doing very, very similar things in terms of building complete solutions that bring together an analytics stack that typically supports languages like Python together with the data stack and the data warehouse. I mean, all of those things are going to evolve, and they're not going to go away because that infrastructure is relatively new. It's just being deployed by companies, and it solves the problem of working with petabytes of data if you need to work with petabytes of data, and nothing will do that for a long time. What's missing is a layer that understands and can model the semantics of all of this. And if you need to, if you want to model all, if you want to talk about all the semantics of even data, you need to think about all of the relationships. You need to think about how these things connect together. And unfortunately, there really is no platform today. None of our existing platforms are ultimately sufficient for this. It was interesting, I was just talking to a customer yesterday, you know, a large financial organization that is building out these semantic layers. They're further along than many companies are. And you know, I asked what they're building it on, and you know, it's not surprising they're using a, they're using combinations of some form of search together with, you know, textual based search together with a document oriented database. In this case it was Cosmos. And that really is kind of the state of the art right now. And yet those products were not built for this. They don't really, they can't manage the complicated relationships that are required. They can't issue the queries that are required. And so a new generation of database needs to be developed. And fortunately, you know, that is happening. The world is developing a new set of relational algorithms that will be able to work with hundreds of different relations. If you look at a SQL database like Snowflake or a big query, you know, you get tens of different joins coming together, and that query is going to take a really long time. Well, fortunately, technology is evolving, and it's possible with new join algorithms, worst case, optimal join algorithms they're called, where you can join hundreds of different relations together and run semantic queries that you simply couldn't run. Now that technology is nascent, but it's really important, and I think that will be a requirement to have this semantically reach its full potential. In the meantime, Tristan can do a lot of great things by building up on what he's got today and solve some problems that are very real. But in the long run I think we'll see a new set of databases to support these models. >> So Tristan, you got to respond to that, right? You got to, so take the example of Snowflake. We know it doesn't deal well with complex joins, but they're, they've got big aspirations. They're building an ecosystem to really solve some of these problems. Tristan, you guys are part of that ecosystem, and others, but please, your thoughts on what Bob just shared. >> Bob, I'm curious if, I would have no idea what you were talking about except that you introduced me to somebody who gave me a demo of a thing and do you not want to go there right now? >> No, I can talk about it. I mean, we can talk about it. Look, the company I've been working with is Relational AI, and they're doing this work to actually first of all work across the industry with academics and research, you know, across many, many different, over 20 different research institutions across the world to develop this new set of algorithms. They're all fully published, just like SQL, the underlying algorithms that are used by SQL databases are. If you look today, every single SQL database uses a similar set of relational algorithms underneath that. And those algorithms actually go back to system R and what IBM developed in the 1970s. We're just, there's an opportunity for us to build something new that allows you to take, for example, instead of taking data and grouping it together in tables, treat all data as individual relations, you know, a key and a set of values and then be able to perform purely relational operations on it. If you go back to what, to Codd, and what he wrote, he defined two things. He defined a relational calculus and relational algebra. And essentially SQL is a query language that is translated by the query processor into relational algebra. But however, the calculus of SQL is not even close to the full semantics of the relational mathematics. And it's possible to have systems that can do everything and that can store all of the attributes of the data model or ultimately the business model in a form that is much more natural to work with. >> So here's like my short answer to this. I think that we're dealing in different time scales. I think that there is actually a tremendous amount of work to do in the semantic layer using the kind of technology that we have on the ground today. And I think that there's, I don't know, let's say five years of like really solid work that there is to do for the entire industry, if not more. But the wonderful thing about DBT is that it's independent of what the compute substrate is beneath it. And so if we develop new platforms, new capabilities to describe semantic models in more fine grain detail, more procedural, then we're going to support that too. And so I'm excited about all of it. >> Yeah, so interpreting that short answer, you're basically saying, cause Bob was just kind of pointing to you as incremental, but you're saying, yeah, okay, we're applying it for incremental use cases today, but we can accommodate a much broader set of examples in the future. Is that correct, Tristan? >> I think you're using the word incremental as if it's not good, but I think that incremental is great. We have always been about applying incremental improvement on top of what exists today, but allowing practitioners to like use different workflows to actually make use of that technology. So yeah, yeah, we are a very incremental company. We're going to continue being that way. >> Well, I think Bob was using incremental as a pejorative. I mean, I, but to your point, a lot. >> No, I don't think so. I want to stop that. No, I don't think it's pejorative at all. I think incremental, incremental is usually the most successful path. >> Yes, of course. >> In my experience. >> We agree, we agree on that. >> Having tried many, many moonshot things in my Microsoft days, I can tell you that being incremental is a good thing. And I'm a very big believer that that's the way the world's going to go. I just think that there is a need for us to build something new and that ultimately that will be the solution. Now you can argue whether it's two years, three years, five years, or 10 years, but I'd be shocked if it didn't happen in 10 years. >> Yeah, so we all agree that incremental is less disruptive. Boom, but Tristan, you're, I think I'm inferring that you believe you have the architecture to accommodate Bob's vision, and then Bob, and I'm inferring from Bob's comments that maybe you don't think that's the case, but please. >> No, no, no. I think that, so Bob, let me put words into your mouth and you tell me if you disagree, DBT is completely useless in a world where a large scale cloud data warehouse doesn't exist. We were not able to bring the power of Python to our users until these platforms started supporting Python. Like DBT is a layer on top of large scale computing platforms. And to the extent that those platforms extend their functionality to bring more capabilities, we will also service those capabilities. >> Let me try and bridge the two. >> Yeah, yeah, so Bob, Bob, Bob, do you concur with what Tristan just said? >> Absolutely, I mean there's nothing to argue with in what Tristan just said. >> I wanted. >> And it's what he's doing. It'll continue to, I believe he'll continue to do it, and I think it's a very good thing for the industry. You know, I'm just simply saying that on top of that, I would like to provide Tristan and all of those who are following similar paths to him with a new type of database that can actually solve these problems in a much more architected way. And when I talk about Cosmos with something like Mongo or Cosmos together with Elastic, you're using Elastic as the join engine, okay. That's the purpose of it. It becomes a poor man's join engine. And I kind of go, I know there's a better answer than that. I know there is, but that's kind of where we are state of the art right now. >> George, we got to wrap it. So give us the last word here. Go ahead, George. >> Okay, I just, I think there's a way to tie together what Tristan and Bob are both talking about, and I want them to validate it, which is for five years we're going to be adding or some number of years more and more semantics to the operational and analytic data that we have, starting with metric definitions. My question is for Bob, as DBT accumulates more and more of those semantics for different enterprises, can that layer not run on top of a relational knowledge graph? And what would we lose by not having, by having the knowledge graph store sort of the joins, all the complex relationships among the data, but having the semantics in the DBT layer? >> Well, I think this, okay, I think first of all that DBT will be an environment where many of these semantics are defined. The question we're asking is how are they stored and how are they processed? And what I predict will happen is that over time, as companies like DBT begin to build more and more richness into their semantic layer, they will begin to experience challenges that customers want to run queries, they want to ask questions, they want to use this for things where the underlying infrastructure becomes an obstacle. I mean, this has happened in always in the history, right? I mean, you see major advances in computer science when the data model changes. And I think we're on the verge of a very significant change in the way data is stored and structured, or at least metadata is stored and structured. Again, I'm not saying that anytime in the next 10 years, SQL is going to go away. In fact, more SQL will be written in the future than has been written in the past. And those platforms will mature to become the engines, the slicer dicers of data. I mean that's what they are today. They're incredibly powerful at working with large amounts of data, and that infrastructure is maturing very rapidly. What is not maturing is the infrastructure to handle all of the metadata and the semantics that that requires. And that's where I say knowledge graphs are what I believe will be the solution to that. >> But Tristan, bring us home here. It sounds like, let me put pause at this, is that whatever happens in the future, we're going to leverage the vast system that has become cloud that we're talking about a supercloud, sort of where data lives irrespective of physical location. We're going to have to tap that data. It's not necessarily going to be in one place, but give us your final thoughts, please. >> 100% agree. I think that the data is going to live everywhere. It is the responsibility for both the metadata systems and the data processing engines themselves to make sure that we can join data across cloud providers, that we can join data across different physical regions and that we as practitioners are going to kind of start forgetting about details like that. And we're going to start thinking more about how we want to arrange our teams, how does the tooling that we use support our team structures? And that's when data mesh I think really starts to get very, very critical as a concept. >> Guys, great conversation. It was really awesome to have you. I can't thank you enough for spending time with us. Really appreciate it. >> Thanks a lot. >> All right. This is Dave Vellante for George Gilbert, John Furrier, and the entire Cube community. Keep it right there for more content. You're watching SuperCloud2. (upbeat music)
SUMMARY :
and the future of cloud. And Bob, you have some really and I think it's helpful to do it I'm going to go back and And I noticed that you is that what they mean? that we're familiar with, you know, it comes back to SuperCloud, is that data products are George, is that how you see it? that don't require a human to is that one of the most And DBT has, you know, the And I'm sure that there will be more on the right architecture is that in the next 10 years, So let me ask the Colombo and the data stack, which is that is still in the like Modal Labs, yeah, of course. and that sits above the and that query is going to So Tristan, you got to and that can store all of the that there is to do for the pointing to you as incremental, but allowing practitioners to I mean, I, but to your point, a lot. the most successful path. that that's the way the that you believe you have the architecture and you tell me if you disagree, there's nothing to argue with And I kind of go, I know there's George, we got to wrap it. and more of those semantics and the semantics that that requires. is that whatever happens in the future, and that we as practitioners I can't thank you enough John Furrier, and the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tristan | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
John | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Steve Mullaney | PERSON | 0.99+ |
Katie | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Charles | PERSON | 0.99+ |
Mike Dooley | PERSON | 0.99+ |
Peter Burris | PERSON | 0.99+ |
Chris | PERSON | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Maribel Lopez | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Mike Wolf | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Merim | PERSON | 0.99+ |
Adrian Cockcroft | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Brian | PERSON | 0.99+ |
Brian Rossi | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Chris Wegmann | PERSON | 0.99+ |
Whole Foods | ORGANIZATION | 0.99+ |
Eric | PERSON | 0.99+ |
Chris Hoff | PERSON | 0.99+ |
Jamak Dagani | PERSON | 0.99+ |
Jerry Chen | PERSON | 0.99+ |
Caterpillar | ORGANIZATION | 0.99+ |
John Walls | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Josh | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Jerome | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Lori MacVittie | PERSON | 0.99+ |
2007 | DATE | 0.99+ |
Seattle | LOCATION | 0.99+ |
10 | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
Peter McKee | PERSON | 0.99+ |
Nutanix | ORGANIZATION | 0.99+ |
Eric Herzog | PERSON | 0.99+ |
India | LOCATION | 0.99+ |
Mike | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tanuja Randery | PERSON | 0.99+ |
Kashmira Patel & Tim Currie, Wipro | AWS re:Invent 2022
>>Good Morning Cloud community and welcome back to Fabulous Las Vegas, Nevada, where we are at AWS Reinvent. It is day four here on the Cube. I'm Savannah Peterson with Lisa Martin. You are looking fantastic. Day four, we've done 45 interviews. How are you feeling? Oh, >>Great. I can't believe it's day four. The cube will be producing over 100 interviews. >>Impressive. Right >>On this stage where there are two sets, and of course we have the set upstairs as well. It's amazing how much content we've created, how many great conversations we've had, right? And the excitement around AWS and the, and the community. >>Yeah. I feel like we've learned so much together. Love co-hosting with you, and so excited for our first conversation this morning with Wira. Welcome, Tim and Kashmira, welcome to the show. How you doing? You both look great for day four. Thank >>You. Yeah, we're doing good. Great. We're doing good. Ready to go. Day four, let's go. >>That's the spirit. That's exactly the energy we need here on the cube. So just in case someone in the audience is not familiar, tell us about Wipro. >>So Wipro is a global consulting company and we help transform our customers and their businesses. >>Transformation's been a super hot topic here at the show, quite frankly a big priority, especially with cost cutting and everything else that's going on. How, how do you do that? How do you help customers do that? Has >>Me run? So we, we, so we have our A strategy, which we call our full stride cloud strategy. So particularly from a cloud perspective here, obviously with aws, we have end to end client services. So from high end strategic consulting through customer journeys, technology implementation, all the way through to our managed services. So we help customers with the end to end journey, particularly as here we're talking about cloud, but also business transformation as well. And we have, you know, a whole host of technologies. So about a few years ago we made an announcement around a billion investment in cloud casual and that Yeah, absolutely. A cool billion and just a cool billion. Yeah. And that pocket >>Change. Exactly. >>Right. And that investment. Over the last few years, we've acquired a number of really exciting companies like Capco, which is a consulting company in the financial services space. We've acquired design companies, a company called Design it, looking at customer journeys and user experience, and then also technology companies called Rising, which looks after the whole SAP space. So we've kind of got the end to end solutions and technologies. And then we also invest in what we call Wipro Ventures. These are really innovative, exciting startups. We invest in those companies to really drive transformation. And the final thing that really brings the whole thing together is that we have decades of experience in engineering. That's kind of the heart of where we come from. So that experience all of that together really helps our clients to transform their business. And particularly as we're talking about cloud helps us to transform the cloud. Now what we are really hoping is that we can help our clients become what we call intelligent enterprises, and we are focusing more and more on customer outcomes and really helping them with those business outcomes. >>Yeah. It doesn't matter what we do if there isn't that business outcome. >>Yeah. That's what it's all about. I'm curious, Tim, to get your, as the America's cloud leader, one of the things that, that our boss, John Furrier, who is the co CEO of the Cube, was able to do every year, he gets to sit down with the head of AWS for a preview of reinvent, right? He's been doing this for 10 years now, and one of the things that Adam Olitsky said to him, this is something about a week or so ago, is CIOs and CEOs are not coming to me to talk about technology. They wanna talk about transformation. Sure, yeah. Business transformation, not an amorphous topic of digital transformation. Are you hearing the same? >>Absolutely. Right. So I think this is my seventh reinvent, right? And I think six, seven years ago, the majority of the conversations you would've had are about technology, right? Great technology, but kind of technology for it to solve it problems. You know, how do I, how do I migrate, how do I modernize, how do I use data? How do I make all this stuff happen? Right now it's about how do I drive new business opportunities, new revenue streams, how do I drive more efficiencies through the manufacturing 2.0 or what have you, right? Yeah. One really good example, like take, take medical devices, right? So like a connected defibrillator, right? Anytime you're building a, what they call an IOT device or a connected device, right? You have four competing an edge device in the space, an edge device, yeah. Right? You have four competing elements, right? >>You've got form factor, power, connectivity and intelligence, and all those things compete, right? I can have all the power if I want, if I can have something as biggest as a tape, right? You know, I can have satellite if I, it gets right off if I can plug it in somewhere. But when you're talking about an implanted defibrillator, right? That, that all competes. So you have an engineering problem, an engineering challenge that's based on a device, right? And then it's gotta connect to the cloud, right? So you have a lot of AWS services, I ot, core device shadowing, all sorts of things. That individual patient then, so, so there's the engineering challenge of, okay, I wanna build a device, I gotta prototype it, I gotta design it, I gotta build it at scale, I have to support it. Then you have a patient, right? Which is the end goal of the business is the patient care. >>They have a console at home that connects to that defibrillator via Bluetooth, let's say. And that's where you get your device updates, just like your laptop, right? You know, now push from where updates to your chest. Yes. Device, ot. It's like, okay, I'm just gonna do this every Thursday, right? So now you've very quickly move to a patient experience and that patient experience will very greatly, right? You know, based on age and exposure to technology and all other sorts of things, how diligent they are. Do they do the update every week Right. To their primary care provider? And then what we're, we're also hearing, okay, so like Kashmira mentioned, we, we can, we can have that design discussion, right? Yeah. We can have the engineering device discussion with our device, device lab. Then we can have our, you know, what's the, what's the patient experience, but then broader, what's the patient experience as they move, as we all do through a healthcare, that's a healthcare network, it's a provider network, it's a series of hospitals and providers. So what does that big picture and ecosystem look like? And it's, you haven't heard me mention server or data center or any of that stuff? No. Right? This is >>The most human anecdote we've had on >>Show. Fantastic. This >>Sidebar. Okay. I mean it great. Keep going. It's wonderful. And it's, and it's, it's fascinating because none of this happens or is possible without cloud and, and the type of services that AWS is, is releasing out into their, into their, into their, into the world, right? But it very quickly moves from technology to human. It very quickly moves from individual to ecosystem to to, to partner and culture and, you know, society, right? So, so these are the types of conversations we're having. I mean, this is kind of stuff that gets me outta bed in the morning. So it's great, right? It's great that, I love that. It's great that we've moved, we moved into that space. >>Well, it's, I mean the human element is so important. Every, every company has to be a data company. Hospitals, absolutely. Grocery stores, retailers, you name it. And what we're seeing is this, and we talk about data democratization all the time. Well, another thing that Adam Slosky told John Furrier is that the role of, of data analysts is gonna, is going to change, maybe go away or the, or the term because data needs to be everywhere. The doctors need the data. Absolutely. Every person in the organization needs to be able to analyze data to deliver outcomes. >>Yeah, absolutely. Yeah. And it's fundamental part of our strategies. And when we are looking at, you know, data is everywhere, you need to really think about how do you align to it. But we are looking at it from an industry perspective. So when we're looking at solutions for our clients, we're looking at how do we deliver data solutions for our bank? How do we deliver data solutions in healthcare? How do we deliver data solutions in various different industry? So >>Many different verticals that you're >>Touching. Yeah, all the different verticals. So that's, you know, we have like a four point strategy industry is the first one. So we have been really worked with a lot of clients around migrations and modernizations. What we're moving to now is really this industry play. So this week we've spent a lot of time with our energy and utilities clients and the AWS practice at banking and financial services, which is a very significant part of our business. Also cloud automotive. This is a really, really, you know, the fascinat, this is so exciting, but the fundamental part of that, it's very, is data, right? It's all hits on data. So it was really great to hear some of the announcements this week around the data piece announcements just for me, that's really exciting. Yeah. A couple of other things that when we're thinking about our overall focus and strategy is, you know, looking at business transformation is, as you mentioned, is the ecosystem. >>So how do we bring all this together? And it's really, we see ourselves as an ecosystem orchestrator, and we are really here to look at leveraging our relationship with the best partners. We've actually met 17 partners here this week and had client sessions with them. And that's, you know, working with the license of Snowflake and Data Break in the, in the data space, our long term partners like sap, ibm, VMware, and you know, and new partners like Con. And we are looking at how do we bring the best of this ecosystem orchestration so that to support those client business outcome. Sure. And then one final sort of pillar, sorry, is talent, right? So the biggest thing that everyone is thinking about and we all think about every single day is talent. So we've done two really exciting things this year. One has been around our own talent. >>So we've really looked at our own internal influences, people who are speaking to our clients every single day. Not so much the technology people, but the client people speaking to the client. And we've really raised the level of cloud fluency with these people so that they can really start to have that discussion. You know, and our clients, you know, they know this technology way better than us, you most of the time. And then secondly, we actually announced last week and, and you initiative, which we are calling skill skills, which is very well known to our AWS clients because AWS provide this skill, skill concept to their clients. But we are the first partner to do the skills. Skills Yeah. From a partnering perspective. And this is really gonna transform. So it's not just about training and enablement, it's actually about creating a journey for you to, you know, do your best work. >>Tim, what, how do you define cloud fluency? We were actually talking about it yesterday. Sure, sure. Yeah. And, and really kind of bringing that across an organization, but what, what does it take for an individual who may not be a technologist to become cloud fluent? >>Sure. Well, there's a couple, there's a couple angles to that, right? One is, one is how do you create cloud fluency for people who might already be technical, right? And that's, and that's, you know, I've spent over a decade with, you know, boutique disruptive consulting companies who live and die by whether they can attract and retain talent. And there's sort of four elements to that. It's, can you, can you show people they're gonna work on interesting stuff, right? Are they gonna be excited about what they do? Can you show that they're gonna expand their skill sets? Yep. Can you show them a career path? And you can, can you surround all of that with a supportive engineering first culture, right? That, you know, rewards for outcomes, but also creates this sort of community, right? Yeah. That's, that's one thing that sort of, you know, that that will be a natural entropy, people will be attracted to that. On the other side of it, as you create fluency, you kind of do it with the conversation that I just had, like around something like medical devices or something like the cloud car. When you just say, look, you start with something everybody already knows, right? We all know what patient care is like. We all know what autonomous vehicles is kind of like, right? And you work backwards from that and say, now here's, here's how all the pieces stitch together to create this end outcome for, for us and for our customers, for >>The, you know, I'm speaking my language, Tim. So I run a boutique consultancy, my talent go, I live and die on that. Quite frankly. It's everything, right? And, and it's so, wow, it's so important. I mean, in eliminating that churn at scale, how big is your team? Now I'm just thinking about this cause I'm sure you're, your talent retention has to be a challenge as well. Sure. >>So, so we have 25,000 woo professionals on aws trained on, you know, tech cloud technologies globally. Impressive. Yeah. And then we have, in terms of our go to market team, we've got 50 strong as well. Well, so we, these are people who are live and breathe aws, right? And speaking and working with the cloud. >>Let's hang out there a little bit. Tell us a little bit more about the partnership with aws. Cast me, >>Let's go to you. Yeah, so our partnership is, you know, it's 11 years strong. It's been an and a really, really great partnership's. >>How longs >>That's true. Yeah. >>No, is you, were, you're, you're like day ones there. That's Yeah. Real legacy it. >>Awesome. You know, this year excitingly, we actually won the APJ partner of dsi, partner of the year. Congratulations. >>Really casual. >>Yeah. Just like >>Married the lead there. Congratulations. >>Yeah. So that really is testament to how we're really knuckling down and working proactively to, to really support our clients. And, you know, the, the partnership is a really, really strong partnership. It's been there for many years with, you know, great solutions and engagement and many of the things I talked about in terms of our industry plays that we're driving. We've got a whole new set of competencies that we've launched, like a new energy competency this year. So we're focusing on industry and then also security, two new security competencies. And you know, what's really exciting on the security side, you saw the announcements around the security data lake, but we've been working over the last few months with Gary, me and his team, and actually are one of the first partners that are driving that initiative. So we're really proud to be part of that. So yeah. You know, and then there's a client engagement as well. So we have a dedicated team at AWS that works with our dedicated team. So we're supporting the client's needs day to day. >>Are you as customer obsessed as AWS is? Absolutely. I >>Figured so. Absolutely. Everything's about the customer. Nothing happens about >>That. Right? Well, you talked about outcomes, it's all about outcomes. >>Well, and I mean, quite literally going for the heart with the defibrillator analogy. No, I mean, you tell the customers at the heart of what you're doing, part of everything. Can't resist a good pun there. So as I warned you, we have a little challenge for you here on the cube. We're looking for your hot take your 32nd sound bite thought leadership. What's the biggest takeaway from the event and moving forward, looking into 2023? Tim, you're giving me that eye contact. I'm going to you first, >>Right? Okay, sure. Love to. So I don't know how hot a take it is, but I kind of see this transition as cloud, as the operating system, right? So, so let's take the, the what we call the cloud car project. We have the connected car. You know, a car is a durable good, and we all know, or there's been a lot of talk about the electric cars or the autonomous vehicles being like more of a computer than a vehicle, right? But a vehicle's supposed to last 10, 15, 20 years. Our laptops don't last 10, 15, 20 years. So there's this cell, there's this major challenge to say, how can I, how can I change the way the technology operates within the vehicle? So you see this transition to where instead of it being a car that, that has a computer, then it, the, the, the latest transition is to more of a computer that, that operates like a car. >>This new vehicle that's going to emerge is gonna be much like a cell phone, right? Where it, it traverses the world and depending on where it is, different things might be available, right? And, and how and how, how the actual technology, the software that is running will, will be, you know, sort of amorphous and move between different resources in the network on the car, everywhere else. And so that's a really different way of thinking about if, if we think about how quickly the Overton window, like what becomes normal, it changes over time. We're really getting to like a very fast movement of that into something like this vehicle's still gonna be something that we don't even maybe think of as a car anymore. Just the way that an iPhone isn't what we used to think of a phone at our >>Pocket computer. Yeah. What's in the mirror part? Great. >>That's kind my >>Take. Awesome. Right? Catch me man. >>Yeah, and I mean I, if I was to suggest that, you know, summarize it by simply, for me it's really focusing on industry solutions, delivering client outcomes, fundamentally underpinned by data security and sustainability. You know, I think Nailed it. >>Yeah. Knock it outta the park. Perfect little sound bite. That was fantastic. You both were a wonderful start to the day. Thank you so much for being here. Tim and Kashmir, absolute >>Pleasure. >>This is, this is a joy. We're gonna keep learning here on the cube. And thank all of you for tuning in to our fabulous AWS reinvent coverage here from Sin City with Lisa Martin. I'm Savannah Peterson and you are watching The Cube, the leader in high tech coverage.
SUMMARY :
How are you feeling? I can't believe it's day four. Impressive. And the excitement around AWS and the, How you doing? Ready to go. So just in case someone in the audience is not So Wipro is a global consulting company and we help transform How do you help customers do that? And we have, you know, a whole host of technologies. And the final thing that really brings Are you hearing the same? You have four competing an edge device in the space, So you have a lot of AWS services, I ot, core device shadowing, all sorts of things. And that's where you get your device updates, just like your laptop, right? This to, to partner and culture and, you know, society, right? is that the role of, of data analysts is gonna, is going to change, you know, data is everywhere, you need to really think about how do you align to it. So that's, you know, we have like a four point strategy industry So the biggest thing that everyone is thinking about and we all think about every You know, and our clients, you know, they know this technology way better than us, you most of the time. Tim, what, how do you define cloud fluency? And that's, and that's, you know, The, you know, I'm speaking my language, Tim. And then we have, in terms of our go to market team, we've got 50 strong as well. Tell us a little bit more about the partnership with aws. Yeah, so our partnership is, you know, it's 11 years strong. Yeah. That's Yeah. partner of the year. Married the lead there. And you know, Are you as customer obsessed as AWS is? Everything's about the customer. Well, you talked about outcomes, it's all about outcomes. Well, and I mean, quite literally going for the heart with the defibrillator analogy. So you see this transition to where instead you know, sort of amorphous and move between different resources in the network on the car, Great. Catch me man. Yeah, and I mean I, if I was to suggest that, you know, summarize it by simply, for me it's really focusing Thank you so much for being here. And thank all of you for tuning in to our fabulous AWS
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Adam Olitsky | PERSON | 0.99+ |
Adam Slosky | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Kashmira | PERSON | 0.99+ |
Gary | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
Wipro | ORGANIZATION | 0.99+ |
Tim Currie | PERSON | 0.99+ |
50 | QUANTITY | 0.99+ |
45 interviews | QUANTITY | 0.99+ |
17 partners | QUANTITY | 0.99+ |
Capco | ORGANIZATION | 0.99+ |
11 years | QUANTITY | 0.99+ |
Wipro Ventures | ORGANIZATION | 0.99+ |
Kashmira Patel | PERSON | 0.99+ |
two sets | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
2023 | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Kashmir | PERSON | 0.99+ |
this week | DATE | 0.99+ |
15 | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
The Cube | TITLE | 0.99+ |
One | QUANTITY | 0.99+ |
Cube | ORGANIZATION | 0.98+ |
Sin City | LOCATION | 0.98+ |
20 years | QUANTITY | 0.98+ |
six | DATE | 0.98+ |
over 100 interviews | QUANTITY | 0.98+ |
first one | QUANTITY | 0.98+ |
ibm | ORGANIZATION | 0.97+ |
first | QUANTITY | 0.97+ |
this year | DATE | 0.97+ |
first partner | QUANTITY | 0.97+ |
first partners | QUANTITY | 0.97+ |
both | QUANTITY | 0.97+ |
10 | QUANTITY | 0.96+ |
seven years ago | DATE | 0.96+ |
sap | ORGANIZATION | 0.96+ |
America | LOCATION | 0.94+ |
VMware | ORGANIZATION | 0.93+ |
Las Vegas, Nevada | LOCATION | 0.93+ |
day four | QUANTITY | 0.93+ |
APJ | ORGANIZATION | 0.93+ |
four point | QUANTITY | 0.92+ |
secondly | QUANTITY | 0.92+ |
first conversation | QUANTITY | 0.91+ |
AWS Reinvent | ORGANIZATION | 0.91+ |
Wira | PERSON | 0.9+ |
first culture | QUANTITY | 0.9+ |
32nd sound bite | QUANTITY | 0.89+ |
billion | QUANTITY | 0.89+ |
one thing | QUANTITY | 0.87+ |
Day four | QUANTITY | 0.85+ |
seventh reinvent | QUANTITY | 0.85+ |
one final | QUANTITY | 0.83+ |
couple | QUANTITY | 0.83+ |
about a week or | DATE | 0.83+ |
25,000 woo | QUANTITY | 0.82+ |
Ed Macosky, Boomi | AWS re:Invent 2022
(upbeat music) >> Hello, CUBE friends and welcome back to Vegas. Lisa Martin here with John Furrier. This is our third day of coverage of AWS re:Invent. There are somewhere between 50,000 and 60, 70,000 people here. The excitement is palpable. The energy in the room has been on fire since Monday night. John, we love talking, we love re:Invent. We love talking about AWS and it's incredible ecosystem of partners and we're going to be doing that next. >> Yeah, I mean 10 years of theCUBE, we've been here since 2013. Watching it grow as the cloud computing invention. And then the ecosystem has just been growing, growing, growing at the same time innovation. And that's this next segment with the company that we both have covered deeply. Boomi is going to be a great segment. Looking forward to it. >> We have, we have. And speaking of innovation and Boomi, we have a four-time cube guests back with us. Ed Macosky joined us, Chief Innovation Officer at Boomi. And it's great to see you in person. >> Yeah, great to be here. Thanks for having me. >> What's going on at Boomi? I mean, I know up and to the right, continues we'll go this way. What's going on? >> Yeah, we continue to grow. We're really focused with AWS on the cloud and app modernization. Most of our projects and many of our customers are in this modernization journey from an enterprise perspective, moving from on-premises, trying to implement multicloud, hybrid cloud, that sort of thing. But what we're really seeing is this modernization choke point that a lot of our customers are facing in that journey where they just can't get over the hump. And a lot of their, they come to us with failing projects where they're saying, "Hey, I've got maybe this anchor of a legacy data source or applications that I need to bring in temporarily or I need to keep filling that." So we help with integrating these workflows, integrating these applications and help that lift and shift and help our customers projects from failing and quickly bringing themselves to the cloud. >> You know, Ed, we've been talking with you guys for many many years with theCUBE and look at the transition, how the market's evolved. If you look at the innovation going on now, I won't say it's an innovator's dilemma because there's a lot of innovation happening. It's becoming an integrator's dilemma. And I was talking with some of your staff. Booth traffic's up, great leads coming in. You mentioned on the keynote in a slide. I mean, the world spun in the direction of Boomi with all your capabilities around integration, understanding how data works. All the themes here at re:Invent kind of like are in that conversation top track that we've been mentioning and Boomi, you guys have been building around. Explain why that's happening. Am I right? Am I getting that right, or can you share your thoughts? >> Yeah, absolutely. We're in a great spot. I mean, given the way the economy's going today, people are, again, trying to do more with less. But there is this modernization journey that I talked about and there's an explosion of SaaS applications, cloud technologies, data sources, et cetera. And not only is it about integrating data sources and automating workflows, but implementing things at scale, making sure you have high data quality, high data governance, security, et cetera. And Boomi sits right in the middle of providing solutions of all of that to make a business more efficient. Not only that, but you can implement things very very quickly 'cause we're a low-code platform. It's not just about this hardcore technology that's really hard to implement. You can do it really quickly with our platform. >> Speaking of transformation, one of the things John does every year ahead of re:Invent is he gets to sit down with the CEO of re:Invent and really does a great, if you haven't seen it, check it out on siliconangle.com. Really kind of a preview of what we're going to expect at the show. And one of the things Adam said to you was CIOs, CEOs are coming to me not wanting to talk about technology. They want to talk about transformation, business transformation. It's no more, not so much about digital transformation anymore, it's about transforming businesses. Are you hearing customers come to you with the same help us transform our business so we can be competitive, so we can meet customer demand? >> Oh, absolutely. It's no longer about tools and technology and providing people with paint to paint on a canvas. We're offering solutions on the AWS marketplace. We have five solutions that we launched this year to get people up and running very quickly based on business problems from disbursement to lead to cash with Salesforce and NetSuite to business-to-business integrations and EDI dashboarding and that sort of thing. We also have our own marketplace that provide these solutions and give our customers the ability to visualize what they can do with our platform to actually solve business problems. Again, not just about tooling and technology and how to connect things. >> How's the marketplace relationship going for you? Are you guys seeing success there? >> Yeah, we're seeing a lot of success. I mean, in fact, we're going to be doubling down in the next year. We're going to be, we haven't announced it yet, but we're going to be announcing some new solutions. >> John: I guess we're announcing it now. >> No, I'm not going to get to specifics. But we're going to be putting more and more solutions on the marketplace and we're going to be offering more ways to consume and purchase our platform on the marketplace in the next couple of months. >> Ed, talk about what's new with Boomi real quick. I know you guys have new connectors Early Access. What's been announced? What have you guys announced? What's coming? What's the new things folks should pay attention from a product standpoint? >> Yeah, so you mentioned the connectors. We have 32 new connectors. And by the way in our ecosystem, our customers have connected 199,970 unique things. Amazon SQS is one of those in that number. So that's the kind of scale. >> What's the number again? >> 199,970. At least that's the last I checked earlier. >> That's a good recall right there. Exact number. >> It's an exciting number 'cause we're scaling very, very rapidly. But the other things that are exciting are we announced our event streaming service that we want to bring to our cloud. We've relied on partners in the past to do that for us, but it's been a very critical need that our customers have asked for. So we're integrating that into our platform. We're also going to be focusing more and more on our data management capabilities because I mentioned it a little earlier, connecting things, if bad data's going in and bad data's going out, bad data's going everywhere. So we have the tools and capability to govern data, manage data, high quality solutions. So we're going to invest more and more in that 'cause that's what our customers are asking us for. >> Data governance is a challenge for any business in any industry. Too much access is a huge risk, not enough access to the right people means you can't really extract the insights from data to be able to make data-driven decisions. How do you help customers really on that fine line of data governance? >> Very specifically, we have as part of our iPaaS platform, we have a data catalog and data prep capability within the platform itself that gives citizens in the organization the ability to catalog data in a secure way based on what they have capabilities to. But not only that, the integrator can use data catalog to actually catalog the data and understand what needs to be integrated and how they can make their business more efficient by automating the movement of data and sharing the data across the organization. >> On the innovation side, I want to get back to that again because I think this integration innovation angle is something that we talked about with Adams Selipsky in our stories hitting SiliconANGLE right now are all about the partner ecosystems. We've been highlighting some of the bigger players emerging. You guys are out there. You got Databricks, Snowflake, MongoDB where they're partnering with Amazon, but they're not just an ISV, they're platforms. You guys have your own ISVs. You have your own customers. You're doing low-code before no-code is popular. So where are you guys at on that wave? You got a good customer base, share some names. What's going on with the customers? Are they becoming more developer oriented? 'Cause let's face it, your customers that working on Boomi, they're developers. >> Yes. >> And so they got tools. You're enablers, so you're a platform on Amazon. >> We are a platform on Amazon. >> We call that supercloud, but that's where this new shift is happening. What's your reaction to that? >> Yes, so I guess we are a supercloud on Amazon and our customers and our partners are developers of our platforms themselves. So most of our partners are also customers of ours and they will be implementing their own integrations in the backend of their platforms into their backend systems to do things like billing and monitoring of their own usage of their platforms. But with our customers, they're also Amazon customers who are trying to connect in a multicloud way or many times just within the Amazon ecosystem. Or even customers like Kenco and Tim Heger who did a presentation from HealthBridge. They're also doing B2B connectivity to bring information from their partners into their ecosystem within their platform. So we handle all of the above. So now we are an independent company and it's nice to be a central part of all of these different ecosystems. And where I find myself in my role a lot of times is literally connecting different platforms and applications and SI partners to solve these problems 'cause nobody can really see it themselves. I had a conversation earlier today where someone would say, "Hey, you're going to talk with that SI partner later today. They're a big SI partner of ours. Why don't they develop solutions that we can go to market together to solve problems for our customers?" >> Lisa, this is something that we've been talking about a lot where it's an and conversation. My big takeaway from Adam's one-on-one and re:Invent so far is they're not mutually exclusive. There's an and. You can be an ISV and this platforms in the ecosystem because you're enabling software developers, ISV as they call it. I think that term is old school, but still independent software vendors. That's not a platform. They can coexist and they are, but they're becoming on your platform. So you're one of the most advanced Amazon partners. So as cloud grows and we mature and what, 13 years old Amazon is now, so okay, you're becoming bigger as a platform. That's the next wave. What happens in that next five years from there? What happens next? Because if your platform continues to grow, what happens next? >> So for us, where we're going is connecting platform providers, cloud providers are getting bigger. A lot of these cloud providers are embracing partnerships with other vendors and things and we're helping connect those. So when I talk about business-to-business and sharing data between those, there are still some folks that have legacy applications that need to connect and bring things in and they're just going to ride them until they go away. That is a requirement, but at some point that's all going to fall by the wayside. But where the industry is really going for us is it is about automation and quickly automating things and again, doing more with less. I think Tim Heger had a quote where he said, "I don't need to use Michelangelo to come paint my living room." And that's the way he thinks about low-code. It's not about, you don't want to just sit there and code things and make an art out of coding. You want to get things done quickly and you want to keep automating your business to keep pushing things forward. So a lot of the things we're looking at is not just about connecting and automating data transformation and that's all valuable, but how do I get someone more productive? How do I automate the business in an intelligent way more and more to push them forward. >> Out of the box solutions versus platforms. You can do both. You can build a platform. >> Yes. >> Or you can just buy out of the box. >> Well, that's what's great about us too is because we don't just provide solutions. We provide solutions many times as a starting point or the way I look at it, it's art of the possible a lot of what we give 'cause then our customers can take our low-code tooling and say, wow, I like this solution, but I can really take it to the next step, almost in like an open source model and just quickly iterate and drive innovation that way. And I just love seeing our, a lot of it for me is just our ecosystem and our partners driving the innovation for us. >> And driving that speed for customers. When I had the chance to interview Tim Heger myself last month and he was talking about Boomi integration and Flow are enabling him to do integration 10x faster than before and HealthBridge built their business on Boomi. They didn't replace the legacy solution, but he had experience with some of your big competitors and chose Boomi and said, "It is 10x faster." So he's able to deliver to those and it's a great business helping people pay for health issues if they don't have the funds to do that. So much faster than they could have if had they chosen a different technology. >> Yeah, and also what I like about the HealthBridge story is you said they started with Boomi's technology. So I like to think we scale up and scale down. So many times when I talk to prospects or new customers, they think that our technology is too advanced or too expensive or too big for them to go after and they don't think they can solve these problems like we do with enterprises. We can start with you as a startup going with SaaS applications, trying to be innovative in your organization to automate things and scale. As you scale the company will be right there along with you to scale into very very advanced solutions all in a low-code way. >> And also helping folks to scale up and down during what we're facing these macroeconomic headwinds. That's really important for businesses to be able to do for cost optimization. But at the end of the day, that company has to be a data company. They have to be able to make sure that the data matches. It's there. They know what they have. They can actually facilitate communications, conversations and deliver the end user customer is demanding whether it's a retailer, a healthcare organization, a bank, you name it. >> Exactly. And another thing with today's economy, a lot of people forget with integration or automation tooling, once you get things implemented, in many traditional forms you got to manage that long term. You have to have a team to do that. Our technology runs autonomously. I hear from our customers over and over again. I just said it, sometimes I'll walk away for a month and come back and wow, Boomi's still running. I didn't realize it. 'Cause we have technology that continues to patch itself, heal itself, continue running autonomously. That also saves in a time like now where you don't have to worry about sending teams out to patch and upgrade things on a continuous basis. We take care of that for our customers. >> I think you guys can see a lot of growth with this recession and looming. You guys fit well in the marketplace. As people figure out how to right size, you guys fit right nicely into that equation. I got to ask you, what's ahead for 2023 for Boomi? What can we expect to see? >> Yeah, what's ahead? I briefly mentioned it earlier, but the new service we're really excited about that 'cause it's going to help our customers to scale even further and bring more workloads into AWS and more workloads that we can solve challenges for our customers. We've also got additional solutions. We're looking at launching on AWS marketplace. We're going to continue working with SIs and GSIs and our ISV ecosystem to identify more and more enterprise great solutions and verticals and industry-based solutions that we can take out of the box and give to our customers. So we're just going to keep growing. >> What are some of those key verticals? Just curious. >> So we're focusing on manufacturing, the financial services industry. I don't know, maybe it's vertical, but higher ed's another big one for us. So we have over a hundred universities that use our technology in order to automate, grant submissions, student management of different aspects, that sort of thing. Boise State is one of them that's modernized on AWS with Boomi technology. So we're going to continue rolling in that front as well. >> Okay. Is it time for the challenge? >> It's time for the challenge. Are you ready for the challenge, Ed? We're springing this on you, but we know you so we know you can nail this. >> Oh no. >> If you were going to create your own sizzle reel and we're creating sizzle reel that's going to go on Instagram reels and you're going to be a star of it, what would that sizzle reel say? Like if you had a billboard or a bumper sticker, what's that about Boomi boom powerful story? >> Well, we joked about this earlier, but I'd have to say, Go Boomi it. This isn't real. >> Go Boomi it, why? >> Go Boomi it because it's such a succinct way of saying our customer, that terminology came to us from our customers because Boomi becomes a verb within an organization. They'll typically start with us and they'll solve an integration challenge or something like that. And then we become viral in a good way with an organization where our customers, Lisa, you mentioned it earlier before the show, you love talking to our customers 'cause they're so excited and happy and love our technology. They just keep finding more ways to solve challenges and push their business forward. And when a problem comes up, an employee will typically say to another, go Boomi it. >> When you're a verb, that's a good thing. >> Ed: Yes it is. >> Splunk, go Splunk it. That was a verb for log files. Kleenex, tissue. >> Go Boomi it. Ed, thank you so much for coming back on your fourth time. So next time we see you will be fifth time. We'll get you that five-timers club jacket like they have on SNL next time. >> Perfect, can't wait. >> We appreciate your insight, your time. It's great to hear what's going on at Boomi. We appreciate it. >> Ed: Cool. Thank you. >> For Ed Macosky and John Furrier, I'm Lisa Martin. You're watching theCUBE, the leader in live enterprise and emerging tech coverage. (upbeat music)
