Crypto BlockChain Analysis with @Furrier & @Dvellante | Polycon 2018
>> Announcer: Live from Nassau in the Bahamas it's The Cube covering Polycon 18 brought to you Polymath. >> Hello, welcome to The Cube for a special Cube event, our first kick off for our cryptocurrency, Blockchain, decentralized computing world that we know as Bitcoin, Ethereum, Blockchain and all the rest. I'm John Furrier, Dave Vellante. We're here previewing the conference/\. We'll be live tomorrow and Friday but were here down getting ready for the big festivities which is tonight's opening keynotes. We had the co-founder of Ethereum, Anthony Diiorio, and then Brock Pierce coming on. He also is a chairman of the Bitcoin Foundation. Luminaries as well as a bunch of other great guests, Bill Tai from California, a friend of The Cube's. This is a game changing event, Dave. You and I have talked about this on The Cube many times. The waves of innovation come, you know, this big once in a generation, maybe centuries. We're seeing one that I think is not as even big as the other ones, bigger. You combine the PC Revolution. I was just texting Michael Dell earlier today and said, "This feels like the PC Revolution." A bunch of pioneers coming together but it's got a different vibe. It's bigger. It's like the combination of the internet and PC Revolution all rolled into one with a community vibe on it. So, and we're going to have tons of coverage on this. What I want to ask you, Dave, directly is you've seen many waves and we work with and we cover some of the old guard, older companies like Dell EMC, HPE, Oracle, IBM, Microsoft and they're doing really good work pivoting and trying to be ready for this new wave. It's just on Blockchain, it's just how the world works, Cloud, you know, IoT but decentralized cannot be ignored. So, some think this is a blind spot to these legacy and emerging vendors changing vendors like Oracle and IBM and HPE and Dell Technologies. Are they ready? Do you think they're ready? Do you think they even understand what's coming? And people squabble over Cloud market share and it's just funny, right? It's like there's a bigger thing coming over the top. >> Well, first thing I got to say is I got to give you props as my partner because you've been covering, you know, Blockchain, Bitcoin on SiliconANGLE since I don't know -- >> John: 2010. >> 2010, when I first met you, right. And so once again you are sort of ahead of the curve. I feel like we're at our first Hadoop World, you know, back in 2010. And so, props to you and the SiliconeANGLE team. To answer your question, no. No, they're not ready and to me it's not even about just Blockchain. I mean, Blockchain technology they can adopt. The bigger issue is digital disruption. And digital disruption is all about the data at the core of the organization and business models that are built around data. And if you think about the history of companies, it's human expertise and data's bolted on. We've seen this time and time again but if you look at the top five market cap companies, Facebook, Amazon, Google, et cetera, they're data companies. Data is at the center and they take human expertise and wrap it around there. So, the future is going to be about innovation with data, with artificial intelligence and Cloud economics and the old guard doesn't have those things. Blockchain fits in there. To me Blockchain is about building out a new distributed web and on top of the old web and rewarding those who were building it. So, it's a new form open-source where the builders get paid. >> But it's also decentralized and you have a value store, value creation capture model that has all the wrappings of what we traditionally see in a centralized database or even Cloud. You need networks, you need storage, you need databases, you need tokens, which is a form of data. So token economics, I mean, it's a new value economy, Dave. I mean, I just don't, I feel like the, I just, from my perspective, I just don't think those guys are seeing it. >> No and so it's not only those guys. It's the most of the world. I mean, you turn on CNBC and Buffet's on there saying this is going to end badly and there's negative, you know, trade press about, you know, Bitcoin and Silk Road and all that stuff. What most of the world is missing, and that makes people run away, but this is happening, it's real. It's going be the foundation for a next generation internet. It's happening, you see it all the time. Developers built the internet. Developers are going to rebuild the internet on top of this. So, I would suggest that people just try to squint through or squint passed the negative press and try to really understand what this trend is all about and how it's going to fundamentally change the internet and change the world. >> Well, there's negative press that's worthy. There's a lot of scams out there. There's security issues >> Sure >> but these are evolutionary problem spaces that can be solved. One, the scammers are going to be vetted out, the bubble bursting but the real value, creation is going to come from developers and that, to me, is what I hear you saying as your main point. >> No question about it. And I think that that, you know, there's lots of challenges. This stuff is not easy. First of all, who would've ever thought that something like Ethereum could even have been built, this kind of distributed infrastructure? I mean, it's very, very challenging. Of course we know about the scaling problems, the latency issues, all that stuff but these are problems that smart people are going to go attack and solve. And again I emphasize, it's the new form of, remember the old open systems, right? Unix and open systems. Well fast forward passed open-source, which the internet was built on open-source. Think about Linnux, everything's built on Linnux. But today developers who are building these new protocols are actually going to get paid to that. Guys like Anthony, you know, who made hundreds of millions -- >> Anthony Diiorio, co-founder of Ethereum, doing Jaxx wallet as part of Decentral. Great use case. He's paying it forward and I think the community here is a real dynamic and I think what we learned at The Cube, Dave, is the communities matter and now, more than ever they're actually having an input. Look what open-source has done to the software business over the past three decades, okay? Completely revolutionized the world we live in. So if you take the open-source apply those principals to, whether it's content media or decentralized infrastructure and applications, it's going to be a haven of innovation. >> Well and if you think about this, too, folks. Is that, you know, the centralized model has essentially co-opted all this innovation in the last 15 years, right? They've won. Closed won, Facebook won, they killed RSS. >> Well, Facebook's not winning now. They're under a lot of pressure because they screwed the election over and the data that they're using, some will argue, that, when I use Facebook, okay? Facebook's great, I get a free app, I let them have my data 'cause I want to connect with my friends but they're throwing elections off. I didn't bargain for that. The context has changed. So, to me, the shift of user data is going to move into the hands of the users. Do you agree with that statement? >> Yes, no question. And the other thing, just to finish my thought -- >> That's not good for Facebook. >> And we've talked about this, John. Protocol and development has stagnated, you know? Gmail is built on SMTP, you know, HTTP, DNS, these are all protocols that were developed by governments, and academia and the big guys just co-opted them and so, protocol development stagnated. What you need to understand about Blockchain is it bring back innovation -- >> Well, Anthony Diiorio said on my interview with him, one-on-one, that protocol developers are the most in demand role because those big guys take in co-oping those protocols, Dave, as you pointed out, is causing a revolution. It's almost like the 60s for tech. It's like there is a ground swell. I see it, I feel it. Not just a wave of innovation but the actors and the people involved look at this as a liberating opportunity to free the centralized forces that are quite frankly holding the world back. >> And I want to, this is very important and it was really epiphany when it hit me, is if you wanted to invest in TCP/IP, back in the day, how would you do that? You couldn't invest in TCP/IP. You could maybe invest in companies -- >> John: Cisco. (laughs) >> Yeah, can invest in companies. Okay, but you and I couldn't have gotten in early on Cisco, right? It was all the insiders. Today, developers who are building out these protocols, they can own the protocol. That's a form of investment and they got, essentially, equity in that token. >> Dave, we're going to be doing a lot of crypto shows and Blockchain shows because we're talking about the decentralization of the world. This is the future of our globe and work and play. What are you looking for, as we go down and knock down these shows, as The Cube goes out on this new mission? >> Well, I think Anthony kind of hinted at this. Is he's looking at infrastructure. It's like the early days of the internet with, you know, the pickaxe guys, you know, made all the money. It's the infrastructure that's getting built out. So, I want to see how that develops and how that sets the foundation, the platform for distributed applications, number one. Number two is I want to understand some of these challenges and how they're going to be addressed. The scaling issues, the latency problems, some of the, you know, nitty gritty technical challenges, who's working on those? And the third is, what's the right investment profile? How are the investors at this conference and other conferences going about deciding what to invest in? Right? How do they squint through quality and garbage? >> Well, I'm going to be heading to a special investor event. Dave, I'm going to put my ear to the ground and of course The Cube will go wherever it takes to get the story, whether it's the Bahamas. Not a bad gig here but important. We're going to get the most important stories and share that with you. And continue our mission of getting this content out in the open, shining the light on relevance and the right reputable people. Dave, always great. >> Thanks, John. >> And looking forward to a great week. (techno music)
SUMMARY :
brought to you Polymath. and said, "This feels like the PC Revolution." and the old guard doesn't have those things. and you have a value store, value creation capture model and there's negative, you know, trade press There's a lot of scams out there. and that, to me, is what I hear you saying And I think that that, you know, at The Cube, Dave, is the communities matter Well and if you think about this, too, folks. and the data that they're using, And the other thing, just to finish my thought -- and academia and the big guys just co-opted them It's almost like the 60s for tech. is if you wanted to invest in TCP/IP, back in the day, John: Cisco. Okay, but you and I couldn't have This is the future of our globe and work and play. and how that sets the foundation, the platform and the right reputable people. And looking forward to a great week.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
IBM | ORGANIZATION | 0.99+ |
Anthony Diiorio | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
John | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Microsoft | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Bill Tai | PERSON | 0.99+ |
Anthony | PERSON | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
2010 | DATE | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Michael Dell | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Bitcoin Foundation | ORGANIZATION | 0.99+ |
hundreds of millions | QUANTITY | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
CNBC | ORGANIZATION | 0.99+ |
Brock Pierce | PERSON | 0.99+ |
Friday | DATE | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
first | QUANTITY | 0.99+ |
Bahamas | LOCATION | 0.98+ |
third | QUANTITY | 0.98+ |
The Cube | ORGANIZATION | 0.98+ |
Nassau | LOCATION | 0.98+ |
first thing | QUANTITY | 0.97+ |
Polymath | ORGANIZATION | 0.97+ |
tomorrow | DATE | 0.97+ |
tonight | DATE | 0.97+ |
Buffet | PERSON | 0.97+ |
Gmail | TITLE | 0.97+ |
60s | DATE | 0.97+ |
Ethereum | ORGANIZATION | 0.96+ |
Linnux | ORGANIZATION | 0.94+ |
The Cube | TITLE | 0.92+ |
past three decades | DATE | 0.92+ |
First | QUANTITY | 0.91+ |
One | QUANTITY | 0.91+ |
Ethereum | OTHER | 0.91+ |
earlier today | DATE | 0.88+ |
five market cap | QUANTITY | 0.88+ |
today | DATE | 0.87+ |
first kick | QUANTITY | 0.86+ |
last 15 years | DATE | 0.86+ |
SiliconeANGLE | ORGANIZATION | 0.86+ |
@Dvellante | PERSON | 0.85+ |
EMC | ORGANIZATION | 0.85+ |
once | QUANTITY | 0.83+ |
Decentral | ORGANIZATION | 0.81+ |
Polycon 2018 | EVENT | 0.81+ |
Cloud | TITLE | 0.79+ |
PC Revolution | EVENT | 0.7+ |
Silk Road | ORGANIZATION | 0.7+ |
Number two | QUANTITY | 0.69+ |
Bitcoin | OTHER | 0.68+ |
waves of innovation | EVENT | 0.68+ |
Hadoop | ORGANIZATION | 0.62+ |
@Furrier | ORGANIZATION | 0.61+ |
one | QUANTITY | 0.6+ |
centuries | QUANTITY | 0.6+ |
PC | EVENT | 0.59+ |
Breaking Analysis: Databricks faces critical strategic decisions…here’s why
>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Spark became a top level Apache project in 2014, and then shortly thereafter, burst onto the big data scene. Spark, along with the cloud, transformed and in many ways, disrupted the big data market. Databricks optimized its tech stack for Spark and took advantage of the cloud to really cleverly deliver a managed service that has become a leading AI and data platform among data scientists and data engineers. However, emerging customer data requirements are shifting into a direction that will cause modern data platform players generally and Databricks, specifically, we think, to make some key directional decisions and perhaps even reinvent themselves. Hello and welcome to this week's wikibon theCUBE Insights, powered by ETR. In this Breaking Analysis, we're going to do a deep dive into Databricks. We'll explore its current impressive market momentum. We're going to use some ETR survey data to show that, and then we'll lay out how customer data requirements are changing and what the ideal data platform will look like in the midterm future. We'll then evaluate core elements of the Databricks portfolio against that vision, and then we'll close with some strategic decisions that we think the company faces. And to do so, we welcome in our good friend, George Gilbert, former equities analyst, market analyst, and current Principal at TechAlpha Partners. George, good to see you. Thanks for coming on. >> Good to see you, Dave. >> All right, let me set this up. We're going to start by taking a look at where Databricks sits in the market in terms of how customers perceive the company and what it's momentum looks like. And this chart that we're showing here is data from ETS, the emerging technology survey of private companies. The N is 1,421. What we did is we cut the data on three sectors, analytics, database-data warehouse, and AI/ML. The vertical axis is a measure of customer sentiment, which evaluates an IT decision maker's awareness of the firm and the likelihood of engaging and/or purchase intent. The horizontal axis shows mindshare in the dataset, and we've highlighted Databricks, which has been a consistent high performer in this survey over the last several quarters. And as we, by the way, just as aside as we previously reported, OpenAI, which burst onto the scene this past quarter, leads all names, but Databricks is still prominent. You can see that the ETR shows some open source tools for reference, but as far as firms go, Databricks is very impressively positioned. Now, let's see how they stack up to some mainstream cohorts in the data space, against some bigger companies and sometimes public companies. This chart shows net score on the vertical axis, which is a measure of spending momentum and pervasiveness in the data set is on the horizontal axis. You can see that chart insert in the upper right, that informs how the dots are plotted, and net score against shared N. And that red dotted line at 40% indicates a highly elevated net score, anything above that we think is really, really impressive. And here we're just comparing Databricks with Snowflake, Cloudera, and Oracle. And that squiggly line leading to Databricks shows their path since 2021 by quarter. And you can see it's performing extremely well, maintaining an elevated net score and net range. Now it's comparable in the vertical axis to Snowflake, and it consistently is moving to the right and gaining share. Now, why did we choose to show Cloudera and Oracle? The reason is that Cloudera got the whole big data era started and was disrupted by Spark. And of course the cloud, Spark and Databricks and Oracle in many ways, was the target of early big data players like Cloudera. Take a listen to Cloudera CEO at the time, Mike Olson. This is back in 2010, first year of theCUBE, play the clip. >> Look, back in the day, if you had a data problem, if you needed to run business analytics, you wrote the biggest check you could to Sun Microsystems, and you bought a great big, single box, central server, and any money that was left over, you handed to Oracle for a database licenses and you installed that database on that box, and that was where you went for data. That was your temple of information. >> Okay? So Mike Olson implied that monolithic model was too expensive and inflexible, and Cloudera set out to fix that. But the best laid plans, as they say, George, what do you make of the data that we just shared? >> So where Databricks has really come up out of sort of Cloudera's tailpipe was they took big data processing, made it coherent, made it a managed service so it could run in the cloud. So it relieved customers of the operational burden. Where they're really strong and where their traditional meat and potatoes or bread and butter is the predictive and prescriptive analytics that building and training and serving machine learning models. They've tried to move into traditional business intelligence, the more traditional descriptive and diagnostic analytics, but they're less mature there. So what that means is, the reason you see Databricks and Snowflake kind of side by side is there are many, many accounts that have both Snowflake for business intelligence, Databricks for AI machine learning, where Snowflake, I'm sorry, where Databricks also did really well was in core data engineering, refining the data, the old ETL process, which kind of turned into ELT, where you loaded into the analytic repository in raw form and refine it. And so people have really used both, and each is trying to get into the other. >> Yeah, absolutely. We've reported on this quite a bit. Snowflake, kind of moving into the domain of Databricks and vice versa. And the last bit of ETR evidence that we want to share in terms of the company's momentum comes from ETR's Round Tables. They're run by Erik Bradley, and now former Gartner analyst and George, your colleague back at Gartner, Daren Brabham. And what we're going to show here is some direct quotes of IT pros in those Round Tables. There's a data science head and a CIO as well. Just make a few call outs here, we won't spend too much time on it, but starting at the top, like all of us, we can't talk about Databricks without mentioning Snowflake. Those two get us excited. Second comment zeros in on the flexibility and the robustness of Databricks from a data warehouse perspective. And then the last point is, despite competition from cloud players, Databricks has reinvented itself a couple of times over the year. And George, we're going to lay out today a scenario that perhaps calls for Databricks to do that once again. >> Their big opportunity and their big challenge for every tech company, it's managing a technology transition. The transition that we're talking about is something that's been bubbling up, but it's really epical. First time in 60 years, we're moving from an application-centric view of the world to a data-centric view, because decisions are becoming more important than automating processes. So let me let you sort of develop. >> Yeah, so let's talk about that here. We going to put up some bullets on precisely that point and the changing sort of customer environment. So you got IT stacks are shifting is George just said, from application centric silos to data centric stacks where the priority is shifting from automating processes to automating decision. You know how look at RPA and there's still a lot of automation going on, but from the focus of that application centricity and the data locked into those apps, that's changing. Data has historically been on the outskirts in silos, but organizations, you think of Amazon, think Uber, Airbnb, they're putting data at the core, and logic is increasingly being embedded in the data instead of the reverse. In other words, today, the data's locked inside the app, which is why you need to extract that data is sticking it to a data warehouse. The point, George, is we're putting forth this new vision for how data is going to be used. And you've used this Uber example to underscore the future state. Please explain? >> Okay, so this is hopefully an example everyone can relate to. The idea is first, you're automating things that are happening in the real world and decisions that make those things happen autonomously without humans in the loop all the time. So to use the Uber example on your phone, you call a car, you call a driver. Automatically, the Uber app then looks at what drivers are in the vicinity, what drivers are free, matches one, calculates an ETA to you, calculates a price, calculates an ETA to your destination, and then directs the driver once they're there. The point of this is that that cannot happen in an application-centric world very easily because all these little apps, the drivers, the riders, the routes, the fares, those call on data locked up in many different apps, but they have to sit on a layer that makes it all coherent. >> But George, so if Uber's doing this, doesn't this tech already exist? Isn't there a tech platform that does this already? >> Yes, and the mission of the entire tech industry is to build services that make it possible to compose and operate similar platforms and tools, but with the skills of mainstream developers in mainstream corporations, not the rocket scientists at Uber and Amazon. >> Okay, so we're talking about horizontally scaling across the industry, and actually giving a lot more organizations access to this technology. So by way of review, let's summarize the trend that's going on today in terms of the modern data stack that is propelling the likes of Databricks and Snowflake, which we just showed you in the ETR data and is really is a tailwind form. So the trend is toward this common repository for analytic data, that could be multiple virtual data warehouses inside of Snowflake, but you're in that Snowflake environment or Lakehouses from Databricks or multiple data lakes. And we've talked about what JP Morgan Chase is doing with the data mesh and gluing data lakes together, you've got various public clouds playing in this game, and then the data is annotated to have a common meaning. In other words, there's a semantic layer that enables applications to talk to the data elements and know that they have common and coherent meaning. So George, the good news is this approach is more effective than the legacy monolithic models that Mike Olson was talking about, so what's the problem with this in your view? >> So today's data platforms added immense value 'cause they connected the data that was previously locked up in these monolithic apps or on all these different microservices, and that supported traditional BI and AI/ML use cases. But now if we want to build apps like Uber or Amazon.com, where they've got essentially an autonomously running supply chain and e-commerce app where humans only care and feed it. But the thing is figuring out what to buy, when to buy, where to deploy it, when to ship it. We needed a semantic layer on top of the data. So that, as you were saying, the data that's coming from all those apps, the different apps that's integrated, not just connected, but it means the same. And the issue is whenever you add a new layer to a stack to support new applications, there are implications for the already existing layers, like can they support the new layer and its use cases? So for instance, if you add a semantic layer that embeds app logic with the data rather than vice versa, which we been talking about and that's been the case for 60 years, then the new data layer faces challenges that the way you manage that data, the way you analyze that data, is not supported by today's tools. >> Okay, so actually Alex, bring me up that last slide if you would, I mean, you're basically saying at the bottom here, today's repositories don't really do joins at scale. The future is you're talking about hundreds or thousands or millions of data connections, and today's systems, we're talking about, I don't know, 6, 8, 10 joins and that is the fundamental problem you're saying, is a new data error coming and existing systems won't be able to handle it? >> Yeah, one way of thinking about it is that even though we call them relational databases, when we actually want to do lots of joins or when we want to analyze data from lots of different tables, we created a whole new industry for analytic databases where you sort of mung the data together into fewer tables. So you didn't have to do as many joins because the joins are difficult and slow. And when you're going to arbitrarily join thousands, hundreds of thousands or across millions of elements, you need a new type of database. We have them, they're called graph databases, but to query them, you go back to the prerelational era in terms of their usability. >> Okay, so we're going to come back to that and talk about how you get around that problem. But let's first lay out what the ideal data platform of the future we think looks like. And again, we're going to come back to use this Uber example. In this graphic that George put together, awesome. We got three layers. The application layer is where the data products reside. The example here is drivers, rides, maps, routes, ETA, et cetera. The digital version of what we were talking about in the previous slide, people, places and things. The next layer is the data layer, that breaks down the silos and connects the data elements through semantics and everything is coherent. And then the bottom layers, the legacy operational systems feed that data layer. George, explain what's different here, the graph database element, you talk about the relational query capabilities, and why can't I just throw memory at solving this problem? >> Some of the graph databases do throw memory at the problem and maybe without naming names, some of them live entirely in memory. And what you're dealing with is a prerelational in-memory database system where you navigate between elements, and the issue with that is we've had SQL for 50 years, so we don't have to navigate, we can say what we want without how to get it. That's the core of the problem. >> Okay. So if I may, I just want to drill into this a little bit. So you're talking about the expressiveness of a graph. Alex, if you'd bring that back out, the fourth bullet, expressiveness of a graph database with the relational ease of query. Can you explain what you mean by that? >> Yeah, so graphs are great because when you can describe anything with a graph, that's why they're becoming so popular. Expressive means you can represent anything easily. They're conducive to, you might say, in a world where we now want like the metaverse, like with a 3D world, and I don't mean the Facebook metaverse, I mean like the business metaverse when we want to capture data about everything, but we want it in context, we want to build a set of digital twins that represent everything going on in the world. And Uber is a tiny example of that. Uber built a graph to represent all the drivers and riders and maps and routes. But what you need out of a database isn't just a way to store stuff and update stuff. You need to be able to ask questions of it, you need to be able to query it. And if you go back to prerelational days, you had to know how to find your way to the data. It's sort of like when you give directions to someone and they didn't have a GPS system and a mapping system, you had to give them turn by turn directions. Whereas when you have a GPS and a mapping system, which is like the relational thing, you just say where you want to go, and it spits out the turn by turn directions, which let's say, the car might follow or whoever you're directing would follow. But the point is, it's much easier in a relational database to say, "I just want to get these results. You figure out how to get it." The graph database, they have not taken over the world because in some ways, it's taking a 50 year leap backwards. >> Alright, got it. Okay. Let's take a look at how the current Databricks offerings map to that ideal state that we just laid out. So to do that, we put together this chart that looks at the key elements of the Databricks portfolio, the core capability, the weakness, and the threat that may loom. Start with the Delta Lake, that's the storage layer, which is great for files and tables. It's got true separation of compute and storage, I want you to double click on that George, as independent elements, but it's weaker for the type of low latency ingest that we see coming in the future. And some of the threats highlighted here. AWS could add transactional tables to S3, Iceberg adoption is picking up and could accelerate, that could disrupt Databricks. George, add some color here please? >> Okay, so this is the sort of a classic competitive forces where you want to look at, so what are customers demanding? What's competitive pressure? What are substitutes? Even what your suppliers might be pushing. Here, Delta Lake is at its core, a set of transactional tables that sit on an object store. So think of it in a database system, this is the storage engine. So since S3 has been getting stronger for 15 years, you could see a scenario where they add transactional tables. We have an open source alternative in Iceberg, which Snowflake and others support. But at the same time, Databricks has built an ecosystem out of tools, their own and others, that read and write to Delta tables, that's what makes the Delta Lake and ecosystem. So they have a catalog, the whole machine learning tool chain talks directly to the data here. That was their great advantage because in the past with Snowflake, you had to pull all the data out of the database before the machine learning tools could work with it, that was a major shortcoming. They fixed that. But the point here is that even before we get to the semantic layer, the core foundation is under threat. >> Yep. Got it. Okay. We got a lot of ground to cover. So we're going to take a look at the Spark Execution Engine next. Think of that as the refinery that runs really efficient batch processing. That's kind of what disrupted the DOOp in a large way, but it's not Python friendly and that's an issue because the data science and the data engineering crowd are moving in that direction, and/or they're using DBT. George, we had Tristan Handy on at Supercloud, really interesting discussion that you and I did. Explain why this is an issue for Databricks? >> So once the data lake was in place, what people did was they refined their data batch, and Spark has always had streaming support and it's gotten better. The underlying storage as we've talked about is an issue. But basically they took raw data, then they refined it into tables that were like customers and products and partners. And then they refined that again into what was like gold artifacts, which might be business intelligence metrics or dashboards, which were collections of metrics. But they were running it on the Spark Execution Engine, which it's a Java-based engine or it's running on a Java-based virtual machine, which means all the data scientists and the data engineers who want to work with Python are really working in sort of oil and water. Like if you get an error in Python, you can't tell whether the problems in Python or where it's in Spark. There's just an impedance mismatch between the two. And then at the same time, the whole world is now gravitating towards DBT because it's a very nice and simple way to compose these data processing pipelines, and people are using either SQL in DBT or Python in DBT, and that kind of is a substitute for doing it all in Spark. So it's under threat even before we get to that semantic layer, it so happens that DBT itself is becoming the authoring environment for the semantic layer with business intelligent metrics. But that's again, this is the second element that's under direct substitution and competitive threat. >> Okay, let's now move down to the third element, which is the Photon. Photon is Databricks' BI Lakehouse, which has integration with the Databricks tooling, which is very rich, it's newer. And it's also not well suited for high concurrency and low latency use cases, which we think are going to increasingly become the norm over time. George, the call out threat here is customers want to connect everything to a semantic layer. Explain your thinking here and why this is a potential threat to Databricks? >> Okay, so two issues here. What you were touching on, which is the high concurrency, low latency, when people are running like thousands of dashboards and data is streaming in, that's a problem because SQL data warehouse, the query engine, something like that matures over five to 10 years. It's one of these things, the joke that Andy Jassy makes just in general, he's really talking about Azure, but there's no compression algorithm for experience. The Snowflake guy started more than five years earlier, and for a bunch of reasons, that lead is not something that Databricks can shrink. They'll always be behind. So that's why Snowflake has transactional tables now and we can get into that in another show. But the key point is, so near term, it's struggling to keep up with the use cases that are core to business intelligence, which is highly concurrent, lots of users doing interactive query. But then when you get to a semantic layer, that's when you need to be able to query data that might have thousands or tens of thousands or hundreds of thousands of joins. And that's a SQL query engine, traditional SQL query engine is just not built for that. That's the core problem of traditional relational databases. >> Now this is a quick aside. We always talk about Snowflake and Databricks in sort of the same context. We're not necessarily saying that Snowflake is in a position to tackle all these problems. We'll deal with that separately. So we don't mean to imply that, but we're just sort of laying out some of the things that Snowflake or rather Databricks customers we think, need to be thinking about and having conversations with Databricks about and we hope to have them as well. We'll come back to that in terms of sort of strategic options. But finally, when come back to the table, we have Databricks' AI/ML Tool Chain, which has been an awesome capability for the data science crowd. It's comprehensive, it's a one-stop shop solution, but the kicker here is that it's optimized for supervised model building. And the concern is that foundational models like GPT could cannibalize the current Databricks tooling, but George, can't Databricks, like other software companies, integrate foundation model capabilities into its platform? >> Okay, so the sound bite answer to that is sure, IBM 3270 terminals could call out to a graphical user interface when they're running on the XT terminal, but they're not exactly good citizens in that world. The core issue is Databricks has this wonderful end-to-end tool chain for training, deploying, monitoring, running inference on supervised models. But the paradigm there is the customer builds and trains and deploys each model for each feature or application. In a world of foundation models which are pre-trained and unsupervised, the entire tool chain is different. So it's not like Databricks can junk everything they've done and start over with all their engineers. They have to keep maintaining what they've done in the old world, but they have to build something new that's optimized for the new world. It's a classic technology transition and their mentality appears to be, "Oh, we'll support the new stuff from our old stuff." Which is suboptimal, and as we'll talk about, their biggest patron and the company that put them on the map, Microsoft, really stopped working on their old stuff three years ago so that they could build a new tool chain optimized for this new world. >> Yeah, and so let's sort of close with what we think the options are and decisions that Databricks has for its future architecture. They're smart people. I mean we've had Ali Ghodsi on many times, super impressive. I think they've got to be keenly aware of the limitations, what's going on with foundation models. But at any rate, here in this chart, we lay out sort of three scenarios. One is re-architect the platform by incrementally adopting new technologies. And example might be to layer a graph query engine on top of its stack. They could license key technologies like graph database, they could get aggressive on M&A and buy-in, relational knowledge graphs, semantic technologies, vector database technologies. George, as David Floyer always says, "A lot of ways to skin a cat." We've seen companies like, even think about EMC maintained its relevance through M&A for many, many years. George, give us your thought on each of these strategic options? >> Okay, I find this question the most challenging 'cause remember, I used to be an equity research analyst. I worked for Frank Quattrone, we were one of the top tech shops in the banking industry, although this is 20 years ago. But the M&A team was the top team in the industry and everyone wanted them on their side. And I remember going to meetings with these CEOs, where Frank and the bankers would say, "You want us for your M&A work because we can do better." And they really could do better. But in software, it's not like with EMC in hardware because with hardware, it's easier to connect different boxes. With software, the whole point of a software company is to integrate and architect the components so they fit together and reinforce each other, and that makes M&A harder. You can do it, but it takes a long time to fit the pieces together. Let me give you examples. If they put a graph query engine, let's say something like TinkerPop, on top of, I don't even know if it's possible, but let's say they put it on top of Delta Lake, then you have this graph query engine talking to their storage layer, Delta Lake. But if you want to do analysis, you got to put the data in Photon, which is not really ideal for highly connected data. If you license a graph database, then most of your data is in the Delta Lake and how do you sync it with the graph database? If you do sync it, you've got data in two places, which kind of defeats the purpose of having a unified repository. I find this semantic layer option in number three actually more promising, because that's something that you can layer on top of the storage layer that you have already. You just have to figure out then how to have your query engines talk to that. What I'm trying to highlight is, it's easy as an analyst to say, "You can buy this company or license that technology." But the really hard work is making it all work together and that is where the challenge is. >> Yeah, and well look, I thank you for laying that out. We've seen it, certainly Microsoft and Oracle. I guess you might argue that well, Microsoft had a monopoly in its desktop software and was able to throw off cash for a decade plus while it's stock was going sideways. Oracle had won the database wars and had amazing margins and cash flow to be able to do that. Databricks isn't even gone public yet, but I want to close with some of the players to watch. Alex, if you'd bring that back up, number four here. AWS, we talked about some of their options with S3 and it's not just AWS, it's blob storage, object storage. Microsoft, as you sort of alluded to, was an early go-to market channel for Databricks. We didn't address that really. So maybe in the closing comments we can. Google obviously, Snowflake of course, we're going to dissect their options in future Breaking Analysis. Dbt labs, where do they fit? Bob Muglia's company, Relational.ai, why are these players to watch George, in your opinion? >> So everyone is trying to assemble and integrate the pieces that would make building data applications, data products easy. And the critical part isn't just assembling a bunch of pieces, which is traditionally what AWS did. It's a Unix ethos, which is we give you the tools, you put 'em together, 'cause you then have the maximum choice and maximum power. So what the hyperscalers are doing is they're taking their key value stores, in the case of ASW it's DynamoDB, in the case of Azure it's Cosmos DB, and each are putting a graph query engine on top of those. So they have a unified storage and graph database engine, like all the data would be collected in the key value store. Then you have a graph database, that's how they're going to be presenting a foundation for building these data apps. Dbt labs is putting a semantic layer on top of data lakes and data warehouses and as we'll talk about, I'm sure in the future, that makes it easier to swap out the underlying data platform or swap in new ones for specialized use cases. Snowflake, what they're doing, they're so strong in data management and with their transactional tables, what they're trying to do is take in the operational data that used to be in the province of many state stores like MongoDB and say, "If you manage that data with us, it'll be connected to your analytic data without having to send it through a pipeline." And that's hugely valuable. Relational.ai is the wildcard, 'cause what they're trying to do, it's almost like a holy grail where you're trying to take the expressiveness of connecting all your data in a graph but making it as easy to query as you've always had it in a SQL database or I should say, in a relational database. And if they do that, it's sort of like, it'll be as easy to program these data apps as a spreadsheet was compared to procedural languages, like BASIC or Pascal. That's the implications of Relational.ai. >> Yeah, and again, we talked before, why can't you just throw this all in memory? We're talking in that example of really getting down to differences in how you lay the data out on disk in really, new database architecture, correct? >> Yes. And that's why it's not clear that you could take a data lake or even a Snowflake and why you can't put a relational knowledge graph on those. You could potentially put a graph database, but it'll be compromised because to really do what Relational.ai has done, which is the ease of Relational on top of the power of graph, you actually need to change how you're storing your data on disk or even in memory. So you can't, in other words, it's not like, oh we can add graph support to Snowflake, 'cause if you did that, you'd have to change, or in your data lake, you'd have to change how the data is physically laid out. And then that would break all the tools that talk to that currently. >> What in your estimation, is the timeframe where this becomes critical for a Databricks and potentially Snowflake and others? I mentioned earlier midterm, are we talking three to five years here? Are we talking end of decade? What's your radar say? >> I think something surprising is going on that's going to sort of come up the tailpipe and take everyone by storm. All the hype around business intelligence metrics, which is what we used to put in our dashboards where bookings, billings, revenue, customer, those things, those were the key artifacts that used to live in definitions in your BI tools, and DBT has basically created a standard for defining those so they live in your data pipeline or they're defined in their data pipeline and executed in the data warehouse or data lake in a shared way, so that all tools can use them. This sounds like a digression, it's not. All this stuff about data mesh, data fabric, all that's going on is we need a semantic layer and the business intelligence metrics are defining common semantics for your data. And I think we're going to find by the end of this year, that metrics are how we annotate all our analytic data to start adding common semantics to it. And we're going to find this semantic layer, it's not three to five years off, it's going to be staring us in the face by the end of this year. >> Interesting. And of course SVB today was shut down. We're seeing serious tech headwinds, and oftentimes in these sort of downturns or flat turns, which feels like this could be going on for a while, we emerge with a lot of new players and a lot of new technology. George, we got to leave it there. Thank you to George Gilbert for excellent insights and input for today's episode. I want to thank Alex Myerson who's on production and manages the podcast, of course Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our EIC over at Siliconangle.com, he does some great editing. Remember all these episodes, they're available as podcasts. Wherever you listen, all you got to do is search Breaking Analysis Podcast, we publish each week on wikibon.com and siliconangle.com, or you can email me at David.Vellante@siliconangle.com, or DM me @DVellante. Comment on our LinkedIn post, and please do check out ETR.ai, great survey data, enterprise tech focus, phenomenal. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis.
SUMMARY :
bringing you data-driven core elements of the Databricks portfolio and pervasiveness in the data and that was where you went for data. and Cloudera set out to fix that. the reason you see and the robustness of Databricks and their big challenge and the data locked into in the real world and decisions Yes, and the mission of that is propelling the likes that the way you manage that data, is the fundamental problem because the joins are difficult and slow. and connects the data and the issue with that is the fourth bullet, expressiveness and it spits out the and the threat that may loom. because in the past with Snowflake, Think of that as the refinery So once the data lake was in place, George, the call out threat here But the key point is, in sort of the same context. and the company that put One is re-architect the platform and architect the components some of the players to watch. in the case of ASW it's DynamoDB, and why you can't put a relational and executed in the data and manages the podcast, of
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Mike Olson | PERSON | 0.99+ |
2014 | DATE | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Erik Bradley | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
Sun Microsystems | ORGANIZATION | 0.99+ |
50 years | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
60 years | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
Rob Hof | PERSON | 0.99+ |
three | QUANTITY | 0.99+ |
15 years | QUANTITY | 0.99+ |
Databricks' | ORGANIZATION | 0.99+ |
two places | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
M&A | ORGANIZATION | 0.99+ |
Frank Quattrone | PERSON | 0.99+ |
second element | QUANTITY | 0.99+ |
Daren Brabham | PERSON | 0.99+ |
TechAlpha Partners | ORGANIZATION | 0.99+ |
third element | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
50 year | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
Cloudera | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
five years | QUANTITY | 0.99+ |
Breaking Analysis: MWC 2023 goes beyond consumer & deep into enterprise tech
>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> While never really meant to be a consumer tech event, the rapid ascendancy of smartphones sucked much of the air out of Mobile World Congress over the years, now MWC. And while the device manufacturers continue to have a major presence at the show, the maturity of intelligent devices, longer life cycles, and the disaggregation of the network stack, have put enterprise technologies front and center in the telco business. Semiconductor manufacturers, network equipment players, infrastructure companies, cloud vendors, software providers, and a spate of startups are eyeing the trillion dollar plus communications industry as one of the next big things to watch this decade. Hello, and welcome to this week's Wikibon CUBE Insights, powered by ETR. In this Breaking Analysis, we bring you part two of our ongoing coverage of MWC '23, with some new data on enterprise players specifically in large telco environments, a brief glimpse at some of the pre-announcement news and corresponding themes ahead of MWC, and some of the key announcement areas we'll be watching at the show on theCUBE. Now, last week we shared some ETR data that showed how traditional enterprise tech players were performing, specifically within the telecoms vertical. Here's a new look at that data from ETR, which isolates the same companies, but cuts the data for what ETR calls large telco. The N in this cut is 196, down from 288 last week when we included all company sizes in the dataset. Now remember the two dimensions here, on the y-axis is net score, or spending momentum, and on the x-axis is pervasiveness in the data set. The table insert in the upper left informs how the dots and companies are plotted, and that red dotted line, the horizontal line at 40%, that indicates a highly elevated net score. Now while the data are not dramatically different in terms of relative positioning, there are a couple of changes at the margin. So just going down the list and focusing on net score. Azure is comparable, but slightly lower in this sector in the large telco than it was overall. Google Cloud comes in at number two, and basically swapped places with AWS, which drops slightly in the large telco relative to overall telco. Snowflake is also slightly down by one percentage point, but maintains its position. Remember Snowflake, overall, its net score is much, much higher when measuring across all verticals. Snowflake comes down in telco, and relative to overall, a little bit down in large telco, but it's making some moves to attack this market that we'll talk about in a moment. Next are Red Hat OpenStack and Databricks. About the same in large tech telco as they were an overall telco. Then there's Dell next that has a big presence at MWC and is getting serious about driving 16G adoption, and new servers, and edge servers, and other partnerships. Cisco and Red Hat OpenShift basically swapped spots when moving from all telco to large telco, as Cisco drops and Red Hat bumps up a bit. And VMware dropped about four percentage points in large telco. Accenture moved up dramatically, about nine percentage points in big telco, large telco relative to all telco. HPE dropped a couple of percentage points. Oracle stayed about the same. And IBM surprisingly dropped by about five points. So look, I understand not a ton of change in terms of spending momentum in the large sector versus telco overall, but some deltas. The bottom line for enterprise players is one, they're just getting started in this new disruption journey that they're on as the stack disaggregates. Two, all these players have experience in delivering horizontal solutions, but now working with partners and identifying big problems to be solved, and three, many of these companies are generally not the fastest moving firms relative to smaller disruptive disruptors. Now, cloud has been an exception in fairness. But the good news for the legacy infrastructure and IT companies is that the telco transformation and the 5G buildout is going to take years. So it's moving at a pace that is very favorable to many of these companies. Okay, so looking at just some of the pre-announcement highlights that have hit the wire this week, I want to give you a glimpse of the diversity of innovation that is occurring in the telecommunication space. You got semiconductor manufacturers, device makers, network equipment players, carriers, cloud vendors, enterprise tech companies, software companies, startups. Now we've included, you'll see in this list, we've included OpeRAN, that logo, because there's so much buzz around the topic and we're going to come back to that. But suffice it to say, there's no way we can cover all the announcements from the 2000 plus exhibitors at the show. So we're going to cherry pick here and make a few call outs. Hewlett Packard Enterprise announced an acquisition of an Italian private cellular network company called AthoNet. Zeus Kerravala wrote about it on SiliconANGLE if you want more details. Now interestingly, HPE has a partnership with Solana, which also does private 5G. But according to Zeus, Solona is more of an out-of-the-box solution, whereas AthoNet is designed for the core and requires more integration. And as you'll see in a moment, there's going to be a lot of talk at the show about private network. There's going to be a lot of news there from other competitors, and we're going to be watching that closely. And while many are concerned about the P5G, private 5G, encroaching on wifi, Kerravala doesn't see it that way. Rather, he feels that these private networks are really designed for more industrial, and you know mission critical environments, like factories, and warehouses that are run by robots, et cetera. 'Cause these can justify the increased expense of private networks. Whereas wifi remains a very low cost and flexible option for, you know, whatever offices and homes. Now, over to Dell. Dell announced its intent to go hard after opening up the telco network with the announcement that in the second half of this year it's going to begin shipping its infrastructure blocks for Red Hat. Remember it's like kind of the converged infrastructure for telco with a more open ecosystem and sort of more flexible, you know, more mature engineered system. Dell has also announced a range of PowerEdge servers for a variety of use cases. A big wide line bringing forth its 16G portfolio and aiming squarely at the telco space. Dell also announced, here we go, a private wireless offering with airspan, and Expedo, and a solution with AthoNet, the company HPE announced it was purchasing. So I guess Dell and HPE are now partnering up in the private wireless space, and yes, hell is freezing over folks. We'll see where that relationship goes in the mid- to long-term. Dell also announced new lab and certification capabilities, which we said last week was going to be critical for the further adoption of open ecosystem technology. So props to Dell for, you know, putting real emphasis and investment in that. AWS also made a number of announcements in this space including private wireless solutions and associated managed services. AWS named Deutsche Telekom, Orange, T-Mobile, Telefonica, and some others as partners. And AWS announced the stepped up partnership, specifically with T-Mobile, to bring AWS services to T-Mobile's network portfolio. Snowflake, back to Snowflake, announced its telecom data cloud. Remember we showed the data earlier, it's Snowflake not as strong in the telco sector, but they're continuing to move toward this go-to market alignment within key industries, realigning their go-to market by vertical. It also announced that AT&T, and a number of other partners, are collaborating to break down data silos specifically in telco. Look, essentially, this is Snowflake taking its core value prop to the telco vertical and forming key partnerships that resonate in the space. So think simplification, breaking down silos, data sharing, eventually data monetization. Samsung previewed its future capability to allow smartphones to access satellite services, something Apple has previously done. AMD, Intel, Marvell, Qualcomm, are all in the act, all the semiconductor players. Qualcomm for example, announced along with Telefonica, and Erickson, a 5G millimeter network that will be showcased in Spain at the event this coming week using Qualcomm Snapdragon chipset platform, based on none other than Arm technology. Of course, Arm we said is going to dominate the edge, and is is clearly doing so. It's got the volume advantage over, you know, traditional Intel, you know, X86 architectures. And it's no surprise that Microsoft is touting its open AI relationship. You're going to hear a lot of AI talk at this conference as is AI is now, you know, is the now topic. All right, we could go on and on and on. There's just so much going on at Mobile World Congress or MWC, that we just wanted to give you a glimpse of some of the highlights that we've been watching. Which brings us to the key topics and issues that we'll be exploring at MWC next week. We touched on some of this last week. A big topic of conversation will of course be, you know, 5G. Is it ever going to become real? Is it, is anybody ever going to make money at 5G? There's so much excitement around and anticipation around 5G. It has not lived up to the hype, but that's because the rollout, as we've previous reported, is going to take years. And part of that rollout is going to rely on the disaggregation of the hardened telco stack, as we reported last week and in previous Breaking Analysis episodes. OpenRAN is a big component of that evolution. You know, as our RAN intelligent controllers, RICs, which essentially the brain of OpenRAN, if you will. Now as we build out 5G networks at massive scale and accommodate unprecedented volumes of data and apply compute-hungry AI to all this data, the issue of energy efficiency is going to be front and center. It has to be. Not only is it a, you know, hot political issue, the reality is that improving power efficiency is compulsory or the whole vision of telco's future is going to come crashing down. So chip manufacturers, equipment makers, cloud providers, everybody is going to be doubling down and clicking on this topic. Let's talk about AI. AI as we said, it is the hot topic right now, but it is happening not only in consumer, with things like ChatGPT. And think about the theme of this Breaking Analysis in the enterprise, AI in the enterprise cannot be ChatGPT. It cannot be error prone the way ChatGPT is. It has to be clean, reliable, governed, accurate. It's got to be ethical. It's got to be trusted. Okay, we're going to have Zeus Kerravala on the show next week and definitely want to get his take on private networks and how they're going to impact wifi. You know, will private networks cannibalize wifi? If not, why not? He wrote about this again on SiliconANGLE if you want more details, and we're going to unpack that on theCUBE this week. And finally, as always we'll be following the data flows to understand where and how telcos, cloud players, startups, software companies, disruptors, legacy companies, end customers, how are they going to make money from new data opportunities? 'Cause we often say in theCUBE, don't ever bet against data. All right, that's a wrap for today. Remember theCUBE is going to be on location at MWC 2023 next week. We got a great set. We're in the walkway in between halls four and five, right in Congress Square, stand CS-60. Look for us, we got a full schedule. If you got a great story or you have news, stop by. We're going to try to get you on the program. I'll be there with Lisa Martin, co-hosting, David Nicholson as well, and the entire CUBE crew, so don't forget to come by and see us. I want to thank Alex Myerson, who's on production and manages the podcast, and Ken Schiffman, as well, in our Boston studio. Kristen Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at SiliconANGLE.com. He does some great editing. Thank you. All right, remember all these episodes they are available as podcasts wherever you listen. All you got to do is search Breaking Analysis podcasts. I publish each week on Wikibon.com and SiliconANGLE.com. All the video content is available on demand at theCUBE.net, or you can email me directly if you want to get in touch David.Vellante@SiliconANGLE.com or DM me @DVellante, or comment on our LinkedIn posts. And please do check out ETR.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. We'll see you next week at Mobile World Congress '23, MWC '23, or next time on Breaking Analysis. (bright music)
SUMMARY :
bringing you data-driven in the mid- to long-term.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David Nicholson | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Orange | ORGANIZATION | 0.99+ |
Qualcomm | ORGANIZATION | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
Telefonica | ORGANIZATION | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
AMD | ORGANIZATION | 0.99+ |
Spain | LOCATION | 0.99+ |
T-Mobile | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Deutsche Telekom | ORGANIZATION | 0.99+ |
Hewlett Packard Enterprise | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Marvell | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Samsung | ORGANIZATION | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
AT&T | ORGANIZATION | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
40% | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
AthoNet | ORGANIZATION | 0.99+ |
Erickson | ORGANIZATION | 0.99+ |
Congress Square | LOCATION | 0.99+ |
Accenture | ORGANIZATION | 0.99+ |
next week | DATE | 0.99+ |
Mobile World Congress | EVENT | 0.99+ |
Solana | ORGANIZATION | 0.99+ |
Boston | LOCATION | 0.99+ |
two dimensions | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
MWC '23 | EVENT | 0.99+ |
MWC | EVENT | 0.99+ |
288 | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
this week | DATE | 0.98+ |
Solona | ORGANIZATION | 0.98+ |
David.Vellante@SiliconANGLE.com | OTHER | 0.98+ |
telco | ORGANIZATION | 0.98+ |
Two | QUANTITY | 0.98+ |
each week | QUANTITY | 0.97+ |
Zeus Kerravala | PERSON | 0.97+ |
MWC 2023 | EVENT | 0.97+ |
about five points | QUANTITY | 0.97+ |
theCUBE.net | OTHER | 0.97+ |
Red Hat | ORGANIZATION | 0.97+ |
Snowflake | TITLE | 0.96+ |
one | QUANTITY | 0.96+ |
Databricks | ORGANIZATION | 0.96+ |
three | QUANTITY | 0.96+ |
theCUBE Studios | ORGANIZATION | 0.96+ |
Breaking Analysis: MWC 2023 highlights telco transformation & the future of business
>> From the Cube Studios in Palo Alto in Boston, bringing you data-driven insights from The Cube and ETR. This is "Breaking Analysis" with Dave Vellante. >> The world's leading telcos are trying to shed the stigma of being monopolies lacking innovation. Telcos have been great at operational efficiency and connectivity and living off of transmission, and the costs and expenses or revenue associated with that transmission. But in a world beyond telephone poles and basic wireless and mobile services, how will telcos modernize and become more agile and monetize new opportunities brought about by 5G and private wireless and a spate of new innovations and infrastructure, cloud data and apps? Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this breaking analysis and ahead of Mobile World Congress or now, MWC23, we explore the evolution of the telco business and how the industry is in many ways, mimicking transformations that took place decades ago in enterprise IT. We'll model some of the traditional enterprise vendors using ETR data and investigate how they're faring in the telecommunications sector, and we'll pose some of the key issues facing the industry this decade. First, let's take a look at what the GSMA has in store for MWC23. GSMA is the host of what used to be called Mobile World Congress. They've set the theme for this year's event as "Velocity" and they've rebranded MWC to reflect the fact that mobile technology is only one part of the story. MWC has become one of the world's premier events highlighting innovations not only in Telco, mobile and 5G, but the collision between cloud, infrastructure, apps, private networks, smart industries, machine intelligence, and AI, and more. MWC comprises an enormous ecosystem of service providers, technology companies, and firms from virtually every industry including sports and entertainment. And as well, GSMA, along with its venue partner at the Fira Barcelona, have placed a major emphasis on sustainability and public and private partnerships. Virtually every industry will be represented at the event because every industry is impacted by the trends and opportunities in this space. GSMA has said it expects 80,000 attendees at MWC this year, not quite back to 2019 levels, but trending in that direction. Of course, attendance from Chinese participants has historically been very high at the show, and obviously the continued travel issues from that region are affecting the overall attendance, but still very strong. And despite these concerns, Huawei, the giant Chinese technology company. has the largest physical presence of any exhibitor at the show. And finally, GSMA estimates that more than $300 million in economic benefit will result from the event which takes place at the end of February and early March. And The Cube will be back at MWC this year with a major presence thanks to our anchor sponsor, Dell Technologies and other supporters of our content program, including Enterprise Web, ArcaOS, VMware, Snowflake, Cisco, AWS, and others. And one of the areas we're interested in exploring is the evolution of the telco stack. It's a topic that's often talked about and one that we've observed taking place in the 1990s when the vertically integrated IBM mainframe monopoly gave way to a disintegrated and horizontal industry structure. And in many ways, the same thing is happening today in telecommunications, which is shown on the left-hand side of this diagram. Historically, telcos have relied on a hardened, integrated, and incredibly reliable, and secure set of hardware and software services that have been fully vetted and tested, and certified, and relied upon for decades. And at the top of that stack on the left are the crown jewels of the telco stack, the operational support systems and the business support systems. For the OSS, we're talking about things like network management, network operations, service delivery, quality of service, fulfillment assurance, and things like that. For the BSS systems, these refer to customer-facing elements of the stack, like revenue, order management, what products they sell, billing, and customer service. And what we're seeing is telcos have been really good at operational efficiency and making money off of transport and connectivity, but they've lacked the innovation in services and applications. They own the pipes and that works well, but others, be the over-the-top content companies, or private network providers and increasingly, cloud providers have been able to bypass the telcos, reach around them, if you will, and drive innovation. And so, the right-most diagram speaks to the need to disaggregate pieces of the stack. And while the similarities to the 1990s in enterprise IT are greater than the differences, there are things that are different. For example, the granularity of hardware infrastructure will not likely be as high where competition occurred back in the 90s at every layer of the value chain with very little infrastructure integration. That of course changed in the 2010s with converged infrastructure and hyper-converged and also software defined. So, that's one difference. And the advent of cloud, containers, microservices, and AI, none of that was really a major factor in the disintegration of legacy IT. And that probably means that disruptors can move even faster than did the likes of Intel and Microsoft, Oracle, Cisco, and the Seagates of the 1990s. As well, while many of the products and services will come from traditional enterprise IT names like Dell, HPE, Cisco, Red Hat, VMware, AWS, Microsoft, Google, et cetera, many of the names are going to be different and come from traditional network equipment providers. These are names like Ericsson and Huawei, and Nokia, and other names, like Wind River, and Rakuten, and Dish Networks. And there are enormous opportunities in data to help telecom companies and their competitors go beyond telemetry data into more advanced analytics and data monetization. There's also going to be an entirely new set of apps based on the workloads and use cases ranging from hospitals, sports arenas, race tracks, shipping ports, you name it. Virtually every vertical will participate in this transformation as the industry evolves its focus toward innovation, agility, and open ecosystems. Now remember, this is not a binary state. There are going to be greenfield companies disrupting the apple cart, but the incumbent telcos are going to have to continue to ensure newer systems work with their legacy infrastructure, in their OSS and BSS existing systems. And as we know, this is not going to be an overnight task. Integration is a difficult thing, transformations, migrations. So that's what makes this all so interesting because others can come in with Greenfield and potentially disrupt. There'll be interesting partnerships and ecosystems will form and coalitions will also form. Now, we mentioned that several traditional enterprise companies are or will be playing in this space. Now, ETR doesn't have a ton of data on specific telecom equipment and software providers, but it does have some interesting data that we cut for this breaking analysis. What we're showing here in this graphic is some of the names that we've followed over the years and how they're faring. Specifically, we did the cut within the telco sector. So the Y-axis here shows net score or spending velocity. And the horizontal axis, that shows the presence or pervasiveness in the data set. And that table insert in the upper left, that informs as to how the dots are plotted. You know, the two columns there, net score and the ends. And that red-dotted line, that horizontal line at 40%, that is an indicator of a highly elevated level. Anything above that, we consider quite outstanding. And what we'll do now is we'll comment on some of the cohorts and share with you how they're doing in telecommunications, and that sector, that vertical relative to their position overall in the data set. Let's start with the public cloud players. They're prominent in every industry. Telcos, telecommunications is no exception and it's quite an interesting cohort here. On the one hand, they can help telecommunication firms modernize and become more agile by eliminating the heavy lifting and you know, all the cloud, you know, value prop, data center costs, and the cloud benefits. At the same time, public cloud players are bringing their services to the edge, building out their own global networks and are a disruptive force to traditional telcos. All right, let's talk about Azure first. Their net score is basically identical to telco relative to its overall average. AWS's net score is higher in telco by just a few percentage points. Google Cloud platform is eight percentage points higher in telco with a 53% net score. So all three hyperscalers have an equal or stronger presence in telco than their average overall. Okay, let's look at the traditional enterprise hardware and software infrastructure cohort. Dell, Cisco, HPE, Red Hat, VMware, and Oracle. We've highlighted in this chart just as sort of indicators or proxies. Dell's net score's 10 percentage points higher in telco than its overall average. Interesting. Cisco's is a bit higher. HPE's is actually lower by about nine percentage points in the ETR survey, and VMware's is lower by about four percentage points. Now, Red Hat is really interesting. OpenStack, as we've previously reported is popular with telcos who want to build out their own private cloud. And the data shows that Red Hat OpenStack's net score is 15 percentage points higher in the telco sector than its overall average. OpenShift, on the other hand, has a net score that's four percentage points lower in telco than its overall average. So this to us talks to the pace of adoption of microservices and containers. You know, it's going to happen, but it's going to happen more slowly. Finally, Oracle's spending momentum is somewhat lower in the sector than its average, despite the firm having a decent telco business. IBM and Accenture, heavy services companies are both lower in this sector than their average. And real quickly, snowflake's net score is much lower by about 12 percentage points relative to its very high average net score of 62%. But we look for them to be a player in this space as telcos need to modernize their analytics stack and share data in a governed manner. Databricks' net score is also much lower than its average by about 13 points. And same, I would expect them to be a player as open architectures and cloud gains steam in telco. All right, let's close out now on what we're going to be talking about at MWC23 and some of the key issues that we'll be unpacking. We've talked about stack disaggregation in this breaking analysis, but the key here will be the pace at which it will reach the operational efficiency and reliability of closed stacks. Telcos, you know, in a large part, they're engineering heavy firms and much of their work takes place, kind of in the basement, in the dark. It's not really a big public hype machine, and they tend to move slowly and cautiously. While they understand the importance of agility, they're going to be careful because, you know, it's in their DNA. And so at the same time, if they don't move fast enough, they're going to get hurt and disrupted by competitors. So that's going to be a topic of conversation, and we'll be looking for proof points. And the other comment I'll make is around integration. Telcos because of their conservatism will benefit from better testing and those firms that can innovate on the testing front and have labs and certifications and innovate at that level, with an ecosystem are going to be in a better position. Because open sometimes means wild west. So the more players like Dell, HPE, Cisco, Red Hat, et cetera, that do that and align with their ecosystems and provide those resources, the faster adoption is going to go. So we'll be looking for, you know, who's actually doing that, Open RAN or Radio Access Networks. That fits in this discussion because O-RAN is an emerging network architecture. It essentially enables the use of open technologies from an ecosystem and over time, look at O-RAN is going to be open, but the questions, you know, a lot of questions remain as to when it will be able to deliver the operational efficiency of traditional RAN. Got some interesting dynamics going on. Rakuten is a company that's working hard on this problem, really focusing on operational efficiency. Then you got Dish Networks. They're also embracing O-RAN. They're coming at it more from service innovation. So that's something that we'll be monitoring and unpacking. We're going to look at cloud as a disruptor. On the one hand, cloud can help drive agility, as we said earlier and optionality, and innovation for incumbent telcos. But the flip side is going to also do the same for startups trying to disrupt and cloud attracts startups. While some of the telcos are actually embracing the cloud, many are being cautious. So that's going to be an interesting topic of discussion. And there's private wireless networks and 5G, and hyperlocal private networks, they're being deployed, you know, at the edge. This idea of open edge is also a really hot topic and this trend is going to accelerate. You know, the importance here is that the use cases are going to be widely varied. The needs of a hospital are going to be different than those of a sports venue are different from a remote drilling location, and energy or a concert venue. Things like real-time AI inference and data flows are going to bring new services and monetization opportunities. And many firms are going to be bypassing traditional telecommunications networks to build these out. Satellites as well, we're going to see, you know, in this decade, you're going to have, you're going to look down at Google Earth and you're going to see real-time. You know, today you see snapshots and so, lots of innovations going in that space. So how is this going to disrupt industries and traditional industry structures? Now, as always, we'll be looking at data angles, right? 'Cause it's in The Cube's DNA to follow the data and what opportunities and risks data brings. The Cube is going to be on location at MWC23 at the end of the month. We got a great set. We're in the walkway between halls four and five, right in Congress Square, it's booths CS60. So we'll have a full, they're called Stan CS60. We have a full schedule. I'm going to be there with Lisa Martin, Dave Nicholson and the entire Cube crew, so don't forget to stop by. All right, that's a wrap. I want to thank Alex Myerson, who's on production and manages the podcast, Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at Silicon Angle, does some great stuff for us. Thank you all. Remember, all these episodes are available as podcasts. Wherever you listen, just search "Breaking Analysis" podcasts I publish each week on wikibon.com and silicon angle.com. And all the video content is available on demand at thecube.net. You can email me directly at david.vellante@silicon angle.com. You can DM me at dvellante or comment on my LinkedIn post. Please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for The Cube Insights powered by ETR. Thanks for watching and we'll see you at Mobile World Congress, and/or at next time on "Breaking Analysis." (bright music) (bright music fades)
