Brian Gilmore, Influx Data | Evolving InfluxDB into the Smart Data Platform
>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now, in this program, we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program, you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think, like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean, if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems. Certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean, commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away. Just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean, we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is, you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like, take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and, you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally, I would just say please, like watch in ice in Tim's sessions, Like these are two of our best and brightest. They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time, really hot area. As Brian said in a moment, I'll be right back with Anna East Dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't want to miss this.
SUMMARY :
we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. who are using out on a, on a daily basis, you know, and having that sort of big shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, results in, in, you know, milliseconds of time since it hit the, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try you know, the risk of, of, you know, any issues that can come with new software rollouts. And you can do some experimentation and, you know, using the cloud resources. but you know, when it came to this particular new engine, you know, that power performance really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is, you know, really starting to hit that steep part of the S-curve. going out and, you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. the critical aspects of key open source components of the Influx DB engine,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
60,000 people | QUANTITY | 0.99+ |
Influx | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Bryan | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
twice | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
three years ago | DATE | 0.99+ |
Influx DB | TITLE | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
tomorrow | DATE | 0.98+ |
Apache | ORGANIZATION | 0.98+ |
Anna East Dos Georgio | PERSON | 0.98+ |
IOT | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
In Flux Data | ORGANIZATION | 0.96+ |
Influx | TITLE | 0.95+ |
The Cube | ORGANIZATION | 0.95+ |
tons | QUANTITY | 0.95+ |
Cube | ORGANIZATION | 0.94+ |
Rust | TITLE | 0.93+ |
both enterprises | QUANTITY | 0.92+ |
iot T | TITLE | 0.91+ |
second | QUANTITY | 0.89+ |
Go | TITLE | 0.88+ |
two thumbs | QUANTITY | 0.87+ |
Anna East | PERSON | 0.87+ |
Parque | TITLE | 0.85+ |
a minute ago | DATE | 0.84+ |
Influx State | ORGANIZATION | 0.83+ |
Dos Georgio | ORGANIZATION | 0.8+ |
influx data | ORGANIZATION | 0.8+ |
Apache Arrow | ORGANIZATION | 0.76+ |
GitHub | ORGANIZATION | 0.75+ |
Bryan | LOCATION | 0.74+ |
phase one | QUANTITY | 0.71+ |
past May | DATE | 0.69+ |
Go | ORGANIZATION | 0.64+ |
number two | QUANTITY | 0.64+ |
millisecond ago | DATE | 0.61+ |
InfluxDB | TITLE | 0.6+ |
Time | TITLE | 0.55+ |
industrial | QUANTITY | 0.54+ |
phase two | QUANTITY | 0.54+ |
Parque | COMMERCIAL_ITEM | 0.53+ |
couple | QUANTITY | 0.5+ |
time | TITLE | 0.5+ |
things | QUANTITY | 0.49+ |
TSI | ORGANIZATION | 0.4+ |
Arrow | TITLE | 0.38+ |
PARQUE | OTHER | 0.3+ |
Brian Gilmore, InfluxData
(soft upbeat music) >> Okay, we're kicking things off with Brian Gilmore. He's the director of IoT, an emerging technology at InfluxData. Brian, welcome to the program. Thanks for coming on. >> Thanks, Dave, great to be here. I appreciate the time. >> Hey, explain why InfluxDB, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >> No, no, not at all. I mean, I think, for us it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like SQL query support, things like that, we have to figure out a way to execute those for them in a way that will scale long term. And then we also want to make sure we're innovating, we're sort of staying ahead of the market as well, and sort of anticipating those future needs. So, you know, this is really a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine. But, you know, initially, the customers who are using us are going to see just great improvements in performance, you know, especially those that are working at the top end of the workload scale, you know, the massive data volumes and things like that. >> Yeah, and we're going to get into that today and the architecture and the like. But what was the catalyst for the enhancements? I mean, when and how did this all come about? >> Well, I mean, like three years ago, we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product. And sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was a long journey. (chuckles) I guess, you know, phase one was, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to optimize for like multi-tenant, multi-cloud, be able to host it in a truly like SAS manner where we could use, you know, some type of customer activity or consumption as the pricing vector. And that was sort of the birth of the real first InfluxDB cloud, you know, which has been really successful. We've seen, I think, like 60,000 people sign up. And we've got tons and tons of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a daily basis. And having that sort of big pool of very diverse and varied customers to chat with as they're using the product, as they're giving us feedback, et cetera, has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that, and then also making these big leaps as we're doing with this new engine. >> All right, so you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really want to understand how much of a pivot this is, and what does it take to make that shift from, you know, time series specialist to real time analytics and being able to support both? >> Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. Time series data is always going to be fundamental in sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. The time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics. If we're being honest though, I think our user base is well aware that the way we were architected was much more towards those sort of like backwards-looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a time to response on the queries, and can we get that to the point where the result sets are coming back so quickly from the time of query that we can like, limit that window down to minutes and then seconds? And now with this new engine, we're really starting to talk about a query window that could be like returning results in, you know, milliseconds of time since it hit the ingest queue. And that's really getting to the point where, as your data is available, you can use it and you can query it, you can visualize it, you can do all those sort of magical things with it. And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the real time queries, the multiple language query support. But, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a limited number of customers, strategic customers and strategic availabilities zones to start, but, you know, everybody over time. >> So you're basically going from what happened to, and you can still do that, obviously, but to what's happening now in the moment? >> Yeah. Yeah. I mean, if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the underlying data collection, the architecture, the infrastructure, the devices, and you know, the sort of highly distributed nature of all of this. So, yeah, I mean, getting a customer or a user to be able to use the data as soon as it is available, is what we're after here. I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >> Yeah, I mean, it is operationally, or operational real time is different. And that's one of the things that really triggered us to know that we were heading in the right direction is just how many sort of operational customers we have, you know, everything from like aerospace and defense. We've got companies monitoring satellites. We've got tons of industrial users using us as a process historian on the plant floor. And if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're going to do here is we're going to start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their historians and databases. >> Is this available, these innovations to InfluxDB cloud customers, only who can access this capability? >> Yeah, I mean, commercially and today, yes. I think we want to emphasize that for now our goal is to get our latest and greatest and our best to everybody over time of course. You know, one of the things we had to do here was like we doubled down on sort of our commitment to open source and availability. So, like, anybody today can take a look at the libraries on our GitHub and can inspect it and even can try to implement or execute some of it themselves in their own infrastructure. We are committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. And so just, you know, being careful, maybe a little cautious in terms of how big we go with this right away. Just sort of both limits, you know, the risk of any issues that can come with new software roll outs, we haven't seen anything so far. But also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products. But once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's going to be exciting time for the whole ecosystem. >> Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are going to help deliver on this vision. What should we know there? >> Well, I mean, I think, foundationally, we built the new core on Rust. This is a new very sort of popular systems language. It's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well, and if it does find error conditions. I mean, we've loved working with Go, and a lot of our libraries will continue to be sort of implemented in Go, but when it came to this particular new engine, that power performance and stability of Rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parquet for persistence. I think, for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our time series merge trees, this is a big break from that. You know, Arrow on the sort of in mem side and then Parquet in the on disk side. It allows us to present, you know, a unified set of APIs for those really fast real time queries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that Parquet format, which is also cool because there's an entire ecosystem sort of popping up around Parquet in terms of the machine learning community. And getting that all to work, we had to glue it together with Arrow Flight. That's sort of what we're using as our RPC component. It handles the orchestration and the transportation of the columnar data now, we're moving to like a true columnar database model for this version of the engine. You know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like, blurring that line between real time and historical data, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >> Yeah, again, I mean, it's funny. You mentioned Rust. It's been around for a long time but it's popularity is, you know, really starting to hit that steep part of the S-curve. And we're going to dig into more of that, but give us, is there anything else that we should know about, Brian? Give us the last word. >> Well, I mean, I think first, I'd like everybody sort of watching, just to like, take a look at what we're offering in terms of early access in beta programs. I mean, if you want to participate or if you want to work sort of in terms of early access with the new engine, please reach out to the team. I'm sure, you know, there's a lot of communications going out and it'll be highly featured on our website. But reach out to the team. Believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to, because we can flip a lot of stuff on, especially in cloud through feature flags. But if there's something new that you want to try out, we'd just love to hear from you. And then, you know, our goal would be, that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to sort of build the next versions of your business. Because, you know, the whole database, the ecosystem as it expands out into this vertically-oriented stack of cloud services, and enterprise databases, and edge databases, you know, it's going to be what we all make it together, not just those of us who are employed by InfluxDB. And then finally, I would just say, please, like, watch and Anais' and Tim's sessions. Like, these are two of our best and brightest. They're totally brilliant, completely pragmatic, and they are most of all customer-obsessed, which is amazing. And there's no better takes, like honestly, on the sort of technical details of this than theirs, especially when it comes to the value that these investments will bring to our customers and our communities. So, encourage you to, you know, pay more attention to them than you did to me, for sure. >> Brian Gilmore, great stuff. Really appreciate your time. Thank you. >> Yeah, thanks David, it was awesome. Looking forward to it. >> Yeah, me too. I'm looking forward to see how the community actually applies these new innovations and goes beyond just the historical into the real time. Really hot area. As Brian said, in a moment, I'll be right back with Anais Dotis-Georgiou to dig into the critical aspects of key open source components of the InfluxDB engine, including Rust, Arrow, Parquet, Data Fusion. Keep it right there. You don't want to miss this. (soft upbeat music)
SUMMARY :
He's the director of IoT, I appreciate the time. you know, needs a new engine. sort of with now, you know, and the architecture and the like. I guess, you know, phase one was, that the way we were architected the devices, and you know, in terms of, you know, the And so just, you know, being careful, experimentation and, you know, in a way that is, you know, but it's popularity is, you know, And then, you know, our goal would be, Really appreciate your time. Looking forward to it. and goes beyond just the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Brian Gilmore | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
60,000 people | QUANTITY | 0.99+ |
InfluxData | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
three years ago | DATE | 0.99+ |
twice | QUANTITY | 0.99+ |
Parquet | TITLE | 0.99+ |
both | QUANTITY | 0.98+ |
Anais' | PERSON | 0.98+ |
first | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
Rust | TITLE | 0.98+ |
one | QUANTITY | 0.98+ |
a minute ago | DATE | 0.95+ |
two thumbs | QUANTITY | 0.95+ |
Arrow | TITLE | 0.94+ |
Anais Dotis-Georgiou | PERSON | 0.92+ |
tons | QUANTITY | 0.9+ |
InfluxDB | TITLE | 0.85+ |
Bri | PERSON | 0.82+ |
Apache | ORGANIZATION | 0.82+ |
InfluxDB | ORGANIZATION | 0.8+ |
GitHub | ORGANIZATION | 0.78+ |
phase one | QUANTITY | 0.73+ |
both enterprises | QUANTITY | 0.69+ |
SAS | ORGANIZATION | 0.68+ |
phase two | QUANTITY | 0.67+ |
Go | TITLE | 0.65+ |
Gilmore | PERSON | 0.63+ |
millisecond ago | DATE | 0.62+ |
Arrow | ORGANIZATION | 0.59+ |
Flight | ORGANIZATION | 0.52+ |
Data Fusion | TITLE | 0.46+ |
Go | ORGANIZATION | 0.41+ |
Brian Gilmore, InfluxData
>>Okay. Now we're joined by Brian Gilmore, director of IOT and emerging technologies at influx data. Welcome to the show. >>Thank you, John. Great to be >>Here. We just spent some time with Evan going through the company and the value proposition, um, with influx DB, what's the momentum. What do see this coming from? What's the value coming out of this? >>Well, I think it, we're sort of hitting a point where the technology is, is like the adoption of it is becoming mainstream. We're seeing it in all sorts of organizations, everybody from like the most well funded sort of advanced big technology companies to the smaller academics, the startups and the managing of that sort, sort of data that emits from that technology is time series and us being able to give them a, a platform, a tool that's super easy to use, easy to start. And then of course we'll grow with them is, has been key to us, sort of, you know, riding along with them is they're successful. >>Evan was mentioning that time series has been on everyone's radar and that's in the OT business for years. Now, you go back 20 13, 14, even like five years ago that convergence of physical and digital coming together, IP enabled edge. Yeah. Edge has always been kind of hyped up, but why now? Why, why is the edge so hot right now from an adoption standpoint? Is it because it's just evolution, the tech getting better? >>I think it's, it's, it's twofold. I think that, you know, there was, I would think for some people, everybody was so focused on cloud over the last probably 10 years. Mm-hmm <affirmative> that they forgot about the compute that was available at the edge. And I think, you know, those, especially in the OT and on the factory floor who weren't able to take advantage full advantage of cloud through their applications, you know, still needed to be able to leverage that compute at the edge. I think the big thing that we're seeing now, which is trusting is, is that there's like a hybrid nature to all of these applications where there is definitely some data that's generated on the edge. There's definitely done some data that's generated in the cloud. And it's the ability for a developer to sort of like tie those two systems together and work with that data in a very unified uniform way. Um, that's giving them the opportunity to build solutions that, you know, really deliver value to whatever it is they're trying to do, whether it's, you know, the, the outer reaches of outer space or whether it's optimizing the factory floor. >>Yeah. I think, I think one of the things you also mentioned genome too, dig big data is coming to the real world. And I think I, I O T has been kind of like this thing for OT and, and some use case, but now with the, with the cloud, all companies have an edge strategy now. So yeah, what's the secret sauce because now this is hot, hot product for the whole world and not just industrial, but all businesses. What's the secret sauce. >>Well, I mean, I think part of it is just that the technology is becoming more capable and that's especially on the hardware side, right? I mean, like technology compute is getting smaller and smaller and smaller. And we find that by supporting all the way down to the edge, even to the micro controller layer with our, um, you know, our client libraries and then working hard to make our applications, especially the database as small as possible so that it can be located as close to sort of the point of origin of that data in the edge as possible is, is, is fantastic. Now you can take that. You can run that locally. You can do your local decision making. You can use influx DB as sort of an input to automation control the autonomy that people are trying to drive at the edge, but when you link it up with everything that's in the cloud, that's when you get all of the sort of cloud scale capabilities of parallel eyes, AI, and machine learning and all of that. So >>What's interesting is the open source success has been something that we've talked about a lot in the cube about how people are leveraging that you guys have users in the enterprise users at I O T market mm-hmm <affirmative>, but you got developers now. Yeah. Kind of together brought that up. How do you see that emerging? How do developers engage? What are some of, as you're seeing that developers are really getting into with influx DB what's >>Yeah. Well, I mean, I think there are the developers who are building companies, right? I mean, these are the startups and the folks that we love to work with who are building new, you know, new services, new products, things like that. And, you know, especially on the consumer side of, I T there's a lot of that, just those developers, but I think we, you gotta pay attention to those enterprise develop as well, right? There are tons of people with the, the title of engineer in, in your regular enterprise organizations. And they're there for a systems integration. They're there for, you know, looking at what they would build versus what they would buy. And a lot of them come from, you know, a strong, open source background and they, they know the communities, they know the top platforms in those spaces and, and, you know, they're excited to be able to adopt and use, you know, to optimize inside the business as compared to just building a brand new one. >>You know, it's interesting too, when Evan and I were talking about open source versus closed OT systems, mm-hmm <affirmative> so how do you support the backwards compatibility of older systems while maintaining opens dozens of data formats out there? A bunch of standards, protocols, new things are emerging, and everyone wants to have a control plane. Everyone wants to leverage the value of data. How do you guys keep track of it all? What do you guys support? >>Yeah, well, I mean, I think either through direct connection, like we have a product called Telegraph, it's unbelievable. It's open source, it's an edge agent. You can run it as close to the edge as you'd like, it speaks dozens of different protocols and its own, right. A couple of which M Q T T UA are very, very, um, applicable to these IOT use cases. But then we also, because we are sort of not only open source, but open in terms of our ability to collect data, we have a lot of partners who have built really great integrations from their own middleware, into influx DB. These are companies like cap wire and high by who are really experts in those downstream industrial protocols. I mean, that's a business, not everybody wants to be in. It requires some very specialized, very hard work and a lot of support, um, you know, and so by making those connections and building those ecosystems, we get the best of both worlds. The customers can use the platforms they need up to the point where they would be putting into our database. >>What's some of the customer testimonies that they, that share with you. Can you share some anecdotal, all kind of like, wow, that's the best thing I've ever used. That's really changed my business. Or this is a great tech that didn't helped me in these other areas. What are some of the, um, sound bites you hear from customers when they're successful? >>Yeah. I mean, I think it ranges. You've got customers who are, you know, just finally being able to do the monitoring of assets, you know, sort of at the edge in the field, we have a customer who's who has these tunnel boring machines that go deep into the earth to like drill tunnels for, for, you know, cars and, and, you know, trains and things like that. You know, they are just excited to be able to stick a database onto those tunnel, boring machines, send them in to the depths of the earth and know that when they come out, all of that telemetry at a very high frequency has been like safely stored. And then it can just very quickly and instantly connect up to their, you know, centralized database. So like just having that visibility is brand new to them. And that's super important. On the other hand, you have customers who are way far beyond the monitoring use case. >>We're, they're actually using the historical records in the time series database to, um, like I think Evan mentioned like forecast things. So for predictive maintenance, being able to pull in the telemetry from the machines, but then also all of that external enrichment data, the metadata, the temperatures, the pressures who was operating the machine, those types of things, and being able to of easily integrate with platforms like Jupyter notebooks. Yeah. Or, you know, all of those scientific computing and machine learning libraries to be able to build the models, train the models, and then they can send that information back down to influx TV to apply it and detect those anomalies, which >>Are, I think that's gonna be an, an area. I personally think that's a hot area because I think if you look at AI right now yeah. It's all about two training, the machine learning albums after the fact. So time series becomes hugely important. Yeah. Cause now you're thinking, okay, the data matters post time. Yeah. For sure. And then it gets updated the new time. Yeah. So it's like constant data cleansing data iteration, data programming. We're starting to see this new use case emerge in the data feed. Yep. >>Yeah. I mean, I think >>You >>Agree. Yeah, of course. Yeah. The, the ability to sort of handle those pipelines of data smartly, um, intelligently, and then to be able to do all of the things you need to do with that data in stream, um, before it hits your sort of central repository. And, and we make that really easy for customers like Telegraph, not only does it have sort of the inputs to connect up to all of those protocols and the ability to capture and connect up to the, to the partner data. But also it has a whole bunch of capabilities around being able to process that data, enrich it, reformat it, route it, do whatever you need. So at that point you're basically able to, you're playing your data in exactly the way you would wanna do it. You're routing it to D and you know, destinations and, and it's, it's, it's not something that really has been in the realm of possibility until this point. Yeah. >>Yeah. And when Evan was on it's great. He was a CEO. So he sees the big picture with customers. He was, he kind of put the package together that said, Hey, we got a system. We got customers, people are wanting to leverage our product. What's your PO they're sell, he's selling too as well. So you have that whole C your perspective, but he brought up this notion that there's multiple personas involved in kind of the influx DB system architect. You got developers and users. Can you talk about that? Reality as customers start to commercialize and operationalize this from a commercial standpoint, you got a relationship to the cloud. Yep. The edge is there. Yep. The edge is getting super important, but cloud brings a lot of scale to the table. So what is the relationship to the cloud? Can you share your thoughts on edge and its relationship to the cloud? Yeah. >>I mean, I think edge, you know, edge is you can think of it really as like the local information, right? So it's, it's generally like compartmentalized to a point of like, you know, a single asset or a single factory align, whatever. Um, but what people do who wanna pro they wanna be able to make the decisions there at the edge locally, um, quickly minus the latency of sort of taking that large volume of data, shipping it to the cloud and doing something with it there. So we allow, allow them to do exactly that. Then what they can do is they can actually down sample that data or they can, you know, detect like the really important metrics or the anomalies. And then they can ship that to a central database in the cloud where they can do all sorts of really interesting things with it. Like you can get that centralized view of all of your global assets. You can start to compare asset to asset, and then you can do as things like we talked about, whereas you can do predictive types of analytics or, you know, larger scale anomaly >>Detections. So in this model you have a lot of commercial operations, industrial equipment. Yep. The physical plant, physical business with virtual data cloud all coming together. What's the future for influx DB from a tech standpoint. Cause you got open. Yep. There's an ecosystem there. Yep. You have customers who want operational reliability for sure. I mean, so you got organic <laugh> >>Yeah. Yeah. I mean, I think, you know, again, we got iPhones when everybody's waiting for flying cars. Right. So I don't know. We can like absolutely perfectly predict what's coming, but I think there are some givens and I think those givens are gonna be that the world is only gonna become more hybrid. Right. And then, you know, so we are going to have much more widely distributed, you know, situations where you have data being generated in the cloud, you have data gen being generated at the edge and then there's gonna be data generated sort sort of at all points in between like physical locations as well as things that are, that are very virtual. And I think, you know, we are, we're building some technology right now. That's going to allow, um, the concept of a database to be much more fluid and flexible, sort of more aligned with what a file would be like. >>And so being able to move data to the compute for analysis or move the compute to the data for analysis, those are the types of, of solution is that we'll be bringing to the customers sort of over the next little bit. Um, but I also think we have to start thinking about like what happens when the edge is actually off the planet, right. I mean, we've got customers, you're gonna talk to two of them, uh, in the panel who are actually working with data that comes from like outside the earth. Like, you know, either in low earth orbit or, you know, all the, you sort of on the other side of the universe and, and to be able to process data like that and to do so in a way it's it's we gotta, we gotta build the fundamentals for that right now on the factory floor and in the mines and in the tunnels. Um, so that we'll be ready for that >>One. I think you bring up a good point there because one of the things that's common in the industry right now, people are talking about, this is kind of new thinking is hyper scale's always been built up full stack developers, even the old OT world that Evan was pointing out, that they built everything. Right. And the world's going into more assembly with core competency and IP and also property being the core of their apple. So faster assembly and building <affirmative>, but also integration. You got all this new stuff happening. Yeah. And that's to separate out the data complexity from the app. Yes. So space genome. Yep. Driving cars throws off massive data. >>It does. >>So is Tesla and there is the car the same as the data layer. >>I mean, yeah. It's, it's certainly a point of origin. I think the thing that we wanna do is we wanna let the developers work on the world, changing problems, the things that they're trying to solve, whether it's, you know, energy or, you know, any of the other health or, you know, other challenges that these teams are, are building against. And we'll worry about that time series data in the underlying data platforms so that they don't have to. Right. I mean, I think you talked about it, uh, you know, for them just to be able to adopt the platform quickly, integrate it with their data sources and the other pieces of their applications. It's going to allow them to bring much faster time to market on these products. It's gonna allow them to be more iterative. They're gonna be able to do more sort of testing and things like that. And ultimately will it'll accelerate the adoption and the creation of >>Technology. You mentioned earlier in, in our talk about unification of data. Yeah. How about APIs? Cuz developers love APIs in the cloud unifying APIs. How do you view view that? >>Yeah, I mean, we are APIs, that's the product itself. Like everything people like to think of it is sort of having this nice front end, but the front end is B built on our public APIs. Um, you know, and it, it allows the developer to build all of those hooks for not only data creation, but then data processing, data analytics, and then, you know, sort of data extraction to bring it to other platforms or other applications, microservices, whatever it might be. So, I mean, it is a world of APIs right now and you know, we, we bring a very sort of useful set of them for managing the time series data. These guys are all challenged with. >>It's interesting. You and I were talking before we came on camera about how, um, data feels gonna have this kind of SRE role that DevOps had site reliability engineers, which managed a bunch of there's so much data out there now. Yeah. >>Yeah. It's like raining data for sure. And I think like that ability to like one of the best jobs on the planet is gonna be to be able to like, sort of be that data Wrangler, to be able to understand like what the data sources are, what the data formats are, how to be able to efficiently move that data from point a to point B and you know, to process it correctly so that the end users of that data aren't doing any of that sort of hard upfront preparation collection, storage work >>That's data as code. I mean, data engineering. It is, it is becoming a new discipline it for sure. And, and the democratization is the benefit. Yeah. To everyone, data science get easier. I mean, data science, but they wanna make it easy. Right. <laugh> yeah. They wanna do the analysis, right? >>Yeah. I mean, I think, you know, it's, it's a really good point. I think like we try to give our users as many ways as there could be possible to get data in and get data out. We sort of think about it as meeting them where they are. Right. So like we build, we have the sort of client libraries that allow them to just port to us, you know, directly from the applications and the languages that they're writing, but then they can also pull it out. And at that point nobody's gonna know the users, the end consumers of that data, better than those people who are building those applications. And so they're building these users and interfaces, which are making all of that data accessible for, you know, their end users inside their organization. >>Well, Brian, great segment, great insight. Thanks for sharing all, all the complexities and, and IOT that you guys help take away with APIs and, and assembly and, and all the system architectures that are changing edge is real cloud is real, absolutely mainstream enterprises. New got developer attraction too. So congratulations. >>Yeah. It's >>Great. Well, thank you. Any, any last word you wanna share >>Deal with? No, just, I mean, please, you know, if you're, if you're gonna, if you're gonna check out influx TV, download it, try out the open source contribute if you can. That's a, that's a huge thing. It's part of being the open source community. Um, you know, but definitely just, just use it. I think once people use it, they try it out. They'll understand very, very >>Quickly awesome open source with developers, enterprise and edge coming together >>All together all together. You're gonna hear more about that in the next segment, too. >>Thanks for coming on. Okay. Thanks. When we return, Dave Lon will lead a panel on edge and data influx DB. You're watching the cube, the leader and high tech enterprise coverage.