SUMMARY :
and it's incredible ecosystem of partners Boomi is going to be a great segment. And it's great to see you in person. Yeah, great to be here. What's going on at Boomi? that I need to bring in temporarily and look at the transition, of all of that to make a And one of the things Adam said to you was and how to connect things. We're going to be, we going to be offering more ways What's the new things So that's the kind of scale. the last I checked earlier. That's a good recall right there. the past to do that for us, to be able to make data-driven decisions. and sharing the data is something that we talked And so they got tools. We call that supercloud, and it's nice to be a central part continues to grow, So a lot of the things we're looking at Out of the box but I can really take it to the next step, have the funds to do that. So I like to think we that company has to be a data company. You have to have a team to do that. I got to ask you, what's and our ISV ecosystem to What are some of those key verticals? in order to automate, but we know you so we but I'd have to say, Go Boomi it. that terminology came to us that's a good thing. That was a verb for log files. So next time we see It's great to hear For Ed Macosky and John
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Heger | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Ed Macosky | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Ed | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Adam | PERSON | 0.99+ |
Vegas | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
10 years | QUANTITY | 0.99+ |
fifth time | QUANTITY | 0.99+ |
five solutions | QUANTITY | 0.99+ |
32 new connectors | QUANTITY | 0.99+ |
fourth time | QUANTITY | 0.99+ |
Boomi | PERSON | 0.99+ |
2023 | DATE | 0.99+ |
last month | DATE | 0.99+ |
HealthBridge | ORGANIZATION | 0.99+ |
60, 70,000 people | QUANTITY | 0.99+ |
Monday night | DATE | 0.99+ |
10x | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Boomi | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
next year | DATE | 0.99+ |
2013 | DATE | 0.99+ |
SNL | TITLE | 0.98+ |
199,970 | QUANTITY | 0.98+ |
third day | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
Snowflake | ORGANIZATION | 0.98+ |
Adams Selipsky | PERSON | 0.98+ |
this year | DATE | 0.98+ |
siliconangle.com | OTHER | 0.97+ |
Michelangelo | PERSON | 0.96+ |
13 years old | QUANTITY | 0.96+ |
today | DATE | 0.96+ |
Databricks | ORGANIZATION | 0.96+ |
ORGANIZATION | 0.95+ | |
iPaaS | TITLE | 0.95+ |
a month | QUANTITY | 0.93+ |
MongoDB | ORGANIZATION | 0.93+ |
four-time cube | QUANTITY | 0.92+ |
Kleenex | ORGANIZATION | 0.91+ |
NetSuite | TITLE | 0.9+ |
later today | DATE | 0.9+ |
earlier today | DATE | 0.88+ |
next couple of months | DATE | 0.84+ |
199,970 unique things | QUANTITY | 0.84+ |
wave | EVENT | 0.83+ |
over a hundred universities | QUANTITY | 0.83+ |
SQS | COMMERCIAL_ITEM | 0.81+ |
Boise State | ORGANIZATION | 0.79+ |
Tim Yocum, Influx Data | Evolving InfluxDB into the Smart Data Platform
(soft electronic music) >> Okay, we're back with Tim Yocum who is the Director of Engineering at InfluxData. Tim, welcome, good to see you. >> Good to see you, thanks for having me. >> You're really welcome. Listen, we've been covering opensource software on theCUBE for more than a decade and we've kind of watched the innovation from the big data ecosystem, the cloud is being built out on opensource, mobile, social platforms, key databases, and of course, InfluxDB. And InfluxData has been a big consumer and crontributor of opensource software. So my question to you is where have you seen the biggest bang for the buck from opensource software? >> So yeah, you know, Influx really, we thrive at the intersection of commercial services and opensource software, so OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services, templating engines. Our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants. And like you've mentioned, even better, we contribute a lot back to the projects that we use, as well as our own product InfluxDB. >> But I got to ask you, Tim, because one of the challenge that we've seen, in particular, you saw this in the heyday of Hadoop, the innovations come so fast and furious, and as a software company, you got to place bets, you got to commit people, and sometimes those bets can be risky and not pay off. So how have you managed this challenge? >> Oh, it moves fast, yeah. That's a benefit, though, because the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we tend to do is we fail fast and fail often; we try a lot of things. You know, you look at Kubernetes, for example. That ecosystem is driven by thousands of intelligent developers, engineers, builders. They're adding value every day, so we have to really keep up with that. And as the stack changes, we try different technologies, we try different methods. And at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's something that we just do every day. >> So we have a survey partner down in New York City called Enterprise Technology Research, ETR, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes, is one of the areas that is kind of, it's been off the charts and seen the most significant adoption and velocity particularly along with cloud, but really, Kubernetes is just, you know, still up and to the right consistently, even with the macro headwinds and all of the other stuff that we're sick of talking about. So what do you do with Kubernetes in the platform? >> Yeah, it's really central to our ability to run the product. When we first started out, we were just on AWS and the way we were running was a little bit like containers junior. Now we're running Kubernetes everywhere at AWS, Azure, Google cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code. So our developers can focus on delivering services not trying to learn the intricacies of Amazon, Azure, and Google, and figure out how to deliver services on those three clouds with all of their differences. >> Just a followup on that, is it now, so I presume it sounds like there's a PaaS layer there to allow you guys to have a consistent experience across clouds and out to the edge, wherever. Is that correct? >> Yeah, so we've basically built more or less platform engineering is this the new, hot phrase. Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that just gets all of the underlying infrastructure out of the way and lets them focus on delivering Influx cloud. >> And I know I'm taking a little bit of a tangent, but is that, I'll call it a PaaS layer, if I can use that term, are there specific attributes to InfluxDB or is it kind of just generally off-the-shelf PaaS? Is there any purpose built capability there that is value-add or is it pretty much generic? >> So we really build, we look at things with a build versus buy, through a build versus buy lens. Some things we want to leverage, cloud provider services, for instance, POSTGRES databases for metadata, perhaps. Get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can deliver on, that has consistency, that is all generated from code. that we can, as an SRE group, as an OPS team, that we can manage with very few people, really, and we can stamp out clusters across multiple regions in no time. >> So sometimes you build, sometimes you buy it. How do you make those decisions and what does that mean for the platform and for customers? >> Yeah, so what we're doing is, it's like everybody else will do. We're looking for trade-offs that make sense. We really want to protect our customers' data, so we look for services that support our own software with the most up-time reliability and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team and of course, for our customers; you don't even see that. But we don't want to try to reinvent the wheel, like I had mentioned with SQL datasource for metadata, perhaps. Let's build on top of what of these three large cloud providers have already perfected and we can then focus on our platform engineering and we can help our developers then focus on the InfluxData software, the Influx cloud software. >> So take it to the customer level. What does it mean for them, what's the value that they're going to get out of all these innovations that we've been talking about today, and what can they expect in the future? >> So first of all, people who use the OSS product are really going to be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across over four billion series keys that people have stored, so there's a proven ability to scale. Now in terms of the opensource software and how we've developed the platform, you're getting highly available, high cardinality time-series platform. We manage it and really, as I had mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in realtime. We deploy to our platform every day, repeatedly, all the time. And it's that continuous deployment that allow us to continue testing things in flight, rolling things out that change, new features, better ways of doing deployments, safer ways of doing deployments. All of that happens behind the scenes and like we had mentioned earllier, Kubernetes, I mean, that allows us to get that done. We couldn't do it without having that platform as a base layer for us to then put our software on. So we iterate quickly. When you're on the Influx cloud platform, you really are able to take advantage of new features immediately. We roll things out every day and as those things go into production, you have the ability to use them. And so in the then, we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let us do that for you. >> That makes sense. Are the innovations that we're talking about in the evolution of InfluxDB, do you see that as sort of a natural evolution for existing customers? Is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >> Yeah, it really is. It's a little bit of both. Any engineer will say, "Well it depends." So cloud-native technologies are really the hot thing, IoT, industrial IoT especially. People want to just shove tons of data out there and be able to do queries immediately and they don't want to manage infrastructure. What we've started to see are people that use the cloud service as their datastore backbone and then they use edge computing with our OSS product to ingest data from say, multiple production lines, and down-sample that data, send the rest of that data off to Influx cloud where the heavy processing takes place. So really, us being in all the different clouds and iterating on that, and being in all sorts of different regions, allows for people to really get out of the business of trying to manage that big data, have us take care of that. And, of course, as we change the platform, endusers benefit from that immediately. >> And so obviously you've taken away a lot of the heavy lifting for the infrastructure. Would you say the same things about security, especially as you go out to IoT at the edge? How should we be thinking about the value that you bring from a security perspective? >> We take security super seriously. It's built into our DNA. We do a lot of work to ensure that our platform is secure, that the data that we store is kept private. It's, of course, always a concern, you see in the news all the time, companies being compromised. That's something that you can have an entire team working on which we do, to make sure that the data that you have, whether it's in transit, whether it's at rest is always kept secure, is only viewable by you. You look at things like software bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software and we do that, you know, as we use new tools. That's something, that's just part of our jobs to make sure that the platform that we're running has fully vetted software. And you know, with opensource especially, that's a lot of work, and so it's definitely new territory. Supply chain attacks are definitely happening at a higher clip that they used to but that is really just part of a day in the life for folks like us that are building platforms. >> And that's key, especially when you start getting into the, you know, that we talk about IoT and the operations technologies, the engineers running that infrastrucutre. You know, historically, as you know, Tim, they would air gap everything; that's how they kept it safe. But that's not feasible anymore. Everything's-- >> Can't do that. >> connected now, right? And so you've got to have a partner that is, again, take away that heavy lifting to R&D so you can focus on some of the other activities. All right, give us the last word and the key takeaways from your perspective. >> Well, you know, from my perspective, I see it as a two-lane approach, with Influx, with any time-series data. You've got a lot of stuff that you're going to run on-prem. What you had mentioned, air gapping? Sure, there's plenty of need for that. But at the end of the day, people that don't want to run big datacenters, people that want to entrust their data to a company that's got a full platform set up for them that they can build on, send that data over to the cloud. The cloud is not going away. I think a more hybrid approach is where the future lives and that's what we're prepared for. >> Tim, really appreciate you coming to the program. Great stuff, good to see you. >> Thanks very much, appreciate it. >> Okay in a moment, I'll be back to wrap up today's session. You're watching theCUBE. (soft electronic music)
SUMMARY :
the Director of Engineering at InfluxData. So my question to you back to the projects that we use, in the heyday of Hadoop, And at the end of the day, we and all of the other stuff and the way we were and out to the edge, wherever. And so that just gets all of that we can manage with for the platform and for customers? and we can then focus on that they're going to get And so in the then, we want you to focus about in the evolution of InfluxDB, and down-sample that data, that you bring from a that the data that you have, and the operations technologies, and the key takeaways that data over to the cloud. you coming to the program. to wrap up today's session.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Yocum | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
InfluxData | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
New York City | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
two-lane | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
tomorrow | DATE | 0.98+ |
today | DATE | 0.98+ |
more than a decade | QUANTITY | 0.98+ |
270 terabytes | QUANTITY | 0.98+ |
InfluxDB | TITLE | 0.98+ |
one | QUANTITY | 0.97+ |
about 1500 CIOs | QUANTITY | 0.97+ |
Influx | ORGANIZATION | 0.96+ |
Azure | ORGANIZATION | 0.94+ |
one way | QUANTITY | 0.93+ |
single server | QUANTITY | 0.93+ |
first | QUANTITY | 0.92+ |
PaaS | TITLE | 0.92+ |
Kubernetes | TITLE | 0.91+ |
Enterprise Technology Research | ORGANIZATION | 0.91+ |
Kubernetes | ORGANIZATION | 0.91+ |
three clouds | QUANTITY | 0.9+ |
ETR | ORGANIZATION | 0.89+ |
tons of data | QUANTITY | 0.87+ |
rsus | ORGANIZATION | 0.87+ |
Hadoop | TITLE | 0.85+ |
over four billion series | QUANTITY | 0.85+ |
three large cloud providers | QUANTITY | 0.74+ |
three different cloud providers | QUANTITY | 0.74+ |
theCUBE | ORGANIZATION | 0.66+ |
SQL | TITLE | 0.64+ |
opensource | ORGANIZATION | 0.63+ |
intelligent developers | QUANTITY | 0.57+ |
POSTGRES | ORGANIZATION | 0.52+ |
earllier | ORGANIZATION | 0.5+ |
Azure | TITLE | 0.49+ |
InfluxDB | OTHER | 0.48+ |
cloud | TITLE | 0.4+ |
Anais Dotis Georgiou, InfluxData | Evolving InfluxDB into the Smart Data Platform
>>Okay, we're back. I'm Dave Valante with The Cube and you're watching Evolving Influx DB into the smart data platform made possible by influx data. Anna East Otis Georgio is here. She's a developer advocate for influx data and we're gonna dig into the rationale and value contribution behind several open source technologies that Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the world of data into realtime analytics. Anna is welcome to the program. Thanks for coming on. >>Hi, thank you so much. It's a pleasure to be here. >>Oh, you're very welcome. Okay, so IO X is being touted as this next gen open source core for Influx db. And my understanding is that it leverages in memory, of course for speed. It's a kilo store, so it gives you compression efficiency, it's gonna give you faster query speeds, it gonna use store files and object storages. So you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features, but what are the high level value points that people should understand? >>Sure, that's a great question. So some of the main requirements that IOCs is trying to achieve and some of the most impressive ones to me, the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want, whether that's lift tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metrics queries, we also wanna have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import, super useful. Also, broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like sql, Python, and maybe even pandas in the future. >>Okay, so a lot there. Now we talked to Brian about how you're using Rust and and which is not a new programming language and of course we had some drama around Russ during the pandemic with the Mozilla layoffs, but the formation of the Russ Foundation really addressed any of those concerns. You got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really, adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with rust, but why rust as an alternative to say c plus plus for example? >>Sure, that's a great question. So Rust was chosen because of his exceptional performance and rebi reliability. So while rust is synt tactically similar to c c plus plus and it has similar performance, it also compiles to a native code like c plus plus. But unlike c plus plus, it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers and dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like c plus plus. So Russ like helps meet that requirement of having no limits on card for example, because it's, we're also using the Russ implementation of Apache Arrow and this control over memory and also Russ, Russ Russ's packaging system called crates IO offers everything that you need out of the box to have features like AY and a weight to fixed race conditions to protect against buffering overflows and to ensure thread safe ay caching structures as well. So essentially it's just like has all the control, all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high ity use cases. >>Yeah, and the more I learned about the the new engine and the, and the platform IOCs et cetera, you know, you, you see things like, you know, the old days not even to even today you do a lot of garbage collection in these, in these systems and there's an inverse, you know, impact relative to performance. So it looks like you're really, you know, the community is modernizing the platform, but I wanna talk about Apache Arrow for a moment. It's designed to address the constraints that are associated with analyzing large data sets. We, we know that, but please explain why, what, what is Arrow and and what does it bring to Influx db? >>Sure, yeah. So Arrow is a, a framework for defining in memory calmer data and so much of the efficiency and performance of IOCs comes from taking advantage of calmer data structures. And I will, if you don't mind, take a moment to kind of illustrate why calmer data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our stove. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value, maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the stove. Well usually our room temperature is regulated so those values don't change very often. >>So when you have calm oriented st calm oriented storage, essentially you take each row, each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same, then you'll, you might be able to imagine how equal values will then neighbor each other and when they neighbor each other in the storage format. This provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you wanna define like the min and max value of the temperature in the room across a thousand different points, you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of calmer oriented storage. >>So if you had a row oriented storage, you'd first have to look at every field like the temperature in, in the room and the temperature of the stove. You'd have to go across every tag value that maybe describes where the room is located or what model the stove is. And every timestamp you'd then have to pluck out that one temperature value that you want at that one times stamp and do that for every single row. So you're scanning across a ton more data and that's why row oriented doesn't provide the same efficiency as calmer and Apache Arrow is in memory calmer data, calmer data fit framework. So that's where a lot of the advantages come >>From. Okay. So you've basically described like a traditional database, a row approach, but I've seen like a lot of traditional databases say, okay, now we've got, we can handle colo format versus what you're talking about is really, you know, kind of native it, is it not as effective as the, is the form not as effective because it's largely a, a bolt on? Can you, can you like elucidate on that front? >>Yeah, it's, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why, why RO row oriented storage isn't as efficient as calm, calmer oriented storage. >>Yeah. Got it. So let's talk about Arrow data fusion. What is data fusion? I know it's written in rust, but what does it bring to to the table here? >>Sure. So it's an extensible query execution framework and it uses Arrow as its in memory format. So the way that it helps influx DB IOx is that okay, it's great if you can write unlimited amount of cardinality into influx cbis, but if you don't have a query engine that can successfully query that data, then I don't know how much value it is for you. So data fusion helps enable the, the query process and transformation of that data. It also has a PANDAS API so that you could take advantage of PDA's data frames as well and all of the machine learning tools associated with pandas. >>Okay. You're also leveraging par K in the platform course. We heard a lot about Par K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Par K and why is it important? >>Sure. So Par K is the calm oriented durable file format. So it's important because it'll enable bulk import and bulk export. It has compatibility with Python and pandas so it supports a broader ecosystem. Parque files also take very little disc disc space and they're faster to scan because again they're column oriented in particular, I think PAR K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the, the benefits of par k. >>Got it. Very popular. So and these, what exactly is influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >>Sure. So Influx DB first has contributed a lot of different, different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing with flux. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up, then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >>Yeah. Got it. You got that virtuous cycle going, the people call it the flywheel. Give us your last thoughts and kind of summarize, you know, where what, what the big takeaways are from your perspective. >>So I think the big takeaway is that influx data is doing a lot of really exciting things with Influx DB IOCs and I really encourage if you are interested in learning more about the technologies that Influx is leveraging to produce IOCs, the challenges associated with it and all of the hard work questions and I just wanna learn more, then I would encourage you to go to the monthly tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel. Look for the influx D DB underscore IAC channel specifically to learn more about how to join those office hours and those monthly tech tech talks as well as ask any questions they have about IOCs, what to expect and what you'd like to learn more about. I as a developer advocate, I wanna answer your questions. So if there's a particular technology or stack that you wanna dive deeper into and want more explanation about how influx TB leverages it to build IOCs, I will be really excited to produce content on that topic for you. >>Yeah, that's awesome. You guys have a really rich community, collaborate with your peers, solve problems, and you guys super responsive, so really appreciate that. All right, thank you so much and East for explaining all this open source stuff to the audience and why it's important to the future of data. >>Thank you. I really appreciate it. >>All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yokum. He's the director of engineering for Influx Data and we're gonna talk about how you update a SaaS engine while the plane is flying at 30,000 feet. You don't wanna miss this.
SUMMARY :
to increase the granularity of time series analysis analysis and bring the world of data Hi, thank you so much. So you got very cost effective approach. it aims to have no limits on cardinality and also allow you to write any kind of event data that So lots of platforms, lots of adoption with rust, but why rust as an all the fine grain control, you need to take advantage of even to even today you do a lot of garbage collection in these, in these systems and And so you can picture this table where we have like two rows with the two temperature values for order to answer that question and you have those immediately available to you. to pluck out that one temperature value that you want at that one times stamp and do that for every about is really, you know, kind of native it, is it not as effective as the, Yeah, it's, it's not as effective because you have more expensive compression and because So let's talk about Arrow data fusion. It also has a PANDAS API so that you could take advantage of What are you doing with So it's important What's the value that you're bringing to the community? here is that the more you contribute and build those up, then the kind of summarize, you know, where what, what the big takeaways are from your perspective. So if there's a particular technology or stack that you wanna dive deeper into and want and you guys super responsive, so really appreciate that. I really appreciate it. Influx Data and we're gonna talk about how you update a SaaS engine while
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Yokum | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Anna | PERSON | 0.99+ |
James Bellenger | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Dave Valante | PERSON | 0.99+ |
James | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
three months | QUANTITY | 0.99+ |
16 times | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Python | TITLE | 0.99+ |
mobile.twitter.com | OTHER | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
iOS | TITLE | 0.99+ |
ORGANIZATION | 0.99+ | |
30,000 feet | QUANTITY | 0.99+ |
Russ Foundation | ORGANIZATION | 0.99+ |
Scala | TITLE | 0.99+ |
Twitter Lite | TITLE | 0.99+ |
two rows | QUANTITY | 0.99+ |
200 megabyte | QUANTITY | 0.99+ |
Node | TITLE | 0.99+ |
Three months ago | DATE | 0.99+ |
one application | QUANTITY | 0.99+ |
both places | QUANTITY | 0.99+ |
each row | QUANTITY | 0.99+ |
Par K | TITLE | 0.99+ |
Anais Dotis Georgiou | PERSON | 0.99+ |
one language | QUANTITY | 0.98+ |
first one | QUANTITY | 0.98+ |
15 engineers | QUANTITY | 0.98+ |
Anna East Otis Georgio | PERSON | 0.98+ |
both | QUANTITY | 0.98+ |
one second | QUANTITY | 0.98+ |
25 engineers | QUANTITY | 0.98+ |
About 800 people | QUANTITY | 0.98+ |
sql | TITLE | 0.98+ |
Node Summit 2017 | EVENT | 0.98+ |
two temperature values | QUANTITY | 0.98+ |
one times | QUANTITY | 0.98+ |
c plus plus | TITLE | 0.97+ |
Rust | TITLE | 0.96+ |
SQL | TITLE | 0.96+ |
today | DATE | 0.96+ |
Influx | ORGANIZATION | 0.95+ |
under 600 kilobytes | QUANTITY | 0.95+ |
first | QUANTITY | 0.95+ |
c plus plus | TITLE | 0.95+ |
Apache | ORGANIZATION | 0.95+ |
par K | TITLE | 0.94+ |
React | TITLE | 0.94+ |
Russ | ORGANIZATION | 0.94+ |
About three months ago | DATE | 0.93+ |
8:30 AM Pacific time | DATE | 0.93+ |
twitter.com | OTHER | 0.93+ |
last decade | DATE | 0.93+ |
Node | ORGANIZATION | 0.92+ |
Hadoop | TITLE | 0.9+ |
InfluxData | ORGANIZATION | 0.89+ |
c c plus plus | TITLE | 0.89+ |
Cube | ORGANIZATION | 0.89+ |
each column | QUANTITY | 0.88+ |
InfluxDB | TITLE | 0.86+ |
Influx DB | TITLE | 0.86+ |
Mozilla | ORGANIZATION | 0.86+ |
DB IOx | TITLE | 0.85+ |
Brian Gilmore, Influx Data | Evolving InfluxDB into the Smart Data Platform
>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now, in this program, we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program, you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think, like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean, if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems. Certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean, commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away. Just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean, we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is, you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like, take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and, you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally, I would just say please, like watch in ice in Tim's sessions, Like these are two of our best and brightest. They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time, really hot area. As Brian said in a moment, I'll be right back with Anna East Dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't want to miss this.
SUMMARY :
we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. who are using out on a, on a daily basis, you know, and having that sort of big shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, results in, in, you know, milliseconds of time since it hit the, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try you know, the risk of, of, you know, any issues that can come with new software rollouts. And you can do some experimentation and, you know, using the cloud resources. but you know, when it came to this particular new engine, you know, that power performance really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is, you know, really starting to hit that steep part of the S-curve. going out and, you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. the critical aspects of key open source components of the Influx DB engine,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
60,000 people | QUANTITY | 0.99+ |
Influx | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Bryan | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
twice | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
three years ago | DATE | 0.99+ |
Influx DB | TITLE | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
tomorrow | DATE | 0.98+ |
Apache | ORGANIZATION | 0.98+ |
Anna East Dos Georgio | PERSON | 0.98+ |
IOT | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
In Flux Data | ORGANIZATION | 0.96+ |
Influx | TITLE | 0.95+ |
The Cube | ORGANIZATION | 0.95+ |
tons | QUANTITY | 0.95+ |
Cube | ORGANIZATION | 0.94+ |
Rust | TITLE | 0.93+ |
both enterprises | QUANTITY | 0.92+ |
iot T | TITLE | 0.91+ |
second | QUANTITY | 0.89+ |
Go | TITLE | 0.88+ |
two thumbs | QUANTITY | 0.87+ |
Anna East | PERSON | 0.87+ |
Parque | TITLE | 0.85+ |
a minute ago | DATE | 0.84+ |
Influx State | ORGANIZATION | 0.83+ |
Dos Georgio | ORGANIZATION | 0.8+ |
influx data | ORGANIZATION | 0.8+ |
Apache Arrow | ORGANIZATION | 0.76+ |
GitHub | ORGANIZATION | 0.75+ |
Bryan | LOCATION | 0.74+ |
phase one | QUANTITY | 0.71+ |
past May | DATE | 0.69+ |
Go | ORGANIZATION | 0.64+ |
number two | QUANTITY | 0.64+ |
millisecond ago | DATE | 0.61+ |
InfluxDB | TITLE | 0.6+ |
Time | TITLE | 0.55+ |
industrial | QUANTITY | 0.54+ |
phase two | QUANTITY | 0.54+ |
Parque | COMMERCIAL_ITEM | 0.53+ |
couple | QUANTITY | 0.5+ |
time | TITLE | 0.5+ |
things | QUANTITY | 0.49+ |
TSI | ORGANIZATION | 0.4+ |
Arrow | TITLE | 0.38+ |
PARQUE | OTHER | 0.3+ |
Evolving InfluxDB into the Smart Data Platform
>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now in this program we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away, just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally I would just say please, like watch in ICE in Tim's sessions, like these are two of our best and brightest, They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time really hot area. As Brian said in a moment, I'll be right back with Anna East dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't wanna miss this >>Time series Data is everywhere. The number of sensors, systems and applications generating time series data increases every day. All these data sources producing so much data can cause analysis paralysis. Influx DB is an entire platform designed with everything you need to quickly build applications that generate value from time series data influx. DB Cloud is a serverless solution, which means you don't need to buy or manage your own servers. There's no need to worry about provisioning because you only pay for what you use. Influx DB Cloud is fully managed so you get the newest features and enhancements as they're added to the platform's code base. It also means you can spend time building solutions and delivering value to your users instead of wasting time and effort managing something else. Influx TVB Cloud offers a range of security features to protect your data, multiple layers of redundancy ensure you don't lose any data access controls ensure that only the people who should see your data can see it. >>And encryption protects your data at rest and in transit between any of our regions or cloud providers. InfluxDB uses a single API across the entire platform suite so you can build on open source, deploy to the cloud and then then easily query data in the cloud at the edge or on prem using the same scripts. And InfluxDB is schemaless automatically adjusting to changes in the shape of your data without requiring changes in your application. Logic. InfluxDB Cloud is production ready from day one. All it needs is your data and your imagination. Get started today@influxdata.com slash cloud. >>Okay, we're back. I'm Dave Valante with a Cube and you're watching evolving Influx DB into the smart data platform made possible by influx data. Anna ETOs Georgio is here, she's a developer advocate for influx data and we're gonna dig into the rationale and value contribution behind several open source technologies that Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the world of data into real-time analytics and is welcome to the program. Thanks for coming on. >>Hi, thank you so much. It's a pleasure to be here. >>Oh, you're very welcome. Okay, so IX is being touted as this next gen open source core for Influx db. And my understanding is that it leverages in memory of course for speed. It's a kilo store, so it gives you a compression efficiency, it's gonna give you faster query speeds, you store files and object storage, so you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features, but what are the high level value points that people should understand? >>Sure, that's a great question. So some of the main requirements that IOx is trying to achieve and some of the most impressive ones to me, the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want, whether that's live tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metrics queries, we also wanna have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import super useful. Also broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like sql, Python, and maybe even pandas in the future. >>Okay, so lot there. Now we talked to Brian about how you're using Rust and which is not a new programming language and of course we had some drama around Rust during the pandemic with the Mozilla layoffs, but the formation of the Rust Foundation really addressed any of those concerns. You got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really, the adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with rust, but why rust as an alternative to say c plus plus for example? >>Sure, that's a great question. So Russ was chosen because of his exceptional performance and reliability. So while Russ is synt tactically similar to c plus plus and it has similar performance, it also compiles to a native code like c plus plus. But unlike c plus plus, it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers. And dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like c plus plus. So Russ like helps meet that requirement of having no limits on ality, for example, because it's, we're also using the Russ implementation of Apache Arrow and this control over memory and also Russ Russ's packaging system called crates IO offers everything that you need out of the box to have features like AY and a weight to fix race conditions, to protection against buffering overflows and to ensure thread safe async cashing structures as well. So essentially it's just like has all the control, all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high ity use cases. >>Yeah, and the more I learn about the, the new engine and, and the platform IOCs et cetera, you know, you, you see things like, you know, the old days not even to even today you do a lot of garbage collection in these, in these systems and there's an inverse, you know, impact relative to performance. So it looks like you really, you know, the community is modernizing the platform, but I wanna talk about Apache Arrow for a moment. It it's designed to address the constraints that are associated with analyzing large data sets. We, we know that, but please explain why, what, what is Arrow and and what does it bring to Influx db? >>Sure, yeah. So Arrow is a, a framework for defining in memory calmer data. And so much of the efficiency and performance of IOx comes from taking advantage of calmer data structures. And I will, if you don't mind, take a moment to kind of of illustrate why column or data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our stove. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value, maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the stove. Well usually our room temperature is regulated so those values don't change very often. >>So when you have calm oriented st calm oriented storage, essentially you take each row, each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same, then you'll, you might be able to imagine how equal values will then enable each other and when they neighbor each other in the storage format, this provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you wanna define like the men and max value of the temperature in the room across a thousand different points, you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of calmer oriented storage. >>So if you had a row oriented storage, you'd first have to look at every field like the temperature in, in the room and the temperature of the stove. You'd have to go across every tag value that maybe describes where the room is located or what model the stove is. And every timestamp you'd then have to pluck out that one temperature value that you want at that one time stamp and do that for every single row. So you're scanning across a ton more data and that's why Rowe Oriented doesn't provide the same efficiency as calmer and Apache Arrow is in memory calmer data, commoner data fit framework. So that's where a lot of the advantages come >>From. Okay. So you basically described like a traditional database, a row approach, but I've seen like a lot of traditional database say, okay, now we've got, we can handle colo format versus what you're talking about is really, you know, kind of native i, is it not as effective? Is the, is the foreman not as effective because it's largely a, a bolt on? Can you, can you like elucidate on that front? >>Yeah, it's, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why, why RO row oriented storage isn't as efficient as calm, calmer oriented storage. Yeah. >>Got it. So let's talk about Arrow Data Fusion. What is data fusion? I know it's written in Rust, but what does it bring to the table here? >>Sure. So it's an extensible query execution framework and it uses Arrow as it's in memory format. So the way that it helps in influx DB IOCs is that okay, it's great if you can write unlimited amount of cardinality into influx Cbis, but if you don't have a query engine that can successfully query that data, then I don't know how much value it is for you. So Data fusion helps enable the, the query process and transformation of that data. It also has a PANDAS API so that you could take advantage of PANDAS data frames as well and all of the machine learning tools associated with Pandas. >>Okay. You're also leveraging Par K in the platform cause we heard a lot about Par K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Parque and why is it important? >>Sure. So parque is the column oriented durable file format. So it's important because it'll enable bulk import, bulk export, it has compatibility with Python and Pandas, so it supports a broader ecosystem. Par K files also take very little disc disc space and they're faster to scan because again, they're column oriented in particular, I think PAR K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the, the benefits of par k. >>Got it. Very popular. So and he's, what exactly is influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >>Sure. So Influx DB first has contributed a lot of different, different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing with flux. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up, then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >>Yeah. Got it. You got that virtuous cycle going, the people call the flywheel. Give us your last thoughts and kind of summarize, you know, where what, what the big takeaways are from your perspective. >>So I think the big takeaway is that influx data is doing a lot of really exciting things with Influx DB IOx and I really encourage, if you are interested in learning more about the technologies that Influx is leveraging to produce IOCs, the challenges associated with it and all of the hard work questions and you just wanna learn more, then I would encourage you to go to the monthly Tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel look for the influx DDB unders IAC channel specifically to learn more about how to join those office hours and those monthly tech tech talks as well as ask any questions they have about iacs, what to expect and what you'd like to learn more about. I as a developer advocate, I wanna answer your questions. So if there's a particular technology or stack that you wanna dive deeper into and want more explanation about how INFLUX DB leverages it to build IOCs, I will be really excited to produce content on that topic for you. >>Yeah, that's awesome. You guys have a really rich community, collaborate with your peers, solve problems, and, and you guys super responsive, so really appreciate that. All right, thank you so much Anise for explaining all this open source stuff to the audience and why it's important to the future of data. >>Thank you. I really appreciate it. >>All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yoakum, he's the director of engineering for Influx Data and we're gonna talk about how you update a SAS engine while the plane is flying at 30,000 feet. You don't wanna miss this. >>I'm really glad that we went with InfluxDB Cloud for our hosting because it has saved us a ton of time. It's helped us move faster, it's saved us money. And also InfluxDB has good support. My name's Alex Nada. I am CTO at Noble nine. Noble Nine is a platform to measure and manage service level objectives, which is a great way of measuring the reliability of your systems. You can essentially think of an slo, the product we're providing to our customers as a bunch of time series. So we need a way to store that data and the corresponding time series that are related to those. The main reason that we settled on InfluxDB as we were shopping around is that InfluxDB has a very flexible query language and as a general purpose time series database, it basically had the set of features we were looking for. >>As our platform has grown, we found InfluxDB Cloud to be a really scalable solution. We can quickly iterate on new features and functionality because Influx Cloud is entirely managed, it probably saved us at least a full additional person on our team. We also have the option of running InfluxDB Enterprise, which gives us the ability to even host off the cloud or in a private cloud if that's preferred by a customer. Influx data has been really flexible in adapting to the hosting requirements that we have. They listened to the challenges we were facing and they helped us solve it. As we've continued to grow, I'm really happy we have influx data by our side. >>Okay, we're back with Tim Yokum, who is the director of engineering at Influx Data. Tim, welcome. Good to see you. >>Good to see you. Thanks for having me. >>You're really welcome. Listen, we've been covering open source software in the cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem. The cloud has been being built out on open source, mobile, social platforms, key databases, and of course influx DB and influx data has been a big consumer and contributor of open source software. So my question to you is, where have you seen the biggest bang for the buck from open source software? >>So yeah, you know, influx really, we thrive at the intersection of commercial services and open, so open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services temping engines. Our, our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants and like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product influx db. >>You know, but I gotta ask you, Tim, because one of the challenge that that we've seen in particular, you saw this in the heyday of Hadoop, the, the innovations come so fast and furious and as a software company you gotta place bets, you gotta, you know, commit people and sometimes those bets can be risky and not pay off well, how have you managed this challenge? >>Oh, it moves fast. Yeah, that, that's a benefit though because it, the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we, what we tend to do is, is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example, that ecosystem is driven by thousands of intelligent developers, engineers, builders, they're adding value every day. So we have to really keep up with that. And as the stack changes, we, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's, it's something that we just do every day. >>So we have a survey partner down in New York City called Enterprise Technology Research etr, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity particularly, you know, along with cloud. But, but really Kubernetes is just, you know, still up until the right consistently even with, you know, the macro headwinds and all, all of the stuff that we're sick of talking about. But, so what are you doing with Kubernetes in the platform? >>Yeah, it, it's really central to our ability to run the product. When we first started out, we were just on AWS and, and the way we were running was, was a little bit like containers junior. Now we're running Kubernetes everywhere at aws, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code so our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. >>Just to follow up on that, is it, no. So I presume it's sounds like there's a PAs layer there to allow you guys to have a consistent experience across clouds and out to the edge, you know, wherever is that, is that correct? >>Yeah, so we've basically built more or less platform engineering, This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that, that just gets all of the underlying infrastructure out of the way and, and lets them focus on delivering influx cloud. >>Yeah, and I know I'm taking a little bit of a tangent, but is that, that, I'll call it a PAs layer if I can use that term. Is that, are there specific attributes to Influx db or is it kind of just generally off the shelf paths? You know, are there, is, is there any purpose built capability there that, that is, is value add or is it pretty much generic? >>So we really build, we, we look at things through, with a build versus buy through a, a build versus by lens. Some things we want to leverage cloud provider services, for instance, Postgres databases for metadata, perhaps we'll get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can, can deliver on that has consistency that is, is all generated from code that we can as a, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions and in no time. >>So how, so sometimes you build, sometimes you buy it. How do you make those decisions and and what does that mean for the, for the platform and for customers? >>Yeah, so what we're doing is, it's like everybody else will do, we're we're looking for trade offs that make sense. You know, we really want to protect our customers data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, like I had mentioned with SQL data stores for metadata, perhaps let's build on top of what of these three large cloud providers have already perfected. And we can then focus on our platform engineering and we can have our developers then focus on the influx data, software, influx, cloud software. >>So take it to the customer level, what does it mean for them? What's the value that they're gonna get out of all these innovations that we've been been talking about today and what can they expect in the future? >>So first of all, people who use the OSS product are really gonna be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across, over 4 billion series keys that people have stored. So there's a proven ability to scale now in terms of the open source, open source software and how we've developed the platform. You're getting highly available high cardinality time series platform. We manage it and, and really as, as I mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in real time. We deploy to our platform every day repeatedly all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change new features, better ways of doing deployments, safer ways of doing deployments. >>All of that happens behind the scenes. And like we had mentioned earlier, Kubernetes, I mean that, that allows us to get that done. We couldn't do it without having that platform as a, as a base layer for us to then put our software on. So we, we iterate quickly. When you're on the, the Influx cloud platform, you really are able to, to take advantage of new features immediately. We roll things out every day and as those things go into production, you have, you have the ability to, to use them. And so in the end we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let, let us do that for you. So, >>And that makes sense, but so is the, is the, are the innovations that we're talking about in the evolution of Influx db, do, do you see that as sort of a natural evolution for existing customers? I, is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >>Yeah, it really is it, it's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are, are really the hot thing. Iot, industrial iot especially, people want to just shove tons of data out there and be able to do queries immediately and they don't wanna manage infrastructure. What we've started to see are people that use the cloud service as their, their data store backbone and then they use edge computing with R OSS product to ingest data from say, multiple production lines and downsample that data, send the rest of that data off influx cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that and being in all sorts of different regions allows for people to really get out of the, the business of man trying to manage that big data, have us take care of that. And of course as we change the platform end users benefit from that immediately. And, >>And so obviously taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IOT and the Edge? How should we be thinking about the value that you bring from a security perspective? >>Yeah, we take, we take security super seriously. It, it's built into our dna. We do a lot of work to ensure that our platform is secure, that the data we store is, is kept private. It's of course always a concern. You see in the news all the time, companies being compromised, you know, that's something that you can have an entire team working on, which we do to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You know, you look at things like software, bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that, that's just part of our jobs to make sure that the platform that we're running it has, has fully vetted software and, and with open source especially, that's a lot of work. And so it's, it's definitely new territory. Supply chain attacks are, are definitely happening at a higher clip than they used to, but that is, that is really just part of a day in the, the life for folks like us that are, are building platforms. >>Yeah, and that's key. I mean especially when you start getting into the, the, you know, we talk about IOT and the operations technologies, the engineers running the, that infrastructure, you know, historically, as you know, Tim, they, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >>That >>Connected now, right? And so you've gotta have a partner that is again, take away that heavy lifting to r and d so you can focus on some of the other activities. Right. Give us the, the last word and the, the key takeaways from your perspective. >>Well, you know, from my perspective I see it as, as a a two lane approach with, with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, what you had mentioned, air gaping. Sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want torus their data to, to a company that's, that's got a full platform set up for them that they can build on, send that data over to the cloud, the cloud is not going away. I think more hybrid approach is, is where the future lives and that's what we're prepared for. >>Tim, really appreciate you coming to the program. Great stuff. Good to see you. >>Thanks very much. Appreciate it. >>Okay, in a moment I'll be back to wrap up. Today's session, you're watching The Cube. >>Are you looking for some help getting started with InfluxDB Telegraph or Flux Check >>Out Influx DB University >>Where you can find our entire catalog of free training that will help you make the most of your time series data >>Get >>Started for free@influxdbu.com. >>We'll see you in class. >>Okay, so we heard today from three experts on time series and data, how the Influx DB platform is evolving to support new ways of analyzing large data sets very efficiently and effectively in real time. And we learned that key open source components like Apache Arrow and the Rust Programming environment Data fusion par K are being leveraged to support realtime data analytics at scale. We also learned about the contributions in importance of open source software and how the Influx DB community is evolving the platform with minimal disruption to support new workloads, new use cases, and the future of realtime data analytics. Now remember these sessions, they're all available on demand. You can go to the cube.net to find those. Don't forget to check out silicon angle.com for all the news related to things enterprise and emerging tech. And you should also check out influx data.com. There you can learn about the company's products. You'll find developer resources like free courses. You could join the developer community and work with your peers to learn and solve problems. And there are plenty of other resources around use cases and customer stories on the website. This is Dave Valante. Thank you for watching Evolving Influx DB into the smart data platform, made possible by influx data and brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SUMMARY :
