Prem Balasubramanian and Manoj Narayanan | Hitachi Vantara: Build Your Cloud Center of Excellence
(Upbeat music playing) >> Hey everyone, thanks for joining us today. Welcome to this event of Building your Cloud Center of Excellence with Hitachi Vantara. I'm your host, Lisa Martin. I've got a couple of guests here with me next to talk about redefining cloud operations and application modernization for customers. Please welcome Prem Balasubramanian the SVP and CTO at Hitachi Vantara, and Manoj Narayanan is here as well, the Managing Director of Technology at GTCR. Guys, thank you so much for joining me today. Excited to have this conversation about redefining CloudOps with you. >> Pleasure to be here. >> Pleasure to be here >> Prem, let's go ahead and start with you. You have done well over a thousand cloud engagements in your career. I'd love to get your point of view on how the complexity around cloud operations and management has evolved in the last, say, three to four years. >> It's a great question, Lisa before we understand the complexity around the management itself, the cloud has evolved over the last decade significantly from being a backend infrastructure or infrastructure as a service for many companies to become the business for many companies. If you think about a lot of these cloud bond companies cloud is where their entire workload and their business wants. With that, as a background for this conversation if you think about the cloud operations, there was a lot of there was a lot of lift and shift happening in the market where people lifted their workloads or applications and moved them onto the cloud where they treated cloud significantly as an infrastructure. And the way they started to manage it was again, the same format they were managing there on-prem infrastructure and they call it I&O, Infrastructure and Operations. That's kind of the way traditionally cloud is managed. In the last few years, we are seeing a significant shift around thinking of cloud more as a workload rather than as just an infrastructure. And what I mean by workload is in the cloud, everything is now code. So you are codifying your infrastructure. Your application is already code and your data is also codified as data services. With now that context apply the way you think about managing the cloud has to significantly change and many companies are moving towards trying to change their models to look at this complex environment as opposed to treating it like a simple infrastructure that is sitting somewhere else. So that's one of the biggest changes and shifts that are causing a lot of complexity and headache for actually a lot of customers for managing environments. The second critical aspect is even that, even exasperates the situation is multicloud environments. Now, there are companies that have got it right with things about right cloud for the right workload. So there are companies that I reach out and I talk with. They've got their office applications and emails and stuff running on Microsoft 365 which can be on the Azure cloud whereas they're running their engineering applications the ones that they build and leverage for their end customers on Amazon. And to some extent they've got it right but still they have a multiple cloud that they have to go after and maintain. This becomes complex when you have two clouds for the same type of workload. When I have to host applications for my end customers on Amazon as well as Azure, Azure as well as Google then, I get into security issues that I have to be consistent across all three. I get into talent because I need to have people that focus on Amazon as well as Azure, as well as Google which means I need so much more workforce, I need so many so much more skills that I need to build, right? That's becoming the second issue. The third one is around data costs. Can I make these clouds talk to each other? Then you get into the ingress egress cost and that creates some complexity. So bringing all of this together and managing is really become becoming more complex for our customers. And obviously as a part of this we will talk about some of the, some of the ideas that we can bring for in managing such complex environments but this is what we are seeing in terms of why the complexity has become a lot more in the last few years. >> Right. A lot of complexity in the last few years. Manoj, let's bring you into the conversation now. Before we dig into your cloud environment give the audience a little bit of an overview of GTCR. What kind of company are you? What do you guys do? >> Definitely Lisa. GTCR is a Chicago based private equity firm. We've been in the market for more than 40 years and what we do is we invest in companies across different sectors and then we manage the company drive it to increase the value and then over a period of time, sell it to future buyers. So in a nutshell, we got a large portfolio of companies that we need to manage and make sure that they perform to expectations. And my role within GTCR is from a technology viewpoint so where I work with all the companies their technology leadership to make sure that we are getting the best out of technology and technology today drives everything. So how can technology be a good compliment to the business itself? So, my role is to play that intermediary role to make sure that there is synergy between the investment thesis and the technology lures that we can pull and also work with partners like Hitachi to make sure that it is done in an optimal manner. >> I like that you said, you know, technology needs to really compliment the business and vice versa. So Manoj, let's get into the cloud operations environment at GTCR. Talk to me about what the experience has been the last couple of years. Give us an idea of some of the challenges that you were facing with existing cloud ops and and the solution that you're using from Hitachi Vantara. >> A a absolutely. In fact, in fact Prem phrased it really well, one of the key things that we're facing is the workload management. So there's so many choices there, so much complexities. We have these companies buying more companies there is organic growth that is happening. So the variables that we have to deal with are very high in such a scenario to make sure that the workload management of each of the companies are done in an optimal manner is becoming an increasing concern. So, so that's one area where any help we can get anything we can try to make sure it is done better becomes a huge value at each. A second aspect is a financial transparency. We need to know where the money is going where the money is coming in from, what is the scale especially in the cloud environment. We are talking about an auto scale ecosystem. Having that financial transparency and the metrics associated with that, it, these these become very, very critical to ensure that we have a successful presence in the multicloud environment. >> Talk a little bit about the solution that you're using with Hitachi and, and the challenges that it is eradicated. >> Yeah, so it end of the day, right, we we need to focus on our core competence. So, so we have got a very strong technology leadership team. We've got a very strong presence in the respective domains of each of the portfolio companies. But where Hitachi comes in and HAR comes in as a solution is that they allow us to excel in focusing on our core business and then make sure that we are able to take care of workload management or financial transparency. All of that is taken off the table from us and and Hitachi manages it for us, right? So it's such a perfectly compliment relationship where they act as two partners and HARC is a solution that is extremely useful in driving that. And, and and I'm anticipating that it'll become more important with time as the complexity of cloud and cloud associate workloads are only becoming more challenging to manage and not less. >> Right? That's the thing that complexity is there and it's also increasing Prem, you talked about the complexities that are existent today with respect to cloud operations the things that have happened over the last couple of years. What are some of your tips, Prem for the audience, like the the top two or three things that you would say on cloud operations that that people need to understand so that they can manage that complexity and allow their business to be driven and complimented by technology? >> Yeah, a big great question again, Lisa, right? And I think Manoj alluded to a few of these things as well. The first one is in the new world of the cloud I think think of migration, modernization and management as a single continuum to the cloud. Now there is no lift and shift and there is no way somebody else separately manages it, right? If you do not lift and shift the right applications the right way onto the cloud, you are going to deal with the complexity of managing it and you'll end up spending more money time and effort in managing it. So that's number one. Migration, modernization, management of cloud work growth is a single continuum and it's not three separate activities, right? That's number one. And the, the second is cost. Cost traditionally has been an afterthought, right? People move the workload to the cloud. And I think, again, like I said, I'll refer back to what Manoj said once we move it to the cloud and then we put all these fancy engineering capability around self-provisioning, every developer can go and ask for what he or she wants and they get an environment immediately spun up so on and so forth. Suddenly the CIO wakes up to a bill that is significantly larger than what he or she expected right? And, and this is this is become a bit common nowadays, right? The the challenge is because we think cost in the cloud as an afterthought. But consider this example in, in previous world you buy hard, well, you put it in your data center you have already amortized the cost as a CapEx. So you can write an application throw it onto the infrastructure and the application continues to use the infrastructure until you hit a ceiling, you don't care about the money you spent. But if I write a line of code that is inefficient today and I deploy it on the cloud from minute one, I am paying for the inefficiency. So if I realize it after six months, I've already spent the money. So financial discipline, especially when managing the cloud is now is no more an afterthought. It is as much something that you have to include in your engineering practice as much as any other DevOps practices, right? Those are my top two tips, Lisa, from my standpoint, think about cloud, think about cloud work, cloud workloads. And the last one again, and you will see you will hear me saying this again and again, get into the mindset of everything is code. You don't have a touch and feel infrastructure anymore. So you don't really need to have foot on the ground to go manage that infrastructure. It's codified. So your code should be managing it, but think of how it happens, right? That's where we, we are going as an evolution >> Everything is code. That's great advice, great tips for the audience there. Manoj, I'll bring you back into the conversation. You know, we, we can talk about skills gaps on on in many different facets