SUMMARY :
Welcome to the show. What's the value coming out of this? has been key to us, sort of, you know, riding along with them is they're successful. Now, you go back 20 13, 14, even like five years ago that convergence of physical to take advantage full advantage of cloud through their applications, you know, still needed to be able to leverage that And I think I, I O T has been kind of like this thing for OT and, all the way down to the edge, even to the micro controller layer with our, um, you know, that you guys have users in the enterprise users at I O T market mm-hmm <affirmative>, they're excited to be able to adopt and use, you know, to optimize inside the business as compared to just building How do you guys keep track of it all? very hard work and a lot of support, um, you know, and so by making those connections and building those What are some of the, um, sound bites you hear from customers when they're successful? machines that go deep into the earth to like drill tunnels for, for, you know, Or, you know, all of those scientific computing and machine learning libraries to be able to build I personally think that's a hot area because I think if you look at AI right now You're routing it to D and you know, So you have that whole C your perspective, but he brought up this notion that I mean, I think edge, you know, edge is you can think of it really as like the local information, I mean, so you got organic <laugh> And I think, you know, we are, we're building some technology right now. Like, you know, either in low earth orbit or, you know, all the, you sort of on the other side of And that's to separate out the data complexity from the app. I mean, I think you talked about it, uh, you know, for them just to be able to adopt How do you view view that? but then data processing, data analytics, and then, you know, sort of data extraction to bring it to other kind of SRE role that DevOps had site reliability engineers, which managed a bunch of there's how to be able to efficiently move that data from point a to point B and you know, and the democratization is the benefit. that allow them to just port to us, you know, directly from the applications and you guys help take away with APIs and, and assembly and, and all the system architectures that are changing Any, any last word you wanna share No, just, I mean, please, you know, if you're, if you're gonna, if you're gonna check out influx TV, You're gonna hear more about that in the next segment, too. When we return, Dave Lon will lead a panel on edge
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
Evan | PERSON | 0.99+ |
Dave Lon | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
two systems | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
dozens | QUANTITY | 0.99+ |
iPhones | COMMERCIAL_ITEM | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
apple | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.97+ |
both worlds | QUANTITY | 0.96+ |
five years ago | DATE | 0.96+ |
earth | LOCATION | 0.95+ |
IOT | ORGANIZATION | 0.94+ |
two training | QUANTITY | 0.94+ |
Telegraph | ORGANIZATION | 0.9+ |
single | QUANTITY | 0.9+ |
InfluxData | ORGANIZATION | 0.89+ |
single asset | QUANTITY | 0.87+ |
Jupyter | ORGANIZATION | 0.84+ |
One | QUANTITY | 0.82+ |
dozens of data formats | QUANTITY | 0.8+ |
influx | ORGANIZATION | 0.79+ |
DevOps | ORGANIZATION | 0.72+ |
10 years | QUANTITY | 0.68+ |
tons of people | QUANTITY | 0.66+ |
T | OTHER | 0.63+ |
different | QUANTITY | 0.59+ |
them | QUANTITY | 0.57+ |
20 13 | DATE | 0.55+ |
twofold | QUANTITY | 0.54+ |
14 | DATE | 0.38+ |
Evolving InfluxDB into the Smart Data Platform
>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now in this program we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away, just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally I would just say please, like watch in ICE in Tim's sessions, like these are two of our best and brightest, They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time really hot area. As Brian said in a moment, I'll be right back with Anna East dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't wanna miss this >>Time series Data is everywhere. The number of sensors, systems and applications generating time series data increases every day. All these data sources producing so much data can cause analysis paralysis. Influx DB is an entire platform designed with everything you need to quickly build applications that generate value from time series data influx. DB Cloud is a serverless solution, which means you don't need to buy or manage your own servers. There's no need to worry about provisioning because you only pay for what you use. Influx DB Cloud is fully managed so you get the newest features and enhancements as they're added to the platform's code base. It also means you can spend time building solutions and delivering value to your users instead of wasting time and effort managing something else. Influx TVB Cloud offers a range of security features to protect your data, multiple layers of redundancy ensure you don't lose any data access controls ensure that only the people who should see your data can see it. >>And encryption protects your data at rest and in transit between any of our regions or cloud providers. InfluxDB uses a single API across the entire platform suite so you can build on open source, deploy to the cloud and then then easily query data in the cloud at the edge or on prem using the same scripts. And InfluxDB is schemaless automatically adjusting to changes in the shape of your data without requiring changes in your application. Logic. InfluxDB Cloud is production ready from day one. All it needs is your data and your imagination. Get started today@influxdata.com slash cloud. >>Okay, we're back. I'm Dave Valante with a Cube and you're watching evolving Influx DB into the smart data platform made possible by influx data. Anna ETOs Georgio is here, she's a developer advocate for influx data and we're gonna dig into the rationale and value contribution behind several open source technologies that Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the world of data into real-time analytics and is welcome to the program. Thanks for coming on. >>Hi, thank you so much. It's a pleasure to be here. >>Oh, you're very welcome. Okay, so IX is being touted as this next gen open source core for Influx db. And my understanding is that it leverages in memory of course for speed. It's a kilo store, so it gives you a compression efficiency, it's gonna give you faster query speeds, you store files and object storage, so you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features, but what are the high level value points that people should understand? >>Sure, that's a great question. So some of the main requirements that IOx is trying to achieve and some of the most impressive ones to me, the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want, whether that's live tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metrics queries, we also wanna have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import super useful. Also broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like sql, Python, and maybe even pandas in the future. >>Okay, so lot there. Now we talked to Brian about how you're using Rust and which is not a new programming language and of course we had some drama around Rust during the pandemic with the Mozilla layoffs, but the formation of the Rust Foundation really addressed any of those concerns. You got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really, the adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with rust, but why rust as an alternative to say c plus plus for example? >>Sure, that's a great question. So Russ was chosen because of his exceptional performance and reliability. So while Russ is synt tactically similar to c plus plus and it has similar performance, it also compiles to a native code like c plus plus. But unlike c plus plus, it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers. And dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like c plus plus. So Russ like helps meet that requirement of having no limits on ality, for example, because it's, we're also using the Russ implementation of Apache Arrow and this control over memory and also Russ Russ's packaging system called crates IO offers everything that you need out of the box to have features like AY and a weight to fix race conditions, to protection against buffering overflows and to ensure thread safe async cashing structures as well. So essentially it's just like has all the control, all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high ity use cases. >>Yeah, and the more I learn about the, the new engine and, and the platform IOCs et cetera, you know, you, you see things like, you know, the old days not even to even today you do a lot of garbage collection in these, in these systems and there's an inverse, you know, impact relative to performance. So it looks like you really, you know, the community is modernizing the platform, but I wanna talk about Apache Arrow for a moment. It it's designed to address the constraints that are associated with analyzing large data sets. We, we know that, but please explain why, what, what is Arrow and and what does it bring to Influx db? >>Sure, yeah. So Arrow is a, a framework for defining in memory calmer data. And so much of the efficiency and performance of IOx comes from taking advantage of calmer data structures. And I will, if you don't mind, take a moment to kind of of illustrate why column or data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our stove. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value, maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the stove. Well usually our room temperature is regulated so those values don't change very often. >>So when you have calm oriented st calm oriented storage, essentially you take each row, each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same, then you'll, you might be able to imagine how equal values will then enable each other and when they neighbor each other in the storage format, this provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you wanna define like the men and max value of the temperature in the room across a thousand different points, you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of calmer oriented storage. >>So if you had a row oriented storage, you'd first have to look at every field like the temperature in, in the room and the temperature of the stove. You'd have to go across every tag value that maybe describes where the room is located or what model the stove is. And every timestamp you'd then have to pluck out that one temperature value that you want at that one time stamp and do that for every single row. So you're scanning across a ton more data and that's why Rowe Oriented doesn't provide the same efficiency as calmer and Apache Arrow is in memory calmer data, commoner data fit framework. So that's where a lot of the advantages come >>From. Okay. So you basically described like a traditional database, a row approach, but I've seen like a lot of traditional database say, okay, now we've got, we can handle colo format versus what you're talking about is really, you know, kind of native i, is it not as effective? Is the, is the foreman not as effective because it's largely a, a bolt on? Can you, can you like elucidate on that front? >>Yeah, it's, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why, why RO row oriented storage isn't as efficient as calm, calmer oriented storage. Yeah. >>Got it. So let's talk about Arrow Data Fusion. What is data fusion? I know it's written in Rust, but what does it bring to the table here? >>Sure. So it's an extensible query execution framework and it uses Arrow as it's in memory format. So the way that it helps in influx DB IOCs is that okay, it's great if you can write unlimited amount of cardinality into influx Cbis, but if you don't have a query engine that can successfully query that data, then I don't know how much value it is for you. So Data fusion helps enable the, the query process and transformation of that data. It also has a PANDAS API so that you could take advantage of PANDAS data frames as well and all of the machine learning tools associated with Pandas. >>Okay. You're also leveraging Par K in the platform cause we heard a lot about Par K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Parque and why is it important? >>Sure. So parque is the column oriented durable file format. So it's important because it'll enable bulk import, bulk export, it has compatibility with Python and Pandas, so it supports a broader ecosystem. Par K files also take very little disc disc space and they're faster to scan because again, they're column oriented in particular, I think PAR K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the, the benefits of par k. >>Got it. Very popular. So and he's, what exactly is influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >>Sure. So Influx DB first has contributed a lot of different, different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing with flux. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up, then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >>Yeah. Got it. You got that virtuous cycle going, the people call the flywheel. Give us your last thoughts and kind of summarize, you know, where what, what the big takeaways are from your perspective. >>So I think the big takeaway is that influx data is doing a lot of really exciting things with Influx DB IOx and I really encourage, if you are interested in learning more about the technologies that Influx is leveraging to produce IOCs, the challenges associated with it and all of the hard work questions and you just wanna learn more, then I would encourage you to go to the monthly Tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel look for the influx DDB unders IAC channel specifically to learn more about how to join those office hours and those monthly tech tech talks as well as ask any questions they have about iacs, what to expect and what you'd like to learn more about. I as a developer advocate, I wanna answer your questions. So if there's a particular technology or stack that you wanna dive deeper into and want more explanation about how INFLUX DB leverages it to build IOCs, I will be really excited to produce content on that topic for you. >>Yeah, that's awesome. You guys have a really rich community, collaborate with your peers, solve problems, and, and you guys super responsive, so really appreciate that. All right, thank you so much Anise for explaining all this open source stuff to the audience and why it's important to the future of data. >>Thank you. I really appreciate it. >>All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yoakum, he's the director of engineering for Influx Data and we're gonna talk about how you update a SAS engine while the plane is flying at 30,000 feet. You don't wanna miss this. >>I'm really glad that we went with InfluxDB Cloud for our hosting because it has saved us a ton of time. It's helped us move faster, it's saved us money. And also InfluxDB has good support. My name's Alex Nada. I am CTO at Noble nine. Noble Nine is a platform to measure and manage service level objectives, which is a great way of measuring the reliability of your systems. You can essentially think of an slo, the product we're providing to our customers as a bunch of time series. So we need a way to store that data and the corresponding time series that are related to those. The main reason that we settled on InfluxDB as we were shopping around is that InfluxDB has a very flexible query language and as a general purpose time series database, it basically had the set of features we were looking for. >>As our platform has grown, we found InfluxDB Cloud to be a really scalable solution. We can quickly iterate on new features and functionality because Influx Cloud is entirely managed, it probably saved us at least a full additional person on our team. We also have the option of running InfluxDB Enterprise, which gives us the ability to even host off the cloud or in a private cloud if that's preferred by a customer. Influx data has been really flexible in adapting to the hosting requirements that we have. They listened to the challenges we were facing and they helped us solve it. As we've continued to grow, I'm really happy we have influx data by our side. >>Okay, we're back with Tim Yokum, who is the director of engineering at Influx Data. Tim, welcome. Good to see you. >>Good to see you. Thanks for having me. >>You're really welcome. Listen, we've been covering open source software in the cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem. The cloud has been being built out on open source, mobile, social platforms, key databases, and of course influx DB and influx data has been a big consumer and contributor of open source software. So my question to you is, where have you seen the biggest bang for the buck from open source software? >>So yeah, you know, influx really, we thrive at the intersection of commercial services and open, so open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services temping engines. Our, our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants and like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product influx db. >>You know, but I gotta ask you, Tim, because one of the challenge that that we've seen in particular, you saw this in the heyday of Hadoop, the, the innovations come so fast and furious and as a software company you gotta place bets, you gotta, you know, commit people and sometimes those bets can be risky and not pay off well, how have you managed this challenge? >>Oh, it moves fast. Yeah, that, that's a benefit though because it, the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we, what we tend to do is, is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example, that ecosystem is driven by thousands of intelligent developers, engineers, builders, they're adding value every day. So we have to really keep up with that. And as the stack changes, we, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's, it's something that we just do every day. >>So we have a survey partner down in New York City called Enterprise Technology Research etr, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity particularly, you know, along with cloud. But, but really Kubernetes is just, you know, still up until the right consistently even with, you know, the macro headwinds and all, all of the stuff that we're sick of talking about. But, so what are you doing with Kubernetes in the platform? >>Yeah, it, it's really central to our ability to run the product. When we first started out, we were just on AWS and, and the way we were running was, was a little bit like containers junior. Now we're running Kubernetes everywhere at aws, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code so our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. >>Just to follow up on that, is it, no. So I presume it's sounds like there's a PAs layer there to allow you guys to have a consistent experience across clouds and out to the edge, you know, wherever is that, is that correct? >>Yeah, so we've basically built more or less platform engineering, This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that, that just gets all of the underlying infrastructure out of the way and, and lets them focus on delivering influx cloud. >>Yeah, and I know I'm taking a little bit of a tangent, but is that, that, I'll call it a PAs layer if I can use that term. Is that, are there specific attributes to Influx db or is it kind of just generally off the shelf paths? You know, are there, is, is there any purpose built capability there that, that is, is value add or is it pretty much generic? >>So we really build, we, we look at things through, with a build versus buy through a, a build versus by lens. Some things we want to leverage cloud provider services, for instance, Postgres databases for metadata, perhaps we'll get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can, can deliver on that has consistency that is, is all generated from code that we can as a, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions and in no time. >>So how, so sometimes you build, sometimes you buy it. How do you make those decisions and and what does that mean for the, for the platform and for customers? >>Yeah, so what we're doing is, it's like everybody else will do, we're we're looking for trade offs that make sense. You know, we really want to protect our customers data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, like I had mentioned with SQL data stores for metadata, perhaps let's build on top of what of these three large cloud providers have already perfected. And we can then focus on our platform engineering and we can have our developers then focus on the influx data, software, influx, cloud software. >>So take it to the customer level, what does it mean for them? What's the value that they're gonna get out of all these innovations that we've been been talking about today and what can they expect in the future? >>So first of all, people who use the OSS product are really gonna be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across, over 4 billion series keys that people have stored. So there's a proven ability to scale now in terms of the open source, open source software and how we've developed the platform. You're getting highly available high cardinality time series platform. We manage it and, and really as, as I mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in real time. We deploy to our platform every day repeatedly all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change new features, better ways of doing deployments, safer ways of doing deployments. >>All of that happens behind the scenes. And like we had mentioned earlier, Kubernetes, I mean that, that allows us to get that done. We couldn't do it without having that platform as a, as a base layer for us to then put our software on. So we, we iterate quickly. When you're on the, the Influx cloud platform, you really are able to, to take advantage of new features immediately. We roll things out every day and as those things go into production, you have, you have the ability to, to use them. And so in the end we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let, let us do that for you. So, >>And that makes sense, but so is the, is the, are the innovations that we're talking about in the evolution of Influx db, do, do you see that as sort of a natural evolution for existing customers? I, is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >>Yeah, it really is it, it's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are, are really the hot thing. Iot, industrial iot especially, people want to just shove tons of data out there and be able to do queries immediately and they don't wanna manage infrastructure. What we've started to see are people that use the cloud service as their, their data store backbone and then they use edge computing with R OSS product to ingest data from say, multiple production lines and downsample that data, send the rest of that data off influx cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that and being in all sorts of different regions allows for people to really get out of the, the business of man trying to manage that big data, have us take care of that. And of course as we change the platform end users benefit from that immediately. And, >>And so obviously taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IOT and the Edge? How should we be thinking about the value that you bring from a security perspective? >>Yeah, we take, we take security super seriously. It, it's built into our dna. We do a lot of work to ensure that our platform is secure, that the data we store is, is kept private. It's of course always a concern. You see in the news all the time, companies being compromised, you know, that's something that you can have an entire team working on, which we do to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You know, you look at things like software, bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that, that's just part of our jobs to make sure that the platform that we're running it has, has fully vetted software and, and with open source especially, that's a lot of work. And so it's, it's definitely new territory. Supply chain attacks are, are definitely happening at a higher clip than they used to, but that is, that is really just part of a day in the, the life for folks like us that are, are building platforms. >>Yeah, and that's key. I mean especially when you start getting into the, the, you know, we talk about IOT and the operations technologies, the engineers running the, that infrastructure, you know, historically, as you know, Tim, they, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >>That >>Connected now, right? And so you've gotta have a partner that is again, take away that heavy lifting to r and d so you can focus on some of the other activities. Right. Give us the, the last word and the, the key takeaways from your perspective. >>Well, you know, from my perspective I see it as, as a a two lane approach with, with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, what you had mentioned, air gaping. Sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want torus their data to, to a company that's, that's got a full platform set up for them that they can build on, send that data over to the cloud, the cloud is not going away. I think more hybrid approach is, is where the future lives and that's what we're prepared for. >>Tim, really appreciate you coming to the program. Great stuff. Good to see you. >>Thanks very much. Appreciate it. >>Okay, in a moment I'll be back to wrap up. Today's session, you're watching The Cube. >>Are you looking for some help getting started with InfluxDB Telegraph or Flux Check >>Out Influx DB University >>Where you can find our entire catalog of free training that will help you make the most of your time series data >>Get >>Started for free@influxdbu.com. >>We'll see you in class. >>Okay, so we heard today from three experts on time series and data, how the Influx DB platform is evolving to support new ways of analyzing large data sets very efficiently and effectively in real time. And we learned that key open source components like Apache Arrow and the Rust Programming environment Data fusion par K are being leveraged to support realtime data analytics at scale. We also learned about the contributions in importance of open source software and how the Influx DB community is evolving the platform with minimal disruption to support new workloads, new use cases, and the future of realtime data analytics. Now remember these sessions, they're all available on demand. You can go to the cube.net to find those. Don't forget to check out silicon angle.com for all the news related to things enterprise and emerging tech. And you should also check out influx data.com. There you can learn about the company's products. You'll find developer resources like free courses. You could join the developer community and work with your peers to learn and solve problems. And there are plenty of other resources around use cases and customer stories on the website. This is Dave Valante. Thank you for watching Evolving Influx DB into the smart data platform, made possible by influx data and brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SUMMARY :
we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, you know, all of the, the real time queries, the, the multiple language query support, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try And so just, you know, being careful, maybe a little cautious in terms And you can do some experimentation and, you know, using the cloud resources. You know, this is a new very sort of popular systems language, you know, really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. going out and you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. goes, goes beyond just the historical into the real time really hot area. There's no need to worry about provisioning because you only pay for what you use. InfluxDB uses a single API across the entire platform suite so you can build on Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the Hi, thank you so much. it's gonna give you faster query speeds, you store files and object storage, it aims to have no limits on cardinality and also allow you to write any kind of event data that It's really, the adoption is really starting to get steep on all the control, all the fine grain control, you need to take you know, the community is modernizing the platform, but I wanna talk about Apache And so you can answer that question and you have those immediately available to you. out that one temperature value that you want at that one time stamp and do that for every talking about is really, you know, kind of native i, is it not as effective? Yeah, it's, it's not as effective because you have more expensive compression and So let's talk about Arrow Data Fusion. It also has a PANDAS API so that you could take advantage of PANDAS What are you doing with and Pandas, so it supports a broader ecosystem. What's the value that you're bringing to the community? And I think kind of the idea here is that if you can improve kind of summarize, you know, where what, what the big takeaways are from your perspective. the hard work questions and you All right, thank you so much Anise for explaining I really appreciate it. Data and we're gonna talk about how you update a SAS engine while I'm really glad that we went with InfluxDB Cloud for our hosting They listened to the challenges we were facing and they helped Good to see you. Good to see you. So my question to you is, So yeah, you know, influx really, we thrive at the intersection of commercial services and open, You know, you look at Kubernetes for example, But, but really Kubernetes is just, you know, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. to the edge, you know, wherever is that, is that correct? This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us Is that, are there specific attributes to Influx db as an SRE group, as an ops team, that we can manage with very few people So how, so sometimes you build, sometimes you buy it. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, and really as, as I mentioned earlier, we can keep up with the state of the art. the end we want you to focus on getting actual insights from your data instead of running infrastructure, So cloud native technologies are, are really the hot thing. You see in the news all the time, companies being compromised, you know, technologies, the engineers running the, that infrastructure, you know, historically, as you know, take away that heavy lifting to r and d so you can focus on some of the other activities. with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, Tim, really appreciate you coming to the program. Thanks very much. Okay, in a moment I'll be back to wrap up. brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
David Brown | PERSON | 0.99+ |
Tim Yoakum | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Stu | PERSON | 0.99+ |
Herain Oberoi | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Kamile Taouk | PERSON | 0.99+ |
John Fourier | PERSON | 0.99+ |
Rinesh Patel | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Santana Dasgupta | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Canada | LOCATION | 0.99+ |
BMW | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ICE | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Jack Berkowitz | PERSON | 0.99+ |
Australia | LOCATION | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Venkat | PERSON | 0.99+ |
Michael | PERSON | 0.99+ |
Camille | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Venkat Krishnamachari | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Don Tapscott | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Intercontinental Exchange | ORGANIZATION | 0.99+ |
Children's Cancer Institute | ORGANIZATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
telco | ORGANIZATION | 0.99+ |
Sabrina Yan | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
Sabrina | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
MontyCloud | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Leo | PERSON | 0.99+ |
COVID-19 | OTHER | 0.99+ |
Santa Ana | LOCATION | 0.99+ |
UK | LOCATION | 0.99+ |
Tushar | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Valente | PERSON | 0.99+ |
JL Valente | PERSON | 0.99+ |
1,000 | QUANTITY | 0.99+ |
Evolving InfluxDB into the Smart Data Platform Full Episode