we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, you know, all of the, the real time queries, the, the multiple language query support, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try And so just, you know, being careful, maybe a little cautious in terms And you can do some experimentation and, you know, using the cloud resources. You know, this is a new very sort of popular systems language, you know, really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. going out and you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. goes, goes beyond just the historical into the real time really hot area. There's no need to worry about provisioning because you only pay for what you use. InfluxDB uses a single API across the entire platform suite so you can build on Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the Hi, thank you so much. it's gonna give you faster query speeds, you store files and object storage, it aims to have no limits on cardinality and also allow you to write any kind of event data that It's really, the adoption is really starting to get steep on all the control, all the fine grain control, you need to take you know, the community is modernizing the platform, but I wanna talk about Apache And so you can answer that question and you have those immediately available to you. out that one temperature value that you want at that one time stamp and do that for every talking about is really, you know, kind of native i, is it not as effective? Yeah, it's, it's not as effective because you have more expensive compression and So let's talk about Arrow Data Fusion. It also has a PANDAS API so that you could take advantage of PANDAS What are you doing with and Pandas, so it supports a broader ecosystem. What's the value that you're bringing to the community? And I think kind of the idea here is that if you can improve kind of summarize, you know, where what, what the big takeaways are from your perspective. the hard work questions and you All right, thank you so much Anise for explaining I really appreciate it. Data and we're gonna talk about how you update a SAS engine while I'm really glad that we went with InfluxDB Cloud for our hosting They listened to the challenges we were facing and they helped Good to see you. Good to see you. So my question to you is, So yeah, you know, influx really, we thrive at the intersection of commercial services and open, You know, you look at Kubernetes for example, But, but really Kubernetes is just, you know, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. to the edge, you know, wherever is that, is that correct? This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us Is that, are there specific attributes to Influx db as an SRE group, as an ops team, that we can manage with very few people So how, so sometimes you build, sometimes you buy it. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, and really as, as I mentioned earlier, we can keep up with the state of the art. the end we want you to focus on getting actual insights from your data instead of running infrastructure, So cloud native technologies are, are really the hot thing. You see in the news all the time, companies being compromised, you know, technologies, the engineers running the, that infrastructure, you know, historically, as you know, take away that heavy lifting to r and d so you can focus on some of the other activities. with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, Tim, really appreciate you coming to the program. Thanks very much. Okay, in a moment I'll be back to wrap up. brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
David Brown | PERSON | 0.99+ |
Tim Yoakum | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Stu | PERSON | 0.99+ |
Herain Oberoi | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Kamile Taouk | PERSON | 0.99+ |
John Fourier | PERSON | 0.99+ |
Rinesh Patel | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Santana Dasgupta | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Canada | LOCATION | 0.99+ |
BMW | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ICE | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Jack Berkowitz | PERSON | 0.99+ |
Australia | LOCATION | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Venkat | PERSON | 0.99+ |
Michael | PERSON | 0.99+ |
Camille | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Venkat Krishnamachari | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Don Tapscott | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Intercontinental Exchange | ORGANIZATION | 0.99+ |
Children's Cancer Institute | ORGANIZATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
telco | ORGANIZATION | 0.99+ |
Sabrina Yan | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
Sabrina | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
MontyCloud | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Leo | PERSON | 0.99+ |
COVID-19 | OTHER | 0.99+ |
Santa Ana | LOCATION | 0.99+ |
UK | LOCATION | 0.99+ |
Tushar | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Valente | PERSON | 0.99+ |
JL Valente | PERSON | 0.99+ |
1,000 | QUANTITY | 0.99+ |
Evolving InfluxDB into the Smart Data Platform Full Episode
>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now in this program we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away, just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally I would just say please, like watch in ICE in Tim's sessions, like these are two of our best and brightest, They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time really hot area. As Brian said in a moment, I'll be right back with Anna East dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't wanna miss this >>Time series Data is everywhere. The number of sensors, systems and applications generating time series data increases every day. All these data sources producing so much data can cause analysis paralysis. Influx DB is an entire platform designed with everything you need to quickly build applications that generate value from time series data influx. DB Cloud is a serverless solution, which means you don't need to buy or manage your own servers. There's no need to worry about provisioning because you only pay for what you use. Influx DB Cloud is fully managed so you get the newest features and enhancements as they're added to the platform's code base. It also means you can spend time building solutions and delivering value to your users instead of wasting time and effort managing something else. Influx TVB Cloud offers a range of security features to protect your data, multiple layers of redundancy ensure you don't lose any data access controls ensure that only the people who should see your data can see it. >>And encryption protects your data at rest and in transit between any of our regions or cloud providers. InfluxDB uses a single API across the entire platform suite so you can build on open source, deploy to the cloud and then then easily query data in the cloud at the edge or on prem using the same scripts. And InfluxDB is schemaless automatically adjusting to changes in the shape of your data without requiring changes in your application. Logic. InfluxDB Cloud is production ready from day one. All it needs is your data and your imagination. Get started today@influxdata.com slash cloud. >>Okay, we're back. I'm Dave Valante with a Cube and you're watching evolving Influx DB into the smart data platform made possible by influx data. Anna ETOs Georgio is here, she's a developer advocate for influx data and we're gonna dig into the rationale and value contribution behind several open source technologies that Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the world of data into real-time analytics and is welcome to the program. Thanks for coming on. >>Hi, thank you so much. It's a pleasure to be here. >>Oh, you're very welcome. Okay, so IX is being touted as this next gen open source core for Influx db. And my understanding is that it leverages in memory of course for speed. It's a kilo store, so it gives you a compression efficiency, it's gonna give you faster query speeds, you store files and object storage, so you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features, but what are the high level value points that people should understand? >>Sure, that's a great question. So some of the main requirements that IOx is trying to achieve and some of the most impressive ones to me, the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want, whether that's live tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metrics queries, we also wanna have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import super useful. Also broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like sql, Python, and maybe even pandas in the future. >>Okay, so lot there. Now we talked to Brian about how you're using Rust and which is not a new programming language and of course we had some drama around Rust during the pandemic with the Mozilla layoffs, but the formation of the Rust Foundation really addressed any of those concerns. You got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really, the adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with rust, but why rust as an alternative to say c plus plus for example? >>Sure, that's a great question. So Russ was chosen because of his exceptional performance and reliability. So while Russ is synt tactically similar to c plus plus and it has similar performance, it also compiles to a native code like c plus plus. But unlike c plus plus, it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers. And dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like c plus plus. So Russ like helps meet that requirement of having no limits on ality, for example, because it's, we're also using the Russ implementation of Apache Arrow and this control over memory and also Russ Russ's packaging system called crates IO offers everything that you need out of the box to have features like AY and a weight to fix race conditions, to protection against buffering overflows and to ensure thread safe async cashing structures as well. So essentially it's just like has all the control, all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high ity use cases. >>Yeah, and the more I learn about the, the new engine and, and the platform IOCs et cetera, you know, you, you see things like, you know, the old days not even to even today you do a lot of garbage collection in these, in these systems and there's an inverse, you know, impact relative to performance. So it looks like you really, you know, the community is modernizing the platform, but I wanna talk about Apache Arrow for a moment. It it's designed to address the constraints that are associated with analyzing large data sets. We, we know that, but please explain why, what, what is Arrow and and what does it bring to Influx db? >>Sure, yeah. So Arrow is a, a framework for defining in memory calmer data. And so much of the efficiency and performance of IOx comes from taking advantage of calmer data structures. And I will, if you don't mind, take a moment to kind of of illustrate why column or data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our stove. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value, maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the stove. Well usually our room temperature is regulated so those values don't change very often. >>So when you have calm oriented st calm oriented storage, essentially you take each row, each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same, then you'll, you might be able to imagine how equal values will then enable each other and when they neighbor each other in the storage format, this provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you wanna define like the men and max value of the temperature in the room across a thousand different points, you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of calmer oriented storage. >>So if you had a row oriented storage, you'd first have to look at every field like the temperature in, in the room and the temperature of the stove. You'd have to go across every tag value that maybe describes where the room is located or what model the stove is. And every timestamp you'd then have to pluck out that one temperature value that you want at that one time stamp and do that for every single row. So you're scanning across a ton more data and that's why Rowe Oriented doesn't provide the same efficiency as calmer and Apache Arrow is in memory calmer data, commoner data fit framework. So that's where a lot of the advantages come >>From. Okay. So you basically described like a traditional database, a row approach, but I've seen like a lot of traditional database say, okay, now we've got, we can handle colo format versus what you're talking about is really, you know, kind of native i, is it not as effective? Is the, is the foreman not as effective because it's largely a, a bolt on? Can you, can you like elucidate on that front? >>Yeah, it's, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why, why RO row oriented storage isn't as efficient as calm, calmer oriented storage. Yeah. >>Got it. So let's talk about Arrow Data Fusion. What is data fusion? I know it's written in Rust, but what does it bring to the table here? >>Sure. So it's an extensible query execution framework and it uses Arrow as it's in memory format. So the way that it helps in influx DB IOCs is that okay, it's great if you can write unlimited amount of cardinality into influx Cbis, but if you don't have a query engine that can successfully query that data, then I don't know how much value it is for you. So Data fusion helps enable the, the query process and transformation of that data. It also has a PANDAS API so that you could take advantage of PANDAS data frames as well and all of the machine learning tools associated with Pandas. >>Okay. You're also leveraging Par K in the platform cause we heard a lot about Par K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Parque and why is it important? >>Sure. So parque is the column oriented durable file format. So it's important because it'll enable bulk import, bulk export, it has compatibility with Python and Pandas, so it supports a broader ecosystem. Par K files also take very little disc disc space and they're faster to scan because again, they're column oriented in particular, I think PAR K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the, the benefits of par k. >>Got it. Very popular. So and he's, what exactly is influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >>Sure. So Influx DB first has contributed a lot of different, different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing with flux. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up, then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >>Yeah. Got it. You got that virtuous cycle going, the people call the flywheel. Give us your last thoughts and kind of summarize, you know, where what, what the big takeaways are from your perspective. >>So I think the big takeaway is that influx data is doing a lot of really exciting things with Influx DB IOx and I really encourage, if you are interested in learning more about the technologies that Influx is leveraging to produce IOCs, the challenges associated with it and all of the hard work questions and you just wanna learn more, then I would encourage you to go to the monthly Tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel look for the influx DDB unders IAC channel specifically to learn more about how to join those office hours and those monthly tech tech talks as well as ask any questions they have about iacs, what to expect and what you'd like to learn more about. I as a developer advocate, I wanna answer your questions. So if there's a particular technology or stack that you wanna dive deeper into and want more explanation about how INFLUX DB leverages it to build IOCs, I will be really excited to produce content on that topic for you. >>Yeah, that's awesome. You guys have a really rich community, collaborate with your peers, solve problems, and, and you guys super responsive, so really appreciate that. All right, thank you so much Anise for explaining all this open source stuff to the audience and why it's important to the future of data. >>Thank you. I really appreciate it. >>All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yoakum, he's the director of engineering for Influx Data and we're gonna talk about how you update a SAS engine while the plane is flying at 30,000 feet. You don't wanna miss this. >>I'm really glad that we went with InfluxDB Cloud for our hosting because it has saved us a ton of time. It's helped us move faster, it's saved us money. And also InfluxDB has good support. My name's Alex Nada. I am CTO at Noble nine. Noble Nine is a platform to measure and manage service level objectives, which is a great way of measuring the reliability of your systems. You can essentially think of an slo, the product we're providing to our customers as a bunch of time series. So we need a way to store that data and the corresponding time series that are related to those. The main reason that we settled on InfluxDB as we were shopping around is that InfluxDB has a very flexible query language and as a general purpose time series database, it basically had the set of features we were looking for. >>As our platform has grown, we found InfluxDB Cloud to be a really scalable solution. We can quickly iterate on new features and functionality because Influx Cloud is entirely managed, it probably saved us at least a full additional person on our team. We also have the option of running InfluxDB Enterprise, which gives us the ability to even host off the cloud or in a private cloud if that's preferred by a customer. Influx data has been really flexible in adapting to the hosting requirements that we have. They listened to the challenges we were facing and they helped us solve it. As we've continued to grow, I'm really happy we have influx data by our side. >>Okay, we're back with Tim Yokum, who is the director of engineering at Influx Data. Tim, welcome. Good to see you. >>Good to see you. Thanks for having me. >>You're really welcome. Listen, we've been covering open source software in the cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem. The cloud has been being built out on open source, mobile, social platforms, key databases, and of course influx DB and influx data has been a big consumer and contributor of open source software. So my question to you is, where have you seen the biggest bang for the buck from open source software? >>So yeah, you know, influx really, we thrive at the intersection of commercial services and open, so open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services temping engines. Our, our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants and like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product influx db. >>You know, but I gotta ask you, Tim, because one of the challenge that that we've seen in particular, you saw this in the heyday of Hadoop, the, the innovations come so fast and furious and as a software company you gotta place bets, you gotta, you know, commit people and sometimes those bets can be risky and not pay off well, how have you managed this challenge? >>Oh, it moves fast. Yeah, that, that's a benefit though because it, the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we, what we tend to do is, is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example, that ecosystem is driven by thousands of intelligent developers, engineers, builders, they're adding value every day. So we have to really keep up with that. And as the stack changes, we, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's, it's something that we just do every day. >>So we have a survey partner down in New York City called Enterprise Technology Research etr, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity particularly, you know, along with cloud. But, but really Kubernetes is just, you know, still up until the right consistently even with, you know, the macro headwinds and all, all of the stuff that we're sick of talking about. But, so what are you doing with Kubernetes in the platform? >>Yeah, it, it's really central to our ability to run the product. When we first started out, we were just on AWS and, and the way we were running was, was a little bit like containers junior. Now we're running Kubernetes everywhere at aws, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code so our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. >>Just to follow up on that, is it, no. So I presume it's sounds like there's a PAs layer there to allow you guys to have a consistent experience across clouds and out to the edge, you know, wherever is that, is that correct? >>Yeah, so we've basically built more or less platform engineering, This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that, that just gets all of the underlying infrastructure out of the way and, and lets them focus on delivering influx cloud. >>Yeah, and I know I'm taking a little bit of a tangent, but is that, that, I'll call it a PAs layer if I can use that term. Is that, are there specific attributes to Influx db or is it kind of just generally off the shelf paths? You know, are there, is, is there any purpose built capability there that, that is, is value add or is it pretty much generic? >>So we really build, we, we look at things through, with a build versus buy through a, a build versus by lens. Some things we want to leverage cloud provider services, for instance, Postgres databases for metadata, perhaps we'll get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can, can deliver on that has consistency that is, is all generated from code that we can as a, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions and in no time. >>So how, so sometimes you build, sometimes you buy it. How do you make those decisions and and what does that mean for the, for the platform and for customers? >>Yeah, so what we're doing is, it's like everybody else will do, we're we're looking for trade offs that make sense. You know, we really want to protect our customers data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, like I had mentioned with SQL data stores for metadata, perhaps let's build on top of what of these three large cloud providers have already perfected. And we can then focus on our platform engineering and we can have our developers then focus on the influx data, software, influx, cloud software. >>So take it to the customer level, what does it mean for them? What's the value that they're gonna get out of all these innovations that we've been been talking about today and what can they expect in the future? >>So first of all, people who use the OSS product are really gonna be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across, over 4 billion series keys that people have stored. So there's a proven ability to scale now in terms of the open source, open source software and how we've developed the platform. You're getting highly available high cardinality time series platform. We manage it and, and really as, as I mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in real time. We deploy to our platform every day repeatedly all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change new features, better ways of doing deployments, safer ways of doing deployments. >>All of that happens behind the scenes. And like we had mentioned earlier, Kubernetes, I mean that, that allows us to get that done. We couldn't do it without having that platform as a, as a base layer for us to then put our software on. So we, we iterate quickly. When you're on the, the Influx cloud platform, you really are able to, to take advantage of new features immediately. We roll things out every day and as those things go into production, you have, you have the ability to, to use them. And so in the end we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let, let us do that for you. So, >>And that makes sense, but so is the, is the, are the innovations that we're talking about in the evolution of Influx db, do, do you see that as sort of a natural evolution for existing customers? I, is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >>Yeah, it really is it, it's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are, are really the hot thing. Iot, industrial iot especially, people want to just shove tons of data out there and be able to do queries immediately and they don't wanna manage infrastructure. What we've started to see are people that use the cloud service as their, their data store backbone and then they use edge computing with R OSS product to ingest data from say, multiple production lines and downsample that data, send the rest of that data off influx cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that and being in all sorts of different regions allows for people to really get out of the, the business of man trying to manage that big data, have us take care of that. And of course as we change the platform end users benefit from that immediately. And, >>And so obviously taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IOT and the Edge? How should we be thinking about the value that you bring from a security perspective? >>Yeah, we take, we take security super seriously. It, it's built into our dna. We do a lot of work to ensure that our platform is secure, that the data we store is, is kept private. It's of course always a concern. You see in the news all the time, companies being compromised, you know, that's something that you can have an entire team working on, which we do to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You know, you look at things like software, bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that, that's just part of our jobs to make sure that the platform that we're running it has, has fully vetted software and, and with open source especially, that's a lot of work. And so it's, it's definitely new territory. Supply chain attacks are, are definitely happening at a higher clip than they used to, but that is, that is really just part of a day in the, the life for folks like us that are, are building platforms. >>Yeah, and that's key. I mean especially when you start getting into the, the, you know, we talk about IOT and the operations technologies, the engineers running the, that infrastructure, you know, historically, as you know, Tim, they, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >>That >>Connected now, right? And so you've gotta have a partner that is again, take away that heavy lifting to r and d so you can focus on some of the other activities. Right. Give us the, the last word and the, the key takeaways from your perspective. >>Well, you know, from my perspective I see it as, as a a two lane approach with, with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, what you had mentioned, air gaping. Sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want torus their data to, to a company that's, that's got a full platform set up for them that they can build on, send that data over to the cloud, the cloud is not going away. I think more hybrid approach is, is where the future lives and that's what we're prepared for. >>Tim, really appreciate you coming to the program. Great stuff. Good to see you. >>Thanks very much. Appreciate it. >>Okay, in a moment I'll be back to wrap up. Today's session, you're watching The Cube. >>Are you looking for some help getting started with InfluxDB Telegraph or Flux Check >>Out Influx DB University >>Where you can find our entire catalog of free training that will help you make the most of your time series data >>Get >>Started for free@influxdbu.com. >>We'll see you in class. >>Okay, so we heard today from three experts on time series and data, how the Influx DB platform is evolving to support new ways of analyzing large data sets very efficiently and effectively in real time. And we learned that key open source components like Apache Arrow and the Rust Programming environment Data fusion par K are being leveraged to support realtime data analytics at scale. We also learned about the contributions in importance of open source software and how the Influx DB community is evolving the platform with minimal disruption to support new workloads, new use cases, and the future of realtime data analytics. Now remember these sessions, they're all available on demand. You can go to the cube.net to find those. Don't forget to check out silicon angle.com for all the news related to things enterprise and emerging tech. And you should also check out influx data.com. There you can learn about the company's products. You'll find developer resources like free courses. You could join the developer community and work with your peers to learn and solve problems. And there are plenty of other resources around use cases and customer stories on the website. This is Dave Valante. Thank you for watching Evolving Influx DB into the smart data platform, made possible by influx data and brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SUMMARY :
we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, you know, all of the, the real time queries, the, the multiple language query support, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try And so just, you know, being careful, maybe a little cautious in terms And you can do some experimentation and, you know, using the cloud resources. You know, this is a new very sort of popular systems language, you know, really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. going out and you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. goes, goes beyond just the historical into the real time really hot area. There's no need to worry about provisioning because you only pay for what you use. InfluxDB uses a single API across the entire platform suite so you can build on Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the Hi, thank you so much. it's gonna give you faster query speeds, you store files and object storage, it aims to have no limits on cardinality and also allow you to write any kind of event data that It's really, the adoption is really starting to get steep on all the control, all the fine grain control, you need to take you know, the community is modernizing the platform, but I wanna talk about Apache And so you can answer that question and you have those immediately available to you. out that one temperature value that you want at that one time stamp and do that for every talking about is really, you know, kind of native i, is it not as effective? Yeah, it's, it's not as effective because you have more expensive compression and So let's talk about Arrow Data Fusion. It also has a PANDAS API so that you could take advantage of PANDAS What are you doing with and Pandas, so it supports a broader ecosystem. What's the value that you're bringing to the community? And I think kind of the idea here is that if you can improve kind of summarize, you know, where what, what the big takeaways are from your perspective. the hard work questions and you All right, thank you so much Anise for explaining I really appreciate it. Data and we're gonna talk about how you update a SAS engine while I'm really glad that we went with InfluxDB Cloud for our hosting They listened to the challenges we were facing and they helped Good to see you. Good to see you. So my question to you is, So yeah, you know, influx really, we thrive at the intersection of commercial services and open, You know, you look at Kubernetes for example, But, but really Kubernetes is just, you know, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. to the edge, you know, wherever is that, is that correct? This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us Is that, are there specific attributes to Influx db as an SRE group, as an ops team, that we can manage with very few people So how, so sometimes you build, sometimes you buy it. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, and really as, as I mentioned earlier, we can keep up with the state of the art. the end we want you to focus on getting actual insights from your data instead of running infrastructure, So cloud native technologies are, are really the hot thing. You see in the news all the time, companies being compromised, you know, technologies, the engineers running the, that infrastructure, you know, historically, as you know, take away that heavy lifting to r and d so you can focus on some of the other activities. with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, Tim, really appreciate you coming to the program. Thanks very much. Okay, in a moment I'll be back to wrap up. brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
Tim Yoakum | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Tim | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
16 times | QUANTITY | 0.99+ |
two rows | QUANTITY | 0.99+ |
New York City | LOCATION | 0.99+ |
60,000 people | QUANTITY | 0.99+ |
Rust | TITLE | 0.99+ |
Influx | ORGANIZATION | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
Python | TITLE | 0.99+ |
three experts | QUANTITY | 0.99+ |
InfluxDB | TITLE | 0.99+ |
both | QUANTITY | 0.99+ |
each row | QUANTITY | 0.99+ |
two lane | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
Noble nine | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
Flux | ORGANIZATION | 0.99+ |
Influx DB | TITLE | 0.99+ |
each column | QUANTITY | 0.99+ |
270 terabytes | QUANTITY | 0.99+ |
cube.net | OTHER | 0.99+ |
twice | QUANTITY | 0.99+ |
Bryan | PERSON | 0.99+ |
Pandas | TITLE | 0.99+ |
c plus plus | TITLE | 0.99+ |
three years ago | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
more than a decade | QUANTITY | 0.98+ |
Apache | ORGANIZATION | 0.98+ |
dozens | QUANTITY | 0.98+ |
free@influxdbu.com | OTHER | 0.98+ |
30,000 feet | QUANTITY | 0.98+ |
Rust Foundation | ORGANIZATION | 0.98+ |
two temperature values | QUANTITY | 0.98+ |
In Flux Data | ORGANIZATION | 0.98+ |
one time stamp | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
Russ | PERSON | 0.98+ |
IOT | ORGANIZATION | 0.98+ |
Evolving InfluxDB | TITLE | 0.98+ |
first | QUANTITY | 0.97+ |
Influx data | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
first one | QUANTITY | 0.97+ |
Influx DB University | ORGANIZATION | 0.97+ |
SQL | TITLE | 0.97+ |
The Cube | TITLE | 0.96+ |
Influx DB Cloud | TITLE | 0.96+ |
single server | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.96+ |
Evolving InfluxDB into the Smart Data Platform Open
>> This past May, the Cube, in collaboration with Influx Data shared with you the latest innovations in Time series databases. We talked at length about why a purpose-built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember that time series data is any data that's stamped in time and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community we talked about how in theory those time slices could be taken, you know every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors, and other devices and IOT equipment. Time series databases have had to evolve to efficiently support realtime data in emerging use, use cases in IOT and other use cases. And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the Smart Data platform, made possible by influx data and produced by the cube. My name is Dave Vellante, and I'll be your host today. Now, in this program, we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're going to hear from Brian Gilmore who is the director of IOT and emerging technologies at Influx Data. And we're going to talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program, you're going to hear a lot about things like rust implementation of Apache Arrow, the use of Parquet and tooling such as data fusion, which are powering a new engine for Influx db. Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices if you will, from, for example minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're going to hear from Anais Dotis-Georgiou who is a developer advocate at Influx Data. And we're going to get into the "why's" of these open source capabilities, and how they contribute to the evolution of the Influx DB platform. And then we're going to close the program with Tim Yocum. He's the director of engineering at Influx Data, and he's going to explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started.
SUMMARY :
by compressing the historical time slices
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Tim Yocum | PERSON | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
Anais Dotis-Georgiou | PERSON | 0.99+ |
Influx DB | TITLE | 0.99+ |
InfluxDB | TITLE | 0.94+ |
first | QUANTITY | 0.91+ |
today | DATE | 0.88+ |
second | QUANTITY | 0.85+ |
Time | TITLE | 0.82+ |
Parquet | TITLE | 0.76+ |
Apache | ORGANIZATION | 0.75+ |
past May | DATE | 0.75+ |
Influx | TITLE | 0.75+ |
IOT | ORGANIZATION | 0.69+ |
Cube | ORGANIZATION | 0.65+ |
influx | ORGANIZATION | 0.53+ |
Arrow | TITLE | 0.48+ |
Tim Yocum, Influx Data
(upbeat music) >> Okay, we're back with Tim Yoakum, who is the Director of Engineering at Influx Data. Tim, welcome. Good to see you. >> Good to see you. Thanks for having me. >> You're really welcome. Listen, we've been covering open source software on the Cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem, the cloud is being built out on open source, mobile social platforms, key databases, and of course Influx DB, and Influx Data has been a big consumer and contributor of open source software. So my question to you is where have you seen the biggest bang for the buck from open source software? >> So, yeah, you know, Influx, really, we thrive at the intersection of commercial services and open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service, from our core storage engine technologies to web services, templating engines. Our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants. And like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product, Influx DB. >> You know, but I got to ask you, Tim, because one of the challenge that we've seen, in particular, you saw this in the heyday of Hadoop. The innovations come so fast and furious, and as a software company, you got to place bets, you got to, you know, commit people, and sometimes those bets can be risky and not pay off. How have you managed this challenge? >> Oh, it moves fast, yeah. That's a benefit though, because the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we tend to do is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example. That ecosystem is driven by thousands of intelligent developers, engineers, builders. They're adding value every day. So we have to really keep up with that. And as the stack changes, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's something that we just do every day. >> So we have a survey partner down in New York City called Enterprise Technology Research, ETR, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes, is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity, particularly, you know, along with cloud. But really Kubernetes is just, you know, still up and to the right consistently, even with, you know the macro headwinds and all of the other stuff that we're sick of talking about. So what are you doing with Kubernetes in the platform? >> Yeah, it's really central to our ability to run the product. When we first started out, we were just on AWS, and the way we were running was a little bit like containers junior. Now we're running Kubernetes everywhere, at AWS, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers, and we can manage that in code. So our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google, and figure out how to deliver services on those three clouds with all of their differences. >> Just a follow up on that, is it, now, so I presume it sounds like there's a PaaS layer there to allow you guys to have a consistent experience across clouds and up to the edge, you know, wherever. Is that, is that correct? >> Yeah, so we've basically built, more or less, platform engineering. This is the new hot phrase. You know, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on, and they only have to learn one way of deploying their application, managing their application. And so that just gets all of the underlying infrastructure out of the way and lets them focus on delivering Influx Cloud. >> Yeah, and I know I'm taking a little bit of a tangent, but is that, I'll call it a PaaS layer if I can use that term, are there specific attributes to Influx DB, or is it kind of just generally off the shelf PaaS? You know, is there any purpose built capability there that is value add, or is it pretty much generic? >> So we really build, we look at things with a build versus buy, through a build versus buy lens. Some things we want to leverage, cloud provider services for instance, Postgres databases for metadata perhaps, get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can deliver on, that has consistency, that is all generated from code that we can, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions in no time. >> So how, so sometimes you build, sometimes you buy it. How do you make those decisions, and what does that mean for the platform and for customers? >> Yeah, so what we're doing is, it's like everybody else will do. We're looking for trade offs that make sense. You know, we really want to protect our customers' data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers, you don't even see that, but we don't want to try to reinvent the wheel. Like I had had mentioned with SQL data storage for metadata perhaps. Let's build on top of what these three large cloud providers have already perfected, and we can then focus on our platform engineering, and we can have our developers then focus on the Influx Data software, Influx Cloud software. >> So take it to the customer level. What does it mean for them? What's the value that they're going to get out of all these innovations that we've been been talking about today? And what can they expect in the future? >> So first of all, people who use the OSS product are really going to be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you. But then you want to scale up. We have some 270 terabytes of data across over 4 billion series keys that people have stored. So there's a proven ability to scale. Now, in terms of the open source software, and how we've developed the platform, you're getting highly available, high cardinality time series platform. We manage it, and really as I mentioned earlier, we can keep up with the state of the art. We keep reinventing. We keep deploying things in real time. We deploy to our platform every day repeatedly, all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change, new features, better ways of doing deployments, safer ways of doing deployments. All of that happens behind the scenes. And we had mentioned earlier Kubernetes, I mean that allows us to get that done. We couldn't do it without having that platform as a base layer for us to then put our software on. So we iterate quickly. When you're on the Influx Cloud platform, you really are able to take advantage of new features immediately. We roll things out every day. And as those things go into production, you have the ability to use them. And so in the end, we want you to focus on getting actionable insights from your data instead of running infrastructure. You know, let us do that for you. >> And that makes sense, but so is the, are the innovations that we're talking about in the evolution of Influx DB, do you see that as sort of a natural evolution for existing customers? Is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >> Yeah, it really is. It's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are really the hot thing. IoT, industrial IoT especially, people want to just shove tons of data out there and be able to do queries immediately, and they don't want to manage infrastructure. What we've started to see are people that use the cloud service as their data store backbone, and then they use edge computing with our OSS product to ingest data from say multiple production lines and down-sample that data, send the rest of that data off to Influx Cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that, and being in all sorts of different regions allows for people to really get out of the business of trying to manage that big data, have us take care of that. And of course, as we change the platform, end users benefit from that immediately. >> And so obviously, taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IoT and the edge? How should we be thinking about the value that you bring from a security perspective? >> Yeah, we take security super seriously. It's built into our DNA. We do a lot of work to ensure that our platform is secure, that the data we store is kept private. It's of course always a concern. You see in the news all the time companies being compromised. You know, that's something that you can have an entire team working on, which we do, to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You look at things like software bill of materials. If you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that's just part of our jobs, to make sure that the platform that we're running has fully vetted software. And with open source especially, that's a lot of work. And so it's definitely new territory. Supply chain attacks are definitely happening at a higher clip than they used to. But that is really just part of a day in the life for folks like us that are building platforms. >> Yeah, and that's key. I mean, especially when you start getting into the, you know, we talk about IoT and the operations technologies, the engineers running that infrastructure. You know, historically, as you know, Tim, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >> Can't do that. >> connected now, right? And so you've got to have a partner that is, again, take away that heavy lifting to R and D so you can focus on some of the other activities. All right. Give us the last word and the key takeaways from your perspective. >> Well, you know, from my perspective, I see it as a a two lane approach. With Influx, with any any time series data, you know, you've got a lot of stuff that you're going to run on-prem. What you mentioned, air gaping, sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want to entrust their data to a company that's got a full platform set up for them that they can build on, send that data over to the cloud. The cloud is not going away. I think a more hybrid approach is where the future lives, and that's what we're prepared for. >> Tim, really appreciate you coming to the program. Great stuff. Good to see you. >> Thanks very much. Appreciate it. >> Okay, in a moment, I'll be back to wrap up today's session. You're watching the Cube. (gentle music)
SUMMARY :
Good to see you. Good to see you. So my question to you is to the projects that we use in the heyday of Hadoop. And as the stack changes, we and all of the other stuff that and the way we were to allow you guys to have and they only have to learn one way that we can manage with So how, so sometimes you and we can have our developers then focus So take it to the customer level. And so in the end, we want you to focus And of course, as we change the platform, that the data we store is kept private. and the operations technologies, and the key takeaways that data over to the cloud. you coming to the program. Thanks very much. I'll be back to wrap up today's session.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Yoakum | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
Tim Yocum | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
New York City | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
two lane | QUANTITY | 0.99+ |
Influx | ORGANIZATION | 0.98+ |
Azure | ORGANIZATION | 0.98+ |
270 terabytes | QUANTITY | 0.98+ |
about 1500 CIOs | QUANTITY | 0.97+ |
tomorrow | DATE | 0.97+ |
more than a decade | QUANTITY | 0.97+ |
over 4 billion | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
tons of data | QUANTITY | 0.95+ |
Influx DB | TITLE | 0.95+ |
Kubernetes | TITLE | 0.94+ |
Enterprise Technology Research | ORGANIZATION | 0.93+ |
first | QUANTITY | 0.93+ |
single server | QUANTITY | 0.92+ |
SQL | TITLE | 0.91+ |
three | QUANTITY | 0.91+ |
Postgres | ORGANIZATION | 0.91+ |
Influx Cloud | TITLE | 0.9+ |
thousands of intelligent developers | QUANTITY | 0.9+ |
ETR | ORGANIZATION | 0.9+ |
Hadoop | TITLE | 0.9+ |
three large cloud providers | QUANTITY | 0.81+ |
three clouds | QUANTITY | 0.79+ |
Influx DB | ORGANIZATION | 0.74+ |
cloud | QUANTITY | 0.62+ |
Google Cloud | ORGANIZATION | 0.56+ |
Cube | PERSON | 0.53+ |
Cube | COMMERCIAL_ITEM | 0.52+ |
Cloud | TITLE | 0.45+ |
Influx | TITLE | 0.36+ |
Anais Dotis Georgiou, InfluxData
(upbeat music) >> Okay, we're back. I'm Dave Vellante with The Cube and you're watching Evolving InfluxDB into the smart data platform made possible by influx data. Anais Dotis-Georgiou is here. She's a developer advocate for influx data and we're going to dig into the rationale and value contribution behind several open source technologies that InfluxDB is leveraging to increase the granularity of time series analysis and bring the world of data into realtime analytics. Anais welcome to the program. Thanks for coming on. >> Hi, thank you so much. It's a pleasure to be here. >> Oh, you're very welcome. Okay, so IOx is being touted as this next gen open source core for InfluxDB. And my understanding is that it leverages in memory, of course for speed. It's a kilometer store, so it gives you compression efficiency it's going to give you faster query speeds, it's going to see you store files and object storages so you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features but what are the high level value points that people should understand? >> Sure, that's a great question. So some of the main requirements that IOx is trying to achieve and some of the most impressive ones to me the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want whether that's lift tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metric queries we also want to have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import, super useful. Also, broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like SQL, Python and maybe even Pandas in the future. >> Okay, so a lot there. Now we talked to Brian about how you're using Rust and which is not a new programming language and of course we had some drama around Rust during the pandemic with the Mozilla layoffs but the formation of the Rust Foundation really addressed any of those concerns and you got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with Rust but why Rust as an alternative to say C++ for example? >> Sure, that's a great question. So Rust was chosen because of his exceptional performance and reliability. So while Rust is syntactically similar to C++ and it has similar performance it also compiles to a native code like C++ But unlike C++ it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And Rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers and dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like C++. So Rust like helps meet that requirement of having no limits on cardinality, for example, because it's we're also using the Rust implementation of Apache Arrow and this control over memory and also Rust's packaging system called Crates IO offers everything that you need out of the box to have features like async and await to fix race conditions to protect against buffering overflows and to ensure thread safe async caching structures as well. So essentially it's just like has all the control all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high cardinality use cases. >> Yeah, and the more I learn about the new engine and the platform IOx et cetera, you see things like the old days not even to even today you do a lot of garbage collection in these systems and there's an inverse, impact relative to performance. So it looks like you're really, the community is modernizing the platform but I want to talk about Apache Arrow for a moment. It's designed to address the constraints that are associated with analyzing large data sets. We know that, but please explain why, what is Arrow and what does it bring to InfluxDB? >> Sure. Yeah. So Arrow is a a framework for defining in memory column data. And so much of the efficiency and performance of IOx comes from taking advantage of column data structures. And I will, if you don't mind, take a moment to kind of illustrate why column data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our store. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the store. Well, usually our room temperature is regulated so those values don't change very often. So when you have calm oriented storage essentially you take each row each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same then you'll, you might be able to imagine how equal values will then enable each other and when they neighbor each other in the storage format this provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you want to define like the min and max value of the temperature in the room across a thousand different points you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of column oriented storage. So if you had a row oriented storage, you'd first have to look at every field like the temperature in the room and the temperature of the store. You'd have to go across every tag value that maybe describes where the room is located or what model the store is. And every timestamp you then have to pluck out that one temperature value that you want at that one time stamp and do that for every single row. So you're scanning across a ton more data and that's why row oriented doesn't provide the same efficiency as column and Apache Arrow is in memory column data column data fit framework. So that's where a lot of the advantages come from. >> Okay. So you've basically described like a traditional database a row approach, but I've seen like a lot of traditional databases say, okay, now we've got we can handle Column format versus what you're talking about is really kind of native is it not as effective as the former not as effective because it's largely a bolt on? Can you like elucidate on that front? >> Yeah, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why row oriented storage isn't as efficient as column oriented storage. >> Yeah. Got it. So let's talk about Arrow data fusion. What is data fusion? I know it's written in Rust but what does it bring to to the table here? >> Sure. So it's an extensible query execution framework and it uses Arrow as its in memory format. So the way that it helps InfluxDB IOx is that okay it's great if you can write unlimited amount of cardinality into InfluxDB, but if you don't have a query engine that can successfully query that data then I don't know how much value it is for you. So data fusion helps enable the query process and transformation of that data. It also has a Pandas API so that you could take advantage of Pandas data frames as well and all of the machine learning tools associated with Pandas. >> Okay. You're also leveraging Par-K in the platform course. We heard a lot about Par-K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Par-K and why is it important? >> Sure. So Par-K is the column oriented durable file format. So it's important because it'll enable bulk import and bulk export. It has compatibility with Python and Pandas so it supports a broader ecosystem. Par-K files also take very little disc space and they're faster to scan because again they're column oriented, in particular I think Par-K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the benefits of Par-K. >> Got it. Very popular. So and these, what exactly is Influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >> Sure. So InfluxDB first has contributed a lot of different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing Influx. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >> Yeah. Got it. You got that virtuous cycle going people call it the flywheel. Give us your last thoughts and kind of summarize, what the big takeaways are from your perspective. >> So I think the big takeaway is that, Influx data is doing a lot of really exciting things with InfluxDB IOx and I really encourage if you are interested in learning more about the technologies that Influx is leveraging to produce IOx the challenges associated with it and all of the hard work questions and I just want to learn more then I would encourage you to go to the monthly Tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel. Look for the InfluxDB underscore IOx channel specifically to learn more about how to join those office hours and those monthly tech talks as well as ask any questions they have about IOx what to expect and what you'd like to learn more about. I as a developer advocate, I want to answer your questions. So if there's a particular technology or stack that you want to dive deeper into and want more explanation about how InfluxDB leverages it to build IOx, I will be really excited to produce content on that topic for you. >> Yeah, that's awesome. You guys have a really rich community collaborate with your peers, solve problems and you guys super responsive, so really appreciate that. All right, thank you so much Anais for explaining all this open source stuff to the audience and why it's important to the future of data. >> Thank you. I really appreciate it. >> All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yoakam. He's the director of engineering for Influx Data and we're going to talk about how you update a SaaS engine while the plane is flying at 30,000 feet. You don't want to miss this. (upbeat music)