of technology the SRE role, relatively new, skillset. We're hearing, hearing a lot about it. SRE led DevSecOps is probably even more so of a new skillset. If I'm an IT leader or an application leader how do I ensure that I have the right skillset within my organization to be able to manage my cloud operations to, to dial down that complexity so that I can really operate successfully as a business? >> Yeah. And so unfortunately there is no perfect answer, right? It's such a, such a scarce skillset that a, any day any of the portfolio company CTOs if I go and talk and say, Hey here's a great SRE team member, they'll be more than willing to fight with each of to get the person in right? It's just that scarce of a skillset. So, so a few things we need to look at it. One is, how can I build it within, right? So nobody gets born as an SRE, you, you make a person an SRE. So how do you inculcate that culture? So like Prem said earlier, right? Everything is software. So how do we make sure that everybody inculcates that as part of their operating philosophy be they part of the operations team or the development team or the testing team they need to understand that that is a common guideline and common objective that we are driving towards. So, so that skillset and that associated training needs to be driven from within the organization. And that in my mind is the fastest way to make sure that that role gets propagated across organization. That is one. The second thing is rely on the right partners. So it's not going to be possible for us, to get all of these roles built in-house. So instead prioritize what roles need to be done from within the organization and what roles can we rely on our partners to drive it for us. So that becomes an important consideration for us to look at as well. >> Absolutely. That partnership angle is incredibly important from, from the, the beginning really kind of weaving these companies together on this journey to to redefine cloud operations and build that, as we talked about at the beginning of the conversation really building a cloud center of excellence that allows the organization to be competitive, successful and and really deliver what the end user is, is expecting. I want to ask - Sorry Lisa, - go ahead. >> May I add something to it, I think? >> Sure. >> Yeah. One of the, one of the common things that I tell customers when we talk about SRE and to manages point is don't think of SRE as a skillset which is the common way today the industry tries to solve the problem. SRE is a mindset, right? Everybody in >> Well well said, yeah >> That, so everybody in a company should think of him or her as a cycle liability engineer. And everybody has a role in it, right? Even if you take the new process layout from SRE there are individuals that are responsible to whom we can go to when there is a problem directly as opposed to going through the traditional ways of AI talk to L one and L one contras all. They go to L two and then L three. So we, we, we are trying to move away from an issue escalation model to what we call as a a issue routing or a incident routing model, right? Move away from incident escalation to an incident routing model. So you get to route to the right folks. So again, to sum it up, SRE should not be solved as a skillset set because there is not enough people in the market to solve it that way. If you start solving it as a mindset I think companies can get a handhold of it. >> I love that. I've actually never heard that before, but it it makes perfect sense to think about the SRE as a mindset rather than a skillset that will allow organizations to be much more successful. Prem I wanted to get your thoughts as enterprises are are innovating, they're moving more products and services to the as a service model. Talk about how the dev teams the ops teams are working together to build and run reliable, cost efficient services. Are they working better together? >> Again, a a very polarizing question because some customers are getting it right many customers aren't, there is still a big wall between development and operations, right? Even when you think about DevOps as a terminology the fundamental principle was to make sure dev and ops works together. But what many companies have achieved today, honestly is automating the operations for development. For example, as a developer, I can check in code and my code will appear in production without any friction, right? There is automated testing, automated provisioning and it gets promoted to production, but after production, it goes back into the 20 year old model of operating the code, right? So there is more work that needs to be done for Devon and Ops to come closer and work together. And one of the ways that we think this is achievable is not by doing radical org changes, but more by focusing on a product-oriented single backlog approach across development and operations. Which is, again, there is change management involved but I think that's a way to start embracing the culture of dev ops coming together much better now, again SRE principles as we double click and understand it more and Google has done a very good job playing it out for the world. As you think about SRE principle, there are ways and means in that process of how to think about a single backlog. And in HARC, Hitachi Application Reliability Centers we've really got a way to look at prioritizing the backlog. And what I mean by that is dev teams try to work on backlog that come from product managers on features. The SRE and the operations team try to put backlog into the say sorry, try to put features into the same backlog for improving stability, availability and financials financial optimization of your code. And there are ways when you look at your SLOs and error budgets to really coach the product teams to prioritize your backlog based on what's important for you. So if you understand your spending more money then you reduce your product features going in and implement the financial optimization that came from your operations team, right? So you now have the ability to throttle these parameters and that's where SRE becomes a mindset and a principle as opposed to a skillset because this is not an individual telling you to do. This is the company that is, is embarking on how to prioritize my backlog beyond just user features. >> Right. Great point. Last question for both of you is the same talk kind of take away things that you want me to remember. If I am at an IT leader at, at an organization and I am planning on redefining CloudOps for my company Manoj will start with you and then Prem to you what are the top two things that you want me to walk away with understanding how to do that successfully? >> Yeah, so I'll, I'll go back to basics. So the two things I would say need to be taken care of is, one is customer experience. So all the things that I do end of the day is it improving the customer experience or not? So that's a first metric. The second thing is anything that I do is there an ROI by doing that incremental step or not? Otherwise we might get lost in the technology with surgery, the new tech, et cetera. But end of the day, if the customers are not happy if there is no ROI, everything else you just can't do much on top of that >> Now it's all about the customer experience. Right? That's so true. Prem what are your thoughts, the the top things that I need to be taking away if I am a a leader planning to redefine my cloud eye company? >> Absolutely. And I think from a, from a company standpoint I think Manoj summarized it extremely well, right? There is this ROI and there is this customer experience from my end, again, I'll, I'll suggest two two more things as a takeaway, right? One, cloud cost is not an afterthought. It's essential for us to think about it upfront. Number two, do not delink migration modernization and operations. They are one stream. If you migrate a long, wrong workload onto the cloud you're going to be stuck with it for a long time. And an example of a wrong workload, Lisa for everybody that that is listening to this is if my cost per transaction profile doesn't change and I am not improving my revenue per transaction for a piece of code that's going run in production it's better off running in a data center where my cost is CapEx than amortized and I have control over when I want to upgrade as opposed to putting it on a cloud and continuing to pay unless it gives me more dividends towards improvement. But that's a simple example of when we think about what should I migrate and how will it cost pain when I want to manage it in the longer run. But that's, that's something that I'll leave the audience and you with as a takeaway. >> Excellent. Guys, thank you so much for talking to me today about what Hitachi Vantara and GTCR are doing together how you've really dialed down those complexities enabling the business and the technology folks to really live harmoniously. We appreciate your insights and your perspectives on building a cloud center of excellence. Thank you both for joining me. >> Thank you. >> For my guests, I'm Lisa. Martin, you're watching this event building Your Cloud Center of Excellence with Hitachi Vantara. Thanks for watching. (Upbeat music playing) (Upbeat music playing) (Upbeat music playing) (Upbeat music playing)
SUMMARY :
the SVP and CTO at Hitachi Vantara, in the last, say, three to four years. apply the way you think in the last few years. and the technology lures that we can pull and the solution that you're that the workload management the solution that you're using All of that is taken off the table from us and allow their business to be driven have foot on the ground to have the right skillset And that in my mind is the that allows the organization to be and to manages point is don't of AI talk to L one and L one contras all. Talk about how the dev teams The SRE and the operations team that you want me to remember. But end of the day, if the I need to be taking away that I'll leave the audience and the technology folks to building Your Cloud Center of Excellence
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Hitachi | ORGANIZATION | 0.99+ |
GTCR | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Prem Balasubramanian | PERSON | 0.99+ |
HARC | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Manoj Narayanan | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Chicago | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Hitachi Vantara | ORGANIZATION | 0.99+ |
two partners | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
second issue | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
more than 40 years | QUANTITY | 0.99+ |
Manoj | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
third one | QUANTITY | 0.99+ |
SRE | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
first metric | QUANTITY | 0.99+ |
one stream | QUANTITY | 0.99+ |
Prem | PERSON | 0.99+ |
second | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
Martin | PERSON | 0.99+ |
one | QUANTITY | 0.98+ |
two | QUANTITY | 0.98+ |
first one | QUANTITY | 0.98+ |
four years | QUANTITY | 0.98+ |
second thing | QUANTITY | 0.98+ |
second aspect | QUANTITY | 0.98+ |
three things | QUANTITY | 0.98+ |
Manoj | PERSON | 0.98+ |
Devon | ORGANIZATION | 0.97+ |