SUMMARY :
From the Cube Studios and some of the key issues
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Ericsson | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Huawei | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Nokia | ORGANIZATION | 0.99+ |
Rakuten | ORGANIZATION | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
GSMA | ORGANIZATION | 0.99+ |
Accenture | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
2019 | DATE | 0.99+ |
53% | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Wind River | ORGANIZATION | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
more than $300 million | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
Telcos | ORGANIZATION | 0.99+ |
Congress Square | LOCATION | 0.99+ |
First | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Dish Networks | ORGANIZATION | 0.99+ |
telco | ORGANIZATION | 0.99+ |
2010s | DATE | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
david.vellante@silicon angle.com | OTHER | 0.99+ |
MWC23 | EVENT | 0.99+ |
1990s | DATE | 0.99+ |
62% | QUANTITY | 0.99+ |
Mobile World Congress | EVENT | 0.99+ |
two columns | QUANTITY | 0.99+ |
each week | QUANTITY | 0.99+ |
Seagates | ORGANIZATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
early March | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
thecube.net | OTHER | 0.99+ |
MWC | EVENT | 0.99+ |
ETR | ORGANIZATION | 0.98+ |
this year | DATE | 0.98+ |
Cube Studios | ORGANIZATION | 0.98+ |
one part | QUANTITY | 0.98+ |
Chinese | OTHER | 0.98+ |
Boston | LOCATION | 0.98+ |
decades ago | DATE | 0.97+ |
three | QUANTITY | 0.97+ |
90s | DATE | 0.97+ |
about 13 points | QUANTITY | 0.97+ |
Breaking Analysis: Google's Point of View on Confidential Computing
>> From theCUBE studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Confidential computing is a technology that aims to enhance data privacy and security by providing encrypted computation on sensitive data and isolating data from apps in a fenced off enclave during processing. The concept of confidential computing is gaining popularity, especially in the cloud computing space where sensitive data is often stored and of course processed. However, there are some who view confidential computing as an unnecessary technology in a marketing ploy by cloud providers aimed at calming customers who are cloud phobic. Hello and welcome to this week's Wikibon CUBE Insights powered by ETR. In this Breaking Analysis, we revisit the notion of confidential computing, and to do so, we'll invite two Google experts to the show, but before we get there, let's summarize briefly. There's not a ton of ETR data on the topic of confidential computing. I mean, it's a technology that's deeply embedded into silicon and computing architectures. But at the highest level, security remains the number one priority being addressed by IT decision makers in the coming year as shown here. And this data is pretty much across the board by industry, by region, by size of company. I mean we dug into it and the only slight deviation from the mean is in financial services. The second and third most cited priorities, cloud migration and analytics, are noticeably closer to cybersecurity in financial services than in other sectors, likely because financial services has always been hyper security conscious, but security is still a clear number one priority in that sector. The idea behind confidential computing is to better address threat models for data in execution. Protecting data at rest and data and transit have long been a focus of security approaches, but more recently, silicon manufacturers have introduced architectures that separate data and applications from the host system. Arm, Intel, AMD, Nvidia and other suppliers are all on board, as are the big cloud players. Now the argument against confidential computing is that it narrowly focuses on memory encryption and it doesn't solve the biggest problems in security. Multiple system images updates different services and the entire code flow aren't directly addressed by memory encryption, rather to truly attack these problems, many believe that OSs need to be re-engineered with the attacker and hacker in mind. There are so many variables and at the end of the day, critics say the emphasis on confidential computing made by cloud providers is overstated and largely hype. This tweet from security researcher Rodrigo Branco sums up the sentiment of many skeptics. He says, "Confidential computing is mostly a marketing campaign for memory encryption. It's not driving the industry towards the hard open problems. It is selling an illusion." Okay. Nonetheless, encrypting data in use and fencing off key components of the system isn't a bad thing, especially if it comes with the package essentially for free. There has been a lack of standardization and interoperability between different confidential computing approaches. But the confidential computing consortium was established in 2019 ostensibly to accelerate the market and influence standards. Notably, AWS is not part of the consortium, likely because the politics of the consortium were probably a conundrum for AWS because the base technology defined by the the consortium is seen as limiting by AWS. This is my guess, not AWS's words, and but I think joining the consortium would validate a definition which AWS isn't aligned with. And two, it's got a lead with this Annapurna acquisition. This was way ahead with Arm integration and so it probably doesn't feel the need to validate its competitors. Anyway, one of the premier members of the confidential computing consortium is Google, along with many high profile names including Arm, Intel, Meta, Red Hat, Microsoft, and others. And we're pleased to welcome two experts on confidential computing from Google to unpack the topic, Nelly Porter is head of product for GCP confidential computing and encryption, and Dr. Patricia Florissi is the technical director for the office of the CTO at Google Cloud. Welcome Nelly and Patricia, great to have you. >> Great to be here. >> Thank you so much for having us. >> You're very welcome. Nelly, why don't you start and then Patricia, you can weigh in. Just tell the audience a little bit about each of your roles at Google Cloud. >> So I'll start, I'm owning a lot of interesting activities in Google and again security or infrastructure securities that I usually own. And we are talking about encryption and when encryption and confidential computing is a part of portfolio in additional areas that I contribute together with my team to Google and our customers is secure software supply chain. Because you need to trust your software. Is it operate in your confidential environment to have end-to-end story about if you believe that your software and your environment doing what you expect, it's my role. >> Got it. Okay. Patricia? >> Well, I am a technical director in the office of the CTO, OCTO for short, in Google Cloud. And we are a global team. We include former CTOs like myself and senior technologists from large corporations, institutions and a lot of success, we're startups as well. And we have two main goals. First, we walk side by side with some of our largest, more strategic or most strategical customers and we help them solve complex engineering technical problems. And second, we are devise Google and Google Cloud engineering and product management and tech on there, on emerging trends and technologies to guide the trajectory of our business. We are unique group, I think, because we have created this collaborative culture with our customers. And within OCTO, I spend a lot of time collaborating with customers and the industry at large on technologies that can address privacy, security, and sovereignty of data in general. >> Excellent. Thank you for that both of you. Let's get into it. So Nelly, what is confidential computing? From Google's perspective, how do you define it? >> Confidential computing is a tool and it's still one of the tools in our toolbox. And confidential computing is a way how we would help our customers to complete this very interesting end-to-end lifecycle of the data. And when customers bring in the data to cloud and want to protect it as they ingest it to the cloud, they protect it at rest when they store data in the cloud. But what was missing for many, many years is ability for us to continue protecting data and workloads of our customers when they running them. And again, because data is not brought to cloud to have huge graveyard, we need to ensure that this data is actually indexed. Again, there is some insights driven and drawn from this data. You have to process this data and confidential computing here to help. Now we have end to end protection of our customer's data when they bring the workloads and data to cloud, thanks to confidential computing. >> Thank you for that. Okay, we're going to get into the architecture a bit, but before we do, Patricia, why do you think this topic of confidential computing is such an important technology? Can you explain, do you think it's transformative for customers and if so, why? >> Yeah, I would maybe like to use one thought, one way, one intuition behind why confidential commuting matters, because at the end of the day, it reduces more and more the customer's thresh boundaries and the attack surface. That's about reducing that periphery, the boundary in which the customer needs to mind about trust and safety. And in a way, is a natural progression that you're using encryption to secure and protect the data. In the same way that we are encrypting data in transit and at rest, now we are also encrypting data while in use. And among other beneficials, I would say one of the most transformative ones is that organizations will be able to collaborate with each other and retain the confidentiality of the data. And that is across industry, even though it's highly focused on, I wouldn't say highly focused, but very beneficial for highly regulated industries. It applies to all of industries. And if you look at financing for example, where bankers are trying to detect fraud, and specifically double finance where you are, a customer is actually trying to get a finance on an asset, let's say a boat or a house, and then it goes to another bank and gets another finance on that asset. Now bankers would be able to collaborate and detect fraud while preserving confidentiality and privacy of the data. >> Interesting. And I want to understand that a little bit more but I'm going to push you a little bit on this, Nelly, if I can because there's a narrative out there that says confidential computing is a marketing ploy, I talked about this upfront, by cloud providers that are just trying to placate people that are scared of the cloud. And I'm presuming you don't agree with that, but I'd like you to weigh in here. The argument is confidential computing is just memory encryption and it doesn't address many other problems. It is over hyped by cloud providers. What do you say to that line of thinking? >> I absolutely disagree, as you can imagine, with this statement, but the most importantly is we mixing multiple concepts, I guess. And exactly as Patricia said, we need to look at the end-to-end story, not again the mechanism how confidential computing trying to again, execute and protect a customer's data and why it's so critically important because what confidential computing was able to do, it's in addition to isolate our tenants in multi-tenant environments the cloud covering to offer additional stronger isolation. They called it cryptographic isolation. It's why customers will have more trust to customers and to other customers, the tenant that's running on the same host but also us because they don't need to worry about against threats and more malicious attempts to penetrate the environment. So what confidential computing is helping us to offer our customers, stronger isolation between tenants in this multi-tenant environment, but also incredibly important, stronger isolation of our customers, so tenants from us. We also writing code, we also software providers will also make mistakes or have some zero days. Sometimes again us introduced, sometimes introduced by our adversaries. But what I'm trying to say by creating this cryptographic layer of isolation between us and our tenants and amongst those tenants, we're really providing meaningful security to our customers and eliminate some of the worries that they have running on multi-tenant spaces or even collaborating to gather this very sensitive data knowing that this particular protection is available to them. >> Okay, thank you. Appreciate that. And I think malicious code is often a threat model missed in these narratives. Operator access, yeah, maybe I trust my clouds provider, but if I can fence off your access even better, I'll sleep better at night. Separating a code from the data, everybody's, Arm, Intel, AMD, Nvidia, others, they're all doing it. I wonder if, Nelly, if we could stay with you and bring up the slide on the architecture. What's architecturally different with confidential computing versus how operating systems and VMs have worked traditionally. We're showing a slide here with some VMs, maybe you could take us through that. >> Absolutely. And Dave, the whole idea for Google and now industry way of dealing with confidential computing is to ensure that three main property is actually preserved. Customers don't need to change the code. They can operate on those VMs exactly as they would with normal non-confidential VMs, but to give them this opportunity of lift and shift or no changing their apps and performing and having very, very, very low latency and scale as any cloud can, something that Google actually pioneer in confidential computing. I think we need to open and explain how this magic was actually done. And as I said, it's again the whole entire system have to change to be able to provide this magic. And I would start with we have this concept of root of trust and root of trust where we will ensure that this machine, when the whole entire post has integrity guarantee, means nobody changing my code on the most low level of system. And we introduce this in 2017 called Titan. It was our specific ASIC, specific, again, inch by inch system on every single motherboard that we have that ensures that your low level former, your actually system code, your kernel, the most powerful system is actually proper configured and not changed, not tampered. We do it for everybody, confidential computing included. But for confidential computing, what we have to change, we bring in AMD, or again, future silicon vendors and we have to trust their former, their way to deal with our confidential environments. And that's why we have obligation to validate integrity, not only our software and our former but also former and software of our vendors, silicon vendors. So we actually, when we booting this machine, as you can see, we validate that integrity of all of the system is in place. It means nobody touching, nobody changing, nobody modifying it. But then we have this concept of AMD secure processor, it's special ASICs, best specific things that generate a key for every single VM that our customers will run or every single node in Kubernetes or every single worker thread in our Hadoop or Spark capability. We offer all of that. And those keys are not available to us. It's the best keys ever in encryption space because when we are talking about encryption, the first question that I'm receiving all the time, where's the key, who will have access to the key? Because if you have access to the key then it doesn't matter if you encrypted or not. So, but the case in confidential computing provides so revolutionary technology, us cloud providers, who don't have access to the keys. They sitting in the hardware and they head to memory controller. And it means when hypervisors that also know about these wonderful things saying I need to get access to the memories that this particular VM trying to get access to, they do not decrypt the data, they don't have access to the key because those keys are random, ephemeral and per VM, but the most importantly, in hardware not exportable. And it means now you would be able to have this very interesting role that customers or cloud providers will not be able to get access to your memory. And what we do, again, as you can see our customers don't need to change their applications, their VMs are running exactly as it should run and what you're running in VM, you actually see your memory in clear, it's not encrypted, but God forbid is trying somebody to do it outside of my confidential box. No, no, no, no, no, they would not be able to do it. Now you'll see cyber and it's exactly what combination of these multiple hardware pieces and software pieces have to do. So OS is also modified. And OS is modified such way to provide integrity. It means even OS that you're running in your VM box is not modifiable and you, as customer, can verify. But the most interesting thing, I guess, how to ensure the super performance of this environment because you can imagine, Dave, that encrypting and it's additional performance, additional time, additional latency. So we were able to mitigate all of that by providing incredibly interesting capability in the OS itself. So our customers will get no changes needed, fantastic performance and scales as they would expect from cloud providers like Google. >> Okay, thank you. Excellent. Appreciate that explanation. So, again, the narrative on this as well, you've already given me guarantees as a cloud provider that you don't have access to my data, but this gives another level of assurance, key management as they say is key. Now humans aren't managing the keys, the machines are managing them. So Patricia, my question to you is, in addition to, let's go pre confidential computing days, what are the sort of new guarantees that these hardware-based technologies are going to provide to customers? >> So if I am a customer, I am saying I now have full guarantee of confidentiality and integrity of the data and of the code. So if you look at code and data confidentiality, the customer cares and they want to know whether their systems are protected from outside or unauthorized access, and that recovered with Nelly, that it is. Confidential computing actually ensures that the applications and data internals remain secret, right? The code is actually looking at the data, the only the memory is decrypting the data with a key that is ephemeral and per VM and generated on demand. Then you have the second point where you have code and data integrity, and now customers want to know whether their data was corrupted, tampered with or impacted by outside actors. And what confidential computing ensures is that application internals are not tampered with. So the application, the workload as we call it, that is processing the data, it's also, it has not been tampered and preserves integrity. I would also say that this is all verifiable. So you have attestation and these attestation actually generates a log trail and the log trail guarantees that, provides a proof that it was preserved. And I think that the offer's also a guarantee of what we call ceiling, this idea that the secrets have been preserved and not tampered with, confidentiality and integrity of code and data. >> Got it. Okay, thank you. Nelly, you mentioned, I think I heard you say that the applications, it's transparent, you don't have to change the application, it just comes for free essentially. And we showed some various parts of the stack before. I'm curious as to what's affected, but really more importantly, what is specifically Google's value add? How do partners participate in this, the ecosystem, or maybe said another way, how does Google ensure the compatibility of confidential computing with existing systems and applications? >> And a fantastic question by the way. And it's very difficult and definitely complicated world because to be able to provide these guarantees, actually a lot of work was done by community. Google is very much operate in open, so again, our operating system, we working with operating system repository OSs, OS vendors to ensure that all capabilities that we need is part of the kernels, are part of the releases and it's available for customers to understand and even explore if they have fun to explore a lot of code. We have also modified together with our silicon vendors a kernel, host kernel to support this capability and it means working this community to ensure that all of those patches are there. We also worked with every single silicon vendor as you've seen, and that's what I probably feel that Google contributed quite a bit in this whole, we moved our industry, our community, our vendors to understand the value of easy to use confidential computing or removing barriers. And now I don't know if you noticed, Intel is pulling the lead and also announcing their trusted domain extension, very similar architecture. And no surprise, it's, again, a lot of work done with our partners to, again, convince, work with them and make this capability available. The same with Arm this year, actually last year, Arm announced their future design for confidential computing. It's called Confidential Computing Architecture. And it's also influenced very heavily with similar ideas by Google and industry overall. So it's a lot of work in confidential computing consortiums that we are doing, for example, simply to mention, to ensure interop, as you mentioned, between different confidential environments of cloud providers. They want to ensure that they can attest to each other because when you're communicating with different environments, you need to trust them. And if it's running on different cloud providers, you need to ensure that you can trust your receiver when you are sharing your sensitive data workloads or secret with them. So we coming as a community and we have this attestation sig, the, again, the community based systems that we want to build and influence and work with Arm and every other cloud providers to ensure that we can interrupt and it means it doesn't matter where confidential workloads will be hosted, but they can exchange the data in secure, verifiable and controlled by customers way. And to do it, we need to continue what we are doing, working open, again, and contribute with our ideas and ideas of our partners to this role to become what we see confidential computing has to become, it has to become utility. It doesn't need to be so special, but it's what we want it to become. >> Let's talk about, thank you for that explanation. Let's talk about data sovereignty because when you think about data sharing, you think about data sharing across the ecosystem and different regions and then of course data sovereignty comes up. Typically public policy lags, the technology industry and sometimes is problematic. I know there's a lot of discussions about exceptions, but Patricia, we have a graphic on data sovereignty. I'm interested in how confidential computing ensures that data sovereignty and privacy edicts are adhered to, even if they're out of alignment maybe with the pace of technology. One of the frequent examples is when you delete data, can you actually prove that data is deleted with a hundred percent certainty? You got to prove that and a lot of other issues. So looking at this slide, maybe you could take us through your thinking on data sovereignty. >> Perfect. So for us, data sovereignty is only one of the three pillars of digital sovereignty. And I don't want to give the impression that confidential computing addresses it all. That's why we want to step back and say, hey, digital sovereignty includes data sovereignty where we are giving you full control and ownership of the location, encryption and access to your data. Operational sovereignty where the goal is to give our Google Cloud customers full visibility and control over the provider operations, right? So if there are any updates on hardware, software stack, any operations, there is full transparency, full visibility. And then the third pillar is around software sovereignty where the customer wants to ensure that they can run their workloads without dependency on the provider's software. So they have sometimes is often referred as survivability, that you can actually survive if you are untethered to the cloud and that you can use open source. Now let's take a deep dive on data sovereignty, which by the way is one of my favorite topics. And we typically focus on saying, hey, we need to care about data residency. We care where the data resides because where the data is at rest or in processing, it typically abides to the jurisdiction, the regulations of the jurisdiction where the data resides. And others say, hey, let's focus on data protection. We want to ensure the confidentiality and integrity and availability of the data, which confidential computing is at the heart of that data protection. But it is yet another element that people typically don't talk about when talking about data sovereignty, which is the element of user control. And here, Dave, is about what happens to the data when I give you access to my data. And this reminds me of security two decades ago, even a decade ago, where we started the security movement by putting firewall protections and login accesses. But once you were in, you were able to do everything you wanted with the data. An insider had access to all the infrastructure, the data and the code. And that's similar because with data sovereignty we care about whether it resides, where, who is operating on the data. But the moment that the data is being processed, I need to trust that the processing of the data will abide by user control, by the policies that I put in place of how my data is going to be used. And if you look at a lot of the regulation today and a lot of the initiatives around the International Data Space Association, IDSA, and Gaia-X, there is a movement of saying the two parties, the provider of the data and the receiver of the data are going to agree on a contract that describes what my data can be used for. The challenge is to ensure that once the data crosses boundaries, that the data will be used for the purposes that it was intended and specified in the contract. And if you actually bring together, and this is the exciting part, confidential computing together with policy enforcement, now the policy enforcement can guarantee that the data is only processed within the confines of a confidential computing environment, that the workload is cryptographically verified that there is the workload that was meant to process the data and that the data will be only used when abiding to the confidentiality and integrity safety of the confidential computing environment. And that's why we believe confidential computing is one necessary and essential technology that will allow us to ensure data sovereignty, especially when it comes to user control. >> Thank you for that. I mean it was a deep dive, I mean brief, but really detailed. So I appreciate that, especially the verification of the enforcement. Last question, I met you two because as part of my year end prediction post, you guys sent in some predictions and I wasn't able to get to them in the predictions post. So I'm thrilled that you were able to make the time to come on the program. How widespread do you think the adoption of confidential computing will be in 23 and what's the maturity curve look like, this decade in your opinion? Maybe each of you could give us a brief answer. >> So my prediction in five, seven years, as I started, it'll become utility. It'll become TLS as of, again, 10 years ago we couldn't believe that websites will have certificates and we will support encrypted traffic. Now we do and it's become ubiquity. It's exactly where confidential computing is getting and heading, I don't know we deserve yet. It'll take a few years of maturity for us, but we will be there. >> Thank you. And Patricia, what's your prediction? >> I will double that and say, hey, in the future, in the very near future, you will not be able to afford not having it. I believe as digital sovereignty becomes evermore top of mind with sovereign states and also for multi national organizations and for organizations that want to collaborate with each other, confidential computing will become the norm. It'll become the default, if I say, mode of operation. I like to compare that today is inconceivable. If we talk to the young technologists, it's inconceivable to think that at some point in history, and I happen to be alive that we had data at rest that was not encrypted, data in transit that was not encrypted, and I think that will be inconceivable at some point in the near future that to have unencrypted data while in use. >> And plus I think the beauty of the this industry is because there's so much competition, this essentially comes for free. I want to thank you both for spending some time on Breaking Analysis. There's so much more we could cover. I hope you'll come back to share the progress that you're making in this area and we can double click on some of these topics. Really appreciate your time. >> Anytime. >> Thank you so much. >> In summary, while confidential computing is being touted by the cloud players as a promising technology for enhancing data privacy and security, there are also those, as we said, who remain skeptical. The truth probably lies somewhere in between and it will depend on the specific implementation and the use case as to how effective confidential computing will be. Look, as with any new tech, it's important to carefully evaluate the potential benefits, the drawbacks, and make informed decisions based on the specific requirements in the situation and the constraints of each individual customer. But the bottom line is silicon manufacturers are working with cloud providers and other system companies to include confidential computing into their architectures. Competition, in our view, will moderate price hikes. And at the end of the day, this is under the covers technology that essentially will come for free. So we'll take it. I want to thank our guests today, Nelly and Patricia from Google, and thanks to Alex Myerson who's on production and manages the podcast. Ken Schiffman as well out of our Boston studio, Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at siliconangle.com. Does some great editing for us, thank you all. Remember all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com where you can get all the news. If you want to get in touch, you can email me at david.vellante@siliconangle.com or dm me @DVellante. And you can also comment on my LinkedIn post. Definitely you want to check out etr.ai for the best survey data in the enterprise tech business. I know we didn't hit on a lot today, but there's some amazing data and it's always being updated, so check that out. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (upbeat music)
SUMMARY :
bringing you data-driven and at the end of the day, Just tell the audience a little and confidential computing Got it. and the industry at large for that both of you. in the data to cloud into the architecture a bit, and privacy of the data. people that are scared of the cloud. and eliminate some of the we could stay with you and they head to memory controller. So, again, the narrative on this as well, and integrity of the data and of the code. how does Google ensure the compatibility and ideas of our partners to this role One of the frequent examples and that the data will be only used of the enforcement. and we will support encrypted traffic. And Patricia, and I happen to be alive beauty of the this industry and the constraints of
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Nelly | PERSON | 0.99+ |
Patricia | PERSON | 0.99+ |
International Data Space Association | ORGANIZATION | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
IDSA | ORGANIZATION | 0.99+ |
Rodrigo Branco | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Nvidia | ORGANIZATION | 0.99+ |
2019 | DATE | 0.99+ |
2017 | DATE | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
Nelly Porter | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
last year | DATE | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
two parties | QUANTITY | 0.99+ |
AMD | ORGANIZATION | 0.99+ |
Patricia Florissi | PERSON | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
second point | QUANTITY | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
Meta | ORGANIZATION | 0.99+ |
second | QUANTITY | 0.99+ |
third | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Arm | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
two experts | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
first question | QUANTITY | 0.99+ |
Gaia-X | ORGANIZATION | 0.99+ |
two decades ago | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
seven years | QUANTITY | 0.99+ |
OCTO | ORGANIZATION | 0.99+ |
zero days | QUANTITY | 0.98+ |
10 years ago | DATE | 0.98+ |
each week | QUANTITY | 0.98+ |
today | DATE | 0.97+ |
Breaking Analysis: Cloud players sound a cautious tone for 2023
>> From the Cube Studios in Palo Alto in Boston bringing you data-driven insights from the Cube and ETR. This is Breaking Analysis with Dave Vellante. >> The unraveling of market enthusiasm continued in Q4 of 2022 with the earnings reports from the US hyperscalers, the big three now all in. As we said earlier this year, even the cloud is an immune from the macro headwinds and the cracks in the armor that we saw from the data that we shared last summer, they're playing out into 2023. For the most part actuals are disappointing beyond expectations including our own. It turns out that our estimates for the big three hyperscaler's revenue missed by 1.2 billion or 2.7% lower than we had forecast from even our most recent November estimates. And we expect continued decelerating growth rates for the hyperscalers through the summer of 2023 and we don't think that's going to abate until comparisons get easier. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis, we share our view of what's happening in cloud markets not just for the hyperscalers but other firms that have hitched a ride on the cloud. And we'll share new ETR data that shows why these trends are playing out tactics that customers are employing to deal with their cost challenges and how long the pain is likely to last. You know, riding the cloud wave, it's a two-edged sword. Let's look at the players that have gone all in on or are exposed to both the positive and negative trends of cloud. Look the cloud has been a huge tailwind for so many companies like Snowflake and Databricks, Workday, Salesforce, Mongo's move with Atlas, Red Hats Cloud strategy with OpenShift and so forth. And you know, the flip side is because cloud is elastic what comes up can also go down very easily. Here's an XY graphic from ETR that shows spending momentum or net score on the vertical axis and market presence in the dataset on the horizontal axis provision or called overlap. This is data from the January 2023 survey and that the red dotted lines show the positions of several companies that we've highlighted going back to January 2021. So let's unpack this for a bit starting with the big three hyperscalers. The first point is AWS and Azure continue to solidify their moat relative to Google Cloud platform. And we're going to get into this in a moment, but Azure and AWS revenues are five to six times that of GCP for IaaS. And at those deltas, Google should be gaining ground much faster than the big two. The second point on Google is notice the red line on GCP relative to its starting point. While it appears to be gaining ground on the horizontal axis, its net score is now below that of AWS and Azure in the survey. So despite its significantly smaller size it's just not keeping pace with the leaders in terms of market momentum. Now looking at AWS and Microsoft, what we see is basically AWS is holding serve. As we know both Google and Microsoft benefit from including SaaS in their cloud numbers. So the fact that AWS hasn't seen a huge downward momentum relative to a January 2021 position is one positive in the data. And both companies are well above that magic 40% line on the Y-axis, anything above 40% we consider to be highly elevated. But the fact remains that they're down as are most of the names on this chart. So let's take a closer look. I want to start with Snowflake and Databricks. Snowflake, as we reported from several quarters back came down to Earth, it was up in the 80% range in the Y-axis here. And it's still highly elevated in the 60% range and it continues to move to the right, which is positive but as we'll address in a moment it's customers can dial down consumption just as in any cloud. Now, Databricks is really interesting. It's not a public company, it never made it to IPO during the sort of tech bubble. So we don't have the same level of transparency that we do with other companies that did make it through. But look at how much more prominent it is on the X-axis relative to January 2021. And it's net score is basically held up over that period of time. So that's a real positive for Databricks. Next, look at Workday and Salesforce. They've held up relatively well, both inching to the right and generally holding their net scores. Same from Mongo, which is the brown dot above its name that says Elastic, it says a little gets a little crowded which Elastic's actually the blue dot above it. But generally, SaaS is harder to dial down, Workday, Salesforce, Oracles, SaaS and others. So it's harder to dial down because commitments have been made in advance, they're kind of locked in. Now, one of the discussions from last summer was as Mongo, less discretionary than analytics i.e. Snowflake. And it's an interesting debate but maybe Snowflake customers, you know, they're also generally committed to a dollar amount. So over time the spending is going to be there. But in the short term, yeah maybe Snowflake customers can dial down. Now that highlighted dotted red line, that bolded one is Datadog and you can see it's made major strides on the X-axis but its net score has decelerated quite dramatically. Openshift's momentum in the survey has dropped although IBM just announced that OpenShift has a a billion dollar ARR and I suspect what's happening there is IBM consulting is bundling OpenShift into its modernization projects. It's got a, that sort of captive base if you will. And as such it's probably not as top of mind to the respondents but I'll bet you the developers are certainly aware of it. Now the other really notable call out here is CloudFlare, We've reported on them earlier. Cloudflare's net score has held up really well since January of 2021. It really hasn't seen the downdraft of some of these others, but it's making major major moves to the right gaining market presence. We really like how CloudFlare is performing. And the last comment is on Oracle which as you can see, despite its much, much lower net score continues to gain ground in the market and thrive from a profitability standpoint. But the data pretty clearly shows that there's a downdraft in the market. Okay, so what's happening here? Let's dig deeper into this data. Here's a graphic from the most recent ETR drill down asking customers that said they were going to cut spending what technique they're using to do so. Now, as we've previously reported, consolidating redundant vendors is by far the most cited approach but there's two key points we want to make here. One is reducing excess cloud resources. As you can see in the bars is the second most cited technique and it's up from the previous polling period. The second we're not showing, you know directly but we've got some red call outs there. Reducing cloud costs jumps to 29% and 28% respectively in financial services and tech telco. And it's much closer to second. It's basically neck and neck with consolidating redundant vendors in those two industries. So they're being really aggressive about optimizing cloud cost. Okay, so as we said, cloud is great 'cause you can dial it up but it's just as easy to dial down. We've identified six factors that customers tell us are affecting their cloud consumption and there are probably more, if you got more we'd love to hear them but these are the ones that are fairly prominent that have hit our radar. First, rising mortgage rates mean banks are processing fewer loans means less cloud. The crypto crash means less trading activity and that means less cloud resources. Third lower ad spend has led companies to reduce not only you know, their ad buying but also their frequency of running their analytics and their calculations. And they're also often using less data, maybe compressing the timeframe of the corpus down to a shorter time period. Also very prominent is down to the bottom left, using lower cost compute instances. For example, Graviton from AWS or AMD chips and tiering storage to cheaper S3 or deep archived tiers. And finally, optimizing based on better pricing plans. So customers are moving from, you know, smaller companies in particular moving maybe from on demand or other larger companies that are experimenting using on demand or they're moving to spot pricing or reserved instances or optimized savings plans. That all lowers cost and that means less cloud resource consumption and less cloud revenue. Now in the days when everything was on prem CFOs, what would they do? They would freeze CapEx and IT Pros would have to try to do more with less and often that meant a lot of manual tasks. With the cloud it's much easier to move things around. It still takes some thinking and some effort but it's dramatically simpler to do so. So you can get those savings a lot faster. Now of course the other huge factor is you can cut or you can freeze. And this graphic shows data from a recent ETR survey with 159 respondents and you can see the meaningful uptick in hiring freezes, freezing new IT deployments and layoffs. And as we've been reporting, this has been trending up since earlier last year. And note the call out, this is especially prominent in retail sectors, all three of these techniques jump up in retail and that's a bit of a concern because oftentimes consumer spending helps the economy make a softer landing out of a pullback. But this is a potential canary in the coal mine. If retail firms are pulling back it's because consumers aren't spending as much. And so we're keeping a close eye on that. So let's boil this down to the market data and what this all means. So in this graphic we show our estimates for Q4 IaaS revenues compared to the "actual" IaaS revenues. And we say quote because AWS is the only one that reports, you know clean revenue and IaaS, Azure and GCP don't report actuals. Why would they? Because it would make them look even, you know smaller relative to AWS. Rather, they bury the figures in overall cloud which includes their, you know G-Suite for Google and all the Microsoft SaaS. And then they give us little tidbits about in Microsoft's case, Azure, they give growth rates. Google gives kind of relative growth of GCP. So, and we use survey data and you know, other data to try to really pinpoint and we've been covering this for, I don't know, five or six years ever since the cloud really became a thing. But looking at the data, we had AWS growing at 25% this quarter and it came in at 20%. So a significant decline relative to our expectations. AWS announced that it exited December, actually, sorry it's January data showed about a 15% mid-teens growth rate. So that's, you know, something we're watching. Azure was two points off our forecast coming in at 38% growth. It said it exited December in the 35% growth range and it said that it's expecting five points of deceleration off of that. So think 30% for Azure. GCP came in three points off our expectation coming in 35% and Alibaba has yet to report but we've shaved a bid off that forecast based on some survey data and you know what maybe 9% is even still not enough. Now for the year, the big four hyperscalers generated almost 160 billion of revenue, but that was 7 billion lower than what what we expected coming into 2022. For 2023, we're expecting 21% growth for a total of 193.3 billion. And while it's, you know, lower, you know, significantly lower than historical expectations it's still four to five times the overall spending forecast that we just shared with you in our predictions post of between 4 and 5% for the overall market. We think AWS is going to come in in around 93 billion this year with Azure closing in at over 71 billion. This is, again, we're talking IaaS here. Now, despite Amazon focusing investors on the fact that AWS's absolute dollar growth is still larger than its competitors. By our estimates Azure will come in at more than 75% of AWS's forecasted revenue. That's a significant milestone. AWS is operating margins by the way declined significantly this past quarter, dropping from 30% of revenue to 24%, 30% the year earlier to 24%. Now that's still extremely healthy and we've seen wild fluctuations like this before so I don't get too freaked out about that. But I'll say this, Microsoft has a marginal cost advantage relative to AWS because one, it has a captive cloud on which to run its massive software estate. So it can just throw software at its own cloud and two software marginal costs. Marginal economics despite AWS's awesomeness in high degrees of automation, software is just a better business. Now the upshot for AWS is the ecosystem. AWS is essentially in our view positioning very smartly as a platform for data partners like Snowflake and Databricks, security partners like CrowdStrike and Okta and Palo Alto and many others and SaaS companies. You know, Microsoft is more competitive even though AWS does have competitive products. Now of course Amazon's competitive to retail companies so that's another factor but generally speaking for tech players, Amazon is a really thriving ecosystem that is a secret weapon in our view. AWS happy to spin the meter with its partners even though it sells competitive products, you know, more so in our view than other cloud players. Microsoft, of course is, don't forget is hyping now, we're hearing a lot OpenAI and ChatGPT we reported last week in our predictions post. How OpenAI is shot up in terms of market sentiment in ETR's emerging technology company surveys and people are moving to Azure to get OpenAI and get ChatGPT that is a an interesting lever. Amazon in our view has to have a response. They have lots of AI and they're going to have to make some moves there. Meanwhile, Google is emphasizing itself as an AI first company. In fact, Google spent at least five minutes of continuous dialogue, nonstop on its AI chops during its latest earnings call. So that's an area that we're watching very closely as the buzz around large language models continues. All right, let's wrap up with some assumptions for 2023. We think SaaS players are going to continue to be sticky. They're going to be somewhat insulated from all these downdrafts because they're so tied in and customers, you know they make the commitment up front, you've got the lock in. Now having said that, we do expect some backlash over time on the onerous and generally customer unfriendly pricing models of most large SaaS companies. But that's going to play out over a longer period of time. Now for cloud generally and the hyperscalers specifically we do expect accelerating growth rates into Q3 but the amplitude of the demand swings from this rubber band economy, we expect to continue to compress and become more predictable throughout the year. Estimates are coming down, CEOs we think are going to be more cautious when the market snaps back more cautious about hiring and spending and as such a perhaps we expect a more orderly return to growth which we think will slightly accelerate in Q4 as comps get easier. Now of course the big risk to these scenarios is of course the economy, the FED, consumer spending, inflation, supply chain, energy prices, wars, geopolitics, China relations, you know, all the usual stuff. But as always with our partners at ETR and the Cube community, we're here for you. We have the data and we'll be the first to report when we see a change at the margin. Okay, that's a wrap for today. I want to thank Alex Morrison who's on production and manages the podcast, Ken Schiffman as well out of our Boston studio getting this up on LinkedIn Live. Thank you for that. Kristen Martin also and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our Editor-in-Chief over at siliconangle.com. He does some great editing for us. Thank you all. Remember all these episodes are available as podcast. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com, at siliconangle.com where you can see all the data and you want to get in touch. Just all you can do is email me david.vellante@siliconangle.com or DM me @dvellante if you if you got something interesting, I'll respond. If you don't, it's either 'cause I'm swamped or it's just not tickling me. You can comment on our LinkedIn post as well. And please check out ETR.ai for the best survey data in the enterprise tech business. This is Dave Vellante for the Cube Insights powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (gentle upbeat music)
SUMMARY :
From the Cube Studios and how long the pain is likely to last.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Morrison | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
January 2021 | DATE | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Rob Hof | PERSON | 0.99+ |
2.7% | QUANTITY | 0.99+ |
January | DATE | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
December | DATE | 0.99+ |
January of 2021 | DATE | 0.99+ |
five | QUANTITY | 0.99+ |
January 2023 | DATE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
1.2 billion | QUANTITY | 0.99+ |
20% | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
29% | QUANTITY | 0.99+ |
30% | QUANTITY | 0.99+ |
six factors | QUANTITY | 0.99+ |
second point | QUANTITY | 0.99+ |
24% | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
X-axis | ORGANIZATION | 0.99+ |
2023 | DATE | 0.99+ |
28% | QUANTITY | 0.99+ |
193.3 billion | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
38% | QUANTITY | 0.99+ |
7 billion | QUANTITY | 0.99+ |
21% | QUANTITY | 0.99+ |
Earth | LOCATION | 0.99+ |
25% | QUANTITY | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Atlas | ORGANIZATION | 0.99+ |
two industries | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
six years | QUANTITY | 0.99+ |
first point | QUANTITY | 0.99+ |
Red Hats | ORGANIZATION | 0.99+ |
35% | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
159 respondents | QUANTITY | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
Breaking Analysis: Enterprise Technology Predictions 2023
(upbeat music beginning) >> From the Cube Studios in Palo Alto and Boston, bringing you data-driven insights from the Cube and ETR, this is "Breaking Analysis" with Dave Vellante. >> Making predictions about the future of enterprise tech is more challenging if you strive to lay down forecasts that are measurable. In other words, if you make a prediction, you should be able to look back a year later and say, with some degree of certainty, whether the prediction came true or not, with evidence to back that up. Hello and welcome to this week's Wikibon Cube Insights, powered by ETR. In this breaking analysis, we aim to do just that, with predictions about the macro IT spending environment, cost optimization, security, lots to talk about there, generative AI, cloud, and of course supercloud, blockchain adoption, data platforms, including commentary on Databricks, snowflake, and other key players, automation, events, and we may even have some bonus predictions around quantum computing, and perhaps some other areas. To make all this happen, we welcome back, for the third year in a row, my colleague and friend Eric Bradley from ETR. Eric, thanks for all you do for the community, and thanks for being part of this program. Again. >> I wouldn't miss it for the world. I always enjoy this one. Dave, good to see you. >> Yeah, so let me bring up this next slide and show you, actually come back to me if you would. I got to show the audience this. These are the inbounds that we got from PR firms starting in October around predictions. They know we do prediction posts. And so they'll send literally thousands and thousands of predictions from hundreds of experts in the industry, technologists, consultants, et cetera. And if you bring up the slide I can show you sort of the pattern that developed here. 40% of these thousands of predictions were from cyber. You had AI and data. If you combine those, it's still not close to cyber. Cost optimization was a big thing. Of course, cloud, some on DevOps, and software. Digital... Digital transformation got, you know, some lip service and SaaS. And then there was other, it's kind of around 2%. So quite remarkable, when you think about the focus on cyber, Eric. >> Yeah, there's two reasons why I think it makes sense, though. One, the cybersecurity companies have a lot of cash, so therefore the PR firms might be working a little bit harder for them than some of their other clients. (laughs) And then secondly, as you know, for multiple years now, when we do our macro survey, we ask, "What's your number one spending priority?" And again, it's security. It just isn't going anywhere. It just stays at the top. So I'm actually not that surprised by that little pie chart there, but I was shocked that SaaS was only 5%. You know, going back 10 years ago, that would've been the only thing anyone was talking about. >> Yeah. So true. All right, let's get into it. First prediction, we always start with kind of tech spending. Number one is tech spending increases between four and 5%. ETR has currently got it at 4.6% coming into 2023. This has been a consistently downward trend all year. We started, you know, much, much higher as we've been reporting. Bottom line is the fed is still in control. They're going to ease up on tightening, is the expectation, they're going to shoot for a soft landing. But you know, my feeling is this slingshot economy is going to continue, and it's going to continue to confound, whether it's supply chains or spending. The, the interesting thing about the ETR data, Eric, and I want you to comment on this, the largest companies are the most aggressive to cut. They're laying off, smaller firms are spending faster. They're actually growing at a much larger, faster rate as are companies in EMEA. And that's a surprise. That's outpacing the US and APAC. Chime in on this, Eric. >> Yeah, I was surprised on all of that. First on the higher level spending, we are definitely seeing it coming down, but the interesting thing here is headlines are making it worse. The huge research shop recently said 0% growth. We're coming in at 4.6%. And just so everyone knows, this is not us guessing, we asked 1,525 IT decision-makers what their budget growth will be, and they came in at 4.6%. Now there's a huge disparity, as you mentioned. The Fortune 500, global 2000, barely at 2% growth, but small, it's at 7%. So we're at a situation right now where the smaller companies are still playing a little bit of catch up on digital transformation, and they're spending money. The largest companies that have the most to lose from a recession are being more trepidatious, obviously. So they're playing a "Wait and see." And I hope we don't talk ourselves into a recession. Certainly the headlines and some of their research shops are helping it along. But another interesting comment here is, you know, energy and utilities used to be called an orphan and widow stock group, right? They are spending more than anyone, more than financials insurance, more than retail consumer. So right now it's being driven by mid, small, and energy and utilities. They're all spending like gangbusters, like nothing's happening. And it's the rest of everyone else that's being very cautious. >> Yeah, so very unpredictable right now. All right, let's go to number two. Cost optimization remains a major theme in 2023. We've been reporting on this. You've, we've shown a chart here. What's the primary method that your organization plans to use? You asked this question of those individuals that cited that they were going to reduce their spend and- >> Mhm. >> consolidating redundant vendors, you know, still leads the way, you know, far behind, cloud optimization is second, but it, but cloud continues to outpace legacy on-prem spending, no doubt. Somebody, it was, the guy's name was Alexander Feiglstorfer from Storyblok, sent in a prediction, said "All in one becomes extinct." Now, generally I would say I disagree with that because, you know, as we know over the years, suites tend to win out over, you know, individual, you know, point products. But I think what's going to happen is all in one is going to remain the norm for these larger companies that are cutting back. They want to consolidate redundant vendors, and the smaller companies are going to stick with that best of breed and be more aggressive and try to compete more effectively. What's your take on that? >> Yeah, I'm seeing much more consolidation in vendors, but also consolidation in functionality. We're seeing people building out new functionality, whether it's, we're going to talk about this later, so I don't want to steal too much of our thunder right now, but data and security also, we're seeing a functionality creep. So I think there's further consolidation happening here. I think niche solutions are going to be less likely, and platform solutions are going to be more likely in a spending environment where you want to reduce your vendors. You want to have one bill to pay, not 10. Another thing on this slide, real quick if I can before I move on, is we had a bunch of people write in and some of the answer options that aren't on this graph but did get cited a lot, unfortunately, is the obvious reduction in staff, hiring freezes, and delaying hardware, were three of the top write-ins. And another one was offshore outsourcing. So in addition to what we're seeing here, there were a lot of write-in options, and I just thought it would be important to state that, but essentially the cost optimization is by and far the highest one, and it's growing. So it's actually increased in our citations over the last year. >> And yeah, specifically consolidating redundant vendors. And so I actually thank you for bringing that other up, 'cause I had asked you, Eric, is there any evidence that repatriation is going on and we don't see it in the numbers, we don't see it even in the other, there was, I think very little or no mention of cloud repatriation, even though it might be happening in this in a smattering. >> Not a single mention, not one single mention. I went through it for you. Yep. Not one write-in. >> All right, let's move on. Number three, security leads M&A in 2023. Now you might say, "Oh, well that's a layup," but let me set this up Eric, because I didn't really do a great job with the slide. I hid the, what you've done, because you basically took, this is from the emerging technology survey with 1,181 responses from November. And what we did is we took Palo Alto and looked at the overlap in Palo Alto Networks accounts with these vendors that were showing on this chart. And Eric, I'm going to ask you to explain why we put a circle around OneTrust, but let me just set it up, and then have you comment on the slide and take, give us more detail. We're seeing private company valuations are off, you know, 10 to 40%. We saw a sneak, do a down round, but pretty good actually only down 12%. We've seen much higher down rounds. Palo Alto Networks we think is going to get busy. Again, they're an inquisitive company, they've been sort of quiet lately, and we think CrowdStrike, Cisco, Microsoft, Zscaler, we're predicting all of those will make some acquisitions and we're thinking that the targets are somewhere in this mess of security taxonomy. Other thing we're predicting AI meets cyber big time in 2023, we're going to probably going to see some acquisitions of those companies that are leaning into AI. We've seen some of that with Palo Alto. And then, you know, your comment to me, Eric, was "The RSA conference is going to be insane, hopping mad, "crazy this April," (Eric laughing) but give us your take on this data, and why the red circle around OneTrust? Take us back to that slide if you would, Alex. >> Sure. There's a few things here. First, let me explain what we're looking at. So because we separate the public companies and the private companies into two separate surveys, this allows us the ability to cross-reference that data. So what we're doing here is in our public survey, the tesis, everyone who cited some spending with Palo Alto, meaning they're a Palo Alto customer, we then cross-reference that with the private tech companies. Who also are they spending with? So what you're seeing here is an overlap. These companies that we have circled are doing the best in Palo Alto's accounts. Now, Palo Alto went and bought Twistlock a few years ago, which this data slide predicted, to be quite honest. And so I don't know if they necessarily are going to go after Snyk. Snyk, sorry. They already have something in that space. What they do need, however, is more on the authentication space. So I'm looking at OneTrust, with a 45% overlap in their overall net sentiment. That is a company that's already existing in their accounts and could be very synergistic to them. BeyondTrust as well, authentication identity. This is something that Palo needs to do to move more down that zero trust path. Now why did I pick Palo first? Because usually they're very inquisitive. They've been a little quiet lately. Secondly, if you look at the backdrop in the markets, the IPO freeze isn't going to last forever. Sooner or later, the IPO markets are going to open up, and some of these private companies are going to tap into public equity. In the meantime, however, cash funding on the private side is drying up. If they need another round, they're not going to get it, and they're certainly not going to get it at the valuations they were getting. So we're seeing valuations maybe come down where they're a touch more attractive, and Palo knows this isn't going to last forever. Cisco knows that, CrowdStrike, Zscaler, all these companies that are trying to make a push to become that vendor that you're consolidating in, around, they have a chance now, they have a window where they need to go make some acquisitions. And that's why I believe leading up to RSA, we're going to see some movement. I think it's going to pretty, a really exciting time in security right now. >> Awesome. Thank you. Great explanation. All right, let's go on the next one. Number four is, it relates to security. Let's stay there. Zero trust moves from hype to reality in 2023. Now again, you might say, "Oh yeah, that's a layup." A lot of these inbounds that we got are very, you know, kind of self-serving, but we always try to put some meat in the bone. So first thing we do is we pull out some commentary from, Eric, your roundtable, your insights roundtable. And we have a CISO from a global hospitality firm says, "For me that's the highest priority." He's talking about zero trust because it's the best ROI, it's the most forward-looking, and it enables a lot of the business transformation activities that we want to do. CISOs tell me that they actually can drive forward transformation projects that have zero trust, and because they can accelerate them, because they don't have to go through the hurdle of, you know, getting, making sure that it's secure. Second comment, zero trust closes that last mile where once you're authenticated, they open up the resource to you in a zero trust way. That's a CISO of a, and a managing director of a cyber risk services enterprise. Your thoughts on this? >> I can be here all day, so I'm going to try to be quick on this one. This is not a fluff piece on this one. There's a couple of other reasons this is happening. One, the board finally gets it. Zero trust at first was just a marketing hype term. Now the board understands it, and that's why CISOs are able to push through it. And what they finally did was redefine what it means. Zero trust simply means moving away from hardware security, moving towards software-defined security, with authentication as its base. The board finally gets that, and now they understand that this is necessary and it's being moved forward. The other reason it's happening now is hybrid work is here to stay. We weren't really sure at first, large companies were still trying to push people back to the office, and it's going to happen. The pendulum will swing back, but hybrid work's not going anywhere. By basically on our own data, we're seeing that 69% of companies expect remote and hybrid to be permanent, with only 30% permanent in office. Zero trust works for a hybrid environment. So all of that is the reason why this is happening right now. And going back to our previous prediction, this is why we're picking Palo, this is why we're picking Zscaler to make these acquisitions. Palo Alto needs to be better on the authentication side, and so does Zscaler. They're both fantastic on zero trust network access, but they need the authentication software defined aspect, and that's why we think this is going to happen. One last thing, in that CISO round table, I also had somebody say, "Listen, Zscaler is incredible. "They're doing incredibly well pervading the enterprise, "but their pricing's getting a little high," and they actually think Palo Alto is well-suited to start taking some of that share, if Palo can make one move. >> Yeah, Palo Alto's consolidation story is very strong. Here's my question and challenge. Do you and me, so I'm always hardcore about, okay, you've got to have evidence. I want to look back at these things a year from now and say, "Did we get it right? Yes or no?" If we got it wrong, we'll tell you we got it wrong. So how are we going to measure this? I'd say a couple things, and you can chime in. One is just the number of vendors talking about it. That's, but the marketing always leads the reality. So the second part of that is we got to get evidence from the buying community. Can you help us with that? >> (laughs) Luckily, that's what I do. I have a data company that asks thousands of IT decision-makers what they're adopting and what they're increasing spend on, as well as what they're decreasing spend on and what they're replacing. So I have snapshots in time over the last 11 years where I can go ahead and compare and contrast whether this adoption is happening or not. So come back to me in 12 months and I'll let you know. >> Now, you know, I will. Okay, let's bring up the next one. Number five, generative AI hits where the Metaverse missed. Of course everybody's talking about ChatGPT, we just wrote last week in a breaking analysis with John Furrier and Sarjeet Joha our take on that. We think 2023 does mark a pivot point as natural language processing really infiltrates enterprise tech just as Amazon turned the data center into an API. We think going forward, you're going to be interacting with technology through natural language, through English commands or other, you know, foreign language commands, and investors are lining up, all the VCs are getting excited about creating something competitive to ChatGPT, according to (indistinct) a hundred million dollars gets you a seat at the table, gets you into the game. (laughing) That's before you have to start doing promotion. But he thinks that's what it takes to actually create a clone or something equivalent. We've seen stuff from, you know, the head of Facebook's, you know, AI saying, "Oh, it's really not that sophisticated, ChatGPT, "it's kind of like IBM Watson, it's great engineering, "but you know, we've got more advanced technology." We know Google's working on some really interesting stuff. But here's the thing. ETR just launched this survey for the February survey. It's in the field now. We circle open AI in this category. They weren't even in the survey, Eric, last quarter. So 52% of the ETR survey respondents indicated a positive sentiment toward open AI. I added up all the sort of different bars, we could double click on that. And then I got this inbound from Scott Stevenson of Deep Graham. He said "AI is recession-proof." I don't know if that's the case, but it's a good quote. So bring this back up and take us through this. Explain this chart for us, if you would. >> First of all, I like Scott's quote better than the Facebook one. I think that's some sour grapes. Meta just spent an insane amount of money on the Metaverse and that's a dud. Microsoft just spent money on open AI and it is hot, undoubtedly hot. We've only been in the field with our current ETS survey for a week. So my caveat is it's preliminary data, but I don't care if it's preliminary data. (laughing) We're getting a sneak peek here at what is the number one net sentiment and mindshare leader in the entire machine-learning AI sector within a week. It's beating Data- >> 600. 