SUMMARY :
and bring the world of data It's a pleasure to be here. it's going to give you and some of the most impressive ones to me and you got big guns and dangling pointers are the main classes Yeah, and the more I and the temperature of the store. is it not as effective as the former not and because you can't scan to to the table here? So the way that it helps Par-K in the platform course. and they're faster to scan So and these, what exactly is Influx data and appreciation of the and kind of summarize, of the hard work questions and you guys super responsive, I really appreciate it. and we're going to talk about
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Yoakam | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Anais | PERSON | 0.99+ |
two rows | QUANTITY | 0.99+ |
16 times | QUANTITY | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
each row | QUANTITY | 0.99+ |
Python | TITLE | 0.99+ |
Rust | TITLE | 0.99+ |
C++ | TITLE | 0.99+ |
SQL | TITLE | 0.99+ |
Anais Dotis Georgiou | PERSON | 0.99+ |
InfluxDB | TITLE | 0.99+ |
both | QUANTITY | 0.99+ |
Rust Foundation | ORGANIZATION | 0.99+ |
30,000 feet | QUANTITY | 0.99+ |
first one | QUANTITY | 0.99+ |
Mozilla | ORGANIZATION | 0.99+ |
Pandas | TITLE | 0.98+ |
InfluxData | ORGANIZATION | 0.98+ |
Influx | ORGANIZATION | 0.98+ |
IOx | TITLE | 0.98+ |
each column | QUANTITY | 0.97+ |
one time stamp | QUANTITY | 0.97+ |
first | QUANTITY | 0.97+ |
Influx | TITLE | 0.96+ |
Anais Dotis-Georgiou | PERSON | 0.95+ |
Crates IO | TITLE | 0.94+ |
IOx | ORGANIZATION | 0.94+ |
two temperature values | QUANTITY | 0.93+ |
Apache | ORGANIZATION | 0.93+ |
today | DATE | 0.93+ |
8:30 AM Pacific time | DATE | 0.92+ |
Wednesday | DATE | 0.91+ |
one temperature | QUANTITY | 0.91+ |
two temperature values | QUANTITY | 0.91+ |
InfluxDB IOx | TITLE | 0.9+ |
influx | ORGANIZATION | 0.89+ |
last decade | DATE | 0.88+ |
single row | QUANTITY | 0.83+ |
a ton more data | QUANTITY | 0.81+ |
thousand | QUANTITY | 0.8+ |
dozens of other features | QUANTITY | 0.8+ |
a thousand different points | QUANTITY | 0.79+ |
Hadoop | TITLE | 0.77+ |
Par-K | TITLE | 0.76+ |
points | QUANTITY | 0.75+ |
each | QUANTITY | 0.75+ |
Slack | TITLE | 0.74+ |
Evolving InfluxDB | TITLE | 0.68+ |
kilometer | QUANTITY | 0.67+ |
Arrow | TITLE | 0.62+ |
The Cube | ORGANIZATION | 0.61+ |
Brian Gilmore, InfluxData
(soft upbeat music) >> Okay, we're kicking things off with Brian Gilmore. He's the director of IoT, an emerging technology at InfluxData. Brian, welcome to the program. Thanks for coming on. >> Thanks, Dave, great to be here. I appreciate the time. >> Hey, explain why InfluxDB, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >> No, no, not at all. I mean, I think, for us it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like SQL query support, things like that, we have to figure out a way to execute those for them in a way that will scale long term. And then we also want to make sure we're innovating, we're sort of staying ahead of the market as well, and sort of anticipating those future needs. So, you know, this is really a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine. But, you know, initially, the customers who are using us are going to see just great improvements in performance, you know, especially those that are working at the top end of the workload scale, you know, the massive data volumes and things like that. >> Yeah, and we're going to get into that today and the architecture and the like. But what was the catalyst for the enhancements? I mean, when and how did this all come about? >> Well, I mean, like three years ago, we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product. And sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was a long journey. (chuckles) I guess, you know, phase one was, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to optimize for like multi-tenant, multi-cloud, be able to host it in a truly like SAS manner where we could use, you know, some type of customer activity or consumption as the pricing vector. And that was sort of the birth of the real first InfluxDB cloud, you know, which has been really successful. We've seen, I think, like 60,000 people sign up. And we've got tons and tons of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a daily basis. And having that sort of big pool of very diverse and varied customers to chat with as they're using the product, as they're giving us feedback, et cetera, has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that, and then also making these big leaps as we're doing with this new engine. >> All right, so you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really want to understand how much of a pivot this is, and what does it take to make that shift from, you know, time series specialist to real time analytics and being able to support both? >> Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. Time series data is always going to be fundamental in sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. The time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics. If we're being honest though, I think our user base is well aware that the way we were architected was much more towards those sort of like backwards-looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a time to response on the queries, and can we get that to the point where the result sets are coming back so quickly from the time of query that we can like, limit that window down to minutes and then seconds? And now with this new engine, we're really starting to talk about a query window that could be like returning results in, you know, milliseconds of time since it hit the ingest queue. And that's really getting to the point where, as your data is available, you can use it and you can query it, you can visualize it, you can do all those sort of magical things with it. And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the real time queries, the multiple language query support. But, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a limited number of customers, strategic customers and strategic availabilities zones to start, but, you know, everybody over time. >> So you're basically going from what happened to, and you can still do that, obviously, but to what's happening now in the moment? >> Yeah. Yeah. I mean, if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the underlying data collection, the architecture, the infrastructure, the devices, and you know, the sort of highly distributed nature of all of this. So, yeah, I mean, getting a customer or a user to be able to use the data as soon as it is available, is what we're after here. I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >> Yeah, I mean, it is operationally, or operational real time is different. And that's one of the things that really triggered us to know that we were heading in the right direction is just how many sort of operational customers we have, you know, everything from like aerospace and defense. We've got companies monitoring satellites. We've got tons of industrial users using us as a process historian on the plant floor. And if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're going to do here is we're going to start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their historians and databases. >> Is this available, these innovations to InfluxDB cloud customers, only who can access this capability? >> Yeah, I mean, commercially and today, yes. I think we want to emphasize that for now our goal is to get our latest and greatest and our best to everybody over time of course. You know, one of the things we had to do here was like we doubled down on sort of our commitment to open source and availability. So, like, anybody today can take a look at the libraries on our GitHub and can inspect it and even can try to implement or execute some of it themselves in their own infrastructure. We are committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. And so just, you know, being careful, maybe a little cautious in terms of how big we go with this right away. Just sort of both limits, you know, the risk of any issues that can come with new software roll outs, we haven't seen anything so far. But also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products. But once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's going to be exciting time for the whole ecosystem. >> Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are going to help deliver on this vision. What should we know there? >> Well, I mean, I think, foundationally, we built the new core on Rust. This is a new very sort of popular systems language. It's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well, and if it does find error conditions. I mean, we've loved working with Go, and a lot of our libraries will continue to be sort of implemented in Go, but when it came to this particular new engine, that power performance and stability of Rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parquet for persistence. I think, for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our time series merge trees, this is a big break from that. You know, Arrow on the sort of in mem side and then Parquet in the on disk side. It allows us to present, you know, a unified set of APIs for those really fast real time queries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that Parquet format, which is also cool because there's an entire ecosystem sort of popping up around Parquet in terms of the machine learning community. And getting that all to work, we had to glue it together with Arrow Flight. That's sort of what we're using as our RPC component. It handles the orchestration and the transportation of the columnar data now, we're moving to like a true columnar database model for this version of the engine. You know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like, blurring that line between real time and historical data, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >> Yeah, again, I mean, it's funny. You mentioned Rust. It's been around for a long time but it's popularity is, you know, really starting to hit that steep part of the S-curve. And we're going to dig into more of that, but give us, is there anything else that we should know about, Brian? Give us the last word. >> Well, I mean, I think first, I'd like everybody sort of watching, just to like, take a look at what we're offering in terms of early access in beta programs. I mean, if you want to participate or if you want to work sort of in terms of early access with the new engine, please reach out to the team. I'm sure, you know, there's a lot of communications going out and it'll be highly featured on our website. But reach out to the team. Believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to, because we can flip a lot of stuff on, especially in cloud through feature flags. But if there's something new that you want to try out, we'd just love to hear from you. And then, you know, our goal would be, that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to sort of build the next versions of your business. Because, you know, the whole database, the ecosystem as it expands out into this vertically-oriented stack of cloud services, and enterprise databases, and edge databases, you know, it's going to be what we all make it together, not just those of us who are employed by InfluxDB. And then finally, I would just say, please, like, watch and Anais' and Tim's sessions. Like, these are two of our best and brightest. They're totally brilliant, completely pragmatic, and they are most of all customer-obsessed, which is amazing. And there's no better takes, like honestly, on the sort of technical details of this than theirs, especially when it comes to the value that these investments will bring to our customers and our communities. So, encourage you to, you know, pay more attention to them than you did to me, for sure. >> Brian Gilmore, great stuff. Really appreciate your time. Thank you. >> Yeah, thanks David, it was awesome. Looking forward to it. >> Yeah, me too. I'm looking forward to see how the community actually applies these new innovations and goes beyond just the historical into the real time. Really hot area. As Brian said, in a moment, I'll be right back with Anais Dotis-Georgiou to dig into the critical aspects of key open source components of the InfluxDB engine, including Rust, Arrow, Parquet, Data Fusion. Keep it right there. You don't want to miss this. (soft upbeat music)
SUMMARY :
He's the director of IoT, I appreciate the time. you know, needs a new engine. sort of with now, you know, and the architecture and the like. I guess, you know, phase one was, that the way we were architected the devices, and you know, in terms of, you know, the And so just, you know, being careful, experimentation and, you know, in a way that is, you know, but it's popularity is, you know, And then, you know, our goal would be, Really appreciate your time. Looking forward to it. and goes beyond just the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Brian Gilmore | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
60,000 people | QUANTITY | 0.99+ |
InfluxData | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
three years ago | DATE | 0.99+ |
twice | QUANTITY | 0.99+ |
Parquet | TITLE | 0.99+ |
both | QUANTITY | 0.98+ |
Anais' | PERSON | 0.98+ |
first | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
Rust | TITLE | 0.98+ |
one | QUANTITY | 0.98+ |
a minute ago | DATE | 0.95+ |
two thumbs | QUANTITY | 0.95+ |
Arrow | TITLE | 0.94+ |
Anais Dotis-Georgiou | PERSON | 0.92+ |
tons | QUANTITY | 0.9+ |
InfluxDB | TITLE | 0.85+ |
Bri | PERSON | 0.82+ |
Apache | ORGANIZATION | 0.82+ |
InfluxDB | ORGANIZATION | 0.8+ |
GitHub | ORGANIZATION | 0.78+ |
phase one | QUANTITY | 0.73+ |
both enterprises | QUANTITY | 0.69+ |
SAS | ORGANIZATION | 0.68+ |
phase two | QUANTITY | 0.67+ |
Go | TITLE | 0.65+ |
Gilmore | PERSON | 0.63+ |
millisecond ago | DATE | 0.62+ |
Arrow | ORGANIZATION | 0.59+ |
Flight | ORGANIZATION | 0.52+ |
Data Fusion | TITLE | 0.46+ |
Go | ORGANIZATION | 0.41+ |
David Flynn Supercloud Audio
>> From every ISV to solve the problems. You want there to be tools in place that you can use, either open source tools or whatever it is that help you build it. And slowly over time, that building will become easier and easier. So my question to you was, where do you see you playing? Do you see yourself playing to ISVs as a set of tools, which will make their life a lot easier and provide that work? >> Absolutely. >> If they don't have, so they don't have to do it. Or you're providing this for the end users? Or both? >> So it's a progression. If you go to the ISVs first, you're doomed to starved before you have time for that other option. >> Yeah. >> Right? So it's a question of phase, the phasing of it. And also if you go directly to end users, you can demonstrate the power of it and get the attention of the ISVs. I believe that the ISVs, especially those with the biggest footprints and the most, you know, coveted estates, they have already made massive investments at trying to solve decentralization of their software stack. And I believe that they have used it as a hook to try to move to a software as a service model and rope people into leasing their infrastructure. So if you look at the clouds that have been propped up by Autodesk or by Adobe, or you name the company, they are building proprietary makeshift solutions for decentralizing or hybrid clouding. Or maybe they're not even doing that at all and all they're is saying hey, if you want to get location agnosticness, then what you should just, is just move into our cloud. >> Right. >> And then they try to solve on the background how to decentralize it between different regions so they can have decent offerings in each region. But those who are more advanced have already made larger investments and will be more averse to, you know, throwing that stuff away, all of their makeshift machinery away, and using a platform that gives them high performance parallel, low level file system access, while at the same time having metadata-driven, you know, policy-based, intent-based orchestration to manage the diffusion of data across a decentralized infrastructure. They are not going to be as open because they've made such an investment and they're going to look at how do they monetize it. So what we have found with like the movie studios who are using us already, many of the app they're using, many of those software offerings, the ISVs have their own cloud that offers that software for the cloud. But what we got when I asked about this, 'cause I was dealt specifically into this question because I'm very interested to know how we're going to make that leap from end user upstream into the ISVs where I believe we need to, and they said, look, we cannot use these software ISV-specific SAS clouds for two reasons. Number one is we lose control of the data. We're giving it to them. That's security and other issues. And here you're talking about we're doing work for Disney, we're doing work for Netflix, and they're not going to let us put our data on those software clouds, on those SAS clouds. Secondly, in any reasonable pipeline, the data is shared by many different applications. We need to be agnostic as to the application. 'Cause the inputs to one application, you know, the output for one application provides the input to the next, and it's not necessarily from the same vendor. So they need to have a data platform that lets them, you know, go from one software stack, and you know, to run it on another. Because they might do the rendering with this and yet, they do the editing with that, and you know, et cetera, et cetera. So I think the further you go up the stack in the structured data and dedicated applications for specific functions in specific verticals, the further up the stack you go, the harder it is to justify a SAS offering where you're basically telling the end users you need to park all your data with us and then you can run your application in our cloud and get this. That ultimately is a dead end path versus having the data be open and available to many applications across this supercloud layer. >> Okay, so-- >> Is that making any sense? >> Yes, so if I could just ask a clarifying question. So, if I had to take Snowflake as an example, I think they're doing exactly what you're saying is a dead end, put everything into our proprietary system and then we'll figure out how to distribute it. >> Yeah. >> And and I think if you're familiar with Zhamak Dehghaniis' data mesh concept. Are you? >> A little bit, yeah. >> But in her model, Snowflake, a Snowflake warehouse is just a node on the mesh and that mesh is-- >> That's right. >> Ultimately the supercloud and you're an enabler of that is what I'm hearing. >> That's right. What they're doing up at the structured level and what they're talking about at the structured level we're doing at the underlying, unstructured level, which by the way has implications for how you implement those distributed database things. In other words, implementing a Snowflake on top of Hammerspace would have made building stuff like in the first place easier. It would allow you to easily shift and run the database engine anywhere. You still have to solve how to shard and distribute at the transaction layer above, so I'm not saying we're a substitute for what you need to do at the app layer. By the way, there is another example of that and that's Microsoft Office, right? It's one thing to share that, to have a file share where you can share all the docs. It's something else to have Word and PowerPoint, Excel know how to allow people to be simultaneously editing the same doc. That's always going to happen in the app layer. But not all applications need that level of, you know, in-app decentralization. You know, many of them, many workflows are pipelined, especially the ones that are very data intensive where you're doing drug discovery or you're doing rendering, or you're doing machine learning training. These things are human in the loop with large stages of processing across tens of thousands of cores. And I think that kind of data processing pipeline is what we're focusing on first. Not so much the Microsoft Office or the Snowflake, you know, parking a relational database because that takes a lot of application layer stuff and that's what they're good at. >> Right. >> But I think... >> Go ahead, sorry. >> Later entrance in these markets will find Hammerspace as a way to accelerate their work so they can focus more narrowly on just the stuff that's app-specific, higher level sharing in the app. >> Yes, Snowflake founders-- >> I think it might be worth mentioning also, just keep this confidential guys, but one of our customers is Blue Origin. And one of the things that we have found is kind of the point of what you're talking about with our customers. They're needing to build this and since it's not commercially available or they don't know where to look for it to be commercially available, they're all building themselves. So this layer is needed. And Blue is just one of the examples of quite a few we're now talking to. And like manufacturing, HPC, research where they're out trying to solve this problem with their own scripting tools and things like that. And I just, I don't know if there's anything you want to add, David, but you know, but there's definitely a demand here and customers are trying to figure out how to solve it beyond what Hammerspace is doing. Like the need is so great that they're just putting developers on trying to do it themselves. >> Well, and you know, Snowflake founders, they didn't have a Hammerspace to lean on. But, one of the things that's interesting about supercloud is we feel as though industry clouds will emerge, that as part of company's digital transformations, they will, you know, every company's a software company, they'll begin to build their own clouds and they will be able to use a Hammerspace to do that. >> A super pass layer. >> Yes. It's really, I don't know if David's speaking, I don't want to speak over him, but we can't hear you. May be going through a bad... >> Well, a regional, regional talks that make that possible. And so they're doing these render farms and editing farms, and it's a cloud-specific to the types of workflows in the median entertainment world. Or clouds specifically to workflows in the chip design world or in the drug and bio and life sciences exploration world. There are large organizations that are kind of a blend of end users, like the Broad, which has their own kind of cloud where they're asking collaborators to come in and work with them. So it starts to even blur who's an end user versus an ISV. >> Yes. >> Right? When you start talking about the massive data is the main gravity is to having lots of people participate. >> Yep, and that's where the value is. And that's where the value is. And this is a megatrend that we see. And so it's really important for us to get to the point of what is and what is not a supercloud and, you know, that's where we're trying to evolve. >> Let's talk about this for a second 'cause I want to, I want to challenge you on something and it's something that I got challenged on and it has led me to thinking differently than I did at first, which Molly can attest to. Okay? So, we have been looking for a way to talk about the concept of cloud of utility computing, run anything anywhere that isn't addressed in today's realization of cloud. 'Cause today's cloud is not run anything anywhere, it's quite the opposite. You park your data in AWS and that's where you run stuff. And you pretty much have to. Same with with Azure. They're using data gravity to keep you captive there, just like the old infrastructure guys did. But now it's even worse because it's coupled back with the software to some degree, as well. And you have to use their storage, networking, and compute. It's not, I mean it fell back to the mainframe era. Anyhow, so I love the concept of supercloud. By the way, I was going to suggest that a better term might be hyper cloud since hyper speaks to the multidimensionality of it and the ability to be in a, you know, be in a different dimension, a different plane of existence kind of thing like hyperspace. But super and hyper are somewhat synonyms. I mean, you have hyper cars and you have super cars and blah, blah, blah. I happen to like hyper maybe also because it ties into the whole Hammerspace notion of a hyper-dimensional, you know, reality, having your data centers connected by a wormhole that is Hammerspace. But regardless, what I got challenged on is calling it something different at all versus simply saying, this is what cloud has always meant to be. This is the true cloud, this is real cloud, this is cloud. And I think back to what happened, you'll remember, at Fusion IO we talked about IO memory and we did that because people had a conceptualization of what an SSD was. And an SSD back then was low capacity, low endurance, made to go military, aerospace where things needed to be rugged but was completely useless in the data center. And we needed people to imagine this thing as being able to displace entire SAND, with the kind of capacity density, performance density, endurance. And so we talked IO memory, we could have said enterprise SSD, and that's what the industry now refers to for that concept. What will people be saying five and 10 years from now? Will they simply say, well this is cloud as it was always meant to be where you are truly able to run anything anywhere and have not only the same APIs, but you're same data available with high performance access, all forms of access, block file and object everywhere. So yeah. And I wonder, and this is just me throwing it out there, I wonder if, well, there's trade offs, right? Giving it a new moniker, supercloud, versus simply talking about how cloud is always intended to be and what it was meant to be, you know, the real cloud or true cloud, there are trade-offs. By putting a name on it and branding it, that lets people talk about it and understand they're talking about something different. But it also is that an affront to people who thought that that's what they already had. >> What's different, what's new? Yes, and so we've given a lot of thought to this. >> Right, it's like you. >> And it's because we've been asked that why does the industry need a new term, and we've tried to address some of that. But some of the inside baseball that we haven't shared is, you remember the Web 2.0, back then? >> Yep. >> Web 2.0 was the same thing. And I remember Tim Burners Lee saying, "Why do we need Web 2.0? "This is what the Web was always supposed to be." But the truth is-- >> I know, that was another perfect-- >> But the truth is it wasn't, number one. Number two, everybody hated the Web 2.0 term. John Furrier was actually in the middle of it all. And then it created this groundswell. So one of the things we wrote about is that supercloud is an evocative term that catalyzes debate and conversation, which is what we like, of course. And maybe that's self-serving. But yeah, HyperCloud, Metacloud, super, meaning, it's funny because super came from Latin supra, above, it was never the superlative. But the superlative was a convenient byproduct that caused a lot of friction and flack, which again, in the media business is like a perfect storm brewing. >> The bad thing to have to, and I think you do need to shake people out of their, the complacency of the limitations that they're used to. And I'll tell you what, the fact that you even have the terms hybrid cloud, multi-cloud, private cloud, edge computing, those are all just referring to the different boundaries that isolate the silo that is the current limited cloud. >> Right. >> So if I heard correctly, what just, in terms of us defining what is and what isn't in supercloud, you would say traditional applications which have to run in a certain place, in a certain cloud can't run anywhere else, would be the stuff that you would not put in as being addressed by supercloud. And over time, you would want to be able to run the data where you want to and in any of those concepts. >> Or even modern apps, right? Or even modern apps that are siloed in SAS within an individual cloud, right? >> So yeah, I guess it's twofold. Number one, if you're going at the high application layers, there's lots of ways that you can give the appearance of anything running anywhere. The ISV, the SAS vendor can engineer stuff to have the ability to serve with low enough latency to different geographies, right? So if you go too high up the stack, it kind of loses its meaning because there's lots of different ways to make due and give the appearance of omni-presence of the service. Okay? As you come down more towards the platform layer, it gets harder and harder to mask the fact that supercloud is something entirely different than just a good regionally-distributed SAS service. So I don't think you, I don't think you can distinguish supercloud if you go too high up the stack because it's just SAS, it's just a good SAS service where the SAS vendor has done the hard work to give you low latency access from different geographic regions. >> Yeah, so this is one of the hardest things, David. >> Common among them. >> Yeah, this is really an important point. This is one of the things I've had the most trouble with is why is this not just SAS? >> So you dilute your message when you go up to the SAS layer. If you were to focus most of this around the super pass layer, the how can you host applications and run them anywhere and not host this, not run a service, not have a service available everywhere. So how can you take any application, even applications that are written, you know, in a traditional legacy data center fashion and be able to run them anywhere and have them have their binaries and their datasets and the runtime environment and the infrastructure to start them and stop them? You know, the jobs, the, what the Kubernetes, the job scheduler? What we're really talking about here, what I think we're really talking about here is building the operating system for a decentralized cloud. What is the operating system, the operating environment for a decentralized cloud? Where you can, and that the main two functions of an operating system or an operating environment are the process scheduler, the thing that's scheduling what is running where and when and so forth, and the file system, right? The thing that's supplying a common view and access to data. So when we talk about this, I think that the strongest argument for supercloud is made when you go down to the platform layer and talk of it, talk about it as an operating environment on which you can run all forms of applications. >> Would you exclude--? >> Not a specific application that's been engineered as a SAS. (audio distortion) >> He'll come back. >> Are you there? >> Yeah, yeah, you just cut out for a minute. >> I lost your last statement when you broke up. >> We heard you, you said that not the specific application. So would you exclude Snowflake from supercloud? >> Frankly, I would. I would. Because, well, and this is kind of hard to do because Snowflake doesn't like to, Frank doesn't like to talk about Snowflake as a SAS service. It has a negative connotation. >> But it is. >> I know, we all know it is. We all know it is and because it is, yes, I would exclude them. >> I think I actually have him on camera. >> There's nothing in common. >> I think I have him on camera or maybe Benoit as saying, "Well, we are a SAS." I think it's Slootman. I think I said to Slootman, "I know you don't like to say you're a SAS." And I think he said, "Well, we are a SAS." >> Because again, if you go to the top of the application stack, there's any number of ways you can give it location agnostic function or you know, regional, local stuff. It's like let's solve the location problem by having me be your one location. How can it be decentralized if you're centralizing on (audio distortion)? >> Well, it's more decentralized than if it's all in one cloud. So let me actually, so the spectrum. So again, in the spirit of what is and what isn't, I think it's safe to say Hammerspace is supercloud. I think there's no debate there, right? Certainly among this crowd. And I think we can all agree that Dell, Dell Storage is not supercloud. Where it gets fuzzy is this Snowflake example or even, how about a, how about a Cohesity that instantiates its stack in different cloud regions in different clouds, and synchronizes, however magic sauce it does that. Is that a supercloud? I mean, so I'm cautious about having too strict of a definition 'cause then only-- >> Fair enough, fair enough. >> But I could use your help and thoughts on that. >> So I think we're talking about two different spectrums here. One is the spectrum of platform to application-specific. As you go up the application stack and it becomes this specific thing. Or you go up to the more and more structured where it's serving a specific application function where it's more of a SAS thing. I think it's harder to call a SAS service a supercloud. And I would argue that the reason there, and what you're lacking in the definition is to talk about it as general purpose. Okay? Now, that said, a data warehouse is general purpose at the structured data level. So you could make the argument for why Snowflake is a supercloud by saying that it is a general purpose platform for doing lots of different things. It's just one at a higher level up at the structured data level. So one spectrum is the high level going from platform to, you know, unstructured data to structured data to very application-specific, right? Like a specific, you know, CAD/CAM mechanical design cloud, like an Autodesk would want to give you their cloud for running, you know, and sharing CAD/CAM designs, doing your CAD/CAM anywhere stuff. Well, the other spectrum is how well does the purported supercloud technology actually live up to allowing you to run anything anywhere with not just the same APIs but with the local presence of data with the exact same runtime environment everywhere, and to be able to correctly manage how to get that runtime environment anywhere. So a Cohesity has some means of running things in different places and some means of coordinating what's where and of serving diff, you know, things in different places. I would argue that it is a very poor approximation of what Hammerspace does in providing the exact same file system with local high performance access everywhere with metadata ability to control where the data is actually instantiated so that you don't have to wait for it to get orchestrated. But even then when you do have to wait for it, it happens automatically and so it's still only a matter of, well, how quick is it? And on the other end of the spectrum is you could look at NetApp with Flexcache and say, "Is that supercloud?" And I would argue, well kind of because it allows you to run things in different places because it's a cache. But you know, it really isn't because it presumes some central silo from which you're cacheing stuff. So, you know, is it or isn't it? Well, it's on a spectrum of exactly how fully is it decoupling a runtime environment from specific locality? And I think a cache doesn't, it stretches a specific silo and makes it have some semblance of similar access in other places. But there's still a very big difference to the central silo, right? You can't turn off that central silo, for example. >> So it comes down to how specific you make the definition. And this is where it gets kind of really interesting. It's like cloud. Does IBM have a cloud? >> Exactly. >> I would say yes. Does it have the kind of quality that you would expect from a hyper-scale cloud? No. Or see if you could say the same thing about-- >> But that's a problem with choosing a name. That's the problem with choosing a name supercloud versus talking about the concept of cloud and how true up you are to that concept. >> For sure. >> Right? Because without getting a name, you don't have to draw, yeah. >> I'd like to explore one particular or bring them together. You made a very interesting observation that from a enterprise point of view, they want to safeguard their store, their data, and they want to make sure that they can have that data running in their own workflows, as well as, as other service providers providing services to them for that data. So, and in in particular, if you go back to, you go back to Snowflake. If Snowflake could provide the ability for you to have your data where you wanted, you were in charge of that, would that make Snowflake a supercloud? >> I'll tell you, in my mind, they would be closer to my conceptualization of supercloud if you can instantiate Snowflake as software on your own infrastructure, and pump your own data to Snowflake that's instantiated on your own infrastructure. The fact that it has to be on their infrastructure or that it's on their, that it's on their account in the cloud, that you're giving them the data and they're, that fundamentally goes against it to me. If they, you know, they would be a pure, a pure plate if they were a software defined thing where you could instantiate Snowflake machinery on the infrastructure of your choice and then put your data into that machinery and get all the benefits of Snowflake. >> So did you see--? >> In other words, if they were not a SAS service, but offered all of the similar benefits of being, you know, if it were a service that you could run on your own infrastructure. >> So did you see what they announced, that--? >> I hope that's making sense. >> It does, did you see what they announced at Dell? They basically announced the ability to take non-native Snowflake data, read it in from an object store on-prem, like a Dell object store. They do the same thing with Pure, read it in, running it in the cloud, and then push it back out. And I was saying to Dell, look, that's fine. Okay, that's interesting. You're taking a materialized view or an extended table, whatever you're doing, wouldn't it be more interesting if you could actually run the query locally with your compute? That would be an extension that would actually get my attention and extend that. >> That is what I'm talking about. That's what I'm talking about. And that's why I'm saying I think Hammerspace is more progressive on that front because with our technology, anybody who can instantiate a service, can make a service. And so I, so MSPs can use Hammerspace as a way to build a super pass layer and host their clients on their infrastructure in a cloud-like fashion. And their clients can have their own private data centers and the MSP or the public clouds, and Hammerspace can be instantiated, get this, by different parties in these different pieces of infrastructure and yet linked together to make a common file system across all of it. >> But this is data mesh. If I were HPE and Dell it's exactly what I'd be doing. I'd be working with Hammerspace to create my own data. I'd work with Databricks, Snowflake, and any other-- >> Data mesh is a good way to put it. Data mesh is a good way to put it. And this is at the lowest level of, you know, the underlying file system that's mountable by the operating system, consumed as a real file system. You can't get lower level than that. That's why this is the foundation for all of the other apps and structured data systems because you need to have a data mesh that can at least mesh the binary blob. >> Okay. >> That hold the binaries and that hold the datasets that those applications are running. >> So David, in the third week of January, we're doing supercloud 2 and I'm trying to convince John Furrier to make it a data slash data mesh edition. I'm slowly getting him to the knothole. I would very much, I mean you're in the Bay Area, I'd very much like you to be one of the headlines. As Zhamak Dehghaniis going to speak, she's the creator of Data Mesh, >> Sure. >> I'd love to have you come into our studio as well, for the live session. If you can't make it, we can pre-record. But you're right there, so I'll get you the dates. >> We'd love to, yeah. No, you can count on it. No, definitely. And you know, we don't typically talk about what we do as Data Mesh. We've been, you know, using global data environment. But, you know, under the covers, that's what the thing is. And so yeah, I think we can frame the discussion like that to line up with other, you know, with the other discussions. >> Yeah, and Data Mesh, of course, is one of those evocative names, but she has come up with some very well defined principles around decentralized data, data as products, self-serve infrastructure, automated governance, and and so forth, which I think your vision plugs right into. And she's brilliant. You'll love meeting her. >> Well, you know, and I think.. Oh, go ahead. Go ahead, Peter. >> Just like to work one other interface which I think is important. How do you see yourself and the open source? You talked about having an operating system. Obviously, Linux is the operating system at one level. How are you imagining that you would interface with cost community as part of this development? >> Well, it's funny you ask 'cause my CTO is the kernel maintainer of the storage networking stack. So how the Linux operating system perceives and consumes networked data at the file system level, the network file system stack is his purview. He owns that, he wrote most of it over the last decade that he's been the maintainer, but he's the gatekeeper of what goes in. And we have leveraged his abilities to enhance Linux to be able to use this decentralized data, in particular with decoupling the control plane driven by metadata from the data access path and the many storage systems on which the data gets accessed. So this factoring, this splitting of control plane from data path, metadata from data, was absolutely necessary to create a data mesh like we're talking about. And to be able to build this supercloud concept. And the highways on which the data runs and the client which knows how to talk to it is all open source. And we have, we've driven the NFS 4.2 spec. The newest NFS spec came from my team. And it was specifically the enhancements needed to be able to build a spanning file system, a data mesh at a file system level. Now that said, our file system itself and our server, our file server, our data orchestration, our data management stuff, that's all closed source, proprietary Hammerspace tech. But the highways on which the mesh connects are actually all open source and the client that knows how to consume it. So we would, honestly, I would welcome competitors using those same highways. They would be at a major disadvantage because we kind of built them, but it would still be very validating and I think only increase the potential adoption rate by more than whatever they might take of the market. So it'd actually be good to split the market with somebody else to come in and share those now super highways for how to mesh data at the file system level, you know, in here. So yeah, hopefully that answered your question. Does that answer the question about how we embrace the open source? >> Right, and there was one other, just that my last one is how do you enable something to run in every environment? And if we take the edge, for example, as being, as an environment which is much very, very compute heavy, but having a lot less capability, how do you do a hold? >> Perfect question. Perfect question. What we do today is a software appliance. We are using a Linux RHEL 8, RHEL 8 equivalent or a CentOS 8, or it's, you know, they're all roughly equivalent. But we have bundled and a software appliance which can be instantiated on bare metal hardware on any type of VM system from VMware to all of the different hypervisors in the Linux world, to even Nutanix and such. So it can run in any virtualized environment and it can run on any cloud instance, server instance in the cloud. And we have it packaged and deployable from the marketplaces within the different clouds. So you can literally spin it up at the click of an API in the cloud on instances in the cloud. So with all of these together, you can basically instantiate a Hammerspace set of machinery that can offer up this file system mesh. like we've been using the terminology we've been using now, anywhere. So it's like being able to take and spin up Snowflake and then just be able to install and run some VMs anywhere you want and boom, now you have a Snowflake service. And by the way, it is so complete that some of our customers, I would argue many aren't even using public clouds at all, they're using this just to run their own data centers in a cloud-like fashion, you know, where they have a data service that can span it all. >> Yeah and to Molly's first point, we would consider that, you know, cloud. Let me put you on the spot. If you had to describe conceptually without a chalkboard what an architectural diagram would look like for supercloud, what would you say? >> I would say it's to have the same runtime environment within every data center and defining that runtime environment as what it takes to schedule the execution of applications, so job scheduling, runtime stuff, and here we're talking Kubernetes, Slurm, other things that do job scheduling. We're talking about having a common way to, you know, instantiate compute resources. So a global compute environment, having a common compute environment where you can instantiate things that need computing. Okay? So that's the first part. And then the second is the data platform where you can have file block and object volumes, and have them available with the same APIs in each of these distributed data centers and have the exact same data omnipresent with the ability to control where the data is from one moment to the next, local, where all the data is instantiate. So my definition would be a common runtime environment that's bifurcate-- >> Oh. (attendees chuckling) We just lost them at the money slide. >> That's part of the magic makes people listen. We keep someone on pin and needles waiting. (attendees chuckling) >> That's good. >> Are you back, David? >> I'm on the edge of my seat. Common runtime environment. It was like... >> And just wait, there's more. >> But see, I'm maybe hyper-focused on the lower level of what it takes to host and run applications. And that's the stuff to schedule what resources they need to run and to get them going and to get them connected through to their persistence, you know, and their data. And to have that data available in all forms and have it be the same data everywhere. On top of that, you could then instantiate applications of different types, including relational databases, and data warehouses and such. And then you could say, now I've got, you know, now I've got these more application-level or structured data-level things. I tend to focus less on that structured data level and the application level and am more focused on what it takes to host any of them generically on that super pass layer. And I'll admit, I'm maybe hyper-focused on the pass layer and I think it's valid to include, you know, higher levels up the stack like the structured data level. But as soon as you go all the way up to like, you know, a very specific SAS service, I don't know that you would call that supercloud. >> Well, and that's the question, is there value? And Marianna Tessel from Intuit said, you know, we looked at it, we did it, and it just, it was actually negative value for us because connecting to all these separate clouds was a real pain in the neck. Didn't bring us any additional-- >> Well that's 'cause they don't have this pass layer underneath it so they can't even shop around, which actually makes it hard to stand up your own SAS service. And ultimately they end up having to build their own infrastructure. Like, you know, I think there's been examples like Netflix moving away from the cloud to their own infrastructure. Basically, if you're going to rent it for more than a few months, it makes sense to build it yourself, if it's at any kind of scale. >> Yeah, for certain components of that cloud. But if the Goldman Sachs came to you, David, and said, "Hey, we want to collaborate and we want to build "out a cloud and essentially build our SAS system "and we want to do that with Hammerspace, "and we want to tap the physical infrastructure "of not only our data centers but all the clouds," then that essentially would be a SAS, would it not? And wouldn't that be a Super SAS or a supercloud? >> Well, you know, what they may be using to build their service is a supercloud, but their service at the end of the day is just a SAS service with global reach. Right? >> Yeah. >> You know, look at, oh shoot. What's the name of the company that does? It has a cloud for doing bookkeeping and accounting. I forget their name, net something. NetSuite. >> NetSuite. NetSuite, yeah, Oracle. >> Yeah. >> Yep. >> Oracle acquired them, right? Is NetSuite a supercloud or is it just a SAS service? You know? I think under the covers you might ask are they using supercloud under the covers so that they can run their SAS service anywhere and be able to shop the venue, get elasticity, get all the benefits of cloud in the, to the benefit of their service that they're offering? But you know, folks who consume the service, they don't care because to them they're just connecting to some endpoint somewhere and they don't have to care. So the further up the stack you go, the more location-agnostic it is inherently anyway. >> And I think it's, paths is really the critical layer. We thought about IAS Plus and we thought about SAS Minus, you know, Heroku and hence, that's why we kind of got caught up and included it. But SAS, I admit, is the hardest one to crack. And so maybe we exclude that as a deployment model. >> That's right, and maybe coming down a level to saying but you can have a structured data supercloud, so you could still include, say, Snowflake. Because what Snowflake is doing is more general purpose. So it's about how general purpose it is. Is it hosting lots of other applications or is it the end application? Right? >> Yeah. >> So I would argue general purpose nature forces you to go further towards platform down-stack. And you really need that general purpose or else there is no real distinguishing. So if you want defensible turf to say supercloud is something different, I think it's important to not try to wrap your arms around SAS in the general sense. >> Yeah, and we've kind of not really gone, leaned hard into SAS, we've just included it as a deployment model, which, given the constraints that you just described for structured data would apply if it's general purpose. So David, super helpful. >> Had it sign. Define the SAS as including the hybrid model hold SAS. >> Yep. >> Okay, so with your permission, I'm going to add you to the list of contributors to the definition. I'm going to add-- >> Absolutely. >> I'm going to add this in. I'll share with Molly. >> Absolutely. >> We'll get on the calendar for the date. >> If Molly can share some specific language that we've been putting in that kind of goes to stuff we've been talking about, so. >> Oh, great. >> I think we can, we can share some written kind of concrete recommendations around this stuff, around the general purpose, nature, the common data thing and yeah. >> Okay. >> Really look forward to it and would be glad to be part of this thing. You said it's in February? >> It's in January, I'll let Molly know. >> Oh, January. >> What the date is. >> Excellent. >> Yeah, third week of January. Third week of January on a Tuesday, whatever that is. So yeah, we would welcome you in. But like I said, if it doesn't work for your schedule, we can prerecord something. But it would be awesome to have you in studio. >> I'm sure with this much notice we'll be able to get something. Let's make sure we have the dates communicated to Molly and she'll get my admin to set it up outside so that we have it. >> I'll get those today to you, Molly. Thank you. >> By the way, I am so, so pleased with being able to work with you guys on this. I think the industry needs it very bad. They need something to break them out of the box of their own mental constraints of what the cloud is versus what it's supposed to be. And obviously, the more we get people to question their reality and what is real, what are we really capable of today that then the more business that we're going to get. So we're excited to lend the hand behind this notion of supercloud and a super pass layer in whatever way we can. >> Awesome. >> Can I ask you whether your platforms include ARM as well as X86? >> So we have not done an ARM port yet. It has been entertained and won't be much of a stretch. >> Yeah, it's just a matter of time. >> Actually, entertained doing it on behalf of NVIDIA, but it will absolutely happen because ARM in the data center I think is a foregone conclusion. Well, it's already there in some cases, but not quite at volume. So definitely will be the case. And I'll tell you where this gets really interesting, discussion for another time, is back to my old friend, the SSD, and having SSDs that have enough brains on them to be part of that fabric. Directly. >> Interesting. Interesting. >> Very interesting. >> Directly attached to ethernet and able to create a data mesh global file system, that's going to be really fascinating. Got to run now. >> All right, hey, thanks you guys. Thanks David, thanks Molly. Great to catch up. Bye-bye. >> Bye >> Talk to you soon.