one area | QUANTITY | 0.97+ |
two things | QUANTITY | 0.96+ |
Hitachi Application Reliability Centers | ORGANIZATION | 0.96+ |
single | QUANTITY | 0.95+ |
L two | OTHER | 0.95+ |
single backlog | QUANTITY | 0.93+ |
two tips | QUANTITY | 0.93+ |
three separate activities | QUANTITY | 0.92+ |
SRE | TITLE | 0.91+ |
20 year old | QUANTITY | 0.91+ |
CloudOps | TITLE | 0.9+ |
L three | OTHER | 0.9+ |
last decade | DATE | 0.9+ |
second critical aspect | QUANTITY | 0.89+ |
years | DATE | 0.89+ |
Microsoft | ORGANIZATION | 0.89+ |
last couple of years | DATE | 0.88+ |
Azure | TITLE | 0.88+ |
Prem Balasubramanian and Manoj Narayanan | Hitachi Vantara: Build Your Cloud Center of Excellence
(Upbeat music playing) >> Hey everyone, thanks for joining us today. Welcome to this event of Building your Cloud Center of Excellence with Hitachi Vantara. I'm your host, Lisa Martin. I've got a couple of guests here with me next to talk about redefining cloud operations and application modernization for customers. Please welcome Prem Balasubramanian the SVP and CTO at Hitachi Vantara, and Manoj Narayanan is here as well, the Managing Director of Technology at GTCR. Guys, thank you so much for joining me today. Excited to have this conversation about redefining CloudOps with you. >> Pleasure to be here. >> Pleasure to be here >> Prem, let's go ahead and start with you. You have done well over a thousand cloud engagements in your career. I'd love to get your point of view on how the complexity around cloud operations and management has evolved in the last, say, three to four years. >> It's a great question, Lisa before we understand the complexity around the management itself, the cloud has evolved over the last decade significantly from being a backend infrastructure or infrastructure as a service for many companies to become the business for many companies. If you think about a lot of these cloud bond companies cloud is where their entire workload and their business wants. With that, as a background for this conversation if you think about the cloud operations, there was a lot of there was a lot of lift and shift happening in the market where people lifted their workloads or applications and moved them onto the cloud where they treated cloud significantly as an infrastructure. And the way they started to manage it was again, the same format they were managing there on-prem infrastructure and they call it I&O, Infrastructure and Operations. That's kind of the way traditionally cloud is managed. In the last few years, we are seeing a significant shift around thinking of cloud more as a workload rather than as just an infrastructure. And what I mean by workload is in the cloud, everything is now code. So you are codifying your infrastructure. Your application is already code and your data is also codified as data services. With now that context apply the way you think about managing the cloud has to significantly change and many companies are moving towards trying to change their models to look at this complex environment as opposed to treating it like a simple infrastructure that is sitting somewhere else. So that's one of the biggest changes and shifts that are causing a lot of complexity and headache for actually a lot of customers for managing environments. The second critical aspect is even that, even exasperates the situation is multicloud environments. Now, there are companies that have got it right with things about right cloud for the right workload. So there are companies that I reach out and I talk with. They've got their office applications and emails and stuff running on Microsoft 365 which can be on the Azure cloud whereas they're running their engineering applications the ones that they build and leverage for their end customers on Amazon. And to some extent they've got it right but still they have a multiple cloud that they have to go after and maintain. This becomes complex when you have two clouds for the same type of workload. When I have to host applications for my end customers on Amazon as well as Azure, Azure as well as Google then, I get into security issues that I have to be consistent across all three. I get into talent because I need to have people that focus on Amazon as well as Azure, as well as Google which means I need so much more workforce, I need so many so much more skills that I need to build, right? That's becoming the second issue. The third one is around data costs. Can I make these clouds talk to each other? Then you get into the ingress egress cost and that creates some complexity. So bringing all of this together and managing is really become becoming more complex for our customers. And obviously as a part of this we will talk about some of the, some of the ideas that we can bring for in managing such complex environments but this is what we are seeing in terms of why the complexity has become a lot more in the last few years. >> Right. A lot of complexity in the last few years. Manoj, let's bring you into the conversation now. Before we dig into your cloud environment give the audience a little bit of an overview of GTCR. What kind of company are you? What do you guys do? >> Definitely Lisa. GTCR is a Chicago based private equity firm. We've been in the market for more than 40 years and what we do is we invest in companies across different sectors and then we manage the company drive it to increase the value and then over a period of time, sell it to future buyers. So in a nutshell, we got a large portfolio of companies that we need to manage and make sure that they perform to expectations. And my role within GTCR is from a technology viewpoint so where I work with all the companies their technology leadership to make sure that we are getting the best out of technology and technology today drives everything. So how can technology be a good compliment to the business itself? So, my role is to play that intermediary role to make sure that there is synergy between the investment thesis and the technology lures that we can pull and also work with partners like Hitachi to make sure that it is done in an optimal manner. >> I like that you said, you know, technology needs to really compliment the business and vice versa. So Manoj, let's get into the cloud operations environment at GTCR. Talk to me about what the experience has been the last couple of years. Give us an idea of some of the challenges that you were facing with existing cloud ops and and the solution that you're using from Hitachi Vantara. >> A a absolutely. In fact, in fact Prem phrased it really well, one of the key things that we're facing is the workload management. So there's so many choices there, so much complexities. We have these companies buying more companies there is organic growth that is happening. So the variables that we have to deal with are very high in such a scenario to make sure that the workload management of each of the companies are done in an optimal manner is becoming an increasing concern. So, so that's one area where any help we can get anything we can try to make sure it is done better becomes a huge value at each. A second aspect is a financial transparency. We need to know where the money is going where the money is coming in from, what is the scale especially in the cloud environment. We are talking about an auto scale ecosystem. Having that financial transparency and the metrics associated with that, it, these these become very, very critical to ensure that we have a successful presence in the multicloud environment. >> Talk a little bit about the solution that you're using with Hitachi and, and the challenges that it is eradicated. >> Yeah, so it end of the day, right, we we need to focus on our core competence. So, so we have got a very strong technology leadership team. We've got a very strong presence in the respective domains of each of the portfolio companies. But where Hitachi comes in and HAR comes in as a solution is that they allow us to excel in focusing on our core business and then make sure that we are able to take care of workload management or financial transparency. All of that is taken off the table from us and and Hitachi manages it for us, right? So it's such a perfectly compliment relationship where they act as two partners and HARC is a solution that is extremely useful in driving that. And, and and I'm anticipating that it'll become more important with time as the complexity of cloud and cloud associate workloads are only becoming more challenging to manage and not less. >> Right? That's the thing that complexity is there and it's also increasing Prem, you talked about the complexities that are existent today with respect to cloud operations the things that have happened over the last couple of years. What are some of your tips, Prem for the audience, like the the top two or three things that you would say on cloud operations that that people need to understand so that they can manage that complexity and allow their business to be driven and complimented by technology? >> Yeah, a big great question again, Lisa, right? And I think Manoj alluded to a few of these things as well. The first one is in the new world of the cloud I think think of migration, modernization and management as a single continuum to the cloud. Now there is no lift and shift and there is no way somebody else separately manages it, right? If you do not lift and shift the right applications the right way onto the cloud, you are going to deal with the complexity of managing it and you'll end up spending more money time and effort in managing it. So that's number one. Migration, modernization, management of cloud work growth is a single continuum and it's not three separate activities, right? That's number one. And the, the second is cost. Cost traditionally has been an afterthought, right? People move the workload to the cloud. And I think, again, like I said, I'll refer back to what Manoj said once we move it to the cloud and then we put all these fancy engineering capability around self-provisioning, every developer can go and ask for what he or she wants and they get an environment immediately spun up so on and so forth. Suddenly the CIO wakes up to a bill that is significantly larger than what he or she expected right? And, and this is this is become a bit common nowadays, right? The the challenge is because we think cost in the cloud as an afterthought. But consider this example in, in previous world you buy hard, well, you put it in your data center you have already amortized the cost as a CapEx. So you can write an application throw it onto the infrastructure and the application continues to use the infrastructure until you hit a ceiling, you don't care about the money you spent. But if I write a line of code that is inefficient today and I deploy it on the cloud from minute one, I am paying for the inefficiency. So if I realize it after six months, I've already spent the money. So financial discipline, especially when managing the cloud is now is no more an afterthought. It is as much something that you have to include in your engineering practice as much as any other DevOps practices, right? Those are my top two tips, Lisa, from my standpoint, think about cloud, think about cloud work, cloud workloads. And the