>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now in this program we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away, just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally I would just say please, like watch in ICE in Tim's sessions, like these are two of our best and brightest, They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time really hot area. As Brian said in a moment, I'll be right back with Anna East dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't wanna miss this >>Time series Data is everywhere. The number of sensors, systems and applications generating time series data increases every day. All these data sources producing so much data can cause analysis paralysis. Influx DB is an entire platform designed with everything you need to quickly build applications that generate value from time series data influx. DB Cloud is a serverless solution, which means you don't need to buy or manage your own servers. There's no need to worry about provisioning because you only pay for what you use. Influx DB Cloud is fully managed so you get the newest features and enhancements as they're added to the platform's code base. It also means you can spend time building solutions and delivering value to your users instead of wasting time and effort managing something else. Influx TVB Cloud offers a range of security features to protect your data, multiple layers of redundancy ensure you don't lose any data access controls ensure that only the people who should see your data can see it. >>And encryption protects your data at rest and in transit between any of our regions or cloud providers. InfluxDB uses a single API across the entire platform suite so you can build on open source, deploy to the cloud and then then easily query data in the cloud at the edge or on prem using the same scripts. And InfluxDB is schemaless automatically adjusting to changes in the shape of your data without requiring changes in your application. Logic. InfluxDB Cloud is production ready from day one. All it needs is your data and your imagination. Get started today@influxdata.com slash cloud. >>Okay, we're back. I'm Dave Valante with a Cube and you're watching evolving Influx DB into the smart data platform made possible by influx data. Anna ETOs Georgio is here, she's a developer advocate for influx data and we're gonna dig into the rationale and value contribution behind several open source technologies that Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the world of data into real-time analytics and is welcome to the program. Thanks for coming on. >>Hi, thank you so much. It's a pleasure to be here. >>Oh, you're very welcome. Okay, so IX is being touted as this next gen open source core for Influx db. And my understanding is that it leverages in memory of course for speed. It's a kilo store, so it gives you a compression efficiency, it's gonna give you faster query speeds, you store files and object storage, so you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features, but what are the high level value points that people should understand? >>Sure, that's a great question. So some of the main requirements that IOx is trying to achieve and some of the most impressive ones to me, the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want, whether that's live tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metrics queries, we also wanna have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import super useful. Also broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like sql, Python, and maybe even pandas in the future. >>Okay, so lot there. Now we talked to Brian about how you're using Rust and which is not a new programming language and of course we had some drama around Rust during the pandemic with the Mozilla layoffs, but the formation of the Rust Foundation really addressed any of those concerns. You got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really, the adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with rust, but why rust as an alternative to say c plus plus for example? >>Sure, that's a great question. So Russ was chosen because of his exceptional performance and reliability. So while Russ is synt tactically similar to c plus plus and it has similar performance, it also compiles to a native code like c plus plus. But unlike c plus plus, it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers. And dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like c plus plus. So Russ like helps meet that requirement of having no limits on ality, for example, because it's, we're also using the Russ implementation of Apache Arrow and this control over memory and also Russ Russ's packaging system called crates IO offers everything that you need out of the box to have features like AY and a weight to fix race conditions, to protection against buffering overflows and to ensure thread safe async cashing structures as well. So essentially it's just like has all the control, all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high ity use cases. >>Yeah, and the more I learn about the, the new engine and, and the platform IOCs et cetera, you know, you, you see things like, you know, the old days not even to even today you do a lot of garbage collection in these, in these systems and there's an inverse, you know, impact relative to performance. So it looks like you really, you know, the community is modernizing the platform, but I wanna talk about Apache Arrow for a moment. It it's designed to address the constraints that are associated with analyzing large data sets. We, we know that, but please explain why, what, what is Arrow and and what does it bring to Influx db? >>Sure, yeah. So Arrow is a, a framework for defining in memory calmer data. And so much of the efficiency and performance of IOx comes from taking advantage of calmer data structures. And I will, if you don't mind, take a moment to kind of of illustrate why column or data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our stove. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value, maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the stove. Well usually our room temperature is regulated so those values don't change very often. >>So when you have calm oriented st calm oriented storage, essentially you take each row, each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same, then you'll, you might be able to imagine how equal values will then enable each other and when they neighbor each other in the storage format, this provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you wanna define like the men and max value of the temperature in the room across a thousand different points, you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of calmer oriented storage. >>So if you had a row oriented storage, you'd first have to look at every field like the temperature in, in the room and the temperature of the stove. You'd have to go across every tag value that maybe describes where the room is located or what model the stove is. And every timestamp you'd then have to pluck out that one temperature value that you want at that one time stamp and do that for every single row. So you're scanning across a ton more data and that's why Rowe Oriented doesn't provide the same efficiency as calmer and Apache Arrow is in memory calmer data, commoner data fit framework. So that's where a lot of the advantages come >>From. Okay. So you basically described like a traditional database, a row approach, but I've seen like a lot of traditional database say, okay, now we've got, we can handle colo format versus what you're talking about is really, you know, kind of native i, is it not as effective? Is the, is the foreman not as effective because it's largely a, a bolt on? Can you, can you like elucidate on that front? >>Yeah, it's, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why, why RO row oriented storage isn't as efficient as calm, calmer oriented storage. Yeah. >>Got it. So let's talk about Arrow Data Fusion. What is data fusion? I know it's written in Rust, but what does it bring to the table here? >>Sure. So it's an extensible query execution framework and it uses Arrow as it's in memory format. So the way that it helps in influx DB IOCs is that okay, it's great if you can write unlimited amount of cardinality into influx Cbis, but if you don't have a query engine that can successfully query that data, then I don't know how much value it is for you. So Data fusion helps enable the, the query process and transformation of that data. It also has a PANDAS API so that you could take advantage of PANDAS data frames as well and all of the machine learning tools associated with Pandas. >>Okay. You're also leveraging Par K in the platform cause we heard a lot about Par K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Parque and why is it important? >>Sure. So parque is the column oriented durable file format. So it's important because it'll enable bulk import, bulk export, it has compatibility with Python and Pandas, so it supports a broader ecosystem. Par K files also take very little disc disc space and they're faster to scan because again, they're column oriented in particular, I think PAR K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the, the benefits of par k. >>Got it. Very popular. So and he's, what exactly is influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >>Sure. So Influx DB first has contributed a lot of different, different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing with flux. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up, then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >>Yeah. Got it. You got that virtuous cycle going, the people call the flywheel. Give us your last thoughts and kind of summarize, you know, where what, what the big takeaways are from your perspective. >>So I think the big takeaway is that influx data is doing a lot of really exciting things with Influx DB IOx and I really encourage, if you are interested in learning more about the technologies that Influx is leveraging to produce IOCs, the challenges associated with it and all of the hard work questions and you just wanna learn more, then I would encourage you to go to the monthly Tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel look for the influx DDB unders IAC channel specifically to learn more about how to join those office hours and those monthly tech tech talks as well as ask any questions they have about iacs, what to expect and what you'd like to learn more about. I as a developer advocate, I wanna answer your questions. So if there's a particular technology or stack that you wanna dive deeper into and want more explanation about how INFLUX DB leverages it to build IOCs, I will be really excited to produce content on that topic for you. >>Yeah, that's awesome. You guys have a really rich community, collaborate with your peers, solve problems, and, and you guys super responsive, so really appreciate that. All right, thank you so much Anise for explaining all this open source stuff to the audience and why it's important to the future of data. >>Thank you. I really appreciate it. >>All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yoakum, he's the director of engineering for Influx Data and we're gonna talk about how you update a SAS engine while the plane is flying at 30,000 feet. You don't wanna miss this. >>I'm really glad that we went with InfluxDB Cloud for our hosting because it has saved us a ton of time. It's helped us move faster, it's saved us money. And also InfluxDB has good support. My name's Alex Nada. I am CTO at Noble nine. Noble Nine is a platform to measure and manage service level objectives, which is a great way of measuring the reliability of your systems. You can essentially think of an slo, the product we're providing to our customers as a bunch of time series. So we need a way to store that data and the corresponding time series that are related to those. The main reason that we settled on InfluxDB as we were shopping around is that InfluxDB has a very flexible query language and as a general purpose time series database, it basically had the set of features we were looking for. >>As our platform has grown, we found InfluxDB Cloud to be a really scalable solution. We can quickly iterate on new features and functionality because Influx Cloud is entirely managed, it probably saved us at least a full additional person on our team. We also have the option of running InfluxDB Enterprise, which gives us the ability to even host off the cloud or in a private cloud if that's preferred by a customer. Influx data has been really flexible in adapting to the hosting requirements that we have. They listened to the challenges we were facing and they helped us solve it. As we've continued to grow, I'm really happy we have influx data by our side. >>Okay, we're back with Tim Yokum, who is the director of engineering at Influx Data. Tim, welcome. Good to see you. >>Good to see you. Thanks for having me. >>You're really welcome. Listen, we've been covering open source software in the cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem. The cloud has been being built out on open source, mobile, social platforms, key databases, and of course influx DB and influx data has been a big consumer and contributor of open source software. So my question to you is, where have you seen the biggest bang for the buck from open source software? >>So yeah, you know, influx really, we thrive at the intersection of commercial services and open, so open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services temping engines. Our, our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants and like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product influx db. >>You know, but I gotta ask you, Tim, because one of the challenge that that we've seen in particular, you saw this in the heyday of Hadoop, the, the innovations come so fast and furious and as a software company you gotta place bets, you gotta, you know, commit people and sometimes those bets can be risky and not pay off well, how have you managed this challenge? >>Oh, it moves fast. Yeah, that, that's a benefit though because it, the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we, what we tend to do is, is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example, that ecosystem is driven by thousands of intelligent developers, engineers, builders, they're adding value every day. So we have to really keep up with that. And as the stack changes, we, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's, it's something that we just do every day. >>So we have a survey partner down in New York City called Enterprise Technology Research etr, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity particularly, you know, along with cloud. But, but really Kubernetes is just, you know, still up until the right consistently even with, you know, the macro headwinds and all, all of the stuff that we're sick of talking about. But, so what are you doing with Kubernetes in the platform? >>Yeah, it, it's really central to our ability to run the product. When we first started out, we were just on AWS and, and the way we were running was, was a little bit like containers junior. Now we're running Kubernetes everywhere at aws, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code so our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. >>Just to follow up on that, is it, no. So I presume it's sounds like there's a PAs layer there to allow you guys to have a consistent experience across clouds and out to the edge, you know, wherever is that, is that correct? >>Yeah, so we've basically built more or less platform engineering, This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that, that just gets all of the underlying infrastructure out of the way and, and lets them focus on delivering influx cloud. >>Yeah, and I know I'm taking a little bit of a tangent, but is that, that, I'll call it a PAs layer if I can use that term. Is that, are there specific attributes to Influx db or is it kind of just generally off the shelf paths? You know, are there, is, is there any purpose built capability there that, that is, is value add or is it pretty much generic? >>So we really build, we, we look at things through, with a build versus buy through a, a build versus by lens. Some things we want to leverage cloud provider services, for instance, Postgres databases for metadata, perhaps we'll get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can, can deliver on that has consistency that is, is all generated from code that we can as a, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions and in no time. >>So how, so sometimes you build, sometimes you buy it. How do you make those decisions and and what does that mean for the, for the platform and for customers? >>Yeah, so what we're doing is, it's like everybody else will do, we're we're looking for trade offs that make sense. You know, we really want to protect our customers data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, like I had mentioned with SQL data stores for metadata, perhaps let's build on top of what of these three large cloud providers have already perfected. And we can then focus on our platform engineering and we can have our developers then focus on the influx data, software, influx, cloud software. >>So take it to the customer level, what does it mean for them? What's the value that they're gonna get out of all these innovations that we've been been talking about today and what can they expect in the future? >>So first of all, people who use the OSS product are really gonna be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across, over 4 billion series keys that people have stored. So there's a proven ability to scale now in terms of the open source, open source software and how we've developed the platform. You're getting highly available high cardinality time series platform. We manage it and, and really as, as I mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in real time. We deploy to our platform every day repeatedly all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change new features, better ways of doing deployments, safer ways of doing deployments. >>All of that happens behind the scenes. And like we had mentioned earlier, Kubernetes, I mean that, that allows us to get that done. We couldn't do it without having that platform as a, as a base layer for us to then put our software on. So we, we iterate quickly. When you're on the, the Influx cloud platform, you really are able to, to take advantage of new features immediately. We roll things out every day and as those things go into production, you have, you have the ability to, to use them. And so in the end we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let, let us do that for you. So, >>And that makes sense, but so is the, is the, are the innovations that we're talking about in the evolution of Influx db, do, do you see that as sort of a natural evolution for existing customers? I, is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >>Yeah, it really is it, it's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are, are really the hot thing. Iot, industrial iot especially, people want to just shove tons of data out there and be able to do queries immediately and they don't wanna manage infrastructure. What we've started to see are people that use the cloud service as their, their data store backbone and then they use edge computing with R OSS product to ingest data from say, multiple production lines and downsample that data, send the rest of that data off influx cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that and being in all sorts of different regions allows for people to really get out of the, the business of man trying to manage that big data, have us take care of that. And of course as we change the platform end users benefit from that immediately. And, >>And so obviously taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IOT and the Edge? How should we be thinking about the value that you bring from a security perspective? >>Yeah, we take, we take security super seriously. It, it's built into our dna. We do a lot of work to ensure that our platform is secure, that the data we store is, is kept private. It's of course always a concern. You see in the news all the time, companies being compromised, you know, that's something that you can have an entire team working on, which we do to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You know, you look at things like software, bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that, that's just part of our jobs to make sure that the platform that we're running it has, has fully vetted software and, and with open source especially, that's a lot of work. And so it's, it's definitely new territory. Supply chain attacks are, are definitely happening at a higher clip than they used to, but that is, that is really just part of a day in the, the life for folks like us that are, are building platforms. >>Yeah, and that's key. I mean especially when you start getting into the, the, you know, we talk about IOT and the operations technologies, the engineers running the, that infrastructure, you know, historically, as you know, Tim, they, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >>That >>Connected now, right? And so you've gotta have a partner that is again, take away that heavy lifting to r and d so you can focus on some of the other activities. Right. Give us the, the last word and the, the key takeaways from your perspective. >>Well, you know, from my perspective I see it as, as a a two lane approach with, with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, what you had mentioned, air gaping. Sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want torus their data to, to a company that's, that's got a full platform set up for them that they can build on, send that data over to the cloud, the cloud is not going away. I think more hybrid approach is, is where the future lives and that's what we're prepared for. >>Tim, really appreciate you coming to the program. Great stuff. Good to see you. >>Thanks very much. Appreciate it. >>Okay, in a moment I'll be back to wrap up. Today's session, you're watching The Cube. >>Are you looking for some help getting started with InfluxDB Telegraph or Flux Check >>Out Influx DB University >>Where you can find our entire catalog of free training that will help you make the most of your time series data >>Get >>Started for free@influxdbu.com. >>We'll see you in class. >>Okay, so we heard today from three experts on time series and data, how the Influx DB platform is evolving to support new ways of analyzing large data sets very efficiently and effectively in real time. And we learned that key open source components like Apache Arrow and the Rust Programming environment Data fusion par K are being leveraged to support realtime data analytics at scale. We also learned about the contributions in importance of open source software and how the Influx DB community is evolving the platform with minimal disruption to support new workloads, new use cases, and the future of realtime data analytics. Now remember these sessions, they're all available on demand. You can go to the cube.net to find those. Don't forget to check out silicon angle.com for all the news related to things enterprise and emerging tech. And you should also check out influx data.com. There you can learn about the company's products. You'll find developer resources like free courses. You could join the developer community and work with your peers to learn and solve problems. And there are plenty of other resources around use cases and customer stories on the website. This is Dave Valante. Thank you for watching Evolving Influx DB into the smart data platform, made possible by influx data and brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SUMMARY :
we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, you know, all of the, the real time queries, the, the multiple language query support, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try And so just, you know, being careful, maybe a little cautious in terms And you can do some experimentation and, you know, using the cloud resources. You know, this is a new very sort of popular systems language, you know, really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. going out and you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. goes, goes beyond just the historical into the real time really hot area. There's no need to worry about provisioning because you only pay for what you use. InfluxDB uses a single API across the entire platform suite so you can build on Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the Hi, thank you so much. it's gonna give you faster query speeds, you store files and object storage, it aims to have no limits on cardinality and also allow you to write any kind of event data that It's really, the adoption is really starting to get steep on all the control, all the fine grain control, you need to take you know, the community is modernizing the platform, but I wanna talk about Apache And so you can answer that question and you have those immediately available to you. out that one temperature value that you want at that one time stamp and do that for every talking about is really, you know, kind of native i, is it not as effective? Yeah, it's, it's not as effective because you have more expensive compression and So let's talk about Arrow Data Fusion. It also has a PANDAS API so that you could take advantage of PANDAS What are you doing with and Pandas, so it supports a broader ecosystem. What's the value that you're bringing to the community? And I think kind of the idea here is that if you can improve kind of summarize, you know, where what, what the big takeaways are from your perspective. the hard work questions and you All right, thank you so much Anise for explaining I really appreciate it. Data and we're gonna talk about how you update a SAS engine while I'm really glad that we went with InfluxDB Cloud for our hosting They listened to the challenges we were facing and they helped Good to see you. Good to see you. So my question to you is, So yeah, you know, influx really, we thrive at the intersection of commercial services and open, You know, you look at Kubernetes for example, But, but really Kubernetes is just, you know, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. to the edge, you know, wherever is that, is that correct? This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us Is that, are there specific attributes to Influx db as an SRE group, as an ops team, that we can manage with very few people So how, so sometimes you build, sometimes you buy it. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, and really as, as I mentioned earlier, we can keep up with the state of the art. the end we want you to focus on getting actual insights from your data instead of running infrastructure, So cloud native technologies are, are really the hot thing. You see in the news all the time, companies being compromised, you know, technologies, the engineers running the, that infrastructure, you know, historically, as you know, take away that heavy lifting to r and d so you can focus on some of the other activities. with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, Tim, really appreciate you coming to the program. Thanks very much. Okay, in a moment I'll be back to wrap up. brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
Tim Yoakum | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Tim | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
16 times | QUANTITY | 0.99+ |
two rows | QUANTITY | 0.99+ |
New York City | LOCATION | 0.99+ |
60,000 people | QUANTITY | 0.99+ |
Rust | TITLE | 0.99+ |
Influx | ORGANIZATION | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
Python | TITLE | 0.99+ |
three experts | QUANTITY | 0.99+ |
InfluxDB | TITLE | 0.99+ |
both | QUANTITY | 0.99+ |
each row | QUANTITY | 0.99+ |
two lane | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
Noble nine | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
Flux | ORGANIZATION | 0.99+ |
Influx DB | TITLE | 0.99+ |
each column | QUANTITY | 0.99+ |
270 terabytes | QUANTITY | 0.99+ |
cube.net | OTHER | 0.99+ |
twice | QUANTITY | 0.99+ |
Bryan | PERSON | 0.99+ |
Pandas | TITLE | 0.99+ |
c plus plus | TITLE | 0.99+ |
three years ago | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
more than a decade | QUANTITY | 0.98+ |
Apache | ORGANIZATION | 0.98+ |
dozens | QUANTITY | 0.98+ |
free@influxdbu.com | OTHER | 0.98+ |
30,000 feet | QUANTITY | 0.98+ |
Rust Foundation | ORGANIZATION | 0.98+ |
two temperature values | QUANTITY | 0.98+ |
In Flux Data | ORGANIZATION | 0.98+ |
one time stamp | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
Russ | PERSON | 0.98+ |
IOT | ORGANIZATION | 0.98+ |
Evolving InfluxDB | TITLE | 0.98+ |
first | QUANTITY | 0.97+ |
Influx data | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
first one | QUANTITY | 0.97+ |
Influx DB University | ORGANIZATION | 0.97+ |
SQL | TITLE | 0.97+ |
The Cube | TITLE | 0.96+ |
Influx DB Cloud | TITLE | 0.96+ |
single server | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.96+ |
Evolving InfluxDB into the Smart Data Platform Open
>> This past May, the Cube, in collaboration with Influx Data shared with you the latest innovations in Time series databases. We talked at length about why a purpose-built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember that time series data is any data that's stamped in time and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community we talked about how in theory those time slices could be taken, you know every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors, and other devices and IOT equipment. Time series databases have had to evolve to efficiently support realtime data in emerging use, use cases in IOT and other use cases. And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the Smart Data platform, made possible by influx data and produced by the cube. My name is Dave Vellante, and I'll be your host today. Now, in this program, we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're going to hear from Brian Gilmore who is the director of IOT and emerging technologies at Influx Data. And we're going to talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program, you're going to hear a lot about things like rust implementation of Apache Arrow, the use of Parquet and tooling such as data fusion, which are powering a new engine for Influx db. Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices if you will, from, for example minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're going to hear from Anais Dotis-Georgiou who is a developer advocate at Influx Data. And we're going to get into the "why's" of these open source capabilities, and how they contribute to the evolution of the Influx DB platform. And then we're going to close the program with Tim Yocum. He's the director of engineering at Influx Data, and he's going to explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started.
SUMMARY :
by compressing the historical time slices
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Tim Yocum | PERSON | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
Anais Dotis-Georgiou | PERSON | 0.99+ |
Influx DB | TITLE | 0.99+ |
InfluxDB | TITLE | 0.94+ |
first | QUANTITY | 0.91+ |
today | DATE | 0.88+ |
second | QUANTITY | 0.85+ |
Time | TITLE | 0.82+ |
Parquet | TITLE | 0.76+ |
Apache | ORGANIZATION | 0.75+ |
past May | DATE | 0.75+ |
Influx | TITLE | 0.75+ |
IOT | ORGANIZATION | 0.69+ |
Cube | ORGANIZATION | 0.65+ |
influx | ORGANIZATION | 0.53+ |
Arrow | TITLE | 0.48+ |
The Future Is Built On InFluxDB
>>Time series data is any data that's stamped in time in some way that could be every second, every minute, every five minutes, every hour, every nanosecond, whatever it might be. And typically that data comes from sources in the physical world like devices or sensors, temperature, gauges, batteries, any device really, or things in the virtual world could be software, maybe it's software in the cloud or data and containers or microservices or virtual machines. So all of these items, whether in the physical or virtual world, they're generating a lot of time series data. Now time series data has been around for a long time, and there are many examples in our everyday lives. All you gotta do is punch up any stock, ticker and look at its price over time and graphical form. And that's a simple use case that anyone can relate to and you can build timestamps into a traditional relational database. >>You just add a column to capture time and as well, there are examples of log data being dumped into a data store that can be searched and captured and ingested and visualized. Now, the problem with the latter example that I just gave you is that you gotta hunt and Peck and search and extract what you're looking for. And the problem with the former is that traditional general purpose databases they're designed as sort of a Swiss army knife for any workload. And there are a lot of functions that get in the way and make them inefficient for time series analysis, especially at scale. Like when you think about O T and edge scale, where things are happening super fast, ingestion is coming from many different sources and analysis often needs to be done in real time or near real time. And that's where time series databases come in. >>They're purpose built and can much more efficiently support ingesting metrics at scale, and then comparing data points over time, time series databases can write and read at significantly higher speeds and deal with far more data than traditional database methods. And they're more cost effective instead of throwing processing power at the problem. For example, the underlying architecture and algorithms of time series databases can optimize queries and they can reclaim wasted storage space and reuse it. At scale time, series databases are simply a better fit for the job. Welcome to moving the world with influx DB made possible by influx data. My name is Dave Valante and I'll be your host today. Influx data is the company behind InfluxDB. The open source time series database InfluxDB is designed specifically to handle time series data. As I just explained, we have an exciting program for you today, and we're gonna showcase some really interesting use cases. >>First, we'll kick it off in our Palo Alto studios where my colleague, John furrier will interview Evan Kaplan. Who's the CEO of influx data after John and Evan set the table. John's gonna sit down with Brian Gilmore. He's the director of IOT and emerging tech at influx data. And they're gonna dig into where influx data is gaining traction and why adoption is occurring and, and why it's so robust. And they're gonna have tons of examples and double click into the technology. And then we bring it back here to our east coast studios, where I get to talk to two practitioners, doing amazing things in space with satellites and modern telescopes. These use cases will blow your mind. You don't want to miss it. So thanks for being here today. And with that, let's get started. Take it away. Palo Alto. >>Okay. Today we welcome Evan Kaplan, CEO of influx data, the company behind influx DB. Welcome Evan. Thanks for coming on. >>Hey John, thanks for having me >>Great segment here on the influx DB story. What is the story? Take us through the history. Why time series? What's the story >><laugh> so the history history is actually actually pretty interesting. Um, Paul dicks, my partner in this and our founder, um, super passionate about developers and developer experience. And, um, he had worked on wall street building a number of time series kind of platform trading platforms for trading stocks. And from his point of view, it was always what he would call a yak shave, which means you had to do a ton of work just to start doing work, which means you had to write a bunch of extrinsic routines. You had to write a bunch of application handling on existing relational databases in order to come up with something that was optimized for a trading platform or a time series platform. And he sort of, he just developed this real clear point of view is this is not how developers should work. And so in 2013, he went through why Combinator and he built something for, he made his first commit to open source in flu DB at the end of 2013. And, and he basically, you know, from my point of view, he invented modern time series, which is you start with a purpose-built time series platform to do these kind of workloads. And you get all the benefits of having something right outta the box. So a developer can be totally productive right away. >>And how many people in the company what's the history of employees and stuff? >>Yeah, I think we're, I, you know, I always forget the number, but it's something like 230 or 240 people now. Um, the company, I joined the company in 2016 and I love Paul's vision. And I just had a strong conviction about the relationship between time series and IOT. Cuz if you think about it, what sensors do is they speak time, series, pressure, temperature, volume, humidity, light, they're measuring they're instrumenting something over time. And so I thought that would be super relevant over long term and I've not regretted it. >>Oh no. And it's interesting at that time, go back in the history, you know, the role of databases, well, relational database is the one database to rule the world. And then as clouds started coming in, you starting to see more databases, proliferate types of databases and time series in particular is interesting. Cuz real time has become super valuable from an application standpoint, O T which speaks time series means something it's like time matters >>Time. >>Yeah. And sometimes data's not worth it after the time, sometimes it worth it. And then you get the data lake. So you have this whole new evolution. Is this the momentum? What's the momentum, I guess the question is what's the momentum behind >>You mean what's causing us to grow. So >>Yeah, the time series, why is time series >>And the >>Category momentum? What's the bottom