600 in. >> It's beating Databricks. And we all know Databricks is a huge established enterprise company, not only in machine-learning AI, but it's in the top 10 in the entire survey. We have over 400 vendors in this survey. It's number eight overall, already. In a week. This is not hype. This is real. And I could go on the NLP stuff for a while. Not only here are we seeing it in open AI and machine-learning and AI, but we're seeing NLP in security. It's huge in email security. It's completely transforming that area. It's one of the reasons I thought Palo might take Abnormal out. They're doing such a great job with NLP in this email side, and also in the data prep tools. NLP is going to take out data prep tools. If we have time, I'll discuss that later. But yeah, this is, to me this is a no-brainer, and we're already seeing it in the data. >> Yeah, John Furrier called, you know, the ChatGPT introduction. He said it reminded him of the Netscape moment, when we all first saw Netscape Navigator and went, "Wow, it really could be transformative." All right, number six, the cloud expands to supercloud as edge computing accelerates and CloudFlare is a big winner in 2023. We've reported obviously on cloud, multi-cloud, supercloud and CloudFlare, basically saying what multi-cloud should have been. We pulled this quote from Atif Kahn, who is the founder and CTO of Alkira, thanks, one of the inbounds, thank you. "In 2023, highly distributed IT environments "will become more the norm "as organizations increasingly deploy hybrid cloud, "multi-cloud and edge settings..." Eric, from one of your round tables, "If my sources from edge computing are coming "from the cloud, that means I have my workloads "running in the cloud. "There is no one better than CloudFlare," That's a senior director of IT architecture at a huge financial firm. And then your analysis shows CloudFlare really growing in pervasion, that sort of market presence in the dataset, dramatically, to near 20%, leading, I think you had told me that they're even ahead of Google Cloud in terms of momentum right now. >> That was probably the biggest shock to me in our January 2023 tesis, which covers the public companies in the cloud computing sector. CloudFlare has now overtaken GCP in overall spending, and I was shocked by that. It's already extremely pervasive in networking, of course, for the edge networking side, and also in security. This is the number one leader in SaaSi, web access firewall, DDoS, bot protection, by your definition of supercloud, which we just did a couple of weeks ago, and I really enjoyed that by the way Dave, I think CloudFlare is the one that fits your definition best, because it's bringing all of these aspects together, and most importantly, it's cloud agnostic. It does not need to rely on Azure or AWS to do this. It has its own cloud. So I just think it's, when we look at your definition of supercloud, CloudFlare is the poster child. >> You know, what's interesting about that too, is a lot of people are poo-pooing CloudFlare, "Ah, it's, you know, really kind of not that sophisticated." "You don't have as many tools," but to your point, you're can have those tools in the cloud, Cloudflare's doing serverless on steroids, trying to keep things really simple, doing a phenomenal job at, you know, various locations around the world. And they're definitely one to watch. Somebody put them on my radar (laughing) a while ago and said, "Dave, you got to do a breaking analysis on CloudFlare." And so I want to thank that person. I can't really name them, 'cause they work inside of a giant hyperscaler. But- (Eric laughing) (Dave chuckling) >> Real quickly, if I can from a competitive perspective too, who else is there? They've already taken share from Akamai, and Fastly is their really only other direct comp, and they're not there. And these guys are in poll position and they're the only game in town right now. I just, I don't see it slowing down. >> I thought one of your comments from your roundtable I was reading, one of the folks said, you know, CloudFlare, if my workloads are in the cloud, they are, you know, dominant, they said not as strong with on-prem. And so Akamai is doing better there. I'm like, "Okay, where would you want to be?" (laughing) >> Yeah, which one of those two would you rather be? >> Right? Anyway, all right, let's move on. Number seven, blockchain continues to look for a home in the enterprise, but devs will slowly begin to adopt in 2023. You know, blockchains have got a lot of buzz, obviously crypto is, you know, the killer app for blockchain. Senior IT architect in financial services from your, one of your insight roundtables said quote, "For enterprises to adopt a new technology, "there have to be proven turnkey solutions. "My experience in talking with my peers are, "blockchain is still an open-source component "where you have to build around it." Now I want to thank Ravi Mayuram, who's the CTO of Couchbase sent in, you know, one of the predictions, he said, "DevOps will adopt blockchain, specifically Ethereum." And he referenced actually in his email to me, Solidity, which is the programming language for Ethereum, "will be in every DevOps pro's playbook, "mirroring the boom in machine-learning. "Newer programming languages like Solidity "will enter the toolkits of devs." His point there, you know, Solidity for those of you don't know, you know, Bitcoin is not programmable. Solidity, you know, came out and that was their whole shtick, and they've been improving that, and so forth. But it, Eric, it's true, it really hasn't found its home despite, you know, the potential for smart contracts. IBM's pushing it, VMware has had announcements, and others, really hasn't found its way in the enterprise yet. >> Yeah, and I got to be honest, I don't think it's going to, either. So when we did our top trends series, this was basically chosen as an anti-prediction, I would guess, that it just continues to not gain hold. And the reason why was that first comment, right? It's very much a niche solution that requires a ton of custom work around it. You can't just plug and play it. And at the end of the day, let's be very real what this technology is, it's a database ledger, and we already have database ledgers in the enterprise. So why is this a priority to move to a different database ledger? It's going to be very niche cases. I like the CTO comment from Couchbase about it being adopted by DevOps. I agree with that, but it has to be a DevOps in a very specific use case, and a very sophisticated use case in financial services, most likely. And that's not across the entire enterprise. So I just think it's still going to struggle to get its foothold for a little bit longer, if ever. >> Great, thanks. Okay, let's move on. Number eight, AWS Databricks, Google Snowflake lead the data charge with Microsoft. Keeping it simple. So let's unpack this a little bit. This is the shared accounts peer position for, I pulled data platforms in for analytics, machine-learning and AI and database. So I could grab all these accounts or these vendors and see how they compare in those three sectors. Analytics, machine-learning and database. Snowflake and Databricks, you know, they're on a crash course, as you and I have talked about. They're battling to be the single source of truth in analytics. They're, there's going to be a big focus. They're already started. It's going to be accelerated in 2023 on open formats. Iceberg, Python, you know, they're all the rage. We heard about Iceberg at Snowflake Summit, last summer or last June. Not a lot of people had heard of it, but of course the Databricks crowd, who knows it well. A lot of other open source tooling. There's a company called DBT Labs, which you're going to talk about in a minute. George Gilbert put them on our radar. We just had Tristan Handy, the CEO of DBT labs, on at supercloud last week. They are a new disruptor in data that's, they're essentially making, they're API-ifying, if you will, KPIs inside the data warehouse and dramatically simplifying that whole data pipeline. So really, you know, the ETL guys should be shaking in their boots with them. Coming back to the slide. Google really remains focused on BigQuery adoption. Customers have complained to me that they would like to use Snowflake with Google's AI tools, but they're being forced to go to BigQuery. I got to ask Google about that. AWS continues to stitch together its bespoke data stores, that's gone down that "Right tool for the right job" path. David Foyer two years ago said, "AWS absolutely is going to have to solve that problem." We saw them start to do it in, at Reinvent, bringing together NoETL between Aurora and Redshift, and really trying to simplify those worlds. There's going to be more of that. And then Microsoft, they're just making it cheap and easy to use their stuff, you know, despite some of the complaints that we hear in the community, you know, about things like Cosmos, but Eric, your take? >> Yeah, my concern here is that Snowflake and Databricks are fighting each other, and it's allowing AWS and Microsoft to kind of catch up against them, and I don't know if that's the right move for either of those two companies individually, Azure and AWS are building out functionality. Are they as good? No they're not. The other thing to remember too is that AWS and Azure get paid anyway, because both Databricks and Snowflake run on top of 'em. So (laughing) they're basically collecting their toll, while these two fight it out with each other, and they build out functionality. I think they need to stop focusing on each other, a little bit, and think about the overall strategy. Now for Databricks, we know they came out first as a machine-learning AI tool. They were known better for that spot, and now they're really trying to play catch-up on that data storage compute spot, and inversely for Snowflake, they were killing it with the compute separation from storage, and now they're trying to get into the MLAI spot. I actually wouldn't be surprised to see them make some sort of acquisition. Frank Slootman has been a little bit quiet, in my opinion there. The other thing to mention is your comment about DBT Labs. If we look at our emerging technology survey, last survey when this came out, DBT labs, number one leader in that data integration space, I'm going to just pull it up real quickly. It looks like they had a 33% overall net sentiment to lead data analytics integration. So they are clearly growing, it's fourth straight survey consecutively that they've grown. The other name we're seeing there a little bit is Cribl, but DBT labs is by far the number one player in this space. >> All right. Okay, cool. Moving on, let's go to number nine. With Automation mixer resurgence in 2023, we're showing again data. The x axis is overlap or presence in the dataset, and the vertical axis is shared net score. Net score is a measure of spending momentum. As always, you've seen UI path and Microsoft Power Automate up until the right, that red line, that 40% line is generally considered elevated. UI path is really separating, creating some distance from Automation Anywhere, they, you know, previous quarters they were much closer. Microsoft Power Automate came on the scene in a big way, they loom large with this "Good enough" approach. I will say this, I, somebody sent me a results of a (indistinct) survey, which showed UiPath actually had more mentions than Power Automate, which was surprising, but I think that's not been the case in the ETR data set. We're definitely seeing a shift from back office to front soft office kind of workloads. Having said that, software testing is emerging as a mainstream use case, we're seeing ML and AI become embedded in end-to-end automations, and low-code is serving the line of business. And so this, we think, is going to increasingly have appeal to organizations in the coming year, who want to automate as much as possible and not necessarily, we've seen a lot of layoffs in tech, and people... You're going to have to fill the gaps with automation. That's a trend that's going to continue. >> Yep, agreed. At first that comment about Microsoft Power Automate having less citations than UiPath, that's shocking to me. I'm looking at my chart right here where Microsoft Power Automate was cited by over 60% of our entire survey takers, and UiPath at around 38%. Now don't get me wrong, 38% pervasion's fantastic, but you know you're not going to beat an entrenched Microsoft. So I don't really know where that comment came from. So UiPath, looking at it alone, it's doing incredibly well. It had a huge rebound in its net score this last survey. It had dropped going through the back half of 2022, but we saw a big spike in the last one. So it's got a net score of over 55%. A lot of people citing adoption and increasing. So that's really what you want to see for a name like this. The problem is that just Microsoft is doing its playbook. At the end of the day, I'm going to do a POC, why am I going to pay more for UiPath, or even take on another separate bill, when we know everyone's consolidating vendors, if my license already includes Microsoft Power Automate? It might not be perfect, it might not be as good, but what I'm hearing all the time is it's good enough, and I really don't want another invoice. >> Right. So how does UiPath, you know, and Automation Anywhere, how do they compete with that? Well, the way they compete with it is they got to have a better product. They got a product that's 10 times better. You know, they- >> Right. >> they're not going to compete based on where the lowest cost, Microsoft's got that locked up, or where the easiest to, you know, Microsoft basically give it away for free, and that's their playbook. So that's, you know, up to UiPath. UiPath brought on Rob Ensslin, I've interviewed him. Very, very capable individual, is now Co-CEO. So he's kind of bringing that adult supervision in, and really tightening up the go to market. So, you know, we know this company has been a rocket ship, and so getting some control on that and really getting focused like a laser, you know, could be good things ahead there for that company. Okay. >> One of the problems, if I could real quick Dave, is what the use cases are. When we first came out with RPA, everyone was super excited about like, "No, UiPath is going to be great for super powerful "projects, use cases." That's not what RPA is being used for. As you mentioned, it's being used for mundane tasks, so it's not automating complex things, which I think UiPath was built for. So if you were going to get UiPath, and choose that over Microsoft, it's going to be 'cause you're doing it for more powerful use case, where it is better. But the problem is that's not where the enterprise is using it. The enterprise are using this for base rote tasks, and simply, Microsoft Power Automate can do that. >> Yeah, it's interesting. I've had people on theCube that are both Microsoft Power Automate customers and UiPath customers, and I've asked them, "Well you know, "how do you differentiate between the two?" And they've said to me, "Look, our users and personal productivity users, "they like Power Automate, "they can use it themselves, and you know, "it doesn't take a lot of, you know, support on our end." The flip side is you could do that with UiPath, but like you said, there's more of a focus now on end-to-end enterprise automation and building out those capabilities. So it's increasingly a value play, and that's going to be obviously the challenge going forward. Okay, my last one, and then I think you've got some bonus ones. Number 10, hybrid events are the new category. Look it, if I can get a thousand inbounds that are largely self-serving, I can do my own here, 'cause we're in the events business. (Eric chuckling) Here's the prediction though, and this is a trend we're seeing, the number of physical events is going to dramatically increase. That might surprise people, but most of the big giant events are going to get smaller. The exception is AWS with Reinvent, I think Snowflake's going to continue to grow. So there are examples of physical events that are growing, but generally, most of the big ones are getting smaller, and there's going to be many more smaller intimate regional events and road shows. These micro-events, they're going to be stitched together. Digital is becoming a first class citizen, so people really got to get their digital acts together, and brands are prioritizing earned media, and they're beginning to build their own news networks, going direct to their customers. And so that's a trend we see, and I, you know, we're right in the middle of it, Eric, so you know we're going to, you mentioned RSA, I think that's perhaps going to be one of those crazy ones that continues to grow. It's shrunk, and then it, you know, 'cause last year- >> Yeah, it did shrink. >> right, it was the last one before the pandemic, and then they sort of made another run at it last year. It was smaller but it was very vibrant, and I think this year's going to be huge. Global World Congress is another one, we're going to be there end of Feb. That's obviously a big big show, but in general, the brands and the technology vendors, even Oracle is going to scale down. I don't know about Salesforce. We'll see. You had a couple of bonus predictions. Quantum and maybe some others? Bring us home. >> Yeah, sure. I got a few more. I think we touched upon one, but I definitely think the data prep tools are facing extinction, unfortunately, you know, the Talons Informatica is some of those names. The problem there is that the BI tools are kind of including data prep into it already. You know, an example of that is Tableau Prep Builder, and then in addition, Advanced NLP is being worked in as well. ThoughtSpot, Intelius, both often say that as their selling point, Tableau has Ask Data, Click has Insight Bot, so you don't have to really be intelligent on data prep anymore. A regular business user can just self-query, using either the search bar, or even just speaking into what it needs, and these tools are kind of doing the data prep for it. I don't think that's a, you know, an out in left field type of prediction, but it's the time is nigh. The other one I would also state is that I think knowledge graphs are going to break through this year. Neo4j in our survey is growing in pervasion in Mindshare. So more and more people are citing it, AWS Neptune's getting its act together, and we're seeing that spending intentions are growing there. Tiger Graph is also growing in our survey sample. I just think that the time is now for knowledge graphs to break through, and if I had to do one more, I'd say real-time streaming analytics moves from the very, very rich big enterprises to downstream, to more people are actually going to be moving towards real-time streaming, again, because the data prep tools and the data pipelines have gotten easier to use, and I think the ROI on real-time streaming is obviously there. So those are three that didn't make the cut, but I thought deserved an honorable mention. >> Yeah, I'm glad you did. Several weeks ago, we did an analyst prediction roundtable, if you will, a cube session power panel with a number of data analysts and that, you know, streaming, real-time streaming was top of mind. So glad you brought that up. Eric, as always, thank you very much. I appreciate the time you put in beforehand. I know it's been crazy, because you guys are wrapping up, you know, the last quarter survey in- >> Been a nuts three weeks for us. (laughing) >> job. I love the fact that you're doing, you know, the ETS survey now, I think it's quarterly now, right? Is that right? >> Yep. >> Yep. So that's phenomenal. >> Four times a year. I'll be happy to jump on with you when we get that done. I know you were really impressed with that last time. >> It's unbelievable. This is so much data at ETR. Okay. Hey, that's a wrap. Thanks again. >> Take care Dave. Good seeing you. >> All right, many thanks to our team here, Alex Myerson as production, he manages the podcast force. Ken Schiffman as well is a critical component of our East Coast studio. Kristen Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hoof is our editor-in-chief. He's at siliconangle.com. He's just a great editing for us. Thank you all. Remember all these episodes that are available as podcasts, wherever you listen, podcast is doing great. Just search "Breaking analysis podcast." Really appreciate you guys listening. I publish each week on wikibon.com and siliconangle.com, or you can email me directly if you want to get in touch, david.vellante@siliconangle.com. That's how I got all these. I really appreciate it. I went through every single one with a yellow highlighter. It took some time, (laughing) but I appreciate it. You could DM me at dvellante, or comment on our LinkedIn post and please check out etr.ai. Its data is amazing. Best survey data in the enterprise tech business. This is Dave Vellante for theCube Insights, powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis." (upbeat music beginning) (upbeat music ending)
SUMMARY :
insights from the Cube and ETR, do for the community, Dave, good to see you. actually come back to me if you would. It just stays at the top. the most aggressive to cut. that have the most to lose What's the primary method still leads the way, you know, So in addition to what we're seeing here, And so I actually thank you I went through it for you. I'm going to ask you to explain and they're certainly not going to get it to you in a zero trust way. So all of that is the One is just the number of So come back to me in 12 So 52% of the ETR survey amount of money on the Metaverse and also in the data prep tools. the cloud expands to the biggest shock to me "Ah, it's, you know, really and Fastly is their really the folks said, you know, for a home in the enterprise, Yeah, and I got to be honest, in the community, you know, and I don't know if that's the right move and the vertical axis is shared net score. So that's really what you want Well, the way they compete So that's, you know, One of the problems, if and that's going to be obviously even Oracle is going to scale down. and the data pipelines and that, you know, Been a nuts three I love the fact I know you were really is so much data at ETR. and we'll see you next time
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Eric | PERSON | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Rob Hoof | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Ravi Mayuram | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Atif Kahn | PERSON | 0.99+ |
November | DATE | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
APAC | ORGANIZATION | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
Palo | ORGANIZATION | 0.99+ |
David Foyer | PERSON | 0.99+ |
February | DATE | 0.99+ |
January 2023 | DATE | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
October | DATE | 0.99+ |
Rob Ensslin | PERSON | 0.99+ |
Scott Stevenson | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
69% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
CrowdStrike | ORGANIZATION | 0.99+ |
4.6% | QUANTITY | 0.99+ |
10 times | QUANTITY | 0.99+ |
2023 | DATE | 0.99+ |
Scott | PERSON | 0.99+ |
1,181 responses | QUANTITY | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
third year | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
Alex | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
OneTrust | ORGANIZATION | 0.99+ |
45% | QUANTITY | 0.99+ |
33% | QUANTITY | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
two reasons | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
BeyondTrust | ORGANIZATION | 0.99+ |
7% | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Breaking Analysis: ChatGPT Won't Give OpenAI First Mover Advantage
>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> OpenAI The company, and ChatGPT have taken the world by storm. Microsoft reportedly is investing an additional 10 billion dollars into the company. But in our view, while the hype around ChatGPT is justified, we don't believe OpenAI will lock up the market with its first mover advantage. Rather, we believe that success in this market will be directly proportional to the quality and quantity of data that a technology company has at its disposal, and the compute power that it could deploy to run its system. Hello and welcome to this week's Wikibon CUBE insights, powered by ETR. In this Breaking Analysis, we unpack the excitement around ChatGPT, and debate the premise that the company's early entry into the space may not confer winner take all advantage to OpenAI. And to do so, we welcome CUBE collaborator, alum, Sarbjeet Johal, (chuckles) and John Furrier, co-host of the Cube. Great to see you Sarbjeet, John. Really appreciate you guys coming to the program. >> Great to be on. >> Okay, so what is ChatGPT? Well, actually we asked ChatGPT, what is ChatGPT? So here's what it said. ChatGPT is a state-of-the-art language model developed by OpenAI that can generate human-like text. It could be fine tuned for a variety of language tasks, such as conversation, summarization, and language translation. So I asked it, give it to me in 50 words or less. How did it do? Anything to add? >> Yeah, think it did good. It's large language model, like previous models, but it started applying the transformers sort of mechanism to focus on what prompt you have given it to itself. And then also the what answer it gave you in the first, sort of, one sentence or two sentences, and then introspect on itself, like what I have already said to you. And so just work on that. So it it's self sort of focus if you will. It does, the transformers help the large language models to do that. >> So to your point, it's a large language model, and GPT stands for generative pre-trained transformer. >> And if you put the definition back up there again, if you put it back up on the screen, let's see it back up. Okay, it actually missed the large, word large. So one of the problems with ChatGPT, it's not always accurate. It's actually a large language model, and it says state of the art language model. And if you look at Google, Google has dominated AI for many times and they're well known as being the best at this. And apparently Google has their own large language model, LLM, in play and have been holding it back to release because of backlash on the accuracy. Like just in that example you showed is a great point. They got almost right, but they missed the key word. >> You know what's funny about that John, is I had previously asked it in my prompt to give me it in less than a hundred words, and it was too long, I said I was too long for Breaking Analysis, and there it went into the fact that it's a large language model. So it largely, it gave me a really different answer the, for both times. So, but it's still pretty amazing for those of you who haven't played with it yet. And one of the best examples that I saw was Ben Charrington from This Week In ML AI podcast. And I stumbled on this thanks to Brian Gracely, who was listening to one of his Cloudcasts. Basically what Ben did is he took, he prompted ChatGPT to interview ChatGPT, and he simply gave the system the prompts, and then he ran the questions and answers into this avatar builder and sped it up 2X so it didn't sound like a machine. And voila, it was amazing. So John is ChatGPT going to take over as a cube host? >> Well, I was thinking, we get the questions in advance sometimes from PR people. We should actually just plug it in ChatGPT, add it to our notes, and saying, "Is this good enough for you? Let's ask the real question." So I think, you know, I think there's a lot of heavy lifting that gets done. I think the ChatGPT is a phenomenal revolution. I think it highlights the use case. Like that example we showed earlier. It gets most of it right. So it's directionally correct and it feels like it's an answer, but it's not a hundred percent accurate. And I think that's where people are seeing value in it. Writing marketing, copy, brainstorming, guest list, gift list for somebody. Write me some lyrics to a song. Give me a thesis about healthcare policy in the United States. It'll do a bang up job, and then you got to go in and you can massage it. So we're going to do three quarters of the work. That's why plagiarism and schools are kind of freaking out. And that's why Microsoft put 10 billion in, because why wouldn't this be a feature of Word, or the OS to help it do stuff on behalf of the user. So linguistically it's a beautiful thing. You can input a string and get a good answer. It's not a search result. >> And we're going to get your take on on Microsoft and, but it kind of levels the playing- but ChatGPT writes better than I do, Sarbjeet, and I know you have some good examples too. You mentioned the Reed Hastings example. >> Yeah, I was listening to Reed Hastings fireside chat with ChatGPT, and the answers were coming as sort of voice, in the voice format. And it was amazing what, he was having very sort of philosophy kind of talk with the ChatGPT, the longer sentences, like he was going on, like, just like we are talking, he was talking for like almost two minutes and then ChatGPT was answering. It was not one sentence question, and then a lot of answers from ChatGPT and yeah, you're right. I, this is our ability. I've been thinking deep about this since yesterday, we talked about, like, we want to do this segment. The data is fed into the data model. It can be the current data as well, but I think that, like, models like ChatGPT, other companies will have those too. They can, they're democratizing the intelligence, but they're not creating intelligence yet, definitely yet I can say that. They will give you all the finite answers. Like, okay, how do you do this for loop in Java, versus, you know, C sharp, and as a programmer you can do that, in, but they can't tell you that, how to write a new algorithm or write a new search algorithm for you. They cannot create a secretive code for you to- >> Not yet. >> Have competitive advantage. >> Not yet, not yet. >> but you- >> Can Google do that today? >> No one really can. The reasoning side of the data is, we talked about at our Supercloud event, with Zhamak Dehghani who's was CEO of, now of Nextdata. This next wave of data intelligence is going to come from entrepreneurs that are probably cross discipline, computer science and some other discipline. But they're going to be new things, for example, data, metadata, and data. It's hard to do reasoning like a human being, so that needs more data to train itself. So I think the first gen of this training module for the large language model they have is a corpus of text. Lot of that's why blog posts are, but the facts are wrong and sometimes out of context, because that contextual reasoning takes time, it takes intelligence. So machines need to become intelligent, and so therefore they need to be trained. So you're going to start to see, I think, a lot of acceleration on training the data sets. And again, it's only as good as the data you can get. And again, proprietary data sets will be a huge winner. Anyone who's got a large corpus of content, proprietary content like theCUBE or SiliconANGLE as a publisher will benefit from this. Large FinTech companies, anyone with large proprietary data will probably be a big winner on this generative AI wave, because it just, it will eat that up, and turn that back into something better. So I think there's going to be a lot of interesting things to look at here. And certainly productivity's going to be off the charts for vanilla and the internet is going to get swarmed with vanilla content. So if you're in the content business, and you're an original content producer of any kind, you're going to be not vanilla, so you're going to be better. So I think there's so much at play Dave (indistinct). >> I think the playing field has been risen, so we- >> Risen and leveled? >> Yeah, and leveled to certain extent. So it's now like that few people as consumers, as consumers of AI, we will have a advantage and others cannot have that advantage. So it will be democratized. That's, I'm sure about that. But if you take the example of calculator, when the calculator came in, and a lot of people are, "Oh, people can't do math anymore because calculator is there." right? So it's a similar sort of moment, just like a calculator for the next level. But, again- >> I see it more like open source, Sarbjeet, because like if you think about what ChatGPT's doing, you do a query and it comes from somewhere the value of a post from ChatGPT is just a reuse of AI. The original content accent will be come from a human. So if I lay out a paragraph from ChatGPT, did some heavy lifting on some facts, I check the facts, save me about maybe- >> Yeah, it's productive. >> An hour writing, and then I write a killer two, three sentences of, like, sharp original thinking or critical analysis. I then took that body of work, open source content, and then laid something on top of it. >> And Sarbjeet's example is a good one, because like if the calculator kids don't do math as well anymore, the slide rule, remember we had slide rules as kids, remember we first started using Waze, you know, we were this minority and you had an advantage over other drivers. Now Waze is like, you know, social traffic, you know, navigation, everybody had, you know- >> All the back roads are crowded. >> They're car crowded. (group laughs) Exactly. All right, let's, let's move on. What about this notion that futurist Ray Amara put forth and really Amara's Law that we're showing here, it's, the law is we, you know, "We tend to overestimate the effect of technology in the short run and underestimate it in the long run." Is that the case, do you think, with ChatGPT? What do you think Sarbjeet? >> I think that's true actually. There's a lot of, >> We don't debate this. >> There's a lot of awe, like when people see the results from ChatGPT, they say what, what the heck? Like, it can do this? But then if you use it more and more and more, and I ask the set of similar question, not the same question, and it gives you like same answer. It's like reading from the same bucket of text in, the interior read (indistinct) where the ChatGPT, you will see that in some couple of segments. It's very, it sounds so boring that the ChatGPT is coming out the same two sentences every time. So it is kind of good, but it's not as good as people think it is right now. But we will have, go through this, you know, hype sort of cycle and get realistic with it. And then in the long term, I think it's a great thing in the short term, it's not something which will (indistinct) >> What's your counter point? You're saying it's not. >> I, no I think the question was, it's hyped up in the short term and not it's underestimated long term. That's what I think what he said, quote. >> Yes, yeah. That's what he said. >> Okay, I think that's wrong with this, because this is a unique, ChatGPT is a unique kind of impact and it's very generational. People have been comparing it, I have been comparing to the internet, like the web, web browser Mosaic and Netscape, right, Navigator. I mean, I clearly still remember the days seeing Navigator for the first time, wow. And there weren't not many sites you could go to, everyone typed in, you know, cars.com, you know. >> That (indistinct) wasn't that overestimated, the overhyped at the beginning and underestimated. >> No, it was, it was underestimated long run, people thought. >> But that Amara's law. >> That's what is. >> No, they said overestimated? >> Overestimated near term underestimated- overhyped near term, underestimated long term. I got, right I mean? >> Well, I, yeah okay, so I would then agree, okay then- >> We were off the charts about the internet in the early days, and it actually exceeded our expectations. >> Well there were people who were, like, poo-pooing it early on. So when the browser came out, people were like, "Oh, the web's a toy for kids." I mean, in 1995 the web was a joke, right? So '96, you had online populations growing, so you had structural changes going on around the browser, internet population. And then that replaced other things, direct mail, other business activities that were once analog then went to the web, kind of read only as you, as we always talk about. So I think that's a moment where the hype long term, the smart money, and the smart industry experts all get the long term. And in this case, there's more poo-pooing in the short term. "Ah, it's not a big deal, it's just AI." I've heard many people poo-pooing ChatGPT, and a lot of smart people saying, "No this is next gen, this is different and it's only going to get better." So I think people are estimating a big long game on this one. >> So you're saying it's bifurcated. There's those who say- >> Yes. >> Okay, all right, let's get to the heart of the premise, and possibly the debate for today's episode. Will OpenAI's early entry into the market confer sustainable competitive advantage for the company. And if you look at the history of tech, the technology industry, it's kind of littered with first mover failures. Altair, IBM, Tandy, Commodore, they and Apple even, they were really early in the PC game. They took a backseat to Dell who came in the scene years later with a better business model. Netscape, you were just talking about, was all the rage in Silicon Valley, with the first browser, drove up all the housing prices out here. AltaVista was the first search engine to really, you know, index full text. >> Owned by Dell, I mean DEC. >> Owned by Digital. >> Yeah, Digital Equipment >> Compaq bought it. And of course as an aside, Digital, they wanted to showcase their hardware, right? Their super computer stuff. And then so Friendster and MySpace, they came before Facebook. The iPhone certainly wasn't the first mobile device. So lots of failed examples, but there are some recent successes like AWS and cloud. >> You could say smartphone. So I mean. >> Well I know, and you can, we can parse this so we'll debate it. Now Twitter, you could argue, had first mover advantage. You kind of gave me that one John. Bitcoin and crypto clearly had first mover advantage, and sustaining that. Guys, will OpenAI make it to the list on the right with ChatGPT, what do you think? >> I think categorically as a company, it probably won't, but as a category, I think what they're doing will, so OpenAI as a company, they get funding, there's power dynamics involved. Microsoft put a billion dollars in early on, then they just pony it up. Now they're reporting 10 billion more. So, like, if the browsers, Microsoft had competitive advantage over Netscape, and used monopoly power, and convicted by the Department of Justice for killing Netscape with their monopoly, Netscape should have had won that battle, but Microsoft killed it. In this case, Microsoft's not killing it, they're buying into it. So I think the embrace extend Microsoft power here makes OpenAI vulnerable for that one vendor solution. So the AI as a company might not make the list, but the category of what this is, large language model AI, is probably will be on the right hand side. >> Okay, we're going to come back to the government intervention and maybe do some comparisons, but what are your thoughts on this premise here? That, it will basically set- put forth the premise that it, that ChatGPT, its early entry into the market will not confer competitive advantage to >> For OpenAI. >> To Open- Yeah, do you agree with that? >> I agree with that actually. It, because Google has been at it, and they have been holding back, as John said because of the scrutiny from the Fed, right, so- >> And privacy too. >> And the privacy and the accuracy as well. But I think Sam Altman and the company on those guys, right? They have put this in a hasty way out there, you know, because it makes mistakes, and there are a lot of questions around the, sort of, where the content is coming from. You saw that as your example, it just stole the content, and without your permission, you know? >> Yeah. So as quick this aside- >> And it codes on people's behalf and the, those codes are wrong. So there's a lot of, sort of, false information it's putting out there. So it's a very vulnerable thing to do what Sam Altman- >> So even though it'll get better, others will compete. >> So look, just side note, a term which Reid Hoffman used a little bit. Like he said, it's experimental launch, like, you know, it's- >> It's pretty damn good. >> It is clever because according to Sam- >> It's more than clever. It's good. >> It's awesome, if you haven't used it. I mean you write- you read what it writes and you go, "This thing writes so well, it writes so much better than you." >> The human emotion drives that too. I think that's a big thing. But- >> I Want to add one more- >> Make your last point. >> Last one. Okay. So, but he's still holding back. He's conducting quite a few interviews. If you want to get the gist of it, there's an interview with StrictlyVC interview from yesterday with Sam Altman. Listen to that one it's an eye opening what they want- where they want to take it. But my last one I want to make it on this point is that Satya Nadella yesterday did an interview with Wall Street Journal. I think he was doing- >> You were not impressed. >> I was not impressed because he was pushing it too much. So Sam Altman's holding back so there's less backlash. >> Got 10 billion reasons to push. >> I think he's almost- >> Microsoft just laid off 10000 people. Hey ChatGPT, find me a job. You know like. (group laughs) >> He's overselling it to an extent that I think it will backfire on Microsoft. And he's over promising a lot of stuff right now, I think. I don't know why he's very jittery about all these things. And he did the same thing during Ignite as well. So he said, "Oh, this AI will write code for you and this and that." Like you called him out- >> The hyperbole- >> During your- >> from Satya Nadella, he's got a lot of hyperbole. (group talks over each other) >> All right, Let's, go ahead. >> Well, can I weigh in on the whole- >> Yeah, sure. >> Microsoft thing on whether OpenAI, here's the take on this. I think it's more like the browser moment to me, because I could relate to that experience with ChatG, personally, emotionally, when I saw that, and I remember vividly- >> You mean that aha moment (indistinct). >> Like this is obviously the future. Anything else in the old world is dead, website's going to be everywhere. It was just instant dot connection for me. And a lot of other smart people who saw this. Lot of people by the way, didn't see it. Someone said the web's a toy. At the company I was worked for at the time, Hewlett Packard, they like, they could have been in, they had invented HTML, and so like all this stuff was, like, they just passed, the web was just being passed over. But at that time, the browser got better, more websites came on board. So the structural advantage there was online web usage was growing, online user population. So that was growing exponentially with the rise of the Netscape browser. So OpenAI could stay on the right side of your list as durable, if they leverage the category that they're creating, can get the scale. And if they can get the scale, just like Twitter, that failed so many times that they still hung around. So it was a product that was always successful, right? So I mean, it should have- >> You're right, it was terrible, we kept coming back. >> The fail whale, but it still grew. So OpenAI has that moment. They could do it if Microsoft doesn't meddle too much with too much power as a vendor. They could be the Netscape Navigator, without the anti-competitive behavior of somebody else. So to me, they have the pole position. So they have an opportunity. So if not, if they don't execute, then there's opportunity. There's not a lot of barriers to entry, vis-a-vis say the CapEx of say a cloud company like AWS. You can't replicate that, Many have tried, but I think you can replicate OpenAI. >> And we're going to talk about that. Okay, so real quick, I want to bring in some ETR data. This isn't an ETR heavy segment, only because this so new, you know, they haven't coverage yet, but they do cover AI. So basically what we're seeing here is a slide on the vertical axis's net score, which is a measure of spending momentum, and in the horizontal axis's is presence in the dataset. Think of it as, like, market presence. And in the insert right there, you can see how the dots are plotted, the two columns. And so, but the key point here that we want to make, there's a bunch of companies on the left, is he like, you know, DataRobot and C3 AI and some others, but the big whales, Google, AWS, Microsoft, are really dominant in this market. So that's really the key takeaway that, can we- >> I notice IBM is way low. >> Yeah, IBM's low, and actually bring that back up and you, but then you see Oracle who actually is injecting. So I guess that's the other point is, you're not necessarily going to go buy AI, and you know, build your own AI, you're going to, it's going to be there and, it, Salesforce is going to embed it into its platform, the SaaS companies, and you're going to purchase AI. You're not necessarily going to build it. But some companies obviously are. >> I mean to quote IBM's general manager Rob Thomas, "You can't have AI with IA." information architecture and David Flynn- >> You can't Have AI without IA >> without, you can't have AI without IA. You can't have, if you have an Information Architecture, you then can power AI. Yesterday David Flynn, with Hammersmith, was on our Supercloud. He was pointing out that the relationship of storage, where you store things, also impacts the data and stressablity, and Zhamak from Nextdata, she was pointing out that same thing. So the data problem factors into all this too, Dave. >> So you got the big cloud and internet giants, they're all poised to go after this opportunity. Microsoft is investing up to 10 billion. Google's code red, which was, you know, the headline in the New York Times. Of course Apple is there and several alternatives in the market today. Guys like Chinchilla, Bloom, and there's a company Jasper and several others, and then Lena Khan looms large and the government's around the world, EU, US, China, all taking notice before the market really is coalesced around a single player. You know, John, you mentioned Netscape, they kind of really, the US government was way late to that game. It was kind of game over. And Netscape, I remember Barksdale was like, "Eh, we're going to be selling software in the enterprise anyway." and then, pshew, the company just dissipated. So, but it looks like the US government, especially with Lena Khan, they're changing the definition of antitrust and what the cause is to go after people, and they're really much more aggressive. It's only what, two years ago that (indistinct). >> Yeah, the problem I have with the federal oversight is this, they're always like late to the game, and they're slow to catch up. So in other words, they're working on stuff that should have been solved a year and a half, two years ago around some of the social networks hiding behind some of the rules around open web back in the days, and I think- >> But they're like 15 years late to that. >> Yeah, and now they got this new thing on top of it. So like, I just worry about them getting their fingers. >> But there's only two years, you know, OpenAI. >> No, but the thing (indistinct). >> No, they're still fighting other battles. But the problem with government is that they're going to label Big Tech as like a evil thing like Pharma, it's like smoke- >> You know Lena Khan wants to kill Big Tech, there's no question. >> So I think Big Tech is getting a very seriously bad rap. And I think anything that the government does that shades darkness on tech, is politically motivated in most cases. You can almost look at everything, and my 80 20 rule is in play here. 80% of the government activity around tech is bullshit, it's politically motivated, and the 20% is probably relevant, but off the mark and not organized. >> Well market forces have always been the determining factor of success. The governments, you know, have been pretty much failed. I mean you look at IBM's antitrust, that, what did that do? The market ultimately beat them. You look at Microsoft back in the day, right? Windows 95 was peaking, the government came in. But you know, like you said, they missed the web, right, and >> so they were hanging on- >> There's nobody in government >> to Windows. >> that actually knows- >> And so, you, I think you're right. It's market forces that are going to determine this. But Sarbjeet, what do you make of Microsoft's big bet here, you weren't impressed with with Nadella. How do you think, where are they going to apply it? Is this going to be a Hail Mary for Bing, or is it going to be applied elsewhere? What do you think. >> They are saying that they will, sort of, weave this into their products, office products, productivity and also to write code as well, developer productivity as well. That's a big play for them. But coming back to your antitrust sort of comments, right? I believe the, your comment was like, oh, fed was late 10 years or 15 years earlier, but now they're two years. But things are moving very fast now as compared to they used to move. >> So two years is like 10 Years. >> Yeah, two years is like 10 years. Just want to make that point. (Dave laughs) This thing is going like wildfire. Any new tech which comes in that I think they're going against distribution channels. Lina Khan has commented time and again that the marketplace model is that she wants to have some grip on. Cloud marketplaces are a kind of monopolistic kind of way. >> I don't, I don't see this, I don't see a Chat AI. >> You told me it's not Bing, you had an interesting comment. >> No, no. First of all, this is great from Microsoft. If you're Microsoft- >> Why? >> Because Microsoft doesn't have the AI chops that Google has, right? Google is got so much core competency on how they run their search, how they run their backends, their cloud, even though they don't get a lot of cloud market share in the enterprise, they got a kick ass cloud cause they needed one. >> Totally. >> They've invented SRE. I mean Google's development and engineering chops are off the scales, right? Amazon's got some good chops, but Google's got like 10 times more chops than AWS in my opinion. Cloud's a whole different story. Microsoft gets AI, they get a playbook, they get a product they can render into, the not only Bing, productivity software, helping people write papers, PowerPoint, also don't forget the cloud AI can super help. We had this conversation on our Supercloud event, where AI's going to do a lot of the heavy lifting around understanding observability and managing service meshes, to managing microservices, to turning on and off applications, and or maybe writing code in real time. So there's a plethora of use cases for Microsoft to deploy this. combined with their R and D budgets, they can then turbocharge more research, build on it. So I think this gives them a car in the game, Google may have pole position with AI, but this puts Microsoft right in the game, and they already have a lot of stuff going on. But this just, I mean everything gets lifted up. Security, cloud, productivity suite, everything. >> What's under the hood at Google, and why aren't they talking about it? I mean they got to be freaked out about this. No? Or do they have kind of a magic bullet? >> I think they have the, they have the chops definitely. Magic bullet, I don't know where they are, as compared to the ChatGPT 3 or 4 models. Like they, but if you look at the online sort of activity and the videos put out there from Google folks, Google technology folks, that's account you should look at if you are looking there, they have put all these distinctions what ChatGPT 3 has used, they have been talking about for a while as well. So it's not like it's a secret thing that you cannot replicate. As you said earlier, like in the beginning of this segment, that anybody who has more data and the capacity to process that data, which Google has both, I think they will win this. >> Obviously living in Palo Alto where the Google founders are, and Google's headquarters next town over we have- >> We're so close to them. We have inside information on some of the thinking and that hasn't been reported by any outlet yet. And that is, is that, from what I'm hearing from my sources, is Google has it, they don't want to release it for many reasons. One is it might screw up their search monopoly, one, two, they're worried about the accuracy, 'cause Google will get sued. 'Cause a lot of people are jamming on this ChatGPT as, "Oh it does everything for me." when it's clearly not a hundred percent accurate all the time. >> So Lina Kahn is looming, and so Google's like be careful. >> Yeah so Google's just like, this is the third, could be a third rail. >> But the first thing you said is a concern. >> Well no. >> The disruptive (indistinct) >> What they will do is do a Waymo kind of thing, where they spin out a separate company. >> They're doing that. >> The discussions happening, they're going to spin out the separate company and put it over there, and saying, "This is AI, got search over there, don't touch that search, 'cause that's where all the revenue is." (chuckles) >> So, okay, so that's how they deal with the Clay Christensen dilemma. What's the business model here? I mean it's not advertising, right? Is it to charge you for a query? What, how do you make money at this? >> It's a good question, I mean my thinking is, first of all, it's cool to type stuff in and see a paper get written, or write a blog post, or gimme a marketing slogan for this or that or write some code. I think the API side of the business will be critical. And I think Howie Xu, I know you're going to reference some of his comments yesterday on Supercloud, I think this brings a whole 'nother user interface into technology consumption. I think the business model, not yet clear, but it will probably be some sort of either API and developer environment or just a straight up free consumer product, with some sort of freemium backend thing for business. >> And he was saying too, it's natural language is the way in which you're going to interact with these systems. >> I think it's APIs, it's APIs, APIs, APIs, because these people who are cooking up these models, and it takes a lot of compute power to train these and to, for inference as well. Somebody did the analysis on the how many cents a Google search costs to Google, and how many cents the ChatGPT query costs. It's, you know, 100x or something on that. You can take a look at that. >> A 100x on which side? >> You're saying two orders of magnitude more expensive for ChatGPT >> Much more, yeah. >> Than for Google. >> It's very expensive. >> So Google's got the data, they got the infrastructure and they got, you're saying they got the cost (indistinct) >> No actually it's a simple query as well, but they are trying to put together the answers, and they're going through a lot more data versus index data already, you know. >> Let me clarify, you're saying that Google's version of ChatGPT is more efficient? >> No, I'm, I'm saying Google search results. >> Ah, search results. >> What are used to today, but cheaper. >> But that, does that, is that going to confer advantage to Google's large language (indistinct)? >> It will, because there were deep science (indistinct). >> Google, I don't think Google search is doing a large language model on their search, it's keyword search. You know, what's the weather in Santa Cruz? Or how, what's the weather going to be? Or you know, how do I find this? Now they have done a smart job of doing some things with those queries, auto complete, re direct navigation. But it's, it's not entity. It's not like, "Hey, what's Dave Vellante thinking this week in Breaking Analysis?" ChatGPT might get that, because it'll get your Breaking Analysis, it'll synthesize it. There'll be some, maybe some clips. It'll be like, you know, I mean. >> Well I got to tell you, I asked ChatGPT to, like, I said, I'm going to enter a transcript of a discussion I had with Nir Zuk, the CTO of Palo Alto Networks, And I want you to write a 750 word blog. I never input the transcript. It wrote a 750 word blog. It attributed quotes to him, and it just pulled a bunch of stuff that, and said, okay, here it is. It talked about Supercloud, it defined Supercloud. >> It's made, it makes you- >> Wow, But it was a big lie. It was fraudulent, but still, blew me away. >> Again, vanilla content and non accurate content. So we are going to see a surge of misinformation on steroids, but I call it the vanilla content. Wow, that's just so boring, (indistinct). >> There's so many dangers. >> Make your point, cause we got to, almost out of time. >> Okay, so the consumption, like how do you consume this thing. As humans, we are consuming it and we are, like, getting a nicely, like, surprisingly shocked, you know, wow, that's cool. It's going to increase productivity and all that stuff, right? And on the danger side as well, the bad actors can take hold of it and create fake content and we have the fake sort of intelligence, if you go out there. So that's one thing. The second thing is, we are as humans are consuming this as language. Like we read that, we listen to it, whatever format we consume that is, but the ultimate usage of that will be when the machines can take that output from likes of ChatGPT, and do actions based on that. The robots can work, the robot can paint your house, we were talking about, right? Right now we can't do that. >> Data apps. >> So the data has to be ingested by the machines. It has to be digestible by the machines. And the machines cannot digest unorganized data right now, we will get better on the ingestion side as well. So we are getting better. >> Data, reasoning, insights, and action. >> I like that mall, paint my house. >> So, okay- >> By the way, that means drones that'll come in. Spray painting your house. >> Hey, it wasn't too long ago that robots couldn't climb stairs, as I like to point out. Okay, and of course it's no surprise the venture capitalists are lining up to eat at the trough, as I'd like to say. Let's hear, you'd referenced this earlier, John, let's hear what AI expert Howie Xu said at the Supercloud event, about what it takes to clone ChatGPT. Please, play the clip. >> So one of the VCs actually asked me the other day, right? "Hey, how much money do I need to spend, invest to get a, you know, another shot to the openAI sort of the level." You know, I did a (indistinct) >> Line up. >> A hundred million dollar is the order of magnitude that I came up with, right? You know, not a billion, not 10 million, right? So a hundred- >> Guys a hundred million dollars, that's an astoundingly low figure. What do you make of it? >> I was in an interview with, I was interviewing, I think he said hundred million or so, but in the hundreds of millions, not a billion right? >> You were trying to get him up, you were like "Hundreds of millions." >> Well I think, I- >> He's like, eh, not 10, not a billion. >> Well first of all, Howie Xu's an expert machine learning. He's at Zscaler, he's a machine learning AI guy. But he comes from VMware, he's got his technology pedigrees really off the chart. Great friend of theCUBE and kind of like a CUBE analyst for us. And he's smart. He's right. I think the barriers to entry from a dollar standpoint are lower than say the CapEx required to compete with AWS. Clearly, the CapEx spending to build all the tech for the run a cloud. >> And you don't need a huge sales force. >> And in some case apps too, it's the same thing. But I think it's not that hard. >> But am I right about that? You don't need a huge sales force either. It's, what, you know >> If the product's good, it will sell, this is a new era. The better mouse trap will win. This is the new economics in software, right? So- >> Because you look at the amount of money Lacework, and Snyk, Snowflake, Databrooks. Look at the amount of money they've raised. I mean it's like a billion dollars before they get to IPO or more. 'Cause they need promotion, they need go to market. You don't need (indistinct) >> OpenAI's been working on this for multiple five years plus it's, hasn't, wasn't born yesterday. Took a lot of years to get going. And Sam is depositioning all the success, because he's trying to manage expectations, To your point Sarbjeet, earlier. It's like, yeah, he's trying to "Whoa, whoa, settle down everybody, (Dave laughs) it's not that great." because he doesn't want to fall into that, you know, hero and then get taken down, so. >> It may take a 100 million or 150 or 200 million to train the model. But to, for the inference to, yeah to for the inference machine, It will take a lot more, I believe. >> Give it, so imagine, >> Because- >> Go ahead, sorry. >> Go ahead. But because it consumes a lot more compute cycles and it's certain level of storage and everything, right, which they already have. So I think to compute is different. To frame the model is a different cost. But to run the business is different, because I think 100 million can go into just fighting the Fed. >> Well there's a flywheel too. >> Oh that's (indistinct) >> (indistinct) >> We are running the business, right? >> It's an interesting number, but it's also kind of, like, context to it. So here, a hundred million spend it, you get there, but you got to factor in the fact that the ways companies win these days is critical mass scale, hitting a flywheel. If they can keep that flywheel of the value that they got going on and get better, you can almost imagine a marketplace where, hey, we have proprietary data, we're SiliconANGLE in theCUBE. We have proprietary content, CUBE videos, transcripts. Well wouldn't it be great if someone in a marketplace could sell a module for us, right? We buy that, Amazon's thing and things like that. So if they can get a marketplace going where you can apply to data sets that may be proprietary, you can start to see this become bigger. And so I think the key barriers to entry is going to be success. I'll give you an example, Reddit. Reddit is successful and it's hard to copy, not because of the software. >> They built the moat. >> Because you can, buy Reddit open source software and try To compete. >> They built the moat with their community. >> Their community, their scale, their user expectation. Twitter, we referenced earlier, that thing should have gone under the first two years, but there was such a great emotional product. People would tolerate the fail whale. And then, you know, well that was a whole 'nother thing. >> Then a plane landed in (John laughs) the Hudson and it was over. >> I think verticals, a lot of verticals will build applications using these models like for lawyers, for doctors, for scientists, for content creators, for- >> So you'll have many hundreds of millions of dollars investments that are going to be seeping out. If, all right, we got to wrap, if you had to put odds on it that that OpenAI is going to be the leader, maybe not a winner take all leader, but like you look at like Amazon and cloud, they're not winner take all, these aren't necessarily winner take all markets. It's not necessarily a zero sum game, but let's call it winner take most. What odds would you give that open AI 10 years from now will be in that position. >> If I'm 0 to 10 kind of thing? >> Yeah, it's like horse race, 3 to 1, 2 to 1, even money, 10 to 1, 50 to 1. >> Maybe 2 to 1, >> 2 to 1, that's pretty low odds. That's basically saying they're the favorite, they're the front runner. Would you agree with that? >> I'd say 4 to 1. >> Yeah, I was going to say I'm like a 5 to 1, 7 to 1 type of person, 'cause I'm a skeptic with, you know, there's so much competition, but- >> I think they're definitely the leader. I mean you got to say, I mean. >> Oh there's no question. There's no question about it. >> The question is can they execute? >> They're not Friendster, is what you're saying. >> They're not Friendster and they're more like Twitter and Reddit where they have momentum. If they can execute on the product side, and if they don't stumble on that, they will continue to have the lead. >> If they say stay neutral, as Sam is, has been saying, that, hey, Microsoft is one of our partners, if you look at their company model, how they have structured the company, then they're going to pay back to the investors, like Microsoft is the biggest one, up to certain, like by certain number of years, they're going to pay back from all the money they make, and after that, they're going to give the money back to the public, to the, I don't know who they give it to, like non-profit or something. (indistinct) >> Okay, the odds are dropping. (group talks over each other) That's a good point though >> Actually they might have done that to fend off the criticism of this. But it's really interesting to see the model they have adopted. >> The wildcard in all this, My last word on this is that, if there's a developer shift in how developers and data can come together again, we have conferences around the future of data, Supercloud and meshs versus, you know, how the data world, coding with data, how that evolves will also dictate, 'cause a wild card could be a shift in the landscape around how developers are using either machine learning or AI like techniques to code into their apps, so. >> That's fantastic insight. I can't thank you enough for your time, on the heels of Supercloud 2, really appreciate it. All right, thanks to John and Sarbjeet for the outstanding conversation today. Special thanks to the Palo Alto studio team. My goodness, Anderson, this great backdrop. You guys got it all out here, I'm jealous. And Noah, really appreciate it, Chuck, Andrew Frick and Cameron, Andrew Frick switching, Cameron on the video lake, great job. And Alex Myerson, he's on production, manages the podcast for us, Ken Schiffman as well. Kristen Martin and Cheryl Knight help get the word out on social media and our newsletters. Rob Hof is our editor-in-chief over at SiliconANGLE, does some great editing, thanks to all. Remember, all these episodes are available as podcasts. All you got to do is search Breaking Analysis podcast, wherever you listen. Publish each week on wikibon.com and siliconangle.com. Want to get in touch, email me directly, david.vellante@siliconangle.com or DM me at dvellante, or comment on our LinkedIn post. And by all means, check out etr.ai. They got really great survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, We'll see you next time on Breaking Analysis. (electronic music)