SUMMARY :
So my question to you was, they don't have to do it. to starved before you have I believe that the ISVs, especially those the end users you need to So, if I had to take And and I think Ultimately the supercloud or the Snowflake, you know, more narrowly on just the stuff of the point of what you're talking Well, and you know, Snowflake founders, I don't want to speak over So it starts to even blur who's the main gravity is to having and, you know, that's where to be in a, you know, a lot of thought to this. But some of the inside baseball But the truth is-- So one of the things we wrote the fact that you even have that you would not put in as to give you low latency access the hardest things, David. This is one of the things I've the how can you host applications Not a specific application Yeah, yeah, you just statement when you broke up. So would you exclude is kind of hard to do I know, we all know it is. I think I said to Slootman, of ways you can give it So again, in the spirit But I could use your to allowing you to run anything anywhere So it comes down to how quality that you would expect and how true up you are to that concept. you don't have to draw, yeah. the ability for you and get all the benefits of Snowflake. of being, you know, if it were a service They do the same thing and the MSP or the public clouds, to create my own data. for all of the other apps and that hold the datasets So David, in the third week of January, I'd love to have you come like that to line up with other, you know, Yeah, and Data Mesh, of course, is one Well, you know, and I think.. and the open source? and the client which knows how to talk and then just be able to we would consider that, you know, cloud. and have the exact same data We just lost them at the money slide. That's part of the I'm on the edge of my seat. And that's the stuff to schedule Well, and that's the Like, you know, I think But if the Goldman Sachs Well, you know, what they may be using What's the name of the company that does? NetSuite, yeah, Oracle. So the further up the stack you go, But SAS, I admit, is the to saying but you can have a So if you want defensible that you just described Define the SAS as including permission, I'm going to add you I'm going to add this in. We'll get on the calendar to stuff we've been talking about, so. nature, the common data thing and yeah. to it and would be glad to have you in studio. and she'll get my admin to set it up I'll get those today to you, Molly. And obviously, the more we get people So we have not done an ARM port yet. because ARM in the data center I think is Interesting. that's going to be really fascinating. All right, hey, thanks you guys.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Slootman | PERSON | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
Adobe | ORGANIZATION | 0.99+ |
Molly | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
Frank | PERSON | 0.99+ |
Disney | ORGANIZATION | 0.99+ |
Goldman Sachs | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
January | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
February | DATE | 0.99+ |
Peter | PERSON | 0.99+ |
Zhamak Dehghaniis | PERSON | 0.99+ |
Hammerspace | ORGANIZATION | 0.99+ |
Word | TITLE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
RHEL 8 | TITLE | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Benoit | PERSON | 0.99+ |
Excel | TITLE | 0.99+ |
second | QUANTITY | 0.99+ |
Autodesk | ORGANIZATION | 0.99+ |
CentOS 8 | TITLE | 0.99+ |
David Flynn | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
PowerPoint | TITLE | 0.99+ |
first point | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Tuesday | DATE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
first part | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
each region | QUANTITY | 0.98+ |
Linux | TITLE | 0.98+ |
One | QUANTITY | 0.98+ |
Intuit | ORGANIZATION | 0.98+ |
Tim Burners Lee | PERSON | 0.98+ |
Zhamak Dehghaniis' | PERSON | 0.98+ |
Blue Origin | ORGANIZATION | 0.98+ |
Bay Area | LOCATION | 0.98+ |
two reasons | QUANTITY | 0.98+ |
each | QUANTITY | 0.98+ |
one application | QUANTITY | 0.98+ |
Snowflake | TITLE | 0.98+ |
first | QUANTITY | 0.98+ |
more than a few months | QUANTITY | 0.97+ |
SAS | ORGANIZATION | 0.97+ |
ARM | ORGANIZATION | 0.97+ |
Microsoft | ORGANIZATION | 0.97+ |
Tim Jefferson & Sinan Eren, Barracuda | AWS re:Inforce 2022
>>And welcome back to the cubes coverage of a, of us. Reinforc here in Boston, Massachusetts. I'm John furrier. We're here for a great interview on the next generation topic of state of industrial security. We have two great guests, Tim Jefferson, senior vice president data network and application security at Barracuda. And Cenon Aron vice president of zero trust engineering at Barracuda. Gentlemen. Thanks for coming on the queue. Talk about industrial security. >>Yeah, thanks for having us. >>So one of the, one of the big things that's going on, obviously you got zero trust. You've got trusted, trusted software supply chain challenges. You've got hardware mattering more than ever. You've got software driving everything, and all this is talking about industrial, you know, critical infrastructure. We saw the oil pipeline had a hack and ransomware attack, and that's just constant barrage of threats in the industrial area. And all the data is pointing to that. This area is gonna be fast growth machine learning's kicking in automation is coming in. You see a huge topic, huge growth trend. What is the big story going on here? >>Yeah, I think at a high level, you know, we did a survey and saw that, you know, over 95% of the organizations are experiencing, you know, security challenges in this space. So, you know, the blast radius in the, of the, the interface that this creates so many different devices and things and objects that are getting network connected now create a huge challenge for security teams to kind of get their arms around that. >>Yeah. And I can add that, you know, majority of these incidents that, that these organizations suffer lead to significant downtime, right? And we're talking about operational technology here, you know, lives depend on, on these technologies, right? Our, our wellbeing everyday wellbeing depend on those. So, so that is a key driver of initiatives and projects to secure industrial IOT and operational technologies in, in these businesses. >>Well, it's great to have both of you guys on, you know, Tim, you know, you had a background at AWS and sit on your startup, founder, soldier, coming to Barracuda, both very experienced, seeing the ways before in this industry. And I'd like to, if you don't mind talk about three areas, remote access, which we've seen in huge demand with, with the pandemic and the out, coming out with the hybrid and certainly industrial, that's a big part of it. And then secondly, that the trend of clear commitment from enterprises to have in a public cloud component, and then finally the secure access edge, you know, with SAS business models, securing these things, these are the three hot areas let's go into the first one, remote access. Why is this important? It seems that this is the top priority for having immediate attention on what's the big challenge here? Is it the most unsecure? Is it the most important? What, why is this relevant? >>So now I'll let you jump in there. >>Yeah, sure. Happy to. I mean, if you think about it, especially now, we've been through a, a pandemic shelter in place cycle for almost two years. It, it becomes essentially a business continuity matter, right? You do need remote access. We also seen a tremendous shift in hiring the best talent, wherever they are, right. Onboarding them and bringing the talent into, into, into, into businesses that have maybe a lot more distributed environments than traditionally. So you have to account for remote access in every part of everyday life, including industrial technologies, you need remote support, right? You need vendors that might be overseas providing you, you know, guidance and support for these technologies. So remote support is every part of life. Whether you work from home, you work on your, on the go, or you are getting support from a vendor that happens to be in Germany, you know, teleporting into your environment in Hawaii. You know, all these things are essentially critical parts of everyday life. Now >>Talk about ZT and a zero trust network access is a, this is a major component for companies. Obviously, you know, it's a position taking trust and verifies. One other approach, zero trust is saying, Hey, I don't trust you. Take us through why that's important. Why is zero trust network access important in this area? >>Yeah. I mean, I could say that traditionally remote access, if you think about infancy of the internet in the nineties, right? It was all about encryption in, in transit, right? You were all about internet was vastly clear text, right? We didn't have even SSL TLS, widely distributed and, and available. So when VPNs first came out, it was more about preventing sniffing, clear tech clear text information from, from, from the network, right? It was more about securing the, the transport, but now that kind of created a, a big security control gap, which implicitly trusted user users, once they are teleported into a remote network, right? That's the essence of having a remote access session you're brought from wherever you are into an internal network. They implicitly trust you that simply breakdown over time because you are able to compromise end points relatively easily using browser exploits. >>You know, so, so for supply chain issues, water hole attacks, and leverage the existing VPN tunnels to laterally move into the organization from within the network, you literally move in further and further and further down, you know, down the network, right? So the VPN needed a, a significant innovation. It was meant to be securing packets and transit. It was all about an encryption layer, but it had an implicit trust problem with zero trust. We turn it into an explicit trust problem, right? Explicit trust concept, ideally. Right? So you are, who do you say you are? And you are authorized to access only to things that you need to access to get the work done. >>So you're talking about granular levels versus the one time database look up you're in >>That's right. >>Tim, talk about the OT it side of this equation of industrial, because it, you know, is IP based, networking, OT have been purpose built, you know, maybe some proprietary technology yeah. That connects to the internet internet, but it's mainly been secure. Those have come together over the years and now with no perimeter security, how is this world evolving? Because there's gonna be more cloud there, be more machine learning, more hybrid on premise, that's going on almost a reset if you will. I mean, is it a reset? What's the, what's the situation. >>Yeah. I think, you know, in typical human behavior, you know, there's a lot of over rotation going on. You know, historically a lot of security controls are all concentrated in a data center. You know, a lot of enterprises had very large sophisticated well-established security stacks in a data center. And as those applications kind of broke down and, and got rearchitected for the cloud, they got more modular, they got more distributed that centralized security stack became an anti pattern. So now this kind of over rotation, Hey, let's take this stack and, and put it up in the cloud. You know, so there's lots of names for this secure access, service edge, you know, secure service edge. But in the end, you know, you're taking your controls and, and migrating them into the cloud. And, you know, I think ultimately this creates a great opportunity to embrace some of security, best practices that were difficult to do in some of the legacy architectures, which is being able to push your controls as far out to the edge as possible. >>And the interesting thing about OT and OT now is just how far out the edge is, right? So instead of being, you know, historically it was the branch or user edge, remote access edge, you know, Syon mentioned that you, you have technologies that can VPN or bring those identities into those networks, but now you have all these things, you know, partners, devices. So it's the thing, edge device edge, the user edge. So a lot more fidelity and awareness around who users are. Cause in parallel, a lot of the IDP and I IBM's platforms have really matured. So marrying those concepts of this, this lot of maturity around identity management yeah. With device in and behavior management into a common security framework is really exciting. But of course it's very nascent. So people are, it's a difficult time getting your arms around >>That. It's funny. We were joking about the edge. We just watching the web telescope photos come in the deep space, the deep edge. So the edge is continuing to be pushed out. Totally see that. And in fact, you know, one of the things we're gonna, we're gonna talk about this survey that you guys had done by an independent firm has a lot of great data. I want to unpack that, but one of the things that was mentioned in there, and I'll get, I wanna get your both reaction to this is that virtually all organizations are committing to the public cloud. Okay. I think it was like 96% or so was the stat. And if you combine in that, the fact that the edge is expanding, the cloud model is evolving at the edge. So for instance, a building, there's a lot behind it. You know, how far does it go? So we don't and, and what is the topology because the topology seem to change too. So there's this growth and change where we need cloud operations, DevOps at, at the edge and the security, but it's changing. It's not pure cloud, but it's cloud. It has to be compatible. What's your reaction to that, Tim? I mean, this is, this is a big part of the growth of industrial. >>Yeah. I think, you know, if you think about, there's kind of two exciting developments that I would think of, you know, obviously there's this increase to the surface area, the tax surface areas, people realize, you know, it's not just laptops and devices and, and people that you're trying to secure, but now they're, you know, refrigerators and, you know, robots and manufacturing floors that, you know, could be compromised, have their firmware updated or, you know, be ransomware. So this a huge kind of increase in surface area. But a lot of those, you know, industrial devices, weren't built around the concept with network security. So kind of bolting on, on thinking through how can you secure who and what ultimately has access to those, to those devices and things. And where is the control framework? So to your point, the control framework now is typically migrated now into public cloud. >>These are custom applications, highly distributed, highly available, very modular. And then, you know, so how do you, you know, collect the telemetry or control information from these things. And then, you know, it creates secure connections back into these, these control applications, which again, are now migrated to public cloud. So you have this challenge, you know, how do you secure? We were talking about this last time we discussed, right. So how do you secure the infrastructure that I've, I've built in deploying now, this control application and in public cloud, and then connect in with this, this physical presence that I have with these, you know, industrial devices and taking telemetry and control information from those devices and bringing it back into the management. And this kind marries again, back into the remote axis that Sunan was mentioning now with this increase awareness around the efficacy of ransomware, we are, you know, we're definitely seeing attackers going after the management frameworks, which become very vulnerable, you know, and they're, they're typically just unprotected web applications. So once you get control of the management framework, regardless of where it's hosted, you can start moving laterally and, and causing some damage. >>Yeah. That seems to be the common thread. So no talk about, what's your reaction to that because, you know, zero trust, if it's evolving and changing, you, you gotta have zero trust you. I didn't even know it's out there and then it gets connected. How do you solve that problem? Cuz you know, there's a lot of surface area that's evolving all the OT stuff and the new, it, what's the, what's the perspective and posture that the clients your clients are having and customers. Well, >>I, I think they're having this conversation about further mobilizing identity, right? We did start with, you know, user identity that become kind of the first foundational building block for any kind of zero trust implementation. You work with, you know, some sort of SSO identity provider, you get your, you sync with your user directories, you have a single social truth for all your users. >>You authenticate them through an identity provider. However that didn't quite cut it for industrial OT and OT environments. So you see like we have the concept of hardware machines, machine identities now become an important construct, right? The, the legacy notion of being able to put controls and, and, and, and rules based on network constructs doesn't really scale anymore. Right? So you need to have this concept of another abstraction layer of identity that belongs to a service that belongs to an application that belongs to a user that belongs to a piece of hardware. Right. And then you can, yeah. And then you can build a lot more, of course, scalable controls that basically understand the, the trust relation between these identities and enforce that rather than trying to say this internal network can talk to this other internal network through a, through a network circuit. No, those things are really, are not scalable in this new distributed landscape that we live in today. So identity is basically going to operationalize zero trust and a lot more secure access going forward. >>And that's why we're seeing the sassy growth. Right. That's a main piece of it. Is that what you, what you're seeing too? I mean, that seems to be the, the approach >>I think like >>Go >>Ahead to, yeah. I think like, you know, sassy to me is really about, you know, migrating and moving your security infrastructure to the cloud edge, you know, as we talked to the cloud, you know, and then, you know, do you funnel all ingress and egress traffic through this, you know, which is potentially an anti pattern, right? You don't wanna create, you know, some brittle constraint around who and what has access. So again, a security best practices, instead of doing all your enforcement in one place, you can distribute and push your controls out as far to the edge. So a lot of SASI now is really around centralizing policy management, which is the big be one of the big benefits is instead of having all these separate management plans, which always difficult to be very federated policy, right? You can consolidate your policy and then decide mechanism wise how you're gonna instrument those controls at the edge. >>So I think that's the, the real promise of, of the, the sassy movement and the, I think the other big piece, which you kind of touched on earlier is around analytics, right? So it creates an opportunity to collect a whole bunch of telemetry from devices and things, behavior consumption, which is, which is a big, common, best practice around once you have SA based tools that you can instrument in a lot of visibility and how users and devices are behaving in being operated. And to Syon point, you can marry that in with their identity. Yeah. Right. And then you can start building models around what normal behavior is and, you know, with very fine grain control, you can, you know, these types of analytics can discover things that humans just can't discover, you know, anomalous behavior, any kind of indicators are compromised. And those can be, you know, dynamic policy blockers. >>And I think sun's point about what he was talking about, talks about the, the perimeters no longer secure. So you gotta go to the new way to do that. Totally, totally relevant. I love that point. Let me ask you guys a question on the, on the macro, if you don't mind, how concerned are you guys on the current threat landscape in the geopolitical situation in terms of the impact on industrial IOT in this area? >>So I'll let you go first. Yeah. >>I mean, it's, it's definitely significantly concerning, especially if now with the new sanctions, there's at least two more countries being, you know, let's say restricted to participate in the global economic, you know, Mar marketplace, right? So if you look at North Korea as a pattern, since they've been isolated, they've been sanctioned for a long time. They actually double down on rents somewhere to even fund state operations. Right? So now that you have, you know, BES be San Russia being heavily sanctioned due to due to their due, due to their activities, we can envision more increase in ransomware and, you know, sponsoring state activities through illegal gains, through compromising, you know, pipelines and, you know, industrial, you know, op operations and, and seeking large payouts. So, so I think the more they will, they're ized they're pushed out from the, from the global marketplace. There will be a lot more aggression towards critical infrastructure. >>Oh yeah. I think it's gonna ignite more action off the books, so to speak as we've seen. Yeah. We've >>Seen, you know, another point there is, you know, Barracuda also runs a, a backup, you know, product. We do a, a purpose built backup appliance and a cloud to cloud backup. And, you know, we've been running this service for over a decade. And historically the, the amount of ransomware escalations that we got were very slow, you know, is whenever we had a significant one, helping our customers recover from them, you know, you know, once a month, but over the last 18 months, this is routine now for us, this is something we deal with on a daily basis. And it's becoming very common. You know, it's, it's been a well established, you know, easily monetized route to market for the bad guys. And, and it's being very common now for people to compromise management planes, you know, they use account takeover. And the first thing they're doing is, is breaking into management planes, looking at control frameworks. And then first thing they'll do is delete, you know, of course the backups, which this sort of highlights the vulnerability that we try to talk to our customers about, you know, and this affects industrial too, is the first thing you have to do is among other things, is, is protect your management planes. Yeah. And putting really fine grain mechanisms like zero trust is, is a great, >>Yeah. How, how good is backup, Tim, if you gets deleted first is like no backup. There it is. So, yeah. Yeah. Air gaping. >>I mean, obviously that's kinda a best practice when you're bad guys, like go in and delete all the backups. So, >>And all the air gaps get in control of everything. Let me ask you about the, the survey pointed out that there's a lot of security incidents happening. You guys pointed that out and discussed a little bit of it. We also talked about in the survey, you know, the threat vectors and the threat landscape, the common ones, ransomware was one of them. The area that I liked, what that was interesting was the, the area that talked about how organizations are investing in security and particularly around this, can you guys share your thoughts on how you see the, the market, your customers and, and the industry investing? What are they investing in? What stage are they in when it comes to IOT and OT, industrial IOT and OT security, do they do audits? Are they too busy? I mean, what's the state of their investment thesis progress of, of, of how they're investing in industrial IOT? >>Yeah. Our, our view is, you know, we have a next generation product line. We call, you know, our next, our cloud chain firewalls. And we have a form factor that sports industrial use cases we call secure connectors. So it's interesting that if you, what we learned from that business is a tremendous amount of bespoke efforts at this point, which is sort of indicative of a, of a nascent market still, which is related to another piece of information I thought was really interested in the survey that I think it was 93% of the, the participants, the enterprises had a failed OT initiative, you know, that, you know, people tried to do these things and didn't get off the ground. And then once we see build, you know, strong momentum, you know, like we have a, a large luxury car manufacturer that uses our secure connectors on the, on the robots, on the floor. >>So well established manufacturing environments, you know, building very sophisticated control frameworks and, and security controls. And, but again, a very bespoke effort, you know, they have very specific set of controls and specific set of use cases around it. So it kind of reminds me of the late nineties, early two thousands of people trying to figure out, you know, networking and the blast radi and networking and, and customers, and now, and a lot of SI are, are invested in this building, you know, fast growing practices around helping their customers build more robust controls in, in helping them manage those environments. So, yeah, I, I think that the market is still fairly nascent >>From what we seeing, right. But there are some encouraging, you know, data that shows that at least helpful of the organizations are actively pursuing. There's an initiative in place for OT and a, you know, industrial IOT security projects in place, right. They're dedicating time and resources and budget for this. And, and in, in regards to industries, verticals and, and geographies oil and gas, you know, is, is ahead of the curve more than 50% responded to have the project completed, which I guess colonial pipeline was the, you know, the call to arms that, that, that was the big, big, you know, industrial, I guess, incident that triggered a lot of these projects to be accelerating and, and, you know, coming to the finish line as far as geographies go DACA, which is Germany, Austria, Switzerland, and of course, north America, which happens to be the industrial powerhouses of, of the world. Well, APAC, you know, also included, but they're a bit behind the curve, which is, you know, that part is a bit concerning, but encouragingly, you know, Western Europe and north America is ahead of these, you know, projects. A lot of them are near completion or, or they're in the middle of some sort of an, you know, industrial IOT security project right >>Now. I'm glad you brought the colonial pipeline one and, and oil and gas was the catalyst. Again, a lot of, Hey, scared that better than, than me kinda attitude, better invest. So I gotta ask you that, that supports Tim's point about the management plane. And I believe on that hack or ransomware, it wasn't actually control of the pipeline. It was control over the management billing, and then they shut down the pipeline cuz they were afraid it was gonna move over. So it wasn't actually the critical infrastructure itself to your point, Tim. >>Yeah. It's hardly over the critical infrastructure, by the way, you always go through the management plane, right. It's such an easier lying effort to compromise because it runs on an endpoint it's standard endpoint. Right? All this control software will, will be easier to get to rather than the industrial hardware itself. >>Yeah. It's it's, it's interesting. Just don't make a control software at the endpoint, put it zero trust. So down that was a great point. Oh guys. So really appreciate the time and the insight and, and the white paper's called NETEC it's on the Barracuda. Netex industrial security in 2022. It's on the barracuda.com website Barracuda network guys. So let's talk about the read force event hasn't been around for a while cuz of the pandemic we're back in person what's changed in 2019 a ton it's like security years is not dog years anymore. It's probably dog times too. Right. So, so a lot's gone on where are we right now as an industry relative to the security cybersecurity. Could you guys summarize kind of the, the high order bit on where we are today in 2022 versus 2019? >>Yeah, I think, you know, if you look at the awareness around how to secure infrastructure in applications that are built in public cloud in AWS, it's, you know, exponentially better than it was. I think I remember when you and I met in 2018 at one of these conferences, you know, there were still a lot of concerns, whether, you know, IAS was safe, you know, and I think the amount of innovation that's gone on and then the amount of education and awareness around how to consume, you know, public cloud resources is amazing. And you know, I think that's facilitated a lot of the fast growth we've seen, you know, the consistent, fast growth that we've seen across all these platforms >>Say that what's your reaction to the, >>I think the shared responsibility model is well understood, you know, and, and, and, and we can see a lot more implementation around, you know, CSBM, you know, continuously auditing the configurations in these cloud environments become a, a standard table stake, you know, investment from every stage of any business, right? Whether from early state startups, all the way to, you know, public companies. So I think it's very well understood and, and the, and the investment has been steady and robust when it comes to cloud security. We've been busy, you know, you know, helping our customers and AWS Azure environments and, and others. So I, I think it's well understood. And, and, and we are on a very optimistic note actually in a good place when it comes to public cloud. >>Yeah. A lot of great momentum, a lot of scale and data act out there. People sharing data, shared responsibility. Tim is in, thank you for sharing your insights here in this cube segment coverage of reinforce here in Boston. Appreciate it. >>All right. Thanks for having >>Us. Thank you. >>Okay, everyone. Thanks for watching the we're here at the reinforced conference. AWS, Amazon web services reinforced. It's a security focused conference. I'm John furier host of the cube. We'd right back with more coverage after the short break.
SUMMARY :
Thanks for coming on the queue. and all this is talking about industrial, you know, critical infrastructure. Yeah, I think at a high level, you know, we did a survey and saw that, you know, here, you know, lives depend on, on these technologies, right? Well, it's great to have both of you guys on, you know, Tim, you know, you had a background at AWS and sit on your startup, Germany, you know, teleporting into your environment in Hawaii. Obviously, you know, it's a position taking trust and verifies. breakdown over time because you are able to compromise end points relatively easily further and further down, you know, down the network, right? you know, maybe some proprietary technology yeah. But in the end, you know, you're taking your controls and, So instead of being, you know, historically it was the branch or user edge, And in fact, you know, one of the things we're gonna, we're gonna talk about this survey that you guys had done by But a lot of those, you know, industrial devices, And then, you know, it creates secure connections back into these, these control applications, Cuz you know, there's a lot of surface area that's evolving all the OT stuff and the you know, some sort of SSO identity provider, you get your, you sync with your user directories, So you need to have this concept of another abstraction layer of identity I mean, that seems to be the, the approach I think like, you know, sassy to me is really about, you know, behavior is and, you know, with very fine grain control, you can, you know, So you gotta go to the new way to do that. So I'll let you go first. the new sanctions, there's at least two more countries being, you know, I think it's gonna ignite more action off the books, so to speak as that we try to talk to our customers about, you know, and this affects industrial too, is the first thing you have Yeah. I mean, obviously that's kinda a best practice when you're bad guys, like go in and delete all the backups. We also talked about in the survey, you know, you know, that, you know, people tried to do these things and didn't get off the ground. So well established manufacturing environments, you know, the, you know, the call to arms that, that, that was the big, big, you know, industrial, So I gotta ask you that, that supports Tim's point about the management plane. It's such an easier lying effort to compromise because it runs on an endpoint it's standard endpoint. Could you guys summarize kind of the, at one of these conferences, you know, there were still a lot of concerns, whether, you know, Whether from early state startups, all the way to, you know, public companies. Tim is in, thank you for sharing your insights here in this Thanks for having I'm John furier host of the cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Jefferson | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Sinan Eren | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Hawaii | LOCATION | 0.99+ |
Germany | LOCATION | 0.99+ |
2018 | DATE | 0.99+ |
Tim | PERSON | 0.99+ |
2022 | DATE | 0.99+ |
96% | QUANTITY | 0.99+ |
2019 | DATE | 0.99+ |
93% | QUANTITY | 0.99+ |
John furier | PERSON | 0.99+ |
Switzerland | LOCATION | 0.99+ |
Austria | LOCATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
north America | LOCATION | 0.99+ |
Boston, Massachusetts | LOCATION | 0.99+ |
first | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
San Russia | ORGANIZATION | 0.99+ |
more than 50% | QUANTITY | 0.98+ |
Western Europe | LOCATION | 0.98+ |
zero trust | QUANTITY | 0.98+ |
BES | ORGANIZATION | 0.98+ |
three hot areas | QUANTITY | 0.98+ |
Barracuda | ORGANIZATION | 0.97+ |
today | DATE | 0.97+ |
over 95% | QUANTITY | 0.97+ |
pandemic | EVENT | 0.97+ |
APAC | ORGANIZATION | 0.97+ |
two exciting developments | QUANTITY | 0.97+ |
once a month | QUANTITY | 0.97+ |
late nineties | DATE | 0.96+ |
single | QUANTITY | 0.95+ |
one time | QUANTITY | 0.94+ |
first thing | QUANTITY | 0.94+ |
first one | QUANTITY | 0.94+ |
over a decade | QUANTITY | 0.91+ |
nineties | DATE | 0.91+ |
SASI | ORGANIZATION | 0.88+ |
Netex | ORGANIZATION | 0.88+ |
zero trust | QUANTITY | 0.87+ |
three areas | QUANTITY | 0.86+ |
two great guests | QUANTITY | 0.84+ |
Azure | TITLE | 0.83+ |
John furrier | PERSON | 0.83+ |
Cenon Aron | PERSON | 0.83+ |
almost two years | QUANTITY | 0.83+ |
one place | QUANTITY | 0.82+ |
North Korea | ORGANIZATION | 0.82+ |
DACA | TITLE | 0.81+ |
zero | QUANTITY | 0.81+ |
Sunan | PERSON | 0.81+ |
SAS | ORGANIZATION | 0.8+ |
Barracuda | LOCATION | 0.8+ |
least two more countries | QUANTITY | 0.79+ |
secondly | QUANTITY | 0.77+ |
last 18 months | DATE | 0.75+ |
a ton | QUANTITY | 0.75+ |
two thousands of people | QUANTITY | 0.75+ |
One other approach | QUANTITY | 0.72+ |
Tim Barnes, AWS | AWS Startup Showcase S2 E3
(upbeat music) >> Hello, everyone, welcome to theCUBE's presentation of the AWS Startup Showcase. We're in Season two, Episode three, and this is the topic of MarTech and the Emerging Cloud-Scale Customer Experiences, the ongoing coverage of AWS's ecosystem of large scale growth and new companies and growing companies. I'm your host, John Furrier. We're excited to have Tim Barnes, Global Director, General Manager of Advertiser and Marketing at AWS here doing the keynote cloud-scale customer experience. Tim, thanks for coming on. >> Oh, great to be here and thank you for having me. >> You've seen many cycles of innovation, certainly in the ad tech platform space around data, serving consumers and a lot of big, big scale advertisers over the years as the Web 1.0, 2.0, now 3.0 coming, cloud-scale, roll of data, all big conversations changing the game. We see things like cookies going away. What does this all mean? Silos, walled gardens, a lot of new things are impacting the applications and expectations of consumers, which is also impacting the folks trying to reach the consumers. And this is kind of creating a kind of a current situation, which is challenging, but also an opportunity. Can you share your perspective of what this current situation is, as the emerging MarTech landscape emerges? >> Yeah, sure, John, it's funny in this industry, the only constant has changed and it's an ever-changing industry and never more so than right now. I mean, we're seeing with whether it's the rise of privacy legislation or just breach of security of data or changes in how the top tech providers and browser controllers are changing their process for reaching customers. This is an inflection point in the history of both ad tech and MarTech. You hit the nail on the head with cookie deprecation, with Apple removing IDFA, changes to browsers, et cetera, we're at an interesting point. And by the way, we're also seeing an explosion of content sources and ability to reach customers that's unmatched in the history of advertising. So those two things are somewhat at odds. So whether we see the rise of connected television or digital out of home, you mentioned Web 3.0 and the opportunities that may present in metaverse, et cetera, it's an explosion of opportunity, but how do we continue to connect brands with customers and do so in a privacy compliant way? And that's really the big challenge we're facing. One of the things that I see is the rise of modeling or machine learning as a mechanism to help remove some of these barriers. If you think about the idea of one-to-one targeting, well, that's going to be less and less possible as we progress. So how am I still as a brand advertiser or as a targeted advertiser, how am I going to still reach the right audience with the right message in a world where I don't necessarily know who they are. And modeling is a really key way of achieving that goal and we're seeing that across a number of different angles. >> We've always talked about on the ad tech business for years, it's the behemoth of contextual and behavioral, those dynamics. And if you look at the content side of the business, you have now this new, massive source of new sources, blogging has been around for a long time, you got video, you got newsletters, you got all kinds of people, self-publishing, that's been around for a while, right? So you're seeing all these new sources. Trust is a big factor, but everyone wants to control their data. So this walled garden perpetuation of value, I got to control my data, but machine learning works best when you expose data, so this is kind of a paradox. Can you talk about the current challenge here and how to overcome it because you can't fight fashion, as they say, and we see people kind of going down this road as saying, data's a competitive advantage, but I got to figure out a way to keep it, own it, but also share it for the machine learning. What's your take on that? >> Yeah, I think first and foremost, if I may, I would just start with, it's super important to make that connection with the consumer in the first place. So you hit the nail on the head for advertisers and marketers today, the importance of gaining first party access to your customer and with permission and consent is paramount. And so just how you establish that connection point with trust and with very clear directive on how you're going to use the data has never been more important. So I would start there if I was a brand advertiser or a marketer, trying to figure out how I'm going to better connect with my consumers and get more first party data that I could leverage. So that's just building the scale of first party data to enable you to actually perform some of the types of approaches we'll discuss. The second thing I would say is that increasingly, the challenge exists with the exchange of the data itself. So if I'm a data control, if I own a set of first party data that I have consent with consumers to use, and I'm passing that data over to a third party, and that data is leaked, I'm still responsible for that data. Or if somebody wants to opt out of a communication and that opt out signal doesn't flow to the third party, I'm still liable, or at least from the consumer's perspective, I've provided a poor customer experience. And that's where we see the rise of the next generation, I call it of data clean rooms, the approaches that you're seeing, a number of customers take in terms of how they connect data without actually moving the data between two sources. And we're seeing that as certainly a mechanism by which you can preserve accessibility data, we call that federated data exchange or federated data clean rooms and I think you're seeing that from a number of different parties in the industry. >> That's awesome, I want to get into the data interoperability because we have a lot of startups presenting in this episode around that area, but why I got you here, you mentioned data clean room. Could you define for us, what is a federated data clean room, what is that about? >> Yeah, I would simply describe it as zero data movement in a privacy and secure environment. To be a little bit more explicit and detailed, it really is the idea that if I'm a party A and I want to exchange data with party B, how can I run a query for analytics or other purposes without actually moving data anywhere? Can I run a query that has accessibility to both parties, that has the security and the levels of aggregation that both parties agree to and then run the query and get those results sets back in a way that it actually facilitates business between the two parties. And we're seeing that expand with partners like Snowflake and InfoSum, even within Amazon itself, AWS, we have data sharing capabilities within Redshift and some of our other data-led capabilities. And we're just seeing explosion of demand and need for customers to be able to share data, but do it in a way where they still control the data and don't ever hand it over to a third party for execution. >> So if I understand this correctly, this is kind of an evolution to kind of take away the middleman, if you will, between parties that used to be historically the case, is that right? >> Yeah, I'd say this, the middleman still exists in many cases. If you think about joining two parties' data together, you still have the problem of the match key. How do I make sure that I get the broadest set of data to match up with the broadest set of data on the other side? So we have a number of partners that provide these types of services from LiveRamp, TransUnion, Experian, et cetera. So there's still a place for that so-called middleman in terms of helping to facilitate the transaction, but as a clean room itself, I think that term is becoming outdated in terms of a physical third party location, where you push data for analysis, that's controlled by a third party. >> Yeah, great clarification there. I want to get into this data interoperability because the benefits of AWS and cloud scales we've seen over the past decade and looking forward is, it's an API based economy. So APIs and microservices, cloud native stuff is going to be the key to integration. And so connecting people together is kind of what we're seeing as the trend. People are connecting their data, they're sharing code in open source. So there's an opportunity to connect the ecosystem of companies out there with their data. Can you share your view on this interoperability trend, why it's important and what's the impact to customers who want to go down this either automated or programmatic connection oriented way of connecting data. >> Never more important than it has been right now. I mean, if you think about the way we transact it and still too today do to a certain extent through cookie swaps and all sorts of crazy exchanges of data, those are going away at some point in the future; it could be a year from now, it could be later, but they're going away. And I think that that puts a great amount of pressure on the broad ecosystem of customers who transact for marketers, on behalf of marketers, both for advertising and marketing. And so data interoperability to me is how we think about providing that transactional layer between multiple parties so that they can continue to transact in a way that's meaningful and seamless, and frankly at lower cost and at greater scale than we've done in the past with less complexity. And so, we're seeing a number of changes in that regard, whether that's data sharing and data clean rooms or federated clean rooms, as we described earlier, whether that's the rise of next generation identity solutions, for example, the UID 2.0 Consortium, which is an effort to use hashed email addresses and other forms of identifiers to facilitate data exchange for the programmatic ecosystem. These are sort of evolutions based on this notion that the old world is going away, the new world is coming, and part of that is how do we connect data sources in a more seamless and frankly, efficient manner. >> It's almost interesting, it's almost flipped upside down, you had this walled garden mentality, I got to control my data, but now I have data interoperability. So you got to own and collect the data, but also share it. This is going to kind of change the paradigm around my identity platforms, attributions, audience, as audiences move around, and with cookies going away, this is going to require a new abstraction, a new way to do it. So you mentioned some of those standards. Is there a path in this evolution that changes it for the better? What's your view on this? What do you see happening? What's going to come out of this new wave? >> Yeah, my father was always fond of telling me, "The customer, my customers is my customer." And I like to put myself in the shoes of the Marc Pritchards of the world at Procter & Gamble and think, what do they want? And frankly, their requirements for data and for marketing have not changed over the last 20 years. It's, I want to reach the right customer at the right time, with the right message and I want to be able to measure it. In other words, summarizing, I want omnichannel execution with omnichannel measurement, and that's become increasingly difficult as you highlighted with the rise of the walled gardens and increasingly data living in silos. And so I think it's important that we, as an industry start to think about what's in the best interest of the one customer who brings virtually 100% of the dollars to this marketplace, which is the CMO and the CMO office. And how do we think about returning value to them in a way that is meaningful and actually drives its industry forward. And I think that's where the data operability piece becomes really important. How do we think about connecting the omnichannel channels of execution? How do we connect that with partners who run attribution offerings with machine learning or partners who provide augmentation or enrichment data such as third party data providers, or even connecting the buy side with the sell side in a more efficient manner? How do I make that connection between the CMO and the publisher in a more efficient and effective way? And these are all challenges facing us today. And I think at the foundational layer of that is how do we think about first of all, what data does the marketer have, what is the first party data? How do we help them ethically source and collect more of that data with proper consent? And then how do we help them join that data into a variety of data sources in a way that they can gain value from it. And that's where machine learning really comes into play. So whether that's the notion of audience expansion, whether that's looking for some sort of cohort analysis that helps with contextual advertising, whether that's the notion of a more of a modeled approach to attribution versus a one-to-one approach, all of those things I think are in play, as we think about returning value back to that customer of our customer. >> That's interesting, you broke down the customer needs in three areas; CMO office and staff, partners ISV software developers, and then third party services. Kind of all different needs, if you will, kind of tiered, kind of at the center of that's the user, the consumer who have the expectations. So it's interesting, you have the stakeholders, you laid out kind of those three areas as to customers, but the end user, the consumer, they have a preference, they kind of don't want to be locked into one thing. They want to move around, they want to download apps, they want to play on Reddit, they want to be on LinkedIn, they want to be all over the place, they don't want to get locked in. So you have now kind of this high velocity user behavior. How do you see that factoring in, because with cookies going away and kind of the convergence of offline-online, really becoming predominant, how do you know someone's paying attention to what and when attention and reputation. All these things seem complex. How do you make sense of it? >> Yeah, it's a great question. I think that the consumer as you said, finds a creepiness factor with a message that follows them around their various sources of engagement with content. So I think at first and foremost, there's the recognition by the brand that we need to be a little bit more thoughtful about how we interact with our customer and how we build that trust and that relationship with the customer. And that all starts with of course, opt-in process consent management center but it also includes how we communicate with them. What message are we actually putting in front of them? Is it meaningful, is it impactful? Does it drive value for the customer? I think we've seen a lot of studies, I won't recite them that state that most consumers do find value in targeted messaging, but I think they want it done correctly and there in lies the problem. So what does that mean by channel, especially when we lose the ability to look at that consumer interaction across those channels. And I think that's where we have to be a little bit more thoughtful with frankly, kind of going back to the beginning with contextual advertising, with advertising that perhaps has meaning, or has empathy with the consumer, perhaps resonates with the consumer in a different way than just a targeted message. And we're seeing that trend, we're seeing that trend both in television, connected television as those converge, but also as we see about connectivity with gaming and other sort of more nuanced channels. The other thing I would say is, I think there's a movement towards less interruptive advertising as well, which kind of removes a little bit of those barriers for the consumer and the brand to interact. And whether that be dynamic product placement, content optimization, or whether that be sponsorship type opportunities within digital. I think we're seeing an increased movement towards those types of executions, which I think will also provide value to both parties. >> Yeah, I think you nailed it there. I totally agree with you on the contextual targeting, I think that's a huge deal and that's proven over the years of providing benefit. People, they're trying to find what they're looking for, whether it's data to consume or a solution they want to buy. So I think that all kind of ties together. The question is these three stakeholders, the CMO office and staff you mentioned, and the software developers, apps, or walled gardens, and then like ad servers as they come together, have to have standards. And so, I think to me, I'm trying to squint through all the movement and the shifting plates that are going on in the industry and trying to figure out where are the dots connecting? And you've seen many cycles of innovation at the end of the day, it comes down to who can perform best for the end user, as well as the marketers and advertisers, so that balance. What's your view on this shift? It's going to land somewhere, it has to land in the right area, and the market's very efficient. I mean, this ad market's very efficient. >> Yeah, I mean, in some way, so from a standards perspective, I support and we interact extensively with the IB and other industry associations on privacy enhancing technologies and how we think about these next generations of connection points or identifiers to connect with consumers. But I'd say this, with respect to the CMO, and I mentioned the publisher earlier, I think over the last 10 years with the rise of programmatic, certainly we saw the power reside mostly with the CMO who was able to amass a large pool of cookies or purchase a large sort of cohort of customers with cookie based attributes and then execute against that. And so almost a blind fashion to the publisher, the publisher was sort of left to say, "Hey, here's an opportunity, do you want to buy it or not?" With no real reason why the marketer might be buying that customer? And I think that we're seeing a shift backwards towards the publisher and perhaps a healthy balance between the two. And so, I do believe that over time, that we're going to see publishers provide a lot more, what I might almost describe as mini walled gardens. So the ability, great publisher or a set of publishers to create a cohort of customers that can be targeted through programmatic or perhaps through programmatic guaranteed in a way that it's a balance between the two. And frankly thinking about that notion of federated data clean rooms, you can see an approach where publishers are able to share their first party data with a marketer's first party data, without either party feeling like they're giving up something or passing all their value over to the other. And I do believe we're going to see some significant technology changes over the next three to four years. That really rely on that interplay between the marketer and the publisher in a way that it helps both sides achieve their goals, and that is, increasing value back to the publisher in terms of higher CPMs, and of course, better reach and frequency controls for the marketer. >> I think you really brought up a big point there we can maybe follow up on, but I think this idea of publishers getting more control and power and value is an example of the market filling a void and the power log at the long tail, it's kind of a straight line. Then it's got the niche kind of communities, it's growing in the middle there, and I think the middle of the torso of that power law is the publishers because they have all the technology to measure the journeys and the click throughs and all this traffic going on their platform, but they just need to connect to someone else. >> Correct. >> That brings in the interoperability. So, as a publisher ourselves, we see that long tail getting really kind of fat in the middle where new brands are going to emerge, if they have audience. I mean, some podcasts have millions of users and some blogs are attracting massive audience, niche audiences that are growing. >> I would say, just look at the rise of what we might not have considered publishers in the past, but are certainly growing as publishers today. Customers like Instacart or Uber who are creating ad platforms or gaming, which of course has been an ad supported platform for some time, but is growing immensely. Retail as a platform, of course, amazon.com being one of the biggest retail platforms with advertising supported models, but we're seeing that growth across the board for retail customers. And I think that again, there's never been more opportunities to reach customers. We just have to do it the right way, in the way that it's not offensive to customers, not creepy, if you want to call it that, and also maximizes value for both parties and that be both the buy and the sell side. >> Yeah, everyone's a publisher and everyone's a media company. Everyone has their own news network, everyone has their own retail, it's a completely new world. Tim, thanks for coming on and sharing your perspective and insights on this key note, Tim Barnes, Global Director, General Manager of Advertiser and Market at AWS here with the Episode three of Season two of the AWS Startup Showcase. I'm John Furrier, thanks for watching. (upbeat music)
SUMMARY :
of the AWS Startup Showcase. Oh, great to be here and certainly in the ad tech and the opportunities that may present and how to overcome it because exchange of the data itself. into the data interoperability that has the security and to match up with the broadest the impact to customers that the old world is going of change the paradigm of the one customer who brings and kind of the convergence the ability to look and the market's very efficient. and the publisher in a way that it helps is an example of the market filling a void getting really kind of fat in the middle in the way that it's not offensive of the AWS Startup Showcase.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Furrier | PERSON | 0.99+ |
Tim Barnes | PERSON | 0.99+ |
Tim Barnes | PERSON | 0.99+ |
Procter & Gamble | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Tim | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
TransUnion | ORGANIZATION | 0.99+ |
Experian | ORGANIZATION | 0.99+ |
two sources | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
LiveRamp | ORGANIZATION | 0.99+ |
both parties | QUANTITY | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
two parties | QUANTITY | 0.99+ |
MarTech | ORGANIZATION | 0.99+ |
both sides | QUANTITY | 0.99+ |
InfoSum | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
two things | QUANTITY | 0.98+ |
four years | QUANTITY | 0.98+ |
two parties' | QUANTITY | 0.98+ |
first party | QUANTITY | 0.98+ |
second thing | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
Instacart | ORGANIZATION | 0.98+ |
One | QUANTITY | 0.98+ |
three | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
UID 2.0 Consortium | ORGANIZATION | 0.97+ |
one customer | QUANTITY | 0.97+ |
three stakeholders | QUANTITY | 0.96+ |
Snowflake | ORGANIZATION | 0.96+ |
theCUBE | ORGANIZATION | 0.95+ |
Marc Pritchards | PERSON | 0.95+ |
amazon.com | ORGANIZATION | 0.94+ |
100% | QUANTITY | 0.91+ |
three areas | QUANTITY | 0.9+ |
first place | QUANTITY | 0.87+ |
ORGANIZATION | 0.83+ | |
millions of users | QUANTITY | 0.83+ |
Startup Showcase | EVENT | 0.82+ |
IDFA | TITLE | 0.78+ |
Season | QUANTITY | 0.76+ |
past decade | DATE | 0.75+ |
Episode | QUANTITY | 0.75+ |
a year from | DATE | 0.74+ |
last 20 years | DATE | 0.74+ |
one thing | QUANTITY | 0.72+ |
last 10 years | DATE | 0.71+ |
Web 3.0 | OTHER | 0.7+ |
Redshift | TITLE | 0.65+ |
Episode three | OTHER | 0.64+ |
zero | QUANTITY | 0.64+ |
Season two | QUANTITY | 0.63+ |
wave | EVENT | 0.61+ |
MarTech | TITLE | 0.58+ |
two | OTHER | 0.55+ |
S2 E3 | EVENT | 0.53+ |
three | OTHER | 0.5+ |
Tim Everson, Kalahari Resorts and Conventions | Manage Risk with the Armis Platform
>> Okay, welcome back to the portion of the program for customer lightning talks, where we chat with Armis' customers for a rapid fire five minute session on their Cisco perspectives and insights into cybersecurity. First up is Tim Everson, CISO of Kalahari resorts and conventions. Let's get it going. Hi, Tim. Welcome to theCUBE and Armis program, managing risk across your extended surface area. >> Thanks for having me appreciate it. >> So let's get going. So unified visibility across the extended asset serves as key. You can't secure what you can't see. Tell me about what you're able to centralize, your views on network assets and what is Armis doing from an impact standpoint that's had on your business? >> Sure. So traditionally basically you have all your various management platforms, your Cisco platforms, your Sims, your wireless platforms, all the different pieces and you've got a list of spare data out there and you've got to chase all of this data through all these different tools. Armis is fantastic and was really point blank dropping in place for us as far as getting access to all of that data all in one place and giving us visibility to everything. Basically opened the doors letting us see our customer wireless traffic, our internal traffic, our PCI traffic because we deal with credit cards, HIPAA, compliance, all this traffic, all these different places, all into one. >> All right, next up, vulnerability management is a big topic, across all assets, not just IT devices. The gaps are there in the current vulnerability management programs. How has Armis vulnerability management made things better for your business and what can you see now that you couldn't see before? >> So Armis gives me better visibility of the network side of these vulnerabilities. You have your Nessus vulnerability scanners, the things that look at machines, look at configurations and hard facts. Nessus gives you all those. But when you turn to Armis, Armis looks at the network perspective, takes all that traffic that it's seeing on the network and gives you the network side of these vulnerabilities. So you can see if something's trying to talk out to a specific port or to a specific host on the internet and Armis consolidates all that and gives you trusted sources of information to validate where those are coming from. >> When you take into account all the criticality of the different kinds of assets involved in a business operation and they're becoming more wider, especially with edge in other areas, how has the security workload changed? >> The security workload has increased dramatically, especially in hospitality. In our case, not only do we have hotel rooms and visitors and our guests, we also have a convention center that we deal with. We have water parks and fun things for people to do. Families and businesses alike. And so when you add all those things up and you add the wireless and you add the network and the audio video and all these different pieces that come into play with all of those things in hospitality and you add our convention centers on top of it, the footprint's just expanded enormously in the past few years. >> When you have a digital transformation in a use case like yours, it's very diverse. You need a robust network, you need a robust environment to implement SaaS solutions. No ages to deploy, no updates needed. You got to be in line with that to execute and scale. How easy was Armis to implement ease of use of simplicity, the plug and play? In other words, how quickly do you achieve this time to value? >> Oh goodness. We did a proof of concept about three months ago in one of our resort locations, we dropped in an Armis appliance and literally within the first couple hours of the appliance being on the network, we had data on 30 to 40,000 devices that were touching our network. Very quick and easy, very drop and plug and play and moving from the POC to production, same deal. We, we dropped in these appliances in site. Now we're seeing over 180,000 devices touching our networks within a given week. >> Armis has this global asset knowledge base, it's crowdsourced an a asset intelligent engine, it's a game changer. It tracks managed, unmanaged IOT devices. Were you shocked when you discovered how many assets they were able to discover and what impact did that have for you? >> Oh, absolutely. Not only do we have the devices that we have, but we have guests that bring things on site all the time, Roku TVs and players and Amazon Fire Sticks and all these different things that are touching our network and seeing those in real time and seeing how much traffic they're using we can see utilization, we can see exactly what's being brought on, we can see vehicles in our parking lot that have access points turned on. I mean, it's just amazing how much data this opened our eyes to that you know it's there but you don't ever see it. >> It's bring your own equipment to the resort just so you can watch all your Netflix, HDMI cable, everyone's doing it now. I mean, this is the new user behavior. Great insight. Anything more you'd want to say about Armis for the folks watching? >> I would say the key is they're very easy to work with. The team at Armis has worked very closely with me to get the integrations that we've put in place with our networking equipment, with our wireless, with different pieces of things and they're working directly with me to help integrate some other things that we've asked them to do that aren't there already. Their team is very open. They listen, they take everything that we have to say as a customer to heart and they really put a lot of effort into making it happen. >> All right, Tim. Well, thanks for your time. I'm John Furrier with theCUBE, the leader in enterprise tech coverage. Up next in this lightning talk session is Brian Gilligan, manager, security and Operations at Brookfield Properties. Thanks for watching.