line? >>Well, think about it. You think about it from a broad, broad sort of frame, which is where, what everybody's trying to do is build increasingly intelligent systems, whether it's a self-driving car or a robotic system that does what you want to do or a self-healing software system, everybody wants to build increasing intelligent systems. And so in order to build these increasing intelligent systems, you have to instrument the system well, and you have to instrument it over time, better and better. And so you need a tool, a fundamental tool to drive that instrumentation. And that's become clear to everybody that that instrumentation is all based on time. And so what happened, what happened, what happened what's gonna happen? And so you get to these applications like predictive maintenance or smarter systems. And increasingly you want to do that stuff, not just intelligently, but fast in real time. So millisecond response so that when you're driving a self-driving car and the system realizes that you're about to do something, essentially you wanna be able to act in something that looks like real time, all systems want to do that, want to be more intelligent and they want to be more real time. And so we just happen to, you know, we happen to show up at the right time in the evolution of a >>Market. It's interesting near real time. Isn't good enough when you need real time. >><laugh> yeah, it's not, it's not. And it's like, and it's like, everybody wants, even when you don't need it, ironically, you want it. It's like having the feature for, you know, you buy a new television, you want that one feature, even though you're not gonna use it, you decide that your buying criteria real time is a buying criteria >>For, so you, I mean, what you're saying then is near real time is getting closer to real time as possible, as fast as possible. Right. Okay. So talk about the aspect of data, cuz we're hearing a lot of conversations on the cube in particular around how people are implementing and actually getting better. So iterating on data, but you have to know when it happened to get, know how to fix it. So this is a big part of how we're seeing with people saying, Hey, you know, I wanna make my machine learning algorithms better after the fact I wanna learn from the data. Um, how does that, how do you see that evolving? Is that one of the use cases of sensors as people bring data in off the network, getting better with the data knowing when it happened? >>Well, for sure. So, so for sure, what you're saying is, is, is none of this is non-linear, it's all incremental. And so if you take something, you know, just as an easy example, if you take a self-driving car, what you're doing is you're instrumenting that car to understand where it can perform in the real world in real time. And if you do that, if you run the loop, which is I instrumented, I watch what happens, oh, that's wrong? Oh, I have to correct for that. I correct for that in the software. If you do that for a billion times, you get a self-driving car, but every system moves along that evolution. And so you get the dynamic of, you know, of constantly instrumenting watching the system behave and do it. And this and sets up driving car is one thing. But even in the human genome, if you look at some of our customers, you know, people like, you know, people doing solar arrays, people doing power walls, like all of these systems are getting smarter. >>Well, let's get into that. What are the top applications? What are you seeing for your, with in, with influx DB, the time series, what's the sweet spot for the application use case and some customers give some >>Examples. Yeah. So it's, it's pretty easy to understand on one side of the equation that's the physical side is sensors are sensors are getting cheap. Obviously we know that and they're getting the whole physical world is getting instrumented, your home, your car, the factory floor, your wrist, watch your healthcare, you name it. It's getting instrumented in the physical world. We're watching the physical world in real time. And so there are three or four sweet spots for us, but, but they're all on that side. They're all about IOT. So they're think about consumer IOT projects like Google's nest todo, um, particle sensors, um, even delivery engines like rapid who deliver the Instacart of south America, like anywhere there's a physical location do and that's on the consumer side. And then another exciting space is the industrial side factories are changing dramatically over time. Increasingly moving away from proprietary equipment to develop or driven systems that run operational because what, what has to get smarter when you're building, when you're building a factory is systems all have to get smarter. And then, um, lastly, a lot in the renewables sustainability. So a lot, you know, Tesla, lucid, motors, Cola, motors, um, you know, lots to do with electric cars, solar arrays, windmills, arrays, just anything that's gonna get instrumented that where that instrumentation becomes part of what the purpose >>Is. It's interesting. The convergence of physical and digital is happening with the data IOT. You mentioned, you know, you think of IOT, look at the use cases there, it was proprietary OT systems. Now becoming more IP enabled internet protocol and now edge compute, getting smaller, faster, cheaper AI going to the edge. Now you have all kinds of new capabilities that bring that real time and time series opportunity. Are you seeing IOT going to a new level? What was the, what's the IOT where's the IOT dots connecting to because you know, as these two cultures merge yeah. Operations, basically industrial factory car, they gotta get smarter, intelligent edge is a buzzword, but I mean, it has to be more intelligent. Where's the, where's the action in all this. So the >>Action, really, it really at the core, it's at the developer, right? Because you're looking at these things, it's very hard to get an off the shelf system to do the kinds of physical and software interaction. So the actions really happen at the developer. And so what you're seeing is a movement in the world that, that maybe you and I grew up in with it or OT moving increasingly that developer driven capability. And so all of these IOT systems they're bespoke, they don't come out of the box. And so the developer, the architect, the CTO, they define what's my business. What am I trying to do? Am I trying to sequence a human genome and figure out when these genes express theself or am I trying to figure out when the next heart rate monitor's gonna show up on my apple watch, right? What am I trying to do? What's the system I need to build. And so starting with the developers where all of the good stuff happens here, which is different than it used to be, right. Used to be you'd buy an application or a service or a SA thing for, but with this dynamic, with this integration of systems, it's all about bespoke. It's all about building >>Something. So let's get to the developer real quick, real highlight point here is the data. I mean, I could see a developer saying, okay, I need to have an application for the edge IOT edge or car. I mean, we're gonna have, I mean, Tesla's got applications of the car it's right there. I mean, yes, there's the modern application life cycle now. So take us through how this impacts the developer. Does it impact their C I C D pipeline? Is it cloud native? I mean, where does this all, where does this go to? >>Well, so first of all, you're talking about, there was an internal journey that we had to go through as a company, which, which I think is fascinating for anybody who's interested is we went from primarily a monolithic software that was open sourced to building a cloud native platform, which means we had to move from an agile development environment to a C I C D environment. So to a degree that you are moving your service, whether it's, you know, Tesla monitoring your car and updating your power walls, right. Or whether it's a solar company updating the arrays, right. To degree that that service is cloud. Then increasingly remove from an agile development to a C I C D environment, which you're shipping code to production every day. And so it's not just the developers, all the infrastructure to support the developers to run that service and that sort of stuff. I think that's also gonna happen in a big way >>When your customer base that you have now, and as you see, evolving with infl DB, is it that they're gonna be writing more of the application or relying more on others? I mean, obviously there's an open source component here. So when you bring in kind of old way, new way old way was I got a proprietary, a platform running all this O T stuff and I gotta write, here's an application. That's general purpose. Yeah. I have some flexibility, somewhat brittle, maybe not a lot of robustness to it, but it does its job >>A good way to think about this is versus a new way >>Is >>What so yeah, good way to think about this is what, what's the role of the developer slash architect CTO that chain within a large, within an enterprise or a company. And so, um, the way to think about it is I started my career in the aerospace industry <laugh> and so when you look at what Boeing does to assemble a plane, they build very, very few of the parts. Instead, what they do is they assemble, they buy the wings, they buy the engines, they assemble, actually, they don't buy the wings. It's the one thing they buy the, the material for the w they build the wings, cuz there's a lot of tech in the wings and they end up being assemblers smart assemblers of what ends up being a flying airplane, which is pretty big deal even now. And so what, what happens with software people is they have the ability to pull from, you know, the best of the open source world. So they would pull a time series capability from us. Then they would assemble that with, with potentially some ETL logic from somebody else, or they'd assemble it with, um, a Kafka interface to be able to stream the data in. And so they become very good integrators and assemblers, but they become masters of that bespoke application. And I think that's where it goes, cuz you're not writing native code for everything. >>So they're more flexible. They have faster time to market cuz they're assembling way faster and they get to still maintain their core competency. Okay. Their wings in this case, >>They become increasingly not just coders, but designers and developers. They become broadly builders is what we like to think of it. People who start and build stuff by the way, this is not different than the people just up the road Google have been doing for years or the tier one, Amazon building all their own. >>Well, I think one of the things that's interesting is is that this idea of a systems developing a system architecture, I mean systems, uh, uh, systems have consequences when you make changes. So when you have now cloud data center on premise and edge working together, how does that work across the system? You can't have a wing that doesn't work with the other wing kind of thing. >>That's exactly. But that's where the that's where the, you know, that that Boeing or that airplane building analogy comes in for us. We've really been thoughtful about that because IOT it's critical. So our open source edge has the same API as our cloud native stuff that has enterprise on pre edge. So our multiple products have the same API and they have a relationship with each other. They can talk with each other. So the builder builds it once. And so this is where, when you start thinking about the components that people have to use to build these services is that you wanna make sure, at least that base layer, that database layer, that those components talk to each other. >>So I'll have to ask you if I'm the customer. I put my customer hat on. Okay. Hey, I'm dealing with a lot. >>That mean you have a PO for <laugh> >>A big check. I blank check. If you can answer this question only if the tech, if, if you get the question right, I got all this important operation stuff. I got my factory, I got my self-driving cars. This isn't like trivial stuff. This is my business. How should I be thinking about time series? Because now I have to make these architectural decisions, as you mentioned, and it's gonna impact my application development. So huge decision point for your customers. What should I care about the most? So what's in it for me. Why is time series >>Important? Yeah, that's a great question. So chances are, if you've got a business that was, you know, 20 years old or 25 years old, you were already thinking about time series. You probably didn't call it that you built something on a Oracle or you built something on IBM's DB two, right. And you made it work within your system. Right? And so that's what you started building. So it's already out there. There are, you know, there are probably hundreds of millions of time series applications out there today. But as you start to think about this increasing need for real time, and you start to think about increasing intelligence, you think about optimizing those systems over time. I hate the word, but digital transformation. Then you start with time series. It's a foundational base layer for any system that you're gonna build. There's no system I can think of where time series, shouldn't be the foundational base layer. If you just wanna store your data and just leave it there and then maybe look it up every five years. That's fine. That's not time. Series time series is when you're building a smarter, more intelligent, more real time system. And the developers now know that. And so the more they play a role in building these systems, the more obvious it becomes. >>And since I have a PO for you and a big check, yeah. What is, what's the value to me as I, when I implement this, what's the end state, what's it look like when it's up and running? What's the value proposition for me. What's an >>So, so when it's up and running, you're able to handle the queries, the writing of the data, the down sampling of the data, they're transforming it in near real time. So that the other dependencies that a system that gets for adjusting a solar array or trading energy off of a power wall or some sort of human genome, those systems work better. So time series is foundational. It's not like it's, you know, it's not like it's doing every action that's above, but it's foundational to build a really compelling, intelligent system. I think that's what developers and archs are seeing now. >>Bottom line, final word. What's in it for the customer. What's what, what's your, um, what's your statement to the customer? What would you say to someone looking to do something in time series on edge? >>Yeah. So, so it's pretty clear to clear to us that if you're building, if you view yourself as being in the build business of building systems that you want 'em to be increasingly intelligent, self-healing autonomous. You want 'em to operate in real time that you start from time series. But I also wanna say what's in it for us influx what's in it for us is people are doing some amazing stuff. You know, I highlighted some of the energy stuff, some of the human genome, some of the healthcare it's hard not to be proud or feel like, wow. Yeah. Somehow I've been lucky. I've arrived at the right time, in the right place with the right people to be able to deliver on that. That's that's also exciting on our side of the equation. >>Yeah. It's critical infrastructure, critical, critical operations. >>Yeah. >>Yeah. Great stuff, Evan. Thanks for coming on. Appreciate this segment. All right. In a moment, Brian Gilmore director of IOT and emerging technology that influx day will join me. You're watching the cube leader in tech coverage. Thanks for watching >>Time series data from sensors systems and applications is a key source in driving automation and prediction in technologies around the world. But managing the massive amount of timestamp data generated these days is overwhelming, especially at scale. That's why influx data developed influx DB, a time series data platform that collects stores and analyzes data influx DB empowers developers to extract valuable insights and turn them into action by building transformative IOT analytics and cloud native applications, purpose built and optimized to handle the scale and velocity of timestamped data. InfluxDB puts the power in your hands with developer tools that make it easy to get started quickly with less code InfluxDB is more than a database. It's a robust developer platform with integrated tooling. That's written in the languages you love. So you can innovate faster, run in flex DB anywhere you want by choosing the provider and region that best fits your needs across AWS, Microsoft Azure and Google cloud flex DB is fast and automatically scalable. So you can spend time delivering value to customers, not managing clusters, take control of your time series data. So you can focus on the features and functionalities that give your applications a competitive edge. Get started for free with influx DB, visit influx data.com/cloud to learn more. >>Okay. Now we're joined by Brian Gilmore director of IOT and emerging technologies at influx data. Welcome to the show. >>Thank you, John. Great to be here. >>We just spent some time with Evan going through the company and the value proposition, um, with influx DV, what's the momentum, where do you see this coming from? What's the value coming out of this? >>Well, I think it, we're sort of hitting a point where the technology is, is like the adoption of it is becoming mainstream. We're seeing it in all sorts of organizations, everybody from like the most well funded sort of advanced big technology companies to the smaller academics, the startups and the managing of that sort of data that emits from that technology is time series and us being able to give them a, a platform, a tool that's super easy to use, easy to start. And then of course will grow with them is, is been key to us. Sort of, you know, riding along with them is they're successful. >>Evan was mentioning that time series has been on everyone's radar and that's in the OT business for years. Now, you go back since 20 13, 14, even like five years ago that convergence of physical and digital coming together, IP enabled edge. Yeah. Edge has always been kind of hyped up, but why now? Why, why is the edge so hot right now from an adoption standpoint? Is it because it's just evolution, the tech getting better? >>I think it's, it's, it's twofold. I think that, you know, there was, I would think for some people, everybody was so focused on cloud over the last probably 10 years. Mm-hmm <affirmative> that they forgot about the compute that was available at the edge. And I think, you know, those, especially in the OT and on the factory floor who weren't able to take Avan full advantage of cloud through their applications, you know, still needed to be able to leverage that compute at the edge. I think the big thing that we're seeing now, which is interesting is, is that there's like a hybrid nature to all of these applications where there's definitely some data that's generated on the edge. There's definitely done some data that's generated in the cloud. And it's the ability for a developer to sort of like tie those two systems together and work with that data in a very unified uniform way. Um, that's giving them the opportunity to build solutions that, you know, really deliver value to whatever it is they're trying to do, whether it's, you know, the, the out reaches of outer space or whether it's optimizing the factory floor. >>Yeah. I think, I think one of the things you also mentions genome too, dig big data is coming to the real world. And I think I, OT has been kind of like this thing for OT and, and in some use case, but now with the, with the cloud, all companies have an edge strategy now. So yeah, what's the secret sauce because now this is hot, hot product for the whole world and not just industrial, but all businesses. What's the secret sauce. >>Well, I mean, I think part of it is just that the technology is becoming more capable and that's especially on the hardware side, right? I mean, like technology compute is getting smaller and smaller and smaller. And we find that by supporting all the way down to the edge, even to the micro controller layer with our, um, you know, our client libraries and then working hard to make our applications, especially the database as small as possible so that it can be located as close to sort of the point of origin of that data in the edge as possible is, is, is fantastic. Now you can take that. You can run that locally. You can do your local decision making. You can use influx DB as sort of an input to automation control the autonomy that people are trying to drive at the edge. But when you link it up with everything that's in the cloud, that's when you get all of the sort of cloud scale capabilities of parallelized, AI and machine learning and all of that. >>So what's interesting is the open source success has been something that we've talked about a lot in the cube about how people are leveraging that you guys have users in the enterprise users that IOT market mm-hmm <affirmative>, but you got developers now. Yeah. Kind of together brought that up. How do you see that emerging? How do developers engage? What are some of the things you're seeing that developers are really getting into with InfluxDB >>What's? Yeah. Well, I mean, I think there are the developers who are building companies, right? And these are the startups and the folks that we love to work with who are building new, you know, new services, new products, things like that. And, you know, especially on the consumer side of IOT, there's a lot of that, just those developers. But I think we, you gotta pay attention to those enterprise developers as well, right? There are tons of people with the, the title of engineer in, in your regular enterprise organizations. And they're there for systems integration. They're there for, you know, looking at what they would build versus what they would buy. And a lot of them come from, you know, a strong, open source background and they, they know the communities, they know the top platforms in those spaces and, and, you know, they're excited to be able to adopt and use, you know, to optimize inside the business as compared to just building a brand new one. >>You know, it's interesting too, when Evan and I were talking about open source versus closed OT systems, mm-hmm <affirmative> so how do you support the backwards compatibility of older systems while maintaining open dozens of data formats out there? Bunch of standards, protocols, new things are emerging. Everyone wants to have a control plane. Everyone wants to leverage the value of data. How do you guys keep track of it all? What do you guys support? >>Yeah, well, I mean, I think either through direct connection, like we have a product called Telegraph, it's unbelievable. It's open source, it's an edge agent. You can run it as close to the edge as you'd like, it speaks dozens of different protocols in its own, right? A couple of which MQTT B, C U a are very, very, um, applicable to these T use cases. But then we also, because we are sort of not only open source, but open in terms of our ability to collect data, we have a lot of partners who have built really great integrations from their own middleware, into influx DB. These are companies like ke wear and high bite who are really experts in those downstream industrial protocols. I mean, that's a business, not everybody wants to be in. It requires some very specialized, very hard work and a lot of support, um, you know, and so by making those connections and building those ecosystems, we get the best of both worlds. The customers can use the platforms they need up to the point where they would be putting into our database. >>What's some of customer testimonies that they, that share with you. Can you share some anecdotal kind of like, wow, that's the best thing I've ever used. This really changed my business, or this is a great tech that's helped me in these other areas. What are some of the, um, soundbites you hear from customers when they're successful? >>Yeah. I mean, I think it ranges. You've got customers who are, you know, just finally being able to do the monitoring of assets, you know, sort of at the edge in the field, we have a customer who's who's has these tunnel boring machines that go deep into the earth to like drill tunnels for, for, you know, cars and, and, you know, trains and things like that. You know, they are just excited to be able to stick a database onto those tunnel, boring machines, send them into the depths of the earth and know that when they come out, all of that telemetry at a very high frequency has been like safely stored. And then it can just very quickly and instantly connect up to their, you know, centralized database. So like just having that visibility is brand new to them. And that's super important. On the other hand, we have customers who are way far beyond the monitoring use case, where they're actually using the historical records in the time series database to, um, like I think Evan mentioned like forecast things. So for predictive maintenance, being able to pull in the telemetry from the machines, but then also all of that external enrichment data, the metadata, the temperatures, the pressure is who is operating the machine, those types of things, and being able to easily integrate with platforms like Jupyter notebooks or, you know, all of those scientific computing and machine learning libraries to be able to build the models, train the models, and then they can send that information back down to InfluxDB to apply it and detect those anomalies, which >>Are, I think that's gonna be an, an area. I personally think that's a hot area because I think if you look at AI right now, yeah. It's all about training the machine learning albums after the fact. So time series becomes hugely important. Yeah. Cause now you're thinking, okay, the data matters post time. Yeah. First time. And then it gets updated the new time. Yeah. So it's like constant data cleansing data iteration, data programming. We're starting to see this new use case emerge in the data field. >>Yep. Yeah. I mean, I think you agree. Yeah, of course. Yeah. The, the ability to sort of handle those pipelines of data smartly, um, intelligently, and then to be able to do all of the things you need to do with that data in stream, um, before it hits your sort of central repository. And, and we make that really easy for customers like Telegraph, not only does it have sort of the inputs to connect up to all of those protocols and the ability to capture and connect up to the, to the partner data. But also it has a whole bunch of capabilities around being able to process that data, enrich it, reform at it, route it, do whatever you need. So at that point you're basically able to, you're playing your data in exactly the way you would wanna do it. You're routing it to different, you know, destinations and, and it's, it's, it's not something that really has been in the realm of possibility until this point. Yeah. Yeah. >>And when Evan was on it's great. He was a CEO. So he sees the big picture with customers. He was, he kinda put the package together that said, Hey, we got a system. We got customers, people are wanting to leverage our product. What's your PO they're sell. He's selling too as well. So you have that whole CEO perspective, but he brought up this notion that there's multiple personas involved in kind of the influx DB system architect. You got developers and users. Can you talk about that? Reality as customers start to commercialize and operationalize this from a commercial standpoint, you got a relationship to the cloud. Yep. The edge is there. Yep. The edge is getting super important, but cloud brings a lot of scale to the table. So what is the relationship to the cloud? Can you share your thoughts on edge and its relationship to the cloud? >>Yeah. I mean, I think edge, you know, edges, you can think of it really as like the local information, right? So it's, it's generally like compartmentalized to a point of like, you know, a single asset or a single factory align, whatever. Um, but what people do who wanna pro they wanna be able to make the decisions there at the edge locally, um, quickly minus the latency of sort of taking that large volume of data, shipping it to the cloud and doing something with it there. So we allow them to do exactly that. Then what they can do is they can actually downsample that data or they can, you know, detect like the really important metrics or the anomalies. And then they can ship that to a central database in the cloud where they can do all sorts of really interesting things with it. Like you can get that centralized view of all of your global assets. You can start to compare asset to asset, and then you can do those things like we talked about, whereas you can do predictive types of analytics or, you know, larger scale anomaly detections. >>So in this model you have a lot of commercial operations, industrial equipment. Yep. The physical plant, physical business with virtual data cloud all coming together. What's the future for InfluxDB from a tech standpoint. Cause you got open. Yep. There's an ecosystem there. Yep. You have customers who want operational reliability for sure. I mean, so you got organic <laugh> >>Yeah. Yeah. I mean, I think, you know, again, we got iPhones when everybody's waiting for flying cars. Right. So I don't know. We can like absolutely perfectly predict what's coming, but I think there are some givens and I think those givens are gonna be that the world is only gonna become more hybrid. Right. And then, you know, so we are going to have much more widely distributed, you know, situations where you have data being generated in the cloud, you have data gen being generated at the edge and then there's gonna be data generated sort sort of at all points in between like physical locations as well as things that are, that are very virtual. And I think, you know, we are, we're building some technology right now. That's going to allow, um, the concept of a database to be much more fluid and flexible, sort of more aligned with what a file would be like. >>And so being able to move data to the compute for analysis or move the compute to the data for analysis, those are the types of, of solutions that we'll be bringing to the customers sort of over the next little bit. Um, but I also think we have to start thinking about like what happens when the edge is actually off the planet. Right. I mean, we've got customers, you're gonna talk to two of them, uh, in the panel who are actually working with data that comes from like outside the earth, like, you know, either in low earth orbit or you know, all the way sort of on the other side of the universe. Yeah. And, and to be able to process data like that and to do so in a way it's it's we gotta, we gotta build the fundamentals for that right now on the factory floor and in the mines and in the tunnels. Um, so that we'll be ready for that one. >>I think you bring up a good point there because one of the things that's common in the industry right now, people are talking about, this is kind of new thinking is hyper scale's always been built up full stack developers, even the old OT world, Evan was pointing out that they built everything right. And the world's going to more assembly with core competency and IP and also property being the core of their apple. So faster assembly and building, but also integration. You got all this new stuff happening. Yeah. And that's to separate out the data complexity from the app. Yes. So space genome. Yep. Driving cars throws off massive data. >>It >>Does. So is Tesla, uh, is the car the same as the data layer? >>I mean the, yeah, it's, it's certainly a point of origin. I think the thing that we wanna do is we wanna let the developers work on the world, changing problems, the things that they're trying to solve, whether it's, you know, energy or, you know, any of the other health or, you know, other challenges that these teams are, are building against. And we'll worry about that time series data and the underlying data platform so that they don't have to. Right. I mean, I think you talked about it, uh, you know, for them just to be able to adopt the platform quickly, integrate it with their data sources and the other pieces of their applications. It's going to allow them to bring much faster time to market on these products. It's gonna allow them to be more iterative. They're gonna be able to do more sort of testing and things like that. And ultimately it will, it'll accelerate the adoption and the creation of >>Technology. You mentioned earlier in, in our talk about unification of data. Yeah. How about APIs? Cuz developers love APIs in the cloud unifying APIs. How do you view view that? >>Yeah, I mean, we are APIs, that's the product itself. Like everything, people like to think of it as sort of having this nice front end, but the front end is B built on our public APIs. Um, you know, and it, it allows the developer to build all of those hooks for not only data creation, but then data processing, data analytics, and then, you know, sort of data extraction to bring it to other platforms or other applications, microservices, whatever it might be. So, I mean, it is a world of APIs right now and you know, we, we bring a very sort of useful set of them for managing the time series data. These guys are all challenged with. It's >>Interesting. You and I were talking before we came on camera about how, um, data is, feels gonna have this kind of SRE role that DevOps had site reliability engineers, which manages a bunch of servers. There's so much data out there now. Yeah. >>Yeah. It's like reigning data for sure. And I think like that ability to be like one of the best jobs on the planet is gonna be to be able to like, sort of be that data Wrangler to be able to understand like what the data sources are, what the data formats are, how to be able to efficiently move that data from point a to point B and you know, to process it correctly so that the end users of that data aren't doing any of that sort of hard upfront preparation collection storage's >>Work. Yeah. That's data as code. I mean, data engineering is it is becoming a new discipline for sure. And, and the democratization is the benefit. Yeah. To everyone, data science get easier. I mean data science, but they wanna make it easy. Right. <laugh> yeah. They wanna do the analysis, >>Right? Yeah. I mean, I think, you know, it, it's a really good point. I think like we try to give our users as many ways as there could be possible to get data in and get data out. We sort of think about it as meeting them where they are. Right. So like we build, we have the sort of client libraries that allow them to just port to us, you know, directly from the applications and the languages that they're writing, but then they can also pull it out. And at that point nobody's gonna know the users, the end consumers of that data, better than those people who are building those applications. And so they're building these user interfaces, which are making all of that data accessible for, you know, their end users inside their organization. >>Well, Brian, great segment, great insight. Thanks for sharing all, all the complexities and, and IOT that you guys helped take away