SUMMARY :
bringing you data-driven and ChatGPT have taken the world by storm. So I asked it, give it to the large language models to do that. So to your point, it's So one of the problems with ChatGPT, and he simply gave the system the prompts, or the OS to help it do but it kind of levels the playing- and the answers were coming as the data you can get. Yeah, and leveled to certain extent. I check the facts, save me about maybe- and then I write a killer because like if the it's, the law is we, you know, I think that's true and I ask the set of similar question, What's your counter point? and not it's underestimated long term. That's what he said. for the first time, wow. the overhyped at the No, it was, it was I got, right I mean? the internet in the early days, and it's only going to get better." So you're saying it's bifurcated. and possibly the debate the first mobile device. So I mean. on the right with ChatGPT, and convicted by the Department of Justice the scrutiny from the Fed, right, so- And the privacy and thing to do what Sam Altman- So even though it'll get like, you know, it's- It's more than clever. I mean you write- I think that's a big thing. I think he was doing- I was not impressed because You know like. And he did the same thing he's got a lot of hyperbole. the browser moment to me, So OpenAI could stay on the right side You're right, it was terrible, They could be the Netscape Navigator, and in the horizontal axis's So I guess that's the other point is, I mean to quote IBM's So the data problem factors and the government's around the world, and they're slow to catch up. Yeah, and now they got years, you know, OpenAI. But the problem with government to kill Big Tech, and the 20% is probably relevant, back in the day, right? are they going to apply it? and also to write code as well, that the marketplace I don't, I don't see you had an interesting comment. No, no. First of all, the AI chops that Google has, right? are off the scales, right? I mean they got to be and the capacity to process that data, on some of the thinking So Lina Kahn is looming, and this is the third, could be a third rail. But the first thing What they will do out the separate company Is it to charge you for a query? it's cool to type stuff in natural language is the way and how many cents the and they're going through Google search results. It will, because there were It'll be like, you know, I mean. I never input the transcript. Wow, But it was a big lie. but I call it the vanilla content. Make your point, cause we And on the danger side as well, So the data By the way, that means at the Supercloud event, So one of the VCs actually What do you make of it? you were like "Hundreds of millions." not 10, not a billion. Clearly, the CapEx spending to build all But I think it's not that hard. It's, what, you know This is the new economics Look at the amount of And Sam is depositioning all the success, or 150 or 200 million to train the model. So I think to compute is different. not because of the software. Because you can, buy They built the moat And then, you know, well that the Hudson and it was over. that are going to be seeping out. Yeah, it's like horse race, 3 to 1, 2 to 1, that's pretty low odds. I mean you got to say, I mean. Oh there's no question. is what you're saying. and if they don't stumble on that, the money back to the public, to the, Okay, the odds are dropping. the model they have adopted. Supercloud and meshs versus, you know, on the heels of Supercloud
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Sarbjeet | PERSON | 0.99+ |
Brian Gracely | PERSON | 0.99+ |
Lina Khan | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Reid Hoffman | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Lena Khan | PERSON | 0.99+ |
Sam Altman | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Rob Thomas | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
David Flynn | PERSON | 0.99+ |
Sam | PERSON | 0.99+ |
Noah | PERSON | 0.99+ |
Ray Amara | PERSON | 0.99+ |
10 billion | QUANTITY | 0.99+ |
150 | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Chuck | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Howie Xu | PERSON | 0.99+ |
Anderson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Hewlett Packard | ORGANIZATION | 0.99+ |
Santa Cruz | LOCATION | 0.99+ |
1995 | DATE | 0.99+ |
Lina Kahn | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
50 words | QUANTITY | 0.99+ |
Hundreds of millions | QUANTITY | 0.99+ |
Compaq | ORGANIZATION | 0.99+ |
10 | QUANTITY | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
two sentences | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
hundreds of millions | QUANTITY | 0.99+ |
Satya Nadella | PERSON | 0.99+ |
Cameron | PERSON | 0.99+ |
100 million | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
one sentence | QUANTITY | 0.99+ |
10 million | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Clay Christensen | PERSON | 0.99+ |
Sarbjeet Johal | PERSON | 0.99+ |
Netscape | ORGANIZATION | 0.99+ |
Breaking Analysis: Supercloud2 Explores Cloud Practitioner Realities & the Future of Data Apps
>> Narrator: From theCUBE Studios in Palo Alto and Boston bringing you data-driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante >> Enterprise tech practitioners, like most of us they want to make their lives easier so they can focus on delivering more value to their businesses. And to do so, they want to tap best of breed services in the public cloud, but at the same time connect their on-prem intellectual property to emerging applications which drive top line revenue and bottom line profits. But creating a consistent experience across clouds and on-prem estates has been an elusive capability for most organizations, forcing trade-offs and injecting friction into the system. The need to create seamless experiences is clear and the technology industry is starting to respond with platforms, architectures, and visions of what we've called the Supercloud. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis we give you a preview of Supercloud 2, the second event of its kind that we've had on the topic. Yes, folks that's right Supercloud 2 is here. As of this recording, it's just about four days away 33 guests, 21 sessions, combining live discussions and fireside chats from theCUBE's Palo Alto Studio with prerecorded conversations on the future of cloud and data. You can register for free at supercloud.world. And we are super excited about the Supercloud 2 lineup of guests whereas Supercloud 22 in August, was all about refining the definition of Supercloud testing its technical feasibility and understanding various deployment models. Supercloud 2 features practitioners, technologists and analysts discussing what customers need with real-world examples of Supercloud and will expose thinking around a new breed of cross-cloud apps, data apps, if you will that change the way machines and humans interact with each other. Now the example we'd use if you think about applications today, say a CRM system, sales reps, what are they doing? They're entering data into opportunities they're choosing products they're importing contacts, et cetera. And sure the machine can then take all that data and spit out a forecast by rep, by region, by product, et cetera. But today's applications are largely about filling in forms and or codifying processes. In the future, the Supercloud community sees a new breed of applications emerging where data resides on different clouds, in different data storages, databases, Lakehouse, et cetera. And the machine uses AI to inspect the e-commerce system the inventory data, supply chain information and other systems, and puts together a plan without any human intervention whatsoever. Think about a system that orchestrates people, places and things like an Uber for business. So at Supercloud 2, you'll hear about this vision along with some of today's challenges facing practitioners. Zhamak Dehghani, the founder of Data Mesh is a headliner. Kit Colbert also is headlining. He laid out at the first Supercloud an initial architecture for what that's going to look like. That was last August. And he's going to present his most current thinking on the topic. Veronika Durgin of Sachs will be featured and talk about data sharing across clouds and you know what she needs in the future. One of the main highlights of Supercloud 2 is a dive into Walmart's Supercloud. Other featured practitioners include Western Union Ionis Pharmaceuticals, Warner Media. We've got deep, deep technology dives with folks like Bob Muglia, David Flynn Tristan Handy of DBT Labs, Nir Zuk, the founder of Palo Alto Networks focused on security. Thomas Hazel, who's going to talk about a new type of database for Supercloud. It's several analysts including Keith Townsend Maribel Lopez, George Gilbert, Sanjeev Mohan and so many more guests, we don't have time to list them all. They're all up on supercloud.world with a full agenda, so you can check that out. Now let's take a look at some of the things that we're exploring in more detail starting with the Walmart Cloud native platform, they call it WCNP. We definitely see this as a Supercloud and we dig into it with Jack Greenfield. He's the head of architecture at Walmart. Here's a quote from Jack. "WCNP is an implementation of Kubernetes for the Walmart ecosystem. We've taken Kubernetes off the shelf as open source." By the way, they do the same thing with OpenStack. "And we have integrated it with a number of foundational services that provide other aspects of our computational environment. Kubernetes off the shelf doesn't do everything." And so what Walmart chose to do, they took a do-it-yourself approach to build a Supercloud for a variety of reasons that Jack will explain, along with Walmart's so-called triplet architecture connecting on-prem, Azure and GCP. No surprise, there's no Amazon at Walmart for obvious reasons. And what they do is they create a common experience for devs across clouds. Jack is going to talk about how Walmart is evolving its Supercloud in the future. You don't want to miss that. Now, next, let's take a look at how Veronica Durgin of SAKS thinks about data sharing across clouds. Data sharing we think is a potential killer use case for Supercloud. In fact, let's hear it in Veronica's own words. Please play the clip. >> How do we talk to each other? And more importantly, how do we data share? You know, I work with data, you know this is what I do. So if you know I want to get data from a company that's using, say Google, how do we share it in a smooth way where it doesn't have to be this crazy I don't know, SFTP file moving? So that's where I think Supercloud comes to me in my mind, is like practical applications. How do we create that mesh, that network that we can easily share data with each other? >> Now data mesh is a possible architectural approach that will enable more facile data sharing and the monetization of data products. You'll hear Zhamak Dehghani live in studio talking about what standards are missing to make this vision a reality across the Supercloud. Now one of the other things that we're really excited about is digging deeper into the right approach for Supercloud adoption. And we're going to share a preview of a debate that's going on right now in the community. Bob Muglia, former CEO of Snowflake and Microsoft Exec was kind enough to spend some time looking at the community's supercloud definition and he felt that it needed to be simplified. So in near real time he came up with the following definition that we're showing here. I'll read it. "A Supercloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers." So not only did Bob simplify the initial definition he's stressed that the Supercloud is a platform versus an architecture implying that the platform provider eg Snowflake, VMware, Databricks, Cohesity, et cetera is responsible for determining the architecture. Now interestingly in the shared Google doc that the working group uses to collaborate on the supercloud de definition, Dr. Nelu Mihai who is actually building a Supercloud responded as follows to Bob's assertion "We need to avoid creating many Supercloud platforms with their own architectures. If we do that, then we create other proprietary clouds on top of existing ones. We need to define an architecture of how Supercloud interfaces with all other clouds. What is the information model? What is the execution model and how users will interact with Supercloud?" What does this seemingly nuanced point tell us and why does it matter? Well, history suggests that de facto standards will emerge more quickly to resolve real world practitioner problems and catch on more quickly than consensus-based architectures and standards-based architectures. But in the long run, the ladder may serve customers better. So we'll be exploring this topic in more detail in Supercloud 2, and of course we'd love to hear what you think platform, architecture, both? Now one of the real technical gurus that we'll have in studio at Supercloud two is David Flynn. He's one of the people behind the the movement that enabled enterprise flash adoption, that craze. And he did that with Fusion IO and he is now working on a system to enable read write data access to any user in any application in any data center or on any cloud anywhere. So think of this company as a Supercloud enabler. Allow me to share an excerpt from a conversation David Flore and I had with David Flynn last year. He as well gave a lot of thought to the Supercloud definition and was really helpful with an opinionated point of view. He said something to us that was, we thought relevant. "What is the operating system for a decentralized cloud? The main two functions of an operating system or an operating environment are one the process scheduler and two, the file system. The strongest argument for supercloud is made when you go down to the platform layer and talk about it as an operating environment on which you can run all forms of applications." So a couple of implications here that will be exploring with David Flynn in studio. First we're inferring from his comment that he's in the platform camp where the platform owner is responsible for the architecture and there are obviously trade-offs there and benefits but we'll have to clarify that with him. And second, he's basically saying, you kill the concept the further you move up the stack. So the weak, the further you move the stack the weaker the supercloud argument becomes because it's just becoming SaaS. Now this is something we're going to explore to better understand is thinking on this, but also whether the existing notion of SaaS is changing and whether or not a new breed of Supercloud apps will emerge. Which brings us to this really interesting fellow that George Gilbert and I RIFed with ahead of Supercloud two. Tristan Handy, he's the founder and CEO of DBT Labs and he has a highly opinionated and technical mind. Here's what he said, "One of the things that we still don't know how to API-ify is concepts that live inside of your data warehouse inside of your data lake. These are core concepts that the business should be able to create applications around very easily. In fact, that's not the case because it involves a lot of data engineering pipeline and other work to make these available. So if you really want to make it easy to create these data experiences for users you need to have an ability to describe these metrics and then to turn them into APIs to make them accessible to application developers who have literally no idea how they're calculated behind the scenes and they don't need to." A lot of implications to this statement that will explore at Supercloud two versus Jamma Dani's data mesh comes into play here with her critique of hyper specialized data pipeline experts with little or no domain knowledge. Also the need for simplified self-service infrastructure which Kit Colbert is likely going to touch upon. Veronica Durgin of SAKS and her ideal state for data shearing along with Harveer Singh of Western Union. They got to deal with 200 locations around the world in data privacy issues, data sovereignty how do you share data safely? Same with Nick Taylor of Ionis Pharmaceutical. And not to blow your mind but Thomas Hazel and Bob Muglia deposit that to make data apps a reality across the Supercloud you have to rethink everything. You can't just let in memory databases and caching architectures take care of everything in a brute force manner. Rather you have to get down to really detailed levels even things like how data is laid out on disk, ie flash and think about rewriting applications for the Supercloud and the MLAI era. All of this and more at Supercloud two which wouldn't be complete without some data. So we pinged our friends from ETR Eric Bradley and Darren Bramberm to see if they had any data on Supercloud that we could tap. And so we're going to be analyzing a number of the players as well at Supercloud two. Now, many of you are familiar with this graphic here we show some of the players involved in delivering or enabling Supercloud-like capabilities. On the Y axis is spending momentum and on the horizontal accesses market presence or pervasiveness in the data. So netscore versus what they call overlap or end in the data. And the table insert shows how the dots are plotted now not to steal ETR's thunder but the first point is you really can't have supercloud without the hyperscale cloud platforms which is shown on this graphic. But the exciting aspect of Supercloud is the opportunity to build value on top of that hyperscale infrastructure. Snowflake here continues to show strong spending velocity as those Databricks, Hashi, Rubrik. VMware Tanzu, which we all put under the magnifying glass after the Broadcom announcements, is also showing momentum. Unfortunately due to a scheduling conflict we weren't able to get Red Hat on the program but they're clearly a player here. And we've put Cohesity and Veeam on the chart as well because backup is a likely use case across clouds and on-premises. And now one other call out that we drill down on at Supercloud two is CloudFlare, which actually uses the term supercloud maybe in a different way. They look at Supercloud really as you know, serverless on steroids. And so the data brains at ETR will have more to say on this topic at Supercloud two along with many others. Okay, so why should you attend Supercloud two? What's in it for me kind of thing? So first of all, if you're a practitioner and you want to understand what the possibilities are for doing cross-cloud services for monetizing data how your peers are doing data sharing, how some of your peers are actually building out a Supercloud you're going to get real world input from practitioners. If you're a technologist, you're trying to figure out various ways to solve problems around data, data sharing, cross-cloud service deployment there's going to be a number of deep technology experts that are going to share how they're doing it. We're also going to drill down with Walmart into a practical example of Supercloud with some other examples of how practitioners are dealing with cross-cloud complexity. Some of them, by the way, are kind of thrown up their hands and saying, Hey, we're going mono cloud. And we'll talk about the potential implications and dangers and risks of doing that. And also some of the benefits. You know, there's a question, right? Is Supercloud the same wine new bottle or is it truly something different that can drive substantive business value? So look, go to Supercloud.world it's January 17th at 9:00 AM Pacific. You can register for free and participate directly in the program. Okay, that's a wrap. I want to give a shout out to the Supercloud supporters. VMware has been a great partner as our anchor sponsor Chaos Search Proximo, and Alura as well. For contributing to the effort I want to thank Alex Myerson who's on production and manages the podcast. Ken Schiffman is his supporting cast as well. Kristen Martin and Cheryl Knight to help get the word out on social media and at our newsletters. And Rob Ho is our editor-in-chief over at Silicon Angle. Thank you all. Remember, these episodes are all available as podcast. Wherever you listen we really appreciate the support that you've given. We just saw some stats from from Buzz Sprout, we hit the top 25% we're almost at 400,000 downloads last year. So really appreciate your participation. All you got to do is search Breaking Analysis podcast and you'll find those I publish each week on wikibon.com and siliconangle.com. Or if you want to get ahold of me you can email me directly at David.Vellante@siliconangle.com or dm me DVellante or comment on our LinkedIn post. I want you to check out etr.ai. They've got the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. We'll see you next week at Supercloud two or next time on breaking analysis. (light music)
SUMMARY :
with Dave Vellante of the things that we're So if you know I want to get data and on the horizontal
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Bob Muglia | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
David Flynn | PERSON | 0.99+ |
Veronica | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
Nick Taylor | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Veronica Durgin | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Rob Ho | PERSON | 0.99+ |
Warner Media | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Veronika Durgin | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Ionis Pharmaceutical | ORGANIZATION | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
David Flore | PERSON | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Bob | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
21 sessions | QUANTITY | 0.99+ |
Darren Bramberm | PERSON | 0.99+ |
33 guests | QUANTITY | 0.99+ |
Nir Zuk | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Harveer Singh | PERSON | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Sanjeev Mohan | PERSON | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
Cohesity | ORGANIZATION | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
200 locations | QUANTITY | 0.99+ |
August | DATE | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
Data Mesh | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
David.Vellante@siliconangle.com | OTHER | 0.99+ |
next week | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first point | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.98+ |
Silicon Angle | ORGANIZATION | 0.98+ |
ETR | ORGANIZATION | 0.98+ |
Eric Bradley | PERSON | 0.98+ |
two | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Sachs | ORGANIZATION | 0.98+ |
SAKS | ORGANIZATION | 0.98+ |
Supercloud | EVENT | 0.98+ |
last August | DATE | 0.98+ |
each week | QUANTITY | 0.98+ |
Breaking Analysis: AI Goes Mainstream But ROI Remains Elusive
>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR, this is "Breaking Analysis" with Dave Vellante. >> A decade of big data investments combined with cloud scale, the rise of much more cost effective processing power. And the introduction of advanced tooling has catapulted machine intelligence to the forefront of technology investments. No matter what job you have, your operation will be AI powered within five years and machines may actually even be doing your job. Artificial intelligence is being infused into applications, infrastructure, equipment, and virtually every aspect of our lives. AI is proving to be extremely helpful at things like controlling vehicles, speeding up medical diagnoses, processing language, advancing science, and generally raising the stakes on what it means to apply technology for business advantage. But business value realization has been a challenge for most organizations due to lack of skills, complexity of programming models, immature technology integration, sizable upfront investments, ethical concerns, and lack of business alignment. Mastering AI technology will not be a requirement for success in our view. However, figuring out how and where to apply AI to your business will be crucial. That means understanding the business case, picking the right technology partner, experimenting in bite-sized chunks, and quickly identifying winners to double down on from an investment standpoint. Hello and welcome to this week's Wiki-bond CUBE Insights powered by ETR. In this breaking analysis, we update you on the state of AI and what it means for the competition. And to do so, we invite into our studios Andy Thurai of Constellation Research. Andy covers AI deeply. He knows the players, he knows the pitfalls of AI investment, and he's a collaborator. Andy, great to have you on the program. Thanks for coming into our CUBE studios. >> Thanks for having me on. >> You're very welcome. Okay, let's set the table with a premise and a series of assertions we want to test with Andy. I'm going to lay 'em out. And then Andy, I'd love for you to comment. So, first of all, according to McKinsey, AI adoption has more than doubled since 2017, but only 10% of organizations report seeing significant ROI. That's a BCG and MIT study. And part of that challenge of AI is it requires data, is requires good data, data proficiency, which is not trivial, as you know. Firms that can master both data and AI, we believe are going to have a competitive advantage this decade. Hyperscalers, as we show you dominate AI and ML. We'll show you some data on that. And having said that, there's plenty of room for specialists. They need to partner with the cloud vendors for go to market productivity. And finally, organizations increasingly have to put data and AI at the center of their enterprises. And to do that, most are going to rely on vendor R&D to leverage AI and ML. In other words, Andy, they're going to buy it and apply it as opposed to build it. What are your thoughts on that setup and that premise? >> Yeah, I see that a lot happening in the field, right? So first of all, the only 10% of realizing a return on investment. That's so true because we talked about this earlier, the most companies are still in the innovation cycle. So they're trying to innovate and see what they can do to apply. A lot of these times when you look at the solutions, what they come up with or the models they create, the experimentation they do, most times they don't even have a good business case to solve, right? So they just experiment and then they figure it out, "Oh my God, this model is working. Can we do something to solve it?" So it's like you found a hammer and then you're trying to find the needle kind of thing, right? That never works. >> 'Cause it's cool or whatever it is. >> It is, right? So that's why, I always advise, when they come to me and ask me things like, "Hey, what's the right way to do it? What is the secret sauce?" And, we talked about this. The first thing I tell them is, "Find out what is the business case that's having the most amount of problems, that that can be solved using some of the AI use cases," right? Not all of them can be solved. Even after you experiment, do the whole nine yards, spend millions of dollars on that, right? And later on you make it efficient only by saving maybe $50,000 for the company or a $100,000 for the company, is it really even worth the experiment, right? So you got to start with the saying that, you know, where's the base for this happening? Where's the need? What's a business use case? It doesn't have to be about cost efficient and saving money in the existing processes. It could be a new thing. You want to bring in a new revenue stream, but figure out what is a business use case, how much money potentially I can make off of that. The same way that start-ups go after. Right? >> Yeah. Pretty straightforward. All right, let's take a look at where ML and AI fit relative to the other hot sectors of the ETR dataset. This XY graph shows net score spending velocity in the vertical axis and presence in the survey, they call it sector perversion for the October survey, the January survey's in the field. Then that squiggly line on ML/AI represents the progression. Since the January 21 survey, you can see the downward trajectory. And we position ML and AI relative to the other big four hot sectors or big three, including, ML/AI is four. Containers, cloud and RPA. These have consistently performed above that magic 40% red dotted line for most of the past two years. Anything above 40%, we think is highly elevated. And we've just included analytics and big data for context and relevant adjacentness, if you will. Now note that green arrow moving toward, you know, the 40% mark on ML/AI. I got a glimpse of the January survey, which is in the field. It's got more than a thousand responses already, and it's trending up for the current survey. So Andy, what do you make of this downward trajectory over the past seven quarters and the presumed uptick in the coming months? >> So one of the things you have to keep in mind is when the pandemic happened, it's about survival mode, right? So when somebody's in a survival mode, what happens, the luxury and the innovations get cut. That's what happens. And this is exactly what happened in the situation. So as you can see in the last seven quarters, which is almost dating back close to pandemic, everybody was trying to keep their operations alive, especially digital operations. How do I keep the lights on? That's the most important thing for them. So while the numbers spent on AI, ML is less overall, I still think the AI ML to spend to sort of like a employee experience or the IT ops, AI ops, ML ops, as we talked about, some of those areas actually went up. There are companies, we talked about it, Atlassian had a lot of platform issues till the amount of money people are spending on that is exorbitant and simply because they are offering the solution that was not available other way. So there are companies out there, you can take AoPS or incident management for that matter, right? A lot of companies have a digital insurance, they don't know how to properly manage it. How do you find an intern solve it immediately? That's all using AI ML and some of those areas actually growing unbelievable, the companies in that area. >> So this is a really good point. If you can you bring up that chart again, what Andy's saying is a lot of the companies in the ETR taxonomy that are doing things with AI might not necessarily show up in a granular fashion. And I think the other point I would make is, these are still highly elevated numbers. If you put on like storage and servers, they would read way, way down the list. And, look in the pandemic, we had to deal with work from home, we had to re-architect the network, we had to worry about security. So those are really good points that you made there. Let's, unpack this a little bit and look at the ML AI sector and the ETR data and specifically at the players and get Andy to comment on this. This chart here shows the same x y dimensions, and it just notes some of the players that are specifically have services and products that people spend money on, that CIOs and IT buyers can comment on. So the table insert shows how the companies are plotted, it's net score, and then the ends in the survey. And Andy, the hyperscalers are dominant, as you can see. You see Databricks there showing strong as a specialist, and then you got to pack a six or seven in there. And then Oracle and IBM, kind of the big whales of yester year are in the mix. And to your point, companies like Salesforce that you mentioned to me offline aren't in that mix, but they do a lot in AI. But what are your takeaways from that data? >> If you could put the slide back on please. I want to make quick comments on a couple of those. So the first one is, it's surprising other hyperscalers, right? As you and I talked about this earlier, AWS is more about logo blocks. We discussed that, right? >> Like what? Like a SageMaker as an example. >> We'll give you all the components what do you need. Whether it's MLOps component or whether it's, CodeWhisperer that we talked about, or a oral platform or data or data, whatever you want. They'll give you the blocks and then you'll build things on top of it, right? But Google took a different way. Matter of fact, if we did those numbers a few years ago, Google would've been number one because they did a lot of work with their acquisition of DeepMind and other things. They're way ahead of the pack when it comes to AI for longest time. Now, I think Microsoft's move of partnering and taking a huge competitor out would open the eyes is unbelievable. You saw that everybody is talking about chat GPI, right? And the open AI tool and ChatGPT rather. Remember as Warren Buffet is saying that, when my laundry lady comes and talk to me about stock market, it's heated up. So that's how it's heated up. Everybody's using ChatGPT. What that means is at the end of the day is they're creating, it's still in beta, keep in mind. It's not fully... >> Can you play with it a little bit? >> I have a little bit. >> I have, but it's good and it's not good. You know what I mean? >> Look, so at the end of the day, you take the massive text of all the available text in the world today, mass them all together. And then you ask a question, it's going to basically search through that and figure it out and answer that back. Yes, it's good. But again, as we discussed, if there's no business use case of what problem you're going to solve. This is building hype. But then eventually they'll figure out, for example, all your chats, online chats, could be aided by your AI chat bots, which is already there, which is not there at that level. This could build help that, right? Or the other thing we talked about is one of the areas where I'm more concerned about is that it is able to produce equal enough original text at the level that humans can produce, for example, ChatGPT or the equal enough, the large language transformer can help you write stories as of Shakespeare wrote it. Pretty close to it. It'll learn from that. So when it comes down to it, talk about creating messages, articles, blogs, especially during political seasons, not necessarily just in US, but anywhere for that matter. If people are able to produce at the emission speed and throw it at the consumers and confuse them, the elections can be won, the governments can be toppled. >> Because to your point about chatbots is chatbots have obviously, reduced the number of bodies that you need to support chat. But they haven't solved the problem of serving consumers. Most of the chat bots are conditioned response, which of the following best describes your problem? >> The current chatbot. >> Yeah. Hey, did we solve your problem? No. Is the answer. So that has some real potential. But if you could bring up that slide again, Ken, I mean you've got the hyperscalers that are dominant. You talked about Google and Microsoft is ubiquitous, they seem to be dominant in every ETR category. But then you have these other specialists. How do those guys compete? And maybe you could even, cite some of the guys that you know, how do they compete with the hyperscalers? What's the key there for like a C3 ai or some of the others that are on there? >> So I've spoken with at least two of the CEOs of the smaller companies that you have on the list. One of the things they're worried about is that if they continue to operate independently without being part of hyperscaler, either the hyperscalers will develop something to compete against them full scale, or they'll become irrelevant. Because at the end of the day, look, cloud is dominant. Not many companies are going to do like AI modeling and training and deployment the whole nine yards by independent by themselves. They're going to depend on one of the clouds, right? So if they're already going to be in the cloud, by taking them out to come to you, it's going to be extremely difficult issue to solve. So all these companies are going and saying, "You know what? We need to be in hyperscalers." For example, you could have looked at DataRobot recently, they made announcements, Google and AWS, and they are all over the place. So you need to go where the customers are. Right? >> All right, before we go on, I want to share some other data from ETR and why people adopt AI and get your feedback. So the data historically shows that feature breadth and technical capabilities were the main decision points for AI adoption, historically. What says to me that it's too much focus on technology. In your view, is that changing? Does it have to change? Will it change? >> Yes. Simple answer is yes. So here's the thing. The data you're speaking from is from previous years. >> Yes >> I can guarantee you, if you look at the latest data that's coming in now, those two will be a secondary and tertiary points. The number one would be about ROI. And how do I achieve? I've spent ton of money on all of my experiments. This is the same thing theme I'm seeing across when talking to everybody who's spending money on AI. I've spent so much money on it. When can I get it live in production? How much, how can I quickly get it? Because you know, the board is breathing down their neck. You already spend this much money. Show me something that's valuable. So the ROI is going to become, take it from me, I'm predicting this for 2023, that's going to become number one. >> Yeah, and if people focus on it, they'll figure it out. Okay. Let's take a look at some of the top players that won, some of the names we just looked at and double click on that and break down their spending profile. So the chart here shows the net score, how net score is calculated. So pay attention to the second set of bars that Databricks, who was pretty prominent on the previous chart. And we've annotated the colors. The lime green is, we're bringing the platform in new. The forest green is, we're going to spend 6% or more relative to last year. And the gray is flat spending. The pinkish is our spending's going to be down on AI and ML, 6% or worse. And the red is churn. So you don't want big red. You subtract the reds from the greens and you get net score, which is shown by those blue dots that you see there. So AWS has the highest net score and very little churn. I mean, single low single digit churn. But notably, you see Databricks and DataRobot are next in line within Microsoft and Google also, they've got very low churn. Andy, what are your thoughts on this data? >> So a couple of things that stands out to me. Most of them are in line with my conversation with customers. Couple of them stood out to me on how bad IBM Watson is doing. >> Yeah, bring that back up if you would. Let's take a look at that. IBM Watson is the far right and the red, that bright red is churning and again, you want low red here. Why do you think that is? >> Well, so look, IBM has been in the forefront of innovating things for many, many years now, right? And over the course of years we talked about this, they moved from a product innovation centric company into more of a services company. And over the years they were making, as at one point, you know that they were making about majority of that money from services. Now things have changed Arvind has taken over, he came from research. So he's doing a great job of trying to reinvent themselves as a company. But it's going to have a long way to catch up. IBM Watson, if you think about it, that played what, jeopardy and chess years ago, like 15 years ago? >> It was jaw dropping when you first saw it. And then they weren't able to commercialize that. >> Yeah. >> And you're making a good point. When Gerstner took over IBM at the time, John Akers wanted to split the company up. He wanted to have a database company, he wanted to have a storage company. Because that's where the industry trend was, Gerstner said no, he came from AMEX, right? He came from American Express. He said, "No, we're going to have a single throat to choke for the customer." They bought PWC for relatively short money. I think it was $15 billion, completely transformed and I would argue saved IBM. But the trade off was, it sort of took them out of product leadership. And so from Gerstner to Palmisano to Remedi, it was really a services led company. And I think Arvind is really bringing it back to a product company with strong consulting. I mean, that's one of the pillars. And so I think that's, they've got a strong story in data and AI. They just got to sort of bring it together and better. Bring that chart up one more time. I want to, the other point is Oracle, Oracle sort of has the dominant lock-in for mission critical database and they're sort of applying AI there. But to your point, they're really not an AI company in the sense that they're taking unstructured data and doing sort of new things. It's really about how to make Oracle better, right? >> Well, you got to remember, Oracle is about database for the structure data. So in yesterday's world, they were dominant database. But you know, if you are to start storing like videos and texts and audio and other things, and then start doing search of vector search and all that, Oracle is not necessarily the database company of choice. And they're strongest thing being apps and building AI into the apps? They are kind of surviving in that area. But again, I wouldn't name them as an AI company, right? But the other thing that that surprised me in that list, what you showed me is yes, AWS is number one. >> Bring that back up if you would, Ken. >> AWS is number one as you, it should be. But what what actually caught me by surprise is how DataRobot is holding, you know? I mean, look at that. The either net new addition and or expansion, DataRobot seem to be doing equally well, even better than Microsoft and Google. That surprises me. >> DataRobot's, and again, this is a function of spending momentum. So remember from the previous chart that Microsoft and Google, much, much larger than DataRobot. DataRobot more niche. But with spending velocity and has always had strong spending velocity, despite some of the recent challenges, organizational challenges. And then you see these other specialists, H2O.ai, Anaconda, dataiku, little bit of red showing there C3.ai. But these again, to stress are the sort of specialists other than obviously the hyperscalers. These are the specialists in AI. All right, so we hit the bigger names in the sector. Now let's take a look at the emerging technology companies. And one of the gems of the ETR dataset is the emerging technology survey. It's called ETS. They used to just do it like twice a year. It's now run four times a year. I just discovered it kind of mid-2022. And it's exclusively focused on private companies that are potential disruptors, they might be M&A candidates and if they've raised enough money, they could be acquirers of companies as well. So Databricks would be an example. They've made a number of investments in companies. SNEAK would be another good example. Companies that are private, but they're buyers, they hope to go IPO at some point in time. So this chart here, shows the emerging companies in the ML AI sector of the ETR dataset. So the dimensions of this are similar, they're net sentiment on the Y axis and mind share on the X axis. Basically, the ETS study measures awareness on the x axis and intent to do something with, evaluate or implement or not, on that vertical axis. So it's like net score on the vertical where negatives are subtracted from the positives. And again, mind share is vendor awareness. That's the horizontal axis. Now that inserted table shows net sentiment and the ends in the survey, which informs the position of the dots. And you'll notice we're plotting TensorFlow as well. We know that's not a company, but it's there for reference as open source tooling is an option for customers. And ETR sometimes like to show that as a reference point. Now we've also drawn a line for Databricks to show how relatively dominant they've become in the past 10 ETS surveys and sort of mind share going back to late 2018. And you can see a dozen or so other emerging tech vendors. So Andy, I want you to share your thoughts on these players, who were the ones to watch, name some names. We'll bring that data back up as you as you comment. >> So Databricks, as you said, remember we talked about how Oracle is not necessarily the database of the choice, you know? So Databricks is kind of trying to solve some of the issue for AI/ML workloads, right? And the problem is also there is no one company that could solve all of the problems. For example, if you look at the names in here, some of them are database names, some of them are platform names, some of them are like MLOps companies like, DataRobot (indistinct) and others. And some of them are like future based companies like, you know, the Techton and stuff. >> So it's a mix of those sub sectors? >> It's a mix of those companies. >> We'll talk to ETR about that. They'd be interested in your input on how to make this more granular and these sub-sectors. You got Hugging Face in here, >> Which is NLP, yeah. >> Okay. So your take, are these companies going to get acquired? Are they going to go IPO? Are they going to merge? >> Well, most of them going to get acquired. My prediction would be most of them will get acquired because look, at the end of the day, hyperscalers need these capabilities, right? So they're going to either create their own, AWS is very good at doing that. They have done a lot of those things. But the other ones, like for particularly Azure, they're going to look at it and saying that, "You know what, it's going to take time for me to build this. Why don't I just go and buy you?" Right? Or or even the smaller players like Oracle or IBM Cloud, this will exist. They might even take a look at them, right? So at the end of the day, a lot of these companies are going to get acquired or merged with others. >> Yeah. All right, let's wrap with some final thoughts. I'm going to make some comments Andy, and then ask you to dig in here. Look, despite the challenge of leveraging AI, you know, Ken, if you could bring up the next chart. We're not repeating, we're not predicting the AI winter of the 1990s. Machine intelligence. It's a superpower that's going to permeate every aspect of the technology industry. AI and data strategies have to be connected. Leveraging first party data is going to increase AI competitiveness and shorten time to value. Andy, I'd love your thoughts on that. I know you've got some thoughts on governance and AI ethics. You know, we talked about ChatGBT, Deepfakes, help us unpack all these trends. >> So there's so much information packed up there, right? The AI and data strategy, that's very, very, very important. If you don't have a proper data, people don't realize that AI is, your AI is the morals that you built on, it's predominantly based on the data what you have. It's not, AI cannot predict something that's going to happen without knowing what it is. It need to be trained, it need to understand what is it you're talking about. So 99% of the time you got to have a good data for you to train. So this where I mentioned to you, the problem is a lot of these companies can't afford to collect the real world data because it takes too long, it's too expensive. So a lot of these companies are trying to do the synthetic data way. It has its own set of issues because you can't use all... >> What's that synthetic data? Explain that. >> Synthetic data is basically not a real world data, but it's a created or simulated data equal and based on real data. It looks, feels, smells, taste like a real data, but it's not exactly real data, right? This is particularly useful in the financial and healthcare industry for world. So you don't have to, at the end of the day, if you have real data about your and my medical history data, if you redact it, you can still reverse this. It's fairly easy, right? >> Yeah, yeah. >> So by creating a synthetic data, there is no correlation between the real data and the synthetic data. >> So that's part of AI ethics and privacy and, okay. >> So the synthetic data, the issue with that is that when you're trying to commingle that with that, you can't create models based on just on synthetic data because synthetic data, as I said is artificial data. So basically you're creating artificial models, so you got to blend in properly that that blend is the problem. And you know how much of real data, how much of synthetic data you could use. You got to use judgment between efficiency cost and the time duration stuff. So that's one-- >> And risk >> And the risk involved with that. And the secondary issues which we talked about is that when you're creating, okay, you take a business use case, okay, you think about investing things, you build the whole thing out and you're trying to put it out into the market. Most companies that I talk to don't have a proper governance in place. They don't have ethics standards in place. They don't worry about the biases in data, they just go on trying to solve a business case >> It's wild west. >> 'Cause that's what they start. It's a wild west! And then at the end of the day when they are close to some legal litigation action or something or something else happens and that's when the Oh Shit! moments happens, right? And then they come in and say, "You know what, how do I fix this?" The governance, security and all of those things, ethics bias, data bias, de-biasing, none of them can be an afterthought. It got to start with the, from the get-go. So you got to start at the beginning saying that, "You know what, I'm going to do all of those AI programs, but before we get into this, we got to set some framework for doing all these things properly." Right? And then the-- >> Yeah. So let's go back to the key points. I want to bring up the cloud again. Because you got to get cloud right. Getting that right matters in AI to the points that you were making earlier. You can't just be out on an island and hyperscalers, they're going to obviously continue to do well. They get more and more data's going into the cloud and they have the native tools. To your point, in the case of AWS, Microsoft's obviously ubiquitous. Google's got great capabilities here. They've got integrated ecosystems partners that are going to continue to strengthen through the decade. What are your thoughts here? >> So a couple of things. One is the last mile ML or last mile AI that nobody's talking about. So that need to be attended to. There are lot of players in the market that coming up, when I talk about last mile, I'm talking about after you're done with the experimentation of the model, how fast and quickly and efficiently can you get it to production? So that's production being-- >> Compressing that time is going to put dollars in your pocket. >> Exactly. Right. >> So once, >> If you got it right. >> If you get it right, of course. So there are, there are a couple of issues with that. Once you figure out that model is working, that's perfect. People don't realize, the moment you decide that moment when the decision is made, it's like a new car. After you purchase the value decreases on a minute basis. Same thing with the models. Once the model is created, you need to be in production right away because it starts losing it value on a seconds minute basis. So issue number one, how fast can I get it over there? So your deployment, you are inferencing efficiently at the edge locations, your optimization, your security, all of this is at issue. But you know what is more important than that in the last mile? You keep the model up, you continue to work on, again, going back to the car analogy, at one point you got to figure out your car is costing more than to operate. So you got to get a new car, right? And that's the same thing with the models as well. If your model has reached a stage, it is actually a potential risk for your operation. To give you an idea, if Uber has a model, the first time when you get a car from going from point A to B cost you $60. If the model decayed the next time I might give you a $40 rate, I would take it definitely. But it's lost for the company. The business risk associated with operating on a bad model, you should realize it immediately, pull the model out, retrain it, redeploy it. That's is key. >> And that's got to be huge in security model recency and security to the extent that you can get real time is big. I mean you, you see Palo Alto, CrowdStrike, a lot of other security companies are injecting AI. Again, they won't show up in the ETR ML/AI taxonomy per se as a pure play. But ServiceNow is another company that you have have mentioned to me, offline. AI is just getting embedded everywhere. >> Yep. >> And then I'm glad you brought up, kind of real-time inferencing 'cause a lot of the modeling, if we can go back to the last point that we're going to make, a lot of the AI today is modeling done in the cloud. The last point we wanted to make here, I'd love to get your thoughts on this, is real-time AI inferencing for instance at the edge is going to become increasingly important for us. It's going to usher in new economics, new types of silicon, particularly arm-based. We've covered that a lot on "Breaking Analysis", new tooling, new companies and that could disrupt the sort of cloud model if new economics emerge. 'Cause cloud obviously very centralized, they're trying to decentralize it. But over the course of this decade we could see some real disruption there. Andy, give us your final thoughts on that. >> Yes and no. I mean at the end of the day, cloud is kind of centralized now, but a lot of this companies including, AWS is kind of trying to decentralize that by putting their own sub-centers and edge locations. >> Local zones, outposts. >> Yeah, exactly. Particularly the outpost concept. And if it can even become like a micro center and stuff, it won't go to the localized level of, I go to a single IOT level. But again, the cloud extends itself to that level. So if there is an opportunity need for it, the hyperscalers will figure out a way to fit that model. So I wouldn't too much worry about that, about deployment and where to have it and what to do with that. But you know, figure out the right business use case, get the right data, get the ethics and governance place and make sure they get it to production and make sure you pull the model out when it's not operating well. >> Excellent advice. Andy, I got to thank you for coming into the studio today, helping us with this "Breaking Analysis" segment. Outstanding collaboration and insights and input in today's episode. Hope we can do more. >> Thank you. Thanks for having me. I appreciate it. >> You're very welcome. All right. I want to thank Alex Marson who's on production and manages the podcast. Ken Schiffman as well. Kristen Martin and Cheryl Knight helped get the word out on social media and our newsletters. And Rob Hoof is our editor-in-chief over at Silicon Angle. He does some great editing for us. Thank you all. Remember all these episodes are available as podcast. Wherever you listen, all you got to do is search "Breaking Analysis" podcast. I publish each week on wikibon.com and silicon angle.com or you can email me at david.vellante@siliconangle.com to get in touch, or DM me at dvellante or comment on our LinkedIn posts. Please check out ETR.AI for the best survey data and the enterprise tech business, Constellation Research. Andy publishes there some awesome information on AI and data. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching everybody and we'll see you next time on "Breaking Analysis". (gentle closing tune plays)
SUMMARY :
bringing you data-driven Andy, great to have you on the program. and AI at the center of their enterprises. So it's like you found a of the AI use cases," right? I got a glimpse of the January survey, So one of the things and it just notes some of the players So the first one is, Like a And the open AI tool and ChatGPT rather. I have, but it's of all the available text of bodies that you need or some of the others that are on there? One of the things they're So the data historically So here's the thing. So the ROI is going to So the chart here shows the net score, Couple of them stood out to me IBM Watson is the far right and the red, And over the course of when you first saw it. I mean, that's one of the pillars. Oracle is not necessarily the how DataRobot is holding, you know? So it's like net score on the vertical database of the choice, you know? on how to make this more Are they going to go IPO? So at the end of the day, of the technology industry. So 99% of the time you What's that synthetic at the end of the day, and the synthetic data. So that's part of AI that blend is the problem. And the risk involved with that. So you got to start at data's going into the cloud So that need to be attended to. is going to put dollars the first time when you that you can get real time is big. a lot of the AI today is I mean at the end of the day, and make sure they get it to production Andy, I got to thank you for Thanks for having me. and manages the podcast.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Alex Marson | PERSON | 0.99+ |
Andy | PERSON | 0.99+ |
Andy Thurai | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Tom Davenport | PERSON | 0.99+ |
AMEX | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Rashmi Kumar | PERSON | 0.99+ |
Rob Hoof | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Uber | ORGANIZATION | 0.99+ |
Ken | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
October | DATE | 0.99+ |
6% | QUANTITY | 0.99+ |
$40 | QUANTITY | 0.99+ |
January 21 | DATE | 0.99+ |
Chipotle | ORGANIZATION | 0.99+ |
$15 billion | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Rashmi | PERSON | 0.99+ |
$50,000 | QUANTITY | 0.99+ |
$60 | QUANTITY | 0.99+ |
US | LOCATION | 0.99+ |
January | DATE | 0.99+ |
Antonio | PERSON | 0.99+ |
John Akers | PERSON | 0.99+ |
Warren Buffet | PERSON | 0.99+ |
late 2018 | DATE | 0.99+ |
Ikea | ORGANIZATION | 0.99+ |
American Express | ORGANIZATION | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
PWC | ORGANIZATION | 0.99+ |
99% | QUANTITY | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
Domino | ORGANIZATION | 0.99+ |
Arvind | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
30 billion | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
Constellation Research | ORGANIZATION | 0.99+ |
Gerstner | PERSON | 0.99+ |
120 billion | QUANTITY | 0.99+ |
$100,000 | QUANTITY | 0.99+ |
Breaking Analysis: Cyber Firms Revert to the Mean
(upbeat music) >> From theCube Studios in Palo Alto in Boston, bringing you data driven insights from theCube and ETR. This is Breaking Analysis with Dave Vellante. >> While by no means a safe haven, the cybersecurity sector has outpaced the broader tech market by a meaningful margin, that is up until very recently. Cybersecurity remains the number one technology priority for the C-suite, but as we've previously reported the CISO's budget has constraints just like other technology investments. Recent trends show that economic headwinds have elongated sales cycles, pushed deals into future quarters, and just like other tech initiatives, are pacing cybersecurity investments and breaking them into smaller chunks. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis we explain how cybersecurity trends are reverting to the mean and tracking more closely with other technology investments. We'll make a couple of valuation comparisons to show the magnitude of the challenge and which cyber firms are feeling the heat, which aren't. There are some exceptions. We'll then show the latest survey data from ETR to quantify the contraction in spending momentum and close with a glimpse of the landscape of emerging cybersecurity companies, the private companies that could be ripe for acquisition, consolidation, or disruptive to the broader market. First, let's take a look at the recent patterns for cyber stocks relative to the broader tech market as a benchmark, as an indicator. Here's a year to date comparison of the bug ETF, which comprises a basket of cyber security names, and we compare that with the tech heavy NASDAQ composite. Notice that on April 13th of this year the cyber ETF was actually in positive territory while the NAS was down nearly 14%. Now by August 16th, the green turned red for cyber stocks but they still meaningfully outpaced the broader tech market by more than 950 basis points as of December 2nd that Delta had contracted. As you can see, the cyber ETF is now down nearly 25%, year to date, while the NASDAQ is down 27% and change. Now take a look at just how far a few of the high profile cybersecurity names have fallen. Here are six security firms that we've been tracking closely since before the pandemic. We've been, you know, tracking dozens but let's just take a look at this data and the subset. We show for comparison the S&P 500 and the NASDAQ, again, just for reference, they're both up since right before the pandemic. They're up relative to right before the pandemic, and then during the pandemic the S&P shot up more than 40%, relative to its pre pandemic level, around February is what we're using for the pre pandemic level, and the NASDAQ peaked at around 65% higher than that February level. They're now down 85% and 71% of their previous. So they're at 85% and 71% respectively from their pandemic highs. You compare that to these six companies, Splunk, which was and still is working through a transition is well below its pre pandemic market value and 44, it's 44% of its pre pandemic high as of last Friday. Palo Alto Networks is the most interesting here, in that it had been facing challenges prior to the pandemic related to a pivot to the Cloud which we reported on at the time. But as we said at that time we believe the company would sort out its Cloud transition, and its go to market challenges, and sales compensation issues, which it did as you can see. And its valuation jumped from 24 billion prior to Covid to 56 billion, and it's holding 93% of its peak value. Its revenue run rate is now over 6 billion with a healthy growth rate of 24% expected for the next quarter. Similarly, Fortinet has done relatively well holding 71% of its peak Covid value, with a healthy 34% revenue guide for the coming quarter. Now, Okta has been the biggest disappointment, a darling of the pandemic Okta's communication snafu, with what was actually a pretty benign hack combined with difficulty absorbing its 7 billion off zero acquisition, knocked the company off track. Its valuation has dropped by 35 billion since its peak during the pandemic, and that's after a nice beat and bounce back quarter just announced by Okta. Now, in our view Okta remains a viable long-term leader in identity. However, its recent fiscal 24 revenue guide was exceedingly conservative at around 16% growth. So either the company is sandbagging, or has such poor visibility that it wants to be like super cautious or maybe it's actually seeing a dramatic slowdown in its business momentum. After all, this is a company that not long ago was putting up 50% plus revenue growth rates. So it's one that bears close watching. CrowdStrike is another big name that we've been talking about on Breaking Analysis for quite some time. It like Okta has led the industry in a key ETR performance indicator that measures customer spending momentum. Just last week, CrowdStrike announced revenue increased more than 50% but new ARR was soft and the company guided conservatively. Not surprisingly, the stock got absolutely crushed as CrowdStrike blamed tepid demand from smaller and midsize firms. Many analysts believe that competition from Microsoft was one factor along with cautious spending amongst those midsize and smaller customers. Notably, large customers remain active. So we'll see if this is a longer term trend or an anomaly. Zscaler is another company in the space that we've reported having great customer spending momentum from the ETR data. But even though the company beat expectations for its recent quarter, like other companies its Outlook was conservative. So other than Palo Alto, and to a lesser extent Fortinet, these companies and others that we're not showing here are feeling the economic pinch and it shows in the compression of value. CrowdStrike, for example, had a 70 billion valuation at one point during the pandemic Zscaler top 50 billion, Okta 45 billion. Now, having said that Palo Alto Networks, Fortinet, CrowdStrike, and Zscaler are all still trading well above their pre pandemic levels that we tracked back in February of 2020. All right, let's go now back to ETR'S January survey and take a look at how much things have changed since the beginning of the year. Remember, this is obviously pre Ukraine, and pre all the concerns about the economic headwinds but here's an X Y graph that shows a net score, or spending momentum on the y-axis, and market presence on the x-axis. The red dotted line at 40% on the vertical indicates a highly elevated net score. Anything above that we think is, you know, super elevated. Now, we filtered the data here to show only those companies with more than 50 responses in the ETR survey. Still really crowded. Note that there were around 20 companies above that red 40% mark, which is a very, you know, high number. It's a, it's a crowded market, but lots of companies with, you know, positive momentum. Now let's jump ahead to the most recent October survey and take a look at what, what's happening. Same graphic plotting, spending momentum, and market presence, and look at the number of companies above that red line and how it's been squashed. It's really compressing, it's still a crowded market, it's still, you know, plenty of green, but the number of companies above 40% that, that key mark has gone from around 20 firms down to about five or six. And it speaks to that compression and IT spending, and of course the elongated sales cycles pushing deals out, taking them in smaller chunks. I can't tell you how many conversations with customers I had, at last week at Reinvent underscoring this exact same trend. The buyers are getting pressure from their CFOs to slow things down, do more with less and, and, and prioritize projects to those that absolutely are critical to driving revenue or cutting costs. And that's rippling through all sectors, including cyber. Now, let's do a bit more playing around with the ETR data and take a look at those companies with more than a hundred citations in the survey this quarter. So N, greater than or equal to a hundred. Now remember the followers of Breaking Analysis know that each quarter we take a look at those, what we call four star security firms. That is, those are the, that are in, that hit the top 10 for both spending momentum, net score, and the N, the mentions in the survey, the presence, the pervasiveness in the survey, and that's what we show here. The left most chart is sorted by spending momentum or net score, and the right hand chart by shared N, or the number of mentions in the survey, that pervasiveness metric. that solid red line denotes the cutoff point at the top 10. And you'll note we've actually cut it off at 11 to account for Auth 0, which is now part of Okta, and is going through a go to market transition, you know, with the company, they're kind of restructuring sales so they can take advantage of that. So starting on the left with spending momentum, again, net score, Microsoft leads all vendors, typical Microsoft, very prominent, although it hadn't always done so, it, for a while, CrowdStrike and Okta were, were taking the top spot, now it's Microsoft. CrowdStrike, still always near the top, but note that CyberArk and Cloudflare have cracked the top five in Okta, which as I just said was consistently at the top, has dropped well off its previous highs. You'll notice that Palo Alto Network Palo Alto Networks with a 38% net score, just below that magic 40% number, is healthy, especially as you look over to the right hand chart. Take a look at Palo Alto with an N of 395. It is the largest of the independent pure play security firms, and has a very healthy net score, although one caution is that net score has dropped considerably since the beginning of the year, which is the case for most of the top 10 names. The only exception is Fortinet, they're the only ones that saw an increase since January in spending momentum as ETR measures it. Now this brings us to the four star security firms, that is those that hit the top 10 in both net score on the left hand side and market presence on the right hand side. So it's Microsoft, Palo Alto, CrowdStrike, Okta, still there even not accounting for a Auth 0, just Okta on its own. If you put in Auth 0, it's, it's even stronger. Adding then in Fortinet and Zscaler. So Microsoft, Palo Alto, CrowdStrike, Okta, Fortinet, and Zscaler. And as we've mentioned since January, only Fortinet has shown an increase in net score since, since that time, again, since the January survey. Now again, this talks to the compression in spending. Now one of the big themes we hear constantly in cybersecurity is the market is overcrowded. Everybody talks about that, me included. The implication there, is there's a lot of room for consolidation and that consolidation can come in the form of M&A, or it can come in the form of people consolidating onto a single platform, and retiring some other vendors, and getting rid of duplicate vendors. We're hearing that as a big theme as well. Now, as we saw in the previous, previous chart, this is a very crowded market and we've seen lots of consolidation in 2022, in the form of M&A. Literally hundreds of M&A deals, with some of the largest companies going private. SailPoint, KnowBe4, Barracuda, Mandiant, Fedora, these are multi billion dollar acquisitions, or at least billion dollars and up, and many of them multi-billion, for these companies, and hundreds more acquisitions in the cyberspace, now less you think the pond is overfished, here's a chart from ETR of emerging tech companies in the cyber security industry. This data comes from ETR's Emerging Technologies Survey, ETS, which is this diamond in a rough that I found a couple quarters ago, and it's ripe with companies that are candidates for M&A. Many would've liked, many of these companies would've liked to, gotten to the public markets during the pandemic, but they, you know, couldn't get there. They weren't ready. So the graph, you know, similar to the previous one, but different, it shows net sentiment on the vertical axis and that's a measurement of, of, of intent to adopt against a mind share on the X axis, which measures, measures the awareness of the vendor in the community. So this is specifically a survey that ETR goes out and, and, and fields only to track those emerging tech companies that are private companies. Now, some of the standouts in Mindshare, are OneTrust, BeyondTrust, Tanium and Endpoint, Net Scope, which we've talked about in previous Breaking Analysis. 1Password, which has been acquisitive on its own. In identity, the managed security service provider, Arctic Wolf Network, a company we've also covered, we've had their CEO on. We've talked about MSSPs as a real trend, particularly in small and medium sized business, we'll come back to that, Sneek, you know, kind of high flyer in both app security and containers, and you can just see the number of companies in the space this huge and it just keeps growing. Now, just to make it a bit easier on the eyes we filtered the data on these companies with with those, and isolated on those with more than a hundred responses only within the survey. And that's what we show here. Some of the names that we just mentioned are a bit easier to see, but these are the ones that really stand out in ERT, ETS, survey of private companies, OneTrust, BeyondTrust, Taniam, Netscope, which is in Cloud, 1Password, Arctic Wolf, Sneek, BitSight, SecurityScorecard, HackerOne, Code42, and Exabeam, and Sim. All of these hit the ETS survey with more than a hundred responses by, by the IT practitioners. Okay, so these firms, you know, maybe they do some M&A on their own. We've seen that with Sneek, as I said, with 1Password has been inquisitive, as have others. Now these companies with the larger footprint, these private companies, will likely be candidate for both buying companies and eventually going public when the markets settle down a bit. So again, no shortage of players to affect consolidation, both buyers and sellers. Okay, so let's finish with some key questions that we're watching. CrowdStrike in particular on its earnings calls cited softness from smaller buyers. Is that because these smaller buyers have stopped adopting? If so, are they more at risk, or are they tactically moving toward the easy button, aka, Microsoft's good enough approach. What does that mean for the market if smaller company cohorts continue to soften? How about MSSPs? Will companies continue to outsource, or pause on on that, as well as try to free up, to try to free up some budget? Adam Celiski at Reinvent last week said, "If you want to save money the Cloud's the best place to do it." Is the cloud the best place to save money in cyber? Well, it would seem that way from the standpoint of controlling budgets with lots of, lots of optionality. You could dial up and dial down services, you know, or does the Cloud add another layer of complexity that has to be understood and managed by Devs, for example? Now, consolidation should favor the likes of Palo Alto and CrowdStrike, cause they're platform players, and some of the larger players as well, like Cisco, how about IBM and of course Microsoft. Will that happen? And how will economic uncertainty impact the risk equation, a particular concern is increase of tax on vulnerable sectors of the population, like the elderly. How will companies and governments protect them from scams? And finally, how many cybersecurity companies can actually remain independent in the slingshot economy? In so many ways the market is still strong, it's just that expectations got ahead of themselves, and now as earnings forecast come, come, come down and come down to earth, it's going to basically come down to who can execute, generate cash, and keep enough runway to get through the knothole. And the one certainty is nobody really knows how tight that knothole really is. All right, let's call it a wrap. Next week we dive deeper into Palo Alto Networks, and take a look at how and why that company has held up so well and what to expect at Ignite, Palo Alto's big user conference coming up later this month in Las Vegas. We'll be there with theCube. Okay, many thanks to Alex Myerson on production and manages the podcast, Ken Schiffman as well, as our newest edition to our Boston studio. Great to have you Ken. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our EIC over at Silicon Angle. He does some great editing for us. Thank you to all. Remember these episodes are all available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibond.com and siliconangle.com, or you can email me directly David.vellante@siliconangle.com or DM me @DVellante, or comment on our LinkedIn posts. Please do checkout etr.ai, they got the best survey data in the enterprise tech business. This is Dave Vellante for theCube Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis. (upbeat music)