last one again, and you will see you will hear me saying this again and again, get into the mindset of everything is code. You don't have a touch and feel infrastructure anymore. So you don't really need to have foot on the ground to go manage that infrastructure. It's codified. So your code should be managing it, but think of how it happens, right? That's where we, we are going as an evolution >> Everything is code. That's great advice, great tips for the audience there. Manoj, I'll bring you back into the conversation. You know, we, we can talk about skills gaps on on in many different facets of technology the SRE role, relatively new, skillset. We're hearing, hearing a lot about it. SRE led DevSecOps is probably even more so of a new skillset. If I'm an IT leader or an application leader how do I ensure that I have the right skillset within my organization to be able to manage my cloud operations to, to dial down that complexity so that I can really operate successfully as a business? >> Yeah. And so unfortunately there is no perfect answer, right? It's such a, such a scarce skillset that a, any day any of the portfolio company CTOs if I go and talk and say, Hey here's a great SRE team member, they'll be more than willing to fight with each of to get the person in right? It's just that scarce of a skillset. So, so a few things we need to look at it. One is, how can I build it within, right? So nobody gets born as an SRE, you, you make a person an SRE. So how do you inculcate that culture? So like Prem said earlier, right? Everything is software. So how do we make sure that everybody inculcates that as part of their operating philosophy be they part of the operations team or the development team or the testing team they need to understand that that is a common guideline and common objective that we are driving towards. So, so that skillset and that associated training needs to be driven from within the organization. And that in my mind is the fastest way to make sure that that role gets propagated across organization. That is one. The second thing is rely on the right partners. So it's not going to be possible for us, to get all of these roles built in-house. So instead prioritize what roles need to be done from within the organization and what roles can we rely on our partners to drive it for us. So that becomes an important consideration for us to look at as well. >> Absolutely. That partnership angle is incredibly important from, from the, the beginning really kind of weaving these companies together on this journey to to redefine cloud operations and build that, as we talked about at the beginning of the conversation really building a cloud center of excellence that allows the organization to be competitive, successful and and really deliver what the end user is, is expecting. I want to ask - Sorry Lisa, - go ahead. >> May I add something to it, I think? >> Sure. >> Yeah. One of the, one of the common things that I tell customers when we talk about SRE and to manages point is don't think of SRE as a skillset which is the common way today the industry tries to solve the problem. SRE is a mindset, right? Everybody in >> Well well said, yeah >> That, so everybody in a company should think of him or her as a cycle liability engineer. And everybody has a role in it, right? Even if you take the new process layout from SRE there are individuals that are responsible to whom we can go to when there is a problem directly as opposed to going through the traditional ways of AI talk to L one and L one contras all. They go to L two and then L three. So we, we, we are trying to move away from an issue escalation model to what we call as a a issue routing or a incident routing model, right? Move away from incident escalation to an incident routing model. So you get to route to the right folks. So again, to sum it up, SRE should not be solved as a skillset set because there is not enough people in the market to solve it that way. If you start solving it as a mindset I think companies can get a handhold of it. >> I love that. I've actually never heard that before, but it it makes perfect sense to think about the SRE as a mindset rather than a skillset that will allow organizations to be much more successful. Prem I wanted to get your thoughts as enterprises are are innovating, they're moving more products and services to the as a service model. Talk about how the dev teams the ops teams are working together to build and run reliable, cost efficient services. Are they working better together? >> Again, a a very polarizing question because some customers are getting it right many customers aren't, there is still a big wall between development and operations, right? Even when you think about DevOps as a terminology the fundamental principle was to make sure dev and ops works together. But what many companies have achieved today, honestly is automating the operations for development. For example, as a developer, I can check in code and my code will appear in production without any friction, right? There is automated testing, automated provisioning and it gets promoted to production, but after production, it goes back into the 20 year old model of operating the code, right? So there is more work that needs to be done for Devon and Ops to come closer and work together. And one of the ways that we think this is achievable is not by doing radical org changes, but more by focusing on a product-oriented single backlog approach across development and operations. Which is, again, there is change management involved but I think that's a way to start embracing the culture of dev ops coming together much better now, again SRE principles as we double click and understand it more and Google has done a very good job playing it out for the world. As you think about SRE principle, there are ways and means in that process of how to think about a single backlog. And in HARC, Hitachi Application Reliability Centers we've really got a way to look at prioritizing the backlog. And what I mean by that is dev teams try to work on backlog that come from product managers on features. The SRE and the operations team try to put backlog into the say sorry, try to put features into the same backlog for improving stability, availability and financials financial optimization of your code. And there are ways when you look at your SLOs and error budgets to really coach the product teams to prioritize your backlog based on what's important for you. So if you understand your spending more money then you reduce your product features going in and implement the financial optimization that came from your operations team, right? So you now have the ability to throttle these parameters and that's where SRE becomes a mindset and a principle as opposed to a skillset because this is not an individual telling you to do. This is the company that is, is embarking on how to prioritize my backlog beyond just user features. >> Right. Great point. Last question for both of you is the same talk kind of take away things that you want me to remember. If I am at an IT leader at, at an organization and I am planning on redefining CloudOps for my company Manoj will start with you and then Prem to you what are the top two things that you want me to walk away with understanding how to do that successfully? >> Yeah, so I'll, I'll go back to basics. So the two things I would say need to be taken care of is, one is customer experience. So all the things that I do end of the day is it improving the customer experience or not? So that's a first metric. The second thing is anything that I do is there an ROI by doing that incremental step or not? Otherwise we might get lost in the technology with surgery, the new tech, et cetera. But end of the day, if the customers are not happy if there is no ROI, everything else you just can't do much on top of that >> Now it's all about the customer experience. Right? That's so true. Prem what are your thoughts, the the top things that I need to be taking away if I am a a leader planning to redefine my cloud eye company? >> Absolutely. And I think from a, from a company standpoint I think Manoj summarized it extremely well, right? There is this ROI and there is this customer experience from my end, again, I'll, I'll suggest two two more things as a takeaway, right? One, cloud cost is not an afterthought. It's essential for us to think about it upfront. Number two, do not delink migration modernization and operations. They are one stream. If you migrate a long, wrong workload onto the cloud you're going to be stuck with it for a long time. And an example of a wrong workload, Lisa for everybody that that is listening to this is if my cost per transaction profile doesn't change and I am not improving my revenue per transaction for a piece of code that's going run in production it's better off running in a data center where my cost is CapEx than amortized and I have control over when I want to upgrade as opposed to putting it on a cloud and continuing to pay unless it gives me more dividends towards improvement. But that's a simple example of when we think about what should I migrate and how will it cost pain when I want to manage it in the longer run. But that's, that's something that I'll leave the audience and you with as a takeaway. >> Excellent. Guys, thank you so much for talking to me today about what Hitachi Vantara and GTCR are doing together how you've really dialed down those complexities enabling the business and the technology folks to really live harmoniously. We appreciate your insights and your perspectives on building a cloud center of excellence. Thank you both for joining me. >> Thank you. >> For my guests, I'm Lisa. Martin, you're watching this event building Your Cloud Center of Excellence with Hitachi Vantara. Thanks for watching. (Upbeat music playing) (Upbeat music playing) (Upbeat music playing) (Upbeat music playing)
SUMMARY :
the SVP and CTO at Hitachi Vantara, in the last, say, three to four years. apply the way you think in the last few years. and the technology lures that we can pull and the solution that you're that the workload management the solution that you're using All of that is taken off the table from us and allow their business to be driven have foot on the ground to have the right skillset And that in my mind is the that allows the organization to be and to manages point is don't of AI talk to L one and L one contras all. Talk about how the dev teams The SRE and the operations team that you want me to remember. But end of the day, if the I need to be taking away that I'll leave the audience and the technology folks to building Your Cloud Center of Excellence
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Hitachi | ORGANIZATION | 0.99+ |
GTCR | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Prem Balasubramanian | PERSON | 0.99+ |
HARC | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Manoj Narayanan | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Chicago | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Hitachi Vantara | ORGANIZATION | 0.99+ |
two partners | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
second issue | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
more than 40 years | QUANTITY | 0.99+ |