with the APIs and, and assembly and, and all the system architectures that are changing edge is real cloud is real. Yeah, absolutely. Mainstream enterprises. And you got developer attraction too, so congratulations. >>Yeah. It's >>Great. Well, thank any, any last word you wanna share >>Deal with? No, just, I mean, please, you know, if you're, if you're gonna, if you're gonna check out influx TV, download it, try out the open source contribute if you can. That's a, that's a huge thing. It's part of being the open source community. Um, you know, but definitely just, just use it. I think when once people use it, they try it out. They'll understand very, >>Very quickly. So open source with developers, enterprise and edge coming together all together. You're gonna hear more about that in the next segment, too. Right. Thanks for coming on. Okay. Thanks. When we return, Dave LAN will lead a panel on edge and data influx DB. You're watching the cube, the leader in high tech enterprise coverage. >>Why the startup, we move really fast. We find that in flex DB can move as fast as us. It's just a great group, very collaborative, very interested in manufacturing. And we see a bright future in working with influence. My name is Aaron Seley. I'm the CTO at HBI. Highlight's one of the first companies to focus on manufacturing data and apply the concepts of data ops, treat that as an asset to deliver to the it system, to enable applications like overall equipment effectiveness that can help the factory produce better, smarter, faster time series data. And manufacturing's really important. If you take a piece of equipment, you have the temperature pressure at the moment that you can look at to kind of see the state of what's going on. So without that context and understanding you can't do what manufacturers ultimately want to do, which is predict the future. >>Influx DB represents kind of a new way to storm time series data with some more advanced technology and more importantly, more open technologies. The other thing that influx does really well is once the data's influx, it's very easy to get out, right? They have a modern rest API and other ways to access the data. That would be much more difficult to do integrations with classic historians highlight can serve to model data, aggregate data on the shop floor from a multitude of sources, whether that be P C U a servers, manufacturing execution systems, E R P et cetera, and then push that seamlessly into influx to then be able to run calculations. Manufacturing is changing this industrial 4.0, and what we're seeing is influx being part of that equation. Being used to store data off the unified name space, we recommend InfluxDB all the time to customers that are exploring a new way to share data manufacturing called the unified name space who have open questions around how do I share this new data that's coming through my UNS or my QTT broker? How do I store this and be able to query it over time? And we often point to influx as a solution for that is a great brand. It's a great group of people and it's a great technology. >>Okay. We're now going to go into the customer panel and we'd like to welcome Angelo Fasi. Who's a software engineer at the Vera C Ruben observatory in Caleb McLaughlin whose senior spacecraft operations software engineer at loft orbital guys. Thanks for joining us. You don't wanna miss folks this interview, Caleb, let's start with you. You work for an extremely cool company. You're launching satellites into space. I mean, there, of course doing that is, is highly complex and not a cheap endeavor. Tell us about loft Orbi and what you guys do to attack that problem. >>Yeah, absolutely. And, uh, thanks for having me here by the way. Uh, so loft orbital is a, uh, company. That's a series B startup now, uh, who and our mission basically is to provide, uh, rapid access to space for all kinds of customers. Uh, historically if you want to fly something in space, do something in space, it's extremely expensive. You need to book a launch, build a bus, hire a team to operate it, you know, have a big software teams, uh, and then eventually worry about, you know, a bunch like just a lot of very specialized engineering. And what we're trying to do is change that from a super specialized problem that has an extremely high barrier of access to a infrastructure problem. So that it's almost as simple as, you know, deploying a VM in, uh, AWS or GCP is getting your, uh, programs, your mission deployed on orbit, uh, with access to, you know, different sensors, uh, cameras, radios, stuff like that. >>So that's, that's kind of our mission. And just to give a really brief example of the kind of customer that we can serve. Uh, there's a really cool company called, uh, totem labs who is working on building, uh, IOT cons, an IOT constellation for in of things, basically being able to get telemetry from all over the world. They're the first company to demonstrate indoor T, which means you have this little modem inside a container container that you, that you track from anywhere in the world as it's going across the ocean. Um, so they're, it's really little and they've been able to stay a small startup that's focused on their product, which is the, uh, that super crazy complicated, cool radio while we handle the whole space segment for them, which just, you know, before loft was really impossible. So that's, our mission is, uh, providing space infrastructure as a service. We are kind of groundbreaking in this area and we're serving, you know, a huge variety of customers with all kinds of different missions, um, and obviously generating a ton of data in space, uh, that we've gotta handle. Yeah. >>So amazing Caleb, what you guys do, I, now I know you were lured to the skies very early in your career, but how did you kinda land on this business? >>Yeah, so, you know, I've, I guess just a little bit about me for some people, you know, they don't necessarily know what they wanna do like early in their life. For me, I was five years old and I knew, you know, I want to be in the space industry. So, you know, I started in the air force, but have, uh, stayed in the space industry, my whole career and been a part of, uh, this is the fifth space startup that I've been a part of actually. So, you know, I've, I've, uh, kind of started out in satellites, did spent some time in working in, uh, the launch industry on rockets. Then, uh, now I'm here back in satellites and you know, honestly, this is the most exciting of the difference based startups. That I've been a part of >>Super interesting. Okay. Angelo, let's, let's talk about the Ruben observatory, ver C Ruben, famous woman scientist, you know, galaxy guru. Now you guys the observatory, you're up way up high. You're gonna get a good look at the Southern sky. Now I know COVID slowed you guys down a bit, but no doubt. You continued to code away on the software. I know you're getting close. You gotta be super excited. Give us the update on, on the observatory and your role. >>All right. So yeah, Rubin is a state of the art observatory that, uh, is in construction on a remote mountain in Chile. And, um, with Rubin, we conduct the, uh, large survey of space and time we are going to observe the sky with, uh, eight meter optical telescope and take, uh, a thousand pictures every night with a 3.2 gig up peaks of camera. And we are going to do that for 10 years, which is the duration of the survey. >>Yeah. Amazing project. Now you, you were a doctor of philosophy, so you probably spent some time thinking about what's out there and then you went out to earn a PhD in astronomy, in astrophysics. So this is something that you've been working on for the better part of your career, isn't it? >>Yeah, that's that's right. Uh, about 15 years, um, I studied physics in college, then I, um, got a PhD in astronomy and, uh, I worked for about five years in another project. Um, the dark energy survey before joining rubing in 2015. >>Yeah. Impressive. So it seems like you both, you know, your organizations are looking at space from two different angles. One thing you guys both have in common of course is, is, is software. And you both use InfluxDB as part of your, your data infrastructure. How did you discover influx DB get into it? How do you use the platform? Maybe Caleb, you could start. >>Uh, yeah, absolutely. So the first company that I extensively used, uh, influx DBN was a launch startup called, uh, Astra. And we were in the process of, uh, designing our, you know, our first generation rocket there and testing the engines, pumps, everything that goes into a rocket. Uh, and when I joined the company, our data story was not, uh, very mature. We were collecting a bunch of data in LabVIEW and engineers were taking that over to MATLAB to process it. Um, and at first there, you know, that's the way that a lot of engineers and scientists are used to working. Um, and at first that was, uh, like people weren't entirely sure that that was a, um, that that needed to change, but it's something the nice thing about InfluxDB is that, you know, it's so easy to deploy. So as the, our software engineering team was able to get it deployed and, you know, up and running very quickly and then quickly also backport all of the data that we collected thus far into influx and what, uh, was amazing to see. >>And as kind of the, the super cool moment with influx is, um, when we hooked that up to Grafana Grafana as the visualization platform we used with influx, cuz it works really well with it. Uh, there was like this aha moment of our engineers who are used to this post process kind of method for dealing with their data where they could just almost instantly easily discover data that they hadn't been able to see before and take the manual processes that they would run after a test and just throw those all in influx and have live data as tests were coming. And, you know, I saw them implementing like crazy rocket equation type stuff in influx, and it just was totally game changing for how we tested. >>So Angelo, I was explaining in my open, you know, you could, you could add a column in a traditional RDBMS and do time series, but with the volume of data that you're talking about, and the example of the Caleb just gave you, I mean, you have to have a purpose built time series database, where did you first learn about influx DB? >>Yeah, correct. So I work with the data management team, uh, and my first project was the record metrics that measured the performance of our software, uh, the software that we used to process the data. So I started implementing that in a relational database. Um, but then I realized that in fact, I was dealing with time series data and I should really use a solution built for that. And then I started looking at time series databases and I found influx B. And that was, uh, back in 2018. The another use for influx DB that I'm also interested is the visits database. Um, if you think about the observations we are moving the telescope all the time in pointing to specific directions, uh, in the Skype and taking pictures every 30 seconds. So that itself is a time series. And every point in that time series, uh, we call a visit. So we want to record the metadata about those visits and flex to, uh, that time here is going to be 10 years long, um, with about, uh, 1000 points every night. It's actually not too much data compared to other, other problems. It's, uh, really just a different, uh, time scale. >>The telescope at the Ruben observatory is like pun intended, I guess the star of the show. And I, I believe I read that it's gonna be the first of the next gen telescopes to come online. It's got this massive field of view, like three orders of magnitude times the Hub's widest camera view, which is amazing, right? That's like 40 moons in, in an image amazingly fast as well. What else can you tell us about the telescope? >>Um, this telescope, it has to move really fast and it also has to carry, uh, the primary mirror, which is an eight meter piece of glass. It's very heavy and it has to carry a camera, which has about the size of a small car. And this whole structure weighs about 300 tons for that to work. Uh, the telescope needs to be, uh, very compact and stiff. Uh, and one thing that's amazing about it's design is that the telescope, um, is 300 tons structure. It sits on a tiny film of oil, which has the diameter of, uh, human hair. And that makes an almost zero friction interface. In fact, a few people can move these enormous structure with only their hands. Uh, as you said, uh, another aspect that makes this telescope unique is the optical design. It's a wide field telescope. So each image has, uh, in diameter the size of about seven full moons. And, uh, with that, we can map the entire sky in only, uh, three days. And of course doing operations everything's, uh, controlled by software and it is automatic. Um there's a very complex piece of software, uh, called the scheduler, which is responsible for moving the telescope, um, and the camera, which is, uh, recording 15 terabytes of data every night. >>Hmm. And, and, and Angela, all this data lands in influx DB. Correct. And what are you doing with, with all that data? >>Yeah, actually not. Um, so we are using flex DB to record engineering data and metadata about the observations like telemetry events and commands from the telescope. That's a much smaller data set compared to the images, but it is still challenging because, uh, you, you have some high frequency data, uh, that the system needs to keep up and we need to, to start this data and have it around for the lifetime of the price. Mm, >>Got it. Thank you. Okay, Caleb, let's bring you back in and can tell us more about the, you got these dishwasher size satellites. You're kind of using a multi-tenant model. I think it's genius, but, but tell us about the satellites themselves. >>Yeah, absolutely. So, uh, we have in space, some satellites already that as you said, are like dishwasher, mini fridge kind of size. Um, and we're working on a bunch more that are, you know, a variety of sizes from shoebox to, I guess, a few times larger than what we have today. Uh, and it is, we do shoot to have effectively something like a multi-tenant model where, uh, we will buy a bus off the shelf. The bus is, uh, what you can kind of think of as the core piece of the satellite, almost like a motherboard or something where it's providing the power. It has the solar panels, it has some radios attached to it. Uh, it handles the attitude control, basically steers the spacecraft in orbit. And then we build also in house, what we call our payload hub, which is, has all, any customer payloads attached and our own kind of edge processing sort of capabilities built into it. >>And, uh, so we integrate that. We launch it, uh, and those things, because they're in lower orbit, they're orbiting the earth every 90 minutes. That's, you know, seven kilometers per second, which is several times faster than a speeding bullet. So we've got, we have, uh, one of the unique challenges of operating spacecraft and lower orbit is that generally you can't talk to them all the time. So we're managing these things through very brief windows of time, uh, where we get to talk to them through our ground sites, either in Antarctica or, you know, in the north pole region. >>Talk more about how you use influx DB to make sense of this data through all this tech that you're launching into space. >>We basically previously we started off when I joined the company, storing all of that as Angelo did in a regular relational database. And we found that it was, uh, so slow in the size of our data would balloon over the course of a couple days to the point where we weren't able to even store all of the data that we were getting. Uh, so we migrated to influx DB to store our time series telemetry from the spacecraft. So, you know, that's things like, uh, power level voltage, um, currents counts, whatever, whatever metadata we need to monitor about the spacecraft. We now store that in, uh, in influx DB. Uh, and that has, you know, now we can actually easily store the entire volume of data for the mission life so far without having to worry about, you know, the size bloating to an unmanageable amount. >>And we can also seamlessly query, uh, large chunks of data. Like if I need to see, you know, for example, as an operator, I might wanna see how my, uh, battery state of charge is evolving over the course of the year. I can have a plot and an influx that loads that in a fraction of a second for a year's worth of data, because it does, you know, intelligent, um, I can intelligently group the data by, uh, sliding time interval. Uh, so, you know, it's been extremely powerful for us to access the data and, you know, as time has gone on, we've gradually migrated more and more of our operating data into influx. >>You know, let's, let's talk a little bit, uh, uh, but we throw this term around a lot of, you know, data driven, a lot of companies say, oh, yes, we're data driven, but you guys really are. I mean, you' got data at the core, Caleb, what does that, what does that mean to you? >>Yeah, so, you know, I think the, and the clearest example of when I saw this be like totally game changing is what I mentioned before at Astro where our engineer's feedback loop went from, you know, a lot of kind of slow researching, digging into the data to like an instant instantaneous, almost seeing the data, making decisions based on it immediately, rather than having to wait for some processing. And that's something that I've also seen echoed in my current role. Um, but to give another practical example, uh, as I said, we have a huge amount of data that comes down every orbit, and we need to be able to ingest all of that data almost instantaneously and provide it to the operator. And near real time, you know, about a second worth of latency is all that's acceptable for us to react to, to see what is coming down from the spacecraft and building that pipeline is challenging from a software engineering standpoint. >>Um, our primary language is Python, which isn't necessarily that fast. So what we've done is started, you know, in the, in the goal of being data driven is publish metrics on individual, uh, how individual pieces of our data processing pipeline are performing into influx as well. And we do that in production as well as in dev. Uh, so we have kind of a production monitoring, uh, flow. And what that has done is allow us to make intelligent decisions on our software development roadmap, where it makes the most sense for us to, uh, focus our development efforts in terms of improving our software efficiency. Uh, just because we have that visibility into where the real problems are. Um, it's sometimes we've found ourselves before we started doing this kind of chasing rabbits that weren't necessarily the real root cause of issues that we were seeing. Uh, but now, now that we're being a bit more data driven, there we are being much more effective in where we're spending our resources and our time, which is especially critical to us as we scale to, from supporting a couple satellites, to supporting many, many satellites at >>Once. Yeah. Coach. So you reduced those dead ends, maybe Angela, you could talk about what, what sort of data driven means to, to you and your teams? >>I would say that, um, having, uh, real time visibility, uh, to the telemetry data and, and metrics is, is, is crucial for us. We, we need, we need to make sure that the image that we collect with the telescope, uh, have good quality and, um, that they are within the specifications, uh, to meet our science goals. And so if they are not, uh, we want to know that as soon as possible and then, uh, start fixing problems. >>Caleb, what are your sort of event, you know, intervals like? >>So I would say that, you know, as of today on the spacecraft, the event, the, the level of timing that we deal with probably tops out at about, uh, 20 Hertz, 20 measurements per second on, uh, things like our, uh, gyroscopes, but the, you know, I think the, the core point here of the ability to have high precision data is extremely important for these kinds of scientific applications. And I'll give an example, uh, from when I worked at, on the rocket at Astra there, our baseline data rate that we would ingest data during a test is, uh, 500 Hertz. So 500 samples per second. And in some cases we would actually, uh, need to ingest much higher rate data, even up to like 1.5 kilohertz. So, uh, extremely, extremely high precision, uh, data there where timing really matters a lot. And, uh, you know, I can, one of the really powerful things about influx is the fact that it can handle this. >>That's one of the reasons we chose it, uh, because there's times when we're looking at the results of a firing where you're zooming in, you know, I talked earlier about how on my current job, we often zoom out to look, look at a year's worth of data. You're zooming in to where your screen is preoccupied by a tiny fraction of a second. And you need to see same thing as Angela just said, not just the actual telemetry, which is coming in at a high rate, but the events that are coming out of our controllers. So that can be something like, Hey, I opened this valve at exactly this time and that goes, we wanna have that at, you know, micro or even nanosecond precision so that we know, okay, we saw a spike in chamber pressure at, you know, at this exact moment, was that before or after this valve open, those kind of, uh, that kind of visibility is critical in these kind of scientific, uh, applications and absolutely game changing to be able to see that in, uh, near real time and, uh, with a really easy way for engineers to be able to visualize this data themselves without having to wait for, uh, software engineers to go build it for them. >>Can the scientists do self-serve or are you, do you have to design and build all the analytics and, and queries for your >>Scientists? Well, I think that's, that's absolutely from, from my perspective, that's absolutely one of the best things about influx and what I've seen be game changing is that, uh, generally I'd say anyone can learn to use influx. Um, and honestly, most of our users might not even know they're using influx, um, because what this, the interface that we expose to them is Grafana, which is, um, a generic graphing, uh, open source graphing library that is very similar to influx own chronograph. Sure. And what it does is, uh, let it provides this, uh, almost it's a very intuitive UI for building your queries. So you choose a measurement and it shows a dropdown of available measurements. And then you choose a particular, the particular field you wanna look at. And again, that's a dropdown, so it's really easy for our users to discover. And there's kind of point and click options for doing math aggregations. You can even do like perfect kind of predictions all within Grafana, the Grafana user interface, which is really just a wrapper around the APIs and functionality of the influx provides putting >>Data in the hands of those, you know, who have the context of domain experts is, is key. Angela, is it the same situation for you? Is it self serve? >>Yeah, correct. Uh, as I mentioned before, um, we have the astronomers making their own dashboards because they know what exactly what they, they need to, to visualize. Yeah. I mean, it's all about using the right tool for the job. I think, uh, for us, when I joined the company, we weren't using influx DB and we, we were dealing with serious issues of the database growing to an incredible size extremely quickly, and being unable to like even querying short periods of data was taking on the order of seconds, which is just not possible for operations >>Guys. This has been really formative it's, it's pretty exciting to see how the edge is mountaintops, lower orbits to be space is the ultimate edge. Isn't it. I wonder if you could answer two questions to, to wrap here, you know, what comes next for you guys? Uh, and is there something that you're really excited about that, that you're working on Caleb, maybe you could go first and an Angela, you can bring us home. >>Uh, basically what's next for loft. Orbital is more, more satellites, a greater push towards infrastructure and really making, you know, our mission is to make space simple for our customers and for everyone. And we're scaling the company like crazy now, uh, making that happen, it's extremely exciting and extremely exciting time to be in this company and to be in this industry as a whole, because there are so many interesting applications out there. So many cool ways of leveraging space that, uh, people are taking advantage of. And with, uh, companies like SpaceX and the now rapidly lowering cost, cost of launch, it's just a really exciting place to be. And we're launching more satellites. We are scaling up for some constellations and our ground system has to be improved to match. So there's a lot of, uh, improvements that we're working on to really scale up our control software, to be best in class and, uh, make it capable of handling such a large workload. So >>You guys hiring >><laugh>, we are absolutely hiring. So, uh, I would in we're we need, we have PE positions all over the company. So, uh, we need software engineers. We need people who do more aerospace, specific stuff. So, uh, absolutely. I'd encourage anyone to check out the loft orbital website, if there's, if this is at all interesting. >>All right. Angela, bring us home. >>Yeah. So what's next for us is really, uh, getting this, um, telescope working and collecting data. And when that's happen is going to be just, um, the Lu of data coming out of this camera and handling all, uh, that data is going to be really challenging. Uh, yeah. I wanna wanna be here for that. <laugh> I'm looking forward, uh, like for next year we have like an important milestone, which is our, um, commissioning camera, which is a simplified version of the, of the full camera it's going to be on sky. And so yeah, most of the system has to be working by them. >>Nice. All right, guys, you know, with that, we're gonna end it. Thank you so much, really fascinating, and thanks to influx DB for making this possible, really groundbreaking stuff, enabling value creation at the edge, you know, in the cloud and of course, beyond at the space. So really transformational work that you guys are doing. So congratulations and really appreciate the broader community. I can't wait to see what comes next from having this entire ecosystem. Now, in a moment, I'll be back to wrap up. This is Dave ante, and you're watching the cube, the leader in high tech enterprise coverage. >>Welcome Telegraph is a popular open source data collection. Agent Telegraph collects data from hundreds of systems like IOT sensors, cloud deployments, and enterprise applications. It's used by everyone from individual developers and hobbyists to large corporate teams. The Telegraph project has a very welcoming and active open source community. Learn how to get involved by visiting the Telegraph GitHub page, whether you want to contribute code, improve documentation, participate in testing, or just show what you're doing with Telegraph. We'd love to hear what you're building. >>Thanks for watching. Moving the world with influx DB made possible by influx data. I hope you learn some things and are inspired to look deeper into where time series databases might fit into your environment. If you're dealing with large and or fast data volumes, and you wanna scale cost effectively with the highest performance and you're analyzing metrics and data over time times, series databases just might be a great fit for you. Try InfluxDB out. You can start with a free cloud account by clicking on the link and the resources below. Remember all these recordings are gonna be available on demand of the cube.net and influx data.com. So check those out and poke around influx data. They are the folks behind InfluxDB and one of the leaders in the space, we hope you enjoyed the program. This is Dave Valante for the cube. We'll see you soon.
SUMMARY :
case that anyone can relate to and you can build timestamps into Now, the problem with the latter example that I just gave you is that you gotta hunt As I just explained, we have an exciting program for you today, and we're And then we bring it back here Thanks for coming on. What is the story? And, and he basically, you know, from my point of view, he invented modern time series, Yeah, I think we're, I, you know, I always forget the number, but it's something like 230 or 240 people relational database is the one database to rule the world. And then you get the data lake. So And so you get to these applications Isn't good enough when you need real time. It's like having the feature for, you know, you buy a new television, So this is a big part of how we're seeing with people saying, Hey, you know, And so you get the dynamic of, you know, of constantly instrumenting watching the What are you seeing for your, with in, with influx DB, So a lot, you know, Tesla, lucid, motors, Cola, You mentioned, you know, you think of IOT, look at the use cases there, it was proprietary And so the developer, So let's get to the developer real quick, real highlight point here is the data. So to a degree that you are moving your service, So when you bring in kind of old way, new way old way was you know, the best of the open source world. They have faster time to market cuz they're assembling way faster and they get to still is what we like to think of it. I mean systems, uh, uh, systems have consequences when you make changes. But that's where the that's where the, you know, that that Boeing or that airplane building analogy comes in So I'll have to ask you if I'm the customer. Because now I have to make these architectural decisions, as you mentioned, And so that's what you started building. And since I have a PO for you and a big check, yeah. It's not like it's, you know, it's not like it's doing every action that's above, but it's foundational to build What would you say to someone looking to do something in time series on edge? in the build business of building systems that you want 'em to be increasingly intelligent, Brian Gilmore director of IOT and emerging technology that influx day will join me. So you can focus on the Welcome to the show. Sort of, you know, riding along with them is they're successful. Now, you go back since 20 13, 14, even like five years ago that convergence of physical And I think, you know, those, especially in the OT and on the factory floor who weren't able And I think I, OT has been kind of like this thing for OT and, you know, our client libraries and then working hard to make our applications, leveraging that you guys have users in the enterprise users that IOT market mm-hmm <affirmative>, they're excited to be able to adopt and use, you know, to optimize inside the business as compared to just building mm-hmm <affirmative> so how do you support the backwards compatibility of older systems while maintaining open dozens very hard work and a lot of support, um, you know, and so by making those connections and building those ecosystems, What are some of the, um, soundbites you hear from customers when they're successful? machines that go deep into the earth to like drill tunnels for, for, you know, I personally think that's a hot area because I think if you look at AI right all of the things you need to do with that data in stream, um, before it hits your sort of central repository. So you have that whole CEO perspective, but he brought up this notion that You can start to compare asset to asset, and then you can do those things like we talked about, So in this model you have a lot of commercial operations, industrial equipment. And I think, you know, we are, we're building some technology right now. like, you know, either in low earth orbit or you know, all the way sort of on the other side of the universe. I think you bring up a good point there because one of the things that's common in the industry right now, people are talking about, I mean, I think you talked about it, uh, you know, for them just to be able to adopt the platform How do you view view that? Um, you know, and it, it allows the developer to build all of those hooks for not only data creation, There's so much data out there now. that data from point a to point B and you know, to process it correctly so that the end And, and the democratization is the benefit. allow them to just port to us, you know, directly from the applications and the languages Thanks for sharing all, all the complexities and, and IOT that you Well, thank any, any last word you wanna share No, just, I mean, please, you know, if you're, if you're gonna, if you're gonna check out influx TV, You're gonna hear more about that in the next segment, too. the moment that you can look at to kind of see the state of what's going on. And we often point to influx as a solution Tell us about loft Orbi and what you guys do to attack that problem. So that it's almost as simple as, you know, We are kind of groundbreaking in this area and we're serving, you know, a huge variety of customers and I knew, you know, I want to be in the space industry. famous woman scientist, you know, galaxy guru. And we are going to do that for 10 so you probably spent some time thinking about what's out there and then you went out to earn a PhD in astronomy, Um, the dark energy survey So it seems like you both, you know, your organizations are looking at space from two different angles. something the nice thing about InfluxDB is that, you know, it's so easy to deploy. And, you know, I saw them implementing like crazy rocket equation type stuff in influx, and it Um, if you think about the observations we are moving the telescope all the And I, I believe I read that it's gonna be the first of the next Uh, the telescope needs to be, And what are you doing with, compared to the images, but it is still challenging because, uh, you, you have some Okay, Caleb, let's bring you back in and can tell us more about the, you got these dishwasher and we're working on a bunch more that are, you know, a variety of sizes from shoebox sites, either in Antarctica or, you know, in the north pole region. Talk more about how you use influx DB to make sense of this data through all this tech that you're launching of data for the mission life so far without having to worry about, you know, the size bloating to an Like if I need to see, you know, for example, as an operator, I might wanna see how my, You know, let's, let's talk a little bit, uh, uh, but we throw this term around a lot of, you know, data driven, And near real time, you know, about a second worth of latency is all that's acceptable for us to react you know, in the, in the goal of being data driven is publish metrics on individual, So you reduced those dead ends, maybe Angela, you could talk about what, what sort of data driven means And so if they are not, So I would say that, you know, as of today on the spacecraft, the event, so that we know, okay, we saw a spike in chamber pressure at, you know, at this exact moment, the particular field you wanna look at. Data in the hands of those, you know, who have the context of domain experts is, issues of the database growing to an incredible size extremely quickly, and being two questions to, to wrap here, you know, what comes next for you guys? a greater push towards infrastructure and really making, you know, So, uh, we need software engineers. Angela, bring us home. And so yeah, most of the system has to be working by them. at the edge, you know, in the cloud and of course, beyond at the space. involved by visiting the Telegraph GitHub page, whether you want to contribute code, and one of the leaders in the space, we hope you enjoyed the program.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Angela | PERSON | 0.99+ |