SUMMARY :
with Dave Vellante. and of course the elongated
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
December 2nd | DATE | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
Delta | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
Fortinet | ORGANIZATION | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Adam Celiski | PERSON | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
August 16th | DATE | 0.99+ |
April 13th | DATE | 0.99+ |
Rob Hof | PERSON | 0.99+ |
NASDAQ | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
93% | QUANTITY | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Arctic Wolf Network | ORGANIZATION | 0.99+ |
38% | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
71% | QUANTITY | 0.99+ |
January | DATE | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
50% | QUANTITY | 0.99+ |
February of 2020 | DATE | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
7 billion | QUANTITY | 0.99+ |
six companies | QUANTITY | 0.99+ |
Splunk | ORGANIZATION | 0.99+ |
2022 | DATE | 0.99+ |
Barracuda | ORGANIZATION | 0.99+ |
34% | QUANTITY | 0.99+ |
24% | QUANTITY | 0.99+ |
February | DATE | 0.99+ |
last week | DATE | 0.99+ |
last Friday | DATE | 0.99+ |
SailPoint | ORGANIZATION | 0.99+ |
First | QUANTITY | 0.99+ |
more than 50% | QUANTITY | 0.99+ |
85% | QUANTITY | 0.99+ |
each week | QUANTITY | 0.99+ |
44% | QUANTITY | 0.99+ |
35 billion | QUANTITY | 0.99+ |
70 billion | QUANTITY | 0.99+ |
Ken | PERSON | 0.99+ |
KnowBe4 | ORGANIZATION | 0.99+ |
27% | QUANTITY | 0.99+ |
56 billion | QUANTITY | 0.99+ |
Netscope | ORGANIZATION | 0.99+ |
October | DATE | 0.99+ |
Next week | DATE | 0.99+ |
one factor | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
hundreds | QUANTITY | 0.99+ |
44 | QUANTITY | 0.99+ |
dozens | QUANTITY | 0.99+ |
BeyondTrust | ORGANIZATION | 0.99+ |
David.vellante@siliconangle.com | OTHER | 0.99+ |
24 billion | QUANTITY | 0.99+ |
Breaking Analysis: Snowflake caught in the storm clouds
>> From the CUBE Studios in Palo Alto in Boston, bringing you data driven insights from the Cube and ETR. This is Breaking Analysis with Dave Vellante. >> A better than expected earnings report in late August got people excited about Snowflake again, but the negative sentiment in the market is weighed heavily on virtually all growth tech stocks and Snowflake is no exception. As we've stressed many times the company's management is on a long term mission to dramatically simplify the way organizations use data. Snowflake is tapping into a multi hundred billion dollar total available market and continues to grow at a rapid pace. In our view, Snowflake is embarking on its third major wave of innovation data apps, while its first and second waves are still bearing significant fruit. Now for short term traders focused on the next 90 or 180 days, that probably doesn't matter. But those taking a longer view are asking, "Should we still be optimistic about the future of this high flyer or is it just another over hyped tech play?" Hello and welcome to this week's Wiki Bond Cube Insights powered by ETR. Snowflake's Quarter just ended. And in this breaking analysis we take a look at the most recent survey data from ETR to see what clues and nuggets we can extract to predict the near term future in the long term outlook for Snowflake which is going to announce its earnings at the end of this month. Okay, so you know the story. If you've been investor in Snowflake this year, it's been painful. We said at IPO, "If you really want to own this stock on day one, just hold your nose and buy it." But like most IPOs we said there will be likely a better entry point in the future, and not surprisingly that's been the case. Snowflake IPOed a price of 120, which you couldn't touch on day one unless you got into a friends and family Delio. And if you did, you're still up 5% or so. So congratulations. But at one point last year you were up well over 200%. That's been the nature of this volatile stock, and I certainly can't help you with the timing of the market. But longer term Snowflake is targeting 10 billion in revenue for fiscal year 2028. A big number. Is it achievable? Is it big enough? Tell you what, let's come back to that. Now shorter term, our expert trader and breaking analysis contributor Chip Simonton said he got out of the stock a while ago after having taken a shot at what turned out to be a bear market rally. He pointed out that the stock had been bouncing around the 150 level for the last few months and broke that to the downside last Friday. So he'd expect 150 is where the stock is going to find resistance on the way back up, but there's no sign of support right now. He said maybe at 120, which was the July low and of course the IPO price that we just talked about. Now, perhaps earnings will be a catalyst, when Snowflake announces on November 30th, but until the mentality toward growth tech changes, nothing's likely to change dramatically according to Simonton. So now that we have that out of the way, let's take a look at the spending data for Snowflake in the ETR survey. Here's a chart that shows the time series breakdown of snowflake's net score going back to the October, 2021 survey. Now at that time, Snowflake's net score stood at a robust 77%. And remember, net score is a measure of spending velocity. It's a proprietary network, and ETR derives it from a quarterly survey of IT buyers and asks the respondents, "Are you adopting the platform new? Are you spending 6% or more? Is you're spending flat? Is you're spending down 6% or worse? Or are you leaving the platform decommissioning?" You subtract the percent of customers that are spending less or churning from those that are spending more and adopting or adopting and you get a net score. And that's expressed as a percentage of customers responding. In this chart we show Snowflake's in out of the total survey which ranges... The total survey ranges between 1,200 and 1,400 each quarter. And the very last column... Oh sorry, very last row, we show the number of Snowflake respondents that are coming in the survey from the Fortune 500 and the Global 2000. Those are two very important Snowflake constituencies. Now what this data tells us is that Snowflake exited 2021 with very strong momentum in a net score of 82%, which is off the charts and it was actually accelerating from the previous survey. Now by April that sentiment had flipped and Snowflake came down to earth with a 68% net score. Still highly elevated relative to its peers, but meaningfully down. Why was that? Because we saw a drop in new ads and an increase in flat spend. Then into the July and most recent October surveys, you saw a significant drop in the percentage of customers that were spending more. Now, notably, the percentage of customers who are contemplating adding the platform is actually staying pretty strong, but it is off a bit this past survey. And combined with a slight uptick in planned churn, net score is now down to 60%. That uptick from 0% and 1% and then 3%, it's still small, but that net score at 60% is still 20 percentage points higher than our highly elevated benchmark of 40% as you recall from listening to earlier breaking analysis. That 40% range is we consider a milestone. Anything above that is actually quite strong. But again, Snowflake is down and coming back to churn, while 3% churn is very low, in previous quarters we've seen Snowflake 0% or 1% decommissions. Now the last thing to note in this chart is the meaningful uptick in survey respondents that are citing, they're using the Snowflake platform. That's up to 212 in the survey. So look, it's hard to imagine that Snowflake doesn't feel the softening in the market like everyone else. Snowflake is guiding for around 60% growth in product revenue against the tough compare from a year ago with a 2% operating margin. So like every company, the reaction of the street is going to come down to how accurate or conservative the guide is from their CFO. Now, earlier this year, Snowflake acquired a company called Streamlit for around $800 million. Streamlit is an open source Python library and it makes it easier to build data apps with machine learning, obviously a huge trend. And like Snowflake, generally its focus is on simplifying the complex, in this case making data science easier to integrate into data apps that business people can use. So we were excited this summer in the July ETR survey to see that they added some nice data and pick on Streamlit, which we're showing here in comparison to Snowflake's core business on the left hand side. That's the data warehousing, the Streamlit pieces on the right hand side. And we show again net score over time from the previous survey for Snowflake's core database and data warehouse offering again on the left as compared to a Streamlit on the right. Snowflake's core product had 194 responses in the October, 22 survey, Streamlit had an end of 73, which is up from 52 in the July survey. So significant uptick of people responding that they're doing business in adopting Streamlit. That was pretty impressive to us. And it's hard to see, but the net scores stayed pretty constant for Streamlit at 51%. It was 52% I think in the previous quarter, well over that magic 40% mark. But when you blend it with Snowflake, it does sort of bring things down a little bit. Now there are two key points here. One is that the acquisition seems to have gained exposure right out of the gate as evidenced by the large number of responses. And two, the spending momentum. Again while it's lower than Snowflake overall, and when you blend it with Snowflake it does pull it down, it's very healthy and steady. Now let's do a little pure comparison with some of our favorite names in this space. This chart shows net score or spending velocity in the Y-axis, an overlap or presence, pervasiveness if you will, in the data set on the X-axis. That red dotted line again is that 40% highly elevated net score that we like to talk about. And that table inserted informs us as to how the companies are plotted, where the dots set up, the net score, the ins. And we're comparing a number of database players, although just a caution, Oracle includes all of Oracle including its apps. But we just put it in there for reference because it is the leader in database. Right off the bat, Snowflake jumps out with a net score of 64%. The 60% from the earlier chart, again included Streamlit. So you can see its core database, data warehouse business actually is higher than the total company average that we showed you before 'cause the Streamlit is blended in. So when you separate it out, Streamlit is right on top of data bricks. Isn't that ironic? Only Snowflake and Databricks in this selection of names are above the 40% level. You see Mongo and Couchbase, they know they're solid and Teradata cloud actually showing pretty well compared to some of the earlier survey results. Now let's isolate on the database data platform sector and see how that shapes up. And for this analysis, same XY dimensions, we've added the big giants, AWS and Microsoft and Google. And notice that those three plus Snowflake are just at or above the 40% line. Snowflake continues to lead by a significant margin in spending momentum and it keeps creeping to the right. That's that end that we talked about earlier. Now here's an interesting tidbit. Snowflake is often asked, and I've asked them myself many times, "How are you faring relative to AWS, Microsoft and Google, these big whales with Redshift and Synapse and Big Query?" And Snowflake has been telling folks that 80% of its business comes from AWS. And when Microsoft heard that, they said, "Whoa, wait a minute, Snowflake, let's partner up." 'Cause Microsoft is smart, and they understand that the market is enormous. And if they could do better with Snowflake, one, they may steal some business from AWS. And two, even if Snowflake is winning against some of the Microsoft database products, if it wins on Azure, Microsoft is going to sell more compute and more storage, more AI tools, more other stuff to these customers. Now AWS is really aggressive from a partnering standpoint with Snowflake. They're openly negotiating, not openly, but they're negotiating better prices. They're realizing that when it comes to data, the cheaper that you make the offering, the more people are going to consume. At scale economies and operating leverage are really powerful things at volume that kick in. Now Microsoft, they're coming along, they obviously get it, but Google is seemingly resistant to that type of go to market partnership. Rather than lean into Snowflake as a great partner Google's field force is kind of fighting fashion. Google itself at Cloud next heavily messaged what they call the open data cloud, which is a direct rip off of Snowflake. So what can we say about Google? They continue to be kind of behind the curve when it comes to go to market. Now just a brief aside on the competitive posture. I've seen Slootman, Frank Slootman, CEO of Snowflake in action with his prior companies and how he depositioned the competition. At Data Domain, he eviscerated a company called Avamar with their, what he called their expensive and slow post process architecture. I think he actually called it garbage, if I recall at one conference I heard him speak at. And that sort of destroyed BMC when he was at ServiceNow, kind of positioning them as the equivalent of the department of motor vehicles. And so it's interesting to hear how Snowflake openly talks about the data platforms of AWS, Microsoft, Google, and data bricks. I'll give you this sort of short bumper sticker. Redshift is just an on-prem database that AWS morphed to the cloud, which by the way is kind of true. They actually did a brilliant job of it, but it's basically a fact. Microsoft Excel, a collection of legacy databases, which also kind of morphed to run in the cloud. And even Big Query, which is considered cloud native by many if not most, is being positioned by Snowflake as originally an on-prem database to support Google's ad business, maybe. And data bricks is for those people smart enough to get it to Berkeley that love complexity. And now Snowflake doesn't, they don't mention Berkeley as far as I know. That's my addition. But you get the point. And the interesting thing about Databricks and Snowflake is a while ago in the cube I said that there was a new workload type emerging around data where you have AWS cloud, Snowflake obviously for the cloud database and Databricks data for the data science and EML, you bring those things together and there's this new workload emerging that's going to be very powerful in the future. And it's interesting to see now the aspirations of all three of these platforms are colliding. That's quite a dynamic, especially when you see both Snowflake and Databricks putting venture money and getting their hooks into the loyalties of the same companies like DBT labs and Calibra. Anyway, Snowflake's posture is that we are the pioneer in cloud native data warehouse, data sharing and now data apps. And our platform is designed for business people that want simplicity. The other guys, yes, they're formidable, but we Snowflake have an architectural lead and of course we run in multiple clouds. So it's pretty strong positioning or depositioning, you have to admit. Now I'm not sure I agree with the big query knockoffs completely. I think that's a bit of a stretch, but snowflake, as we see in the ETR survey data is winning. So in thinking about the longer term future, let's talk about what's different with Snowflake, where it's headed and what the opportunities are for the company. Snowflake put itself on the map by focusing on simplifying data analytics. What's interesting about that is the company's founders are as you probably know from Oracle. And rather than focusing on transactional data, which is Oracle's sweet spot, the stuff they worked on when they were at Oracle, the founder said, "We're going to go somewhere else. We're going to attack the data warehousing problem and the data analytics problem." And they completely re-imagined the database and how it could be applied to solve those challenges and reimagine what was possible if you had virtually unlimited compute and storage capacity. And of course Snowflake became famous for separating the compute from storage and being able to completely shut down compute so you didn't have to pay for it when you're not using it. And the ability to have multiple clusters hit the same data without making endless copies and a consumption/cloud pricing model. And then of course everyone on the planet realized, "Wow, that's a pretty good idea." Every venture capitalist in Silicon Valley has been funding companies to copy that move. And that today has pretty much become mainstream in table stakes. But I would argue that Snowflake not only had the lead, but when you look at how others are approaching this problem, it's not necessarily as clean and as elegant. Some of the startups, the early startups I think get it and maybe had an advantage of starting later, which can be a disadvantage too. But AWS is a good example of what I'm saying here. Is its version of separating compute from storage was an afterthought and it's good, it's... Given what they had it was actually quite clever and customers like it, but it's more of a, "Okay, we're going to tier to storage to lower cost, we're going to sort of dial down the compute not completely, we're not going to shut it off, we're going to minimize the compute required." It's really not true as separation is like for instance Snowflake has. But having said that, we're talking about competitors with lots of resources and cohort offerings. And so I don't want to make this necessarily all about the product, but all things being equal architecture matters, okay? So that's the cloud S-curve, the first one we're showing. Snowflake's still on that S-curve, and in and of itself it's got legs, but it's not what's going to power the company to 10 billion. The next S-curve we denote is the multi-cloud in the middle. And now while 80% of Snowflake's revenue is AWS, Microsoft is ramping up and Google, well, we'll see. But the interesting part of that curve is data sharing, and this idea of data clean rooms. I mean it really should be called the data sharing curve, but I have my reasons for calling it multi-cloud. And this is all about network effects and data gravity, and you're seeing this play out today, especially in industries like financial services and healthcare and government that are highly regulated verticals where folks are super paranoid about compliance. There not going to share data if they're going to get sued for it, if they're going to be in the front page of the Wall Street Journal for some kind of privacy breach. And what Snowflake has done is said, "Put all the data in our cloud." Now, of course now that triggers a lot of people because it's a walled garden, okay? It is. That's the trade off. It's not the Wild West, it's not Windows, it's Mac, it's more controlled. But the idea is that as different parts of the organization or even partners begin to share data that they need, it's got to be governed, it's got to be secure, it's got to be compliant, it's got to be trusted. So Snowflake introduced the idea of, they call these things stable edges. I think that's the term that they use. And they track a metric around stable edges. And so a stable edge, or think of it as a persistent edge is an ongoing relationship between two parties that last for some period of time, more than a month. It's not just a one shot deal, one a done type of, "Oh guys shared it for a day, done." It sent you an FTP, it's done. No, it's got to have trajectory over time. Four weeks or six weeks or some period of time that's meaningful. And that metric is growing. Now I think sort of a different metric that they track. I think around 20% of Snowflake customers are actively sharing data today and then they track the number of those edge relationships that exist. So that's something that's unique. Because again, most data sharing is all about making copies of data. That's great for storage companies, it's bad for auditors, and it's bad for compliance officers. And that trend is just starting out, that middle S-curve, it's going to kind of hit the base of that steep part of the S-curve and it's going to have legs through this decade we think. And then finally the third wave that we show here is what we call super cloud. That's why I called it multi-cloud before, so it could invoke super cloud. The idea that you've built a PAS layer that is purpose built for a specific objective, and in this case it's building data apps that are cloud native, shareable and governed. And is a long-term trend that's going to take some time to develop. I mean, application development platforms can take five to 10 years to mature and gain significant adoption, but this one's unique. This is a critical play for Snowflake. If it's going to compete with the big cloud players, it has to have an app development framework like Snowpark. It has to accommodate new data types like transactional data. That's why it announced this thing called UniStore last June, Snowflake a summit. And the pattern that's forming here is Snowflake is building layer upon layer with its architecture at the core. It's not currently anyway, it's not going out and saying, "All right, we're going to buy a company that's got to another billion dollars in revenue and that's how we're going to get to 10 billion." So it's not buying its way into new markets through revenue. It's actually buying smaller companies that can complement Snowflake and that it can turn into revenue for growth that fit in to the data cloud. Now as to the 10 billion by fiscal year 28, is that achievable? That's the question. Yeah, I think so. Would the momentum resources go to market product and management prowess that Snowflake has? Yes, it's definitely achievable. And one could argue to $10 billion is too conservative. Indeed, Snowflake CFO, Mike Scarpelli will fully admit his forecaster built on existing offerings. He's not including revenue as I understand it from all the new stuff that's in the pipeline because he doesn't know what it's going to look like. He doesn't know what the adoption is going to look like. He doesn't have data on that adoption, not just yet anyway. And now of course things can change quite dramatically. It's possible that is forecast for existing businesses don't materialize or competition picks them off or a company like Databricks actually is able in the longer term replicate the functionality of Snowflake with open source technologies, which would be a very competitive source of innovation. But in our view, there's plenty of room for growth, the market is enormous and the real key is, can and will Snowflake deliver on the promises of simplifying data? Of course we've heard this before from data warehouse, the data mars and data legs and master data management and ETLs and data movers and data copiers and Hadoop and a raft of technologies that have not lived up to expectations. And we've also, by the way, seen some tremendous successes in the software business with the likes of ServiceNow and Salesforce. So will Snowflake be the next great software name and hit that 10 billion magic mark? I think so. Let's reconnect in 2028 and see. Okay, we'll leave it there today. I want to thank Chip Simonton for his input to today's episode. Thanks to Alex Myerson who's on production and manages the podcast. Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hove is our Editor in Chief over at Silicon Angle. He does some great editing for us. Check it out for all the news. Remember all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me to get in touch David.vallante@siliconangle.com. DM me @dvellante or comment on our LinkedIn post. And please do check out etr.ai, they've got the best survey data in the enterprise tech business. This is Dave Vellante for the CUBE Insights, powered by ETR. Thanks for watching, thanks for listening and we'll see you next time on breaking analysis. (upbeat music)
SUMMARY :
insights from the Cube and ETR. And the ability to have multiple
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Mike Scarpelli | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
November 30th | DATE | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Chip Simonton | PERSON | 0.99+ |
October, 2021 | DATE | 0.99+ |
Rob Hove | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
Four weeks | QUANTITY | 0.99+ |
July | DATE | 0.99+ |
six weeks | QUANTITY | 0.99+ |
10 billion | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Slootman | PERSON | 0.99+ |
BMC | ORGANIZATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
6% | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
October | DATE | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
40% | QUANTITY | 0.99+ |
1,400 | QUANTITY | 0.99+ |
$10 billion | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
April | DATE | 0.99+ |
3% | QUANTITY | 0.99+ |
77% | QUANTITY | 0.99+ |
64% | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
194 responses | QUANTITY | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
two parties | QUANTITY | 0.99+ |
51% | QUANTITY | 0.99+ |
2% | QUANTITY | 0.99+ |
Silicon Angle | ORGANIZATION | 0.99+ |
fiscal year 28 | DATE | 0.99+ |
billion dollars | QUANTITY | 0.99+ |
0% | QUANTITY | 0.99+ |
Avamar | ORGANIZATION | 0.99+ |
52% | QUANTITY | 0.99+ |
Berkeley | LOCATION | 0.99+ |
2028 | DATE | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
Data Domain | ORGANIZATION | 0.99+ |
1% | QUANTITY | 0.99+ |
late August | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
fiscal year 2028 | DATE | 0.99+ |
Breaking Analysis: Survey Says! Takeaways from the latest CIO spending data
>> From theCUBE Studios in Palo Alto and Boston, bringing you data driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante. >> The technology spending outlook is not pretty and very much unpredictable right now. The negative sentiment is of course being driven by the macroeconomic factors in earnings forecasts that have been coming down all year in an environment of rising interest rates. And what's worse, is many people think earnings estimates are still too high. But it's understandable why there's so much uncertainty. I mean, technology is still booming, digital transformations are happening in earnest, leading companies have momentum and they got cash runways. And moreover, the CEOs of these leading companies are still really optimistic. But strong guidance in an environment of uncertainty is somewhat risky. Hello and welcome to this week's Wikibon CUBE Insights Powered by ETR. In this breaking analysis, we share takeaways from ETR'S latest spending survey, which was released to their private clients on October 21st. Today, we're going to review the macro spending data. We're going to share where CIOs think their cloud spend is headed. We're going to look at the actions that organizations are taking to manage uncertainty and then review some of the technology companies that have the most positive and negative outlooks in the ETR data set. Let's first look at the sample makeup from the latest ETR survey. ETR captured more than 1300 respondents in this latest survey. Its highest figure for the year and the quality and seniority of respondents just keeps going up each time we dig into the data. We've got large contributions as you can see here from sea level executives in a broad industry focus. Now the survey is still North America centric with 20% of the respondents coming from overseas and there is a bias toward larger organizations. And nonetheless, we're still talking well over 400 respondents coming from SMBs. Now ETR for those of you who don't know, conducts a quarterly spending intention survey and they also do periodic drilldowns. So just by the way of review, let's take a look at the expectations in the latest drilldown survey for IT spending. Before we look at the broader technology spending intentions survey data, followers of this program know that we reported on this a couple of weeks ago, spending expectations that peaked last December at 8.3% are now down to 5.5% with a slight uptick expected for next year as shown here. Now one CIO in the ETR community said these figures could be understated because of inflation. Now that's an interesting comment. Real GDP in the US is forecast to be around 1.5% in 2022. So these figures are significantly ahead of that. Nominal GDP is forecast to be significantly higher than what is shown in that slide. It was over 9% in June for example. And one would interpret that survey respondents are talking about real dollars which reflects inflationary factors in IT spend. So you might say, well if nominal GDP is in the high single digits this means that IT spending is below GDP which is usually not the case. But the flip side of that is technology tends to be deflationary because prices come down over time on a per unit basis, so this would be a normal and even positive trend. But it's mixed right now with prices on hard to find hardware, they're holding more firms. Software, you know, software tends to be driven by lock in and competition and switching costs. So you have those countervailing factors. Services can be inflationary, especially now as wages rise but certain sectors like laptops and semis and NAND are seeing less demand and maybe even some oversupply. So the way to look at this data is on a relative basis. In other words, IT buyers are reporting 280 basis point drop in spending sentiment from the end of last year. Now, something that we haven't shared from the latest drilldown survey which we will now is how IT bar buyers are thinking about cloud adoption. This chart shows responses from 419 IT execs from that drilldown and depicts the percentage of workloads their organizations have in the cloud today and what the expectation is through years from now. And you can see it's 27% today and it's nearly 50% in three years. Now the nuance is if you look at the question, that ETRS, it's they asked about IaaS and PaaS, which to some could include on-prem. Now, let me come back to that. In particular, financial services, IT, telco and retail and services industry cited expectations for the future for three years out that we're well above the average of the mean adoption levels. Regardless of how you interpret this data there's most certainly plenty of public cloud in the numbers. And whether you believe cloud is an operating environment or a place out there in the cloud, there's plenty of room for workloads to move into a cloud model well beyond mid this decade. So you know, as ho hum as we've been toward recent as-a-service models announced from the likes of HPE with GreenLake and Dell with APEX, the timing of those offerings may be pretty good actually. Now let's expand on some of the data that we showed a couple weeks ago. This chart shows responses from 282 execs on actions their organizations are taking over the next three months. And the Deltas are quite traumatic from the early part of this charter than the left hand side. The brown line is hiring freezes, the black line is freezing IT projects, and the green line is hiring increases and that red line is layoffs. And we put a box around the sort of general area of the isolation economy timeframe. And you can see the wild swings on this chart. By mid last summer, people were kickstarting things and more hiring was going on and the black line shows IT project freezes, you know, came way down. And now, or on the way back up as our hiring freezes. So we're seeing these wild swings in organizational actions and strategies which underscores the lack of predictability. As with supply chains around the world, this is likely due to the fact that organizations, pre pandemic they were optimized for efficiency, not a lot of waste rather than business resilience. Meaning, you know, there's again not a lot of fluff in the system or if there was it got flushed out during the pandemic. And so the need for productivity and automation is becoming increasingly important, especially as actions that solely rely on headcount changes are very, very difficult to manage. Now, let's dig into some of the vendor commentary and take a look at some of the names that have momentum and some of the others possibly facing headwinds. Here's a list of companies that stand out in the ETR survey. Snowflake, once again leads the pack with a positive spending outlook. HashiCorp, CrowdStrike, Databricks, Freshworks and ServiceNow, they round out the top six. Microsoft, they seem to always be in the mix, as do a number of other security and related companies including CyberArk, Zscaler, CloudFlare, Elastic, Datadog, Fortinet, Tenable and to a certain extent Akamai, you can kind of put them sort of in that group. You know, CDN, they got to worry about security. Everybody worries about security, but especially the CDNs. Now the other software names that are highlighted here include Workday and Salesforce. On the negative side, you can see Dynatrace saw some negatives in the latest survey especially around its analytics business. Security is generally holding up better than other sectors but it's still seeing greater levels of pressure than it had previously. So lower spend. And defections relative to its observability peers, that's really for Dynatrace. Now the other one that was somewhat surprising is IBM. You see the IBM was sort of in that negative realm here but IBM reported an outstanding quarter this past week with double digit revenue growth, strong momentum in software, consulting, mainframes and other infrastructure like storage. It's benefiting from the Kyndryl restructuring and it's on track IBM to deliver 10 billion in free cash flow this year. Red Hat is performing exceedingly well and growing in the very high teens. And so look, IBM is in the midst of a major transformation and it seems like a company that is really focused now with hybrid cloud being powered by Red Hat and consulting and a decade plus of AI investments finally paying off. Now the other big thing we'll add is, IBM was once an outstanding acquire of companies and it seems to be really getting its act together on the M&A front. Yes, Red Hat was a big pill to swallow but IBM has done a number of smaller acquisitions, I think seven this year. Like for example, Turbonomic, which is starting to pay off. Arvind Krishna has the company focused once again. And he and Jim J. Kavanaugh, IBM CFO, seem to be very confident on the guidance that they're giving in their business. So that's a real positive in our view for the industry. Okay, the last thing we'd like to do is take 12 of the companies from the previous chart and plot them in context. Now these companies don't necessarily compete with each other, some do. But they are standouts in the ETR survey and in the market. What we're showing here is a view that we like to often show, it's net score or spending velocity on the vertical axis. And it's a measure, that's a measure of the net percentage of customers that are spending more on a particular platform. So ETR asks, are you spending more or less? They subtract less from the mores. I mean I'm simplifying, but that's what net score is. Now in the horizontal axis, that is a measure of overlap which is which measures presence or pervasiveness in the dataset. So bigger the better. We've inserted a table that informs how the dots in the companies are positioned. These companies are all in the green in terms of net score. And that right most column in the table insert is indicative of their presence in the dataset, the end. So higher, again, is better for both columns. Two other notes, the red dotted line there you see at 40%. Anything over that indicates an highly elevated spending momentum for a given platform. And we purposefully took Microsoft out of the mix in this chart because it skews the data due to its large size. Everybody else would cluster on the left and Microsoft would be all alone in the right. So we take them out. Now as we noted earlier, Snowflake once again leads with a net score of 64%, well above the 40% line. Having said that, while adoption rates for Snowflake remains strong the company's spending velocity in the survey has come down to Earth. And many more customers are shifting from where they were last year and the year before in growth mode i.e. spending more year to year with Snowflake to now shifting more toward flat spending. So a plus or minus 5%. So that puts pressure on Snowflake's net score, just based on the math as to how ETR calculates, its proprietary net score methodology. So Snowflake is by no means insulated completely to the macro factors. And this was seen especially in the data in the Fortune 500 cut of the survey for Snowflake. We didn't show that here, just giving you anecdotal commentary from the survey which is backed up by data. So, it showed steeper declines in the Fortune 500 momentum. But overall, Snowflake, very impressive. Now what's more, note the position of Streamlit relative to Databricks. Streamlit is an open source python framework for developing data driven, data science oriented apps. And it's ironic that it's net score and shared in is almost identical to those of data bricks, as the aspirations of Snowflake and Databricks are beginning to collide. Now, however, the Databricks net score has held up very well over the past year and is in the 92nd percentile of its machine learning and AI peers. And while it's seeing some softness, like Snowflake in the Fortune 500, Databricks has steadily moved to the right on the X axis over the last several surveys even though it was unable to get to the public markets and do an IPO during the lockdown tech bubble. Let's come back to the chart. ServiceNow is impressive because it's well above the 40% mark and it has 437 shared in on this cut, the largest of any company that we chose to plot here. The only real negative on ServiceNow is, more large customers are keeping spending levels flat. That's putting a little bit pressure on its net score, but that's just conservatives. It's kind of like Snowflakes, you know, same thing but in a larger scale. But it's defections, the ServiceNow as in Snowflake as well. It's defections remain very, very low, really low churn below 2% for ServiceNow, in fact, within the dataset. Now it's interesting to also see Freshworks hit the list. You can see them as one of the few ITSM vendors that has momentum and can potentially take on ServiceNow. Workday, on this chart, it's the other big app player that's above the 40% line and we're only showing Workday HCM, FYI, in this graphic. It's Workday Financials, that offering, is below the 40% line just for reference. Now let's talk about CrowdStrike. We attended Falcon last month, CrowdStrike's user conference and we're very impressed with the product visio, the company's execution, it's growing partnerships. And you can see in this graphic, the ETR survey data confirms the company's stellar performance with a net score at 50%, well above the 40% mark. And importantly, more than 300 mentions. That's second only to ServiceNow, amongst the 12 companies that we've chosen to highlight here. Only Microsoft, which is not shown here, has a higher net score in the security space than CrowdStrike. And when it comes to presence, CrowdStrike now has caught up to Splunk in terms of pervasion in the survey. Now CyberArk and Zscaler are the other two security firms that are right at that 40% red dotted line. CyberArk for names with over a hundred citations in the security sector, is only behind Microsoft and CrowdStrike. Zscaler for its part in the survey is seeing strong momentum in the Fortune 500, unlike what we said for Snowflake. And its pervasion on the X-axis has been steadily increasing. Again, not that Snowflake and CrowdStrike compete with each other but they're too prominent names and it's just interesting to compare peers and business models. Cloudflare, Elastic and Datadog are slightly below the 40% mark but they made the sort of top 12 that we showed to highlight here and they continue to have positive sentiment in the survey. So, what are the big takeaways from this latest survey, this really quick snapshot that we've taken. As you know, over the next several weeks we're going to dig into it more and more. As we've previously reported, the tide is going out and it's taking virtually all the tech ships with it. But in many ways the current market is a story of heightened expectations coming down to Earth, miscalculations about the economic patterns and the swings and imperfect visibility. Leading Barclays analyst, Ramo Limchao ask the question to guide or not to guide in a recent research note he wrote. His point being, should companies guide or should they be more cautious? Many companies, if not most companies, are actually giving guidance. Indeed, when companies like Oracle and IBM are emphatic about their near term outlook and their visibility, it gives one confidence. On the other hand, reasonable people are asking, will the red hot valuations that we saw over the last two years from the likes of Snowflake, CrowdStrike, MongoDB, Okta, Zscaler, and others. Will they return? Or are we in for a long, drawn out, sideways exercise before we see sustained momentum? And to that uncertainty, we add elections and public policy. It's very hard to predict right now. I'm sorry to be like a two-handed lawyer, you know. On the one hand, on the other hand. But that's just the way it is. Let's just say for our part, we think that once it's clear that interest rates are on their way back down and we'll stabilize it under 4% and we have clarity on the direction of inflation, wages, unemployment and geopolitics, the wild swings and sentiment will subside. But when that happens is anyone's guess. If I had to peg, I'd say 18 months, which puts us at least into the spring of 2024. What's your prediction? You know, it's almost that time of year. Let's hear it. Please keep in touch and let us know what you think. Okay, that's it for now. Many thanks to Alex Myerson. He is on production and he manages the podcast for us. Ken Schiffman as well is our newest addition to the Boston Studio. Kristin Martin and Cheryl Knight, they help get the word out on social media and in our newsletters. And Rob Hoff is our EIC, editor-in-chief over at SiliconANGLE. He does some wonderful editing for us. Thank you all. Remember all these episodes, they are available as podcasts. Wherever you listen, just search breaking analysis podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me at david.vellante@siliconangle.com or DM me @dvellante. Or feel free to comment on our LinkedIn posts. And please do check out etr.ai. They've got the best survey data in the enterprise tech business. If you haven't checked that out, you should. It'll give you an advantage. This is Dave Vellante for theCUBE Insights Powered by ETR. Thanks for watching. Be well and we'll see you next time on Breaking Analysis. (soft upbeat music)
SUMMARY :
in Palo Alto and Boston, and growing in the very high teens.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jim J. Kavanaugh | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
October 21st | DATE | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Ramo Limchao | PERSON | 0.99+ |
June | DATE | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Arvind Krishna | PERSON | 0.99+ |
Earth | LOCATION | 0.99+ |
Rob Hoff | PERSON | 0.99+ |
10 billion | QUANTITY | 0.99+ |
282 execs | QUANTITY | 0.99+ |
12 companies | QUANTITY | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
50% | QUANTITY | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
40% | QUANTITY | 0.99+ |
US | LOCATION | 0.99+ |
27% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
GreenLake | ORGANIZATION | 0.99+ |
APEX | ORGANIZATION | 0.99+ |
8.3% | QUANTITY | 0.99+ |
Fortinet | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
Freshworks | ORGANIZATION | 0.99+ |
Datadog | ORGANIZATION | 0.99+ |
18 months | QUANTITY | 0.99+ |
Tenable | ORGANIZATION | 0.99+ |
419 IT execs | QUANTITY | 0.99+ |
64% | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
last month | DATE | 0.99+ |
5.5% | QUANTITY | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
next year | DATE | 0.99+ |
92nd percentile | QUANTITY | 0.99+ |
spring of 2024 | DATE | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
more than 300 mentions | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
second | QUANTITY | 0.99+ |
each week | QUANTITY | 0.99+ |
ServiceNow | ORGANIZATION | 0.99+ |
MongoDB | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
CyberArk | ORGANIZATION | 0.99+ |
North America | LOCATION | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
HashiCorp | ORGANIZATION | 0.99+ |
theCUBE Studios | ORGANIZATION | 0.99+ |
SiliconANGLE | ORGANIZATION | 0.99+ |
more than 1300 respondents | QUANTITY | 0.99+ |
theCUBE | ORGANIZATION | 0.99+ |
mid last summer | DATE | 0.99+ |
437 | QUANTITY | 0.98+ |
ETRS | ORGANIZATION | 0.98+ |
this year | DATE | 0.98+ |
both columns | QUANTITY | 0.98+ |
minus 5% | QUANTITY | 0.98+ |
last December | DATE | 0.98+ |
Streamlit | TITLE | 0.98+ |
Breaking Analysis: CEO Nuggets from Microsoft Ignite & Google Cloud Next
>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> This past week we saw two of the Big 3 cloud providers present the latest update on their respective cloud visions, their business progress, their announcements and innovations. The content at these events had many overlapping themes, including modern cloud infrastructure at global scale, applying advanced machine intelligence, AKA AI, end-to-end data platforms, collaboration software. They talked a lot about the future of work automation. And they gave us a little taste, each company of the Metaverse Web 3.0 and much more. Despite these striking similarities, the differences between these two cloud platforms and that of AWS remains significant. With Microsoft leveraging its massive application software footprint to dominate virtually all markets and Google doing everything in its power to keep up with the frenetic pace of today's cloud innovation, which was set into motion a decade and a half ago by AWS. Hello and welcome to this week's Wikibon CUBE Insights, powered by ETR. In this Breaking Analysis, we unpack the immense amount of content presented by the CEOs of Microsoft and Google Cloud at Microsoft Ignite and Google Cloud Next. We'll also quantify with ETR survey data the relative position of these two cloud giants in four key sectors: cloud IaaS, BI analytics, data platforms and collaboration software. Now one thing was clear this past week, hybrid events are the thing. Google Cloud Next took place live over a 24-hour period in six cities around the world, with the main gathering in New York City. Microsoft Ignite, which normally is attended by 30,000 people, had a smaller event in Seattle, in person with a virtual audience around the world. AWS re:Invent, of course, is much different. Yes, there's a virtual component at re:Invent, but it's all about a big live audience gathering the week after Thanksgiving, in the first week of December in Las Vegas. Regardless, Satya Nadella keynote address was prerecorded. It was highly produced and substantive. It was visionary, energetic with a strong message that Azure was a platform to allow customers to build their digital businesses. Doing more with less, which was a key theme of his. Nadella covered a lot of ground, starting with infrastructure from the compute, highlighting a collaboration with Arm-based, Ampere processors. New block storage, 60 regions, 175,000 miles of fiber cables around the world. He presented a meaningful multi-cloud message with Azure Arc to support on-prem and edge workloads, as well as of course the public cloud. And talked about confidential computing at the infrastructure level, a theme we hear from all cloud vendors. He then went deeper into the end-to-end data platform that Microsoft is building from the core data stores to analytics, to governance and the myriad tooling Microsoft offers. AI was next with a big focus on automation, AI, training models. He showed demos of machines coding and fixing code and machines automatically creating designs for creative workers and how Power Automate, Microsoft's RPA tooling, would combine with Microsoft Syntex to understand documents and provide standard ways for organizations to communicate with those documents. There was of course a big focus on Azure as developer cloud platform with GitHub Copilot as a linchpin using AI to assist coders in low-code and no-code innovations that are coming down the pipe. And another giant theme was a workforce transformation and how Microsoft is using its heritage and collaboration and productivity software to move beyond what Nadella called productivity paranoia, i.e., are remote workers doing their jobs? In a world where collaboration is built into intelligent workflows, and he even showed a glimpse of the future with AI-powered avatars and partnerships with Meta and Cisco with Teams of all firms. And finally, security with a bevy of tools from identity, endpoint, governance, et cetera, stressing a suite of tools from a single provider, i.e., Microsoft. So a couple points here. One, Microsoft is following in the footsteps of AWS with silicon advancements and didn't really emphasize that trend much except for the Ampere announcement. But it's building out cloud infrastructure at a massive scale, there is no debate about that. Its plan on data is to try and provide a somewhat more abstracted and simplified solutions, which differs a little bit from AWS's approach of the right database tool, for example, for the right job. Microsoft's automation play appears to provide simple individual productivity tools, kind of a ground up approach and make it really easy for users to drive these bottoms up initiatives. We heard from UiPath that forward five last month, a little bit of a different approach of horizontal automation, end-to-end across platforms. So quite a different play there. Microsoft's angle on workforce transformation is visionary and will continue to solidify in our view its dominant position with Teams and Microsoft 365, and it will drive cloud infrastructure consumption by default. On security as well as a cloud player, it has to have world-class security, and Azure does. There's not a lot of debate about that, but the knock on Microsoft is Patch Tuesday becomes Hack Wednesday because Microsoft releases so many patches, it's got so much Swiss cheese in its legacy estate and patching frequently, it becomes a roadmap and a trigger for hackers. Hey, patch Tuesday, these are all the exploits that you can go after so you can act before the patches are implemented. And so it's really become a problem for users. As well Microsoft is competing with many of the best-of-breed platforms like CrowdStrike and Okta, which have market momentum and appear to be more attractive horizontal plays for customers outside of just the Microsoft cloud. But again, it's Microsoft. They make it easy and very inexpensive to adopt. Now, despite the outstanding presentation by Satya Nadella, there are a couple of statements that should raise eyebrows. Here are two of them. First, as he said, Azure is the only cloud that supports all organizations and all workloads from enterprises to startups, to highly regulated industries. I had a conversation with Sarbjeet Johal about this, to make sure I wasn't just missing something and we were both surprised, somewhat, by this claim. I mean most certainly AWS supports more certifications for example, and we would think it has a reasonable case to dispute that claim. And the other statement, Nadella made, Azure is the only cloud provider enabling highly regulated industries to bring their most sensitive applications to the cloud. Now, reasonable people can debate whether AWS is there yet, but very clearly Oracle and IBM would have something to say about that statement. Now maybe it's not just, would say, "Oh, they're not real clouds, you know, they're just going to hosting in the cloud if you will." But still, when it comes to mission-critical applications, you would think Oracle is really the the leader there. Oh, and Satya also mentioned the claim that the Edge browser, the Microsoft Edge browser, no questions asked, he said, is the best browser for business. And we could see some people having some questions about that. Like isn't Edge based on Chrome? Anyway, so we just had to question these statements and challenge Microsoft to defend them because to us it's a little bit of BS and makes one wonder what else in such as awesome keynote and it was awesome, it was hyperbole. Okay, moving on to Google Cloud Next. The keynote started with Sundar Pichai doing a virtual session, he was remote, stressing the importance of Google Cloud. He mentioned that Google Cloud from its Q2 earnings was on a $25-billion annual run rate. What he didn't mention is that it's also on a 3.6 billion annual operating loss run rate based on its first half performance. Just saying. And we'll dig into that issue a little bit more later in this episode. He also stressed that the investments that Google has made to support its core business and search, like its global network of 22 subsea cables to support things like, YouTube video, great performance obviously that we all rely on, those innovations there. Innovations in BigQuery to support its search business and its threat analysis that it's always had and its AI, it's always been an AI-first company, he's stressed, that they're all leveraged by the Google Cloud Platform, GCP. This is all true by the way. Google has absolutely awesome tech and the talk, as well as his talk, Pichai, but also Kurian's was forward thinking and laid out a vision of the future. But it didn't address in our view, and I talked to Sarbjeet Johal about this as well, today's challenges to the degree that Microsoft did and we expect AWS will at re:Invent this year, it was more out there, more forward thinking, what's possible in the future, somewhat less about today's problem, so I think it's resonates less with today's enterprise players. Thomas Kurian then took over from Sundar Pichai and did a really good job of highlighting customers, and I think he has to, right? He has to say, "Look, we are in this game. We have customers, 9 out of the top 10 media firms use Google Cloud. 8 out of the top 10 manufacturers. 9 out of the top 10 retailers. Same for telecom, same for healthcare. 8 out of the top 10 retail banks." He and Sundar specifically referenced a number of companies, customers, including Avery Dennison, Groupe Renault, H&M, John Hopkins, Prudential, Minna Bank out of Japan, ANZ bank and many, many others during the session. So you know, they had some proof points and you got to give 'em props for that. Now like Microsoft, Google talked about infrastructure, they referenced training processors and regions and compute optionality and storage and how new workloads were emerging, particularly data-driven workloads in AI that required new infrastructure. He explicitly highlighted partnerships within Nvidia and Intel. I didn't see anything on Arm, which somewhat surprised me 'cause I believe Google's working on that or at least has come following in AWS's suit if you will, but maybe that's why they're not mentioning it or maybe I got to do more research there, but let's park that for a minute. But again, as we've extensively discussed in Breaking Analysis in our view when it comes to compute, AWS via its Annapurna acquisition is well ahead of the pack in this area. Arm is making its way into the enterprise, but all three companies are heavily investing in infrastructure, which is great news for customers and the ecosystem. We'll come back to that. Data and AI go hand in hand, and there was no shortage of data talk. Google didn't mention Snowflake or Databricks specifically, but it did mention, by the way, it mentioned Mongo a couple of times, but it did mention Google's, quote, Open Data cloud. Now maybe Google has used that term before, but Snowflake has been marketing the data cloud concept for a couple of years now. So that struck as a shot across the bow to one of its partners and obviously competitor, Snowflake. At BigQuery is a main centerpiece of Google's data strategy. Kurian talked about how they can take any data from any source in any format from any cloud provider with BigQuery Omni and aggregate and understand it. And with the support of Apache Iceberg and Delta and Hudi coming in the future and its open Data Cloud Alliance, they talked a lot about that. So without specifically mentioning Snowflake or Databricks, Kurian co-opted a lot of messaging from these two players, such as life and tech. Kurian also talked about Google Workspace and how it's now at 8 million users up from 6 million just two years ago. There's a lot of discussion on developer optionality and several details on tools supported and the open mantra of Google. And finally on security, Google brought out Kevin Mandian, he's a CUBE alum, extremely impressive individual who's CEO of Mandiant, a leading security service provider and consultancy that Google recently acquired for around 5.3 billion. They talked about moving from a shared responsibility model to a shared fate model, which is again, it's kind of a shot across AWS's bow, kind of shared responsibility model. It's unclear that Google will pay the same penalty if a customer doesn't live up to its portion of the shared responsibility, but we can probably assume that the customer is still going to bear the brunt of the pain, nonetheless. Mandiant is really interesting because it's a services play and Google has stated that it is not a services company, it's going to give partners in the channel plenty of room to play. So we'll see what it does with Mandiant. But Mandiant is a very strong enterprise capability and in the single most important area security. So interesting acquisition by Google. Now as well, unlike Microsoft, Google is not competing with security leaders like Okta and CrowdStrike. Rather, it's partnering aggressively with those firms and prominently putting them forth. All right. Let's get into the ETR survey data and see how Microsoft and Google are positioned in four key markets that we've mentioned before, IaaS, BI analytics, database data platforms and collaboration software. First, let's look at the IaaS cloud. ETR is just about to release its October survey, so I cannot share the that data yet. I can only show July data, but we're going to give you some directional hints throughout this conversation. This chart shows net score or spending momentum on the vertical axis and overlap or presence in the data, i.e., how pervasive the platform is. That's on the horizontal axis. And we've inserted the Wikibon estimates of IaaS revenue for the companies, the Big 3. Actually the Big 4, we included Alibaba. So a couple of points in this somewhat busy data chart. First, Microsoft and AWS as always are dominant on both axes. The red dotted line there at 40% on the vertical axis. That represents a highly elevated spending velocity and all of the Big 3 are above the line. Now at the same time, GCP is well behind the two leaders on the horizontal axis and you can see that in the table insert as well in our revenue estimates. Now why is Azure bigger in the ETR survey when AWS is larger according to the Wikibon revenue estimates? And the answer is because Microsoft with products like 365 and Teams will often be considered by respondents in the survey as cloud by customers, so they fit into that ETR category. But in the insert data we're stripping out applications and SaaS from Microsoft and Google and we're only isolating on IaaS. The other point is when you take a look at the early October returns, you see downward pressure as signified by those dotted arrows on every name. The only exception was Dell, or Dell and IBM, which showing slightly improved momentum. So the survey data generally confirms what we know that AWS and Azure have a massive lead and strong momentum in the marketplace. But the real story is below the line. Unlike Google Cloud, which is on pace to lose well over 3 billion on an operating basis this year, AWS's operating profit is around $20 billion annually. Microsoft's Intelligent Cloud generated more than $30 billion in operating income last fiscal year. Let that sink in for a moment. Now again, that's not to say Google doesn't have traction, it does and Kurian gave some nice proof points and customer examples in his keynote presentation, but the data underscores the lead that Microsoft and AWS have on Google in cloud. And here's a breakdown of ETR's proprietary net score methodology, that vertical axis that we showed you in the previous chart. It asks customers, are you adopting the platform new? That's that lime green. Are you spending 6% or more? That's the forest green. Is you're spending flat? That's the gray. Is you're spending down 6% or worse? That's the pinkest color. Or are you replacing the platform, defecting? That's the bright red. You subtract the reds from the greens and you get a net score. Now one caveat here, which actually is really favorable from Microsoft, the Microsoft data that we're showing here is across the entire Microsoft portfolio. The other point is, this is July data, we'll have an update for you once ETR releases its October results. But we're talking about meaningful samples here, the ends. 620 for AWS over a thousand from Microsoft in more than 450 respondents in the survey for Google. So the real tell is replacements, that bright red. There is virtually no churn for AWS and Microsoft, but Google's churn is 5x, those two in the survey. Now 5% churn is not high, but you'd like to see three things for Google given it's smaller size. One is less churn, two is much, much higher adoption rates in the lime green. Three is a higher percentage of those spending more, the forest green. And four is a lower percentage of those spending less. And none of these conditions really applies here for Google. GCP is still not growing fast enough in our opinion, and doesn't have nearly the traction of the two leaders and that shows up in the survey data. All right, let's look at the next sector, BI analytics. Here we have that same XY dimension. Again, Microsoft dominating the picture. AWS very strong also in both axes. Tableau, very popular and respectable of course acquired by Salesforce on the vertical axis, still looking pretty good there. And again on the horizontal axis, big presence there for Tableau. And Google with Looker and its other platforms is also respectable, but it again, has some work to do. Now notice Streamlit, that's a recent Snowflake acquisition. It's strong in the vertical axis and because of Snowflake's go-to-market (indistinct), it's likely going to move to the right overtime. Grafana is also prominent in the Y axis, but a glimpse at the most recent survey data shows them slightly declining while Looker actually improves a bit. As does Cloudera, which we'll move up slightly. Again, Microsoft just blows you away, doesn't it? All right, now let's get into database and data platform. Same X Y dimensions, but now database and data warehouse. Snowflake as usual takes the top spot on the vertical axis and it is actually keeps moving to the right as well with again, Microsoft and AWS is dominant in the market, as is Oracle on the X axis, albeit it's got less spending velocity, but of course it's the database king. Google is well behind on the X axis but solidly above the 40% line on the vertical axis. Note that virtually all platforms will see pressure in the next survey due to the macro environment. Microsoft might even dip below the 40% line for the first time in a while. Lastly, let's look at the collaboration and productivity software market. This is such an important area for both Microsoft and Google. And just look at Microsoft with 365 and Teams up into the right. I mean just so impressive in ubiquitous. And we've highlighted Google. It's in the pack. It certainly is a nice base with 174 N, which I can tell you that N will rise in the next survey, which is an indication that more people are adopting. But given the investment and the tech behind it and all the AI and Google's resources, you'd really like to see Google in this space above the 40% line, given the importance of this market, of this collaboration area to Google's success and the degree to which they emphasize it in their pitch. And look, this brings up something that we've talked about before on Breaking Analysis. Google doesn't have a tech problem. This is a go-to-market and marketing challenge that Google faces and it's up against two go-to-market champs and Microsoft and AWS. And Google doesn't have the enterprise sales culture. It's trying, it's making progress, but it's like that racehorse that has all the potential in the world, but it's just missing some kind of key ingredient to put it over at the top. It's always coming in third, (chuckles) but we're watching and Google's obviously, making some investments as we shared with earlier. All right. Some final thoughts on what we learned this week and in this research: customers and partners should be thrilled that both Microsoft and Google along with AWS are spending so much money on innovation and building out global platforms. This is a gift to the industry and we should be thankful frankly because it's good for business, it's good for competitiveness and future innovation as a platform that can be built upon. Now we didn't talk much about multi-cloud, we haven't even mentioned supercloud, but both Microsoft and Google have a story that resonates with customers in cross cloud capabilities, unlike AWS at this time. But we never say never when it comes to AWS. They sometimes and oftentimes surprise you. One of the other things that Sarbjeet Johal and John Furrier and I have discussed is that each of the Big 3 is positioning to their respective strengths. AWS is the best IaaS. Microsoft is building out the kind of, quote, we-make-it-easy-for-you cloud, and Google is trying to be the open data cloud with its open-source chops and excellent tech. And that puts added pressure on Snowflake, doesn't it? You know, Thomas Kurian made some comments according to CRN, something to the effect that, we are the only company that can do the data cloud thing across clouds, which again, if I'm being honest is not really accurate. Now I haven't clarified these statements with Google and often things get misquoted, but there's little question that, as AWS has done in the past with Redshift, Google is taking a page out of Snowflake, Databricks as well. A big difference in the Big 3 is that AWS doesn't have this big emphasis on the up-the-stack collaboration software that both Microsoft and Google have, and that for Microsoft and Google will drive captive IaaS consumption. AWS obviously does some of that in database, a lot of that in database, but ISVs that compete with Microsoft and Google should have a greater affinity, one would think, to AWS for competitive reasons. and the same thing could be said in security, we would think because, as I mentioned before, Microsoft competes very directly with CrowdStrike and Okta and others. One of the big thing that Sarbjeet mentioned that I want to call out here, I'd love to have your opinion. AWS specifically, but also Microsoft with Azure have successfully created what Sarbjeet calls brand distance. AWS from the Amazon Retail, and even though AWS all the time talks about Amazon X and Amazon Y is in their product portfolio, but you don't really consider it part of the retail organization 'cause it's not. Azure, same thing, has created its own identity. And it seems that Google still struggles to do that. It's still very highly linked to the sort of core of Google. Now, maybe that's by design, but for enterprise customers, there's still some potential confusion with Google, what's its intentions? How long will they continue to lose money and invest? Are they going to pull the plug like they do on so many other tools? So you know, maybe some rethinking of the marketing there and the positioning. Now we didn't talk much about ecosystem, but it's vital for any cloud player, and Google again has some work to do relative to the leaders. Which brings us to supercloud. The ecosystem and end customers are now in a position this decade to digitally transform. And we're talking here about building out their own clouds, not by putting in and building data centers and installing racks of servers and storage devices, no. Rather to build value on top of the hyperscaler gift that has been presented. And that is a mega trend that we're watching closely in theCUBE community. While there's debate about the supercloud name and so forth, there little question in our minds that the next decade of cloud will not be like the last. All right, we're going to leave it there today. Many thanks to Sarbjeet Johal, and my business partner, John Furrier, for their input to today's episode. Thanks to Alex Myerson who's on production and manages the podcast and Ken Schiffman as well. Kristen Martin and Cheryl Knight helped get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE, who does some wonderful editing. And check out SiliconANGLE, a lot of coverage on Google Cloud Next and Microsoft Ignite. Remember, all these episodes are available as podcast wherever you listen. Just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. And you can always get in touch with me via email, david.vellante@siliconangle.com or you can DM me at dvellante or comment on my LinkedIn posts. And please do check out etr.ai, the best survey data in the enterprise tech business. This is Dave Vellante for the CUBE Insights, powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (gentle music)