Manoj | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
third one | QUANTITY | 0.99+ |
SRE | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
first metric | QUANTITY | 0.99+ |
one stream | QUANTITY | 0.99+ |
Prem | PERSON | 0.99+ |
second | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
Martin | PERSON | 0.99+ |
one | QUANTITY | 0.98+ |
two | QUANTITY | 0.98+ |
first one | QUANTITY | 0.98+ |
four years | QUANTITY | 0.98+ |
second thing | QUANTITY | 0.98+ |
second aspect | QUANTITY | 0.98+ |
three things | QUANTITY | 0.98+ |
Manoj | PERSON | 0.98+ |
Devon | ORGANIZATION | 0.97+ |
one area | QUANTITY | 0.97+ |
two things | QUANTITY | 0.96+ |
Hitachi Application Reliability Centers | ORGANIZATION | 0.96+ |
single | QUANTITY | 0.95+ |
L two | OTHER | 0.95+ |
single backlog | QUANTITY | 0.93+ |
two tips | QUANTITY | 0.93+ |
three separate activities | QUANTITY | 0.92+ |
SRE | TITLE | 0.91+ |
20 year old | QUANTITY | 0.91+ |
CloudOps | TITLE | 0.9+ |
L three | OTHER | 0.9+ |
last decade | DATE | 0.9+ |
second critical aspect | QUANTITY | 0.89+ |
years | DATE | 0.89+ |
Microsoft | ORGANIZATION | 0.89+ |
last couple of years | DATE | 0.88+ |
Azure | TITLE | 0.88+ |
Chris Jones, Platform9 | Finding your "Just Right” path to Cloud Native
(upbeat music) >> Hi everyone. Welcome back to this Cube conversation here in Palo Alto, California. I'm John Furrier, host of "theCUBE." Got a great conversation around Cloud Native, Cloud Native Journey, how enterprises are looking at Cloud Native and putting it all together. And it comes down to operations, developer productivity, and security. It's the hottest topic in technology. We got Chris Jones here in the studio, director of Product Management for Platform9. Chris, thanks for coming in. >> Hey, thanks. >> So when we always chat about, when we're at KubeCon. KubeConEU is coming up and in a few, in a few months, the number one conversation is developer productivity. And the developers are driving all the standards. It's interesting to see how they just throw everything out there and whatever gets adopted ends up becoming the standard, not the old school way of kind of getting stuff done. So that's cool. Security Kubernetes and Containers are all kind of now that next level. So you're starting to see the early adopters moving to the mainstream. Enterprises, a variety of different approaches. You guys are at the center of this. We've had a couple conversations with your CEO and your tech team over there. What are you seeing? You're building the products. What's the core product focus right now for Platform9? What are you guys aiming for? >> The core is that blend of enabling your infrastructure and PlatformOps or DevOps teams to be able to go fast and run in a stable environment, but at the same time enable developers. We don't want people going back to what I've been calling Shadow IT 2.0. It's, hey, I've been told to do something. I kicked off this Container initiative. I need to run my software somewhere. I'm just going to go figure it out. We want to keep those people productive. At the same time we want to enable velocity for our operations teams, be it PlatformOps or DevOps. >> Take us through in your mind and how you see the industry rolling out this Cloud Native journey. Where do you see customers out there? Because DevOps have been around, DevSecOps is rocking, you're seeing AI, hot trend now. Developers are still in charge. Is there a change to the infrastructure of how developers get their coding done and the infrastructure, setting up the DevOps is key, but when you add the Cloud Native journey for an enterprise, what changes? What is the, what is the, I guess what is the Cloud Native journey for an enterprise these days? >> The Cloud Native journey or the change? When- >> Let's start with the, let's start with what they want to do. What's the goal and then how does that happen? >> I think the goal is that promise land. Increased resiliency, better scalability, and overall reduced costs. I've gone from physical to virtual that gave me a higher level of density, packing of resources. I'm moving to Containers. I'm removing that OS layer again. I'm getting a better density again, but all of a sudden I'm running Kubernetes. What does that, what does that fundamentally do to my operations? Does it magically give me scalability and resiliency? Or do I need to change what I'm running and how it's running so it fits that infrastructure? And that's the reality, is you can't just take a Container and drop it into Kubernetes and say, hey, I'm now Cloud Native. I've got reduced cost, or I've got better resiliency. There's things that your engineering teams need to do to make sure that application is a Cloud Native. And then there's what I think is one of the largest shifts of virtual machines to containers. When I was in the world of application performance monitoring, we would see customers saying, well, my engineering team have this Java app, and they said it needs a VM with 12 gig of RAM and eight cores, and that's what we gave it. But it's running slow. I'm working with the application team and you can see it's running slow. And they're like, well, it's got all of its resources. One of those nice features of virtualization is over provisioning. So the infrastructure team would say, well, we gave it, we gave it all a RAM it needed. And what's wrong with that being over provisioned? It's like, well, Java expects that RAM to be there. Now all of a sudden, when you move to the world of containers, what we've got is that's not a set resource limit, really is like it used to be in a VM, right? When you set it for a container, your application teams really need to be paying attention to your resource limits and constraints within the world of Kubernetes. So instead of just being able to say, hey, I'm throwing over the fence and now it's just going to run on a VM, and that VMs got everything it needs. It's now really running on more, much more of a shared infrastructure where limits and constraints are going to impact the neighbors. They are going to impact who's making that decision around resourcing. Because that Kubernetes concept of over provisioning and the virtualization concept of over provisioning are not the same. So when I look at this problem, it's like, well, what changed? Well, I'll do my scale tests as an application developer and tester, and I'd see what resources it needs. I asked for that in the VM, that sets the high watermark, job's done. Well, Kubernetes, it's no longer a VM, it's a Kubernetes manifest. And well, who owns that? Who's writing it? Who's setting those limits? To me, that should be the application team. But then when it goes into operations world, they're like, well, that's now us. Can we change those? So it's that amalgamation of the two that is saying, I'm a developer. I used to pay attention, but now I need to pay attention. And an infrastructure person saying, I used to just give 'em what they wanted, but now I really need to know what they've wanted, because it's going to potentially have a catastrophic impact on what I'm running. >> So what's the impact for the developer? Because, infrastructure's code is what everybody wants. The developer just wants to get the code going and they got to pay attention to all these things, or don't they? Is that where you guys come in? How do you guys see the problem? Actually scope the problem that you guys solve? 'Cause I think you're getting at I think the core issue here, which is, I've got Kubernetes, I've got containers, I've got developer productivity that I want to focus on. What's the problem that you guys solve? >> Platform operation teams that are adopting Cloud Native in their environment, they've got that steep learning curve of Kubernetes plus this fundamental change of how an app runs. What we're doing is taking away the burden of needing to operate and run Kubernetes and giving them the choice of the flexibility of infrastructure and location. Be that an air gap environment like a, let's say a telco provider that needs to run a containerized network function and containerized workloads for 5G. That's one thing that we can deploy and achieve in a completely inaccessible environment all the way through to Platform9 running traditionally as SaaS, as we were born, that's remotely managing and controlling your Kubernetes environments on-premise AWS. That hybrid cloud experience that could be also Bare Metal, but it's our platform running your environments with our support there, 24 by seven, that's proactively reaching out. So it's removing a lot of that burden and the complications that come along with operating the environment and standing it up, which means all of a sudden your DevOps and platform operations teams can go and work with your engineers and application developers and say, hey, let's get, let's focus on the stuff that, that we need to be focused on, which is running our business and providing a service to our customers. Not figuring out how to upgrade a Kubernetes cluster, add new nodes, and configure all of the low level. >> I mean there are, that's operations that just needs to work. And sounds like as they get into the Cloud Native kind of ops, there's a lot of stuff that kind of goes wrong. Or you go, oops, what do we buy into? Because the CIOs, let's go, let's go Cloud Native. We want to, we got to get set up for the future. We're going to be Cloud Native, not just lift and shift and we're going to actually build it out right. Okay, that sounds good. And when we have to actually get done. >> Chris: Yeah. >> You got to spin things up and stand up the infrastructure. What specifically use case do you guys see that emerges for Platform9 when people call you up and you go talk to customers and prospects? What's the one thing or use case or cases that you guys see that you guys solve the best? >> So I think one of the, one of the, I guess new use cases that are coming up now, everyone's talking about economic pressures. I think the, the tap blows open, just get it done. CIO is saying let's modernize, let's use the cloud. Now all of a sudden they're recognizing, well wait, we're spending a lot of money now. We've opened that tap all the way, what do we do? So now they're looking at ways to control that spend. So we're seeing that as a big emerging trend. What we're also sort of seeing is people looking at their data centers and saying, well, I've got this huge legacy environment that's running a hypervisor. It's running VMs. Can we still actually do what we need to do? Can we modernize? Can we start this Cloud Native journey without leaving our data centers, our co-locations? Or if I do want to reduce costs, is that that thing that says maybe I'm repatriating or doing a reverse migration? Do I have to go back to my data center or are there other alternatives? And we're seeing that trend a lot. And our roadmap and what we have in the product today was specifically built to handle those, those occurrences. So we brought in KubeVirt in terms of virtualization. We have a long legacy doing OpenStack and private clouds. And we've worked with a lot of those users and customers that we have and asked the questions, what's important? And today, when we look at the world of Cloud Native, you