Evan | PERSON | 0.99+ |
2015 | DATE | 0.99+ |
SpaceX | ORGANIZATION | 0.99+ |
2016 | DATE | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Antarctica | LOCATION | 0.99+ |
Boeing | ORGANIZATION | 0.99+ |
Caleb | PERSON | 0.99+ |
10 years | QUANTITY | 0.99+ |
Chile | LOCATION | 0.99+ |
Brian | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Evan Kaplan | PERSON | 0.99+ |
Aaron Seley | PERSON | 0.99+ |
Angelo Fasi | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
Paul | PERSON | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
2018 | DATE | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
two questions | QUANTITY | 0.99+ |
Caleb McLaughlin | PERSON | 0.99+ |
40 moons | QUANTITY | 0.99+ |
two systems | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Angelo | PERSON | 0.99+ |
230 | QUANTITY | 0.99+ |
300 tons | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
500 Hertz | QUANTITY | 0.99+ |
3.2 gig | QUANTITY | 0.99+ |
15 terabytes | QUANTITY | 0.99+ |
eight meter | QUANTITY | 0.99+ |
two practitioners | QUANTITY | 0.99+ |
20 Hertz | QUANTITY | 0.99+ |
25 years | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Python | TITLE | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Paul dicks | PERSON | 0.99+ |
First | QUANTITY | 0.99+ |
iPhones | COMMERCIAL_ITEM | 0.99+ |
first | QUANTITY | 0.99+ |
earth | LOCATION | 0.99+ |
240 people | QUANTITY | 0.99+ |
three days | QUANTITY | 0.99+ |
apple | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
HBI | ORGANIZATION | 0.99+ |
Dave LAN | PERSON | 0.99+ |
today | DATE | 0.99+ |
each image | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
cube.net | OTHER | 0.99+ |
InfluxDB | TITLE | 0.99+ |
one | QUANTITY | 0.98+ |
1000 points | QUANTITY | 0.98+ |
Evan Kaplan, InfluxData
>>Okay. Today we welcome Evan Kaplan, CEO of Influx Data, the company behind Influx DB Welcome, Evan. Thanks for coming on. >>Hey, John. Thanks for having me. >>Great segment here on the influx. DB Story. What is the story? Take us through the history. Why Time series? What's the story? >>So the history of history is actually actually pretty interesting. Paul Dicks, my partner in this and our founder, um, super passionate about developers and developer experience. And, um, he had worked on Wall Street building a number of times series kind of platform trading platforms for trading stocks. And from his point of view, it was always what he would call a yak shave, which means you have to do a tonne of work just to start doing work. Which means you have to write a bunch of extrinsic routines. You had to write a bunch of application handling on existing relational databases in order to come up with something that was optimised for a trading platform or a time series platform. And he sort of he just developed This real clear point of view is this is not how developers should work. And so in 2013, he went through y Combinator and he built something for he made his first commit to open source influx TB at the end of 2013. And basically, you know, from my point of view, you invented modern time series, which is you start with a purpose built time series platform to do these kind of work clothes, and you get all the benefits of having something right out of the box or developer can be totally productive right away. >>And how many people in the company What's the history of employees and stuff? Yeah, >>I think we're you know, I always forget the number, but it's something like 230 or 240 people now. Um, the company I joined the company in 2016 and I love Paul's vision, and I just had a strong conviction about the relationship between Time series and Iot. Because if you think about it, what sensors do is they speak time, series, pressure, temperature, volume, humidity, light. They're measuring their instrumented something over time. And so I thought that would be super relevant over long term, and I've not regretted. Oh, >>no, and it's interesting at that time to go back in history. You know the role of databases are relational database, the one database to rule the world. And then, as clouds started coming in, you're starting to see more databases, proliferate types of databases. And Time series in particular, is interesting because real time has become super valuable. From an application standpoint, Iot, which speaks Time series, means something. It's like time matters >>times, >>and sometimes date is not worth it after the time. Sometimes it's worth it. And then you get the Data lake, so you have this whole new evolution. Is this the momentum? What's the momentum? I guess the question is, what's the momentum behind >>what's causing us to grow? So >>the time series. Why is time series in the category momentum? What's the bottom line? We'll >>think about it. You think about it from abroad, abroad, sort of frame, which is where what everybody's trying to do is build increasingly intelligent systems, whether it's a self driving car or a robotic system that does what you want to do or self healing software system. Everybody wants to build increasing intelligence systems, and so, in order to build these increasingly intelligence systems. You have to instrument the system well, and you have to instrument it over time, better and better. And so you need a tool, a fundamental tool to drive that instrumentation. And that's become clear to everybody that that instrumentation is all based on time. And so what happened? What happened? What happened? What's going to happen? And so you get to these applications, like predictive maintenance or smarter systems. And increasingly, you want to do that stuff not just intelligently, but fast in real time, so millisecond response, so that when you're driving a self driving car and the system realises that you're about to do something, essentially, you want to be able to act in something that looks like real time. All systems want to do that. I want to be more intelligent, and they want to be more real time. So we just happened to, you know, we happen to show up at the right time. In the evolution of the market. >>It's interesting. Near real time isn't good enough when you need real time. Yeah, >>it's not, it's not, and it's like it's like everybody wants even when you don't need it. Uh, ironically, you want it. It's like having the feature for, you know, you buy a new television, you want that one feature even though you're not going to use it, you decide that you're buying criteria. Real time is a buying criteria. >>So what you're saying, then is near real time is getting closer to real time as possible as possible. Okay, so talk about the aspect of data cause we're hearing a lot of conversations on the Cubans particular around how people are implementing and actually getting better. So iterating on data. >>But >>you have to know when it happened to get know how to fix it. So this is a big part of what we're seeing with people saying, Hey, you know, I want to make my machine learning albums better after the fact I want to learn from the data. Um, how does that How do you see that evolving? Is that one of the use cases of sensors as people bring data in off the network, getting better with the data knowing when it happened? >>Well, for sure, So for sure, what you're saying is is none of this is non linear. It's all incremental. And so if you take something, you know, just as an easy example. If you take a self driving car, what you're doing is your instrument in that car to understand where it can perform in the real world in real time. And if you do that, if you run the loop, which is I instrumented, I watch what happens. Oh, that's wrong. Oh, I have to correct for that. Correct for that in the software, if you do that four billion times, you get a self driving car. But every system moves along that evolution. And so you get the dynamic of you know of constantly instrumented, watching the system behave and do it and this and sets up driving cars. One thing. But even in the human genome, if you look at some of our customers, you know people like, you know, people doing solar arrays. People doing power walls like all of these systems, are getting smarter. >>What are the top application? What are you seeing your with Influx DB The Time series. What's the sweet spot for the application use case and some customers give some examples. >>Yeah, so it's pretty easy to understand. On one side of the equation. That's the physical side is sensors are the sensors are getting cheap. Obviously, we know that, and they're getting. The whole physical world is getting instrumented your home, your car, the factory floor, your wrist watch your healthcare, you name it. It's getting instrumented in the physical world. We're watching the physical world in real time, and so there are three or four sweet spots for us. But they're all on that side. They're all about Iot. So they're talking about consumer Iot projects like Google's Nest Tato Um, particle sensors, Um, even delivery engines like Happy who deliver the interesting part of South America. Like anywhere. There's a physical location doing that's on the consumer side. And then another exciting space is the industrial side. Factories are changing dramatically over time, increasingly moving away from proprietary equipment to develop or driven systems that run operational because what it has to get smarter when you're building, when you're building a factory, systems all have to get smarter. And then lastly, a lot in the renewables sustainability. So a lot, you know, Tesla, lucid motors, Nicola Motors, um you know, lots to do with electric cars, solar arrays, windmills are raised just anything that's going to get instrumented, that where that instrumentation becomes part of what the purpose is. >>It's interesting. The convergence of physical and digital is happening with the data Iot you mentioned. You know, you think of Iot. Look at the use cases there. It was proprietary OT systems now becoming more I p enabled Internet protocol and now edge compute getting smaller, faster, cheaper ai going to the edge. Now you have all kinds of new capabilities that bring that real time and time series opportunity. Are you seeing Iot going to a new level? What was that? What's the Iot? Where's the Iot dots connecting to? Because, you know, as these two cultures merge operations basically industrial factory car, they gotta get smarter. Intelligent edge is a buzzword, but it has to be more intelligent. Where's the where's the action in all this? So the >>action really, really at the core? >>It's >>at the developer, right, Because you're looking at these things. It's very hard to get off the shelf system to do the kinds of physical and software interaction. So the actions really happen at the developers. And so what you're seeing is a movement in the world that that maybe you and I grew up in with I t r o T moving increasingly that developer driven capability. And so all of these Iot systems, their bespoke, they don't come out of the box. And so the developer and the architect, the CTO they define what's my business? What am I trying to do trying to sequence the human genome and figure out when these genes express themselves? Or am I trying to figure out when the next heart rate monitor is going to show up in my apple watch, right? What am I trying to do? What's the system I need to build? And so starting with the developers where all of the good stuff happens here, which is different than it used to be, right, used to be used by an application or a service or a sad thing for But with this dynamic with this integration of systems, it's all about bespoke. It's all about building something. >>So let's get to the death of a real quick, real highlight point. Here is the data. I mean, I could see a developer saying, Okay, I need to have an application for the edge Iot, edge or car. I mean, we're gonna test look at applications of the cars right there. I mean, there's the modern application lifecycle now, so take us through how this impacts the developer doesn't impact their CI CD. Pipeline is a cloud native. I mean, where does this all Where does this go to? >>Well, so first of all you talking about, there was an internal journey that we had to go through as a company, which which I think is fascinating for anybody's interested as we went from primarily a monolithic software that was open source to building a cloud native platform, which means we have to move from an agile development environment to a C I C d. Environ. So two degree that you're moving your service whether it's, you know, Tesla, monitoring your car and updating your power walls right? Or whether it's a solar company updating your race right to the degree that services cloud then increasingly removed from an agile development to a CI CD environment which is shipping code to production every day. And so it's not just the developers, all the infrastructure to support the developers to run that service and that sort of stuff. I think that's also going to happen in a big way >>when your customer base that you have now and you see evolving with influx DB is it that they're gonna be writing more of the application or relying more on others? I mean, obviously the open source component here. So when you bring in kind of old way new Way Old Way was, I got a proprietary platform running all this Iot stuff and I got to write, Here's an application. That's general purpose. I have some flexibility, somewhat brittle. Maybe not a lot of robustness to it, but it does its job >>a good way to think about this. >>This is what >>So, yeah, a good way to think about this is what What's the role of the developer slashed architect C T o that chain within a large enterprise or a company. And so, um, the way to think about is I started my career in the aerospace industry, and so when you look at what Boeing does to assemble a plane, they build very, very few of the parts instead. What they do is they assemble, they buy the wings, they buy the engines they assemble. Actually, they don't buy the wings. It's the one thing they buy, the material of the way they build the wings because there's a lot of tech in the wings and they end up being assemblers, smart assemblers of what ends up being a flying aeroplane, which is pretty big deal even now. And so what happens with software people is they have the ability to pull from, you know, the best of the open source world, so they would pull a time series capability from us. Then they would assemble that with potentially some E t l logic from somebody else, or they assemble it with, um, a Kafka interface to be able to stream the data in. And so they become very good integrators and assemblers. But they become masters of that bespoke application, and I think that's where it goes because you're not writing native code for everything, >>so they're more flexible. They have faster time to market because they're assembling way faster and they get to still maintain their core competency. OK, the wings. In this case, >>they become increasingly not just coders, but designers and developers. They become broadly builders is what we like to think of it. People who started build stuff. By the way. This is not different than the people have just up the road Google have been doing for years or the tier one Amazon building all their own. >>Well, I think one of the things that's interesting is that this idea of a systems developing a system architecture, I mean systems, uh, systems have consequences when you make changes. So when you have now cloud data centre on premise and edge working together, how does that work across the system? You can't have a wing that doesn't work with the other wing. That's exactly >>that's where that's where the, you know that that Boeing or that aeroplane building analogy comes in for us. We've really been thoughtful about that because I o. T. It's critical. So are open Source Edge has the same API as our cloud native stuff that hasn't enterprise on premises or multiple products have the same API, and they have a relationship with each other. They can talk with each other, so the builder builds at once. And so this is where when you start thinking about the components that people have to use to build these services is that you want to make sure at least that base layer that database layer that those components talk to each other. >>We'll have to ask you. I'm the customer. I put my customer hat on. Okay. Hey, I'm dealing with a lot. >>I mean, you have appeal for >>a big check blank check. If you can answer this question only if you get the question right. I got all this important operation stuff. I got my factory. I got my self driving cars. This isn't like trivial stuff. This is my business. How should I be thinking about Time Series? Because now I have to make these architectural decisions as you mentioned and it's going to impact my application development. So huge decision point for your customers. What should I care about the most? What's in it for me? Why is time series important? Yeah, >>that's a great question. So chances are if you've got a business that was 20 years old or 25 years old, you're already thinking about Time series. You probably didn't call it that you built something on a work call or you build something that IBM db two. Right, and you made it work within your system, right? And so that's what you started building. So it's already out there. There are, you know, they're probably hundreds of millions of Time series applications out there today. But as you start to think about this increasing need for real time and you start to think about increasing intelligence, you think about optimising those systems over time. I hate the word but digital transformation, and you start with Time series. It's a foundational base layer for any system that you're going to build. There's no system I can think of where time series shouldn't be the foundational base layer. If you just want to store your data and just leave it there and then maybe look it up every five years, that's fine. That's not time. Serious time series when you're building a smarter, more intelligent, more real time system, and the developers now know that, and so the more they play a role in building these systems, the more obvious it becomes. >>And since I have a P o for you in a big check, what what's the value to me as like when I implement this What's the end state? What's it look like when it's up and running? What's the value proposition for me? What's in it? >>So when it's up and running, you're able to handle the queries, the writing of the data, the down sampling of the data transforming it in near real time. So the other dependencies that a system that gets for adjusting a solar array or trading energy off of a power wall or some sort of human genome those systems work better. So time series is foundational. It's not like it's, you know, it's not like it's doing every action that's above, but it's foundational to build a really compelling intelligence system. I think that's what developers and architects are seeing now. >>Bottom line. Final word. What's in it for the customer? What's what's your What's your statement of the customer? Would you say to someone looking to do something in time, series and edge? >>Yeah. So it's pretty clear to clear to us that if you're building, if you view yourself as being in the building business of building systems that you want them to be increasingly intelligent, self healing, autonomous, you want them to operate in real time that you start from Time series. I also want to say What's in it for us in flux? What's in it for us is people are doing some amazing stuff. I highlighted some of the energy stuff, some of the human genome, some of the health care. It's hard not to be proud or feel like. Wow. Somehow I've been lucky. I've arrived at the right time in the right place, with the right people to be able to deliver on that. That's That's also exciting on our side of the equation. >>It's critical infrastructure, critical critical operations. >>Yeah, great >>stuff. Evan. Thanks for coming on. Appreciate this segment. All right. In a moment. Brian Gilmore, director of Iot and emerging Technology that influx, they will join me. You're watching the Cube leader in tech coverage. Thanks for watching
SUMMARY :
Thanks for coming on. What is the story? And basically, you know, from my point of view, you invented modern time series, I think we're you know, I always forget the number, but it's something like 230 or 240 people now. the one database to rule the world. And then you get the Data lake, so you have this whole new the time series. You have to instrument the system well, and you have to instrument it over Near real time isn't good enough when you need real time. It's like having the feature for, you know, you buy a new television, Okay, so talk about the aspect of data cause we're hearing a lot of conversations on the Cubans particular around how saying, Hey, you know, I want to make my machine learning albums better after the fact I want to learn from the data. Correct for that in the software, if you do that four billion times, What's the sweet spot for the application use case and some customers give some examples. So a lot, you know, Tesla, lucid motors, Nicola Motors, So the And so the developer and the architect, the CTO they define what's my business? Here is the data. And so it's not just the developers, So when you bring in kind of old way new Way Old Way was, the way to think about is I started my career in the aerospace industry, and so when you look at what Boeing OK, the wings. This is not different than the people have just So when you have now cloud data centre on premise and edge working together, And so this is where when you start I'm the customer. Because now I have to make these architectural decisions as you I hate the word but digital transformation, and you start with Time series. It's not like it's, you know, it's not like it's doing every action that's above, but it's foundational to build What's in it for the customer? in the building business of building systems that you want them to be increasingly intelligent, director of Iot and emerging Technology that influx, they will join me.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
2013 | DATE | 0.99+ |
Evan Kaplan | PERSON | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
Boeing | ORGANIZATION | 0.99+ |
Evan | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Amazon | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
230 | QUANTITY | 0.99+ |
Paul Dicks | PERSON | 0.99+ |
Iot | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
hundreds | QUANTITY | 0.99+ |
South America | LOCATION | 0.99+ |
Today | DATE | 0.99+ |
Paul | PERSON | 0.99+ |
240 people | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Cubans | PERSON | 0.98+ |
four billion times | QUANTITY | 0.98+ |
Iot | TITLE | 0.98+ |
first | QUANTITY | 0.98+ |
Nicola Motors | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.97+ |
lucid motors | ORGANIZATION | 0.97+ |
time series | TITLE | 0.96+ |
two cultures | QUANTITY | 0.96+ |
today | DATE | 0.96+ |
one side | QUANTITY | 0.96+ |
InfluxData | ORGANIZATION | 0.95+ |
Wall Street | LOCATION | 0.95+ |
Influx DB | ORGANIZATION | 0.95+ |
tier one | QUANTITY | 0.93+ |
Time series | TITLE | 0.93+ |
Kafka | TITLE | 0.93+ |
millions | QUANTITY | 0.92+ |
one feature | QUANTITY | 0.91+ |
end of 2013 | DATE | 0.9+ |
two degree | QUANTITY | 0.89+ |
One thing | QUANTITY | 0.87+ |
one thing | QUANTITY | 0.84+ |
four sweet spots | QUANTITY | 0.84+ |
25 years old | QUANTITY | 0.84+ |
20 years old | QUANTITY | 0.8+ |
Influx DB | COMMERCIAL_ITEM | 0.78+ |
Cube | ORGANIZATION | 0.77+ |
a tonne of work | QUANTITY | 0.74+ |
one database | QUANTITY | 0.74+ |
apple | ORGANIZATION | 0.71+ |
five years | QUANTITY | 0.7+ |
DB | ORGANIZATION | 0.67+ |
influx | ORGANIZATION | 0.6+ |
agile | TITLE | 0.56+ |
years | QUANTITY | 0.53+ |
Time | TITLE | 0.52+ |
lake | LOCATION | 0.51+ |
db two | TITLE | 0.51+ |
Story | TITLE | 0.44+ |
Evan Kaplan, InfluxData
(upbeat music) >> Okay today, we welcome Evan Kaplan, CEO of InfluxData, the company behind InfluxDB. Welcome Evan, thanks for coming on. >> Hey John, thanks for having me. >> Great segment here on the InfluxDB story. What is the story? Take us through the history, why time series? What's the story? >> So the history history is actually pretty interesting. Paul Dix my partner in this and our founder, super passionate about developers and developer experience. And he had worked on wall street building a number of time series kind of platform, trading platforms for trading stocks. And from his point of view, it was always what he would call a yak shave. Which means you had to do a ton of work just to start doing work. Which means you had to write a bunch of extrinsic routines, you had to write a bunch of application handling on existing relational databases, in order to come up with something that was optimized for a trading platform or a time series platform. And he sort of, he just developed this real clear point of view. This is not how developers should work. And so in 2013, he went through Y Combinator, and he built something for, he made his first commit to open source InfluxDB in the end of 2013. And he basically, you know from my point of view, he invented modern time series, which is you start with a purpose built time series platform to do these kind of workloads, and you get all the benefits of having something right out of the box. So a developer can be totally productive right away. >> And how many people are in the company? What's the history of employees is there? >> Yeah, I think we're, you know, I always forget the number but something like 230 or 240 people now. I joined the company in 2016, and I love Paul's vision. And I just had a strong conviction about the relationship between time series and IOT. 'Cause if you think about it, what sensors do is they speak time series. Pressure, temperature, volume, humidity, light, they're measuring, they're instrumenting something over time. And so I thought that would be super relevant over the long term, and I've not regretted it. >> Oh no, and it's interesting at that time if you go back in history, you know, the role of database. It's all relational database, the one database to rule the world. And then as cloud started coming in, you started to see more databases proliferate, types of databases. And time series in particular is interesting 'cause real time has become super valuable from an application standpoint. IOT which speaks time series, means something. It's like time matters >> Times yeah. >> And sometimes data's not worth it after the time, sometimes it's worth it. And then you get the data lake, so you have this whole new evolution. Is this the momentum? What's the momentum? I guess the question is what's the momentum behind it? >> You mean what's causing us to grow so fast? >> Yeah the time series, why is time series- >> And the category- >> Momentum, what's the bottom line? >> Well think about it, you think about it from a broad sort of frame which is, what everybody's trying to do is build increasingly intelligent systems. whether it's a self-driving car or a robotic system that does what you want to do, or a self-healing software system. Everybody wants to build increasing intelligent systems. And so in order to build these increasing intelligent systems, you have to instrument the system well. And you have to instrument it over time, better and better. And so you need a tool, a fundamental tool to drive that instrumentation. And that's become clear to everybody that that instrumentation is all based on time. And so what happened, what happened, what happened, what's going to happen. And so you get to these applications like predictive maintenance, or smarter systems, and increasingly you want to do that stuff not just intelligently, but fast in real time. So millisecond response, so that when you're driving a self-driving car, and the system realizes that you're about to do something, essentially you want to be able to act in something that looks like real time. All systems want to do that, they want to be more intelligent, and they want to be more real time. And so we just happen to, you know, we happen to show up at the right time in the evolution of a market. >> It's interesting near real time isn't good enough when you need real time. >> Yeah, it's not, it's not. And it's like everybody wants real even when you don't need it, ironically you want it. It's like having the feature for, you know you buy a new television, you want that one feature, even though you're not going to use it. You decide that's your buying criteria. Real time is criteria for people. >> So I mean, what you're saying then is near realtime is getting closer to real time as fast as possible? >> Right. >> Okay, so talk about the aspect of data, 'cause we're hearing a lot of conversations on theCUBE in particular around how people are implementing and actually getting better. So iterating on data, but you have to know when it happened to get know how to fix it. So this is a big part of what we're seeing with people saying, "Hey, you know I want to "make my machine learning algorithms better "after the fact, I want to learn from the data." How do you see that evolving? Is that one of the use cases of sensors as people bring data in off the network, getting better with the data, knowing when it happened? >> Well, for sure what you're saying is, is none of this is non-linear, it's all incremental. And so if you take something, you know just as an easy example, if you take a self-driving car, what you're doing is you're instrumenting that car to understand where it can perform in the real world in real time. And if you do that, if you run the loop which is, I instrument it, I watch what happens, oh that's wrong, oh I have to correct for that. I correct for that in the software. If you do that for a billion times, you get a self-driving car. But every system moves along that evolution. And so you get the dynamic of constantly instrumenting, watching the system behave and do it. And so a self driving car is one thing, but even in the human genome, if you look at some of our customers, you know, people like, people doing solar arrays, people doing power walls like all of these systems are getting smarter and smarter. >> Well, let's get into that. What are the top applications? What are you seeing with InfluxDB, the time series, what's the sweet spot for the application use case and some customers? Give some examples. >> Yeah so it's pretty easy to understand on one side of the equation, that's the physical side is, sensors are getting cheap obviously we know that. The whole physical world is getting instrumented, your home, your car, the factory floor, your wrist watch, your healthcare, you name it, it's getting instrumented in the physical world. We're watching the physical world in real time. And so there are three or four sweet spots for us, but they're all on that side, they're all about IOT. So they're thinking about consumer IOT kind of projects like Google's Nest, Tudor, particle sensors, even delivery engines like Rappi, who deliver the instant car to South America. Like anywhere there's a physical location and that's on the consumer side. And then another exciting space is the industrial side. Factories are changing dramatically over time. Increasingly moving away from proprietary equipment to develop or driven systems that run operational. Because what has to get smarter when you're building a factory is systems all have to get smarter. And then lastly, a lot in the renewables, so sustainability. So a lot, you know, Tesla, Lucid motors, Nicola motors, you know, lots to do with electric cars, solar arrays, windmills arrays, just anything that's going to get instrumented that where that instrumentation becomes part of what the purpose is. >> It's interesting the convergence of physical and digital is happening with the data. IOT you mentioned, you know, you think of IOT, look at the use cases there. It was proprietary OT systems, now becoming more IP enabled, internet protocol. And now edge compute, getting smaller, faster, cheaper. AI going to the edge. Now you have all kinds of new capabilities that bring that real time and time series opportunity. Are you seeing IOT going to a new level? Where's the IOT OT dots connecting to? Because, you know as these two cultures merge, operations basically, industrial, factory, car, they got to get smarter. Intelligent edge is a buzzword but I mean, it has to be more intelligent. Where's the action in all this? >> So the action, really, it really at the core, it's at the developer, right? Because you're looking at these things, it's very hard to get an off the shelf system to do the kinds of physical and software interaction. So the action's really happen at the developer. And so what you're seeing is a movement in the world that maybe you and I grew up in with IT or OT moving increasingly that developer driven capability. And so all of these IOT systems, they're bespoke, they don't come out of the box. And so the developer, the architect, the CTO, they define what's my business? What am I trying to do? Am I trying to sequence a human genome and figure out when these genes express themselves? Or am I trying to figure out when the next heart rate monitor is going to show up in my apple watch? Right, what am I trying to do? What's the system I need to build? And so starting with the developer is where all of the good stuff happens here. Which is different than it used to be, right. It used to be you'd buy an application or a service or a SaaS thing for, but with this dynamic, with this integration of systems, it's all about bespoke, it's all about building something. >> So let's get to the developer real quick. Real highlight point here is the data, I mean, I could see a developer saying, "Okay, I need to have an application for the edge," IOT edge or car, I mean we're going to have, I mean Tesla got applications of the car, it's right there. I mean, there's the modern application life cycle now. So take us through how does this impacts the developer. Does it impact their CICD pipeline? Is it cloud native? I mean where does this go to? >> Well, so first of all you're talking about, there was an internal journey that we had to go through as a company which I think is fascinating for anybody that's interested, is we went from primarily a monolithic software that was open sourced to building a Cloud-native platform. Which means we had to move from an agile development environment to a CICD environment. So to degree that you are moving your service, whether it's you know, Tesla monitoring your car and updating your power walls, right. Or whether it's a solar company updating the arrays, right, to a degree that that service is cloud. Then increasingly we remove from an agile development to a CICD environment, which you're shipping code to production every day. And so it's not just the developers, it's all the infrastructure to support the developers to run that service and that sort of stuff. I think that's also going to happen in a big way. >> When your customer base that you have now, and as you see evolving with in InfluxDB, is