SUMMARY :
the portion of the program You can't secure what you can't see. you have all your various and what can you see now and gives you the network and you add the network that to execute and scale. the POC to production, same deal. when you discovered how that you know it's there about Armis for the folks watching? everything that we have to say and Operations at Brookfield Properties.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilligan | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
Tim Everson | PERSON | 0.99+ |
30 | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Armis | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Nessus | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
five minute | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
Fire Sticks | COMMERCIAL_ITEM | 0.99+ |
Kalahari Resorts and Conventions | ORGANIZATION | 0.98+ |
over 180,000 devices | QUANTITY | 0.98+ |
first couple hours | QUANTITY | 0.97+ |
40,000 devices | QUANTITY | 0.97+ |
Brookfield Properties | ORGANIZATION | 0.95+ |
one | QUANTITY | 0.92+ |
Netflix | ORGANIZATION | 0.92+ |
one place | QUANTITY | 0.9+ |
three months ago | DATE | 0.86+ |
Roku | ORGANIZATION | 0.83+ |
Kalahari | ORGANIZATION | 0.78+ |
theCUBE | ORGANIZATION | 0.77+ |
CISO | PERSON | 0.67+ |
past few years | DATE | 0.6+ |
HIPAA | TITLE | 0.56+ |
about | DATE | 0.53+ |
Armis' | ORGANIZATION | 0.52+ |
rs | ORGANIZATION | 0.4+ |
Nadir Izrael, Armis | Manage Risk with the Armis Platform
(upbeat music) >> Today's organizations are overwhelmed by the number of different assets connected to their networks, which now include not only IT devices and assets, but also a lot of unmanaged assets, like cloud, IoT, building management systems, industrial control systems, medical devices, and more. That's not just it, there's more. We're seeing massive volume of threats, and a surge of severe vulnerabilities that put these assets at risk. This is happening every day. And many, including me, think it's only going to get worse. The scale of the problem will accelerate. Security and IT teams are struggling to manage all these vulnerabilities at scale. With the time it takes to exploit a new vulnerability, combined with the lack of visibility into the asset attack surface area, companies are having a hard time addressing the vulnerabilities as quickly as they need. This is today's special CUBE program, where we're going to talk about these problems and how they're solved. Hello, everyone. I'm John Furrier, host of theCUBE. This is a special program called Managing Risk Across Your Extended Attack Surface Area with Armis, new asset intelligence platform. To start things off, let's bring in the co-founder and CTO of Armis, Nadir Izrael. Nadir, great to have you on the program. >> Yeah, thanks for having me. >> Great success with Armis. I want to just roll back and just zoom out and look at, what's the big picture? What are you guys focused on? What's the holy grail? What's the secret sauce? >> So Armis' mission, if you will, is to solve to your point literally one of the holy grails of security teams for the past decade or so, which is, what if you could actually have a complete, unified, authoritative asset inventory of everything, and stressing that word, everything. IT, OT, IoT, everything on kind of the physical space of things, data centers, virtualization, applications, cloud. What if you could have everything mapped out for you so that you can actually operate your organization on top of essentially a map? I like to equate this in a way to organizations and security teams everywhere seem to be running, basically running the battlefield, if you will, of their organization, without an actual map of what's going on, with charts and graphs. So we are here to provide that map in every aspect of the environment, and be able to build on top of that business processes, products, and features that would assist security teams in managing that battlefield. >> So this category, basically, is a cyber asset attack surface management kind of focus, but it really is defined by this extended asset attack surface area. What is that? Can you explain that? >> Yeah, it's a mouthful. I think the CAASM, for short, and Gartner do love their acronyms there, but CAASM, in short, is a way to describe a bit of what I mentioned before, or a slice out of it. It's the whole part around a unified view of the attack surface, where I think where we see things, and kind of where Armis extends to that is really with the extended attack surface. That basically means that idea of, what if you could have it all? What if you could have both a unified view of your environment, but also of every single thing that you have, with a strong emphasis on the completeness of that picture? If I take the map analogy slightly more to the extreme, a map of some of your environment isn't nearly as useful as a map of everything. If you had to, in your own kind of map application, you know, chart a path from New York to whichever your favorite surrounding city, but it only takes you so far, and then you sort of need to do the rest of it on your own, not nearly as effective, and in security terms, I think it really boils down into you can't secure what you can't see. And so from an Armis perspective, it's about seeing everything in order to protect everything. And not only do we discover every connected asset that you have, we provide a risk rating to every single one of them, we provide a criticality rating, and the ability to take action on top of these things. >> Having a map is huge. Everyone wants to know what's in their inventory, right, from a risk management standpoint, also from a vulnerability perspective. So I totally see that, and I can see that being the holy grail, but on the vulnerability side, you got to see everything, and you guys have new stuff around vulnerability management. What's this all about? What kind of gaps are you seeing that you're filling in the vulnerability side, because, okay, I can see everything. Now I got to watch out for threat vectors. >> Yeah, and I'd say a different way of asking this is, okay, vulnerability management has been around for a while. What the hell are you bringing into the mix that's so new and novel and great? So I would say that vulnerability scanners of different sorts have existed for over a decade. And I think that ultimately what Armis brings into the mix today is how do we fill in the gaps in a world where critical infrastructure is in danger of being attacked by nation states these days, where ransomware is an everyday occurrence, and where I think credible, up-to-the-minute, and contextualize vulnerability and risk information is essential. Scanners, or how we've been doing things for the last decade, just aren't enough. I think the three things that Armis excels at and completes the security staff today on the vulnerability management side are scale, reach, and context. Scale, meaning ultimately, and I think this is of no news to any enterprise, environments are huge. They are beyond huge. When most of the solutions that enterprises use today were built, they were built for thousands, or tens of thousands of assets. These days, we measure enterprises in the billions, billions of different assets, especially if you include how applications are structured, containers, cloud, all that, billions and billions of different assets, and I think that, ultimately, when the latest and greatest in catastrophic new vulnerabilities come out, and sadly, that's a monthly occurrence these days. You can't just now wait around for things to kind of scan through the environment, and figure out what's going on there. Real time images of vulnerabilities, real time understanding of what the risk is across that entire massive footprint is essential to be able to do things, and if you don't, then lots and lots of teams of people are tasked with doing this day in, day out, in order to accomplish the task. The second thing, I think, is the reach. Scanners can't go everywhere. They don't really deal well with environments that are a mixed IT/OT, for instance, like some of our clients deal with. They can't really deal with areas that aren't classic IT. And in general, these days over 70% of assets are in fact of the unmanaged variety, if you will. So combining different approaches from an Armis standpoint of both passive and active, we reach a tremendous scale, I think, within the environment, and ability to provide or reach that is complete. What if you could have vulnerability management, cover a hundred percent of your environment, and in a very effective manner, and in a very scalable manner? And the last thing really is context. And that's a big deal here. I think that most vulnerability management programs hinge on asset context, on the ability to understand, what are the assets I'm dealing with? And more importantly, what is the criticality of these assets, so I can better prioritize and manage the entire process along the way? So with these things in mind, that's what Armis has basically pulled out is a vulnerability management process. What if we could collect all the vulnerability information from your entire environment, and give you a map of that, on top of that map of assets? Connect every single vulnerability and finding to the relevant assets, and give you a real way to manage that automatically, and in a way that prevents teams of people from having to do a lot of grunt work in the process. >> Yeah, it's like building a search engine, almost. You got the behavioral, contextual. You got to understand what's going on in the environment, and then you got to have the context to what it means relative to the environment. And this is the criticality piece you mentioned, this is a huge differentiator in my mind. I want to unpack that. Understanding what's going on, and then what to pay attention to, it's a data problem. You got that kind of search and cataloging of the assets, and then you got the contextualization of it, but then what alarms do I pay attention to? What is the vulnerability? This is the context. This is a huge deal, because your businesses, your operation's going to have some important pieces, but also it changes on agility. So how do you guys do that? That's, I think, a key piece. >> Yeah, that's a really good question. So asset criticality is a key piece in being able to prioritize the operation. The reason is really simple, and I'll take an example we're all very, very familiar with, and it's been beaten to death, but it's still a good example, which is Log4j, or Log4Shell. When that came out, hundreds of people in large organizations started mapping the entire environment on which applications have what aspect of Log4j. Now, one of the key things there is that when you're doing that exercise for the first time, there are literally millions of systems in a typical enterprise that have Log4j in them, but asset criticality and the application and business context are key here, because some of these different assets that have Log4j are part of your critical business function and your critical business applications, and they deserve immediate attention. Some of them, or some Git server of some developer somewhere, don't warrant quite the same attention or criticality as others. Armis helps by providing the underlying asset map as a built-in aspect of the process. It maps the relationships and dependencies for you. It pulls together and clusters together. What applications does each asset serve? So I might be looking at a server and saying, okay, this server, it supports my ERP system. It supports my production applications to be able to serve my customers. It serves maybe my .com website. Understanding what applications each asset serves and every dependency along the way, meaning that endpoint, that server, but also the load balancers are supported, and the firewalls, and every aspect along the way, that's the bread and butter of the relationship mapping that Armis puts into place to be able to do that, and we also allow users to tweak, add information, connect us with their CMDB or anywhere else where they put this in, but once the information is in, that can serve vulnerability management. It can serve other security functions as well. But in the context of vulnerability management, it creates a much more streamlined process for being able to do the basics. Some critical applications, I want to know exactly what all the critical vulnerabilities that apply to them are. Some business applications, I just want to be able to put SLAs on, that this must be solved within a week, this must be solved within a month, and be able to actually automatically track all of these in a world that is very, very complex inside of an operation or an enterprise. >> We're going to hear from some of your customers later, but I want to just get your thoughts on, anecdotally, what do you hear from? You're the CTO, co-founder, you're actually going into the big accounts. When you roll this out, what are they saying to you? What are some of the comments? Oh my God, this is amazing. Thank you so much. >> Well, of course. Of course. >> Share some of the comments. >> Well, first of all, of course, that's what they're saying. They're saying we're great. Of course, always, but more specifically, I think this solves a huge gap for them. They are used to tools coming in and discovering vulnerabilities for them, but really close to nothing being able to streamline the truly complex and scalable process of being able to manage vulnerabilities within the environment. Not only that, the integration-led, designer-led deployment and the fact that we are a completely agent-less SaaS platform are extremely important for them. These are times where if something isn't easily deployable for an enterprise, its value is next to nothing. I think that enterprises have come to realize that if something isn't a one click deployment across the environment, it's almost not worth the effort these days, because environments are so complex that you can't fully realize the value any other way. So from an Armis standpoint, the fact that we can deploy with a few clicks, the fact that we immediately provide that value, the fact that we're agent-less, in the sense that we don't need to go around installing a footprint within the environment, and for clients who already have Armis, the fact that it's a flip of a switch, just turn it on, are extreme. I think that the fact, in particular, that Armis can be deployed. the vulnerability management can be deployed on top of the existing vulnerability scanner with a simple one-click integration is huge for them. And I think all of these together are what contribute to them saying how great this is. But yeah, that's it. >> The agent listing is huge. What's the alternative? What does it look like if they're going to go the other route, slow to deploy, have meetings, launch it in the environment? What's it look like? >> I think anything these days that touches an endpoint with an agent goes through a huge round of approvals before anything goes into an environment. Same goes, by the way, for additional scanners. No one wants to hear about additional scanners. They've already gone through the effort with some of the biggest tools out there to punch holes through firewalls, to install scanners in different ways. They don't want yet another scanner, or yet another agent. Armis rides on top of the existing infrastructure, the existing agents, the existing scanners. You don't need to do a thing. It just deploys on top of it, and that's really what makes this so easy and seamless. >> Talk about Armis research. Can you talk about, what's that about? What's going on there? What are you guys doing? How do you guys stay relevant for your customers? >> For sure. So one of the, I've made a lot of bold claims throughout, I think, the entire Q and A here, but one of the biggest magic components, if you will, to Armis that kind of help explain what all these magic components are, are really something that we call our collective asset knowledge base. And it's really the source of our power. Think of it as a giant collective intelligent that keeps learning from all of the different environments combined that Armis is deployed at. Essentially, if we see something in one environment, we can translate it immediately into all environments. So anyone who joins this or uses the product joins this collective intelligence in essence. What does that mean? It means that Armis learns about vulnerabilities from other environments. A new Log4j comes out, for instance. It's enough that, in some environments, Armis is able to see it from scanners, or from agents, or from SBOMs, or anything that basically provides information about Log4j, and Armis immediately infers or creates enrichment rules that act across the entire tenant base, or the entire client base of Armis. So very quick response to industry events, whenever something comes out, again, the results are immediate, very up to the minute, very up to the hour, but also I'd say that Armis does its own proactive asset research. We have a huge data set at our disposal, a lot of willing and able clients, and also a lot of partners within the industry that Armis leverages, but our own research is into interesting aspects within the environment. We do our own proactive research into things like TLStorm, which is kind of a bit of a bridging research and vulnerabilities between cyber physical aspect. So on the one hand, the cyber space and kind of virtual environments, but on the other hand, the actual physical space, vulnerabilities, and things like UPSs, or industrial equipment, or things like that. But I will say that also, Armis targets its research along different paths that we feel are underserved. We started a few years back research into firmwares, different types of real time operating systems. We came out with things like URGENT/11, which was research into, on the one hand, operating systems that run on two billion different devices worldwide, on the other hand, in the 40 years it existed, only 13 vulnerabilities were ever exposed or revealed about that operating system. Either it's the most secure operating system in the world, or it's just not gone through enough rigor and enough research in doing this. The type of active research we do is to complement a lot of the research going on in the industry, serve our clients better, but also provide kind of inroads, I think, for the industry to be better at what they do. >> Awesome, Nadir, thanks for sharing the insights. Great to see the research. You got to be at the cutting edge. You got to investigate, be ready for a moment's notice on all aspects of the operating environment, down to the hardware, down to the packet level, down to the any vulnerability, be ready for it. Great job. Thanks for sharing. Appreciate it. >> Absolutely. >> In a moment, Tim Everson's going to join us. He's the CSO of Kalahari Resorts and Conventions. He'll be joining me next. You're watching theCUBE, the leader in high tech coverage. I'm John Furrier. Thanks for watching. (upbeat music)
SUMMARY :
With the time it takes to What's the holy grail? in every aspect of the environment, management kind of focus, and the ability to take and I can see that being the holy grail, and manage the entire and cataloging of the assets, and every dependency along the way, What are some of the comments? Well, of course. and the fact that we are What's the alternative? of the biggest tools out there What are you guys doing? from all of the different on all aspects of the He's the CSO of Kalahari
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Nadir Izrael | PERSON | 0.99+ |
Tim Everson | PERSON | 0.99+ |
New York | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
Nadir | PERSON | 0.99+ |
billions | QUANTITY | 0.99+ |
Kalahari Resorts and Conventions | ORGANIZATION | 0.99+ |
Armis | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
40 years | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
each asset | QUANTITY | 0.98+ |
second thing | QUANTITY | 0.98+ |
one click | QUANTITY | 0.98+ |
13 vulnerabilities | QUANTITY | 0.98+ |
a week | QUANTITY | 0.98+ |
over 70% | QUANTITY | 0.98+ |
millions of systems | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
two billion different devices | QUANTITY | 0.97+ |
a month | QUANTITY | 0.97+ |
one-click | QUANTITY | 0.97+ |
both | QUANTITY | 0.96+ |
Log4j | TITLE | 0.96+ |
hundred percent | QUANTITY | 0.96+ |
over a decade | QUANTITY | 0.95+ |
tens of thousands | QUANTITY | 0.94+ |
one environment | QUANTITY | 0.94+ |
Log4Shell | TITLE | 0.93+ |
Managing Risk Across Your Extended Attack Surface Area | TITLE | 0.91+ |
SBOMs | ORGANIZATION | 0.89+ |
past decade | DATE | 0.88+ |
three | QUANTITY | 0.86+ |
hundreds of people | QUANTITY | 0.84+ |
CUBE | TITLE | 0.84+ |
single | QUANTITY | 0.82+ |
last decade | DATE | 0.81+ |
CAASM | TITLE | 0.75+ |
CMDB | TITLE | 0.74+ |
billions of different assets | QUANTITY | 0.72+ |
CAASM | ORGANIZATION | 0.66+ |
URGENT | ORGANIZATION | 0.65+ |
single vulnerability | QUANTITY | 0.65+ |
TLStorm | ORGANIZATION | 0.65+ |
Armis' | ORGANIZATION | 0.64+ |
Git | TITLE | 0.64+ |
11 | TITLE | 0.63+ |
a few years | DATE | 0.61+ |
CTO | PERSON | 0.57+ |
the holy grails | QUANTITY | 0.55+ |
assets | QUANTITY | 0.55+ |
lots | QUANTITY | 0.51+ |
clicks | QUANTITY | 0.5+ |
Nadir Izrael, Armis | Managing Risk with the Armis Platform
(upbeat music) >> Today's organizations are overwhelmed by the number of different assets connected to their networks, which now include not only IT devices and assets, but also a lot of unmanaged assets, like cloud, IoT, building management systems, industrial control systems, medical devices, and more. That's not just it, there's more. We're seeing massive volume of threats, and a surge of severe vulnerabilities that put these assets at risk. This is happening every day. And many, including me, think it's only going to get worse. The scale of the problem will accelerate. Security and IT teams are struggling to manage all these vulnerabilities at scale. With the time it takes to exploit a new vulnerability, combined with the lack of visibility into the asset attack surface area, companies are having a hard time addressing the vulnerabilities as quickly as they need. This is today's special CUBE program, where we're going to talk about these problems and how they're solved. Hello, everyone. I'm John Furrier, host of theCUBE. This is a special program called Managing Risk Across Your Extended Attack Surface Area with Armis, new asset intelligence platform. To start things off, let's bring in the co-founder and CTO of Armis, Nadir Izrael. Nadir, great to have you on the program. >> Yeah, thanks for having me. >> Great success with Armis. I want to just roll back and just zoom out and look at, what's the big picture? What are you guys focused on? What's the holy grail? What's the secret sauce? >> So Armis' mission, if you will, is to solve to your point literally one of the holy grails of security teams for the past decade or so, which is, what if you could actually have a complete, unified, authoritative asset inventory of everything, and stressing that word, everything. IT, OT, IoT, everything on kind of the physical space of things, data centers, virtualization, applications, cloud. What if you could have everything mapped out for you so that you can actually operate your organization on top of essentially a map? I like to equate this in a way to organizations and security teams everywhere seem to be running, basically running the battlefield, if you will, of their organization, without an actual map of what's going on, with charts and graphs. So we are here to provide that map in every aspect of the environment, and be able to build on top of that business processes, products, and features that would assist security teams in managing that battlefield. >> So this category, basically, is a cyber asset attack surface management kind of focus, but it really is defined by this extended asset attack surface area. What is that? Can you explain that? >> Yeah, it's a mouthful. I think the CAASM, for short, and Gartner do love their acronyms there, but CAASM, in short, is a way to describe a bit of what I mentioned before, or a slice out of it. It's the whole part around a unified view of the attack surface, where I think where we see things, and kind of where Armis extends to that is really with the extended attack surface. That basically means that idea of, what if you could have it all? What if you could have both a unified view of your environment, but also of every single thing that you have, with a strong emphasis on the completeness of that picture? If I take the map analogy slightly more to the extreme, a map of some of your environment isn't nearly as useful as a map of everything. If you had to, in your own kind of map application, you know, chart a path from New York to whichever your favorite surrounding city, but it only takes you so far, and then you sort of need to do the rest of it on your own, not nearly as effective, and in security terms, I think it really boils down into you can't secure what you can't see. And so from an Armis perspective, it's about seeing everything in order to protect everything. And not only do we discover every connected asset that you have, we provide a risk rating to every single one of them, we provide a criticality rating, and the ability to take action on top of these things. >> Having a map is huge. Everyone wants to know what's in their inventory, right, from a risk management standpoint, also from a vulnerability perspective. So I totally see that, and I can see that being the holy grail, but on the vulnerability side, you got to see everything, and you guys have new stuff around vulnerability management. What's this all about? What kind of gaps are you seeing that you're filling in the vulnerability side, because, okay, I can see everything. Now I got to watch out for threat vectors. >> Yeah, and I'd say a different way of asking this is, okay, vulnerability management has been around for a while. What the hell are you bringing into the mix that's so new and novel and great? So I would say that vulnerability scanners of different sorts have existed for over a decade. And I think that ultimately what Armis brings into the mix today is how do we fill in the gaps in a world where critical infrastructure is in danger of being attacked by nation states these days, where ransomware is an everyday occurrence, and where I think credible, up-to-the-minute, and contextualize vulnerability and risk information is essential. Scanners, or how we've been doing things for the last decade, just aren't enough. I think the three things that Armis excels at and completes the security staff today on the vulnerability management side are scale, reach, and context. Scale, meaning ultimately, and I think this is of no news to any enterprise, environments are huge. They are beyond huge. When most of the solutions that enterprises use today were built, they were built for thousands, or tens of thousands of assets. These days, we measure enterprises in the billions, billions of different assets, especially if you include how applications are structured, containers, cloud, all that, billions and billions of different assets, and I think that, ultimately, when the latest and greatest in catastrophic new vulnerabilities come out, and sadly, that's a monthly occurrence these days. You can't just now wait around for things to kind of scan through the environment, and figure out what's going on there. Real time images of vulnerabilities, real time understanding of what the risk is across that entire massive footprint is essential to be able to do things, and if you don't, then lots and lots of teams of people are tasked with doing this day in, day out, in order to accomplish the task. The second thing, I think, is the reach. Scanners can't go everywhere. They don't really deal well with environments that are a mixed IT/OT, for instance, like some of our clients deal with. They can't really deal with areas that aren't classic IT. And in general, these days over 70% of assets are in fact of the unmanaged variety, if you will. So combining different approaches from an Armis standpoint of both passive and active, we reach a tremendous scale, I think, within the environment, and ability to provide or reach that is complete. What if you could have vulnerability management, cover a hundred percent of your environment, and in a very effective manner, and in a very scalable manner? And the last thing really is context. And that's a big deal here. I think that most vulnerability management programs hinge on asset context, on the ability to understand, what are the assets I'm dealing with? And more importantly, what is the criticality of these assets, so I can better prioritize and manage the entire process along the way? So with these things in mind, that's what Armis has basically pulled out is a vulnerability management process. What if we could collect all the vulnerability information from your entire environment, and give you a map of that, on top of that map of assets? Connect every single vulnerability and finding to the relevant assets, and give you a real way to manage that automatically, and in a way that prevents teams of people from having to do a lot of grunt work in the process. >> Yeah, it's like building a search engine, almost. You got the behavioral, contextual. You got to understand what's going on in the environment, and then you got to have the context to what it means relative to the environment. And this is the criticality piece you mentioned, this is a huge differentiator in my mind. I want to unpack that. Understanding what's going on, and then what to pay attention to, it's a data problem. You got that kind of search and cataloging of the assets, and then you got the contextualization of it, but then what alarms do I pay attention to? What is the vulnerability? This is the context. This is a huge deal, because your businesses, your operation's going to have some important pieces, but also it changes on agility. So how do you guys do that? That's, I think, a key piece. >> Yeah, that's a really good question. So asset criticality is a key piece in being able to prioritize the operation. The reason is really simple, and I'll take an example we're all very, very familiar with, and it's been beaten to death, but it's still a good example, which is Log4j, or Log4Shell. When that came out, hundreds of people in large organizations started mapping the entire environment on which applications have what aspect of Log4j. Now, one of the key things there is that when you're doing that exercise for the first time, there are literally millions of systems in a typical enterprise that have Log4j in them, but asset criticality and the application and business context are key here, because some of these different assets that have Log4j are part of your critical business function and your critical business applications, and they deserve immediate attention. Some of them, or some Git server of some developer somewhere, don't warrant quite the same attention or criticality as others. Armis helps by providing the underlying asset map as a built-in aspect of the process. It maps the relationships and dependencies for you. It pulls together and clusters together. What applications does each asset serve? So I might be looking at a server and saying, okay, this server, it supports my ERP system. It supports my production applications to be able to serve my customers. It serves maybe my .com website. Understanding what applications each asset serves and every dependency along the way, meaning that endpoint, that server, but also the load balancers are supported, and the firewalls, and every aspect along the way, that's the bread and butter of the relationship mapping that Armis puts into place to be able to do that, and we also allow users to tweak, add information, connect us with their CMDB or anywhere else where they put this in, but once the information is in, that can serve vulnerability management. It can serve other security functions as well. But in the context of vulnerability management, it creates a much more streamlined process for being able to do the basics. Some critical applications, I want to know exactly what all the critical vulnerabilities that apply to them are. Some business applications, I just want to be able to put SLAs on, that this must be solved within a week, this must be solved within a month, and be able to actually automatically track all of these in a world that is very, very complex inside of an operation or an enterprise. >> We're going to hear from some of your customers later, but I want to just get your thoughts on, anecdotally, what do you hear from? You're the CTO, co-founder, you're actually going into the big accounts. When you roll this out, what are they saying to you? What are some of the comments? Oh my God, this is amazing. Thank you so much. >> Well, of course. Of course. >> Share some of the comments. >> Well, first of all, of course, that's what they're saying. They're saying we're great. Of course, always, but more specifically, I think this solves a huge gap for them. They are used to tools coming in and discovering vulnerabilities for them, but really close to nothing being able to streamline the truly complex and scalable process of being able to manage vulnerabilities within the environment. Not only that, the integration-led, designer-led deployment and the fact that we are a completely agent-less SaaS platform are extremely important for them. These are times where if something isn't easily deployable for an enterprise, its value is next to nothing. I think that enterprises have come to realize that if something isn't a one click deployment across the environment, it's almost not worth the effort these days, because environments are so complex that you can't fully realize the value any other way. So from an Armis standpoint, the fact that we can deploy with a few clicks, the fact that we immediately provide that value, the fact that we're agent-less, in the sense that we don't need to go around installing a footprint within the environment, and for clients who already have Armis, the fact that it's a flip of a switch, just turn it on, are extreme. I think that the fact, in particular, that Armis can be deployed. the vulnerability management can be deployed on top of the existing vulnerability scanner with a simple one-click integration is huge for them. And I think all of these together are what contribute to them saying how great this is. But yeah, that's it. >> The agent listing is huge. What's the alternative? What does it look like if they're going to go the other route, slow to deploy, have meetings, launch it in the environment? What's it look like? >> I think anything these days that touches an endpoint with an agent goes through a huge round of approvals before anything goes into an environment. Same goes, by the way, for additional scanners. No one wants to hear about additional scanners. They've already gone through the effort with some of the biggest tools out there to punch holes through firewalls, to install scanners in different ways. They don't want yet another scanner, or yet another agent. Armis rides on top of the existing infrastructure, the existing agents, the existing scanners. You don't need to do a thing. It just deploys on top of it, and that's really what makes this so easy and seamless. >> Talk about Armis research. Can you talk about, what's that about? What's going on there? What are you guys doing? How do you guys stay relevant for your customers? >> For sure. So one of the, I've made a lot of bold claims throughout, I think, the entire Q and A here, but one of the biggest magic components, if you will, to Armis that kind of help explain what all these magic components are, are really something that we call our collective asset knowledge base. And it's really the source of our power. Think of it as a giant collective intelligent that keeps learning from all of the different environments combined that Armis is deployed at. Essentially, if we see something in one environment, we can translate it immediately into all environments. So anyone who joins this or uses the product joins this collective intelligence in essence. What does that mean? It means that Armis learns about vulnerabilities from other environments. A new Log4j comes out, for instance. It's enough that, in some environments, Armis is able to see it from scanners, or from agents, or from SBOMs, or anything that basically provides information about Log4j, and Armis immediately infers or creates enrichment rules that act across the entire tenant base, or the entire client base of Armis. So very quick response to industry events, whenever something comes out, again, the results are immediate, very up to the minute, very up to the hour, but also I'd say that Armis does its own proactive asset research. We have a huge data set at our disposal, a lot of willing and able clients, and also a lot of partners within the industry that Armis leverages, but our own research is into interesting aspects within the environment. We do our own proactive research into things like TLStorm, which is kind of a bit of a bridging research and vulnerabilities between cyber physical aspect. So on the one hand, the cyber space and kind of virtual environments, but on the other hand, the actual physical space, vulnerabilities, and things like UPSs, or industrial equipment, or things like that. But I will say that also, Armis targets its research along different paths that we feel are underserved. We started a few years back research into firmwares, different types of real time operating systems. We came out with things like URGENT/11, which was research into, on the one hand, operating systems that run on two billion different devices worldwide, on the other hand, in the 40 years it existed, only 13 vulnerabilities were ever exposed or revealed about that operating system. Either it's the most secure operating system in the world, or it's just not gone through enough rigor and enough research in doing this. The type of active research we do is to complement a lot of the research going on in the industry, serve our clients better, but also provide kind of inroads, I think, for the industry to be better at what they do. >> Awesome, Nadir, thanks for sharing the insights. Great to see the research. You got to be at the cutting edge. You got to investigate, be ready for a moment's notice on all aspects of the operating environment, down to the hardware, down to the packet level, down to the any vulnerability, be ready for it. Great job. Thanks for sharing. Appreciate it. >> Absolutely. >> In a moment, Tim Everson's going to join us. He's the CSO of Kalahari Resorts and Conventions. He'll be joining me next. You're watching theCUBE, the leader in high tech coverage. I'm John Furrier. Thanks for watching. (upbeat music)
SUMMARY :
With the time it takes to What's the holy grail? in every aspect of the environment, management kind of focus, and the ability to take and I can see that being the holy grail, and manage the entire and cataloging of the assets, and every dependency along the way, What are some of the comments? Well, of course. and the fact that we are What's the alternative? of the biggest tools out there What are you guys doing? from all of the different on all aspects of the He's the CSO of Kalahari
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Nadir Izrael | PERSON | 0.99+ |
Tim Everson | PERSON | 0.99+ |
New York | LOCATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Nadir | PERSON | 0.99+ |
billions | QUANTITY | 0.99+ |
Kalahari Resorts and Conventions | ORGANIZATION | 0.99+ |
Armis | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
40 years | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
each asset | QUANTITY | 0.98+ |
second thing | QUANTITY | 0.98+ |
one click | QUANTITY | 0.98+ |
13 vulnerabilities | QUANTITY | 0.98+ |
a week | QUANTITY | 0.98+ |
over 70% | QUANTITY | 0.98+ |
millions of systems | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
two billion different devices | QUANTITY | 0.97+ |
a month | QUANTITY | 0.97+ |
one-click | QUANTITY | 0.97+ |
both | QUANTITY | 0.96+ |
Log4j | TITLE | 0.96+ |
hundred percent | QUANTITY | 0.96+ |
over a decade | QUANTITY | 0.95+ |
tens of thousands | QUANTITY | 0.94+ |
one environment | QUANTITY | 0.94+ |
Log4Shell | TITLE | 0.93+ |
Managing Risk Across Your Extended Attack Surface Area | TITLE | 0.91+ |
SBOMs | ORGANIZATION | 0.89+ |
past decade | DATE | 0.88+ |
three | QUANTITY | 0.86+ |
hundreds of people | QUANTITY | 0.84+ |
CUBE | TITLE | 0.84+ |
single | QUANTITY | 0.82+ |
last decade | DATE | 0.81+ |
CAASM | TITLE | 0.75+ |
CMDB | TITLE | 0.74+ |
billions of different assets | QUANTITY | 0.72+ |
CAASM | ORGANIZATION | 0.66+ |
URGENT | ORGANIZATION | 0.65+ |
single vulnerability | QUANTITY | 0.65+ |
TLStorm | ORGANIZATION | 0.65+ |
Armis' | ORGANIZATION | 0.64+ |
Git | TITLE | 0.64+ |
11 | TITLE | 0.63+ |
a few years | DATE | 0.61+ |
CTO | PERSON | 0.57+ |
the holy grails | QUANTITY | 0.55+ |
assets | QUANTITY | 0.55+ |
lots | QUANTITY | 0.51+ |
clicks | QUANTITY | 0.5+ |
Armis | PERSON | 0.49+ |
2022 000CC Tim Everson CC