can run virtualization within Kubernetes. So you can, instead of running two separate platforms, you can have one. So all of a sudden, if you're looking to modernize, you can start on that new infrastructure stack that can run anywhere, Kubernetes, and you can start bringing VMs over there as you are containerizing at the same time. So now you can keep your application operations in one environment. And this also helps if you're trying to reduce costs. If you really are saying, we put that Dev environment in AWS, we've got a huge amount of velocity out of it now, can we do that elsewhere? Is there a co-location we can go to? Is there a provider that we can go to where we can run that infrastructure or run the Kubernetes, but not have to run the infrastructure? >> It's going to be interesting too, when you see the Edge come online, you start, we've got Mobile World Congress coming up, KubeCon events we're going to be at, the conversation is not just about public cloud. And you guys obviously solve a lot of do-it-yourself implementation hassles that emerge when people try to kind of stand up their own environment. And we hear from developers consistency between code, managing new updates, making sure everything is all solid so they can go fast. That's the goal. And that, and then people can get standardized on that. But as you get public cloud and do it yourself, kind of brings up like, okay, there's some gaps there as the architecture changes to be more distributed computing, Edge, on-premises cloud, it's cloud operations. So that's cool for DevOps and Cloud Native. How do you guys differentiate from say, some the public cloud opportunities and the folks who are doing it themselves? How do you guys fit in that world and what's the pitch or what's the story? >> The fit that we look at is that third alternative. Let's get your team focused on what's high value to your business and let us deliver that public cloud experience on your infrastructure or in the public cloud, which gives you that ability to still be flexible if you want to make choices to run consistently for your developers in two different locations. So as I touched on earlier, instead of saying go figure out Kubernetes, how do you upgrade a hundred worker nodes in place upgrade. We've solved that problem. That's what we do every single day of the week. Don't go and try to figure out how to upgrade a cluster and then upgrade all of the, what I call Kubernetes friends, your core DNSs, your metrics server, your Kubernetes dashboard. These are all things that we package, we test, we version. So when you click upgrade, we've already handled that entire process. So it's saying don't have your team focused on that lower level piece of work. Get them focused on what is important, which is your business services. >> Yeah, the infrastructure and getting that stood up. I mean, I think the thing that's interesting, if you look at the market right now, you mentioned cost savings and recovery, obviously kind of a recession. I mean, people are tightening their belts for sure. I don't think the digital transformation and Cloud Native spend is going to plummet. It's going to probably be on hold and be squeezed a little bit. But to your point, people are refactoring looking at how to get the best out of what they got. It's not just open the tap of spend the cash like it used to be. Yeah, a couple months, even a couple years ago. So okay, I get that. But then you look at the what's coming, AI. You're seeing all the new data infrastructure that's coming. The containers, Kubernetes stuff, got to get stood up pretty quickly and it's got to be reliable. So to your point, the teams need to get done with this and move on to the next thing. >> Chris: Yeah, yeah, yeah. >> 'Cause there's more coming. I mean, there's a lot coming for the apps that are building in Data Native, AI-Native, Cloud Native. So it seems that this Kubernetes thing needs to get solved. Is that kind of what you guys are focused on right now? >> So, I mean to use a customer, we have a customer that's in AI/ML and they run their platform at customer sites and that's hardware bound. You can't run AI machine learning on anything anywhere. Well, with Platform9 they can. So we're enabling them to deliver services into their customers that's running their AI/ML platform in their customer's data centers anywhere in the world on hardware that is purpose-built for running that workload. They're not Kubernetes experts. That's what we are. We're bringing them that ability to focus on what's important and just delivering their business services whilst they're enabling our team. And our 24 by seven proactive management are always on assurance to keep that up and running for them. So when something goes bump at the night at 2:00am, our guys get woken up. They're the ones that are reaching out to the customer saying, your environments have a problem, we're taking these actions to fix it. Obviously sometimes, especially if it is running on Bare Metal, there's things you can't do remotely. So you might need someone to go and do that. But even when that happens, you're not by yourself. You're not sitting there like I did when I worked for a bank in one of my first jobs, three o'clock in the morning saying, wow, our end of day processing is stuck. Who else am I waking up? Right? >> Exactly, yeah. Got to get that cash going. But this is a great use case. I want to get to the customer. What do some of the successful customers say to you for the folks watching that aren't yet a customer of Platform9, what are some of the accolades and comments or anecdotes that you guys hear from customers that you have? >> It just works, which I think is probably one of the best ones you can get. Customers coming back and being able to show to their business that they've delivered growth, like business growth and productivity growth and keeping their organization size the same. So we started on our containerization journey. We went to Kubernetes. We've deployed all these new workloads and our operations team is still six people. We're doing way more with growth less, and I think that's also talking to the strength that we're bringing, 'cause we're, we're augmenting that team. They're spending less time on the really low level stuff and automating a lot of the growth activity that's involved. So when it comes to being able to grow their business, they can just focus on that, not- >> Well you guys do the heavy lifting, keep on top of the Kubernetes, make sure that all the versions are all done. Everything's stable and consistent so they can go on and do the build out and provide their services. That seems to be what you guys are best at. >> Correct, correct. >> And so what's on the roadmap? You have the product, direct product management, you get the keys to the kingdom. What is, what is the focus? What's your focus right now? Obviously Kubernetes is growing up, Containers. We've been hearing a lot at the last KubeCon about the security containers is getting better. You've seen verification, a lot more standards around some things. What are you focused on right now for at a product over there? >> Edge is a really big focus for us. And I think in Edge you can look at it in two ways. The mantra that I drive is Edge must be remote. If you can't do something remotely at the Edge, you are using a human being, that's not Edge. Our Edge management capabilities and being in the market for over two years are a hundred percent remote. You want to stand up a store, you just ship the server in there, it gets racked, the rest of it's remote. Imagine a store manager in, I don't know, KFC, just plugging in the server, putting in the ethernet cable, pressing the power button. The rest of all that provisioning for that Cloud Native stack, Kubernetes, KubeVirt for virtualization is done remotely. So we're continuing to focus on that. The next piece that is related to that is allowing people to run Platform9 SaaS in their data centers. So we do ag app today and we've had a really strong focus on telecommunications and the containerized network functions that come along with that. So this next piece is saying, we're bringing what we run as SaaS into your data center, so then you can run it. 'Cause there are many people out there that are saying, we want these capabilities and we want everything that the Platform9 control plane brings and simplifies. But unfortunately, regulatory compliance reasons means that we can't leverage SaaS. So they might be using a cloud, but they're saying that's still our infrastructure. We're still closed that network down, or they're still on-prem. So they're two big priorities for us this year. And that on-premise experiences is paramount, even to the point that we will be delivering a way that when you run an on-premise, you can still say, wait a second, well I can send outbound alerts to Platform9. So their support team can still be proactively helping me as much as they could, even though I'm running Platform9s control plane. So it's sort of giving that blend of two experiences. They're big, they're big priorities. And the third pillar is all around virtualization. It's saying if you have economic pressures, then I think it's important to look at what you're spending today and realistically say, can that be reduced? And I think hypervisors and virtualization is something that should be looked at, because if you can actually reduce that spend, you can bring in some modernization at the same time. Let's take some of those nos that exist that are two years into their five year hardware life cycle. Let's turn that into a Cloud Native environment, which is enabling your modernization in place. It's giving your engineers and application developers the new toys, the new experiences, and then you can start running some of those virtualized workloads with KubeVirt, there. So you're reducing cost and you're modernizing at the same time with your existing infrastructure. >> You know Chris, the topic of this content series that we're doing with you guys is finding the right path, trusting the right path to Cloud Native. What does that mean? I mean, if you had to kind of summarize that phrase, trusting the right path to Cloud Native, what does that mean? It mean in terms of architecture, is it deployment? Is it operations? What's the underlying main theme of that quote? What's the, what's? How would you talk to a customer and say, what does that mean if someone said, "Hey, what does that right path mean?" >> I think the right path means focusing on what you should be focusing on. I know I've said it a hundred times, but if your entire operations team is trying to figure out the nuts and bolts of Kubernetes and getting three months into a journey and discovering, ah, I need Metrics Server to make something function. I want to use Horizontal Pod Autoscaler or Vertical Pod Autoscaler and I need this other thing, now I need to manage that. That's not the right path. That's literally learning what other people have been learning for the last five, seven years that have been focused on Kubernetes solely. So the why- >> There's been a lot of grind. People have been grinding it out. I mean, that's what you're talking about here. They've been standing up the, when