it that they're going to be writing more of the application or relying more on others? I mean obviously it's an open source component here. So when you bring in kind of old way, new way, old way was, I got a proprietary platform running all this IOT stuff, and I got to write, here's an application that's general purpose. I have some flexibility, somewhat brittle, maybe not a lot of robustness to it, but it does this job. >> A good way to think about this is- >> Versus new way which is what? >> So yeah a good way to think about this is what's the role of the developer/architect, CTO, that chain within a large, with an enterprise or a company. And so the way to think about is I started my career in the aerospace industry. And so when you look at what Boeing does to assemble a plane, they build very very few of the parts. Instead what they do is they assemble. They buy the wings, they buy the engines, they assemble, actually they don't buy the wings. That's the one thing, they buy the material for the wing. They build the wings 'cause there's a lot of tech in the wings, and they end up being assemblers, smart assemblers of what ends up being a flying airplane. Which is a pretty big deals even now. And so what happens with software people is, they have the ability to pull from you know, the best of the open source world. So they would pull a time series capability from us, then they would assemble that with potentially some ETL logic from somebody else. Or they'd assemble it with a Kafka interface to be able to stream the data in. And so they become very good integrators and assemblers but they become masters of that bespoke application. And I think that's where it goes 'cause you're not writing native code for everything. >> So they're more flexible, they have faster time to market 'cause they're assembling. >> Way faster. >> And they get to still maintain their core competency, AKA their wings in this case. >> They become increasingly not just coders but designers and developers. They become broadly builders is what we like to think of it. People who start and build stuff. By the way, this is not different than the people just up the road. Google have been doing for years or the tier one Amazon building all their own. >> Well, I think one of the things that's interesting is that this idea of a systems developing, a system architecture. I mean systems have consequences when you make changes. So when you have now cloud data center on-premise and edge working together, how does that work across the system? You can't have a wing that doesn't work with the other wing kind of thing. >> That's exactly, but that's where that Boeing or that airplane building analogy comes in. For us, we've really been thoughtful about that because IOT it's critical. So our open source edge has the same API as our cloud native stuff that has enterprise on prem edge. So our multiple products have the same API and they have a relationship with each other. They can talk with each other. So the builder builds it once. And so this is where, when you start thinking about the components that people have to use to build these services is that, you want to make sure at least that base layer, that database layer that those components talk to each other. >> So I'll have to ask you if I'm the customer, I put my customer hat on. Okay, hey, I'm dealing with a lot. >> Does that mean you have a PO for- >> (laughs) A big check, a blank check, if you can answer this question. >> Only if in tech. >> If you get the question right. I got all this important operation stuff, I got my factory, I got my self-driving cars, this isn't like trivial stuff, this is my business. How should I be thinking about time series? Because now I have to make these architectural decisions as you mentioned and it's going to impact my application development. So huge decision point for your customers. What should I care about the most? What's in it for me? Why is time series important? >> Yeah, that's a great question. So chances are, if you've got a business that was 20 years old or 25 years old, you were already thinking about time series. You probably didn't call it that, you built something on Oracle, or you built something on IBM's Db2, right, and you made it work within your system. Right, and so that's what you started building. So it's already out there, there are probably hundreds of millions of time series applications out there today. But as you start to think about this increasing need for real time, and you start to think about increasing intelligence, you think about optimizing those systems over time, I hate the word, but digital transformation. Then you start with time series, it's a foundational base layer for any system that you're going to build. There's no system I can think of where time series shouldn't be the foundational base layer. If you just want to store your data and just leave it there and then maybe look it up every five years, that's fine. That's not time series. Time series is when you're building a smarter more intelligent, more real time system. And the developers now know that. And so the more they play a role in building these systems the more obvious it becomes. >> And since I have a PO for you and a big check. >> Yeah. >> What's the value to me when I implement this? What's the end state? What's it look like when it's up and running? What's the value proposition for me? What's in it for me? >> So when it's up and running, you're able to handle the queries, the writing of the data, the down sampling of the data, the transforming it in near real time. So that the other dependencies that a system it gets for adjusting a solar array or trading energy off of a power wall or some sort of human genome, those systems work better. So time series is foundational. It's not like it's doing every action that's above, but it's foundational to build a really compelling intelligence system. I think that's what developers and architects are seeing now. >> Bottom line, final word, what's in it for the customer? What's your statement to the customer? What would you say to someone looking to do something in time series and edge? >> Yeah so it's pretty clear to us that if you're building, if you view yourself as being in the business of building systems, that you want 'em to be increasingly intelligent, self-healing autonomous. You want 'em to operate in real time, that you start from time series. But I also want to say what's in it for us, Influx. What's in it for us is, people are doing some amazing stuff. You know, I highlighted some of the energy stuff, some of the human genome, some of the healthcare, it's hard not to be proud or feel like, "Wow." >> Yeah. >> "Somehow I've been lucky, I've arrived at the right time, "in the right place with the right people "to be able to deliver on that." That's also exciting on our side of the equation. >> Yeah, it's critical infrastructure, critical of operations. >> Yeah. >> Great stuff. Evan thanks for coming on, appreciate this segment. All right, in a moment, Brian Gilmore director of IOT and emerging technology at InfluxData will join me. You're watching theCUBE, leader in tech coverage. Thanks for watching. (upbeat music)
SUMMARY :
the company behind InfluxDB. What is the story? And he basically, you know I joined the company in 2016, database, the one database And then you get the data lake, And so you get to these applications when you need real time. It's like having the feature for, Is that one of the use cases of sensors And so you get the dynamic InfluxDB, the time series, and that's on the consumer side. It's interesting the And so the developer, of the car, it's right there. So to degree that you is it that they're going to be And so the way to think they have faster time to market And they get to still By the way, this is not So when you have now cloud So our open source edge has the same API So I'll have to ask if you can answer this question. What should I care about the most? And so the more they play a for you and a big check. So that the other that you want 'em to be "in the right place with the right people critical of operations. Brian Gilmore director of IOT
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
Brian Gilmore | PERSON | 0.99+ |
Boeing | ORGANIZATION | 0.99+ |
Evan Kaplan | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Evan Kaplan | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Amazon | ORGANIZATION | 0.99+ |
Paul Dix | PERSON | 0.99+ |
South America | LOCATION | 0.99+ |
230 | QUANTITY | 0.99+ |
Evan | PERSON | 0.99+ |
InfluxData | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Paul | PERSON | 0.99+ |
three | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
240 people | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
IOT | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
end of 2013 | DATE | 0.97+ |
one side | QUANTITY | 0.97+ |
Lucid | ORGANIZATION | 0.96+ |
Y Combinator | ORGANIZATION | 0.96+ |
one thing | QUANTITY | 0.96+ |
tier one | QUANTITY | 0.94+ |
InfluxDB | TITLE | 0.93+ |
one feature | QUANTITY | 0.93+ |
25 years old | QUANTITY | 0.93+ |
20 years old | QUANTITY | 0.93+ |
one database | QUANTITY | 0.91+ |
hundreds of millions of time series | QUANTITY | 0.9+ |
two cultures | QUANTITY | 0.89+ |
Influx | OTHER | 0.88+ |
every five years | QUANTITY | 0.87+ |
InfluxDB | ORGANIZATION | 0.84+ |
Nicola | ORGANIZATION | 0.81+ |
Db2 | TITLE | 0.76+ |
theCUBE | ORGANIZATION | 0.76+ |
Rappi | ORGANIZATION | 0.76+ |
a billion times | QUANTITY | 0.76+ |
a ton of work | QUANTITY | 0.72+ |
apple | ORGANIZATION | 0.69+ |
Tudor | ORGANIZATION | 0.69+ |
Kafka | TITLE | 0.69+ |
four sweet spots | QUANTITY | 0.65+ |
years | QUANTITY | 0.59+ |
Alan Nance, CitrusCollab | theCUBE on Cloud
>>from around the globe. It's the Cube presenting Cuban Cloud brought to you by Silicon Angle. >>Welcome back to the Cubes. Special Presentation on the Future of Cloud. Three years ago, Alan Nance said to me that in order to really take advantage of Cloud and Dr Billions of dollars of value, you have to change the operating model. I've never forgotten that statement have explored it from many angles over the last three years. In fact, it was one of the motivations for me actually running this program for our audience. Of course with me is Alan Nance. He's a change agent. He's led transformations that large organizations, including I N G Bank, Royal, Philips, Barclays Bank and many others. He's also a co founder of Citrus Collab. Alan, great to see you. Thanks for coming on the program. >>Thanks for having me again there. >>All right. So when we were preparing for this interview you shared with me the following you said enterprise, I t often hasn't really tapped the true powers that are available to them to make real connections to take advantage of that opportunity. Connections to the business, That is What >>do >>you mean by that. >>Well, I think, you know, we've been saying for quite a long time that enterprise. It is certainly a big part of our past in technology. But you know, just how much is it going to be in the future on, you know, enterprise, I t has had a difficult time under The pressure's off being a centralized organization with large expanse of large Catholics, while at the same time we see obviously the digital operations growing oftentimes in separate reporting structures and closer to the business on. And what I'm thinking right now is enterprise i t. If it has made this transition to cloud operating models, whether they are proprietary or whether they are public cloud, there's a huge opportunity for enterprise. I t. Thio connect the dots in a way that no other part of the organization can do that. And when they connect those dots working closely with the business, they unleash a huge amount of value that is beyond things like efficiency or things like just just just providing cloud computing to be flexible. It has to be much more about value generation. Andi. I think that a lot of leaders of enterprise I t have not really grasped that, Andi. I think that's the opportunity is sitting right in front of them right now. >>You know what I've seen lately? I wonder if you could. Comment is You know, obviously we always talk about the stove pipes, but you've you've seen, you know, the CEO, >>the chief >>data officer that you just mentioned the chief digital officer, the chief information security officer. They've largely been in their own silos. I'm definitely seeing a move to bring those together. I'm seeing a lot of CDOs and CEO roles come together and even the chief information or the head of security reporting up into that where there's there seems to be as your sort of suggesting just a lot more visibility across the entire organization. Is it Is it an organizational issue? Is it? Ah, is it a mindset? But only if you could comment. >>Well, I would say it zits, two or three different things, but certainly it's an organizational issue. But I think it starts off with a cultural issue. Andi, I think what you're seeing, and if you look at the more progressive companies that you see, I think you are also seeing a new emergence off the enlightened technology leader s O. With all respect to me and my generation, our tenure as the owners off the large enterprise, it is coming to an end. And we grew up trying to master the complexity of the off the silos. As you so definitely pointed out, we were battling this falling technology, trying to get it under control, trying to get the costs down, trying to reduce Catholics. And a lot of that was focused on the partnerships that we had with technology suppliers on DSO. That mindset of being engineers struggling for control. Having your most important part of being a technology company itself that now I think is giving way is giving way to a new generation of technology leaders who haven't grown up with that culture. Onda. Oftentimes what I see is that the new enlightened CEOs are female, and they are coming into the role outside of the regular promotion change. So they're coming to these rolls through finance H R marketing on their bringing. A different focus on the focus is much more about how do we work together to create an amazing experience for our employees and for our customers on an experience that drives value. So I think there's a reset in the culture. And clearly, when you start talking about creating a value chain to improve experience, you're also talking about bringing people together from different multidisciplinary backgrounds to make that happen. >>Well, that's kind of, you know, it makes me think about Amazon's mantra of working backwards. You know, start with the experience and and and a lot of a lot of CEOs that I know would love tow beam or involved in the business. But they're just so busy trying to keep the lights on like you said, trying to manage vendors. And like, you know, I had a discussion the other day, Allen with an individual. We were talking about how you know, you got a shift from a product mindset to a platform mindset. But you know, you've said that that platform thinking you're always ahead of the game platform, thinking it needs to make way for ecosystem thinking, you know, unless you're Internet giant scale business like Amazon or Spotify, you said you're gonna be in a niche market if you really don't tap that ecosystem again. If you could explain what you mean by that. >>I think right now if this movement to experience is fundamental, right? So Joe Pine and Gilmore wrote about the experience economy as far back in 1990. But the things that they predicted then are here now. And so what we're now seeing is that consumers have choice. Employees have choice. I think the pandemic has accelerated that. And so what happens when you, when you when you put an enterprise under that type of external pressure, is that it fragments and even fragment into ways it can fragment dysfunctional E so that every silo tries to go into a a defensive mode protective mode? That's obviously the wrong way to go. But the fragmentation that's exciting is when it fragments into ecosystems that are actually working together to solve an experience problem. And those are not platforms. They're too big, you know, When I was Phillips, I was very enthusiastic about working on this connected health care platform, but I think what I started to realize was it takes too much time. It requires too much investment on you are bringing people to you based on your capability. Where is what the market needs is much more agile than that. So if we look in health care, for instance, and you want to connect patients at home with patient with the doctors in the hospital, in the old model you so I'm gonna build a platform for this. I'm gonna have doctors with a certain competence and they're gonna be connecting into this. And so are the patients in some way. And so are the insurers. I think what you're going to see now is different. We're going to say, Let's get together A small team that understands it's called, For instance, let's get a an insurance provider. Let's get a health care operator. Let's get a healthcare tech company on. Let's pull their data in a way that helps us to create solutions now that that can roll out in 30 60 or 90 days. And the thing that that makes that possible is the move to the public crowd because now there are so many specialized supplier, specialized skill sets available that you can connect to through Amazon through Google, through through azure that that these these things that we usedto I think we're very, very difficult are now much easier. I don't want to minimize the effort, but these things are on the table right now. Thio Revalue. >>So you're also a technologist and I wanna ask you and and everybody always says, it's the technology is easy part. It's the people in the process and, you know, way we can all agree on that. However, sometimes technology could be a blocker. And the example that you just mentioned, I have a couple of takeaways from that. First of all, you know the platform thinking it sounds like it's more command and control, and you're advocating for Let's get the ecosystem who are closest to the problem. To solve those problems, however, they decide and leverage the cloud. So my question is from a technology standpoint, does that echo have system have to be on the same cloud with the state of today's technology? Can it be across clouds can be there pieces on Prem? What's your thinking on that? >>I think I think exactly the opposite. It cannot be monolithic and centralized. It's just not practical because that was that was that would cause you too much time on interoperability and who owns what you see The power behind experience is data. And so the most important technical part of this is dealing with data liquidity. So the data that for instance, um, somebody like Kaiser has or the the Harvard Health Care have or the Philips have that's not going to be put into a central place. But for the ecosystem mobilization, there will be subsets of that data flowing between those parties. So the technical, the heart there is how do we manage data liquidity? How do we manage the security around the data liquidity on How do we also understand that what we're building is going to be ever changing and maybe temporary, because on idea may not work, eh? So you've got this idea that the timeliness is very, very important. The duration is very uncertain. The motor the energy for this is data liquidity data transfer, data sharing. But the vehicle is the combination off. Probably crowd in my mind. >>Somebody said to me, Hey, that data is like water. It'll go. It'll go where it wants to go where it needs to go. You can't try to control it. It's let it go. Uh, now, of course, many organizations, particularly large incumbent organizations there. They have many, many data pipelines. They have many processes, many roles, and they're struggling toe actually kind of inject automation into those pipelines. Maybe that's machine intelligence, uh, really doom or data sharing across that pipeline and and ultimately compress the end and cycle. Time to go from raw data insights that are actionable. What are you seeing there and what's your advice? >>Well, I think the the you make some really good points. But what I hear also a little bit in your observation is you're still observing Enterprises on the end of the focus of the enterprise has been on optimizing the processes within the boundaries of its own system. That's why we have s a P. And that's why we have a sales force and, to some degree, even service. Now it's all been about optimizing how we move data, how we create products and services on. That's not the game. Now that's not an important game. Three important game right now is how do I connect to my employees? How do I connect to my customers in a way that provides them a memorable experience? And the realization is we've seen this already a manufacturing for some years. I can't be allowed things to people. So I have to understand where the first part of data comes in. I have to understand who this person is that I am trying to target. Who is the person that needs this memorable experience on what is that memorable experience gonna look like? And I'm going to need my data. But I'm also going to need the data of other actors in that ecosystem. And then I'm gonna have to build that ecosystem really quickly to take advantage off the system. So this throws a monkey wrench in traditional ideas of standardization. It throws a monkey wrench in the idea that enterprise I t is about efficiency on. But if I may, I just want to come back to the day I because I think we're looking in the wrong places. Things like a I let me give you an example. Today there are 2.2 million people working in call centers around the world. If we imagine that they work in three shifts, that means that any one time there are 700,000 people on the phone to a customer on that customer is calling that company because they're vested. They're calling them with advice. They're calling them with a question. They're calling them with a complaint. It is the most important source off valuable data that any company has. And yet what have we done with that? What we've done with that is we have attacked it with efficiency. So instead of saying these are the most valuable sources of information, let's use a I to to tag the sentiment in the recordings that we make with our most valuable stakeholders on this and analyze them for trends, ideas, things that need to change. We don't do that. What we do is we were going to give every call agent two minutes to get them off the phone. For God's sake, don't ask so many import difficult questions. Don't spend money talking to the customer. Try to make them happy so they get a score and say they hire you at the end of the core and then you're done. So so where the AI and automation needs to come in is not in improving efficiency but in mining value. And the real opportunity with a I Is that Joe Pine says this. If you are able to understand the customer rather than interpret them, that is so valuable to the customer that they will pay money for that. I think that's where the whole focus needs to be in this new teaming of enterprise I t. And that's true business. >>It's a great observations. I think we can all relate to that in your call center example, or you've been in a restaurant. You're trying to turn the tables fast and get you out of there. And that's the last time you ever go to that restaurant and you're you're taking that notion of systems thinking and broadening it to ecosystems thinking. And you've said ecosystems have a better chance of success when they're used to stage an experience for whether it's the employees for the brand and of course, the customer and the partners. >>That's it. That's exactly yet. So every technology leader should be asking themselves what contribution can can my and my organization makes of this movement because the business understands the problem, they don't understand how to solve it, and we've chosen a different dialogues. We've been talking a lot about what cloud could do and the functionality that clown has and the potential that clown has on those aerial good things. But it really comes together now when we work together and we, as the technology group brings in, they know how we know how toe connect quickly through the public cloud. We know how to do that in a secure way. We know how to manage data, liquidity at scale, and we can stand these things up through our, you know, our new learning of agile and devils we can stand. These ecosystems are fairly quickly now. There's still a whole bunch of culture between different businesses that have to work together through the idea that I have to protect my data rather than serve the customer. But once you get past that, there's a whole new conversation enterprise. It you can have that, I think, gives them a new lease of life, new value. And I just think it's a really, really exciting time. Yes, >>so you're seeing the intersection of a lot of different things. You talk about cloud as you know, an enabler for sure, and that's great. We could talk about that, but you've got this what you're referring to before is, you know, maybe you're in a niche market, but you have your marketplace and like you're saying, you can actually use that through an ecosystem to really leave her a much, much broader available market and then vector that into the experience economy. You know, we talk about subscriptions, the AP economy. That really is new thinking, >>yes, and I think what you're seeing here is it zits, not radical. Inasmuch as all of these ideas have been around, some of them have been around since the nineties. But what's radical is the way in which we can now mix and match these technologies to make this happen. That's gone so quickly on, I would argue to you, and I've argued this before. Scale scale is a concept within an organization is dead. It doesn't give you enough value. It gives you enough efficiency, and it gives you a cloud. But it doesn't give you three opportunity to target the niche experiences that you need to do. So. If we start to think off an organization as a a combination off known and unknown potential ecosystems, you start to build a different operating model, a different architectural idea you start to look outside more than you start to look insight. Which is why the cultural change that we were talking about just now goes hand in hand with this because people have to be comfortable thinking in ecosystems that may not yet exist on partnering with people where they bring to the table there, you know, 2030 years of experience in a new and different way. >>Let me make sure I understand that. So you're basically if I understand you're saying that if you're sort of end goal is scale and efficiency at scale, you're you're gonna have a vanilla solution for your customers and your ecosystem. Whereas if you will allow this outside in thinking to come in, you're gonna be able to actually customize those experience experiences and get the value of scale and efficiency. >>Right? So, I mean, Rory Sutherland, who is ah, big finger in the in. The marketing world has always said, ultimately, scale standardization and best practice lead to mediocrity because you are not focused on the most important thing for your employees or your brand, or you're you're focused on the efficiency factors on. They create very little value in fact, we know that they subvert value. So, yes, we need to have a very big mindset change. >>Yeah, You're a top line thinker, Allen. And and always at the forefront. I really appreciate you coming on to the to the Cuban. Participate in this program. Give us the last word. So if you're a change agent, I wanna I'm an organization, and I want to inject this type of change. Where do I >>start? Well, I think it starts by identifying. Are we going to? Is it are we gonna work on the employee experience? Do we feel that we have a model where the employees that are on stage with customers are so important that the focus has to be employees? We go down that route and we look at what happened to the pandemic. What type of experiences are we going to bring to those employees around their ability to have flow in their work, to get returned on energy, to excite the customers? Let's do that. Let's figure out what experience are we driving now? What does that experience need to be if we're the customer side? As I said, let's look ALS. The sources of information that we already have. You know, I know companies to spend hundreds of millions a year trying to figure out what consumers what. And yet if we look in their call centers, you will call up and and they will say to Your call may be recorded for quality purposes and training on this is not true. Less than 10% of those calls that ever listened to on if they are listening to its compliance that's driving that, not the burning desire to better understand the consumer. So if we change that, then we say Okay, so what can we change? What is the experience that we are now able to stage with all we know and with all weaken dio on debts? Start there. Let's start with what is the experience you want to stage? What's the experience landscape look like now? And who do we bring together to make that happen? >>Allen. Fantastic. Having you back in the Cube, it's always a pleasure. And, uh, and thanks so much for participating. >>Thank you, Dave. It's always a pleasure to speak with you. >>Thank you. Everybody, this is Dave Volonte. The Cuban cloud will be right back right after this short break. Stay with
SUMMARY :
Cloud brought to you by Silicon Angle. of value, you have to change the operating model. So when we were preparing for this interview you shared with me the following just how much is it going to be in the future on, you know, enterprise, I t has had I wonder if you could. data officer that you just mentioned the chief digital officer, the chief information security And a lot of that was focused on the partnerships that we had with technology thinking it needs to make way for ecosystem thinking, you know, unless you're Internet giant And the thing that that makes that possible is the move to And the example that you just mentioned, the Harvard Health Care have or the Philips have that's not going to be put into a central What are you seeing there and what's your advice? on the phone to a customer on that customer is calling And that's the last time you ever go to that restaurant and you're you're taking as the technology group brings in, they know how we know how toe connect quickly to before is, you know, maybe you're in a niche market, but you have your marketplace and like to target the niche experiences that you need to do. Whereas if you will allow this outside in thinking to come in, scale standardization and best practice lead to mediocrity because you I really appreciate you coming on to the its compliance that's driving that, not the burning desire to better understand the Having you back in the Cube, it's always a pleasure. Stay with
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Volonte | PERSON | 0.99+ |
Royal | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Harvard Health Care | ORGANIZATION | 0.99+ |
1990 | DATE | 0.99+ |
Philips | ORGANIZATION | 0.99+ |
Alan Nance | PERSON | 0.99+ |
Rory Sutherland | PERSON | 0.99+ |
Citrus Collab | ORGANIZATION | 0.99+ |
Spotify | ORGANIZATION | 0.99+ |
I N G Bank | ORGANIZATION | 0.99+ |
two minutes | QUANTITY | 0.99+ |
Alan | PERSON | 0.99+ |
700,000 people | QUANTITY | 0.99+ |
2.2 million people | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Barclays Bank | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
Silicon Angle | ORGANIZATION | 0.99+ |
Three years ago | DATE | 0.99+ |
Joe Pine | PERSON | 0.99+ |
90 days | QUANTITY | 0.99+ |
Allen | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
first part | QUANTITY | 0.98+ |
Less than 10% | QUANTITY | 0.97+ |
First | QUANTITY | 0.96+ |
pandemic | EVENT | 0.96+ |
three shifts | QUANTITY | 0.95+ |
Kaiser | ORGANIZATION | 0.95+ |
hundreds of millions a year | QUANTITY | 0.95+ |
one time | QUANTITY | 0.94+ |
30 60 | QUANTITY | 0.94+ |
Andi | PERSON | 0.94+ |
CitrusCollab | ORGANIZATION | 0.94+ |
one | QUANTITY | 0.93+ |
Three important game | QUANTITY | 0.91+ |
Cube | ORGANIZATION | 0.91+ |
Billions of dollars | QUANTITY | 0.91+ |
2030 years | QUANTITY | 0.91+ |
Catholics | ORGANIZATION | 0.91+ |
Cuban | OTHER | 0.85+ |
today | DATE | 0.82+ |
Cubes | ORGANIZATION | 0.81+ |
three opportunity | QUANTITY | 0.81+ |
echo | COMMERCIAL_ITEM | 0.8+ |
last three years | DATE | 0.8+ |
three different | QUANTITY | 0.79+ |
Phillips | PERSON | 0.76+ |
Cuban | LOCATION | 0.74+ |
Thio | PERSON | 0.73+ |
Gilmore | PERSON | 0.72+ |
nineties | DATE | 0.69+ |
theCUBE | ORGANIZATION | 0.69+ |
DSO | ORGANIZATION | 0.68+ |
Thio Revalue | PERSON | 0.67+ |
Cube | LOCATION | 0.64+ |
Onda | ORGANIZATION | 0.45+ |
Cloud | ORGANIZATION | 0.38+ |
agile | TITLE | 0.38+ |
-Alan Nance, CitrusCollab | theCUBE on Cloud