SUMMARY :
with Dave Vellante. and the degree to which they
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
AWS | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Nadella | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Nvidia | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Kevin Mandian | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Cheryl Knight | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Thomas Kurian | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
October | DATE | 0.99+ |
Satya Nadella | PERSON | 0.99+ |
Seattle | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
3.6 billion | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Sundar | PERSON | 0.99+ |
Prudential | ORGANIZATION | 0.99+ |
July | DATE | 0.99+ |
New York City | LOCATION | 0.99+ |
H&M | ORGANIZATION | 0.99+ |
Kurian | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
6% | QUANTITY | 0.99+ |
Minna Bank | ORGANIZATION | 0.99+ |
5x | QUANTITY | 0.99+ |
Sarbjeet Johal | PERSON | 0.99+ |
Breaking Analysis: Latest CIO Survey Shows Steady Deceleration in IT Spend
>> From the Cube Studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> Is the glass half full or half empty? Well, it depends on how you want to look at it. CIOs are tapping the breaks on spending, that's clear. The latest macro survey data from ETR quantifies what we already know to be true, that IT spend is decelerating. CIOs and IT buyers forecast that their tech spend will grow by 5.5% this year. That's a meaningful deceleration from near year end 2021 expectations. But these levels are still well above historical norms. So while the feel good factor may be in some jeopardy, overall things are pretty good, at least for now. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis, we update you in the latest macro tech spending data from Enterprise Technology Research, including strategies that organizations are employing to cut costs, and which project categories continue to see the most traction. Now, CIOs were much more optimistic at the end of last year than they are today. Back then they thought their aggregates spend would increase by more than 8%. Of course, at that time the expectation was that the economy was ready to make a semi ordered return to normal, and that didn't happen as you well know. And you can see here the expectation for spending this year is down to 5.5% growth, as we said, and this is based on the most recent ETR CIO and IT buyer survey, which includes more than 1100 responses. So we started the year above 8% then made a meaningful decline into the mid sixes and nine months into the year, we're now in the mid fives, but this is still two to 300 basis points above historical norms for IT spending. And looking ahead to next year, CIOs are expecting accelerated growth edging back up toward that 6% level. Now as noted here, the visibility on this is probably less clear than pre COVID years of course, but the bottom line is digital transformations are continuing to push it spending above historical levels. Now the problem as we know, is earning estimates are coming down and forecasts are being lowered every day. I mean, as the saying goes the first disappointment is rarely the last. Even the semiconductor industry is seeing softness. Just this past week we saw AMD lower its quarterly revenue forecast by more than a billion dollars, as PC demand in the second half has significantly softened. But again, that's relative to some pretty amazing PC growth in the past couple of years thanks to the isolation economy. So we do see CIOs tapping the brakes, and these data points here tell an interesting story. ETR asked respondents about various actions that they're taking and these two stood out. The top line is, "We're accelerating new IT projects," and the bottom line is, "We're freezing IT projects," and you can see the convergence of those two lines, which of course signals the down. But again, these are not alarming data points. If you think about history. If you go back to Q1 2020, for example, just before the pandemic, that top line that was at 12% versus where it is today at 25%. And if you look at project freezes, they were at 22% in Q1 of 2020, which is significantly higher than today. So relatively speaking the spending dynamic is still strong. It just doesn't feel that way because we're coming out of an historic anomaly. Now, ETR asked a follow up question to respondents that indicated that spending would be down this quarter relative to the same quarter last year. So they wanted to better understand the most common actions that organizations would take to save money, and that's what this chart shows. The most common approach is still to consolidate redundant vendors across the lines of business. That was over 30%, as you can see here in the first set of bars. So presumably CIOs now have the latitude to go after so-called shadow projects, shadow IT, and implement standards across the organization via vendor consolidation. As well, there's a big jump in the survey from 14% to 20% of respondents saying that they were going after the Cloud bill, and that relates to the fourth set of bars which is scrutinizing consumption based services. So combined, 45% of respondents are looking at reducing their on demand spend. Now, some of that may be SaaS related, but most of the SaaS spend is committed, so pre-committed, but we do see organizations doing more audits and trying to eliminate or reduce orphaned licenses. Now the last data point that we want to focus on is the technology sectors that are of the highest priority. You can see here on the set of bars on the left while cybersecurity remains the top technology area, even this sector is showing a little bit of softness. What's really notable is the uptick in data related areas, that second set of bars, this category is now the second most cited, taking over from Cloud, which as you can see, remain strong, and of course Cloud continues to be a key component of digital transformations. As we've previously reported, machine learning, AI, and RPA are somewhat more strategic and more discretionary, and they've dropped below the 40% mark in terms of net score in the overall survey. We're not showing that data here, but we covered this in our last Breaking Analysis ahead of our UI path event. Now you have to remember these are the top seven sectors, and there are dozens in the ETR taxonomy, so making this list is goodness from a spending perspective. So even though there's some softness in most of these categories, these are the ones CIOs are most focused on addressing. So the big takeaways of this data are spending targets are coming down to the mid 5% range, but this is meaningfully higher than historical norms. And while CIOs, they are pumping the brakes on projects, they're still moving forward at rates faster than pre COVID levels and they're freezing fewer projects. Remember, this as well, this could be a skill shortage in play, but the slowdown is more likely related to the economic uncertainty. You know, we're seeing the two-sided coin of pay by the drink consumption models, right? You can dial it up as as you need to but you can also dial it down, and that's one of the alluring features of on demand. And we're seeing firms give more scrutiny to the Cloud bill, why wouldn't they? And there's a bit of unsurprising backlash to the flaws in today's SaaS pricing model that locks you in for specified terms. So people, when their term comes up are really going to scrutinize whether or not they have orphan licenses and try to reduce those. And it appears that the real savings can come from eliminating redundant vendors. That seems to be the biggest, you know, number one strategy, and that could favor some of the larger firms, think Oracle, Dell, Salesforce ServiceNow, IBM, HPE, Cisco, and others, you know, they may benefit from having more of larger footprint across the organization. You know, having that one throat to choke, you know one back to pat, as some like to say, but they could benefit those larger companies in least in the near term. Now having said that, we do see an uptick in data related areas as a priority for CIOs, and that could mean companies like Snowflake are in a strong position and can continue to thrive. You know, even though as we reported a couple of weeks ago, virtually all companies and sectors in the ETR data set are showing some softness related to spending a momentum from previous quarters. ETR will have its... will release its results next week and then we'll dig into the specific vendor action relative to previous quarters. So look, it feels like a meaningful slowdown but the sky is by no means falling. There are these kind of out of our control factors like interest rates, and Ukraine, and oil supply, and wages, et cetera, that are creating this uncertainty and causing firms to be more cautious. But generally we remain optimistic as leading tech companies are pretty well managed and have a lot of runway on the balance sheets, and can adjust costs to reflect the uncertain environment and remain flexible in their business models in doing so. Okay, that's it for today. Thanks to Alex Myerson who's on production and he also manages the podcast for Breaking Analysis. Ken Schiffman is also out of our Boston studio as well. Kristin Martin and Cheryl Knight, they help get the word out on social media and in our newsletters, and Rob Hof is our editor in chief over at Silicon Angle who posts our Breaking Analysis and does some great editing. So thank you to all. Remember all these episodes are available as podcasts. Wherever you listen all you got to do is search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com, and you can email me at david.vellante@siliconangle.com or DM me @dvellante, or feel free to comment on our LinkedIn posts. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave for the theCUBE Insights powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (relaxing music)
SUMMARY :
From the Cube Studios in Palo Alto and that relates to the fourth set of bars
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Rob Hof | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
40% | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
14% | QUANTITY | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
45% | QUANTITY | 0.99+ |
two lines | QUANTITY | 0.99+ |
5.5% | QUANTITY | 0.99+ |
6% | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
second half | QUANTITY | 0.99+ |
next week | DATE | 0.99+ |
25% | QUANTITY | 0.99+ |
more than 1100 responses | QUANTITY | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
22% | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
today | DATE | 0.99+ |
Silicon Angle | ORGANIZATION | 0.99+ |
more than a billion dollars | QUANTITY | 0.99+ |
fourth set | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
Cube Studios | ORGANIZATION | 0.99+ |
more than 8% | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
12% | QUANTITY | 0.99+ |
first set | QUANTITY | 0.99+ |
nine months | QUANTITY | 0.99+ |
each week | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
AMD | ORGANIZATION | 0.99+ |
20% | QUANTITY | 0.99+ |
Q1 | DATE | 0.99+ |
Salesforce ServiceNow | ORGANIZATION | 0.98+ |
two-sided | QUANTITY | 0.98+ |
dozens | QUANTITY | 0.98+ |
second | QUANTITY | 0.98+ |
pandemic | EVENT | 0.98+ |
first disappointment | QUANTITY | 0.97+ |
Q1 2020 | DATE | 0.97+ |
over 30% | QUANTITY | 0.96+ |
Breaking Analysis | TITLE | 0.96+ |
last year | DATE | 0.96+ |
this week | DATE | 0.95+ |
Enterprise Technology Research | ORGANIZATION | 0.94+ |
ORGANIZATION | 0.92+ | |
second set | QUANTITY | 0.9+ |
Ukraine | LOCATION | 0.9+ |
past couple of years | DATE | 0.88+ |
mid fives | QUANTITY | 0.88+ |
seven | QUANTITY | 0.88+ |
couple of weeks ago | DATE | 0.85+ |
above 8% | QUANTITY | 0.85+ |
quarter | DATE | 0.85+ |
this quarter | DATE | 0.82+ |
end of last year | DATE | 0.82+ |
mid 5% | QUANTITY | 0.81+ |
300 basis points | QUANTITY | 0.8+ |
theCUBE | ORGANIZATION | 0.79+ |
@dvellante | PERSON | 0.75+ |
Snowflake | ORGANIZATION | 0.72+ |
past week | DATE | 0.71+ |
COVID | OTHER | 0.7+ |
wikibon.com | ORGANIZATION | 0.69+ |
year end 2021 | DATE | 0.67+ |
Wikibon Cube | ORGANIZATION | 0.63+ |
one | QUANTITY | 0.58+ |
siliconangle.com | ORGANIZATION | 0.57+ |
Breaking | TITLE | 0.57+ |
2020 | DATE | 0.54+ |
half | QUANTITY | 0.52+ |
Breaking Analysis: As the tech tide recedes, all sectors feel the pinch
>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Virtually all tech companies have expressed caution in their respective earnings calls, and why not? I know you're sick in talking about the macroeconomic environment, but it's full of uncertainties and there's no upside to providing aggressive guidance when sellers are in control. They punish even the slightest miss. Moreover, the spending data confirms the softening market across the board, so it's becoming expected that CFOs will guide cautiously. But companies facing execution challenges, they can't hide behind the macro, which is why it's important to understand which firms are best positioned to maintain momentum through the headwinds and come out the other side stronger. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this "Breaking Analysis," we'll do three things. First, we're going to share a high-level view of the spending pinch that almost all sectors are experiencing. Second, we're going to highlight some of those companies that continue to show notably strong momentum and relatively high spending velocity on their platforms, albeit less robust than last year. And third, we're going to give you a peak at how one senior technology leader in the financial sector sees the competitive dynamic between AWS, Snowflake, and Databricks. So I landed on the red eye this morning and opened my eyes, and then opened my email to see this. My Barron's Daily had a headline telling me how bad things are and why they could get worse. The S&P Thursday hit a new closing low for the year. The safe haven of bonds are sucking wind. The market hasn't seemed to find a floor. Central banks are raising rates. Inflation is still high, but the job market remains strong. Oh, not to mention that the US debt service is headed toward a trillion dollars per year, and the geopolitical situation is pretty tense, and Europe seems to be really struggling. Yeah, so the Santa Claus rally is really looking pretty precarious, especially if there's a liquidity crunch coming, like guess why they call Barron's Barron's. Last week, we showed you this graphic ahead of the UiPath event. For months, the big four sectors, cloud, containers, AI, and RPA, have shown spending momentum above the rest. Now, this chart shows net score or spending velocity on specific sectors, and these four have consistently trended above the 40% red line for two years now, until this past ETR survey. ML/AI and RPA have decelerated as shown by the squiggly lines, and our premise was that they are more discretionary than the other sectors. The big four is now the big two: cloud and containers. But the reality is almost every sector in the ETR taxonomy is down as shown here. This chart shows the sectors that have decreased in a meaningful way. Almost all sectors are now below the trend line and only cloud and containers, as we showed earlier, are above the magic 40% mark. Container platforms and container orchestration are those gray dots. And no sector has shown a significant increase in spending velocity relative to October 2021 survey. In addition to ML/AI and RPA, information security, yes, security, virtualizations, video conferencing, outsourced IT, syndicated research. Syndicated research, yeah, those Gartner, IDC, Forrester, they stand out as seemingly the most discretionary, although we would argue that security is less discretionary. But what you're seeing is a share shift as we've previously reported toward modern platforms and away from point tools. But the point is there is no sector that is immune from the macroeconomic environment. Although remember, as we reported last week, we're still expecting five to 6% IT spending growth this year relative to 2021, but it's a dynamic environment. So let's now take a look at some of the key players and see how they're performing on a relative basis. This chart shows the net score or spending momentum on the y-axis and the pervasiveness of the vendor within the ETR survey measured as the percentage of respondents citing the vendor in use. As usual, Microsoft and AWS stand out because they are both pervasive on the x-axis and they're highly elevated on the vertical axis. For two companies of this size that demonstrate and maintain net scores above the 40% mark is extremely impressive. Although AWS is now showing much higher on the vertical scale relative to Microsoft, which is a new trend. Normally, we see Microsoft dominating on both dimensions. Salesforce is impressive as well because it's so large, but it's below those two on the vertical axis. Now, Google is meaningfully large, but relative to the other big public clouds, AWS and Azure, we see this as disappointing. John Blackledge of Cowen went on CNBC this past week and said that GCP, by his estimates, are 75% of Google Cloud's reported revenue and is now only five years behind AWS in Azure. Now, our models say, "No way." Google Cloud Platform, by our estimate, is running at about $3 billion per quarter or more like 60% of Google's reported overall cloud revenue. You have to go back to 2016 to find AWS running at that level and 2018 for Azure. So we would estimate that GCP is six years behind AWS and four years behind Azure from a revenue performance standpoint. Now, tech-wise, you can make a stronger case for Google. They have really strong tech. But revenue is, in our view, a really good indicator. Now, we circle here ServiceNow because they have become a generational company and impressively remain above the 40% line. We were at CrowdStrike with theCUBE two weeks ago, and we saw firsthand what we see as another generational company in the making. And you can see the company spending momentum is quite impressive. Now, HashiCorp and Snowflake have now surpassed Kubernetes to claim the top net score spots. Now, we know Kubernetes isn't a company, but ETR tracks it as though it were just for context. And we've highlighted Databricks as well, showing momentum, but it doesn't have the market presence of Snowflake. And there are a number of other players in the green: Pure Storage, Workday, Elastic, JFrog, Datadog, Palo Alto, Zscaler, CyberArk, Fortinet. Those last ones are in security, but again, they're all off their recent highs of 2021 and early 2022. Now, speaking of AWS, Snowflake, and Databricks, our colleague Eric Bradley of ETR recently held an in-depth interview with a senior executive at a large financial institution to dig into the analytics space. And there were some interesting takeaways that we'd like to share. The first is a discussion about whether or not AWS can usurp Snowflake as the top dog in analytics. I'll let you read this at your at your leisure, but I'll pull out some call-outs as indicated by the red lines. This individual's take was quite interesting. Note the comment that quote, this is my area of expertise. This person cited AWS's numerous databases as problematic, but Redshift was cited as the closest competitors to Snowflake. This individual also called out Snowflake's current cross-cloud Advantage, what we sometimes call supercloud, as well as the value add in their marketplace as a differentiator. But the point is this person was actually making, the point that this person was actually making is that cloud vendors make a lot of money from Snowflake. AWS, for example, see Snowflake as much more of a partner than a competitor. And as we've reported, Snowflake drives a lot of EC2 and storage revenue for AWS. Now, as well, this doesn't mean AWS does not have a strong marketplace. It does. Probably the best in the business, but the point is Snowflake's marketplace is exclusively focused on a data marketplace and the company's challenge or opportunity is to build up that ecosystem and to continue to add partners and create network effects that allow them to create long-term sustainable moat for the company, while at the same time, staying ahead of the competition with innovation. Now, the other comment that caught our attention was Snowflake's differentiators. This individual cited three areas. One, the well-known separation of compute and storage, which, of course, AWS has replicated sort of, maybe not as elegant in the sense that you can reduce the compute load with Redshift, but unlike Snowflake, you can't shut it down. Two, with Snowflake's data sharing capability, which is becoming quite well-known and a key part of its value proposition. And three, its marketplace. And again, key opportunity for Snowflake to build out its ecosystem. Close feature gaps that it's not necessarily going to deliver on its own. And really importantly, create governed and secure data sharing experiences for anyone on the data cloud or across clouds. Now, the last thing this individual addressed in the ETR interview that we'll share is how Databricks and Snowflake are attacking a similar problem, i.e. simplifying data, data sharing, and getting more value from data. The key messages here are there's overlap with these two platforms, but Databricks appeals to a more techy crowd. You open a notebook, when you're working with Databricks, you're more likely to be a data scientist, whereas with Snowflake, you're more likely to be aligned with the lines of business within sometimes an industry emphasis. We've talked about this quite often on "Breaking Analysis." Snowflake is moving into the data science arena from its data warehouse strength, and Databricks is moving into analytics and the world of SQL from its AI/ML position of strength, and both companies are doing well, although Snowflake was able to get to the public markets at IPO, Databricks has not. Now, even though Snowflake is on the quarterly shock clock as we saw earlier, it has a larger presence in the market. That's at least partly due to the tailwind of an IPO, and, of course, a stronger go-to market posture. Okay, so we wanted to share some of that with you, and I realize it's a bit of a tangent, but it's good stuff from a qualitative practitioner perspective. All right, let's close with some final thoughts. Look forward a little bit. Things in the short-term are really hard to predict. We've seen these oversold rallies peter out for the last couple of months because the world is such a mess right now, and it's really difficult to reconcile these counterveiling trends. Nothing seems to be working from a public policy perspective. Now, we know tech spending is softening, but let's not forget it, five to 6% growth. It's at or above historical norms, but there's no question the trend line is down. That said, there are certain growth companies, several mentioned in this episode, that are modern and vying to be generational platforms. They're well-positioned, financially sound, disciplined, with strong cash positions, with inherent profitability. What I mean by that is they can dial down growth if they wanted to, dial up EBIT, but being a growth company today is not what it was a year ago. Because of rising rates, the discounted cash flows are just less attractive. So earnings estimates, along with revenue multiples on these growth companies, are reverting toward the mean. However, companies like Snowflake, and CrowdStrike, and some others are able to still command a relative premium because of their execution and continued momentum. Others, as we reported last week, like UiPath for example, despite really strong momentum and customer spending, have had execution challenges. Okta is another example of a company with strong spending momentum, but is absorbing off zero for example. And as a result, they're getting hit harder from evaluation standpoint. The bottom line is sellers are still firmly in control, the bulls have been humbled, and the traders aren't buying growth tech or much tech at all right now. But long-term investors are looking for entry points because these generational companies are going to be worth significantly more five to 10 years down the line. Okay, that's it for today. Thanks for watching this "Breaking Analysis" episode. Thanks to Alex Myerson and Ken Schiffman on production. And Alex manages our podcast as well. Kristen Martin and Cheryl Knight. They help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at SiliconANGLE do some wonderful editing for us, so thank you. Thank you all. Remember that all these episodes are available as podcast wherever you listen. All you do is search "Breaking Analysis" podcast. I publish each week on wikibon.com and siliconangle.com and you can email me at david.vellante@siliconangle.com, or DM me @dvellante, or comment on my LinkedIn post. And please check out etr.ai for the very best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis." (gentle music)
SUMMARY :
This is "Breaking Analysis" and come out the other side stronger.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
AWS | ORGANIZATION | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
October 2021 | DATE | 0.99+ |
John Blackledge | PERSON | 0.99+ |
five | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
two companies | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Last week | DATE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Forrester | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2021 | DATE | 0.99+ |
IDC | ORGANIZATION | 0.99+ |
75% | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
Fortinet | ORGANIZATION | 0.99+ |
2018 | DATE | 0.99+ |
2016 | DATE | 0.99+ |
Datadog | ORGANIZATION | 0.99+ |
Alex | PERSON | 0.99+ |
two years | QUANTITY | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
four years | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
UiPath | ORGANIZATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
40% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
CyberArk | ORGANIZATION | 0.99+ |
60% | QUANTITY | 0.99+ |
six years | QUANTITY | 0.99+ |
both companies | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
Second | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
third | QUANTITY | 0.99+ |
JFrog | ORGANIZATION | 0.99+ |
SiliconANGLE | ORGANIZATION | 0.99+ |
three areas | QUANTITY | 0.99+ |
a year ago | DATE | 0.99+ |
Snowflake | TITLE | 0.99+ |
each week | QUANTITY | 0.99+ |
S&P | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
Pure Storage | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.98+ |
Elastic | ORGANIZATION | 0.98+ |
Workday | ORGANIZATION | 0.98+ |
two weeks ago | DATE | 0.98+ |
Breaking Analysis: UiPath is a Rocket Ship Resetting its Course
>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Like a marathon runner pumped up on adrenaline, UiPath sprinted to the lead in what is surely going to be a long journey toward enabling the modern automated enterprise. Now, in doing so the company has established itself as a leader in enterprise automation while at the same time, it got out over its skis on critical execution items and it disappointed investors along the way. In our view, the company has plenty of upside potential, but will have to slog through its current challenges, including restructuring its go-to market, prioritizing investments, balancing growth with profitability and dealing with a very difficult macro environment. Hello and welcome to this week's Wikibon Cube insights powered by ETR. In this Breaking Analysis and ahead of Forward 5, UiPath's big customer event, we once again dig into RPA and automation leader, UiPath, to share our most current data and view of the company's prospects relative to the competition and the market overall. Now, since the pandemic, four sectors have consistently outperformed in the overall spending landscape in the ETR dataset, cloud, containers, machine learning/AI, and robotic process automation. For the first time in a long time ML and AI and RPA have dropped below the elevated 40% line shown in this ETR graph with the red dotted line. The data here plots the net score or spending momentum for each sector with we put in video conferencing, we added it in simply to provide height to the vertical access. Now, you see those squiggly lines, they show the pattern for ML/AI and RPA, and they demonstrate the downward trajectory over time with only the most current period dropping below the 40% net score mark. While this is not surprising, it underscores one component of the macro headwinds facing all companies generally and UiPath specifically, that is the discretionary nature of certain technology investments. This has been a topic of conversation on theCUBE since the spring spanning data players like Mongo and Snowflake, the cloud, security, and other sectors. The point is ML/AI and RPA appear to be more discretionary than certain sectors, including cloud. Containers most likely benefit from the fact that much of the activity is spending on internal resources, staff like developers as much of the action in containers is free and open source. Now, security is not shown on this graphic, but as we've reported extensively in the last week at CrowdStrike's Falcon conference, security is somewhat less discretionary than other sectors. Now, as it relates to the big four that we've been highlighting since the pandemic hit, we're starting to see priorities shift from strategic investments like AI and automation to more tactical areas to keep the lights on. UiPath has not been immune to this downward pressure, but the company is still able to show some impressive metrics. Here's a snapshot chart from its investor deck. For the first time UiPath's ARR has surpassed $1 billion. The company now has more than 10,000 customers with a large number generating more than $100,000 in ARR. While not shown in this data, UiPath reported this month in its second quarter close that it had $191 million plus ARR customers, which is up 13% sequentially from its Q1. As well, the company's NRR is over 130%, which is very solid and underscores the low churn that we've previously reported for the company. But with that increased ARR comes slower growth. Here's some data we compiled that shows the dramatic growth in ARR, the blue bars, compared with the rapid deceleration and growth. That's the orange line on the right hand access there. For the first time UiPath's ARR growth dipped below 50% last quarter. Now, we've projected 34% and 25% respectively for the company's Q3 in Q4, which is slightly higher than the upper range of UiPath's CFO, Ashim Gupta's guidance from the last earnings call. That still puts UiPath exiting its fiscal year at a 25% ARR growth rate. While it's not unexpected that a company reaching $1 billion in ARR, that milestone, will begin to show lower, slower growth, net new ARR is well off its fiscal year '22 levels. The other perhaps more concerning factor is the company, despite strong 80% gross margins, remains unprofitable and free cash flow negative. New CEO, Rob Enslin, has emphasized the focus on profitability, and we'd like to see a consistent and more disciplined Rule of 40 or Rule of 45 to 50 type of performance going forward. As a result of this decelerating growth and lowered guidance stemming from significant macro challenges including currency fluctuations and weaker demand, especially in Europe and EP and inconsistent performance, the stock, as shown here, has been on a steady decline. What all growth stocks are facing, you know, challenges relative to inflation, rising interest rates, and looming recession, but as seen here, UiPath has significantly underperformed relative to the tech-heavy NASDAQ. UiPath has admitted to execution challenges, and it has brought in an expanded management team to facilitate its sales transition and desire to become a more strategic platform play versus a tactical point product. Now, adding to this challenge of foreign exchange issues, as we've previously reported unlike most high flying tech companies from Silicon Valley, UiPath has a much larger proportion of its business coming from locations outside of the United States, around 50% of its revenue, in fact. Because it prices in local currencies, when you convert back to appreciated dollars, there are less of them, and that weighs down on revenue. Now, we asked Breaking Analysis contributor, Chip Simonton, for his take on this stock, and he told us, "From a technical standpoint, there's really not much you can say, it just looks like a falling knife. It's trading at an all time low but that doesn't mean it can't go lower. New management with a good product is always a positive with a stock like this, but this is just a bad environment for UiPath and all growth stocks really, and," he added, "95% of money managers have never operated in this type of environment before. So that creates more uncertainty. There will be a bottom, but picking it in this high-inflation, high-interest rate world hasn't worked too well lately. There's really no floor to these stocks that don't have earnings, until you start to trade to cash levels." Well, okay, let's see, UiPath has $1.6 billion in cash in the balance sheet and no debt, so we're a long ways off from that target, the cash value with its current $7 billion valuation. You have to go back to April 2019 to UiPaths Series D to find a $7 billion valuation. So Simonton says, "The stock still could go lower." The valuation range for this stock has been quite remarkable from around $50 billion last May to $7 billion today. That's quite a swing. And the spending data from ETR sort of supports this story. This graphic here shows the net score or spending momentum granularity for UiPath. The lime green is new additions to the platform. The forest green is spending 6% or more. The gray is flat spending. The pink is spending down 6% or worse. And the bright red is churn. Subtract the red from the green and you get net score, which is that blue line. The yellow line is pervasiveness within the data set. Now, that yellow line is skewed somewhat because of Microsoft citations. There's a belief from some that competition from Microsoft is the reason for UiPath's troubles, but Microsoft is really delivering RPA for individuals and isn't an enterprise automation platform at least not today, but it's Microsoft, so you can't discount their presence in the market. And it probably is having some impact, but we think there are many other factors weighing on UiPath. Now, this is data through the July survey but taking a glimpse at the early October returns they're trending with the arrows, meaning less green more gray and red, which is going to lower UiPath's overall net score, which is consistent with the macro headwinds and the business performance that it's been seeing. Now, nonetheless, UiPath continues to get high marks from its customers, and relative to it's peers it maintains a leadership position. So this chart from ETR, shows net score or spending velocity in the vertical access, an overlap or presence in the dataset on the horizontal access. Microsoft continues to have a big presence, and as we mentioned, somewhat skews the data. UiPath has maintained its lead relative to automation anywhere on the horizontal access, and remains ahead of the legacy pack of business process and other RPA vendors. Solonis has popped up in the ETR data set recently as a process mining player and has a pretty high net score. It's a critical space UiPath has entered, via its acquisition of ProcessGold back in October 2019. Now, you can also see what we did is we added in the Gartner Magic Quadrant for robotic process automation. We didn't blow it up here but we circled the position of UiPath. You can see it's leading in both the vertical and the horizontal access, ahead of automation anywhere as well as Microsoft and others. Now, we're still not seeing the likes of SAP, Service Now, and Salesforce showing up in the ETR data, but these enterprise software vendors are in a reasonable position to capitalize on automation opportunities within their installed basis. This is why it's so important that UiPath transitions to an enterprise-wide horizontal play that can cut across multiple ERP, CRM, HCM, and service management platforms. While the big software companies can add automation to their respective stovepipes, and they're doing that, UiPath's opportunity is to bring automation to enable enterprises to build on top of and across these SaaS platforms that most companies are running. Now, on the chart, you see the red arrows slanting down. That signifies the expected trend from the upcoming October ETR survey, which is currently in the field and will run through early next month. Suffice it to say that there is downward spending pressure across the board, and we would expect most of these names, including UiPath, to dip below the 40% dotted line. Now, as it relates to the conversation about platform versus product, let's dig into that a bit more. Here's a graphic from UiPath's investor deck that underscores the move from product to platform. UiPath has expanded its platform from its initial on-prem point product to focus on automating tasks for individuals and back offices to a cloud-first platform approach. The company has added in technology from a number of acquisitions and added organically to those. These include, the previously mentioned, ProcessGold for process discovery, process documentation from the acquisition of StepShot, API automation via the acquisition of Cloud Elements, to its more recent acquisition of Re:infer, a natural language processing specialist. Now, we expect the platform to be a big focus of discussion at Forward 5 next week in Las Vegas. So let's close in on our expectations for the three-day event next week at the Venetian. UiPath's user conference has grown over the years and the Venetian should be by far be the biggest and most heavily attended in the company's history. We expect UiPath to really emphasize the role of automation, specifically in the context of digital transformation, and how UiPath has evolved, again, from point product to platform to support digital transformation. Expect to focus on platform maturity. When UiPath announced its platform intentions back in 2019, which was the last physical face-to-face customer event prior to COVID, it essentially was laying out a statement of direction. And over the past three years, it has matured the platform and taken it from vision to reality. You know, I said the last event, actually, the last event was 2021. Of course, theCUBE was there at the Bellagio in Las Vegas. But prior to that, 2019 is when they laid out that platform vision. Now, in a conjunction with this evolution, the company has evolved its partnerships, pairing up with the likes of Snowflake and the data cloud, CrowdStrike, to provide better security, and, of course, the big Global System Integrators, to help implement enterprise automation. And this is where we expect to hear a lot from customers. I've heard, there'll be over 100 speaking at the show about the outcomes and how they're digitally transforming. Now, I mentioned earlier that we haven't seen the big ERP and enterprise software companies show up yet in the ETR data, but believe me they're out there and they're selling automation and RPA and they're competing. So expect UiPath to position themselves and deposition those companies. Position UiPath as a layer above these bespoke platforms shown here on number four. With process discovery and task discovery, building automation across enterprise apps, and operationalizing process workflows as a horizontal play. And I'm sure there'll be some new graphics on this platform that we can share after the event that will emphasize this positioning. And finally, as we showed earlier in the platform discussion, we expect to hear a lot about the new platform capabilities and use cases, and not just RPA, but process mining, testing, testing automation, which is a new vector of growth for UiPath, document processing. And also, we expect UiPath to address its low code development capabilities to expand the number of people in the organization that can create automation capabilities and automations. Those domain experts is what we're talking about here that deeply understand the business but aren't software engineers. Enabling them is going to be really important, and we expect to hear more about that. And we expect this conference to set the tone for a new chapter in UiPath's history. The company's second in-person gathering, but the first one was last October. So really this is going to be sort of a build upon that, and many in-person events. For the first time this year, UiPath was one of the first to bring back its physical event, but we expect it to be bigger than what was at the Bellagio, and a lot of people were concerned about traveling. Although UiPath got a lot of customers there, but I think they're going to really up the game in terms of attendance this year. And really, that comparison is unfair because UiPath, again, it was sort of the middle of COVID last year. But anyway, we expect this new operations and go-to-market oriented focus from co-CEO, Rob Enslin, and new sales management, we're going to be, you know, hearing from them. And the so-called adult supervision has really been lacking at UiPath, historically. Daniel Dines will no doubt continue to have a big presence at the event and at the company. He's not a figurehead by any means. He's got a deep understanding of the product and the market and we'll be interviewing both Daniel and Rob Enslin on theCUBE to find out how they see the future. So tune in next week, or if you're in Las Vegas, definitely stop by theCUBE. If you're not go to thecube.net, you'll be able to watch all of our coverage. Okay, we're going to leave it there today. I want to thank Chip Simonton again for his input to today's episode. Thanks to Alex Morrison who's on production and manages our podcasts. Ken Schiffman, as well, from our Boston office, our Boston studio. Kristen Martin, and Cheryl Knight, they helped get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE that does some great editing. Thanks all. Remember, these episodes are all available as podcasts wherever you listen. All you got to do is search Breaking Analysis Podcasts. I publish each week on wikibon.com and siliconangle.com, and you could email me at david.vellante@siliconangle.com or DM me @dvellante. If you got anything interesting, I'll respond. If not, please keep trying, or comment on my LinkedIn post and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis. (gentle techno music)
SUMMARY :
in Palo Alto in Boston, but the company is still able to show
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Morrison | PERSON | 0.99+ |
UiPath | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Daniel | PERSON | 0.99+ |
April 2019 | DATE | 0.99+ |
October 2019 | DATE | 0.99+ |
Chip Simonton | PERSON | 0.99+ |
Rob Enslin | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
40% | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
$7 billion | QUANTITY | 0.99+ |
$191 million | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
$1 billion | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
$1.6 billion | QUANTITY | 0.99+ |
UiPaths | ORGANIZATION | 0.99+ |
NASDAQ | ORGANIZATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
next week | DATE | 0.99+ |
Europe | LOCATION | 0.99+ |
25% | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
July | DATE | 0.99+ |
United States | LOCATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
last year | DATE | 0.99+ |
Ashim Gupta | PERSON | 0.99+ |
2019 | DATE | 0.99+ |
34% | QUANTITY | 0.99+ |
early October | DATE | 0.99+ |
more than $100,000 | QUANTITY | 0.99+ |
2021 | DATE | 0.99+ |
more than 10,000 customers | QUANTITY | 0.99+ |
last May | DATE | 0.99+ |
three-day | QUANTITY | 0.99+ |
Simonton | PERSON | 0.99+ |
Daniel Dines | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
around $50 billion | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
early next month | DATE | 0.99+ |
last October | DATE | 0.99+ |
each week | QUANTITY | 0.99+ |
October | DATE | 0.99+ |
this year | DATE | 0.98+ |
siliconangle.com | OTHER | 0.98+ |
around 50% | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
wikibon.com | OTHER | 0.98+ |
over 100 | QUANTITY | 0.98+ |
SiliconANGLE | ORGANIZATION | 0.98+ |
Breaking Analysis: How CrowdStrike Plans to Become a Generational Platform
>> From theCUBE studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> In just over 10 years, CrowdStrike has become a leading independent security firm with more than 2 billion in annual recurring revenue, nearly 60% ARR growth, and approximate $40 billion market capitalization, very high retention rates, low churn, and a path to 5 billion in revenue by mid decade. The company has joined Palo Alto Networks as a gold standard pure play cyber security firm. It has achieved this lofty status with an architecture that goes beyond a point product. With outstanding go to market and financial execution, some sharp acquisitions and an ever increasing total available market. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this "Breaking Analysis" and ahead of Falcon, Fal.Con, CrowdStrike's user conference, we take a deeper look into CrowdStrike, its performance, its platform, and survey data from our partner ETR. Now, the general consensus is that spending on Cyber is non-discretionary and is held up better than other technology sectors. While this is generally true, as this data shows, it's nuanced. Let's explore this a bit. First, this is a year-to-date chart of the stock performance of CrowdStrike relative to Palo Alto, the BUG ETF, which is a Cyber index, the NASDAQ and SentinelOne, a relatively new entrant to the IPO public markets. Now, as you can see the security sector as evidenced by the orange line, that Cyber ETF, is holding up better than the overall NASDAQ which is off 28% year-to-date. Palo Alto has held up incredibly well, the best, being off only around 4% year-to-date. Whereas CrowdStrike is off in the double digits this year. But up as we talked about in one of our last "Breaking Analysis" on Cyber, up from its lows this past May. Now, CrowdStrike had a very nice beat and raise on August 30th. But the stop didn't respond well initially. We asked "Breaking Analysis" contributor, Chip Simonton for his technical take and he stated that CrowdStrike has bounced around for the last three months in its current range. He said that Cyber stocks have held up better than the rest of the market, as we're showing. And now might be a good time to take a shot but he is cautious. FedEx had a warning today of a global recession and that's obvious case for a concern. You know, maybe some of these quality Cyber stocks like Palo Alto and CrowdStrike and Zscaler will outperform in a recession, but that play is not for the faint of heart. In fact, it's feeling like a longer, more drawn out tech lash than many had hoped. Perhaps as much as 12 to 18 months of bouncing around with sellers still in control, is generally the sentiment from Simonton. So in terms of Cyber spending being non-discretionary, we'd say it's less discretionary than other it sectors but the CISO still does not have an open wallet, as we've reported before. We've seen that spending momentum has decelerated in all sectors throughout the year. This is an across the board trend. Now, independent of the stock price, George Kurtz, CEO of CrowdStrike, he's running a marathon, not a sprint. And this company is running at a nice pace despite tough macro headwinds. The company is free cash flow positive and is in the black, or a non-GAAP operating profit basis and yet it's growing ARR at nearly 60%. Frank Slootman uses the term inherent profitability, meaning that the company could drive more profits if it wanted to dial down expenses especially in go to market costs. But that would be a mistake for a company like CrowdStrike, in our opinion. While it has an impressive nearly 20,000 customers, there are hundreds of thousands of customers that CrowdStrike could penetrate. So like Snowflake and Slootman, Kurtz is not taking its foot off the gas. Now, the fundamental strength of CrowdStrike and its secret sauce is its architecture and platform, in our view, so let's take a deeper look. CrowdStrike believes that the unstoppable breach is a myth. Now, CISOs don't agree with that because they assume they're going to get breached, but that's CrowdStrike's point of view, so lofty vision. CrowdStrike's mission is to consolidate the patchwork of solutions by introducing modules that go beyond point products. CrowdStrike has more than 20 modules, I think 22, that span a range of capabilities as shown in this table. Now, there are a few critical aspects of the CrowdStrike architecture that bear mentioning. First is the lightweight agent, that is fundamental. You know, we're used to thinking that agentless is good and agent is bad, but in this case, a powerful but small, slim and easy to install but unobtrusive agent has its advantages because it supports multiple CrowdStrike modules. The second point is CrowdStrike from the beginning has been dogmatic about getting all the telemetry data into the cloud. It sort of shunned doing bespoke on prem so that all the data could be analyzed. So the more agents that CrowdStrike installs around the world, the more data it has access to and the better its intelligence. Few companies have access to more data, perhaps Microsoft given it scale and size is an exception in that endpoint space. CrowdStrike has developed a purpose-built threat graph and analytics platform that allows it to quickly ingest in near real time key telemetry data and detect not only known malware, that's pretty straightforward, pretty much anybody could do that. But using machine intelligence, it can also detect unknown malware and other potentially malicious behavior using indicators of attack, IOC, or IOAs. Humio is shown here as a company that CrowdStrike bought for around 400 million in early 2020, early 2021. It's the company's Splunk killer and will serve as an observability platform. It's really starting to take off, that's a great market for them to go after. CrowdStrike, to try to put it into sort of a summary, uses a three pronged approach. First is it's next generation anti-virus, meaning it's SaaS base. SAS based solution that can do fast lookups to telemetry data and that data lives in the cloud. And this leverages cloud strikes proprietary threat graph. Now, the second is endpoint detection and response. CrowdStrike sends all endpoint activity to the cloud and can process the data in real time. CrowdStrike EDR allows you to search data history and its partners with threat intelligent platforms who push the data into CrowdStrike, the CrowdStrike cloud. This increases CloudStrike's observation space. It also has containment capabilities in EDR to fence off compromised system. Now, the third leg of the stool is CrowdStrike's world class manage hunting approach. Like many firms, CrowdStrike has a crack team of experts that is looking at the data, but CrowdStrike's advantage is the amount of data, that observation space that we just talked about, and near real time capabilities of the architecture thanks to that proprietary database that they've developed. And all this is built in the cloud and so it enables global scale. And of course, agility. Now, let's dig into some of the survey data and take a look at what ETR respondents are saying about the spending momentum for CrowdStrike in context with its peers. Here's a very recent dataset, the October preliminary data from the October dataset in ETR's survey. Eric Bradley shared with us, ETR's head of strategy, and he runs the round tables, he's a frequent "Breaking Analysis" contributor. This is an XY graph with Netcore or spending momentum on the vertical axis and the overlap or pervasiveness in the survey on the horizontal axis. That dotted red line at 40% indicates an elevated level of spending velocity. Anything above that, we consider really impressive. Note the CrowdStrike progression since the pandemic started. The two notable points are one, that CrowdStrike has remained consistently above that 40% mark and two, it has made notable progress to the right. You can see that sort of squiggly line consistently increasing its share with one little anomaly there in the early days of over a two-year period. The other call out here is Microsoft in the upper-right. We circled Microsoft as usual. Microsoft messes up the data because it's such a dominant player and has referenced earlier as a massive scale and very quality telemetry from its endpoints. Unlike AWS, Microsoft is a direct competitor of CrowdStrike's. Nonetheless, the sector remains very strong with lots of players. Cyber is a large and expanding TAM with too many point tools that CrowdStrike is well positioned to consolidate, in our view. Now, here's a more narrow view of that same XY graph. What it does is it takes out Microsoft to kind of normalize the data a bit and it compares a number of firms that specialize in endpoint, along with CrowdStrike such as Tanium which also has a lightweight agent, by the way, and appears to be doing pretty well. SentinelOne did a relatively recent IPO, took off, stock hasn't done as well since, as you saw earlier. Carbon Black which VMware bought for around $2 billion and Cylance which is the Blackberry pivot. Now, we've also for context included Palo Alto and Cisco because they are major players with the big presence in security and they've got solutions that compete with CrowdStrike. But you can see how CrowdStrike looms large with a higher net score than these others. Although Palo Alto is very impressive, as is Cisco, steady. But Palo Alto also, sorry, CrowdStrike also has a very steady posture instead of just looming on that X axis. Let's now take a look at XDR, extended detection and response. XDR is kind of this bit of a buzzword but CrowdStrike seems to be taking the mantle and trying to sort of own the category and define it, in our view. It's a natural evolution of endpoint detection and response, EDR. In a recent ETR Roundtable hosted by our colleague, Eric Bradley, the sentiment among several CIOs is that existing SIEM, security information and event management platforms are inadequate and some see XDR as a replacement for, or at least a strong compliment to SIEM. CISOs want a single view of their data. Hmm, you haven't heard that before. They want help prioritizing potentially high impact breaches and they want to automate the low level stuff because the problem is sometimes too much information becomes information overload and you can't prioritize. So they want to consolidate platforms. They want better co consistency. They have too many dashboards, too many stove pipes. They have difficulty scaling and they have inconsistent telemetry data. As one CISO said, it's a call out here. "If the regulatory requirement isn't there, I absolutely would get rid of my SIEM." So CrowdStrike, we feel, is in a good position to continue to gain, share and disrupt this space. And that's what Dave Nicholson and I will be looking for next week when theCUBE is at Fal.Con, CrowdStrike's user conference. We'll be there for two days at the area in Vegas. In addition to CrowdStrike CEO, we'll hear from government cyber experts. We always hear that at security conferences and the CEO of Mandiant. Google just the other day closed its $5 billion plus acquisition of Mandiant, which is a threat intelligence expert and MSSP. I'm going to hear a lot about MSSPs by the way. CrowdStrike is a growing MSSP base. We think that's a really interesting sector because many companies don't have a SOC. As many as 50% of companies in the United States don't have a security operations center. So they need help, that's where MSPs come in. At the conference, there'll be a real focus on the Falcon platform. And we expect CrowdStrike to educate the audience on its multiple modules and how to take advantage of the capabilities beyond endpoint. And we'll also be watching for the ecosystem conversations. We saw this at reinforced, for example, where CrowdStrike and Okta were presenting together to show how these companies products compliment each other in the marketplace. Sometimes it gets confusing when you hear that CrowdStrike has an identity product. Okta, of course, is the identity specialist. So we'll be helping extract that signal from the noise. Because a generational company must have a strong ecosystem. CrowdStrike is evolving and our belief is that it has some work to do to create a stronger partner flywheel, and we're eager to dig into that next week. So if you're at the event, please do stop by theCUBE, say hello to Dave Nicholson and myself. Okay, we're going to leave it there today. Many thanks to Chip Simonton and Eric Bradley for their input and contributions to today's episode. Thanks to Alex Myerson, who does production, he also manages our podcast, Ken Schiffman as well, in our Boston studios, Kristen Martin and Cheryl Knight help get the word out on social media and our newsletters, and Rob Hof is our editor in chief over at siliconangle.com. He does some wonderful editing and I really appreciate that. Remember, all these episodes are available as podcasts wherever you listen, just search "Breaking Analysis" Podcast. I publish each week on wikibon.com and siliconangle.com and you can email me at david.vellante@siliconangle.com or DM me @DVellante or comment on our LinkedIn post. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis". (upbeat music)
SUMMARY :
This is "Breaking Analysis" and is in the black, or a
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Chip Simonton | PERSON | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
George Kurtz | PERSON | 0.99+ |
August 30th | DATE | 0.99+ |
October | DATE | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Rob Hof | PERSON | 0.99+ |
FedEx | ORGANIZATION | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
Vegas | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
5 billion | QUANTITY | 0.99+ |
Mandiant | ORGANIZATION | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
28% | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
$5 billion | QUANTITY | 0.99+ |
two days | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
12 | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
40% | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
second point | QUANTITY | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
Tanium | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
more than 2 billion | QUANTITY | 0.99+ |
early 2021 | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Blackberry | ORGANIZATION | 0.99+ |
next week | DATE | 0.99+ |
more than 20 modules | QUANTITY | 0.99+ |
nearly 20,000 customers | QUANTITY | 0.99+ |
18 months | QUANTITY | 0.99+ |
around $2 billion | QUANTITY | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
Chip Simonton | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
this year | DATE | 0.98+ |
early 2020 | DATE | 0.98+ |
each week | QUANTITY | 0.98+ |
nearly 60% | QUANTITY | 0.98+ |
SentinelOne | ORGANIZATION | 0.98+ |
over 10 years | QUANTITY | 0.98+ |
Boston | LOCATION | 0.98+ |
today | DATE | 0.98+ |
CrowdStrike | TITLE | 0.98+ |
Humio | ORGANIZATION | 0.97+ |
ETR | ORGANIZATION | 0.97+ |
second | QUANTITY | 0.97+ |
Breaking Analysis: We Have the Data…What Private Tech Companies Don’t Tell you About Their Business