Kubernetes started, it was all the promise. >> Chris: Yep. >> And essentially manually kind of getting in in the weeds and configuring it. Now it's matured up. They want stability. >> Chris: Yeah. >> Not everyone can get down and dirty with Kubernetes. It's not something that people want to generally do unless you're totally into it, right? Like I mean, I mean ops teams, I mean, yeah. You know what I mean? It's not like it's heavy lifting. Yeah, it's important. Just got to get it going. >> Yeah, I mean if you're deploying with Platform9, your Ops teams can tinker to their hearts content. We're completely compliant upstream Kubernetes. You can go and change an API server flag, let's go and mess with the scheduler, because we want to. You can still do that, but don't, don't have your team investing in all this time to figure it out. It's been figured out. >> John: Got it. >> Get them focused on enabling velocity for your business. >> So it's not build, but run. >> Chris: Correct? >> Or run Kubernetes, not necessarily figure out how to kind of get it all, consume it out. >> You know we've talked to a lot of customers out there that are saying, "I want to be able to deliver a service to my users." Our response is, "Cool, let us run it. You consume it, therefore deliver it." And we're solving that in one hit versus figuring out how to first run it, then operate it, then turn that into a consumable service. >> So the alternative Platform9 is what? They got to do it themselves or use the Cloud or what's the, what's the alternative for the customer for not using Platform9? Hiring more people to kind of work on it? What's the? >> People, building that kind of PaaS experience? Something that I've been very passionate about for the past year is looking at that world of sort of GitOps and what that means. And if you go out there and you sort of start asking the question what's happening? Just generally with Kubernetes as well and GitOps in that scope, then you'll hear some people saying, well, I'm making it PaaS, because Kubernetes is too complicated for my developers and we need to give them something. There's some great material out there from the likes of Intuit and Adobe where for two big contributors to Argo and the Argo projects, they almost have, well they do have, different experiences. One is saying, we went down the PaaS route and it failed. The other one is saying, well we've built a really stable PaaS and it's working. What are they trying to do? They're trying to deliver an outcome to make it easy to use and consume Kubernetes. So you could go out there and say, hey, I'm going to build a Kubernetes cluster. Sounds like Argo CD is a great way to expose that to my developers so they can use Kubernetes without having to use Kubernetes and start automating things. That is an approach, but you're going to be going completely open source and you're going to have to bring in all the individual components, or you could just lay that, lay it down, and consume it as a service and not have to- >> And mentioned to it. They were the ones who kind of brought that into the open. >> They did. Inuit is the primary contributor to the Argo set of products. >> How has that been received in the market? I mean, they had the event at the Computer History Museum last fall. What's the momentum there? What's the big takeaway from that project? >> Growth. To me, growth. I mean go and track the stars on that one. It's just, it's growth. It's unlocking machine learning. Argo workflows can do more than just make things happen. Argo CD I think the approach they're taking is, hey let's make this simple to use, which I think can be lost. And I think credit where credit's due, they're really pushing to bring in a lot of capabilities to make it easier to work with applications and microservices on Kubernetes. It's not just that, hey, here's a GitOps tool. It can take something from a Git repo and deploy it and maybe prioritize it and help you scale your operations from that perspective. It's taking a step back and saying, well how did we get to production in the first place? And what can be done down there to help as well? I think it's growth expansion of features. They had a huge release just come out in, I think it was 2.6, that brought in things that as a product manager that I don't often look at like really deep technical things and say wow, that's powerful. But they have, they've got some great features in that release that really do solve real problems. >> And as the product, as the product person, who's the target buyer for you? Who's the customer? Who's making that? And you got decision maker, influencer, and recommender. Take us through the customer persona for you guys. >> So that Platform Ops, DevOps space, right, the people that need to be delivering Containers as a service out to their organization. But then it's also important to say, well who else are our primary users? And that's developers, engineers, right? They shouldn't have to say, oh well I have access to a Kubernetes cluster. Do I have to use kubectl or do I need to go find some other tool? No, they can just log to Platform9. It's integrated with your enterprise id. >> They're the end customer at the end of the day, they're the user. >> Yeah, yeah. They can log in. And they can see the clusters you've given them access to as a Platform Ops Administrator. >> So job well done for you guys. And your mind is the developers are moving 'em fast, coding and happy. >> Chris: Yeah, yeah. >> And and from a customer standpoint, you reduce the maintenance cost, because you keep the Ops smoother, so you got efficiency and maintenance costs kind of reduced or is that kind of the benefits? >> Yeah, yep, yeah. And at two o'clock in the morning when things go inevitably wrong, they're not there by themselves, and we're proactively working with them. >> And that's the uptime issue. >> That is the uptime issue. And Cloud doesn't solve that, right? Everyone experienced that Clouds can go down, entire regions can go offline. That's happened to all Cloud providers. And what do you do then? Kubernetes isn't your recovery plan. It's part of it, right, but it's that piece. >> You know Chris, to wrap up this interview, I will say that "theCUBE" is 12 years old now. We've been to OpenStack early days. We had you guys on when we were covering OpenStack and now Cloud has just been booming. You got AI around the corner, AI Ops, now you got all this new data infrastructure, it's just amazing Cloud growth, Cloud Native, Security Native, Cloud Native, Data Native, AI Native. It's going to be all, this is the new app environment, but there's also existing infrastructure. So going back to OpenStack, rolling our own cloud, building your own cloud, building infrastructure cloud, in a cloud way, is what the pioneers have done. I mean this is what we're at. Now we're at this scale next level, abstracted away and make it operational. It seems to be the key focus. We look at CNCF at KubeCon and what they're doing with the cloud SecurityCon, it's all about operations. >> Chris: Yep, right. >> Ops and you know, that's going to sound counterintuitive 'cause it's a developer open source environment, but you're starting to see that Ops focus in a good way. >> Chris: Yeah, yeah, yeah. >> Infrastructure as code way. >> Chris: Yep. >> What's your reaction to that? How would you summarize where we are in the industry relative to, am I getting, am I getting it right there? Is that the right view? What am I missing? What's the current state of the next level, NextGen infrastructure? >> It's a good question. When I think back to sort of late 2019, I sort of had this aha moment as I saw what really truly is delivering infrastructure as code happening at Platform9. There's an open source project Ironic, which is now also available within Kubernetes that is Metal Kubed that automates Bare Metal as code, which means you can go from an empty server, lay down your operating system, lay down Kubernetes, and you've just done everything delivered to your customer as code with a Cloud Native platform. That to me was sort of the biggest realization that I had as I was moving into this industry was, wait, it's there. This can be done. And the evolution of tooling and operations is getting to the point where that can be achieved and it's focused on by a number of different open source projects. Not just Ironic and and Metal Kubed, but that's a huge win. That is truly getting your infrastructure. >> John: That's an inflection point, really. >> Yeah. >> If you think about it, 'cause that's one of the problems. We had with the Bare Metal piece was the automation and also making it Cloud Ops, cloud operations. >> Right, yeah. I mean, one of the things that I think Ironic did really well was saying let's just treat that piece of Bare Metal like a Cloud VM or an instance. If you got a problem with it, just give the person using it or whatever's using it, a new one and reimage it. Just tell it to reimage itself and it'll just (snaps fingers) go. You can do self-service with it. In Platform9, if you log in to our SaaS Ironic, you can go and say, I want that physical server to myself, because I've got a giant workload, or let's turn it into a Kubernetes cluster. That whole thing is automated. To me that's infrastructure as code. I think one of the other important things that's happening at the same time is we're seeing GitOps, we're seeing things like Terraform. I think it's important for organizations to look at what they have and ask, am I using tools that are fit for tomorrow or am I using tools that are yesterday's tools to solve tomorrow's problems? And when especially it comes to modernizing infrastructure as code, I think that's a big piece to look at. >> Do you see Terraform as old or new? >> I see Terraform as old. It's a fantastic tool, capable of many great things and it can work with basically every single provider out there on the planet. It is able to do things. Is it best fit to run in a GitOps methodology? I don't think it is quite at that point. In fact, if you went and looked at Flux, Flux has ways that make Terraform GitOps compliant, which is absolutely fantastic. It's using two tools, the best of breeds, which is solving that tomorrow problem with tomorrow solutions. >> Is the new solutions old versus new. I like this old way, new way. I mean, Terraform is not that old and it's been around for about eight years or so, whatever. But HashiCorp is doing a great job with that. I mean, so okay with Terraform, what's the new address? Is it more complex environments? Because Terraform made sense when you had basic DevOps, but now it sounds like there's a whole another level of complexity. >> I got to say. >> New tools. >> That kind of amalgamation of that application into infrastructure. Now my app team is paying way more attention to that manifest file, which is what GitOps is trying to solve. Let's templatize things. Let's version control our manifest, be it helm, customize, or just a straight up Kubernetes manifest file, plain and boring. Let's get that version controlled. Let's make sure that we know what is there, why it was changed. Let's get some auditability and things like that. And then let's get that deployment all automated. So