>> From the cube studios in Palo Alto and Boston, connecting with thought leaders all around the world. This is a cube conversation. >> Hello everyone, welcome back to the cubes. Special presentation on the future of cloud. Three years ago, Alan Nance said to me that in order to really take advantage of cloud and drive billions of dollars of value, you have to change the operating model. I've never forgotten that statement and have explored it from many angles over the last three years. In fact it was one of the motivations for me actually running this program for our audience. Of course with me is Alan Nance. He is a change agent. He's led transformations at large organizations, including ING bank, Royal Phillips, Barclay's bank, and many others. He's also a co-founder of CitrusCollab. Alan, great to see you. Thanks for coming on the program. >> Thanks for having me again, Dave. >> All right, so when we were preparing for this interview, you shared with me the following, you said enterprise IT, often hasn't really tapped the true powers that are available to them to make real connections, to take advantage of that opportunity, connections to the business that is. What do you mean by that? >> Well I think we we've been saying for quite a long time that enterprise IT is certainly a big part of our past in technology. But just how much is it going to be in the future? And enterprise IT has had a difficult time under the cost pressures of being a centralized organization with large, expensive, large topics. While at the same time we see obviously the digital operations for growing oftentimes in separate reporting structures and closest to the business. And what I'm thinking right now is enterprise IT, if it has made this transition to a cloud operating models, whether they are proprietary or whether they are public cloud, there's a huge opportunity for enterprise IT to connect the dots in a way that no other part of the organization can do that. And when they connect those dots, working closely with the business, they unleash a huge amount of value that is beyond things like efficiency or things like just providing cloud computing to be flexible. It has to be much more about value generation. And I think that a lot of leaders of enterprise IT have not really grasped that. And I think that's the opportunity sitting right in front of them right now. >> You know what I've seen lately? I wonder if you could comment, is obviously we always talk about the stove pipes, but you've seen the CIO, the chief data officer that you just mentioned, the chief digital officer, the chief information security officer, they've largely been in their own silos of definitely seeing a move to bring those together. I'm seeing a lot of CDOs and CIO roles come together. And even the chief information or the head of security reporting up into that, where there seems to be as you're sort of suggesting just a lot more visibility across the entire organization. Is it an organizational issue? Is it a mindset? Go on if you could comment. >> Well I would say it's two or three different things. Certainly it's an organizational issue, but I think it starts off with a cultural issue. And I think what you're seeing, and if you look at the more progressive companies that you see, I think you are also seeing a new emergence of the enlightened technology leader. So with all respect to me and my generation our tenure as the owners of the large enterprise IT is coming to an end. And we grew up trying to master the complexity of the silos as you so deftly pointed out. Out we were battling this soaring technology, trying to get it under control, trying to get the costs down, trying to reduce CapEx. And a lot of that was focused on the partnerships that we had with technology suppliers. And so that mindset of being engineers struggling for control, having your most important part of being a technology company itself, I've got now, I think is giving way, giving way to a new generation of technology leaders who haven't grown up with that culture. And oftentimes what I see is that the new enlightened CIOs are female and they are coming into the role outside of the regular promotion chain, so they're coming to these roles through finance, HR, marketing, and they're bringing a different focus. And the focus is much more about how do we work together to create an amazing experience for our employees and for our customers and an experience that drives value. So I think there's a reset in the culture. And clearly when you start talking about creating a value chain to improve experience, you're also talking about bringing people together from different multidisciplinary backgrounds to make that happen. >> Well that's kind of, it makes me think about Amazon's mantra of working backwards, start with the experience. And then a lot of CIOs that I know would love to be more involved in the business, but they're just so busy trying to keep the lights on. Like you said, trying to manage vendors and in the like. I've had a discussion the other day with an individual, we were talking about how, you got to shift from a product mindset to a platform mindset, but you've said that the platform thinking you're always ahead of the game. Platform thinking it needs to make way for ecosystem thinking. Unless you're into that, it'd be giant scale business like Amazon or Spotify you said, you're going to be in a niche market if you really don't tap that ecosystem again . If you could explain what you mean by that? >> Well I think right now, if this movement to experience is fundamental. Right? So Joe Pine and Jim Gilmore wrote about the experience economy as far back in 1990, but the things that they predicted then are here now. And so what we're now seeing is that consumers have choice. Employees have choice. I think the pandemic has accelerated that. And so what happens when you put an enterprise under that type of external pressure, is that it fragments. And if it can fragment in two ways. It can fragment dysfunctionally so that every silo tries to go into a defensive mode, protective mode. That's obviously the wrong way to go. But the fragmentation that's exciting is when it fragments into ecosystems that are actually working together to solve and experience problem. And those are not platforms they're too big. When I was at Phillips, I was very enthusiastic about working on this connected healthcare platform. But I think what I started to realize was it takes too much time. It requires too much investment and you are bringing people who tune you based on your capability, whereas what the market needs is much more agile than that. So if we look in healthcare, for instance and you want to connect patients at home, with patients, with the doctors in the hospital. In the old model when you said, I'm going to build a platform for this, I'm going to have doctors with a certain competence, so they're going to be connecting into this. And so are the patients in some way. And so are the insurers. I think what you're going to see now is different. We're going to say let's get together a small team that understands its competence. So for instance, let's get an insurance provider, let's get a healthcare operator, let's get a healthcare tech company and let's pull their data in a way that helps us to create solutions now that can roll out in 30, 60 or 90 days. And the thing that makes that possible is the move to the public cloud. Because now there are so many specialized suppliers, specialized skillsets available that you can connect to through Amazon, through Google, through Azure, that these things that we used to think were very, very difficult, are now much easier. I don't want to minimize the effort, but these things are on the table right now to read value. >> So you're also technologist. And I want to ask you and everybody always says, technology is easy part of the people and the process. We can all agree on that. However sometimes technology can be a blocker. And the example that you just mentioned, I have a couple of takeaways from that. First of all the platform thinking is somewhat, sounds like it's more command and control and you're advocating for let's get the ecosystem who are closest to the problem to solve those problems. However they decide and they'll leverage the cloud. So my question is from a technology standpoint. Does that ecosystem have to be in the same cloud, with the state of today's technology? can it be across clouds? Can be there pieces on prem? What's your thinking on that? >> I think exactly the opposite. It cannot be monolithic and centralized. It's just not practical because that would cause you too much time on interoperability. And who owns what. You see the power behind experience is data. And so the most important technical part of this is dealing with data liquidity. So the data that, for instance somebody like Kaiser has or the Harvard Mental Healthcare have or the Phillips have, that's not going to be put into a central place for the ecosystem mobilization. There will be subsets of that data flowing between those parties. So the technical, the hardware. Is how do we manage data liquidity? How do we manage the security around data liquidity? And how do we also understand that what we're building is going to be ever changing and maybe temporary, because an idea may not work. And so you've got this idea that the timeliness is very very important. The duration is very uncertain. The mojo energy for this is data liquidity, data transfer, data sharing. But the vehicle is the combination of public cloud, in my mind. >> Somebody said to me, hey that data's like water. It'll go where it wants to go, where it needs to go and you can't try to control it. It's let it go. Now of course many organizations, particularly large incumbent organizations they have many many data pipelines. They have many processes, many roles, and they're struggling to actually kind of inject automation into those pipelines. Maybe that's machine intelligence really do more data sharing across that pipeline and ultimately compress the end and cycle time to go from raw data to insights that are actionable. What are you seeing there? And what's your advice? >> Well I think you make some really good points, but what I hear also a little bit in your observation is you're still observing enterprises. And the focus of the enterprise has been on optimizing the processes within the boundaries of its own system. That's why we have SAP and this why we have Salesforce. And to some degree even service now. It's all been about optimizing how we move data, how we create production services. And that's not the game now. That's not an important game. The important game right now is how do I connect to my employees? How do I connect to my customers in a way that provides them a memorable experience? And the realization is, I'm assuming it's already manufacturing for some years. I can't be all things to all people. So I have to understand this is where the first part of data comes in. I have to understand. Who this person is that I am trying to target? Who is the person that needs this memorable experience? And what is that memorable experience going to look like? And I'm going to need my data, but I'm also going to need the data of other actors in that ecosystem. And then I'm going to have to build that ecosystem really quickly to take advantage of the system. So this throws a monkey rage in traditional ideas of standardization. It throws a monkey rage in the idea that enterprise IT is about efficiency. If I may, I just want to come back to the AI because I think we're looking in the wrong places. Things like AI. And let me give you an example today, there are 2.2 million people working in call centers around the world. If we imagine that they work in three shifts, that means that anyone time there are 700,000 people on the phone to a customer, and that customer is calling that company because they're vested, they're calling them with advice. They're calling them with a question they're calling them with a complaint. It is the most important source of valuable data that any company has. And yet, what have we done with that? What we've done with that is we've attacked it with efficiency. So instead of saying, these are the most valuable sources of information, let's use AI to tag the sentiment in the recordings that we make with our most valuable stakeholders. And let's analyze them for trends, ideas things that needs to change. We don't do that. What we do is we're going to give every cool agent two minutes to get them off the phone. For God's sake, don't answer many important, difficult questions. Don't spend money talking to the customer, try to make them happy. So they get a score and say, they hire you at the end of the call, and then you're done. So where the AI automation needs to come in is not in improving your efficiency, but in mining value. And the real opportunity with AI is that Joe Pine says this. "If you are able to understand the customer, rather than interpret them, that is so valuable to the customer, that they will pay money for that". And I think that's where the whole focus needs to be in this new team in enterprise IT, and they're still in the business. >> That's a great observation. I think we can all relate to that in your call center example, or you've been a restaurant, and you're trying to turn the tables fast and get out of there. And it's the last time you ever go to that restaurant. And you're taking that notion of systems thinking and broadening it to ecosystems thinking. And you've said, ecosystems have a better chance of success when they're used to stage and experience for whether it's the employee for the brand. And of course the customer and the partners. >> That's it that's exactly it. So every technology leader should be asking themselves what contribution can I and my organization make to this movement, because the business understands the problem. They don't understand how to solve it, and we've chosen a different dialogue. So we've been talking a lot about what cloud can do and the functionality that cloud has and the potential that cloud has. And those are all good things, but it really comes together. Now when we work together and we as the technology group brings in the know how we know how to connect quickly through the public cloud, we know how to do that in a secure way. We know how to manage data liquidity at scale, and we can stand these things up through our new learning of agile and DevOps. We can stand these ecosystems up fairly quickly. Now there's still a whole bunch of culture between different businesses that have to work together. The idea that I have to protect my data rather than serve the customer. But once you get past that, there's a whole new conversation enterprise IT can have, that I think gives them a new lease of life, new value. And I just think it's a really really exciting time. >> (inaudible) The intersection of a lot of different things. You talk about cloud as an enabler for sure. And that's great. We can talk about that, but you've got this. What you were referring to before is maybe you're in a niche market, but you have your marketplace. And like you're saying, you can actually use that through an ecosystem to really leave a much, much broader available market. And then vector that into the experience economy. We talk about subscriptions, the API economy, that really is new thinking. >> It is and I think what you're seeing here it's not radical in as much as all of these ideas have been around. Some of them have been around since the nineties, but what's radical is the way in which we can now mix and match these technologies to make this happen. That's growing so quickly. And I would argue to you and I've argued this before. Scale, scale as a concept within an organization is dead. It doesn't give you enough value. It gives you enough efficiency and it gives you a cloud. And it doesn't give you the opportunity to target the niche experiences that you need to do. So if we start to think of an organization as a combination of known and unknown potential ecosystems, you start to build a different operating model, a different architectural idea. You start to look outside more than you start to look inside. Which is why the cultural change that we were talking about just now goes hand in hand with this because people have to be comfortable thinking in ecosystems that may not yet exist and partnering with people where they bring to the table. There 20, 30 years of experience in a new and different way. >> So let me make sure I understand that. So you basically, if I understand it, you're saying that if your sort of end goal is scale and efficiency at scale you're going to have a vanilla solution for your customers in your ecosystem. Whereas if you will allow this outside in thinking to come in, you're going to be able to actually customize those experience, experiences and get the value of scale and efficiency. >> Right, so I mean Rory Sutherland, who is a big thinker in the marketing world has always said, "ultimately scale standardization and best practice lead to mediocrity". Because you are not focused on the most important thing for your employee or your brand. You're focused on the efficiency factors and they create very little value. In fact we know that they subvert value. So yes we need to have a very big mindset change. >> Yeah you're a top line thinker Alan and always at the forefront. I really appreciate you coming on to the cube and participate in this program. Give us a last word. So if you're a change agent, I'm an organization and I want to inject this type of change. Where do I start? >> Well I think it starts by identifying. Are we going to work on the employee experience? Do we feel that we have a model where the employees that are on stage with customers are so important that the focus has to be employees. We go down that route and then we look at what's happened to the pandemic. What type of experiences are we going to bring to those employees around their ability to have flow in their work, to get return on energy, to excite the customers? Let's do that. Let's figure out what experience are we driving now? And what does that experience need to be? If we're the customer side. As I said let's look at all the sources of information that we already have. I know companies that spend hundreds of millions a year trying to figure out what consumers want. And yet if we look in their call sentences, you will call up and they will say to you, your call may be recorded for quality purposes and training. And it's not true, less than 10% of those calls are ever listened to. And if they listened to, it's compliance, that's driving that, not the burning desire to better understand the consumer. So if we change that, then we shall get to. What can we change? What is the experience we are now able to stage with all we know and with all we can do. And let's start there, let's start with, what is the experience you want to stage? What's the experience landscape look like now? And who do we bring together to make that happen? >> Alan fantastic. Having you back in the cube, it's always a pleasure and thanks so much for participating. >> Thank you, Dave. It's always a pleasure to speak with you. >> And thank you everybody. This is Dave Vellante the cube on cloud. We'll be right back right after this short break, stay with us. (soft music)
SUMMARY :
leaders all around the world. Thanks for coming on the program. that are available to them and closest to the business. And even the chief information of the silos as you so deftly pointed out. to be more involved in the business, is the move to the public cloud. And the example that you just mentioned, And so the most important and they're struggling to on the phone to a customer, And it's the last time you The idea that I have to protect my data an ecosystem to really leave And I would argue to you and get the value of scale and efficiency. on the most important thing and always at the forefront. that the focus has to be employees. Having you back in the cube, It's always a pleasure to speak with you. This is Dave Vellante the cube on cloud.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jim Gilmore | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Alan | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Joe Pine | PERSON | 0.99+ |
Royal Phillips | ORGANIZATION | 0.99+ |
Alan Nance | PERSON | 0.99+ |
Rory Sutherland | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
1990 | DATE | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
two minutes | QUANTITY | 0.99+ |
CitrusCollab | ORGANIZATION | 0.99+ |
Spotify | ORGANIZATION | 0.99+ |
700,000 people | QUANTITY | 0.99+ |
Harvard Mental Healthcare | ORGANIZATION | 0.99+ |
60 | QUANTITY | 0.99+ |
30 | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Three years ago | DATE | 0.99+ |
90 days | QUANTITY | 0.99+ |
2.2 million people | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
less than 10% | QUANTITY | 0.99+ |
CapEx | ORGANIZATION | 0.99+ |
two ways | QUANTITY | 0.99+ |
first part | QUANTITY | 0.98+ |
ING bank | ORGANIZATION | 0.98+ |
Phillips | ORGANIZATION | 0.98+ |
billions of dollars | QUANTITY | 0.98+ |
Barclay's bank | ORGANIZATION | 0.98+ |
three shifts | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
nineties | DATE | 0.95+ |
pandemic | EVENT | 0.94+ |
DevOps | TITLE | 0.93+ |
agile | TITLE | 0.93+ |
hundreds of millions a year | QUANTITY | 0.93+ |
First | QUANTITY | 0.92+ |
last three years | DATE | 0.84+ |
Phill | ORGANIZATION | 0.84+ |
20, 30 years | QUANTITY | 0.76+ |
Azure | TITLE | 0.76+ |
mojo energy | ORGANIZATION | 0.68+ |
three different things | QUANTITY | 0.65+ |
Salesforce | ORGANIZATION | 0.55+ |
Kaiser | PERSON | 0.51+ |
SAP | TITLE | 0.49+ |
Toni Lane, CULTU.RE & James McDowall, Sentinel | Blockchain Futurist Conference 2018
Probably Toronto, Canada. It's the cube covering blockchain futurist conference 2018, brought to you by the queue. Hello and welcome back to you keep live covers here in Toronto for the untraceable blockchain uterus conference two days a wall to wall coverage. We were just seeing it here on the coupon shopper host Dave Vellante, Tony Lane, Cuba last night with culture and we have James Mcdonald, head of strategy of Sentinel. He's also a PGA professional golf professional and a boxer. Extraordinary. Welcome to the cube. Thanks. You ever had in my notes. Funny before camera came on. Super exciting. Even though the market's kind of in a downward trough and by the, you know, do its normal cycle and Crypto, tons of energy. The culture is changing. There's a real energy around focusing on high quality builders, high quality individuals. This is a real dynamic projects for good projects for profit is great engineering going on. What could be better for sure, and we've been through the trod so many times. We've gotten to the point that now I just kind of like. I'm like, well, I mean we're here again. You know what I mean? And now it's time for, we figure out right now who's really in it to win it and who's just playing the game. Tell you know what I love about. You've got great energy, great. Already got great culture. You've been around, you've seen it early, you've been involved in a lot of the iterations of the industry that's just now growing to be a baby and his growing up into it's elementary school years. What are you, what's your take? I mean you look at this, I know you do a lot of retreats and self reflection. What's the industry? Where's it come from? Where is it now? How do you feel about what's happening? So I did in blockchain since 2011 and from a price perspective, there's actually a science fiction story that came out on Reddit in 2014 or 13 by someone named, got underscore Nada and it's called I am from the future. And I am here to stop you from what you were doing in this science fiction story. He outlines this pricing curve that basically shows the first five years of bitcoins existence. If no other market factors happen, no outside influence, no qualitative influenced the first five years, 10 x every year, second five years, every other year, 10 x every other year. And what's crazy is that if we wouldn't have had Mt. Gox and some of these other events like bitcoin was only supposed to go to 10 k last year, which is double. So if we wouldn't have had those external events, that pattern would have actually been it. So what's really easy and simple to remember about bitcoin is that it has a scarce supply. That's, I think that's the easiest way to put any of this. And so this is just a period of time. The market over extended itself and it shouldn't have gone realistically past 10 K it doubled. So yeah, I mean that's a if that's to be expected, right? No, no. In my opinion, I looked at either an exercise about six months with my friend. We look at the Nasdaq during the pre bubble days and we'll exchange of the Nasdaq and that's just a small scale relative to global care crypto. It's actually in line with some of the expansion we've seen in other financial market, so I kinda think it's good to have to do curation going on and calling out some of the dead wood, bring it into the better projects. This is kind of the reality now. Rip Good Times. Well, you know Bradley or yesterday at the cloud and blockchain conference posited that wasn't talking about Bitcoin, he was talking about ether. He said there's just too many damn coins and every ICO is most ics anyway. Tied to the theory. Yes, buy it. Well, I mean you can take this one too, but what I see is a decoupling at some point that has to be some sort of decoupling at the moment. Everything is very correlated and I think as time goes on you will see it's like survival of the fittest. Right? So you've got, you've got a lot of blockchains and you've got a lot of tokens on ethereum that want to come off to theory and it's survival of the fittest. I feel like. Yeah, the best ones will prevail and the ones that aren't trusted or secure. Yeah. So talk about who's in it to win it. What do you look for in the contenders versus the pretenders? What are the attributes that you as deep experts in this field look toward the winters? Well, I see as right now we're kind of like a candy that you love coming out with a new flavor. It's like everyone's like, oh yeah, like remember this candy gotta buy it now, but at the end of the day it's pretty much the same candy and she was like a little different sweetener and so we will experience obviously a sharp correction. Yeah, for sure. But I think what's really beautiful about this is it's actually enabling creative potential jobs of the future are not going to be, oh, I know how to do c plus plus now I have a job forever. It's going to be about reinvention at that is the real economy of the future and chains and huge enabler for that new markets are opening up to. So it's not just the reinvention, which I agree, reimagined the reinvention and new markets. Our change was on earlier saying eight and 80 day tour of 10 countries. New markets are exploding. That's just a new markets is rechanging system, not your grandfather's venture capital model, silicon valley or New York or London. It's with the globe. There are many, many reasons to tokenize the world. The thing that, the thing that stands out to me is, you know, when you look at tokenizing securities, the fact that this opens up the free market to everyone, you know, these things can be traded 24 slash seven, three, six, five from anywhere in the world. Traditionally if you want to buy stocks, will streets open for less time than it's been. It's closed and so it. It just opens up the free market to everyone all over the world and to me that's that journalists, you're a professional golfer. Someone use a golf analogy too, because I'd love Golf Golfer, so excellent Golfer. Not a pro, but he could be. I don't keep score with them many times and he never played. She played like, well, why don't you twice a year consistently shoots. There's a little bit hockey and a happy Gilmore going on golf metaphor, so the world that we know that's the centralized governed world banks, big corporations that are being essential. I consider them like a wooden shaft and the old clubs. Now all of a sudden graphite shafts, youth club heads, new technology. The game doesn't really change fundamental APP, but it changes the performance you by that is that a good analogy? Needed to. Perfect analogy. When you go to the golf clubs, then you've got the older members and they don't buy it. They say that the performance doesn't increase with the new technology, but really we know that old stodgy members, it comes down to that people are naturally averse to change. People don't change something that they don't quite understand. They'd naturally dismissed if they don't want to delve in, felt dismiss that and everyone here today is going down this rabbit hole, but there's a hell of a lot of people out there that I didn't really get it. I don't want to get it. So. And they'll dismiss that and they'll even. They'll even talk it down if it threatens them. At the game changes. No, I mean come on. If you look at the current distribution, over time we've moved from tribalized kings and Queens to nation states. Let's hope that we actually enable a redistribution of wealth. I want to see blockchain create the garden of Eden. We're experiencing now is basically same incentives, slightly less bad people, and I feel that if we really use new technology is an opportunity for change. Change is gonna happen and if we make the integration of new technology about experiencing compassion in action as humanity, we changed human perception, human behavior, your understanding of your own limitations. When we enabled real freedom, not just the illusion of freedom as money on Amazon yesterday, which he's with, he's done an amazing work what he's doing to transform the Caribbean islands with exchange changing a society there digitally connected almost 100 percent penetration of mobile. It's incredible. They can't access some basic services society. A new game changer. You're taking an integrative approach to how you interact with people and it's part of your persona. Maybe I'm pushing the golf analogy to bring it, bring it, watching the end of the PGA this week and they were interviewed. Tiger Woods is back and he's comes in and they were interviewing him and he wants to be on the Ryder Cup team. Now, if you've observed him in the Ryder Cup, not great. This is a team sport. The euro's always killed the Americans when the superstar is right and it's sort of the same thing that you're saying. It's the get the haves and have nots. It's a team sport and it's community driven. Increases viewings like you wouldn't need tigers pain. Everyone tunes in, which is great for the sport, for the Americans because they always lose when he plays. I think it would be, you know, why not put him in the team because it's good for the game. It gets people more engaged. He goes and he's been humbled. You know that your thing is there a lock if you the back, you want them involved but you don't want to dominate it. Alright, so guys, let's take it back to reality. You guys are working together on a project we talking, talking you guys, what are you guys working on know about the projects you guys are involved in right now. What James and I do together is we take these skills, we've learned through my life, you a performing artist in his previous life as a professional athlete and we've really taken what we've learned through our knowledge and our network to help entrepreneurs who are driven with integrity and appear to be a success. So it's really, well we do together is we just really, um, and that's, that's what we do both for fun and for enjoyment. And what I'm working on personally, James is the head of strategy at a company and I'll let him get into that when I'm working on personally is global citizenship and my company culture is actually focused on something really integral to the block chain which is capitalizing the market share on the tradition, the transition out of nation states and into oriented and governance models. So we have one layer that's open source for free for the world, for ever to own your agreements and to own your identity as a self sovereign individual stewarded by your community to give everyone more context on each other. And then our for profit businesses basically facebook connects people to their friends, culture connects people to communities and connects communities to dapps that are services and economists basically. And we build that whole ecosystem. So that's really what I'm up to at culture. And then James and I have our own adventure together and James is also had a strategy at center. Yup. Okay. So sentinel is an interoperable network layer for distributed resources. So let me break that down. What block chain technology allows is for you to monetize access resources like access bandwidth, access, GPU or CPU power. And so our first working product is a decentralized vpn. So you know what a vpn is. Sure. So the sentinel, the VPN is distributed. So what that allows you to do for example, is you could access, you can monetize your excess bandwidth by hosting a note that people can connect to it. And the beauty of the decentralized vpn is that it's probable, so all the code is open source and there's proof that the data is actually being kept private, it's encrypted, um, and there's no, there's no centralized or a body or a company that can be shut down or, or forced to give up data or paid for paid for data. It's distributed. So it's fast and it's secure. So yeah, there's a lot of big companies in the crypto space that are very concerned with data privacy and they didn't, may not trump central vpn, traditional centralized vpn paid. So you host your own node, you get paid. It's a marketplace. So anyone in the world can set up their own node, run their own node, help other people obscure their traffic if they don't want. Like for example, Gdpr, if you don't want every website that you visit to monitor literally everything you do, you might want to consider using a vpn for the sake of preserving your own personal privacy and the integrity of your data which you own and rightfully should actually own the monetization value of. So in the world you can have a few node and you guys can pay, people can pay $5 your whole network and use it. So I can sell my xx compute capacity, network bandwidth, the storage sewer. No touching that. A storage, I mean down the line. So it's for, for, for distributed resources. That sentinel. The first product is the dvps yes. Down the line. Yeah. We're going to come up with much more so others could actually plug into that platform like a live stream in China. I can pop on a vpn. There it is. Run Google apps in China because you can run google. Yes. You know, she'd even China. Let's you. Cool. All right guys. Well thanks so much for coming on. Appreciate it. Thanks. Very inspirational. I think there's a lot of mission driven cultural change coming very fast. This next generation coming up is going to be the stewards of making the change happen. It's our job to set the table and get these services out there. Congratulations. Okay. Cube coverage here live in Toronto at the untraceable blockchain futures conference. Two days is the cube wall to wall coverage. I'm John Furrier, stay with us Dave ones continuing the best gas, the most important people. Bring in the great blockchain crypto world together here in Toronto. We'll be right back.
SUMMARY :
So in the world you can have a few node
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
James Mcdonald | PERSON | 0.99+ |
James | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
2014 | DATE | 0.99+ |
China | LOCATION | 0.99+ |
Toni Lane | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
$5 | QUANTITY | 0.99+ |
Toronto | LOCATION | 0.99+ |
Tiger Woods | PERSON | 0.99+ |
New York | LOCATION | 0.99+ |
Tony Lane | PERSON | 0.99+ |
last year | DATE | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
two days | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
London | LOCATION | 0.99+ |
Caribbean islands | LOCATION | 0.99+ |
Ryder Cup | EVENT | 0.99+ |
James McDowall | PERSON | 0.99+ |
13 | DATE | 0.99+ |
six | QUANTITY | 0.99+ |
eight | QUANTITY | 0.99+ |
Two days | QUANTITY | 0.99+ |
2011 | DATE | 0.99+ |
first five years | QUANTITY | 0.99+ |
80 day | QUANTITY | 0.99+ |
Toronto, Canada | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
10 countries | QUANTITY | 0.98+ |
first five years | QUANTITY | 0.98+ |
five | QUANTITY | 0.98+ |
one layer | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
Gilmore | PERSON | 0.98+ |
Sentinel | ORGANIZATION | 0.98+ |
almost 100 percent | QUANTITY | 0.98+ |
seven | QUANTITY | 0.98+ |
Cuba | LOCATION | 0.97+ |
first product | QUANTITY | 0.97+ |
Bradley | PERSON | 0.97+ |
ORGANIZATION | 0.97+ | |
this week | DATE | 0.97+ |
Blockchain Futurist Conference 2018 | EVENT | 0.96+ |
about six months | QUANTITY | 0.96+ |
second five years | QUANTITY | 0.96+ |
24 | QUANTITY | 0.95+ |
Americans | PERSON | 0.95+ |
ORGANIZATION | 0.93+ | |
twice a year | QUANTITY | 0.92+ |
last night | DATE | 0.91+ |
ORGANIZATION | 0.89+ | |
double | QUANTITY | 0.87+ |
10 k | QUANTITY | 0.86+ |
first working | QUANTITY | 0.85+ |
Eden | LOCATION | 0.83+ |
PGA | EVENT | 0.83+ |
every | QUANTITY | 0.8+ |
Dave | PERSON | 0.79+ |
blockchain futures | EVENT | 0.78+ |
Mt. Gox | LOCATION | 0.77+ |
Gdpr | ORGANIZATION | 0.75+ |
CULTU.RE | ORGANIZATION | 0.75+ |
10 K | QUANTITY | 0.73+ |
blockchain futurist conference 2018 | EVENT | 0.73+ |
bitcoin | OTHER | 0.72+ |
every year | QUANTITY | 0.71+ |
Nasdaq | ORGANIZATION | 0.71+ |
year | QUANTITY | 0.68+ |
too many damn coins | QUANTITY | 0.65+ |
valley | LOCATION | 0.65+ |
ethereum | TITLE | 0.64+ |
bitcoins | OTHER | 0.63+ |
node | TITLE | 0.63+ |
blockchain uterus conference | EVENT | 0.62+ |
of people | QUANTITY | 0.61+ |
Good Times | TITLE | 0.57+ |
PGA | ORGANIZATION | 0.57+ |
Nasdaq | OTHER | 0.55+ |
ORGANIZATION | 0.52+ | |
tokens | QUANTITY | 0.49+ |