(upbeat music) >> Hello, welcome to this CUBE Conversation here in Palo Alto, California. I'm John Furrier, host of theCUBE. We're here with Tim Everson, CISO at Kalahari Resorts & Conventions. Tim, great to see you. Thanks for coming on theCUBE. >> Thank you for having me. Looking forward to it. >> So, you know, RSA is going on this week. We're talking a lot about security. You've got a lot of conferences. Security is a big scale now across all enterprises, all businesses. You're in the hospitality, you got conventions. You're in the middle of it. You have an interesting environment. You've got a lot of diverse use cases. And you've got a lot of needs. They're always changing. I mean, you talk about change. You've got a network that has to be responsive, robust and support a lot of tough customers who want to have fun or do business. >> Exactly, yeah. We have customers that come in, that we were talking about this before the segment. And we have customers that come in that bring their own Roku Sticks their own Amazon devices. All these different things they bring in. You know, our resort customers need dedicated bandwidth. So they need dedicated network segments stood up at a moment's notice to do the things they're doing and run the shows they're showing. So it's never, never ending. It's constantly changing in our business. And there's just data galore to keep an eye on. So it's really interesting. >> Can you scope the scale of the current cybersecurity challenges these days in the industry? Because they're wide and far, they're deep. You got zero trust on one end, which is essentially don't trust anything. And then you got now on the software supply chain, things like more trust. So you got the conflict between a direction that's more trusted and then zero trust, and everything in between. From, endpoint protection. It's a lot going on. What's the scale of this situation right now in cyber? >> You know, right now everything's very, very up in the air. You talk about zero trust. And zero trust can be defined a lot of ways depending on what security person you talk to today. So, I won't go into my long discussion about zero trust but suffice to say, like I said zero trust can be perceived so many different ways. From a user perspective, from a network perspective, from an end point. I look more broadly at the regulatory side of things and how that affects things too. Because, regulations are changing daily. You've got your GDPRs, your CCPAs, your HIPAA regulations, PCI. All these different things that affect businesses, and affect businesses different ways. I mean, at Kalahari we're vulnerable or we're not vulnerable, but we're subject to a lot of these different regulations, more so than other people. You wouldn't expect a lot of hotels to have HIPAA regulations for instance. We have health people at our resorts. So we actually are subject to HIPAA in a lot of cases. So there's a lot of these broad scenarios that apply and they come into play with all different industries. And again, things you don't expect. So, when you see these threats coming, when you see all the hacks coming. Even today I got an email that the Marriott breach data from a few years ago, or the MGM breach from a few years ago. We've got all these breaches out there in the world, are coming back to the surface and being looked at again. And our users and our guests and our corporate partners, and all these different people see those things and they rely on us to protect them. So it makes that scope just exponentially bigger. >> Yeah, there's so many threads to pull on here. One is, you know we've observed certainly with the pandemic and then now going forward is that if you weren't modern in your infrastructure, in your environment, you are exposed. Even, I'm not talking old and antiquated like in the dark ages IT. We're talking like really state of the art, current. If you're lagging just by a few years, the hackers have an advantage. So, the constant bar raising, leveling up on technology is part of this arms race against the bad guys. >> Absolutely. And you said it, you talked earlier about the supply chain. Supply chain, these attacks that have come through the SolarWinds attacks and some of these other supply chain attacks that are coming out right now. Everybody's doing their best to stay on top of the latest, greatest. And the problem with that is, when you rely on other vendors and other companies to be able to help you do that. And you're relying on all these different tool sets, the supply chain attack is hugely critical. It makes it really, really important that you're watching where you're getting your software from, what they're doing with it, how they secure it. And that when you're dealing with your vendors and your different suppliers, you're making sure that they're securing things as well as you are. And it just, it adds to the complexity, it adds to the footprint and it adds to the headache that a lot of these security teams have. Especially small teams where they don't have the people to manage those kind of contacts. >> It's so interesting, I think zero trust is a knee jerk reaction to the perimeter being gone. It's like, you got to People love the zero trust. Oh it's like, "We're going to protect this that nobody, and then vet them in." But once you're trusted, trust also is coming in to play here. And in your environment, you're a hotel, you're a convention. You have a lot of rotation of guests coming in. Very much high velocity. And spear phishing and phishing, I could be watching and socially engineering someone that could be on your property at any given time. You got to be prepared for that. Or, you got ransomware coming around the corners or heavily. So, you got the ransomware threat and you got potentially spear phishing that could be possible at your place. These are things that are going on, right? That you got to protect for. What's your reaction to that? >> Absolutely. We see all those kind of attacks on a daily basis. I see spear phishing attacks. I see, web links and I chase them down and see what's going on. I see that there's ransomware trying to come in. We see these things every single day. And the problem you have with it is not only, especially in a space where you have a high volume of customers and a high turnover of customers like you're talking about that are in and out of our resorts, in and out of our facilities. Those attacks aren't just coming from our executives and their email. We can have a guest sitting on a guest network, on a wireless network. Or on one of our business center machines, or using our resort network for any one of a number of the conference things that they're doing and the different ports that we have to open and the different bandwidth scenarios that you've got dealing with. All of these things come into play because if any attack comes from any of those channels you have to make sure that segmentation is right, that your tooling is proper and that your team is aware and watching for it. And so it does. It makes it a very challenging environment to be in. >> You know, I don't want to bring up the budget issue but I'll bring up the budget issue. You can have unlimited budget because there's so many tools out there and platforms now. I mean, if you've look at the ecosystem map of the cybersecurity landscape that you have to navigate through as a customer. You've got a lot of people knocking on your door to sell you stuff. So I have to ask you, what is the scale? I mean, you can't have unlimited budget. But the reality is you have to kind of, do the right thing. What's the most helpful kind of tools and platforms for you that you've seen that you've had experience with? Where's this going in terms of the most effective mechanisms and software and platforms that are available out there? >> From the security perspective specifically, the three things that are most important to me are visibility. Whether it's asset visibility or log visibility. You know, being able to see the data, being able to see what's going on. End user. Making sure that the end user has been trained, is aware and that you're watching them. Because the end user, the human is always the weakest link. The human doesn't have digital controls that can be hard set and absolutely followed. The human changes every day. And then our endpoint security solutions. Those are the three biggest things for me. You know, you have your network perimeter, your firewalls. But attackers aren't always looking for those. They're coming from the inside, they're finding a way around those. The biggest three things for me are endpoint, visibility and the end user. >> Yeah, it's awesome. And a lot of companies are really looking at their posture right now. So I would ask you as a CISO, who's in the front end of all this great stuff and protecting your networks and all your environments and the endpoints and assets. What advice would you have for other CISOs who are kind of trying to level up to where you're at, in terms of rethinking their security posture? What advice would you give them? >> The advice I would give you is surround yourself with people that are like-minded on the security side. Make sure that these people are aware but that they're willing to grow. Because security's always changing. If you get a security person that's dead set that they're going to be a network security person and that's all they're going to do. You know, you may have that need and you may fill it. But at the end of the day, you need somebody who's open rounded and ready to change. And then you need to make sure that you can have somebody, and the team that you work with is able to talk to your executives. It never fails, the executives. They understand security from the standpoint of the business, but they don't necessarily understand security from the technical side. So you have to make sure that you can cross those two boundaries. And when you grow your team you have to make sure that that's the biggest focus. >> I have to ask the pandemic question, but I know cybersecurity hasn't changed. In fact, it's gotten more aggressive in the pandemic. How has the post pandemic or kind of like towards the tail end of where we're at now, affect the cybersecurity landscape? Has it increased velocity? Has it changed any kind of threat vectors? Has it changed in any way? Can you share your thoughts on what happened during the pandemic and now has we come out of it into the next, well post pandemic? >> Absolutely. It affected hospitality in a kind of unique way. Because, a lot of the different governments, state, federal. I'm in Ohio. I work out of our Ohio resort. A lot of the governments literally shut us down or limited severely how many guests we could have in. So on the one hand you've got less traffic internal over the network. So you've got a little bit of a slow down there. But on the flip side it also meant a lot of our workers were working from home. So now you've got a lot of remote access coming in. You've got people that are trying to get in from home and work machines. You have to transition call centers and call volume and all of the things that come along with that. And you have to make sure that that human element is accounted for. Because, again, you've got people working from home, you no longer know if the person that's calling you today, if it's not somebody you're familiar with you don't know if that person is Joe Blow from the front desk or if that person's a vendor or who they are. And so when you deal with a company with 5,000 ish employees or 10,000 that some of these bigger companies are. 15,000, whatever the case may be. You know, the pandemic really put a shift in there because now you're protecting not only against the technologies, but you're dealing with all of the scams, all of the phishing attempts that are coming through that are COVID related. All of these various things. And it really did. It threw a crazy mix into cybersecurity. >> I can imagine that the brain trust over there is prior thinking, "Hey, we were a hybrid experience." Now, if people who have come and experienced our resorts and conventions can come in remotely, even in a hybrid experience with folks that are there. You've seen a lot of hybrid events for instance go on, where there's shared experience. I can almost imagine your service area is now extending to the homes of those guests. That you got to start thinking differently. Has that been something that you guys are looking at? >> We're looking at it from the standpoint of trying to broaden some of the events. In the case of a lot of our conventions, things of that nature. The conventions that aren't actually Kalahari's run conventions, we host them, we manage them. But it does... When you talk about workers coming from home to attend these conventions. Or these telecommuters that are attending these conventions. It does affect us in the stance that, like I said we have to provision network for these various events. And we have to make sure that the network and the security around the network are tight. So it does. It makes a big deal as far as how Kalahari does its business. Being able to still operate these different meetings and different conventions, and being able to host remotely as well. You know, making sure that telecommunications are available to them. Making sure that network access and room access are available to them. You know for places where we can't gather heavily in meetings. You know, these people still being able to be near each other, still being able to talk, but making sure that that technology is there between them. >> Well, Tim is great to have you on for this CUBE Conversation. CISO from the middle of all the action. You're seeing a lot. There's a lot of surface area you got to watch. There's a lot of data you got to observe. You got to get that visibility. You can only protect what you can see, and the more you see the better it is. The better the machine learning. You brought up the the common area about like-minded individuals. I want to just ask you on the final point here, on hiring and talent coming into the marketplace. I mean, this younger generation coming out of university and college is, or not even going to school. There's no cyber degree. I mean, there are now. But I mean, the world's changing. It's easy to level up. So, skill sets you can't get a degree in certain things. I mean, you got to have a broad set. What do you look for in talent? Is there a trend you see in terms of what makes a good cybersecurity professional, developer, analyst? Is there roles that you see emerging that you think people should pay attention to? What's your take on this as someone who's looking at the future? And- >> You know, it's very interesting that you bring this up. I actually have two of my team members, one directly working for me and another team member at Kalahari that are currently going through college degree programs for cybersecurity. And I wrote recommendations for them. I've worked with them, I'm helping them study. But as you bring people up, you know the other thing I do is I mentor at a couple of the local technical schools as well. I go in, I talk to people, I help them design their programs. And the biggest thing I try to get across to them is, number one, if you're in the learning side of it. Not even talking about the hiring side of it. If you're in the learning side of it, you need to come into it with a kind of an understanding to begin with to where you want to fit into security. You know, do you want to be an attacker, a defender, a manager? Where do you want to be? And then you also need to look at the market and talk to the businesses in the area. You know, I talk to these kids regularly about what their need is. Because if you're in school and you're taking Cisco classes, and focusing on firewalls and what an organization needs as somebody who can read log and do things like that. Or somebody who can do pen testing. You know, that's a huge thing. So I would say if you're on the hiring side of that equation, you know. Like you said, there's no super degrees that I can speak to. There's a lot of certifications. There's a lot of different things like that. The goal for me is finding somebody who can put hands to the ground and feet to the ground, and show me that they know what they know. You know, I'll pull somebody in, I'll ask them to show me a certain specific or I'll ask them for specific information and try to feel that out. Because at the end of the day, there's no degree that's going to protect my network. There's no degree that's a hundred percent going to understand Kalahari, for instance. So I want to make sure that the people I talk to, I get a broad interview scope, I get a number of people to talk to. And really get a feel for what it is they know, and what tools they want to work with and make sure it's going to align with us. >> Well, Tim, that's great that you do that. I think the industry needs that. And I think that's really paying it forward, by getting in and using your time to help shape the young curriculums and the young guns out there. It's interesting you know, like David Vellante and I talk on theCUBE all the time. Cyber is like sports. If you're playing football, you got to know the game. If you're playing football and you come in as a baseball player, the skills might not translate, right? So it's really more of, categorically cyber has a certain pattern to it. Math, open mindedness, connecting dots, seeing things around corners. Maybe it's more holistic views, if you're at the visibility level or getting the weeds with data. A lot of different skill sets needed. The aperture of the job requirements are changing a lot. >> They are. And you know, you touched on that really well. You know, they talk about hacking and the hacker mindset. You know, all the security stuff revolves around hacker. And people mislabel hacker. Hacking in general is making something do something that it wasn't originally designed to do. And when I hire people in security, I want people that have that mindset. I want people that not only are going to work with the tool set we have, and use that mathematical ability and that logic and that reasoning. But I want them to use a reasoning of, "Hey, we have this tool here today. How can this tool do what I want it do but what else can it do for me?" Because like any other industry we have to stretch our dollar. So if I have a tool set that can meet five different needs for me today, rather than investing in 16 different tool sets and spreading that data out and spreading all the control around. Let's focus on those tool sets and let's focus on using that knowledge and that adaptive ability that the human people have on the security side, and put that to use. Make them use the tools that work for them but make 'em develop things, new tools, new methods, new techniques that help us get things across. >> Grow the capabilities, protect, trust all things coming in. And Tim, you're a tech athlete, as we say and you've got a great thing going on over there. And again, congratulations on the work you're doing on the higher ed and the education side and the Kalahari Resorts & Conventions. Thanks for coming on theCUBE. I really appreciate the insight you're sharing. Thank you. >> Thanks for having me. >> Okay. I'm John Furrier here in Palo Alto for theCUBE. Thanks for watching. (somber music)
SUMMARY :
Tim, great to see you. Thank you for having You're in the middle of it. the things they're doing and And then you got now on that the Marriott breach data like in the dark ages IT. the people to manage It's like, you got to And the problem you have But the reality is you have to You know, you have your network and the endpoints and assets. and the team that you work with aggressive in the pandemic. and all of the things I can imagine that the brain trust and the security around and the more you see the better it is. of that equation, you know. great that you do that. on the security side, and put that to use. and the Kalahari Resorts & Conventions. here in Palo Alto for theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David Vellante | PERSON | 0.99+ |
Marriott | ORGANIZATION | 0.99+ |
Ohio | LOCATION | 0.99+ |
two | QUANTITY | 0.99+ |
Tim | PERSON | 0.99+ |
Tim Everson | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
today | DATE | 0.99+ |
MGM | ORGANIZATION | 0.99+ |
Kalahari | ORGANIZATION | 0.99+ |
Joe Blow | PERSON | 0.99+ |
HIPAA | TITLE | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
10,000 | QUANTITY | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
Kalahari Resorts & Conventions | ORGANIZATION | 0.99+ |
16 different tool sets | QUANTITY | 0.98+ |
two boundaries | QUANTITY | 0.98+ |
zero trust | QUANTITY | 0.98+ |
one end | QUANTITY | 0.98+ |
5,000 ish employees | QUANTITY | 0.97+ |
hundred percent | QUANTITY | 0.96+ |
pandemic | EVENT | 0.96+ |
this week | DATE | 0.96+ |
five different needs | QUANTITY | 0.96+ |
three things | QUANTITY | 0.95+ |
One | QUANTITY | 0.92+ |
theCUBE | ORGANIZATION | 0.92+ |
three biggest things | QUANTITY | 0.91+ |
CISO | PERSON | 0.9+ |
few years ago | DATE | 0.87+ |
RSA | ORGANIZATION | 0.85+ |
COVID | OTHER | 0.85+ |
SolarWinds | ORGANIZATION | 0.8+ |
CCPAs | TITLE | 0.78+ |
GDPRs | TITLE | 0.77+ |
Roku Sticks | ORGANIZATION | 0.76+ |
single day | QUANTITY | 0.71+ |
. 15,000 | QUANTITY | 0.69+ |
years | QUANTITY | 0.66+ |
team members | QUANTITY | 0.61+ |
CUBE Conversation | EVENT | 0.56+ |
lot of data | QUANTITY | 0.53+ |
2022 000CC | OTHER | 0.53+ |
PCI | TITLE | 0.52+ |
Kalahari | PERSON | 0.46+ |
2022 052 Tim Everson
>>Okay, welcome back to the portion of the program for customer lightning talks, where we chat with Armas as customers for a rapid fire five minute session on their CISO perspectives and insights into cybersecurity. First up is Tim Everton, CISO of Kalahari resorts and conventions. Let's get it going. Hi, Tim. Welcome to the cube and Armas program, managing risk across your extended surface area. >>Thanks for having me appreciate it. >>So let's go, let's get going. So unified visibility across the extended asset service is key. You can't secure what you can see. Tell me about what you're able to centralize your views on network assets and what is arm doing from an impact standpoint that's had on your business? >>Sure. So traditionally basically, you know, you have all your various, your various management platforms, your Cisco platforms, your Sims, your, your wireless platforms, all of the different pieces. And you've got a list of disparate data out there, and you've gotta chase all of this data through all these different tools. Armas is fantastic and was really, you know, point blank drop in place for us as far as getting access to all of that data all in one place and giving us visibility into everything, basically open the doors, letting us see our customer wireless traffic, our internal traffic, our PCI traffic, because we deal with credit cards, HIPAA compliance, all this traffic, all these different places, all into one. >>All right, next up, vulnerability management is a big topic across all assets, not just it devices, the gaps are there in the current vulnerability management programs. How has Armas vulnerability management made things better for your business? And what can you see now that you couldn't see before? >>So Armas gives me better visibility of the network side of these vulnerabilities. You know, you, you have your necess vulnerability scanners, the things that look at machines, look at configurations and, and hard facts NEIS gives you all those. But when you turn to Armas, Armas looks at the network perspective, takes all that traffic that it's seeing on the network and gives you the network side of these vulnerabilities. So you can see if something's trying to talk out to a specific port or to a specific host on the internet and Armas consolidates, all that and gives you trusted sources of information to, to validate where those are coming from. >>You know, when you take into account all the criticality of the different kinds of assets involved in a business operation, and they're becoming more wider, especially with edge in other other areas, how has the security workload changed? >>The security workload has increased dramatically, especially in hospitality. In our case, we have, you know, not only do we have hotel rooms and, and visitors in our guests, we also have a convention center that we deal with. We have water parks and, and fun things for people to do, you know, families and, and businesses alike. And so when you add all those things up and you add the wireless and you add the network and you know, the audio video and all these different pieces that come into play with all of those things in hospitality, and you add our convention centers on top of it, the footprints just expanded enormously in the past few years. >>You know, when you have a digital transformation in a use case like yours, it's very diverse. You need a robust network, you need a robust environment to implement SaaS solutions, no ages to deploy, no updates needed. You gotta be gotta be in, in line with that to, to execute and scale. How easy was Armas to implement, ease of use of simplicity to plug and play. In other words, how quickly do you achieve this time to value? >>Oh goodness. We did a, we did a proof of concept about three months ago and one of our resort locations, we dropped in an Armas appliance and literally within the first couple hours of the appliance being on the network, we had data on 30 to 40,000 devices that were touching our network very quick and easy, very drop in plug and play and moving from the, you know, the POC to production, same deal. We, we dropped in these appliances in site. Now we're seeing over 180,000 devices touching our networks within a given week. >>Armas has this global asset knowledge base it's crowdsource and a asset intelligent engine. It's a game changer. It tracks managed unmanaged IOT devices. Were you shocked when you discovered how many assets they were able to discover and what impact did that have for you? >>Oh, absolutely. You know, not only do we have the devices that you know that we have, but you know, we have guests that bring things on site all the time, Roku, TVs, and players, and Amazon fire sticks and all these different things that are touching our network and seeing those in real time and seeing how much traffic they're using, you know, we can see utilization, we can see, you know, exactly what's being brought on. We can see vehicles in our parking lot that have access points turned on. I, it's just amazing how much data this opened our eyes to that. You know, you know, it's there, but you don't ever see it. >>It's bring your own equipment to the resort so you can watch all your Netflix HTMI cable. Everyone's doing it now. I mean, this is the new user behavior. Great insight. Anything more you'd want to say about Armas for the folks watching? >>I would say the key is they're very easy to work with. The team at Armas has worked very closely with me to get the integrations that we've, that we've put in place, you know, with, with our networking equipment, with our wireless, with, with different pieces of things. And they're working directly with me to help integrate some other things that we've asked them to do that aren't there already. Their team is very open. They listen, they take everything that we have to say as a customer to heart and, and they really put a lot of effort into making it happen. >>All right, Tim. Well, thanks for your time. I'm John fur with the cube, the leader in enterprise tech coverage. Up next in this lightning talk session is Brian Gilligan manager security and operates at Brookfield properties. Thanks for watching.
SUMMARY :
Welcome to the cube and Armas program, managing risk across your extended You can't secure what you can see. Armas is fantastic and was really, you know, And what can you see now that you couldn't see before? Armas looks at the network perspective, takes all that traffic that it's seeing on the network and gives you the network side of In our case, we have, you know, not only do we have hotel rooms and, and visitors in our guests, You know, when you have a digital transformation in a use case like yours, it's very diverse. quick and easy, very drop in plug and play and moving from the, you know, the POC to production, when you discovered how many assets they were able to discover and what impact did that have for you? You know, not only do we have the devices that you know that we have, but you know, It's bring your own equipment to the resort so you can watch all your Netflix HTMI cable. that we've, that we've put in place, you know, with, with our networking equipment, with our wireless, with, with different pieces of things. I'm John fur with the cube, the leader in enterprise tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilligan | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
Armas | ORGANIZATION | 0.99+ |
Tim Everson | PERSON | 0.99+ |
Tim Everton | PERSON | 0.99+ |
30 | QUANTITY | 0.99+ |
2022 052 | OTHER | 0.99+ |
five minute | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
John fur | PERSON | 0.99+ |
40,000 devices | QUANTITY | 0.99+ |
over 180,000 devices | QUANTITY | 0.98+ |
Cisco | ORGANIZATION | 0.98+ |
Amazon | ORGANIZATION | 0.97+ |
first couple hours | QUANTITY | 0.97+ |
Roku | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.96+ |
fire sticks | COMMERCIAL_ITEM | 0.94+ |
Netflix | ORGANIZATION | 0.92+ |
three months ago | DATE | 0.9+ |
one place | QUANTITY | 0.87+ |
NEIS | ORGANIZATION | 0.79+ |
Kalahari | ORGANIZATION | 0.76+ |
HIPAA | TITLE | 0.62+ |
about | DATE | 0.53+ |
HTMI | TITLE | 0.52+ |
Brookfield | LOCATION | 0.49+ |
Matt Provo & Patrick Bergstrom, StormForge | Kubecon + Cloudnativecon Europe 2022
>> Instructor: "theCUBE" presents KubeCon and CloudNativeCon Europe 2022, brought to you by Red Hat, the Cloud Native Computing Foundation and its ecosystem partners. >> Welcome to Valencia, Spain and we're at KubeCon, CloudNativeCon Europe 2022. I'm Keith Townsend, and my co-host, Enrico Signoretti. Enrico's really proud of me. I've called him Enrico instead of Enrique every session. >> Every day. >> Senior IT analyst at GigaOm. We're talking to fantastic builders at KubeCon, CloudNativeCon Europe 2022 about the projects and their efforts. Enrico, up to this point, it's been all about provisioning, insecurity, what conversation have we been missing? >> Well, I mean, I think that we passed the point of having the conversation of deployment, of provisioning. Everybody's very skilled, actually everything is done at day two. They are discovering that, well, there is a security problem. There is an observability problem a and in fact, we are meeting with a lot of people and there are a lot of conversation with people really needing to understand what is happening. I mean, in their cluster work, why it is happening and all the questions that come with it. And the more I talk with people in the show floor here or even in the various sessions is about, we are growing so that our clusters are becoming bigger and bigger, applications are becoming bigger as well. So we need to now understand better what is happening. As it's not only about cost, it's about everything at the end. >> So I think that's a great set up for our guests, Matt Provo, founder and CEO of StormForge and Patrick Brixton? >> Bergstrom. >> Bergstrom. >> Yeah. >> I spelled it right, I didn't say it right, Bergstrom, CTO. We're at KubeCon, CloudNativeCon where projects are discussed, built and StormForge, I've heard the pitch before, so forgive me. And I'm kind of torn. I have service mesh. What do I need more, like what problem is StormForge solving? >> You want to take it? >> Sure, absolutely. So it's interesting because, my background is in the enterprise, right? I was an executive at UnitedHealth Group before that I worked at Best Buy and one of the issues that we always had was, especially as you migrate to the cloud, it seems like the CPU dial or the memory dial is your reliability dial. So it's like, oh, I just turned that all the way to the right and everything's hunky-dory, right? But then we run into the issue like you and I were just talking about, where it gets very very expensive very quickly. And so my first conversations with Matt and the StormForge group, and they were telling me about the product and what we're dealing with. I said, that is the problem statement that I have always struggled with and I wish this existed 10 years ago when I was dealing with EC2 costs, right? And now with Kubernetes, it's the same thing. It's so easy to provision. So realistically what it is, is we take your raw telemetry data and we essentially monitor the performance of your application, and then we can tell you using our machine learning algorithms, the exact configuration that you should be using for your application to achieve the results that you're looking for without over-provisioning. So we reduce your consumption of CPU, of memory and production which ultimately nine times out of 10, actually I would say 10 out of 10, reduces your cost significantly without sacrificing reliability. >> So can your solution also help to optimize the application in the long run? Because, yes, of course-- >> Yep. >> The lowering fluid as you know optimize the deployment. >> Yeah. >> But actually the long-term is optimizing the application. >> Yes. >> Which is the real problem. >> Yep. >> So, we're fine with the former of what you just said, but we exist to do the latter. And so, we're squarely and completely focused at the application layer. As long as you can track or understand the metrics you care about for your application, we can optimize against it. We love that we don't know your application, we don't know what the SLA and SLO requirements are for your app, you do, and so, in our world it's about empowering the developer into the process, not automating them out of it and I think sometimes AI and machine learning sort of gets a bad rap from that standpoint. And so, at this point the company's been around since 2016, kind of from the very early days of Kubernetes, we've always been, squarely focused on Kubernetes, using our core machine learning engine to optimize metrics at the application layer that people care about and need to go after. And the truth of the matter is today and over time, setting a cluster up on Kubernetes has largely been solved. And yet the promise of Kubernetes around portability and flexibility, downstream when you operationalize, the complexity smacks you in the face and that's where StormForge comes in. And so we're a vertical, kind of vertically oriented solution, that's absolutely focused on solving that problem. >> Well, I don't want to play, actually. I want to play the devils advocate here and-- >> You wouldn't be a good analyst if you didn't. >> So the problem is when you talk with clients, users, there are many of them still working with Java, something that is really tough. I mean, all of us loved Java. >> Yeah, absolutely. >> Maybe 20 years ago. Yeah, but not anymore, but still they have developers, they have porting applications, microservices. Yes, but not very optimized, et cetera, cetera, et cetera. So it's becoming tough. So how you can interact with this kind of old hybrid or anyway, not well engineered applications. >> Yeah. >> We do that today. We actually, part of our platform is we offer performance testing in a lower environment and stage and we, like Matt was saying, we can use any metric that you care about and we can work with any configuration for that application. So perfect example is Java, you have to worry about your heap size, your garbage collection tuning and one of the things that really struck me very early on about the StormForge product is because it is true machine learning. You remove the human bias from that. So like a lot of what I did in the past, especially around SRE and performance tuning, we were only as good as our humans were because of what they knew. And so, we kind of got stuck in these paths of making the same configuration adjustments, making the same changes to the application, hoping for different results. But then when you apply machine learning capability to that the machine will recommend things you never would've dreamed of. And you get amazing results out of that. >> So both me and Enrico have been doing this for a long time. Like, I have battled to my last breath the argument when it's a bare metal or a VM, look, I cannot give you any more memory. >> Yeah. >> And the argument going all the way up to the CIO and the CIO basically saying, you know what, Keith you're cheap, my developer resources are expensive, buy bigger box. >> Yeah. >> Yap. >> Buying a bigger box in the cloud to your point is no longer a option because it's just expensive. >> Yeah. >> Talk to me about the carrot or the stick as developers are realizing that they have to be more responsible. Where's the culture change coming from? Is it the shift in responsibility? >> I think the center of the bullseye for us is within those sets of decisions, not in a static way, but in an ongoing way, especially as the development of applications becomes more and more rapid and the management of them. Our charge and our belief wholeheartedly is that you shouldn't have to choose. You should not have to choose between costs or performance. You should not have to choose where your applications live, in a public private or hybrid cloud environment. And so, we want to empower people to be able to sit in the middle of all of that chaos and for those trade offs and those difficult interactions to no longer be a thing. We're at a place now where we've done hundreds of deployments and never once have we met a developer who said, "I'm really excited to get out of bed and come to work every day and manually tune my application." One side, secondly, we've never met, a manager or someone with budget that said, please don't increase the value of my investment that I've made to lift and shift us over to the cloud or to Kubernetes or some combination of both. And so what we're seeing is the converging of these groups, their happy place is the lack of needing to be able to make those trade offs, and that's been exciting for us. >> So, I'm listening and looks like that your solution is right in the middle in application performance, management, observability. >> Yeah. >> And, monitoring. >> Yeah. >> So it's a little bit of all of this. >> Yeah, so we want to be, the intel inside of all of that, we often get lumped into one of those categories, it used to be APM a lot, we sometimes get, are you observability or and we're really not any of those things, in and of themselves, but we instead we've invested in deep integrations and partnerships with a lot of that tooling 'cause in a lot of ways, the tool chain is hardening in a cloud native and in Kubernetes world. And so, integrating in intelligently, staying focused and great at what we solve for, but then seamlessly partnering and not requiring switching for our users who have already invested likely, in a APM or observability. >> So to go a little bit deeper. What does it mean integration? I mean, do you provide data to this, other applications in the environment or are they supporting you in the work that you do. >> Yeah, we're a data consumer for the most part. In fact, one of our big taglines is take your observability and turn it into action ability, right? Like how do you take that, it's one thing to collect all of the data, but then how do you know what to do with it, right? So to Matt's point, we integrate with folks like Datadog, we integrate with Prometheus today. So we want to collect that telemetry data and then do something useful with it for you. >> But also we want Datadog customers, for example, we have a very close partnership with Datadog so that in your existing Datadog dashboard, now you have-- >> Yeah. >> The StormForge capability showing up in the same location. >> Yep. >> And so you don't have to switch out. >> So I was just going to ask, is it a push pull? What is the developer experience when you say you provide developer this resolve ML learnings about performance, how do they receive it? Like, what's the developer experience. >> They can receive it, for a while we were CLI only, like any good developer tool. >> Right. >> And, we have our own UI. And so it is a push in a lot of cases where I can come to one spot, I've got my applications and every time I'm going to release or plan for a release or I have released and I want to pull in observability data from a production standpoint, I can visualize all of that within the StormForge UI and platform, make decisions, we allow you to set your, kind of comfort level of automation that you're okay with. You can be completely set and forget or you can be somewhere along that spectrum and you can say, as long as it's within, these thresholds, go ahead and release the application or go ahead and apply the configuration. But we also allow you to experience the same, a lot of the same functionality right now, in Grafana, in Datadog and a bunch of others that are coming. >> So I've talked to Tim Crawford who talks to a lot of CIOs and he's saying one of the biggest challenges or if not, one of the biggest challenges CIOs are facing are resource constraints. >> Yeah. >> They cannot find the developers to begin with to get this feedback. How are you hoping to address this biggest pain point for CIOs-- >> Yeah.6 >> And developers? >> You should take that one. >> Yeah, absolutely. So like my background, like I said at UnitedHealth Group, right. It's not always just about cost savings. In fact, the way that I look about at some of these tech challenges, especially when we talk about scalability there's kind of three pillars that I consider, right? There's the tech scalability, how am I solving those challenges? There's the financial piece 'cause you can only throw money at a problem for so long and it's the same thing with the human piece. I can only find so many bodies and right now that pool is very small, and so, we are absolutely squarely in that footprint of we enable your team to focus on the things that they matter, not manual tuning like Matt said. And then there are other resource constraints that I think that a lot of folks don't talk about too. Like, you were talking about private cloud for instance and so having a physical data center, I've worked with physical data centers that companies I've worked for have owned where it is literally full, wall to wall. You can't rack any more servers in it, and so their biggest option is, well, I could spend $1.2 billion to build a new one if I wanted to, or if you had a capability to truly optimize your compute to what you needed and free up 30% of your capacity of that data center. So you can deploy additional name spaces into your cluster, like that's a huge opportunity. >> So I have another question. I mean, maybe it doesn't sound very intelligent at this point, but, so is it an ongoing process or is it something that you do at the very beginning, I mean you start deploying this. >> Yeah. >> And maybe as a service. >> Yep. >> Once in a year I say, okay, let's do it again and see if something change it. >> Sure. >> So one spot, one single.. >> Yeah, would you recommend somebody performance test just once a year? Like, so that's my thing is, at previous roles, my role was to do performance test every single release, and that was at a minimum once a week and if your thing did not get faster, you had to have an executive exception to get it into production and that's the space that we want to live in as well as part of your CICD process, like this should be continuous verification, every time you deploy, we want to make sure that we're recommending the perfect configuration for your application in the name space that you're deploying into. >> And I would be as bold as to say that we believe that we can be a part of adding, actually adding a step in the CICD process that's connected to optimization and that no application should be released, monitored, and sort of analyzed on an ongoing basis without optimization being a part of that. And again, not just from a cost perspective, but for cost and performance. >> Almost a couple of hundred vendors on this floor. You mentioned some of the big ones Datadog, et cetera, but what happens when one of the up and comings out of nowhere, completely new data structure, some imaginative way to click to telemetry data. >> Yeah. >> How do, how do you react to that? >> Yeah, to us it's zeros and ones. >> Yeah. >> And, we really are data agnostic from the standpoint of, we're fortunate enough from the design of our algorithm standpoint, it doesn't get caught up on data structure issues, as long as you can capture it and make it available through one of a series of inputs, one would be load or performance tests, could be telemetry, could be observability, if we have access to it. Honestly, the messier the better from time to time from a machine learning standpoint, it's pretty powerful to see. We've never had a deployment where we saved less than 30%, while also improving performance by at least 10%. But the typical results for us are 40 to 60% savings and 30 to 40% improvement in performance. >> And what happens if the application is, I mean, yes Kubernetes is the best thing of the world but sometimes we have to, external data sources or, we have to connect with external services anyway. >> Yeah. >> So, can you provide an indication also on this particular application, like, where the problem could be? >> Yeah. >> Yeah, and that's absolutely one of the things that we look at too, 'cause it's, especially when you talk about resource consumption it's never a flat line, right? Like depending on your application, depending on the workloads that you're running it varies from sometimes minute to minute, day to day, or it could be week to week even. And so, especially with some of the products that we have coming out with what we want to do, integrating heavily with the HPA and being able to handle some of those bumps and not necessarily bumps, but bursts and being able to do it in a way that's intelligent so that we can make sure that, like I said, it's the perfect configuration for the application regardless of the time of day that you're operating in or what your traffic patterns look like, or, what your disc looks like, right. Like 'cause with our low environment testing, any metric you throw at us, we can optimize for. >> So Matt and Patrick, thank you for stopping by. >> Yeah. >> Yes. >> We can go all day because day two is I think the biggest challenge right now, not just in Kubernetes but application re-platforming and transformation, very, very difficult. Most CTOs and EASs that I talked to, this is the challenge space. From Valencia, Spain, I'm Keith Townsend, along with my host Enrico Signoretti and you're watching "theCube" the leader in high-tech coverage. (whimsical music)
SUMMARY :
brought to you by Red Hat, and we're at KubeCon, about the projects and their efforts. And the more I talk with I've heard the pitch and then we can tell you know optimize the deployment. is optimizing the application. the complexity smacks you in the face I want to play the devils analyst if you didn't. So the problem is when So how you can interact and one of the things that last breath the argument and the CIO basically saying, Buying a bigger box in the cloud Is it the shift in responsibility? and the management of them. that your solution is right in the middle we sometimes get, are you observability or in the work that you do. consumer for the most part. showing up in the same location. What is the developer experience for a while we were CLI only, and release the application and he's saying one of the They cannot find the developers and it's the same thing or is it something that you do Once in a year I say, okay, and that's the space and that no application You mentioned some of the and 30 to 40% improvement in performance. Kubernetes is the best thing of the world so that we can make So Matt and Patrick, Most CTOs and EASs that I talked to,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Keith Townsend | PERSON | 0.99+ |
Enrico | PERSON | 0.99+ |
Enrico Signoretti | PERSON | 0.99+ |
Matt | PERSON | 0.99+ |
Jeff | PERSON | 0.99+ |
Tim Crawford | PERSON | 0.99+ |
Patrick | PERSON | 0.99+ |
2003 | DATE | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
UnitedHealth Group | ORGANIZATION | 0.99+ |
40 | QUANTITY | 0.99+ |
Alex | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Santa Clara | LOCATION | 0.99+ |
30 | QUANTITY | 0.99+ |
$1.2 billion | QUANTITY | 0.99+ |
Alex Wolf | PERSON | 0.99+ |
Enrique | PERSON | 0.99+ |
StormForge | ORGANIZATION | 0.99+ |
Alexander Wolf | PERSON | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
ACG | ORGANIZATION | 0.99+ |
January | DATE | 0.99+ |
Matt Provo | PERSON | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Santa Cruz | LOCATION | 0.99+ |
Cloud Native Computing Foundation | ORGANIZATION | 0.99+ |
Patrick Bergstrom | PERSON | 0.99+ |
Best Buy | ORGANIZATION | 0.99+ |
30% | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
Bergstrom | ORGANIZATION | 0.99+ |
nine times | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
Valencia, Spain | LOCATION | 0.99+ |
300 people | QUANTITY | 0.99+ |
millions | QUANTITY | 0.99+ |
Datadog | ORGANIZATION | 0.99+ |
Java | TITLE | 0.99+ |
GigaOm | ORGANIZATION | 0.99+ |
Baskin School of Engineering | ORGANIZATION | 0.99+ |
two things | QUANTITY | 0.99+ |
third year | QUANTITY | 0.99+ |
Mountain View, California | LOCATION | 0.99+ |
KubeCon | EVENT | 0.99+ |
ACGSV | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
once a week | QUANTITY | 0.99+ |
less than 30% | QUANTITY | 0.99+ |
ACGSV GROW! Awards | EVENT | 0.98+ |
2016 | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
Kubernetes | TITLE | 0.98+ |
40% | QUANTITY | 0.98+ |
Santa Cruz UC Santa Cruz School of Engineering | ORGANIZATION | 0.98+ |
today | DATE | 0.98+ |
ACG Silicon Valley | ORGANIZATION | 0.98+ |
60% | QUANTITY | 0.98+ |
once a year | QUANTITY | 0.98+ |
one spot | QUANTITY | 0.98+ |
10 years ago | DATE | 0.97+ |
Patrick Brixton | PERSON | 0.97+ |
Prometheus | TITLE | 0.97+ |
20 years ago | DATE | 0.97+ |
CloudNativeCon Europe 2022 | EVENT | 0.97+ |
secondly | QUANTITY | 0.97+ |
one single | QUANTITY | 0.96+ |
first conversations | QUANTITY | 0.96+ |
millions of dollars | QUANTITY | 0.96+ |
ACGSV GROW! Awards 2018 | EVENT | 0.96+ |
Matt Provo & Patrick Bergstrom, StormForge | Kubecon + Cloudnativecon Europe 2022