>> From The Cube Studios in Palo Alto and Boston, bringing you data driven insights from The Cube at ETR. This is "Breaking Analysis" with Dave Vellante. >> The reverse momentum in tech stocks caused by rising interest rates, less attractive discounted cash flow models, and more tepid forward guidance, can be easily measured by public market valuations. And while there's lots of discussion about the impact on private companies and cash runway and 409A valuations, measuring the performance of non-public companies isn't as easy. IPOs have dried up and public statements by private companies, of course, they accentuate the good and they kind of hide the bad. Real data, unless you're an insider, is hard to find. Hello and welcome to this week's "Wikibon Cube Insights" powered by ETR. In this "Breaking Analysis", we unlock some of the secrets that non-public, emerging tech companies may or may not be sharing. And we do this by introducing you to a capability from ETR that we've not exposed you to over the past couple of years, it's called the Emerging Technologies Survey, and it is packed with sentiment data and performance data based on surveys of more than a thousand CIOs and IT buyers covering more than 400 companies. And we've invited back our colleague, Erik Bradley of ETR to help explain the survey and the data that we're going to cover today. Erik, this survey is something that I've not personally spent much time on, but I'm blown away at the data. It's really unique and detailed. First of all, welcome. Good to see you again. >> Great to see you too, Dave, and I'm really happy to be talking about the ETS or the Emerging Technology Survey. Even our own clients of constituents probably don't spend as much time in here as they should. >> Yeah, because there's so much in the mainstream, but let's pull up a slide to bring out the survey composition. Tell us about the study. How often do you run it? What's the background and the methodology? >> Yeah, you were just spot on the way you were talking about the private tech companies out there. So what we did is we decided to take all the vendors that we track that are not yet public and move 'em over to the ETS. And there isn't a lot of information out there. If you're not in Silicon (indistinct), you're not going to get this stuff. So PitchBook and Tech Crunch are two out there that gives some data on these guys. But what we really wanted to do was go out to our community. We have 6,000, ITDMs in our community. We wanted to ask them, "Are you aware of these companies? And if so, are you allocating any resources to them? Are you planning to evaluate them," and really just kind of figure out what we can do. So this particular survey, as you can see, 1000 plus responses, over 450 vendors that we track. And essentially what we're trying to do here is talk about your evaluation and awareness of these companies and also your utilization. And also if you're not utilizing 'em, then we can also figure out your sales conversion or churn. So this is interesting, not only for the ITDMs themselves to figure out what their peers are evaluating and what they should put in POCs against the big guys when contracts come up. But it's also really interesting for the tech vendors themselves to see how they're performing. >> And you can see 2/3 of the respondents are director level of above. You got 28% is C-suite. There is of course a North America bias, 70, 75% is North America. But these smaller companies, you know, that's when they start doing business. So, okay. We're going to do a couple of things here today. First, we're going to give you the big picture across the sectors that ETR covers within the ETS survey. And then we're going to look at the high and low sentiment for the larger private companies. And then we're going to do the same for the smaller private companies, the ones that don't have as much mindshare. And then I'm going to put those two groups together and we're going to look at two dimensions, actually three dimensions, which companies are being evaluated the most. Second, companies are getting the most usage and adoption of their offerings. And then third, which companies are seeing the highest churn rates, which of course is a silent killer of companies. And then finally, we're going to look at the sentiment and mindshare for two key areas that we like to cover often here on "Breaking Analysis", security and data. And data comprises database, including data warehousing, and then big data analytics is the second part of data. And then machine learning and AI is the third section within data that we're going to look at. Now, one other thing before we get into it, ETR very often will include open source offerings in the mix, even though they're not companies like TensorFlow or Kubernetes, for example. And we'll call that out during this discussion. The reason this is done is for context, because everyone is using open source. It is the heart of innovation and many business models are super glued to an open source offering, like take MariaDB, for example. There's the foundation and then there's with the open source code and then there, of course, the company that sells services around the offering. Okay, so let's first look at the highest and lowest sentiment among these private firms, the ones that have the highest mindshare. So they're naturally going to be somewhat larger. And we do this on two dimensions, sentiment on the vertical axis and mindshare on the horizontal axis and note the open source tool, see Kubernetes, Postgres, Kafka, TensorFlow, Jenkins, Grafana, et cetera. So Erik, please explain what we're looking at here, how it's derived and what the data tells us. >> Certainly, so there is a lot here, so we're going to break it down first of all by explaining just what mindshare and net sentiment is. You explain the axis. We have so many evaluation metrics, but we need to aggregate them into one so that way we can rank against each other. Net sentiment is really the aggregation of all the positive and subtracting out the negative. So the net sentiment is a very quick way of looking at where these companies stand versus their peers in their sectors and sub sectors. Mindshare is basically the awareness of them, which is good for very early stage companies. And you'll see some names on here that are obviously been around for a very long time. And they're clearly be the bigger on the axis on the outside. Kubernetes, for instance, as you mentioned, is open source. This de facto standard for all container orchestration, and it should be that far up into the right, because that's what everyone's using. In fact, the open source leaders are so prevalent in the emerging technology survey that we break them out later in our analysis, 'cause it's really not fair to include them and compare them to the actual companies that are providing the support and the security around that open source technology. But no survey, no analysis, no research would be complete without including these open source tech. So what we're looking at here, if I can just get away from the open source names, we see other things like Databricks and OneTrust . They're repeating as top net sentiment performers here. And then also the design vendors. People don't spend a lot of time on 'em, but Miro and Figma. This is their third survey in a row where they're just dominating that sentiment overall. And Adobe should probably take note of that because they're really coming after them. But Databricks, we all know probably would've been a public company by now if the market hadn't turned, but you can see just how dominant they are in a survey of nothing but private companies. And we'll see that again when we talk about the database later. >> And I'll just add, so you see automation anywhere on there, the big UiPath competitor company that was not able to get to the public markets. They've been trying. Snyk, Peter McKay's company, they've raised a bunch of money, big security player. They're doing some really interesting things in developer security, helping developers secure the data flow, H2O.ai, Dataiku AI company. We saw them at the Snowflake Summit. Redis Labs, Netskope and security. So a lot of names that we know that ultimately we think are probably going to be hitting the public market. Okay, here's the same view for private companies with less mindshare, Erik. Take us through this one. >> On the previous slide too real quickly, I wanted to pull that security scorecard and we'll get back into it. But this is a newcomer, that I couldn't believe how strong their data was, but we'll bring that up in a second. Now, when we go to the ones of lower mindshare, it's interesting to talk about open source, right? Kubernetes was all the way on the top right. Everyone uses containers. Here we see Istio up there. Not everyone is using service mesh as much. And that's why Istio is in the smaller breakout. But still when you talk about net sentiment, it's about the leader, it's the highest one there is. So really interesting to point out. Then we see other names like Collibra in the data side really performing well. And again, as always security, very well represented here. We have Aqua, Wiz, Armis, which is a standout in this survey this time around. They do IoT security. I hadn't even heard of them until I started digging into the data here. And I couldn't believe how well they were doing. And then of course you have AnyScale, which is doing a second best in this and the best name in the survey Hugging Face, which is a machine learning AI tool. Also doing really well on a net sentiment, but they're not as far along on that access of mindshare just yet. So these are again, emerging companies that might not be as well represented in the enterprise as they will be in a couple of years. >> Hugging Face sounds like something you do with your two year old. Like you said, you see high performers, AnyScale do machine learning and you mentioned them. They came out of Berkeley. Collibra Governance, InfluxData is on there. InfluxDB's a time series database. And yeah, of course, Alex, if you bring that back up, you get a big group of red dots, right? That's the bad zone, I guess, which Sisense does vis, Yellowbrick Data is a NPP database. How should we interpret the red dots, Erik? I mean, is it necessarily a bad thing? Could it be misinterpreted? What's your take on that? >> Sure, well, let me just explain the definition of it first from a data science perspective, right? We're a data company first. So the gray dots that you're seeing that aren't named, that's the mean that's the average. So in order for you to be on this chart, you have to be at least one standard deviation above or below that average. So that gray is where we're saying, "Hey, this is where the lump of average comes in. This is where everyone normally stands." So you either have to be an outperformer or an underperformer to even show up in this analysis. So by definition, yes, the red dots are bad. You're at least one standard deviation below the average of your peers. It's not where you want to be. And if you're on the lower left, not only are you not performing well from a utilization or an actual usage rate, but people don't even know who you are. So that's a problem, obviously. And the VCs and the PEs out there that are backing these companies, they're the ones who mostly are interested in this data. >> Yeah. Oh, that's great explanation. Thank you for that. No, nice benchmarking there and yeah, you don't want to be in the red. All right, let's get into the next segment here. Here going to look at evaluation rates, adoption and the all important churn. First new evaluations. Let's bring up that slide. And Erik, take us through this. >> So essentially I just want to explain what evaluation means is that people will cite that they either plan to evaluate the company or they're currently evaluating. So that means we're aware of 'em and we are choosing to do a POC of them. And then we'll see later how that turns into utilization, which is what a company wants to see, awareness, evaluation, and then actually utilizing them. That's sort of the life cycle for these emerging companies. So what we're seeing here, again, with very high evaluation rates. H2O, we mentioned. SecurityScorecard jumped up again. Chargebee, Snyk, Salt Security, Armis. A lot of security names are up here, Aqua, Netskope, which God has been around forever. I still can't believe it's in an Emerging Technology Survey But so many of these names fall in data and security again, which is why we decided to pick those out Dave. And on the lower side, Vena, Acton, those unfortunately took the dubious award of the lowest evaluations in our survey, but I prefer to focus on the positive. So SecurityScorecard, again, real standout in this one, they're in a security assessment space, basically. They'll come in and assess for you how your security hygiene is. And it's an area of a real interest right now amongst our ITDM community. >> Yeah, I mean, I think those, and then Arctic Wolf is up there too. They're doing managed services. You had mentioned Netskope. Yeah, okay. All right, let's look at now adoption. These are the companies whose offerings are being used the most and are above that standard deviation in the green. Take us through this, Erik. >> Sure, yet again, what we're looking at is, okay, we went from awareness, we went to evaluation. Now it's about utilization, which means a survey respondent's going to state "Yes, we evaluated and we plan to utilize it" or "It's already in our enterprise and we're actually allocating further resources to it." Not surprising, again, a lot of open source, the reason why, it's free. So it's really easy to grow your utilization on something that's free. But as you and I both know, as Red Hat proved, there's a lot of money to be made once the open source is adopted, right? You need the governance, you need the security, you need the support wrapped around it. So here we're seeing Kubernetes, Postgres, Apache Kafka, Jenkins, Grafana. These are all open source based names. But if we're looking at names that are non open source, we're going to see Databricks, Automation Anywhere, Rubrik all have the highest mindshare. So these are the names, not surprisingly, all names that probably should have been public by now. Everyone's expecting an IPO imminently. These are the names that have the highest mindshare. If we talk about the highest utilization rates, again, Miro and Figma pop up, and I know they're not household names, but they are just dominant in this survey. These are applications that are meant for design software and, again, they're going after an Autodesk or a CAD or Adobe type of thing. It is just dominant how high the utilization rates are here, which again is something Adobe should be paying attention to. And then you'll see a little bit lower, but also interesting, we see Collibra again, we see Hugging Face again. And these are names that are obviously in the data governance, ML, AI side. So we're seeing a ton of data, a ton of security and Rubrik was interesting in this one, too, high utilization and high mindshare. We know how pervasive they are in the enterprise already. >> Erik, Alex, keep that up for a second, if you would. So yeah, you mentioned Rubrik. Cohesity's not on there. They're sort of the big one. We're going to talk about them in a moment. Puppet is interesting to me because you remember the early days of that sort of space, you had Puppet and Chef and then you had Ansible. Red Hat bought Ansible and then Ansible really took off. So it's interesting to see Puppet on there as well. Okay. So now let's look at the churn because this one is where you don't want to be. It's, of course, all red 'cause churn is bad. Take us through this, Erik. >> Yeah, definitely don't want to be here and I don't love to dwell on the negative. So we won't spend as much time. But to your point, there's one thing I want to point out that think it's important. So you see Rubrik in the same spot, but Rubrik has so many citations in our survey that it actually would make sense that they're both being high utilization and churn just because they're so well represented. They have such a high overall representation in our survey. And the reason I call that out is Cohesity. Cohesity has an extremely high churn rate here about 17% and unlike Rubrik, they were not on the utilization side. So Rubrik is seeing both, Cohesity is not. It's not being utilized, but it's seeing a high churn. So that's the way you can look at this data and say, "Hm." Same thing with Puppet. You noticed that it was on the other slide. It's also on this one. So basically what it means is a lot of people are giving Puppet a shot, but it's starting to churn, which means it's not as sticky as we would like. One that was surprising on here for me was Tanium. It's kind of jumbled in there. It's hard to see in the middle, but Tanium, I was very surprised to see as high of a churn because what I do hear from our end user community is that people that use it, like it. It really kind of spreads into not only vulnerability management, but also that endpoint detection and response side. So I was surprised by that one, mostly to see Tanium in here. Mural, again, was another one of those application design softwares that's seeing a very high churn as well. >> So you're saying if you're in both... Alex, bring that back up if you would. So if you're in both like MariaDB is for example, I think, yeah, they're in both. They're both green in the previous one and red here, that's not as bad. You mentioned Rubrik is going to be in both. Cohesity is a bit of a concern. Cohesity just brought on Sanjay Poonen. So this could be a go to market issue, right? I mean, 'cause Cohesity has got a great product and they got really happy customers. So they're just maybe having to figure out, okay, what's the right ideal customer profile and Sanjay Poonen, I guarantee, is going to have that company cranking. I mean they had been doing very well on the surveys and had fallen off of a bit. The other interesting things wondering the previous survey I saw Cvent, which is an event platform. My only reason I pay attention to that is 'cause we actually have an event platform. We don't sell it separately. We bundle it as part of our offerings. And you see Hopin on here. Hopin raised a billion dollars during the pandemic. And we were like, "Wow, that's going to blow up." And so you see Hopin on the churn and you didn't see 'em in the previous chart, but that's sort of interesting. Like you said, let's not kind of dwell on the negative, but you really don't. You know, churn is a real big concern. Okay, now we're going to drill down into two sectors, security and data. Where data comprises three areas, database and data warehousing, machine learning and AI and big data analytics. So first let's take a look at the security sector. Now this is interesting because not only is it a sector drill down, but also gives an indicator of how much money the firm has raised, which is the size of that bubble. And to tell us if a company is punching above its weight and efficiently using its venture capital. Erik, take us through this slide. Explain the dots, the size of the dots. Set this up please. >> Yeah. So again, the axis is still the same, net sentiment and mindshare, but what we've done this time is we've taken publicly available information on how much capital company is raised and that'll be the size of the circle you see around the name. And then whether it's green or red is basically saying relative to the amount of money they've raised, how are they doing in our data? So when you see a Netskope, which has been around forever, raised a lot of money, that's why you're going to see them more leading towards red, 'cause it's just been around forever and kind of would expect it. Versus a name like SecurityScorecard, which is only raised a little bit of money and it's actually performing just as well, if not better than a name, like a Netskope. OneTrust doing absolutely incredible right now. BeyondTrust. We've seen the issues with Okta, right. So those are two names that play in that space that obviously are probably getting some looks about what's going on right now. Wiz, we've all heard about right? So raised a ton of money. It's doing well on net sentiment, but the mindshare isn't as well as you'd want, which is why you're going to see a little bit of that red versus a name like Aqua, which is doing container and application security. And hasn't raised as much money, but is really neck and neck with a name like Wiz. So that is why on a relative basis, you'll see that more green. As we all know, information security is never going away. But as we'll get to later in the program, Dave, I'm not sure in this current market environment, if people are as willing to do POCs and switch away from their security provider, right. There's a little bit of tepidness out there, a little trepidation. So right now we're seeing overall a slight pause, a slight cooling in overall evaluations on the security side versus historical levels a year ago. >> Now let's stay on here for a second. So a couple things I want to point out. So it's interesting. Now Snyk has raised over, I think $800 million but you can see them, they're high on the vertical and the horizontal, but now compare that to Lacework. It's hard to see, but they're kind of buried in the middle there. That's the biggest dot in this whole thing. I think I'm interpreting this correctly. They've raised over a billion dollars. It's a Mike Speiser company. He was the founding investor in Snowflake. So people watch that very closely, but that's an example of where they're not punching above their weight. They recently had a layoff and they got to fine tune things, but I'm still confident they they're going to do well. 'Cause they're approaching security as a data problem, which is probably people having trouble getting their arms around that. And then again, I see Arctic Wolf. They're not red, they're not green, but they've raised fair amount of money, but it's showing up to the right and decent level there. And a couple of the other ones that you mentioned, Netskope. Yeah, they've raised a lot of money, but they're actually performing where you want. What you don't want is where Lacework is, right. They've got some work to do to really take advantage of the money that they raised last November and prior to that. >> Yeah, if you're seeing that more neutral color, like you're calling out with an Arctic Wolf, like that means relative to their peers, this is where they should be. It's when you're seeing that red on a Lacework where we all know, wow, you raised a ton of money and your mindshare isn't where it should be. Your net sentiment is not where it should be comparatively. And then you see these great standouts, like Salt Security and SecurityScorecard and Abnormal. You know they haven't raised that much money yet, but their net sentiment's higher and their mindshare's doing well. So those basically in a nutshell, if you're a PE or a VC and you see a small green circle, then you're doing well, then it means you made a good investment. >> Some of these guys, I don't know, but you see these small green circles. Those are the ones you want to start digging into and maybe help them catch a wave. Okay, let's get into the data discussion. And again, three areas, database slash data warehousing, big data analytics and ML AI. First, we're going to look at the database sector. So Alex, thank you for bringing that up. Alright, take us through this, Erik. Actually, let me just say Postgres SQL. I got to ask you about this. It shows some funding, but that actually could be a mix of EDB, the company that commercializes Postgres and Postgres the open source database, which is a transaction system and kind of an open source Oracle. You see MariaDB is a database, but open source database. But the companies they've raised over $200 million and they filed an S-4. So Erik looks like this might be a little bit of mashup of companies and open source products. Help us understand this. >> Yeah, it's tough when you start dealing with the open source side and I'll be honest with you, there is a little bit of a mashup here. There are certain names here that are a hundred percent for profit companies. And then there are others that are obviously open source based like Redis is open source, but Redis Labs is the one trying to monetize the support around it. So you're a hundred percent accurate on this slide. I think one of the things here that's important to note though, is just how important open source is to data. If you're going to be going to any of these areas, it's going to be open source based to begin with. And Neo4j is one I want to call out here. It's not one everyone's familiar with, but it's basically geographical charting database, which is a name that we're seeing on a net sentiment side actually really, really high. When you think about it's the third overall net sentiment for a niche database play. It's not as big on the mindshare 'cause it's use cases aren't as often, but third biggest play on net sentiment. I found really interesting on this slide. >> And again, so MariaDB, as I said, they filed an S-4 I think $50 million in revenue, that might even be ARR. So they're not huge, but they're getting there. And by the way, MariaDB, if you don't know, was the company that was formed the day that Oracle bought Sun in which they got MySQL and MariaDB has done a really good job of replacing a lot of MySQL instances. Oracle has responded with MySQL HeatWave, which was kind of the Oracle version of MySQL. So there's some interesting battles going on there. If you think about the LAMP stack, the M in the LAMP stack was MySQL. And so now it's all MariaDB replacing that MySQL for a large part. And then you see again, the red, you know, you got to have some concerns about there. Aerospike's been around for a long time. SingleStore changed their name a couple years ago, last year. Yellowbrick Data, Fire Bolt was kind of going after Snowflake for a while, but yeah, you want to get out of that red zone. So they got some work to do. >> And Dave, real quick for the people that aren't aware, I just want to let them know that we can cut this data with the public company data as well. So we can cross over this with that because some of these names are competing with the larger public company names as well. So we can go ahead and cross reference like a MariaDB with a Mongo, for instance, or of something of that nature. So it's not in this slide, but at another point we can certainly explain on a relative basis how these private names are doing compared to the other ones as well. >> All right, let's take a quick look at analytics. Alex, bring that up if you would. Go ahead, Erik. >> Yeah, I mean, essentially here, I can't see it on my screen, my apologies. I just kind of went to blank on that. So gimme one second to catch up. >> So I could set it up while you're doing that. You got Grafana up and to the right. I mean, this is huge right. >> Got it thank you. I lost my screen there for a second. Yep. Again, open source name Grafana, absolutely up and to the right. But as we know, Grafana Labs is actually picking up a lot of speed based on Grafana, of course. And I think we might actually hear some noise from them coming this year. The names that are actually a little bit more disappointing than I want to call out are names like ThoughtSpot. It's been around forever. Their mindshare of course is second best here but based on the amount of time they've been around and the amount of money they've raised, it's not actually outperforming the way it should be. We're seeing Moogsoft obviously make some waves. That's very high net sentiment for that company. It's, you know, what, third, fourth position overall in this entire area, Another name like Fivetran, Matillion is doing well. Fivetran, even though it's got a high net sentiment, again, it's raised so much money that we would've expected a little bit more at this point. I know you know this space extremely well, but basically what we're looking at here and to the bottom left, you're going to see some names with a lot of red, large circles that really just aren't performing that well. InfluxData, however, second highest net sentiment. And it's really pretty early on in this stage and the feedback we're getting on this name is the use cases are great, the efficacy's great. And I think it's one to watch out for. >> InfluxData, time series database. The other interesting things I just noticed here, you got Tamer on here, which is that little small green. Those are the ones we were saying before, look for those guys. They might be some of the interesting companies out there and then observe Jeremy Burton's company. They do observability on top of Snowflake, not green, but kind of in that gray. So that's kind of cool. Monte Carlo is another one, they're sort of slightly green. They are doing some really interesting things in data and data mesh. So yeah, okay. So I can spend all day on this stuff, Erik, phenomenal data. I got to get back and really dig in. Let's end with machine learning and AI. Now this chart it's similar in its dimensions, of course, except for the money raised. We're not showing that size of the bubble, but AI is so hot. We wanted to cover that here, Erik, explain this please. Why TensorFlow is highlighted and walk us through this chart. >> Yeah, it's funny yet again, right? Another open source name, TensorFlow being up there. And I just want to explain, we do break out machine learning, AI is its own sector. A lot of this of course really is intertwined with the data side, but it is on its own area. And one of the things I think that's most important here to break out is Databricks. We started to cover Databricks in machine learning, AI. That company has grown into much, much more than that. So I do want to state to you Dave, and also the audience out there that moving forward, we're going to be moving Databricks out of only the MA/AI into other sectors. So we can kind of value them against their peers a little bit better. But in this instance, you could just see how dominant they are in this area. And one thing that's not here, but I do want to point out is that we have the ability to break this down by industry vertical, organization size. And when I break this down into Fortune 500 and Fortune 1000, both Databricks and Tensorflow are even better than you see here. So it's quite interesting to see that the names that are succeeding are also succeeding with the largest organizations in the world. And as we know, large organizations means large budgets. So this is one area that I just thought was really interesting to point out that as we break it down, the data by vertical, these two names still are the outstanding players. >> I just also want to call it H2O.ai. They're getting a lot of buzz in the marketplace and I'm seeing them a lot more. Anaconda, another one. Dataiku consistently popping up. DataRobot is also interesting because all the kerfuffle that's going on there. The Cube guy, Cube alum, Chris Lynch stepped down as executive chairman. All this stuff came out about how the executives were taking money off the table and didn't allow the employees to participate in that money raising deal. So that's pissed a lot of people off. And so they're now going through some kind of uncomfortable things, which is unfortunate because DataRobot, I noticed, we haven't covered them that much in "Breaking Analysis", but I've noticed them oftentimes, Erik, in the surveys doing really well. So you would think that company has a lot of potential. But yeah, it's an important space that we're going to continue to watch. Let me ask you Erik, can you contextualize this from a time series standpoint? I mean, how is this changed over time? >> Yeah, again, not show here, but in the data. I'm sorry, go ahead. >> No, I'm sorry. What I meant, I should have interjected. In other words, you would think in a downturn that these emerging companies would be less interesting to buyers 'cause they're more risky. What have you seen? >> Yeah, and it was interesting before we went live, you and I were having this conversation about "Is the downturn stopping people from evaluating these private companies or not," right. In a larger sense, that's really what we're doing here. How are these private companies doing when it comes down to the actual practitioners? The people with the budget, the people with the decision making. And so what I did is, we have historical data as you know, I went back to the Emerging Technology Survey we did in November of 21, right at the crest right before the market started to really fall and everything kind of started to fall apart there. And what I noticed is on the security side, very much so, we're seeing less evaluations than we were in November 21. So I broke it down. On cloud security, net sentiment went from 21% to 16% from November '21. That's a pretty big drop. And again, that sentiment is our one aggregate metric for overall positivity, meaning utilization and actual evaluation of the name. Again in database, we saw it drop a little bit from 19% to 13%. However, in analytics we actually saw it stay steady. So it's pretty interesting that yes, cloud security and security in general is always going to be important. But right now we're seeing less overall net sentiment in that space. But within analytics, we're seeing steady with growing mindshare. And also to your point earlier in machine learning, AI, we're seeing steady net sentiment and mindshare has grown a whopping 25% to 30%. So despite the downturn, we're seeing more awareness of these companies in analytics and machine learning and a steady, actual utilization of them. I can't say the same in security and database. They're actually shrinking a little bit since the end of last year. >> You know it's interesting, we were on a round table, Erik does these round tables with CISOs and CIOs, and I remember one time you had asked the question, "How do you think about some of these emerging tech companies?" And one of the executives said, "I always include somebody in the bottom left of the Gartner Magic Quadrant in my RFPs. I think he said, "That's how I found," I don't know, it was Zscaler or something like that years before anybody ever knew of them "Because they're going to help me get to the next level." So it's interesting to see Erik in these sectors, how they're holding up in many cases. >> Yeah. It's a very important part for the actual IT practitioners themselves. There's always contracts coming up and you always have to worry about your next round of negotiations. And that's one of the roles these guys play. You have to do a POC when contracts come up, but it's also their job to stay on top of the new technology. You can't fall behind. Like everyone's a software company. Now everyone's a tech company, no matter what you're doing. So these guys have to stay in on top of it. And that's what this ETS can do. You can go in here and look and say, "All right, I'm going to evaluate their technology," and it could be twofold. It might be that you're ready to upgrade your technology and they're actually pushing the envelope or it simply might be I'm using them as a negotiation ploy. So when I go back to the big guy who I have full intentions of writing that contract to, at least I have some negotiation leverage. >> Erik, we got to leave it there. I could spend all day. I'm going to definitely dig into this on my own time. Thank you for introducing this, really appreciate your time today. >> I always enjoy it, Dave and I hope everyone out there has a great holiday weekend. Enjoy the rest of the summer. And, you know, I love to talk data. So anytime you want, just point the camera on me and I'll start talking data. >> You got it. I also want to thank the team at ETR, not only Erik, but Darren Bramen who's a data scientist, really helped prepare this data, the entire team over at ETR. I cannot tell you how much additional data there is. We are just scratching the surface in this "Breaking Analysis". So great job guys. I want to thank Alex Myerson. Who's on production and he manages the podcast. Ken Shifman as well, who's just coming back from VMware Explore. Kristen Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE. Does some great editing for us. Thank you. All of you guys. Remember these episodes, they're all available as podcast, wherever you listen. All you got to do is just search "Breaking Analysis" podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me to get in touch david.vellante@siliconangle.com. You can DM me at dvellante or comment on my LinkedIn posts and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for Erik Bradley and The Cube Insights powered by ETR. Thanks for watching. Be well. And we'll see you next time on "Breaking Analysis". (upbeat music)
SUMMARY :
bringing you data driven it's called the Emerging Great to see you too, Dave, so much in the mainstream, not only for the ITDMs themselves It is the heart of innovation So the net sentiment is a very So a lot of names that we And then of course you have AnyScale, That's the bad zone, I guess, So the gray dots that you're rates, adoption and the all And on the lower side, Vena, Acton, in the green. are in the enterprise already. So now let's look at the churn So that's the way you can look of dwell on the negative, So again, the axis is still the same, And a couple of the other And then you see these great standouts, Those are the ones you want to but Redis Labs is the one And by the way, MariaDB, So it's not in this slide, Alex, bring that up if you would. So gimme one second to catch up. So I could set it up but based on the amount of time Those are the ones we were saying before, And one of the things I think didn't allow the employees to here, but in the data. What have you seen? the market started to really And one of the executives said, And that's one of the Thank you for introducing this, just point the camera on me We are just scratching the surface
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Erik | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Ken Shifman | PERSON | 0.99+ |
Sanjay Poonen | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Erik Bradley | PERSON | 0.99+ |
November 21 | DATE | 0.99+ |
Darren Bramen | PERSON | 0.99+ |
Alex | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Postgres | ORGANIZATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Netskope | ORGANIZATION | 0.99+ |
Adobe | ORGANIZATION | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Fivetran | ORGANIZATION | 0.99+ |
$50 million | QUANTITY | 0.99+ |
21% | QUANTITY | 0.99+ |
Chris Lynch | PERSON | 0.99+ |
19% | QUANTITY | 0.99+ |
Jeremy Burton | PERSON | 0.99+ |
$800 million | QUANTITY | 0.99+ |
6,000 | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Redis Labs | ORGANIZATION | 0.99+ |
November '21 | DATE | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
First | QUANTITY | 0.99+ |
25% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
OneTrust | ORGANIZATION | 0.99+ |
two dimensions | QUANTITY | 0.99+ |
two groups | QUANTITY | 0.99+ |
November of 21 | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
more than 400 companies | QUANTITY | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
MySQL | TITLE | 0.99+ |
Moogsoft | ORGANIZATION | 0.99+ |
The Cube | ORGANIZATION | 0.99+ |
third | QUANTITY | 0.99+ |
Grafana | ORGANIZATION | 0.99+ |
H2O | ORGANIZATION | 0.99+ |
Mike Speiser | PERSON | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
second | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
28% | QUANTITY | 0.99+ |
16% | QUANTITY | 0.99+ |
Second | QUANTITY | 0.99+ |
Breaking Analysis: VMware Explore 2022 will mark the start of a Supercloud journey
>> From the Cube studios in Palo Alto and Boston, bringing you data driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> While the precise direction of VMware's future is unknown, given the plan Broadcom acquisition, one thing is clear. The topic of what Broadcom plans will not be the main focus of the agenda at the upcoming VMware Explore event next week in San Francisco. We believe that despite any uncertainty, VMware will lay out for its customers what it sees as its future. And that future is multi-cloud or cross-cloud services, what we call Supercloud. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis, we drill into the latest survey data on VMware from ETR. And we'll share with you the next iteration of the Supercloud definition based on feedback from dozens of contributors. And we'll give you our take on what to expect next week at VMware Explorer 2022. Well, VMware is maturing. You can see it in the numbers. VMware had a solid quarter just this week, which was announced beating earnings and growing the top line by 6%. But it's clear from its financials and the ETR data that we're showing here that VMware's Halcion glory days are behind it. This chart shows the spending profile from ETR's July survey of nearly 1500 IT buyers and CIOs. The survey included 722 VMware customers with the green bars showing elevated spending momentum, ie: growth, either new or growing at more than 6%. And the red bars show lower spending, either down 6% or worse or defections. The gray bars, that's the flat spending crowd, and it really tells a story. Look, nobody's throwing away their VMware platforms. They're just not investing as rapidly as in previous years. The blue line shows net score or spending momentum and subtracts the reds from the greens. The yellow line shows market penetration or pervasiveness in the survey. So the data is pretty clear. It's steady, but it's not remarkable. Now, the timing of the acquisition, quite rightly, is quite good, I would say. Now, this next chart shows the net score and pervasiveness juxtaposed on an XY graph and breaks down the VMware portfolio in those dimensions, the product portfolio. And you can see the dominance of respondents citing VMware as the platform. They might not know exactly which services they use, but they just respond VMware. That's on the X axis. You can see it way to the right. And the spending momentum or the net score is on the Y axis. That red dotted line at 4%, that indicates elevated levels and only VMware cloud on AWS is above that line. Notably, Tanzu has jumped up significantly from previous quarters, with the rest of the portfolio showing steady, as you would expect from a maturing platform. Only carbon black is hovering in the red zone, kind of ironic given the name. We believe that VMware is going to be a major player in cross cloud services, what we refer to as Supercloud. For months, we've been refining the concept and the definition. At Supercloud '22, we had discussions with more than 30 technology and business experts, and we've gathered input from many more. Based on that feedback, here's the definition we've landed on. It's somewhat refined from our earlier definition that we published a couple weeks ago. Supercloud is an emerging computing architecture that comprises a set of services abstracted from the underlying primitives of hyperscale clouds, e.g. compute, storage, networking, security, and other native resources, to create a global system spanning more than one cloud. Supercloud is three essential properties, three deployment models, and three service models. So what are those essential elements, those properties? We've simplified the picture from our last report. We show them here. I'll review them briefly. We're not going to go super in depth here because we've covered this topic a lot. But supercloud, it runs on more than one cloud. It creates that common or identical experience across clouds. It contains a necessary capability that we call a superPaaS that acts as a cloud interpreter, and it has metadata intelligence to optimize for a specific purpose. We'll publish this definition in detail. So again, we're not going to spend a ton of time here today. Now, we've identified three deployment models for Supercloud. The first is a single instantiation, where a control plane runs on one cloud but supports interactions with multiple other clouds. An example we use is Kubernetes cluster management service that runs on one cloud but can deploy and manage clusters on other clouds. The second model is a multi-cloud, multi-region instantiation where a full stack of services is instantiated on multiple clouds and multiple cloud regions with a common interface across them. We've used cohesity as one example of this. And then a single global instance that spans multiple cloud providers. That's our snowflake example. Again, we'll publish this in detail. So we're not going to spend a ton of time here today. Finally, the service models. The feedback we've had is IaaS, PaaS, and SaaS work fine to describe the service models for Supercloud. NetApp's Cloud Volume is a good example in IaaS. VMware cloud foundation and what we expect at VMware Explore is a good PaaS example. And SAP HANA Cloud is a good example of SaaS running as a Supercloud service. That's the SAP HANA multi-cloud. So what is it that we expect from VMware Explore 2022? Well, along with what will be an exciting and speculation filled gathering of the VMware community at the Moscone Center, we believe VMware will lay out its future architectural direction. And we expect it will fit the Supercloud definition that we just described. We think VMware will show its hand on a set of cross-cloud services and will promise a common experience for users and developers alike. As we talked about at Supercloud '22, VMware kind of wants to have its cake, eat it too, and lose weight. And by that, we mean that it will not only abstract the underlying primitives of each of the individual clouds, but if developers want access to them, they will allow that and actually facilitate that. Now, we don't expect VMware to use the term Supercloud, but it will be a cross-cloud multi-cloud services model that they put forth, we think, at VMworld Explore. With IaaS comprising compute, storage, and networking, a very strong emphasis, we believe, on security, of course, a governance and a comprehensive set of data protection services. Now, very importantly, we believe Tanzu will play a leading role in any announcements this coming week, as a purpose-built PaaS layer, specifically designed to create a common experience for cross clouds for data and application services. This, we believe, will be VMware's most significant offering to date in cross-cloud services. And it will position VMware to be a leader in what we call Supercloud. Now, while it remains to be seen what Broadcom exactly intends to do with VMware, we've speculated, others have speculated. We think this Supercloud is a substantial market opportunity generally and for VMware specifically. Look, if you don't own a public cloud, and very few companies do, in the tech business, we believe you better be supporting the build out of superclouds or building a supercloud yourself on top of hyperscale infrastructure. And we believe that as cloud matures, hyperscalers will increasingly I cross cloud services as an opportunity. We asked David Floyer to take a stab at a market model for super cloud. He's really good at these types of things. What he did is he took the known players in cloud and estimated their IaaS and PaaS cloud services, their total revenue, and then took a percentage. So this is super set of just the public cloud and the hyperscalers. And then what he did is he took a percentage to fit the Supercloud definition, as we just shared above. He then added another 20% on top to cover the long tail of Other. Other over time is most likely going to grow to let's say 30%. That's kind of how these markets work. Okay, so this is obviously an estimate, but it's an informed estimate by an individual who has done this many, many times and is pretty well respected in these types of forecasts, these long term forecasts. Now, by the definition we just shared, Supercloud revenue was estimated at about $3 billion in 2022 worldwide, growing to nearly $80 billion by 2030. Now remember, there's not one Supercloud market. It comprises a bunch of purpose-built superclouds that solve a specific problem. But the common attribute is it's built on top of hyperscale infrastructure. So overall, cloud services, including Supercloud, peak by the end of the decade. But Supercloud continues to grow and will take a higher percentage of the cloud market. The reasoning here is that the market will change and compute, will increasingly become distributed and embedded into edge devices, such as automobiles and robots and factory equipment, et cetera, and not necessarily be a discreet... I mean, it still will be, of course, but it's not going to be as much of a discrete component that is consumed via services like EZ2, that will mature. And this will be a key shift to watch in spending dynamics and really importantly, computing economics, the things we've talked about around arm and edge and AI inferencing and new low cost computing architectures at the edge. We're talking not the near edge, like, Lowes and Home Depot, we're talking far edge and embedded devices. Now, whether this becomes a seamless part of Supercloud remains to be seen. Look, if that's how we see it, the current and the future state of Supercloud, and we're committed to keeping the discussion going with an inclusive model that gathers input from all parts of the industry. Okay, that's it for today. Thanks to Alex Morrison, who's on production, and he also manages the podcast. Ken Schiffman, as well, is on production in our Boston office. Kristin Martin and Cheryl Knight, they help us get the word out on social media and in our newsletters. And Rob Hoffe is our editor in chief over at Silicon Angle and does some helpful editing. Thank you, all. Remember these episodes, they're all available as podcasts, wherever you listen. All you got to do is search Breaking Analysis Podcast. I publish each week on wikibon.com and siliconangle.com. You can email me directly at david.vellante@siliconangle.com or DM me @Dvellante or comment on our LinkedIn posts. Please do check out etr.ai. They've got some great enterprise survey research. So please go there and poke around, And if you need any assistance, let them know. This is Dave Vellante for the Cube Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis. (lively music)
SUMMARY :
From the Cube studios and subtracts the reds from the greens.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Morrison | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Rob Hoffe | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
30% | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
Lowes | ORGANIZATION | 0.99+ |
20% | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
722 | QUANTITY | 0.99+ |
4% | QUANTITY | 0.99+ |
San Francisco | LOCATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
2030 | DATE | 0.99+ |
Silicon Angle | ORGANIZATION | 0.99+ |
July | DATE | 0.99+ |
Broadcom | ORGANIZATION | 0.99+ |
Home Depot | ORGANIZATION | 0.99+ |
6% | QUANTITY | 0.99+ |
next week | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
second model | QUANTITY | 0.99+ |
more than 6% | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
more than one cloud | QUANTITY | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
nearly $80 billion | QUANTITY | 0.99+ |
about $3 billion | QUANTITY | 0.99+ |
more than 30 technology | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
this week | DATE | 0.98+ |
Supercloud | ORGANIZATION | 0.98+ |
each week | QUANTITY | 0.98+ |
one example | QUANTITY | 0.98+ |
three service models | QUANTITY | 0.98+ |
VMware Explore | EVENT | 0.98+ |
dozens of contributors | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
NetApp | TITLE | 0.97+ |
this week | DATE | 0.97+ |
Supercloud | TITLE | 0.97+ |
SAP HANA | TITLE | 0.97+ |
VMworld Explore | ORGANIZATION | 0.97+ |
three essential properties | QUANTITY | 0.97+ |
three deployment models | QUANTITY | 0.97+ |
one cloud | QUANTITY | 0.96+ |
Tanzu | ORGANIZATION | 0.96+ |
each | QUANTITY | 0.96+ |
Moscone Center | LOCATION | 0.96+ |
wikibon.com | OTHER | 0.95+ |
SAP HANA Cloud | TITLE | 0.95+ |
Cube Insights | ORGANIZATION | 0.92+ |
single instantiation | QUANTITY | 0.9+ |
Breaking Analysis: What Black Hat '22 tells us about securing the Supercloud
>> From theCUBE Studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR, This is "Breaking Analysis with Dave Vellante". >> Black Hat 22 was held in Las Vegas last week, the same time as theCUBE Supercloud event. Unlike AWS re:Inforce where words are carefully chosen to put a positive spin on security, Black Hat exposes all the warts of cyber and openly discusses its hard truths. It's a conference that's attended by technical experts who proudly share some of the vulnerabilities they've discovered, and, of course, by numerous vendors marketing their products and services. Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this "Breaking Analysis", we summarize what we learned from discussions with several people who attended Black Hat and our analysis from reviewing dozens of keynotes, articles, sessions, and data from a recent Black Hat Attendees Survey conducted by Black Hat and Informa, and we'll end with the discussion of what it all means for the challenges around securing the supercloud. Now, I personally did not attend, but as I said at the top, we reviewed a lot of content from the event which is renowned for its hundreds of sessions, breakouts, and strong technical content that is, as they say, unvarnished. Chris Krebs, the former director of Us cybersecurity and infrastructure security agency, CISA, he gave the keynote, and he spoke about the increasing complexity of tech stacks and the ripple effects that that has on organizational risk. Risk was a big theme at the event. Where re:Inforce tends to emphasize, again, the positive state of cybersecurity, it could be said that Black Hat, as the name implies, focuses on the other end of the spectrum. Risk, as a major theme of the event at the show, got a lot of attention. Now, there was a lot of talk, as always, about the expanded threat service, you hear that at any event that's focused on cybersecurity, and tons of emphasis on supply chain risk as a relatively new threat that's come to the CISO's minds. Now, there was also plenty of discussion about hybrid work and how remote work has dramatically increased business risk. According to data from in Intel 471's Mark Arena, the previously mentioned Black Hat Attendee Survey showed that compromise credentials posed the number one source of risk followed by infrastructure vulnerabilities and supply chain risks, so a couple of surveys here that we're citing, and we'll come back to that in a moment. At an MIT cybersecurity conference earlier last decade, theCUBE had a hypothetical conversation with former Boston Globe war correspondent, Charles Sennott, about the future of war and the role of cyber. We had similar discussions with Dr. Robert Gates on theCUBE at a ServiceNow event in 2016. At Black Hat, these discussions went well beyond the theoretical with actual data from the war in Ukraine. It's clear that modern wars are and will be supported by cyber, but the takeaways are that they will be highly situational, targeted, and unpredictable because in combat scenarios, anything can happen. People aren't necessarily at their keyboards. Now, the role of AI was certainly discussed as it is at every conference, and particularly cyber conferences. You know, it was somewhat dissed as over hyped, not surprisingly, but while AI is not a panacea to cyber exposure, automation and machine intelligence can definitely augment, what appear to be and have been stressed out, security teams can do this by recommending actions and taking other helpful types of data and presenting it in a curated form that can streamline the job of the SecOps team. Now, most cyber defenses are still going to be based on tried and true monitoring and telemetry data and log analysis and curating known signatures and analyzing consolidated data, but increasingly, AI will help with the unknowns, i.e. zero-day threats and threat actor behaviors after infiltration. Now, finally, while much lip service was given to collaboration and public-private partnerships, especially after Stuxsnet was revealed early last decade, the real truth is that threat intelligence in the private sector is still evolving. In particular, the industry, mid decade, really tried to commercially exploit proprietary intelligence and, you know, do private things like private reporting and monetize that, but attitudes toward collaboration are trending in a positive direction was one of the sort of outcomes that we heard at Black Hat. Public-private partnerships are being both mandated by government, and there seems to be a willingness to work together to fight an increasingly capable adversary. These things are definitely on the rise. Now, without this type of collaboration, securing the supercloud is going to become much more challenging and confined to narrow solutions. and we're going to talk about that little later in the segment. Okay, let's look at some of the attendees survey data from Black Hat. Just under 200 really serious security pros took the survey, so not enough to slice and dice by hair color, eye color, height, weight, and favorite movie genre, but enough to extract high level takeaways. You know, these strongly agree or disagree survey responses can sometimes give vanilla outputs, but let's look for the ones where very few respondents strongly agree or disagree with a statement or those that overwhelmingly strongly agree or somewhat agree. So it's clear from this that the respondents believe the following, one, your credentials are out there and available to criminals. Very few people thought that that was, you know, unavoidable. Second, remote work is here to stay, and third, nobody was willing to really jinx their firms and say that they strongly disagree that they'll have to respond to a major cybersecurity incident within the next 12 months. Now, as we've reported extensively, COVID has permanently changed the cybersecurity landscape and the CISO's priorities and playbook. Check out this data that queries respondents on the pandemic's impact on cybersecurity, new requirements to secure remote workers, more cloud, more threats from remote systems and remote users, and a shift away from perimeter defenses that are no longer as effective, e.g. firewall appliances. Note, however, the fifth response that's down there highlighted in green. It shows a meaningful drop in the percentage of remote workers that are disregarding corporate security policy, still too many, but 10 percentage points down from 2021 survey. Now, as we've said many times, bad user behavior will trump good security technology virtually every time. Consistent with the commentary from Mark Arena's Intel 471 threat report, fishing for credentials is the number one concern cited in the Black Hat Attendees Survey. This is a people and process problem more than a technology issue. Yes, using multifactor authentication, changing passwords, you know, using unique passwords, using password managers, et cetera, they're all great things, but if it's too hard for users to implement these things, they won't do it, they'll remain exposed, and their organizations will remain exposed. Number two in the graphic, sophisticated attacks that could expose vulnerabilities in the security infrastructure, again, consistent with the Intel 471 data, and three, supply chain risks, again, consistent with Mark Arena's commentary. Ask most CISOs their number one problem, and they'll tell you, "It's a lack of talent." That'll be on the top of their list. So it's no surprise that 63% of survey respondents believe they don't have the security staff necessary to defend against cyber threats. This speaks to the rise of managed security service providers that we've talked about previously on "Breaking Analysis". We've seen estimates that less than 50% of organizations in the US have a SOC, and we see those firms as ripe for MSSP support as well as larger firms augmenting staff with managed service providers. Now, after re:Invent, we put forth this conceptual model that discussed how the cloud was becoming the first line of defense for CISOs, and DevOps was being asked to do more, things like securing the runtime, the containers, the platform, et cetera, and audit was kind of that last line of defense. So a couple things we picked up from Black Hat which are consistent with this shift and some that are somewhat new, first, is getting visibility across the expanded threat surface was a big theme at Black Hat. This makes it even harder to identify risk, of course, this being the expanded threat surface. It's one thing to know that there's a vulnerability somewhere. It's another thing to determine the severity of the risk, but understanding how easy or difficult it is to exploit that vulnerability and how to prioritize action around that. Vulnerability is increasingly complex for CISOs as the security landscape gets complexified. So what's happening is the SOC, if there even is one at the organization, is becoming federated. No longer can there be one ivory tower that's the magic god room of data and threat detection and analysis. Rather, the SOC is becoming distributed following the data, and as we just mentioned, the SOC is being augmented by the cloud provider and the managed service providers, the MSSPs. So there's a lot of critical security data that is decentralized and this will necessitate a new cyber data model where data can be synchronized and shared across a federation of SOCs, if you will, or mini SOCs or SOC capabilities that live in and/or embedded in an organization's ecosystem. Now, to this point about cloud being the first line of defense, let's turn to a story from ETR that came out of our colleague Eric Bradley's insight in a one-on-one he did with a senior IR person at a manufacturing firm. In a piece that ETR published called "Saved by Zscaler", check out this comment. Quote, "As the last layer, we are filtering all the outgoing internet traffic through Zscaler. And when an attacker is already on your network, and they're trying to communicate with the outside to exchange encryption keys, Zscaler is already blocking the traffic. It happened to us. It happened and we were saved by Zscaler." So that's pretty cool. So not only is the cloud the first line of defense, as we sort of depicted in that previous graphic, here's an example where it's also the last line of defense. Now, let's end on what this all means to securing the supercloud. At our Supercloud 22 event last week in our Palo Alto CUBE Studios, we had a session on this topic on supercloud, securing the supercloud. Security, in our view, is going to be one of the most important and difficult challenges for the idea of supercloud to become real. We reviewed in last week's "Breaking Analysis" a detailed discussion with Snowflake co-founder and president of products, Benoit Dageville, how his company approaches security in their data cloud, what we call a superdata cloud. Snowflake doesn't use the term supercloud. They use the term datacloud, but what if you don't have the focus, the engineering depth, and the bank roll that Snowflake has? Does that mean superclouds will only be developed by those companies with deep pockets and enormous resources? Well, that's certainly possible, but on the securing the supercloud panel, we had three technical experts, Gee Rittenhouse of Skyhigh Security, Piyush Sharrma who's the founder of Accurics who sold to Tenable, and Tony Kueh, who's the former Head of Product at VMware. Now, John Furrier asked each of them, "What is missing? What's it going to take to secure the supercloud? What has to happen?" Here's what they said. Play the clip. >> This is the final question. We have one minute left. I wish we had more time. This is a great panel. We'll bring you guys back for sure after the event. What one thing needs to happen to unify or get through the other side of this fragmentation and then the challenges for supercloud? Because remember, the enterprise equation is solve complexity with more complexity. Well, that's not what the market wants. They want simplicity. They want SaaS. They want ease of use. They want infrastructure risk code. What has to happen? What do you think, each of you? >> So I can start, and extending to the previous conversation, I think we need a consortium. We need a framework that defines that if you really want to operate on supercloud, these are the 10 things that you must follow. It doesn't matter whether you take AWS, Slash, or TCP or you have all, and you will have the on-prem also, which means that it has to follow a pattern, and that pattern is what is required for supercloud, in my opinion. Otherwise, security is going everywhere. They're like they have to fix everything, find everything, and so on and so forth. It's not going to be possible. So they need a framework. They need a consortium, and this consortium needs to be, I think, needs to led by the cloud providers because they're the ones who have these foundational infrastructure elements, and the security vendor should contribute on providing more severe detections or severe findings. So that's, in my opinion, should be the model. >> Great, well, thank you, Gee. >> Yeah, I would think it's more along the lines of a business model. We've seen in cloud that the scale matters, and once you're big, you get bigger. We haven't seen that coalesce around either a vendor, a business model, or whatnot to bring all of this and connect it all together yet. So that value proposition in the industry, I think, is missing, but there's elements of it already available. >> I think there needs to be a mindset. If you look, again, history repeating itself. The internet sort of came together around set of IETF, RSC standards. Everybody embraced and extended it, right? But still, there was, at least, a baseline, and I think at that time, the largest and most innovative vendors understood that they couldn't do it by themselves, right? And so I think what we need is a mindset where these big guys, like Google, let's take an example. They're not going to win at all, but they can have a substantial share. So how do they collaborate with the ecosystem around a set of standards so that they can bring their differentiation and then embrace everybody together. >> Okay, so Gee's point about a business model is, you know, business model being missing, it's broadly true, but perhaps Snowflake serves as a business model where they've just gone out and and done it, setting or trying to set a de facto standard by which data can be shared and monetized. They're certainly setting that standard and mandating that standard within the Snowflake ecosystem with its proprietary framework. You know, perhaps that is one answer, but Tony lays out a scenario where there's a collaboration mindset around a set of standards with an ecosystem. You know, intriguing is this idea of a consortium or a framework that Piyush was talking about, and that speaks to the collaboration or lack thereof that we spoke of earlier, and his and Tony's proposal that the cloud providers should lead with the security vendor ecosystem playing a supporting role is pretty compelling, but can you see AWS and Azure and Google in a kumbaya moment getting together to make that happen? It seems unlikely, but maybe a better partnership between the US government and big tech could be a starting point. Okay, that's it for today. I want to thank the many people who attended Black Hat, reported on it, wrote about it, gave talks, did videos, and some that spoke to me that had attended the event, Becky Bracken, who is the EIC at Dark Reading. They do a phenomenal job and the entire team at Dark Reading, the news desk there, Mark Arena, whom I mentioned, Garrett O'Hara, Nash Borges, Kelly Jackson, sorry, Kelly Jackson Higgins, Roya Gordon, Robert Lipovsky, Chris Krebs, and many others, thanks for the great, great commentary and the content that you put out there, and thanks to Alex Myerson, who's on production, and Alex manages the podcasts for us. Ken Schiffman is also in our Marlborough studio as well, outside of Boston. Kristen Martin and Cheryl Knight, they help get the word out on social media and in our newsletters, and Rob Hoff is our Editor-in-Chief at SiliconANGLE and does some great editing and helps with the titles of "Breaking Analysis" quite often. Remember these episodes, they're all available as podcasts, wherever you listen, just search for "Breaking Analysis Podcasts". I publish each on wikibon.com and siliconangle.com, and you could email me, get in touch with me at david.vellante@siliconangle.com or you can DM me @dvellante or comment on my LinkedIn posts, and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis". (upbeat music)
SUMMARY :
with Dave Vellante". and the ripple effects that This is the final question. and the security vendor should contribute that the scale matters, the largest and most innovative and the content that you put out there,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Cheryl Knight | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Robert Lipovsky | PERSON | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Chris Krebs | PERSON | 0.99+ |
Charles Sennott | PERSON | 0.99+ |
Becky Bracken | PERSON | 0.99+ |
Rob Hoff | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Tony | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Kelly Jackson | PERSON | 0.99+ |
Gee Rittenhouse | PERSON | 0.99+ |
Benoit Dageville | PERSON | 0.99+ |
Tony Kueh | PERSON | 0.99+ |
Mark Arena | PERSON | 0.99+ |
Piyush Sharrma | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Roya Gordon | PERSON | 0.99+ |
CISA | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Palo Alto | LOCATION | 0.99+ |
Garrett O'Hara | PERSON | 0.99+ |
Accurics | ORGANIZATION | 0.99+ |
Boston | LOCATION | 0.99+ |
US | LOCATION | 0.99+ |
2021 | DATE | 0.99+ |
Skyhigh Security | ORGANIZATION | 0.99+ |
Black Hat | ORGANIZATION | 0.99+ |
10 things | QUANTITY | 0.99+ |
Tenable | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
Nash Borges | PERSON | 0.99+ |
last week | DATE | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Robert Gates | PERSON | 0.99+ |
one minute | QUANTITY | 0.99+ |
63% | QUANTITY | 0.99+ |
less than 50% | QUANTITY | 0.99+ |
Second | QUANTITY | 0.99+ |
SiliconANGLE | ORGANIZATION | 0.99+ |
last week | DATE | 0.99+ |
each | QUANTITY | 0.99+ |
Kelly Jackson Higgins | PERSON | 0.99+ |
Alex | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
Black Hat 22 | EVENT | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
third | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
Black Hat | EVENT | 0.98+ |
three technical experts | QUANTITY | 0.98+ |
first line | QUANTITY | 0.98+ |
fifth response | QUANTITY | 0.98+ |
supercloud | ORGANIZATION | 0.98+ |
ETR | ORGANIZATION | 0.98+ |
Ukraine | LOCATION | 0.98+ |
Boston Globe | ORGANIZATION | 0.98+ |
Dr. | PERSON | 0.98+ |
one answer | QUANTITY | 0.97+ |
wikibon.com | OTHER | 0.97+ |
first line | QUANTITY | 0.97+ |
this week | DATE | 0.96+ |
first | QUANTITY | 0.96+ |
Marlborough | LOCATION | 0.96+ |
siliconangle.com | OTHER | 0.95+ |
Saved by Zscaler | TITLE | 0.95+ |
Palo Alto CUBE Studios | LOCATION | 0.95+ |
hundreds of sessions | QUANTITY | 0.95+ |
ORGANIZATION | 0.94+ | |
both | QUANTITY | 0.94+ |
one | QUANTITY | 0.94+ |
dozens of keynotes | QUANTITY | 0.93+ |
today | DATE | 0.93+ |
Breaking Analysis: What we hope to learn at Supercloud22
>> From theCUBE studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante. >> The term Supercloud is somewhat new, but the concepts behind it have been bubbling for years, early last decade when NIST put forth a definition of cloud computing it said services had to be accessible over a public network essentially cutting the on-prem crowd out of the cloud conversation. Now a guy named Chuck Hollis, who was a field CTO at EMC at the time and a prolific blogger objected to that criterion and laid out his vision for what he termed a private cloud. Now, in that post, he showed a workload running both on premises and in a public cloud sharing the underlying resources in an automated and seamless manner. What later became known more broadly as hybrid cloud that vision as we now know, really never materialized, and we were left with multi-cloud sets of largely incompatible and disconnected cloud services running in separate silos. The point is what Hollis laid out, IE the ability to abstract underlying infrastructure complexity and run workloads across multiple heterogeneous estates with an identical experience is what super cloud is all about. Hello and welcome to this week's Wikibon cube insights powered by ETR and this breaking analysis. We share what we hope to learn from super cloud 22 next week, next Tuesday at 9:00 AM Pacific. The community is gathering for Supercloud 22 an inclusive pilot symposium hosted by theCUBE and made possible by VMware and other founding partners. It's a one day single track event with more than 25 speakers digging into the architectural, the technical, structural and business aspects of Supercloud. This is a hybrid event with a live program in the morning running out of our Palo Alto studio and pre-recorded content in the afternoon featuring industry leaders, technologists, analysts and investors up and down the technology stack. Now, as I said up front the seeds of super cloud were sewn early last decade. After the very first reinvent we published our Amazon gorilla post, that scene in the upper right corner here. And we talked about how to differentiate from Amazon and form ecosystems around industries and data and how the cloud would change IT permanently. And then up in the upper left we put up a post on the old Wikibon Wiki. Yeah, it used to be a Wiki. Check out my hair by the way way no gray, that's how long ago this was. And we talked about in that post how to compete in the Amazon economy. And we showed a graph of how IT economics were changing. And cloud services had marginal economics that looked more like software than hardware at scale. And this would reset, we said opportunities for both technology sellers and buyers for the next 20 years. And this came into sharper focus in the ensuing years culminating in a milestone post by Greylock's Jerry Chen called Castles in the Cloud. It was an inspiration and catalyst for us using the term Supercloud in John Furrier's post prior to reinvent 2021. So we started to flesh out this idea of Supercloud where companies of all types build services on top of hyperscale infrastructure and across multiple clouds, going beyond multicloud 1.0, if you will, which was really a symptom, as we said, many times of multi-vendor at least that's what we argued. And despite its fuzzy definition, it resonated with people because they knew something was brewing, Keith Townsend the CTO advisor, even though he frankly, wasn't a big fan of the buzzy nature of the term Supercloud posted this awesome Blackboard on Twitter take a listen to how he framed it. Please play the clip. >> Is VMware the right company to make the super cloud work, term that Wikibon came up with to describe the taking of discreet services. So it says RDS from AWS, cloud compute engines from GCP and authentication from Azure to build SaaS applications or enterprise applications that connect back to your data center, is VMware's cross cloud vision 'cause it is just a vision today, the right approach. Or should you be looking towards companies like HashiCorp to provide this overall capability that we all agree, or maybe you don't that we need in an enterprise comment below your thoughts. >> So I really like that Keith has deep practitioner knowledge and lays out a couple of options. I especially like the examples he uses of cloud services. He recognizes the need for cross cloud services and he notes this capability is aspirational today. Remember this was eight or nine months ago and he brings HashiCorp into the conversation as they're one of the speakers at Supercloud 22 and he asks the community, what they think, the thing is we're trying to really test out this concept and people like Keith are instrumental as collaborators. Now I'm sure you're not surprised to hear that mot everyone is on board with the Supercloud meme, in particular Charles Fitzgerald has been a wonderful collaborator just by his hilarious criticisms of the concept. After a couple of super cloud posts, Charles put up his second rendition of "Supercloudifragilisticexpialidoucious". I mean, it's just beautiful, but to boot, he put up this picture of Baghdad Bob asking us to just stop, Bob's real name is Mohamed Said al-Sahaf. He was the minister of propaganda for Sadam Husein during the 2003 invasion of Iraq. And he made these outrageous claims of, you know US troops running in fear and putting down their arms and so forth. So anyway, Charles laid out several frankly very helpful critiques of Supercloud which has led us to really advance the definition and catalyze the community's thinking on the topic. Now, one of his issues and there are many is we said a prerequisite of super cloud was a super PaaS layer. Gartner's Lydia Leong chimed in saying there were many examples of successful PaaS vendors built on top of a hyperscaler some having the option to run in more than one cloud provider. But the key point we're trying to explore is the degree to which that PaaS layer is purpose built for a specific super cloud function. And not only runs in more than one cloud provider, Lydia but runs across multiple clouds simultaneously creating an identical developer experience irrespective of a state. Now, maybe that's what Lydia meant. It's hard to say from just a tweet and she's a sharp lady, so, and knows more about that market, that PaaS market, than I do. But to the former point at Supercloud 22, we have several examples. We're going to test. One is Oracle and Microsoft's recent announcement to run database services on OCI and Azure, making them appear as one rather than use an off the shelf platform. Oracle claims to have developed a capability for developers specifically built to ensure high performance low latency, and a common experience for developers across clouds. Another example we're going to test is Snowflake. I'll be interviewing Benoit Dageville co-founder of Snowflake to understand the degree to which Snowflake's recent announcement of an application development platform is perfect built, purpose built for the Snowflake data cloud. Is it just a plain old pass, big whoop as Lydia claims or is it something new and innovative, by the way we invited Charles Fitz to participate in Supercloud 22 and he decline saying in addition to a few other somewhat insulting things there's definitely interesting new stuff brewing that isn't traditional cloud or SaaS but branding at all super cloud doesn't help either. Well, indeed, we agree with part of that and we'll see if it helps advanced thinking and helps customers really plan for the future. And that's why Supercloud 22 has going to feature some of the best analysts in the business in The Great Supercloud Debate. In addition to Keith Townsend and Maribel Lopez of Lopez research and Sanjeev Mohan from former Gartner analyst and principal at SanjMo participated in this session. Now we don't want to mislead you. We don't want to imply that these analysts are hopping on the super cloud bandwagon but they're more than willing to go through the thought experiment and mental exercise. And, we had a great conversation that you don't want to miss. Maribel Lopez had what I thought was a really excellent way to think about this. She used TCP/IP as an historical example, listen to what she said. >> And Sanjeev Mohan has some excellent thoughts on the feasibility of an open versus de facto standard getting us to the vision of Supercloud, what's possible and what's likely now, again, I don't want to imply that these analysts are out banging the Supercloud drum. They're not necessarily doing that, but they do I think it's fair to say believe that something new is bubbling and whether it's called Supercloud or multicloud 2.0 or cross cloud services or whatever name you choose it's not multicloud of the 2010s and we chose Supercloud. So our goal here is to advance the discussion on what's next in cloud and Supercloud is meant to be a term to describe that future of cloud and specifically the cloud opportunities that can be built on top of hyperscale, compute, storage, networking machine learning, and other services at scale. And that is why we posted this piece on Answering the top 10 questions about Supercloud. Many of which were floated by Charles Fitzgerald and others in the community. Why does the industry need another term what's really new and different? And what is hype? What specific problems does Supercloud solve? What are the salient characteristics of Supercloud? What's different beyond multicloud? What is a super pass? Is it necessary to have a Supercloud? How will applications evolve on superclouds? What workloads will run? All these questions will be addressed in detail as a way to advance the discussion and help practitioners and business people understand what's real today. And what's possible with cloud in the near future. And one other question we'll address is who will build super clouds? And what new entrance we can expect. This is an ETR graphic that we showed in a previous episode of breaking analysis, and it lays out some of the companies we think are building super clouds or in a position to do so, by the way the Y axis shows net score or spending velocity and the X axis depicts presence in the ETR survey of more than 1200 respondents. But the key callouts to this slide in addition to some of the smaller firms that aren't yet showing up in the ETR data like Chaossearch and Starburst and Aviatrix and Clumio but the really interesting additions are industry players Walmart with Azure, Capital one and Goldman Sachs with AWS, Oracle, with Cerner. These we think are early examples, bubbling up of industry clouds that will eventually become super clouds. So we'll explore these and other trends to get the community's input on how this will all play out. These are the things we hope you'll take away from Supercloud 22. And we have an amazing lineup of experts to answer your question. Technologists like Kit Colbert, Adrian Cockcroft, Mariana Tessel, Chris Hoff, Will DeForest, Ali Ghodsi, Benoit Dageville, Muddu Sudhakar and many other tech athletes, investors like Jerry Chen and In Sik Rhee the analyst we featured earlier, Paula Hansen talking about go to market in a multi-cloud world Gee Rittenhouse talking about cloud security, David McJannet, Bhaskar Gorti of Platform9 and many, many more. And of course you, so please go to theCUBE.net and register for Supercloud 22, really lightweight reg. We're not doing this for lead gen. We're doing it for collaboration. If you sign in you can get the chat and ask questions in real time. So don't miss this inaugural event Supercloud 22 on August 9th at 9:00 AM Pacific. We'll see you there. Okay. That's it for today. Thanks for watching. Thank you to Alex Myerson who's on production and manages the podcast. Kristen Martin and Cheryl Knight. They help get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE. Does some really wonderful editing. Thank you to all. Remember these episodes are all available as podcasts wherever you listen, just search breaking analysis podcast. I publish each week on wikibon.com and Siliconangle.com. And you can email me at David.Vellantesiliconangle.com or DM me at Dvellante, comment on my LinkedIn post. Please do check out ETR.AI for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE insights powered by ETR. Thanks for watching. And we'll see you next week in Palo Alto at Supercloud 22 or next time on breaking analysis. (calm music)