>>The cube presents, Coon and cloud native con Europe 22, brought to you by the cloud native computing foundation. >>Welcome to Melissa Spain. And we're at cuon cloud native con Europe, 2022. I'm Keith Townsend. And my co-host en Rico senior Etti en Rico's really proud of me. I've called him en Rico and said IK, every session, senior it analyst giga, O we're talking to fantastic builders at Cuban cloud native con about the projects and the efforts en Rico up to this point, it's been all about provisioning insecurity. What, what conversation have we been missing? >>Well, I mean, I, I think, I think that, uh, uh, we passed the point of having the conversation of deployment of provisioning. You know, everybody's very skilled, actually everything is done at day two. They are discovering that, well, there is a security problem. There is an observability problem. And in fact, we are meeting with a lot of people and there are a lot of conversation with people really needing to understand what is happening. I mean, in their classroom, what, why it is happening and all the, the questions that come with it. I mean, and, uh, the more I talk with, uh, people in the, in the show floor here, or even in the, you know, in the various sessions is about, you know, we are growing, the, our clusters are becoming bigger and bigger. Uh, applications are becoming, you know, bigger as well. So we need to know, understand better what is happening. It's not only, you know, about cost it's about everything at the >>End. So I think that's a great set up for our guests, max, Provo, founder, and CEO of storm for forge and Patrick Britton, Bergstrom, Brookstone. Yeah, I spelled it right. I didn't say it right. Berg storm CTO. We're at Q con cloud native con we're projects are discussed, built and storm forge. I I've heard the pitch before, so forgive me. And I'm, I'm, I'm, I'm, I'm, I'm kind of torn. I have service mesh. What do I need more like, what problem is storm for solving? >>You wanna take it? >>Sure, absolutely. So it it's interesting because, uh, my background is in the enterprise, right? I was an executive at United health group. Um, before that I worked at best buy. Um, and one of the issues that we always had was, especially as you migrate to the cloud, it seems like the CPU dial or the memory dial is your reliability dial. So it's like, oh, I just turned that all the way to the right and everything's hunky Dory. Right. Uh, but then we run into the issue like you and I were just talking about where it gets very, very expensive, very quickly. Uh, and so my first conversations with Matt and the storm forge group, and they were telling me about the product and, and what we're dealing with. I said, that is the problem statement that I have always struggled with. And I wish this existed 10 years ago when I was dealing with EC two costs, right? And now with Kubernetes, it's the same thing. It's so easy to provision. So realistically, what it is is we take your raw telemetry data and we essentially monitor the performance of your application. And then we can tell you using our machine learning algorithms, the exact configuration that you should be using for your application to achieve the results that you're looking for without over provisioning. So we reduce your consumption of CPU of memory and production, which ultimately nine times outta 10, actually I would say 10 out of 10 reduces your cost significantly without sacrificing reliability. >>So can your solution also help to optimize the application in the long run? Because yes, of course, yep. You know, the lowing fluid is, you know, optimize the deployment. Yeah. But actually the long term is optimizing the application. Yes. Which is the real problem. >>Yep. So we actually, um, we're fine with the, the former of what you just said, but we exist to do the latter. And so we're squarely and completely focused at the application layer. Um, we are, uh, as long as you can track or understand the metrics you care about for your application, uh, we can optimize against it. Um, we love that we don't know your application. We don't know what the SLA and SLO requirements are for your app. You do. And so in, in our world, it's about empowering the developer into the process, not automating them out of it. And I think sometimes AI and machine learning sort of gets a bad wrap from that standpoint. And so, uh, we've at this point, the company's been around, you know, since 2016, uh, kind of from the very early days of Kubernetes, we've always been, you know, squarely focused on Kubernetes using our core machine learning, uh, engine to optimize metrics at the application layer, uh, that people care about and, and need to need to go after. And the truth of the matter is today. And over time, you know, setting a cluster up on Kubernetes has largely been solved. Um, and yet the promise of, of Kubernetes around portability and flexibility, uh, downstream when you operationalize the complexity, smacks you in the face. And, uh, and that's where, where storm forge comes in. And so we're a vertical, you know, kind of vertically oriented solution. Um, that's, that's absolutely focused on solving that problem. >>Well, I don't want to play, actually. I want to play the, uh, devils advocate here and, you know, >>You wouldn't be a good analyst if you didn't. >>So the, the problem is when you talk with clients, users, they, there are many of them still working with Java with, you know, something that is really tough. Mm-hmm <affirmative>, I mean, we loved all of us loved Java. Yeah, absolutely. Maybe 20 years ago. Yeah. But not anymore, but still they have developers. They are porting applications, microservices. Yes. But not very optimized, etcetera. C cetera. So it's becoming tough. So how you can interact with these kind of yeah. Old hybrid or anyway, not well in generic applications. >>Yeah. We, we do that today. We actually, part of our platform is we offer performance testing in a lower environment and stage. And we like Matt was saying, we can use any metric that you care about and we can work with any configuration for that application. So the perfect example is Java, you know, you have to worry about your heap size, your garbage collection tuning. Um, and one of the things that really struck, struck me very early on about the storm forage product is because it is true machine learning. You remove the human bias from that. So like a lot of what I did in the past, especially around SRE and, and performance tuning, we were only as good as our humans were because of what they knew. And so we were, we kind of got stuck in these paths of making the same configuration adjustments, making the same changes to the application, hoping for different results. But then when you apply machine learning capability to that, the machine will recommend things you never would've dreamed of. And you get amazing results out of >>That. So both me and an Rico have been doing this for a long time. Like I have battled to my last breath, the, the argument when it's a bare metal or a VM. Yeah. Look, I cannot give you any more memory. Yeah. And the, the argument going all the way up to the CIO and the CIO basically saying, you know what, Keith you're cheap, my developer resources expensive, my bigger box. Yep. Uh, buying a bigger box in the cloud to your point is no longer a option because it's just expensive. Talk to me about the carrot or the stick as developers are realizing that they have to be more responsible. Where's the culture change coming from? So is it, that is that if it, is it the shift in responsibility? >>I think the center of the bullseye for us is within those sets of decisions, not in a static way, but in an ongoing way, especially, um, especially as the development of applications becomes more and more rapid. And the management of them, our, our charge and our belief wholeheartedly is that you shouldn't have to choose, you should not have to choose between costs or performance. You should not have to choose where your, you know, your applications live, uh, in a public private or, or hybrid cloud environment. And so we want to empower people to be able to sit in the middle of all of that chaos and for those trade-offs and those difficult interactions to no, no longer be a thing. You know, we're at, we're at a place now where we've done, you know, hundreds of deployments and never once have we met a developer who said, I'm really excited to get outta bed and come to work every day and manually tune my application. <laugh> One side, secondly, we've never met, uh, you know, uh, a manager or someone with budget that said, uh, please don't, you know, increase the value of my investment that I've made to lift and shift us over mm-hmm <affirmative>, you know, to the cloud or to Kubernetes or, or some combination of both. And so what we're seeing is the converging of these groups, um, at, you know, their happy place is the lack of needing to be able to, uh, make those trade offs. And that's been exciting for us. So, >>You know, I'm listening and looks like that your solution is right in the middle in application per performance management, observability. Yeah. And, uh, and monitoring. So it's a little bit of all of this. >>So we, we, we, we want to be, you know, the Intel inside of all of that, mm-hmm, <affirmative>, we don't, you know, we often get lumped into one of those categories. It used to be APM a lot. We sometimes get a, are you observability or, and we're really not any of those things in and of themselves, but we, instead of invested in deep integrations and partnerships with a lot of those, uh, with a lot of that tooling, cuz in a lot of ways, the, the tool chain is hardening, uh, in a cloud native and, and Kubernetes world. And so, you know, integrating in intelligently staying focused and great at what we solve for, but then seamlessly partnering and not requiring switching for, for our users who have already invested likely in a APM or observability. >>So to go a little bit deeper. Sure. What does it mean integration? I mean, do you provide data to this, you know, other applications in, in the environment or are they supporting you in the work that you >>Yeah, we're, we're a data consumer for the most part. Um, in fact, one of our big taglines is take your observability and turn it into actionability, right? Like how do you take the it's one thing to collect all of the data, but then how do you know what to do with it? Right. So to Matt's point, um, we integrate with folks like Datadog. Um, we integrate with Prometheus today. So we want to collect that telemetry data and then do something useful with it for you. >>But, but also we want Datadog customers. For example, we have a very close partnership with, with Datadog, so that in your existing data dog dashboard, now you have yeah. This, the storm for capability showing up in the same location. Yep. And so you don't have to switch out. >>So I was just gonna ask, is it a push pull? What is the developer experience? When you say you provide developer, this resolve ML, uh, learnings about performance mm-hmm <affirmative> how do they receive it? Like what, yeah, what's the, what's the, what's the developer experience >>They can receive it. So we have our own, we used to for a while we were CLI only like any good developer tool. Right. Uh, and you know, we have our own UI. And so it is a push in that, in, in a lot of cases where I can come to one spot, um, I've got my applications and every time I'm going to release or plan for a release or I have released, and I want to take, pull in, uh, observability data from a production standpoint, I can visualize all of that within the storm for UI and platform, make decisions. We allow you to, to set your, you know, kind of comfort level of automation that you're, you're okay with. You can be completely set and forget, or you can be somewhere along that spectrum. And you can say, as long as it's within, you know, these thresholds, go ahead and release the application or go ahead and apply the configuration. Um, but we also allow you to experience, uh, the same, a lot of the same functionality right now, you know, in Grafana in Datadog, uh, and a bunch of others that are coming. >>So I've talked to Tim Crawford who talks to a lot of CIOs and he's saying one of the biggest challenges, or if not, one of the biggest challenges CIOs are facing are resource constraints. Yeah. They cannot find the developers to begin with to get this feedback. How are you hoping to address this biggest pain point for CIOs? Yeah. >>Development? >>Just take that one. Yeah, absolutely. That's um, so like my background, like I said, at United health group, right. It's not always just about cost savings. In fact, um, the way that I look about at some of these tech challenges, especially when we talk about scalability, there's kind of three pillars that I consider, right? There's the tech scalability, how am I solving those challenges? There's the financial piece, cuz you can only throw money at a problem for so long. And it's the same thing with the human piece. I can only find so many bodies and right now that pool is very small. And so we are absolutely squarely in that footprint of, we enable your team to focus on the things that they matter, not manual tuning like Matt said. And then there are other resource constraints that I think that a lot of folks don't talk about too. >>Like we were, you were talking about private cloud for instance. And so having a physical data center, um, I've worked with physical data centers that companies I've worked for have owned where it is literally full wall to wall. You can't rack any more servers in it. And so their biggest option is, well, I could spend 1.2 billion to build a new one if I wanted to. Or if you had a capability to truly optimize your compute to what you needed and free up 30% of your capacity of that data center. So you can deploy additional name spaces into your cluster. Like that's a huge opportunity. >>So either out of question, I mean, may, maybe it, it doesn't sound very intelligent at this point, but so is it an ongoing process or is it something that you do at the very beginning mean you start deploying this. Yeah. And maybe as a service. Yep. Once in a year I say, okay, let's do it again and see if something changes. Sure. So one spot 1, 1, 1 single, you know? >>Yeah. Um, would you recommend somebody performance tests just once a year? >>Like, so that's my thing is, uh, previous at previous roles I had, uh, my role was you performance test, every single release. And that was at a minimum once a week. And if your thing did not get faster, you had to have an executive exception to get it into production. And that's the space that we wanna live in as well as part of your C I C D process. Like this should be continuous verification every time you deploy, we wanna make sure that we're recommending the perfect configuration for your application in the name space that you're deploying >>Into. And I would be as bold as to say that we believe that we can be a part of adding, actually adding a step in the C I C D process that's connected to optimization and that no application should be released monitored and sort of, uh, analyzed on an ongoing basis without optimization being a part of that. And again, not just from a cost perspective, yeah. Cost end performance, >>Almost a couple of hundred vendors on this floor. You know, you mentioned some of the big ones, data, dog, et cetera. But what happens when one of the up and comings out of nowhere, completely new data structure, some imaginable way to click to elementry data. Yeah. How do, how do you react to that? >>Yeah. To us it's zeros and ones. Yeah. Uh, and you know, we're, we're, we're really, we really are data agnostic from the standpoint of, um, we're not, we we're fortunate enough to, from the design of our algorithm standpoint, it doesn't get caught up on data structure issues. Um, you know, as long as you can capture it and make it available, uh, through, you know, one of a series of inputs, what one, one would be load or performance tests, uh, could be telemetry, could be observability if we have access to it. Um, honestly the messier, the, the better from time to time, uh, from a machine learning standpoint, um, it, it, it's pretty powerful to see we've, we've never had a deployment where we, uh, where we saved less than 30% while also improving performance by at least 10%. But the typical results for us are 40 to 60% savings and, you know, 30 to 40% improvement in performance. >>And what happens if the application is, I, I mean, yes, Kubernetes is the best thing of the world, but sometimes we have to, you know, external data sources or, or, you know, we have to connect with external services anyway. Mm-hmm <affirmative> yeah. So can you, you know, uh, can you provide an indication also on, on, on this particular application, like, you know, where the problem could >>Be? Yeah, yeah. And that, that's absolutely one of the things that we look at too, cuz it's um, especially when you talk about resource consumption, it's never a flat line, right? Like depending on your application, depending on the workloads that you're running, um, it varies from sometimes minute to minute, day to day, or it could be week to week even. Um, and so especially with some of the products that we have coming out with what we want to do, you know, partnering with, uh, you know, integrating heavily with the HPA and being able to handle some of those bumps and not necessarily bumps, but bursts and being able to do it in a way that's intelligent so that we can make sure that, like I said, it's the perfect configuration for the application regardless of the time of day that you're operating in or what your traffic patterns look like. Um, or you know, what your disc looks like, right? Like cuz with our, our low environment testing, any metric you throw at us, we can, we can optimize for. >>So Madden Patrick, thank you for stopping by. Yeah. Yes. We can go all day. Because day two is I think the biggest challenge right now. Yeah. Not just in Kubernetes, but application replatforming and re and transformation. Very, very difficult. Most CTOs and S that I talked to, this is the challenge space from Valencia Spain. I'm Keith Townsend, along with my host en Rico senior. And you're watching the queue, the leader in high tech coverage.
SUMMARY :
brought to you by the cloud native computing foundation. And we're at cuon cloud native you know, in the various sessions is about, you know, we are growing, I I've heard the pitch before, and one of the issues that we always had was, especially as you migrate to the cloud, You know, the lowing fluid is, you know, optimize the deployment. And so we're a vertical, you know, devils advocate here and, you know, So the, the problem is when you talk with clients, users, So the perfect example is Java, you know, you have to worry about your heap size, And the, the argument going all the way up to the CIO and the CIO basically saying, you know what, that I've made to lift and shift us over mm-hmm <affirmative>, you know, to the cloud or to Kubernetes or, You know, I'm listening and looks like that your solution is right in the middle in all of that, mm-hmm, <affirmative>, we don't, you know, we often get lumped into one of those categories. this, you know, other applications in, in the environment or are they supporting Like how do you take the it's one thing to collect all of the data, And so you don't have to switch out. Um, but we also allow you to experience, How are you hoping to address this And it's the same thing with the human piece. Like we were, you were talking about private cloud for instance. is it something that you do at the very beginning mean you start deploying this. And that's the space that we wanna live in as well as part of your C I C D process. actually adding a step in the C I C D process that's connected to optimization and that no application You know, you mentioned some of the big ones, data, dog, Um, you know, as long as you can capture it and make it available, or, you know, we have to connect with external services anyway. we want to do, you know, partnering with, uh, you know, integrating heavily with the HPA and being able to handle some So Madden Patrick, thank you for stopping by.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Crawford | PERSON | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
30 | QUANTITY | 0.99+ |
40 | QUANTITY | 0.99+ |
1.2 billion | QUANTITY | 0.99+ |
Matt | PERSON | 0.99+ |
Matt Provo | PERSON | 0.99+ |
Datadog | ORGANIZATION | 0.99+ |
storm for forge | ORGANIZATION | 0.99+ |
Patrick Bergstrom | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
Java | TITLE | 0.99+ |
10 | QUANTITY | 0.99+ |
Melissa Spain | PERSON | 0.99+ |
nine times | QUANTITY | 0.99+ |
Valencia Spain | LOCATION | 0.99+ |
40% | QUANTITY | 0.99+ |
less than 30% | QUANTITY | 0.99+ |
10 years ago | DATE | 0.98+ |
United health group | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
20 years ago | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
Keith | PERSON | 0.98+ |
once a year | QUANTITY | 0.98+ |
once a week | QUANTITY | 0.98+ |
HPA | ORGANIZATION | 0.98+ |
2022 | DATE | 0.98+ |
Coon | ORGANIZATION | 0.98+ |
30% | QUANTITY | 0.98+ |
first conversations | QUANTITY | 0.97+ |
Cloudnativecon | ORGANIZATION | 0.97+ |
60% | QUANTITY | 0.97+ |
Kubernetes | TITLE | 0.97+ |
Etti | PERSON | 0.97+ |
today | DATE | 0.96+ |
Patrick Britton | PERSON | 0.96+ |
Kubecon | ORGANIZATION | 0.96+ |
StormForge | ORGANIZATION | 0.95+ |
data dog | ORGANIZATION | 0.94+ |
Prometheus | TITLE | 0.94+ |
three pillars | QUANTITY | 0.94+ |
secondly | QUANTITY | 0.94+ |
Rico | ORGANIZATION | 0.93+ |
Q con cloud | ORGANIZATION | 0.93+ |
hundreds of deployments | QUANTITY | 0.92+ |
day two | QUANTITY | 0.92+ |
Europe | LOCATION | 0.92+ |
Kubernetes | ORGANIZATION | 0.92+ |
Intel | ORGANIZATION | 0.92+ |
one spot | QUANTITY | 0.89+ |
at least 10% | QUANTITY | 0.87+ |
one thing | QUANTITY | 0.85+ |
hundred vendors | QUANTITY | 0.83+ |
Once in a year | QUANTITY | 0.83+ |
cuon cloud native con | ORGANIZATION | 0.81+ |
Rico | LOCATION | 0.81+ |
Brookstone | ORGANIZATION | 0.8+ |
Grafana | ORGANIZATION | 0.8+ |
Berg storm CTO | ORGANIZATION | 0.8+ |
SRE | TITLE | 0.79+ |
SLA | TITLE | 0.79+ |
Bergstrom | ORGANIZATION | 0.79+ |
cloud native con | ORGANIZATION | 0.78+ |
single release | QUANTITY | 0.77+ |
storm forge group | ORGANIZATION | 0.75+ |
1 | QUANTITY | 0.75+ |
One side | QUANTITY | 0.74+ |
EC two | TITLE | 0.74+ |
1 single | QUANTITY | 0.74+ |
Patrick | PERSON | 0.74+ |
Breaking Analysis: The Improbable Rise of Kubernetes
>> From theCUBE studios in Palo Alto, in Boston, bringing you data driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vollante. >> The rise of Kubernetes came about through a combination of forces that were, in hindsight, quite a long shot. Amazon's dominance created momentum for Cloud native application development, and the need for newer and simpler experiences, beyond just easily spinning up computer as a service. This wave crashed into innovations from a startup named Docker, and a reluctant competitor in Google, that needed a way to change the game on Amazon and the Cloud. Now, add in the effort of Red Hat, which needed a new path beyond Enterprise Linux, and oh, by the way, it was just about to commit to a path of a Kubernetes alternative for OpenShift and figure out a governance structure to hurt all the cats and the ecosystem and you get the remarkable ascendancy of Kubernetes. Hello and welcome to this week's Wikibon CUBE Insights powered by ETR. In this breaking analysis, we tapped the back stories of a new documentary that explains the improbable events that led to the creation of Kubernetes. We'll share some new survey data from ETR and commentary from the many early the innovators who came on theCUBE during the exciting period since the founding of Docker in 2013, which marked a new era in computing, because we're talking about Kubernetes and developers today, the hoodie is on. And there's a new two part documentary that I just referenced, it's out and it was produced by Honeypot on Kubernetes, part one and part two, tells a story of how Kubernetes came to prominence and many of the players that made it happen. Now, a lot of these players, including Tim Hawkin Kelsey Hightower, Craig McLuckie, Joe Beda, Brian Grant Solomon Hykes, Jerry Chen and others came on theCUBE during formative years of containers going mainstream and the rise of Kubernetes. John Furrier and Stu Miniman were at the many shows we covered back then and they unpacked what was happening at the time. We'll share the commentary from the guests that they interviewed and try to add some context. Now let's start with the concept of developer defined structure, DDI. Jerry Chen was at VMware and he could see the trends that were evolving. He left VMware to become a venture capitalist at Greylock. Docker was his first investment. And he saw the future this way. >> What happens is when you define infrastructure software you can program it. You make it portable. And that the beauty of this cloud wave what I call DDI's. Now, to your point is every piece of infrastructure from storage, networking, to compute has an API, right? And, and AWS there was an early trend where S3, EBS, EC2 had API. >> As building blocks too. >> As building blocks, exactly. >> Not monolithic. >> Monolithic building blocks every little building bone block has it own API and just like Docker really is the API for this unit of the cloud enables developers to define how they want to build their applications, how to network them know as Wills talked about, and how you want to secure them and how you want to store them. And so the beauty of this generation is now developers are determining how apps are built, not just at the, you know, end user, you know, iPhone app layer the data layer, the storage layer, the networking layer. So every single level is being disrupted by this concept of a DDI and where, how you build use and actually purchase IT has changed. And you're seeing the incumbent vendors like Oracle, VMware Microsoft try to react but you're seeing a whole new generation startup. >> Now what Jerry was explaining is that this new abstraction layer that was being built here's some ETR data that quantifies that and shows where we are today. The chart shows net score or spending momentum on the vertical axis and market share which represents the pervasiveness in the survey set. So as Jerry and the innovators who created Docker saw the cloud was becoming prominent and you can see it still has spending velocity that's elevated above that 40% red line which is kind of a magic mark of momentum. And of course, it's very prominent on the X axis as well. And you see the low level infrastructure virtualization and that even floats above servers and storage and networking right. Back in 2013 the conversation with VMware. And by the way, I remember having this conversation deeply at the time with Chad Sakac was we're going to make this low level infrastructure invisible, and we intend to make virtualization invisible, IE simplified. And so, you see above the two arrows there related to containers, container orchestration and container platforms, which are abstraction layers and services above the underlying VMs and hardware. And you can see the momentum that they have right there with the cloud and AI and RPA. So you had these forces that Jerry described that were taking shape, and this picture kind of summarizes how they came together to form Kubernetes. And the upper left, Of course you see AWS and we inserted a picture from a post we did, right after the first reinvent in 2012, it was obvious to us at the time that the cloud gorilla was AWS and had all this momentum. Now, Solomon Hykes, the founder of Docker, you see there in the upper right. He saw the need to simplify the packaging of applications for cloud developers. Here's how he described it. Back in 2014 in theCUBE with John Furrier >> Container is a unit of deployment, right? It's the format in which you package your application all the files, all the executables libraries all the dependencies in one thing that you can move to any server and deploy in a repeatable way. So it's similar to how you would run an iOS app on an iPhone, for example. >> A Docker at the time was a 30% company and it just changed its name from .cloud. And back to the diagram you have Google with a red question mark. So why would you need more than what Docker had created. Craig McLuckie, who was a product manager at Google back then explains the need for yet another abstraction. >> We created the strong separation between infrastructure operations and application operations. And so, Docker has created a portable framework to take it, basically a binary and run it anywhere which is an amazing capability, but that's not enough. You also need to be able to manage that with a framework that can run anywhere. And so, the union of Docker and Kubernetes provides this framework where you're completely abstracted from the underlying infrastructure. You could use VMware, you could use Red Hat open stack deployment. You could run on another major cloud provider like rec. >> Now Google had this huge cloud infrastructure but no commercial cloud business compete with AWS. At least not one that was taken seriously at the time. So it needed a way to change the game. And it had this thing called Google Borg, which is a container management system and scheduler and Google looked at what was happening with virtualization and said, you know, we obviously could do better Joe Beda, who was with Google at the time explains their mindset going back to the beginning. >> Craig and I started up Google compute engine VM as a service. And the odd thing to recognize is that, nobody who had been in Google for a long time thought that there was anything to this VM stuff, right? Cause Google had been on containers for so long. That was their mindset board was the way that stuff was actually deployed. So, you know, my boss at the time, who's now at Cloudera booted up a VM for the first time, and anybody in the outside world be like, Hey, that's really cool. And his response was like, well now what? Right. You're sitting at a prompt. Like that's not super interesting. How do I run my app? Right. Which is, that's what everybody's been struggling with, with cloud is not how do I get a VM up? How do I actually run my code? >> Okay. So Google never really did virtualization. They were looking at the market and said, okay what can we do to make Google relevant in cloud. Here's Eric Brewer from Google. Talking on theCUBE about Google's thought process at the time. >> One interest things about Google is it essentially makes no use of virtual machines internally. And that's because Google started in 1998 which is the same year that VMware started was kind of brought the modern virtual machine to bear. And so Google infrastructure tends to be built really on kind of classic Unix processes and communication. And so scaling that up, you get a system that works a lot with just processes and containers. So kind of when I saw containers come along with Docker, we said, well, that's a good model for us. And we can take what we know internally which was called Borg a big scheduler. And we can turn that into Kubernetes and we'll open source it. And suddenly we have kind of a cloud version of Google that works the way we would like it to work. >> Now, Eric Brewer gave us the bumper sticker version of the story there. What he reveals in the documentary that I referenced earlier is that initially Google was like, why would we open source our secret sauce to help competitors? So folks like Tim Hockin and Brian Grant who were on the original Kubernetes team, went to management and pressed hard to convince them to bless open sourcing Kubernetes. Here's Hockin's explanation. >> When Docker landed, we saw the community building and building and building. I mean, that was a snowball of its own, right? And as it caught on we realized we know what this is going to we know once you embrace the Docker mindset that you very quickly need something to manage all of your Docker nodes, once you get beyond two or three of them, and we know how to build that, right? We got a ton of experience here. Like we went to our leadership and said, you know, please this is going to happen with us or without us. And I think it, the world would be better if we helped. >> So the open source strategy became more compelling as they studied the problem because it gave Google a way to neutralize AWS's advantage because with containers you could develop on AWS for example, and then run the application anywhere like Google's cloud. So it not only gave developers a path off of AWS. If Google could develop a strong service on GCP they could monetize that play. Now, focus your attention back to the diagram which shows this smiling, Alex Polvi from Core OS which was acquired by Red Hat in 2018. And he saw the need to bring Linux into the cloud. I mean, after all Linux was powering the internet it was the OS for enterprise apps. And he saw the need to extend its path into the cloud. Now here's how he described it at an OpenStack event in 2015. >> Similar to what happened with Linux. Like yes, there is still need for Linux and Windows and other OSs out there. But by and large on production, web infrastructure it's all Linux now. And you were able to get onto one stack. And how were you able to do that? It was, it was by having a truly open consistent API and a commitment into not breaking APIs and, so on. That allowed Linux to really become ubiquitous in the data center. Yes, there are other OSs, but Linux buy in large for production infrastructure, what is being used. And I think you'll see a similar phenomenon happen for this next level up cause we're treating the whole data center as a computer instead of trading one in visual instance is just the computer. And that's the stuff that Kubernetes to me and someone is doing. And I think there will be one that shakes out over time and we believe that'll be Kubernetes. >> So Alex saw the need for a dominant container orchestration platform. And you heard him, they made the right bet. It would be Kubernetes. Now Red Hat, Red Hat is been around since 1993. So it has a lot of on-prem. So it needed a future path to the cloud. So they rang up Google and said, hey. What do you guys have going on in this space? So Google, was kind of non-committal, but it did expose that they were thinking about doing something that was you know, pre Kubernetes. It was before it was called Kubernetes. But hey, we have this thing and we're thinking about open sourcing it, but Google's internal debates, and you know, some of the arm twisting from the engine engineers, it was taking too long. So Red Hat said, well, screw it. We got to move forward with OpenShift. So we'll do what Apple and Airbnb and Heroku are doing and we'll build on an alternative. And so they were ready to go with Mesos which was very much more sophisticated than Kubernetes at the time and much more mature, but then Google the last minute said, hey, let's do this. So Clayton Coleman with Red Hat, he was an architect. And he leaned in right away. He was one of the first outside committers outside of Google. But you still led these competing forces in the market. And internally there were debates. Do we go with simplicity or do we go with system scale? And Hen Goldberg from Google explains why they focus first on simplicity in getting that right. >> We had to defend of why we are only supporting 100 nodes in the first release of Kubernetes. And they explained that they know how to build for scale. They've done that. They know how to do it, but realistically most of users don't need large clusters. So why create this complexity? >> So Goldberg explains that rather than competing right away with say Mesos or Docker swarm, which were far more baked they made the bet to keep it simple and go for adoption and ubiquity, which obviously turned out to be the right choice. But the last piece of the puzzle was governance. Now Google promised to open source Kubernetes but when it started to open up to contributors outside of Google, the code was still controlled by Google and developers had to sign Google paper that said Google could still do whatever it wanted. It could sub license, et cetera. So Google had to pass the Baton to an independent entity and that's how CNCF was started. Kubernetes was its first project. And let's listen to Chris Aniszczyk of the CNCF explain >> CNCF is all about providing a neutral home for cloud native technology. And, you know, it's been about almost two years since our first board meeting. And the idea was, you know there's a certain set of technology out there, you know that are essentially microservice based that like live in containers that are essentially orchestrated by some process, right? That's essentially what we mean when we say cloud native right. And CNCF was seated with Kubernetes as its first project. And you know, as, as we've seen over the last couple years Kubernetes has grown, you know, quite well they have a large community a diverse con you know, contributor base and have done, you know, kind of extremely well. They're one of actually the fastest, you know highest velocity, open source projects out there, maybe. >> Okay. So this is how we got to where we are today. This ETR data shows container orchestration offerings. It's the same X Y graph that we showed earlier. And you can see where Kubernetes lands not we're standing that Kubernetes not a company but respondents, you know, they doing Kubernetes. They maybe don't know, you know, whose platform and it's hard with the ETR taxon economy as a fuzzy and survey data because Kubernetes is increasingly becoming embedded into cloud platforms. And IT pros, they may not even know which one specifically. And so the reason we've linked these two platforms Kubernetes and Red Hat OpenShift is because OpenShift right now is a dominant revenue player in the space and is increasingly popular PaaS layer. Yeah. You could download Kubernetes and do what you want with it. But if you're really building enterprise apps you're going to need support. And that's where OpenShift comes in. And there's not much data on this but we did find this chart from AMDA which show was the container software market, whatever that really is. And Red Hat has got 50% of it. This is revenue. And, you know, we know the muscle of IBM is behind OpenShift. So there's really not hard to believe. Now we've got some other data points that show how Kubernetes is becoming less visible and more embedded under of the hood. If you will, as this chart shows this is data from CNCF's annual survey they had 1800 respondents here, and the data showed that 79% of respondents use certified Kubernetes hosted platforms. Amazon elastic container service for Kubernetes was the most prominent 39% followed by Azure Kubernetes service at 23% in Azure AKS engine at 17%. With Google's GKE, Google Kubernetes engine behind those three. Now. You have to ask, okay, Google. Google's management Initially they had concerns. You know, why are we open sourcing such a key technology? And the premise was, it would level the playing field. And for sure it has, but you have to ask has it driven the monetization Google was after? And I would've to say no, it probably didn't. But think about where Google would've been. If it hadn't open source Kubernetes how relevant would it be in the cloud discussion. Despite its distant third position behind AWS and Microsoft or even fourth, if you include Alibaba without Kubernetes Google probably would be much less prominent or possibly even irrelevant in cloud, enterprise cloud. Okay. Let's wrap up with some comments on the state of Kubernetes and maybe a thought or two about, you know, where we're headed. So look, no shocker Kubernetes for all its improbable beginning has gone mainstream in the past year or so. We're seeing much more maturity and support for state full workloads and big ecosystem support with respect to better security and continued simplification. But you know, it's still pretty complex. It's getting better, but it's not VMware level of maturity. For example, of course. Now adoption has always been strong for Kubernetes, for cloud native companies who start with containers on day one, but we're seeing many more. IT organizations adopting Kubernetes as it matures. It's interesting, you know, Docker set out to be the system of the cloud and Kubernetes has really kind of become that. Docker desktop is where Docker's action really is. That's where Docker is thriving. It sold off Docker swarm to Mirantis has made some tweaks. Docker has made some tweaks to its licensing model to be able to continue to evolve its its business. To hear more about that at DockerCon. And as we said, years ago we expected Kubernetes to become less visible Stu Miniman and I talked about this in one of our predictions post and really become more embedded into other platforms. And that's exactly what's happening here but it's still complicated. Remember, remember the... Go back to the early and mid cycle of VMware understanding things like application performance you needed folks in lab coats to really remediate problems and dig in and peel the onion and scale the system you know, and in some ways you're seeing that dynamic repeated with Kubernetes, security performance scale recovery, when something goes wrong all are made more difficult by the rapid pace at which the ecosystem is evolving Kubernetes. But it's definitely headed in the right direction. So what's next for Kubernetes we would expect further simplification and you're going to see more abstractions. We live in this world of almost perpetual abstractions. Now, as Kubernetes improves support from multi cluster it will be begin to treat those clusters as a unified group. So kind of abstracting multiple clusters and treating them as, as one to be managed together. And this is going to create a lot of ecosystem focus on scaling globally. Okay, once you do that, you're going to have to worry about latency and then you're going to have to keep pace with security as you expand the, the threat area. And then of course recovery what happens when something goes wrong, more complexity, the harder it is to recover and that's going to require new services to share resources across clusters. So look for that. You also should expect more automation. It's going to be driven by the host cloud providers as Kubernetes supports more state full applications and begins to extend its cluster management. Cloud providers will inject as much automation as possible into the system. Now and finally, as these capabilities mature we would expect to see better support for data intensive workloads like, AI and Machine learning and inference. Schedule with these workloads becomes harder because they're so resource intensive and performance management becomes more complex. So that's going to have to evolve. I mean, frankly, many of the things that Kubernetes team way back when, you know they back burn it early on, for example, you saw in Docker swarm or Mesos they're going to start to enter the scene now with Kubernetes as they start to sort of prioritize some of those more complex functions. Now, the last thing I'll ask you to think about is what's next beyond Kubernetes, you know this isn't it right with serverless and IOT in the edge and new data, heavy workloads there's something that's going to disrupt Kubernetes. So in that, by the way, in that CNCF survey nearly 40% of respondents were using serverless and that's going to keep growing. So how is that going to change the development model? You know, Andy Jassy once famously said that if they had to start over with Amazon retail, they'd start with serverless. So let's keep an eye on the horizon to see what's coming next. All right, that's it for now. I want to thank my colleagues, Stephanie Chan who helped research this week's topics and Alex Myerson on the production team, who also manages the breaking analysis podcast, Kristin Martin and Cheryl Knight help get the word out on socials, so thanks to all of you. Remember these episodes, they're all available as podcasts wherever you listen, just search breaking analysis podcast. Don't forget to check out ETR website @etr.ai. We'll also publish. We publish a full report every week on wikibon.com and Silicon angle.com. You can get in touch with me, email me directly david.villane@Siliconangle.com or DM me at D Vollante. You can comment on our LinkedIn post. This is Dave Vollante for theCUBE insights powered by ETR. Have a great week, everybody. Thanks for watching. Stay safe, be well. And we'll see you next time. (upbeat music)
SUMMARY :
bringing you data driven and many of the players And that the beauty of this And so the beauty of this He saw the need to simplify It's the format in which A Docker at the time was a 30% company And so, the union of Docker and Kubernetes and said, you know, we And the odd thing to recognize is that, at the time. And so scaling that up, you and pressed hard to convince them and said, you know, please And he saw the need to And that's the stuff that Kubernetes and you know, some of the arm twisting in the first release of Kubernetes. of Google, the code was And the idea was, you know and dig in and peel the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Stephanie Chan | PERSON | 0.99+ |
Chris Aniszczyk | PERSON | 0.99+ |
Hockin | PERSON | 0.99+ |
Dave Vollante | PERSON | 0.99+ |
Solomon Hykes | PERSON | 0.99+ |
Craig McLuckie | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Jerry Chen | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
Brian Grant | PERSON | 0.99+ |
Eric Brewer | PERSON | 0.99+ |
1998 | DATE | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Tim Hockin | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
Alex Polvi | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Craig McLuckie | PERSON | 0.99+ |
Clayton Coleman | PERSON | 0.99+ |
2018 | DATE | 0.99+ |
2014 | DATE | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
50% | QUANTITY | 0.99+ |
Jerry | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
2012 | DATE | 0.99+ |
Joe Beda | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Stu Miniman | PERSON | 0.99+ |
CNCF | ORGANIZATION | 0.99+ |
17% | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
30% | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
23% | QUANTITY | 0.99+ |
iOS | TITLE | 0.99+ |
1800 respondents | QUANTITY | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
2015 | DATE | 0.99+ |
39% | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
Hen Goldberg | PERSON | 0.99+ |
fourth | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Chad Sakac | PERSON | 0.99+ |
three | QUANTITY | 0.99+ |
david.villane@Siliconangle.com | OTHER | 0.99+ |
first project | QUANTITY | 0.99+ |
Craig | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
ETR | ORGANIZATION | 0.99+ |