SUMMARY :
This is breaking analysis and buyers for the next 20 years. Is VMware the right company is the degree to which that PaaS layer and specifically the cloud opportunities
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
David McJannet | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Paula Hansen | PERSON | 0.99+ |
Jerry Chen | PERSON | 0.99+ |
Adrian Cockcroft | PERSON | 0.99+ |
Maribel Lopez | PERSON | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Chuck Hollis | PERSON | 0.99+ |
Charles Fitz | PERSON | 0.99+ |
Charles | PERSON | 0.99+ |
Chris Hoff | PERSON | 0.99+ |
Keith | PERSON | 0.99+ |
Mariana Tessel | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Charles Fitzgerald | PERSON | 0.99+ |
Mohamed Said al-Sahaf | PERSON | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Clumio | ORGANIZATION | 0.99+ |
Goldman Sachs | ORGANIZATION | 0.99+ |
Gee Rittenhouse | PERSON | 0.99+ |
Aviatrix | ORGANIZATION | 0.99+ |
Chaossearch | ORGANIZATION | 0.99+ |
Benoit Dageville | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
NIST | ORGANIZATION | 0.99+ |
Lydia Leong | PERSON | 0.99+ |
Muddu Sudhakar | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Cerner | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Sanjeev Mohan | PERSON | 0.99+ |
Capital one | ORGANIZATION | 0.99+ |
David.Vellantesiliconangle.com | OTHER | 0.99+ |
Starburst | ORGANIZATION | 0.99+ |
EMC | ORGANIZATION | 0.99+ |
2010s | DATE | 0.99+ |
Will DeForest | PERSON | 0.99+ |
more than 1200 respondents | QUANTITY | 0.99+ |
one day | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
2021 | DATE | 0.99+ |
next week | DATE | 0.99+ |
Supercloud 22 | EVENT | 0.99+ |
theCUBE.net | OTHER | 0.99+ |
Bhaskar Gorti | PERSON | 0.99+ |
Supercloud | ORGANIZATION | 0.98+ |
each week | QUANTITY | 0.98+ |
eight | DATE | 0.98+ |
SanjMo | ORGANIZATION | 0.98+ |
Lydia | PERSON | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
PaaS | TITLE | 0.98+ |
more than 25 speakers | QUANTITY | 0.98+ |
Snowflake | ORGANIZATION | 0.98+ |
Platform9 | ORGANIZATION | 0.97+ |
first | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
Hollis | PERSON | 0.97+ |
Sadam Husein | PERSON | 0.97+ |
second rendition | QUANTITY | 0.97+ |
Boston | LOCATION | 0.97+ |
SiliconANGLE | ORGANIZATION | 0.96+ |
more than one cloud provider | QUANTITY | 0.96+ |
both | QUANTITY | 0.95+ |
super cloud 22 | EVENT | 0.95+ |
Breaking Analysis: How the cloud is changing security defenses in the 2020s
>> Announcer: From theCUBE studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> The rapid pace of cloud adoption has changed the way organizations approach cybersecurity. Specifically, the cloud is increasingly becoming the first line of cyber defense. As such, along with communicating to the board and creating a security aware culture, the chief information security officer must ensure that the shared responsibility model is being applied properly. Meanwhile, the DevSecOps team has emerged as the critical link between strategy and execution, while audit becomes the free safety, if you will, in the equation, i.e., the last line of defense. Hello, and welcome to this week's, we keep on CUBE Insights, powered by ETR. In this "Breaking Analysis", we'll share the latest data on hyperscale, IaaS, and PaaS market performance, along with some fresh ETR survey data. And we'll share some highlights and the puts and takes from the recent AWS re:Inforce event in Boston. But first, the macro. It's earning season, and that's what many people want to talk about, including us. As we reported last week, the macro spending picture is very mixed and weird. Think back to a week ago when SNAP reported. A player like SNAP misses and the Nasdaq drops 300 points. Meanwhile, Intel, the great semiconductor hope for America misses by a mile, cuts its revenue outlook by 15% for the year, and the Nasdaq was up nearly 250 points just ahead of the close, go figure. Earnings reports from Meta, Google, Microsoft, ServiceNow, and some others underscored cautious outlooks, especially those exposed to the advertising revenue sector. But at the same time, Apple, Microsoft, and Google, were, let's say less bad than expected. And that brought a sigh of relief. And then there's Amazon, which beat on revenue, it beat on cloud revenue, and it gave positive guidance. The Nasdaq has seen this month best month since the isolation economy, which "Breaking Analysis" contributor, Chip Symington, attributes to what he calls an oversold rally. But there are many unknowns that remain. How bad will inflation be? Will the fed really stop tightening after September? The Senate just approved a big spending bill along with corporate tax hikes, which generally don't favor the economy. And on Monday, August 1st, the market will likely realize that we are in the summer quarter, and there's some work to be done. Which is why it's not surprising that investors sold the Nasdaq at the close today on Friday. Are people ready to call the bottom? Hmm, some maybe, but there's still lots of uncertainty. However, the cloud continues its march, despite some very slight deceleration in growth rates from the two leaders. Here's an update of our big four IaaS quarterly revenue data. The big four hyperscalers will account for $165 billion in revenue this year, slightly lower than what we had last quarter. We expect AWS to surpass 83 billion this year in revenue. Azure will be more than 2/3rds the size of AWS, a milestone from Microsoft. Both AWS and Azure came in slightly below our expectations, but still very solid growth at 33% and 46% respectively. GCP, Google Cloud Platform is the big concern. By our estimates GCP's growth rate decelerated from 47% in Q1, and was 38% this past quarter. The company is struggling to keep up with the two giants. Remember, both GCP and Azure, they play a shell game and hide the ball on their IaaS numbers, so we have to use a survey data and other means of estimating. But this is how we see the market shaping up in 2022. Now, before we leave the overall cloud discussion, here's some ETR data that shows the net score or spending momentum granularity for each of the hyperscalers. These bars show the breakdown for each company, with net score on the right and in parenthesis, net score from last quarter. lime green is new adoptions, forest green is spending up 6% or more, the gray is flat, pink is spending at 6% down or worse, and the bright red is replacement or churn. Subtract the reds from the greens and you get net score. One note is this is for each company's overall portfolio. So it's not just cloud. So it's a bit of a mixed bag, but there are a couple points worth noting. First, anything above 40% or 40, here as shown in the chart, is considered elevated. AWS, as you can see, is well above that 40% mark, as is Microsoft. And if you isolate Microsoft's Azure, only Azure, it jumps above AWS's momentum. Google is just barely hanging on to that 40 line, and Alibaba is well below, with both Google and Alibaba showing much higher replacements, that bright red. But here's the key point. AWS and Azure have virtually no churn, no replacements in that bright red. And all four companies are experiencing single-digit numbers in terms of decreased spending within customer accounts. People may be moving some workloads back on-prem selectively, but repatriation is definitely not a trend to bet the house on, in our view. Okay, let's get to the main subject of this "Breaking Analysis". TheCube was at AWS re:Inforce in Boston this week, and we have some observations to share. First, we had keynotes from Steven Schmidt who used to be the chief information security officer at Amazon on Web Services, now he's the CSO, the chief security officer of Amazon. Overall, he dropped the I in his title. CJ Moses is the CISO for AWS. Kurt Kufeld of AWS also spoke, as did Lena Smart, who's the MongoDB CISO, and she keynoted and also came on theCUBE. We'll go back to her in a moment. The key point Schmidt made, one of them anyway, was that Amazon sees more data points in a day than most organizations see in a lifetime. Actually, it adds up to quadrillions over a fairly short period of time, I think, it was within a month. That's quadrillion, it's 15 zeros, by the way. Now, there was drill down focus on data protection and privacy, governance, risk, and compliance, GRC, identity, big, big topic, both within AWS and the ecosystem, network security, and threat detection. Those are the five really highlighted areas. Re:Inforce is really about bringing a lot of best practice guidance to security practitioners, like how to get the most out of AWS tooling. Schmidt had a very strong statement saying, he said, "I can assure you with a 100% certainty that single controls and binary states will absolutely positively fail." Hence, the importance of course, of layered security. We heard a little bit of chat about getting ready for the future and skating to the security puck where quantum computing threatens to hack all of the existing cryptographic algorithms, and how AWS is trying to get in front of all that, and a new set of algorithms came out, AWS is testing. And, you know, we'll talk about that maybe in the future, but that's a ways off. And by its prominent presence, the ecosystem was there enforced, to talk about their role and filling the gaps and picking up where AWS leaves off. We heard a little bit about ransomware defense, but surprisingly, at least in the keynotes, no discussion about air gaps, which we've talked about in previous "Breaking Analysis", is a key factor. We heard a lot about services to help with threat detection and container security and DevOps, et cetera, but there really wasn't a lot of specific talk about how AWS is simplifying the life of the CISO. Now, maybe it's inherently assumed as AWS did a good job stressing that security is job number one, very credible and believable in that front. But you have to wonder if the world is getting simpler or more complex with cloud. And, you know, you might say, "Well, Dave, come on, of course it's better with cloud." But look, attacks are up, the threat surface is expanding, and new exfiltration records are being set every day. I think the hard truth is, the cloud is driving businesses forward and accelerating digital, and those businesses are now exposed more than ever. And that's why security has become such an important topic to boards and throughout the entire organization. Now, the other epiphany that we had at re:Inforce is that there are new layers and a new trust framework emerging in cyber. Roles are shifting, and as a direct result of the cloud, things are changing within organizations. And this first hit me in a conversation with long-time cyber practitioner and Wikibon colleague from our early Wikibon days, and friend, Mike Versace. And I spent two days testing the premise that Michael and I talked about. And here's an attempt to put that conversation into a graphic. The cloud is now the first line of defense. AWS specifically, but hyperscalers generally provide the services, the talent, the best practices, and automation tools to secure infrastructure and their physical data centers. And they're really good at it. The security inside of hyperscaler clouds is best of breed, it's world class. And that first line of defense does take some of the responsibility off of CISOs, but they have to understand and apply the shared responsibility model, where the cloud provider leaves it to the customer, of course, to make sure that the infrastructure they're deploying is properly configured. So in addition to creating a cyber aware culture and communicating up to the board, the CISO has to ensure compliance with and adherence to the model. That includes attracting and retaining the talent necessary to succeed. Now, on the subject of building a security culture, listen to this clip on one of the techniques that Lena Smart, remember, she's the CISO of MongoDB, one of the techniques she uses to foster awareness and build security cultures in her organization. Play the clip >> Having the Security Champion program, so that's just, it's like one of my babies. That and helping underrepresented groups in MongoDB kind of get on in the tech world are both really important to me. And so the Security Champion program is purely purely voluntary. We have over 100 members. And these are people, there's no bar to join, you don't have to be technical. If you're an executive assistant who wants to learn more about security, like my assistant does, you're more than welcome. Up to, we actually, people grade themselves when they join us. We give them a little tick box, like five is, I walk on security water, one is I can spell security, but I'd like to learn more. Mixing those groups together has been game-changing for us. >> Now, the next layer is really where it gets interesting. DevSecOps, you know, we hear about it all the time, shifting left. It implies designing security into the code at the dev level. Shift left and shield right is the kind of buzz phrase. But it's getting more and more complicated. So there are layers within the development cycle, i.e., securing the container. So the app code can't be threatened by backdoors or weaknesses in the containers. Then, securing the runtime to make sure the code is maintained and compliant. Then, the DevOps platform so that change management doesn't create gaps and exposures, and screw things up. And this is just for the application security side of the equation. What about the network and implementing zero trust principles, and securing endpoints, and machine to machine, and human to app communication? So there's a lot of burden being placed on the DevOps team, and they have to partner with the SecOps team to succeed. Those guys are not security experts. And finally, there's audit, which is the last line of defense or what I called at the open, the free safety, for you football fans. They have to do more than just tick the box for the board. That doesn't cut it anymore. They really have to know their stuff and make sure that what they sign off on is real. And then you throw ESG into the mix is becoming more important, making sure the supply chain is green and also secure. So you can see, while much of this stuff has been around for a long, long time, the cloud is accelerating innovation in the pace of delivery. And so much is changing as a result. Now, next, I want to share a graphic that we shared last week, but a little different twist. It's an XY graphic with net score or spending velocity in the vertical axis and overlap or presence in the dataset on the horizontal. With that magic 40% red line as shown. Okay, I won't dig into the data and draw conclusions 'cause we did that last week, but two points I want to make. First, look at Microsoft in the upper-right hand corner. They are big in security and they're attracting a lot of dollars in the space. We've reported on this for a while. They're a five-star security company. And every time, from a spending standpoint in ETR data, that little methodology we use, every time I've run this chart, I've wondered, where the heck is AWS? Why aren't they showing up there? If security is so important to AWS, which it is, and its customers, why aren't they spending money with Amazon on security? And I asked this very question to Merrit Baer, who resides in the office of the CISO at AWS. Listen to her answer. >> It doesn't mean don't spend on security. There is a lot of goodness that we have to offer in ESS, external security services. But I think one of the unique parts of AWS is that we don't believe that security is something you should buy, it's something that you get from us. It's something that we do for you a lot of the time. I mean, this is the definition of the shared responsibility model, right? >> Now, maybe that's good messaging to the market. Merritt, you know, didn't say it outright, but essentially, Microsoft they charge for security. At AWS, it comes with the package. But it does answer my question. And, of course, the fact is that AWS can subsidize all this with egress charges. Now, on the flip side of that, (chuckles) you got Microsoft, you know, they're both, they're competing now. We can take CrowdStrike for instance. Microsoft and CrowdStrike, they compete with each other head to head. So it's an interesting dynamic within the ecosystem. Okay, but I want to turn to a powerful example of how AWS designs in security. And that is the idea of confidential computing. Of course, AWS is not the only one, but we're coming off of re:Inforce, and I really want to dig into something that David Floyer and I have talked about in previous episodes. And we had an opportunity to sit down with Arvind Raghu and J.D. Bean, two security experts from AWS, to talk about this subject. And let's share what we learned and why we think it matters. First, what is confidential computing? That's what this slide is designed to convey. To AWS, they would describe it this way. It's the use of special hardware and the associated firmware that protects customer code and data from any unauthorized access while the data is in use, i.e., while it's being processed. That's oftentimes a security gap. And there are two dimensions here. One is protecting the data and the code from operators on the cloud provider, i.e, in this case, AWS, and protecting the data and code from the customers themselves. In other words, from admin level users are possible malicious actors on the customer side where the code and data is being processed. And there are three capabilities that enable this. First, the AWS Nitro System, which is the foundation for virtualization. The second is Nitro Enclaves, which isolate environments, and then third, the Nitro Trusted Platform Module, TPM, which enables cryptographic assurances of the integrity of the Nitro instances. Now, we've talked about Nitro in the past, and we think it's a revolutionary innovation, so let's dig into that a bit. This is an AWS slide that was shared about how they protect and isolate data and code. On the left-hand side is a classical view of a virtualized architecture. You have a single host or a single server, and those white boxes represent processes on the main board, X86, or could be Intel, or AMD, or alternative architectures. And you have the hypervisor at the bottom which translates instructions to the CPU, allowing direct execution from a virtual machine into the CPU. But notice, you also have blocks for networking, and storage, and security. And the hypervisor emulates or translates IOS between the physical resources and the virtual machines. And it creates some overhead. Now, companies like VMware have done a great job, and others, of stripping out some of that overhead, but there's still an overhead there. That's why people still like to run on bare metal. Now, and while it's not shown in the graphic, there's an operating system in there somewhere, which is privileged, so it's got access to these resources, and it provides the services to the VMs. Now, on the right-hand side, you have the Nitro system. And you can see immediately the differences between the left and right, because the networking, the storage, and the security, the management, et cetera, they've been separated from the hypervisor and that main board, which has the Intel, AMD, throw in Graviton and Trainium, you know, whatever XPUs are in use in the cloud. And you can see that orange Nitro hypervisor. That is a purpose-built lightweight component for this system. And all the other functions are separated in isolated domains. So very strong isolation between the cloud software and the physical hardware running workloads, i.e., those white boxes on the main board. Now, this will run at practically bare metal speeds, and there are other benefits as well. One of the biggest is security. As we've previously reported, this came out of AWS's acquisition of Annapurna Labs, which we've estimated was picked up for a measly $350 million, which is a drop in the bucket for AWS to get such a strategic asset. And there are three enablers on this side. One is the Nitro cards, which are accelerators to offload that wasted work that's done in traditional architectures by typically the X86. We've estimated 25% to 30% of core capacity and cycles is wasted on those offloads. The second is the Nitro security chip, which is embedded and extends the root of trust to the main board hardware. And finally, the Nitro hypervisor, which allocates memory and CPU resources. So the Nitro cards communicate directly with the VMs without the hypervisors getting in the way, and they're not in the path. And all that data is encrypted while it's in motion, and of course, encryption at rest has been around for a while. We asked AWS, is this an, we presumed it was an Arm-based architecture. We wanted to confirm that. Or is it some other type of maybe hybrid using X86 and Arm? They told us the following, and quote, "The SoC, system on chips, for these hardware components are purpose-built and custom designed in-house by Amazon and Annapurna Labs. The same group responsible for other silicon innovations such as Graviton, Inferentia, Trainium, and AQUA. Now, the Nitro cards are Arm-based and do not use any X86 or X86/64 bit CPUs. Okay, so it confirms what we thought. So you may say, "Why should we even care about all this technical mumbo jumbo, Dave?" Well, a year ago, David Floyer and I published this piece explaining why Nitro and Graviton are secret weapons of Amazon that have been a decade in the making, and why everybody needs some type of Nitro to compete in the future. This is enabled, this Nitro innovations and the custom silicon enabled by the Annapurna acquisition. And AWS has the volume economics to make custom silicon. Not everybody can do it. And it's leveraging the Arm ecosystem, the standard software, and the fabrication volume, the manufacturing volume to revolutionize enterprise computing. Nitro, with the alternative processor, architectures like Graviton and others, enables AWS to be on a performance, cost, and power consumption curve that blows away anything we've ever seen from Intel. And Intel's disastrous earnings results that we saw this past week are a symptom of this mega trend that we've been talking about for years. In the same way that Intel and X86 destroyed the market for RISC chips, thanks to PC volumes, Arm is blowing away X86 with volume economics that cannot be matched by Intel. Thanks to, of course, to mobile and edge. Our prediction is that these innovations and the Arm ecosystem are migrating and will migrate further into enterprise computing, which is Intel's stronghold. Now, that stronghold is getting eaten away by the likes of AMD, Nvidia, and of course, Arm in the form of Graviton and other Arm-based alternatives. Apple, Tesla, Amazon, Google, Microsoft, Alibaba, and others are all designing custom silicon, and doing so much faster than Intel can go from design to tape out, roughly cutting that time in half. And the premise of this piece is that every company needs a Nitro to enable alternatives to the X86 in order to support emergent workloads that are data rich and AI-based, and to compete from an economic standpoint. So while at re:Inforce, we heard that the impetus for Nitro was security. Of course, the Arm ecosystem, and its ascendancy has enabled, in our view, AWS to create a platform that will set the enterprise computing market this decade and beyond. Okay, that's it for today. Thanks to Alex Morrison, who is on production. And he does the podcast. And Ken Schiffman, our newest member of our Boston Studio team is also on production. Kristen Martin and Cheryl Knight help spread the word on social media and in the community. And Rob Hof is our editor in chief over at SiliconANGLE. He does some great, great work for us. Remember, all these episodes are available as podcast. Wherever you listen, just search "Breaking Analysis" podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me directly at David.Vellante@siliconangle.com or DM me @dvellante, comment on my LinkedIn post. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. Be well, and we'll see you next time on "Breaking Analysis." (upbeat theme music)
SUMMARY :
This is "Breaking Analysis" and the Nasdaq was up nearly 250 points And so the Security Champion program the SecOps team to succeed. of the shared responsibility model, right? and it provides the services to the VMs.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Morrison | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Mike Versace | PERSON | 0.99+ |
Michael | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Steven Schmidt | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Kurt Kufeld | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Microsoft | ORGANIZATION | 0.99+ |
J.D. Bean | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Arvind Raghu | PERSON | 0.99+ |
Lena Smart | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
40% | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Schmidt | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
five | QUANTITY | 0.99+ |
Nvidia | ORGANIZATION | 0.99+ |
two days | QUANTITY | 0.99+ |
Annapurna Labs | ORGANIZATION | 0.99+ |
6% | QUANTITY | 0.99+ |
SNAP | ORGANIZATION | 0.99+ |
five-star | QUANTITY | 0.99+ |
Chip Symington | PERSON | 0.99+ |
47% | QUANTITY | 0.99+ |
Annapurna | ORGANIZATION | 0.99+ |
$350 million | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
Merrit Baer | PERSON | 0.99+ |
CJ Moses | PERSON | 0.99+ |
40 | QUANTITY | 0.99+ |
Merritt | PERSON | 0.99+ |
15% | QUANTITY | 0.99+ |
25% | QUANTITY | 0.99+ |
AMD | ORGANIZATION | 0.99+ |
Breaking Analysis: AWS re:Inforce marks a summer checkpoint on cybersecurity
>> From theCUBE Studios in Palo Alto and Boston bringing you data driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> After a two year hiatus, AWS re:Inforce is back on as an in-person event in Boston next week. Like the All-Star break in baseball, re:Inforce gives us an opportunity to evaluate the cyber security market overall, the state of cloud security and cross cloud security and more specifically what AWS is up to in the sector. Welcome to this week's Wikibon cube insights powered by ETR. In this Breaking Analysis we'll share our view of what's changed since our last cyber update in May. We'll look at the macro environment, how it's impacting cyber security plays in the market, what the ETR data tells us and what to expect at next week's AWS re:Inforce. We start this week with a checkpoint from Breaking Analysis contributor and stock trader Chip Simonton. We asked for his assessment of the market generally in cyber stocks specifically. So we'll summarize right here. We've kind of moved on from a narrative of the sky is falling to one where the glass is half empty you know, and before today's big selloff it was looking more and more like glass half full. The SNAP miss has dragged down many of the big names that comprise the major indices. You know, earning season as always brings heightened interest and this time we're seeing many cross currents. It starts as usual with the banks and the money centers. With the exception of JP Morgan the numbers were pretty good according to Simonton. Investment banks were not so great with Morgan and Goldman missing estimates but in general, pretty positive outlooks. But the market also shrugged off IBM's growth. And of course, social media because of SNAP is getting hammered today. The question is no longer recession or not but rather how deep the recession will be. And today's PMI data was the weakest since the start of the pandemic. Bond yields continue to weaken and there's a growing consensus that Fed tightening may be over after September as commodity prices weaken. Now gas prices of course are still high but they've come down. Tesla, Nokia and AT&T all indicated that supply issues were getting better which is also going to help with inflation. So it's no shock that the NASDAQ has done pretty well as beaten down as tech stocks started to look oversold you know, despite today's sell off. But AT&T and Verizon, they blamed their misses in part on people not paying their bills on time. SNAP's huge miss even after guiding lower and then refusing to offer future guidance took that stock down nearly 40% today and other social media stocks are off on sympathy. Meta and Google were off, you know, over 7% at midday. I think at one point hit 14% down and Google, Meta and Twitter have all said they're freezing new hires. So we're starting to see according to Simonton for the first time in a long time, the lower income, younger generation really feeling the pinch of inflation. Along of course with struggling families that have to choose food and shelter over discretionary spend. Now back to the NASDAQ for a moment. As we've been reporting back in mid-June and NASDAQ was off nearly 33% year to date and has since rallied. It's now down about 25% year to date as of midday today. But as I say, it had been, you know much deeper back in early June. But it's broken that downward trend that we talked about where the highs are actually lower and the lows are lower. That's started to change for now anyway. We'll see if it holds. But chip stocks, software stocks, and of course the cyber names have broken those down trends and have been trading above their 50 day moving averages for the first time in around four months. And again, according to Simonton, we'll see if that holds. If it does, that's a positive sign. Now remember on June 24th, we recorded a Breaking Analysis and talked about Qualcomm trading at a 12 X multiple with an implied 15% growth rate. On that day the stock was 124 and it surpassed 155 earlier this month. That was a really good call by Simonton. So looking at some of the cyber players here SailPoint is of course the anomaly with the Thoma Bravo 7 billion acquisition of the company holding that stock up. But the Bug ETF of basket of cyber stocks has definitely improved. When we last reported on cyber in May, CrowdStrike was off 23% year to date. It's now off 4%. Palo Alto has held steadily. Okta is still underperforming its peers as it works through the fallout from the breach and the ingestion of its Auth0 acquisition. Meanwhile, Zscaler and SentinelOne, those high flyers are still well off year to date, with Ping Identity and CyberArk not getting hit as hard as their valuations hadn't run up as much. But virtually all these tech stocks generally in cyber issues specifically, they've been breaking their down trend. So it will now come down to earnings guidance in the coming months. But the SNAP reaction is quite stunning. I mean, the environment is slowing, we know that. Ad spending gets cut in that type of market, we know that too. So it shouldn't be a huge surprise to anyone but as Chip Simonton says, this shows that sellers are still in control here. So it's going to take a little while to work through that despite the positive signs that we're seeing. Okay. We also turned to our friend Eric Bradley from ETR who follows these markets quite closely. He frequently interviews CISOs on his program, on his round tables. So we asked to get his take and here's what ETR is saying. Again, as we've reported while CIOs and IT buyers have tempered spending expectations since December and early January when they called for an 8% plus spending growth, they're still expecting a six to seven percent uptick in spend this year. So that's pretty good. Security remains the number one priority and also is the highest ranked sector in the ETR data set when you measure in terms of pervasiveness in the study. Within security endpoint detection and extended detection and response along with identity and privileged account management are the sub-sectors with the most spending velocity. And when you exclude Microsoft which is just dominant across the board in so many sectors, CrowdStrike has taken over the number one spot in terms of spending momentum in ETR surveys with CyberArk and Tanium showing very strong as well. Okta has seen a big dropoff in net score from 54% last survey to 45% in July as customers maybe put a pause on new Okta adoptions. That clearly shows in the survey. We'll talk about that in a moment. Look Okta still elevated in terms of spending momentum, but it doesn't have the dominant leadership position it once held in spend velocity. Year on year, according to ETR, Tenable and Elastic are seeing the biggest jumps in spending momentum, with SailPoint, Tanium, Veronis, CrowdStrike and Zscaler seeing the biggest jump in new adoptions since the last survey. Now on the downside, SonicWall, Symantec, Trellic which is McAfee, Barracuda and TrendMicro are seeing the highest percentage of defections and replacements. Let's take a deeper look at what the ETR data tells us about the cybersecurity space. This is a popular view that we like to share with net score or spending momentum on the Y axis and overlap or pervasiveness in the data on the X axis. It's a measure of presence in the data set we used to call it market share. With the data, the dot positions, you see that little inserted table, that's how the dots are plotted. And it's important to note that this data is filtered for firms with at least 100 Ns in the survey. That's why some of the other ones that we mentioned might have dropped off. The red dotted line at 40% that indicates highly elevated spending momentum and there are several firms above that mark including of course, Microsoft, which is literally off the charts in both dimensions in the upper right. It's quite incredible actually. But for the rest of the pack, CrowdStrike has now taken back its number one net score position in the ETR survey. And CyberArk and Okta and Zscaler, CloudFlare and Auth0 now Okta through the acquisition, are all above the 40% mark. You can stare at the data at your leisure but I'll just point out, make three quick points. First Palo Alto continues to impress and as steady as she goes. Two, it's a very crowded market still and it's complicated space. And three there's lots of spending in different pockets. This market has too many tools and will continue to consolidate. Now I'd like to drill into a couple of firms net scores and pick out some of the pure plays that are leading the way. This series of charts shows the net score or spending velocity or granularity for Okta, CrowdStrike, Zscaler and CyberArk. Four of the top pure plays in the ETR survey that also have over a hundred responses. Now the colors represent the following. Bright red is defections. We're leaving the platform. The pink is we're spending less, meaning we're spending 6% or worse. The gray is flat spend plus or minus 5%. The forest green is spending more, i.e, 6% or more and the lime green is we're adding the platform new. That red dotted line at the 40% net score mark is the same elevated level that we like to talk about. All four are above that target. Now that blue line you see there is net score. The yellow line is pervasiveness in the data. The data shown in each bar goes back 10 surveys all the way back to January 2020. First I want to call out that all four again are seeing down trends in spending momentum with the whole market. That's that blue line. They're seeing that this quarter, again, the market is off overall. Everybody is kind of seeing that down trend for the most part. Very few exceptions. Okta is being hurt by fewer new additions which is why we highlighted in red, that red dotted area, that square that we put there in the upper right of that Okta bar. That lime green, new ads are off as well. And the gray for Okta, flat spending is noticeably up. So it feels like people are pausing a bit and taking a breather for Okta. And as we said earlier, perhaps with the breach earlier this year and the ingestion of Auth0 acquisition the company is seeing some friction in its business. Now, having said that, you can see Okta's yellow line or presence in the data set, continues to grow. So it's a good proxy from market presence. So Okta remains a leader in identity. So again, I'll let you stare at the data if you want at your leisure, but despite some concerns on declining momentum, notice this very little red at these companies when it comes to the ETR survey data. Now one more data slide which brings us to our four star cyber firms. We started a tradition a few years ago where we sorted the ETR data by net score. That's the left hand side of this graphic. And we sorted by shared end or presence in the data set. That's the right hand side. And again, we filtered by companies with at least 100 N and oh, by the way we've excluded Microsoft just to level the playing field. The red dotted line signifies the top 10. If a company cracks the top 10 in both spending momentum and presence, we give them four stars. So Palo Alto, CrowdStrike, Okta, Fortinet and Zscaler all made the cut this time. Now, as we pointed out in May if you combined Auth0 with Okta, they jumped to the number two on the right hand chart in terms of presence. And they would lead the pure plays there although it would bring down Okta's net score somewhat, as you can see, Auth0's net score is lower than Okta's. So when you combine them it would drag that down a little bit but it would give them bigger presence in the data set. Now, the other point we'll make is that Proofpoint and Splunk both dropped off the four star list this time as they both saw marked declines in net score or spending velocity. They both got four stars last quarter. Okay. We're going to close on what to expect at re:Inforce this coming week. Re:Inforce, if you don't know, is AWS's security event. They first held it in Boston back in 2019. It's dedicated to cloud security. The past two years has been virtual and they announced that reinvent that it would take place in Houston in June, which everybody said, that's crazy. Who wants to go to Houston in June and turns out nobody did so they postponed the event, thankfully. And so now they're back in Boston, starting on Monday. Not that it's going to be much cooler in Boston. Anyway, Steven Schmidt had been the face of AWS security at all these previous events as the Chief Information Security Officer. Now he's dropped the I from his title and is now the Chief Security Officer at Amazon. So he went with Jesse to the mothership. Presumably he dropped the I because he deals with physical security now too, like at the warehouses. Not that he didn't have to worry about physical security at the AWS data centers. I don't know. Anyway, he and CJ Moses who is now the new CISO at AWS will be keynoting along with some others including MongoDB's Chief Information Security Officer. So that should be interesting. Now, if you've been following AWS you'll know they like to break things down into, you know, a couple of security categories. Identity, detection and response, data protection slash privacy slash GRC which is governance, risk and compliance, and we would expect a lot more talk this year on container security. So you're going to hear also product updates and they like to talk about how they're adding value to services and try to help, they try to help customers understand how to apply services. Things like GuardDuty, which is their threat detection that has machine learning in it. They'll talk about Security Hub, which centralizes views and alerts and automates security checks. They have a service called Detective which does root cause analysis, and they have tools to mitigate denial of service attacks. And they'll talk about security in Nitro which isolates a lot of the hardware resources. This whole idea of, you know, confidential computing which is, you know, AWS will point out it's kind of become a buzzword. They take it really seriously. I think others do as well, like Arm. We've talked about that on previous Breaking Analysis. And again, you're going to hear something on container security because it's the hottest thing going right now and because AWS really still serves developers and really that's what they're trying to do. They're trying to enable developers to design security in but you're also going to hear a lot of best practice advice from AWS i.e, they'll share the AWS dogfooding playbooks with you for their own security practices. AWS like all good security practitioners, understand that the keys to a successful security strategy and implementation don't start with the technology, rather they're about the methods and practices that you apply to solve security threats and a top to bottom cultural approach to security awareness, designing security into systems, that's really where the developers come in, and training for continuous improvements. So you're going to get heavy doses of really strong best practices and guidance and you know, some good preaching. You're also going to hear and see a lot of partners. They'll be very visible at re:Inforce. AWS is all about ecosystem enablement and AWS is going to host close to a hundred security partners at the event. This is key because AWS doesn't do it all. Interestingly, they don't even show up in the ETR security taxonomy, right? They just sort of imply that it's built in there even though they have a lot of security tooling. So they have to apply the shared responsibility model not only with customers but partners as well. They need an ecosystem to fill gaps and provide deeper problem solving with more mature and deeper security tooling. And you're going to hear a lot of positivity around how great cloud security is and how it can be done well. But the truth is this stuff is still incredibly complicated and challenging for CISOs and practitioners who are understaffed when it comes to top talent. Now, finally, theCUBE will be at re:Inforce in force. John Furry and I will be hosting two days of broadcast so please do stop by if you're in Boston and say hello. We'll have a little chat, we'll share some data and we'll share our overall impressions of the event, the market, what we're seeing, what we're learning, what we're worried about in this dynamic space. Okay. That's it for today. Thanks for watching. Thanks to Alex Myerson, who is on production and manages the podcast. Kristin Martin and Cheryl Knight, they helped get the word out on social and in our newsletters and Rob Hoff is our Editor in Chief over at siliconangle.com. You did some great editing. Thank you all. Remember all these episodes they're available, this podcast. Wherever you listen, all you do is search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. You can get in touch with me by emailing avid.vellante@siliconangle.com or DM me @dvellante, or comment on my LinkedIn post and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching and we'll see you in Boston next week if you're there or next time on Breaking Analysis (soft music)
SUMMARY :
in Palo Alto and Boston and of course the cyber names
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Steven Schmidt | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Verizon | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Chip Simonton | PERSON | 0.99+ |
Rob Hoff | PERSON | 0.99+ |
AT&T | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
January 2020 | DATE | 0.99+ |
Boston | LOCATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
June 24th | DATE | 0.99+ |
Houston | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Okta | ORGANIZATION | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
July | DATE | 0.99+ |
SNAP | ORGANIZATION | 0.99+ |
Symantec | ORGANIZATION | 0.99+ |
CJ Moses | PERSON | 0.99+ |
John Furry | PERSON | 0.99+ |
Nokia | ORGANIZATION | 0.99+ |
6% | QUANTITY | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
Jesse | PERSON | 0.99+ |
40% | QUANTITY | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
Four | QUANTITY | 0.99+ |
54% | QUANTITY | 0.99+ |
May | DATE | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
Qualcomm | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Simonton | PERSON | 0.99+ |
JP Morgan | ORGANIZATION | 0.99+ |
8% | QUANTITY | 0.99+ |
14% | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
SailPoint | ORGANIZATION | 0.99+ |
TrendMicro | ORGANIZATION | 0.99+ |
Monday | DATE | 0.99+ |
15% | QUANTITY | 0.99+ |
McAfee | ORGANIZATION | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
2019 | DATE | 0.99+ |
Fortinet | ORGANIZATION | 0.99+ |
two days | QUANTITY | 0.99+ |
June | DATE | 0.99+ |
45% | QUANTITY | 0.99+ |
10 surveys | QUANTITY | 0.99+ |
six | QUANTITY | 0.99+ |
CyberArk | ORGANIZATION | 0.99+ |
Thoma Bravo | ORGANIZATION | 0.99+ |
Tenable | ORGANIZATION | 0.99+ |
avid.vellante@siliconangle.com | OTHER | 0.99+ |
next week | DATE | 0.99+ |
SentinelOne | ORGANIZATION | 0.99+ |
early June | DATE | 0.99+ |
Meta | ORGANIZATION | 0.99+ |
Breaking Analysis: Amping it up with Frank Slootman
>> From theCUBE studios in Palo Alto in Boston, bringing you data-driven insights from the cube and ETR, this is Breaking Analysis with Dave Vellante. >> Organizations have considerable room to improve their performance without making expensive changes to their talent, their structure, or their fundamental business model. You don't need a slew of consultants to tell you what to do. You already know. What you need is to immediately ratchet up expectations, energy, urgency, and intensity. You have to fight mediocrity every step of the way. Amp it up and the results will follow. This is the fundamental premise of a hard-hitting new book written by Frank Slootman, CEO of Snowflake, and published earlier this year. It's called "Amp It Up, Leading for Hypergrowth "by Raising Expectations, Increasing Urgency, "and Elevating Intensity." Hello and welcome to this week's Wikibon CUBE Insights, powered by ETR. At Snowflake Summit last month, I was asked to interview Frank on stage about his new book. I've read it several times. And if you haven't read it, you should. Even if you have read it, in this Breaking Analysis, we'll dig deeper into the book and share some clarifying insights and nuances directly from Slootman himself from my one-on-one conversation with him. My first question to Slootman was why do you write this book? Okay, it's kind of a common throwaway question. And how the heck did you find time to do it? It's fairly well-known that a few years ago, Slootman put up a post on LinkedIn with the title Amp It Up. It generated so much buzz and so many requests for Frank's time that he decided that the best way to efficiently scale and share his thoughts on how to create high-performing companies and organizations was to publish a book. Now, he wrote the book during the pandemic. And I joked that they must not have Netflix in Montana where he resides. In a pretty funny moment, he said that writing the book was easier than promoting it. Take a listen. >> Denise, our CMO, you know, she just made sure that this process wasn't going to. It was more work for me to promote this book with all these damn podcasts and other crap, than actually writing the book, you know. And after a while, I was like I'm not doing another podcast. >> Now, the book gives a lot of interesting background information on Slootman's career and what he learned at various companies that he led and participated in. Now, I'm not going to go into most of that today, which is why you should read the book yourself. But Slootman, he's become somewhat of a business hero to many people, myself included. Leaders like Frank, Scott McNealy, Jayshree Ullal, and my old boss, Pat McGovern at IDG, have inspired me over the years. And each has applied his or her own approach to building cultures and companies. Now, when Slootman first took over the reins at Snowflake, I published a Breaking Analysis talking about Snowflake and what we could expect from the company now that Slootman and CFO Mike Scarpelli were back together. In that post, buried toward the end, I referenced the playbook that Frank used at Data Domain and ServiceNow, two companies that I followed quite closely as an analyst, and how it would be applied at Snowflake, that playbook if you will. Frank reached out to me afterwards and said something to the effect of, "I don't use playbooks. "I am a situational leader. "Playbooks, you know, they work in football games. "But in the military, they teach you "situational leadership." Pretty interesting learning moment for me. So I asked Frank on the stage about this. Here's what he said. >> The older you get, the more experience that you have, the more you become a prisoner of your own background because you sort of think in terms of what you know as opposed to, you know, getting outside of what you know and trying to sort of look at things like a five-year-old that has never seen this before. And then how would you, you know, deal with it? And I really try to force myself into I've never seen this before and how do I think about it? Because at least they're very different, you know, interpretations. And be open-minded, just really avoid that rinse and repeat mentality. And you know, I've brought people in from who have worked with me before. Some of them come with me from company to company. And they were falling prey to, you know, rinse and repeat. I would just literally go like that's not what we want. >> So think about that for a moment. I mean, imagine coming in to lead a new company and forcing yourself and your people to forget what they know that works and has worked in the past, put that aside and assess the current situation with an open mind, essentially start over. Now, that doesn't mean you don't apply what has worked in the past. Slootman talked to me about bringing back Scarpelli and the synergistic relationship that they have and how they build cultures and the no BS and hard truth mentality they bring to companies. But he bristles when people ask him, "What type of CEO are you?" He says, "Do we have to put a label on it? "It really depends on the situation." Now, one of the other really hard-hitting parts of the book was the way Frank deals with who to keep and who to let go. He uses the Volkswagen tagline of drivers wanted. He says in his book, in companies there are passengers and there are drivers, and we want drivers. He said, "You have to figure out really quickly "who the drivers are and basically throw the wrong people "off the bus, keep the right people, bring in new people "that fit the culture and put them "in the right seats on the bus." Now, these are not easy decisions to make. But as it pertains to getting rid of people, I'm reminded of the movie "Moneyball." Art Howe, the manager of the Oakland As, he refused to play Scott Hatteberg at first base. So the GM, Billy Bean played by Brad Pitt says to Peter Brand who was played by Jonah Hill, "You have to fire Carlos Pena." Don't learn how to fire people. Billy Bean says, "Just keep it quick. "Tell him he's been traded and that's it." So I asked Frank, "Okay, I get it. "Like the movie, when you have the wrong person "on the bus, you just have to make the decision, "be straightforward, and do it." But I asked him, "What if you're on the fence? "What if you're not completely sure if this person "is a driver or a passenger, if he or she "should be on the bus or not on the bus? "How do you handle that?" Listen to what he said. >> I have a very simple way to break ties. And when there's doubt, there's no doubt, okay? >> When there's doubt, there's no doubt. Slootman's philosophy is you have to be emphatic and have high conviction. You know, back to the baseball analogy, if you're thinking about taking the pitcher out of the game, take 'em out. Confrontation is the single hardest thing in business according to Slootman but you have to be intellectually honest and do what's best for the organization, period. Okay, so wow, that may sound harsh but that's how Slootman approaches it, very Belichickian if you will. But how can you amp it up on a daily basis? What's the approach that Slootman takes? We got into this conversation with a discussion about MBOs, management by objective. Slootman in his book says he's killed MBOs at every company he's led. And I asked him to explain why. His rationale was that individual MBOs invariably end up in a discussion about relief of the MBO if the person is not hitting his or her targets. And that detracts from the organizational alignment. He said at Snowflake everyone gets paid the same way, from the execs on down. It's a key way he creates focus and energy in an organization, by creating alignment, urgency, and putting more resources into the most important things. This is especially hard, Slootman says, as the organization gets bigger. But if you do approach it this way, everything gets easier. The cadence changes, the tempo accelerates, and it works. Now, and to emphasize that point, he said the following. Play the clip. >> Every meeting that you have, every email, every encounter in the hallway, whatever it is, is an opportunity to amp things up. That's why I use that title. But do you take that opportunity? >> And according to Slootman, if you don't take that opportunity, if you're not in the moment, amping it up, then you're thinking about your golf game or the tennis match that's going on this weekend or being out on your boat. And to the point, this approach is not for everyone. You're either built for it or you're not. But if you can bring people into the organization that can handle this type of dynamic, it creates energy. It becomes fun. Everything moves faster. The conversations are exciting. They're inspiring. And it becomes addictive. Now let's talk about priorities. I said to Frank that for me anyway, his book was an uncomfortable read. And he was somewhat surprised by that. "Really," he said. I said, "Yeah. "I mean, it was an easy read but uncomfortable "because over my career, I've managed thousands of people, "not tens of thousands but thousands, "enough to have to take this stuff very seriously." And I found myself throughout the book, oh, you know, on the one hand saying to myself, "Oh, I got that right, good job, Dave." And then other times, I was thinking to myself, "Oh wow, I probably need to rethink that. "I need to amp it up on that front." And the point is to Frank's leadership philosophy, there's no one correct way to approach all situations. You have to figure it out for yourself. But the one thing in the book that I found the hardest was Slootman challenged the reader. If you had to drop everything and focus on one thing, just one thing, for the rest of the year, what would that one thing be? Think about that for a moment. Were you able to come up with that one thing? What would happen to all the other things on your priority list? Are they all necessary? If so, how would you delegate those? Do you have someone in your organization who can take those off your plate? What would happen if you only focused on that one thing? These are hard questions. But Slootman really forces you to think about them and do that mental exercise. Look at Frank's body language in this screenshot. Imagine going into a management meeting with Frank and being prepared to share all the things you're working on that you're so proud of and all the priorities you have for the coming year. Listen to Frank in this clip and tell me it doesn't really make you think. >> I've been in, you know, on other boards and stuff. And I got a PowerPoint back from the CEO and there's like 15 things. They're our priorities for the year. I'm like you got 15, you got none, right? It's like you just can't decide, you know, what's important. So I'll tell you everything because I just can't figure out. And the thing is it's very hard to just say one thing. But it's really the mental exercise that matters. >> Going through that mental exercise is really important according to Slootman. Let's have a conversation about what really matters at this point in time. Why does it need to happen? And does it take priority over other things? Slootman says you have to pull apart the hairball and drive extraordinary clarity. You could be wrong, he says. And he admits he's been wrong on many things before. He, like everyone, is fearful of being wrong. But if you don't have the conversation according to Slootman, you're already defeated. And one of the most important things Slootman emphasizes in the book is execution. He said that's one of the reasons he wrote "Amp It Up." In our discussion, he referenced Pat Gelsinger, his former boss, who bought Data Domain when he was working for Joe Tucci at EMC. Listen to Frank describe the interaction with Gelsinger. >> Well, one of my prior bosses, you know, Pat Gelsinger, when they acquired Data Domain through EMC, Pat was CEO of Intel. And he quoted Andy Grove as saying, 'cause he was Intel for a long time when he was younger man. And he said no strategy is better than its execution, which if I find one of the most brilliant things. >> Now, before you go changing your strategy, says Slootman, you have to eliminate execution as a potential point of failure. All too often, he says, Silicon Valley wants to change strategy without really understanding whether the execution is right. All too often companies don't consider that maybe the product isn't that great. They will frequently, for example, make a change to sales leadership without questioning whether or not there's a product fit. According to Slootman, you have to drive hardcore intellectual honesty. And as uncomfortable as that may be, it's incredibly important and powerful. Okay, one of the other contrarian points in the book was whether or not to have a customer success department. Slootman says this became really fashionable in Silicon Valley with the SaaS craze. Everyone was following and pattern matching the lead of salesforce.com. He says he's eliminated the customer service department at every company he's led which had a customer success department. Listen to Frank Slootman in his own words talk about the customer success department. >> I view the whole company as a customer success function. Okay, I'm customer success, you know. I said it in my presentation yesterday. We're a customer-first organization. I don't need a department. >> Now, he went on to say that sales owns the commercial relationship with the customer. Engineering owns the technical relationship. And oh, by the way, he always puts support inside of the engineering department because engineering has to back up support. And rather than having a separate department for customer success, he focuses on making sure that the existing departments are functioning properly. Slootman also has always been big on net promoter score, NPS. And Snowflake's is very high at 72. And according to Slootman, it's not just the product. It's the people that drive that type of loyalty. Now, Slootman stresses amping up the big things and even the little things too. He told a story about someone who came into his office to ask his opinion about a tee shirt. And he turned it around on her and said, "Well, what do you think?" And she said, "Well, it's okay." So Frank made the point by flipping the situation. Why are you coming to me with something that's just okay? If we're going to do something, let's do it. Let's do it all out. Let's do it right and get excited about it, not just check the box and get something off your desk. Amp it up, all aspects of our business. Listen to Slootman talk about Steve Jobs and the relevance of demanding excellence and shunning mediocrity. >> He was incredibly intolerant of anything that he didn't think of as great. You know, he was immediately done with it and with the person. You know, I'm not that aggressive, you know, in that way. I'm a little bit nicer, you know, about it. But I still, you know, I don't want to give into expediency and mediocrity. I just don't, I'm just going to fight it, you know, every step of the way. >> Now, that story was about a little thing like some swag. But Slootman talked about some big things too. And one of the major ways Snowflake was making big, sweeping changes to amp up its business was reorganizing its go-to-market around industries like financial services, media, and healthcare. Here's some ETR data that shows Snowflake's net score or spending momentum for key industry segments over time. The red dotted line at 40% is an indicator of highly elevated spending momentum. And you can see for the key areas shown, Snowflake is well above that level. And we cut this data where responses were greater, the response numbers were greater than 15. So not huge ends but large enough to have meaning. Most were in the 20s. Now, it's relatively uncommon to see a company that's having the success of Snowflake make this kind of non-trivial change in the middle of steep S-curve growth. Why did they make this move? Well, I think it's because Snowflake realizes that its data cloud is going to increasingly have industry diversity and unique value by industry, that ecosystems and data marketplaces are forming around industries. So the more industry affinity Snowflake can create, the stronger its moat will be. It also aligns with how the largest and most prominent global system integrators, global SIs, go to market. This is important because as companies are transforming, they are radically changing their data architecture, how they think about data, how they approach data as a competitive advantage, and they're looking at data as specifically a monetization opportunity. So having industry expertise and knowledge and aligning with those customer objectives is going to serve Snowflake and its ecosystems well in my view. Slootman even said he joined the board of Instacart not because he needed another board seat but because he wanted to get out of his comfort zone and expose himself to other industries as a way to learn. So look, we're just barely scratching the surface of Slootman's book and I've pulled some highlights from our conversation. There's so much more that I can share just even from our conversation. And I will as the opportunity arises. But for now, I'll just give you the kind of bumper sticker of "Amp It Up." Raise your standards by taking every opportunity, every interaction, to increase your intensity. Get your people aligned and moving in the same direction. If it's the wrong direction, figure it out and course correct quickly. Prioritize and sharpen your focus on things that will really make a difference. If you do these things and increase the urgency in your organization, you'll naturally pick up the pace and accelerate your company. Do these things and you'll be able to transform, better identify adjacent opportunities and go attack them, and create a lasting and meaningful experience for your employees, customers, and partners. Okay, that's it for today. Thanks for watching. And thank you to Alex Myerson who's on production and he manages the podcast for Breaking Analysis. Kristin Martin and Cheryl Knight help get the word out on social and in our newsletters. And Rob Hove is our EIC over at Silicon Angle who does some wonderful and tremendous editing. Thank you all. Remember, all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. And you can email me at david.vellante@siliconangle.com or DM me @dvellante or comment on my LinkedIn posts. And please do check out etr.ai for the best survey data in enterprise tech. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. Be well. And we'll see you next time on Breaking Analysis. (upbeat music)
SUMMARY :
insights from the cube and ETR, And how the heck did than actually writing the book, you know. "But in the military, they teach you And you know, I've brought people in "on the bus, you just And when there's doubt, And that detracts from the Every meeting that you have, And the point is to Frank's And I got a PowerPoint back from the CEO And one of the most important things the most brilliant things. According to Slootman, you have to drive Okay, I'm customer success, you know. and even the little things too. going to fight it, you know, and he manages the podcast
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Slootman | PERSON | 0.99+ |
Frank | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
EMC | ORGANIZATION | 0.99+ |
Pat McGovern | PERSON | 0.99+ |
Pat Gelsinger | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Pat | PERSON | 0.99+ |
Denise | PERSON | 0.99+ |
Montana | LOCATION | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Peter Brand | PERSON | 0.99+ |
Joe Tucci | PERSON | 0.99+ |
Art Howe | PERSON | 0.99+ |
Gelsinger | PERSON | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
Brad Pitt | PERSON | 0.99+ |
Jonah Hill | PERSON | 0.99+ |
Volkswagen | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Andy Grove | PERSON | 0.99+ |
Mike Scarpelli | PERSON | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
Moneyball | TITLE | 0.99+ |
Carlos Pena | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Scott McNealy | PERSON | 0.99+ |
Jayshree Ullal | PERSON | 0.99+ |
Billy Bean | PERSON | 0.99+ |
yesterday | DATE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Rob Hove | PERSON | 0.99+ |
Scott Hatteberg | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
Data Domain | ORGANIZATION | 0.99+ |
two companies | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
Silicon Angle | ORGANIZATION | 0.99+ |
ServiceNow | ORGANIZATION | 0.99+ |
first question | QUANTITY | 0.99+ |
Steve Jobs | PERSON | 0.99+ |
last month | DATE | 0.99+ |
IDG | ORGANIZATION | 0.99+ |
Scarpelli | PERSON | 0.99+ |
15 | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
72 | QUANTITY | 0.99+ |