that's predicated on the cluster existing. Well why can't we do the same thing with the cluster, the inception problem. So even if you're in public cloud, the question is like, well what's calling that API to call that thing to happen? Where is that file living? How well can I manage that in a large team? Oh my God, something just changed. Who changed it? Where is that file? And I think that's one of big, the big pieces to be sold. >> Yeah, and you talk about Edge too and on-premises. I think one of the things I'm observing and certainly when DevOps was rocking and rolling and infrastructures code was like the real push, it was pretty much the public cloud, right? >> Chris: Yep. >> And you did Cloud Native and you had stuff on-premises. Yeah you did some lifting and shifting in the cloud, but the cool stuff was going in the public cloud and you ran DevOps. Okay, now you got on-premise cloud operation and Edge. Is that the new DevOps? I mean 'cause what you're kind of getting at with old new, old new Terraform example is an interesting point, because you're pointing out potentially that that was good DevOps back in the day or it still is. >> Chris: It is, I was going to say. >> But depending on how you define what DevOps is. So if you say, I got the new DevOps with public on-premise and Edge, that's just not all public cloud, that's essentially distributed Cloud Native. >> Correct. Is that the new DevOps in your mind or is that? How would you, or is that oversimplifying it? >> Or is that that term where everyone's saying Platform Ops, right? Has it shifted? >> Well you bring up a good point about Terraform. I mean Terraform is well proven. People love it. It's got great use cases and now there seems to be new things happening. We call things like super cloud emerging, which is multicloud and abstraction layers. So you're starting to see stuff being abstracted away for the benefits of moving to the next level, so teams don't get stuck doing the same old thing. They can move on. Like what you guys are doing with Platform9 is providing a service so that teams don't have to do it. >> Correct, yeah. >> That makes a lot of sense, So you just, now it's running and then they move on to the next thing. >> Chris: Yeah, right. >> So what is that next thing? >> I think Edge is a big part of that next thing. The propensity for someone to put up with a delay, I think it's gone. For some reason, we've all become fairly short-tempered, Short fused. You know, I click the button, it should happen now, type people. And for better or worse, hopefully it gets better and we all become a bit more patient. But how do I get more effective and efficient at delivering that to that really demanding- >> I think you bring up a great point. I mean, it's not just people are getting short-tempered. I think it's more of applications are being deployed faster, security is more exposed if they don't see things quicker. You got data now infrastructure scaling up massively. So, there's a double-edged swords to scale. >> Chris: Yeah, yeah. I mean, maintenance, downtime, uptime, security. So yeah, I think there's a tension around, and one hand enthusiasm around pushing a lot of code and new apps. But is the confidence truly there? It's interesting one little, (snaps finger) supply chain software, look at Container Security for instance. >> Yeah, yeah. It's big. I mean it was codified. >> Do you agree that people, that's kind of an issue right now. >> Yeah, and it was, I mean even the supply chain has been codified by the US federal government saying there's things we need to improve. We don't want to see software being a point of vulnerability, and software includes that whole process of getting it to a running point. >> It's funny you mentioned remote and one of the thing things that you're passionate about, certainly Edge has to be remote. You don't want to roll a truck or labor at the Edge. But I was doing a conversation with, at Rebars last year about space. It's hard to do brake fix on space. It's hard to do a, to roll a someone to configure satellite, right? Right? >> Chris: Yeah. >> So Kubernetes is in space. We're seeing a lot of Cloud Native stuff in apps, in space, so just an example. This highlights the fact that it's got to be automated. Is there a machine learning AI angle with all this ChatGPT talk going on? You see all the AI going the next level. Some pretty cool stuff and it's only, I know it's the beginning, but I've heard people using some of the new machine learning, large language models, large foundational models in areas I've never heard of. Machine learning and data centers, machine learning and configuration management, a lot of different ways. How do you see as the product person, you incorporating the AI piece into the products for Platform9? >> I think that's a lot about looking at the telemetry and the information that we get back and to use one of those like old idle terms, that continuous improvement loop to feed it back in. And I think that's really where machine learning to start with comes into effect. As we run across all these customers, our system that helps at two o'clock in the morning has that telemetry, it's got that data. We can see what's changing and what's happening. So it's writing the right algorithms, creating the right machine learning to- >> So training will work for you guys. You have enough data and the telemetry to do get that training data. >> Yeah, obviously there's a lot of investment required to get there, but that is something that ultimately that could be achieved with what we see in operating people's environments. >> Great. Chris, great to have you here in the studio. Going wide ranging conversation on Kubernetes and Platform9. I guess my final question would be how do you look at the next five years out there? Because you got to run the product management, you got to have that 20 mile steer, you got to look at the customers, you got to look at what's going on in the engineering and you got to kind of have that arc. This is the right path kind of view. What's the five year arc look like for you guys? How do you see this playing out? 'Cause KubeCon is coming up and we're you seeing Kubernetes kind of break away with security? They had, they didn't call it KubeCon Security, they call it CloudNativeSecurityCon, they just had in Seattle inaugural events seemed to go well. So security is kind of breaking out and you got Kubernetes. It's getting bigger. Certainly not going away, but what's your five year arc of of how Platform9 and Kubernetes and Ops evolve? >> It's to stay on that theme, it's focusing on what is most important to our users and getting them to a point where they can just consume it, so they're not having to operate it. So it's finding those big items and bringing that into our platform. It's something that's consumable, that's just taken care of, that's tested with each release. So it's simplifying operations more and more. We've always said freedom in cloud computing. Well we started on, we started on OpenStack and made that simple. Stable, easy, you just have it, it works. We're doing that with Kubernetes. We're expanding out that user, right, we're saying bring your developers in, they can download their Kube conflict. They can see those Containers that are running there. They can access the events, the log files. They can log in and build a VM using KubeVirt. They're self servicing. So it's alleviating pressures off of the Ops team, removing the help desk systems that people still seem to rely on. So it's like what comes into that field that is the next biggest issue? Is it things like CI/CD? Is it simplifying GitOps? Is it bringing in security capabilities to talk to that? Or is that a piece that is a best of breed? Is there a reason that it's been spun out to its own conference? Is this something that deserves a focus that should be a specialized capability instead of tooling and vendors that we work with, that we partner with, that could be brought in as a service. I think it's looking at those trends and making sure that what we bring in has the biggest impact to our users. >> That's awesome. Thanks for coming in. I'll give you the last word. Put a plug in for Platform9 for the people who are watching. What should they know about Platform9 that they might not know about it or what should? When should they call you guys and when should they engage? Take a take a minute to give the plug. >> The plug. I think it's, if your operations team is focused on building Kubernetes, stop. That shouldn't be the cloud. That shouldn't be in the Edge, that shouldn't be at the data center. They should be consuming it. If your engineering teams are all trying different ways and doing different things to use and consume Cloud Native services and Kubernetes, they shouldn't be. You want consistency. That's how you get economies of scale. Provide them with a simple platform that's integrated with all of your enterprise identity where they can just start consuming instead of having to solve these problems themselves. It's those, it's those two personas, right? Where the problems manifest. What are my operations teams doing, and are they delivering to my company or are they building infrastructure again? And are my engineers sprinting or crawling? 'Cause if they're not sprinting, you should be asked the question, do I have the right Cloud Native tooling in my environment and how can I get them back? >> I think it's developer productivity, uptime, security are the tell signs. You get that done. That's the goal of what you guys are doing, your mission. >> Chris: Yep. >> Great to have you on, Chris. Thanks for coming on. Appreciate it. >> Chris: Thanks very much. 0 Okay, this is "theCUBE" here, finding the right path to Cloud Native. I'm John Furrier, host of "theCUBE." Thanks for watching. (upbeat music)
SUMMARY :
And it comes down to operations, And the developers are I need to run my software somewhere. and the infrastructure, What's the goal and then I asked for that in the VM, What's the problem that you guys solve? and configure all of the low level. We're going to be Cloud Native, case or cases that you guys see We've opened that tap all the way, It's going to be interesting too, to your business and let us deliver the teams need to get Is that kind of what you guys are always on assurance to keep that up customers say to you of the best ones you can get. make sure that all the You have the product, and being in the market with you guys is finding the right path, So the why- I mean, that's what kind of getting in in the weeds Just got to get it going. to figure it out. velocity for your business. how to kind of get it all, a service to my users." and GitOps in that scope, of brought that into the open. Inuit is the primary contributor What's the big takeaway from that project? hey let's make this simple to use, And as the product, the people that need to at the end of the day, And they can see the clusters So job well done for you guys. the morning when things And what do you do then? So going back to OpenStack, Ops and you know, is getting to the point John: That's an 'cause that's one of the problems. that physical server to myself, It is able to do things. Terraform is not that the big pieces to be sold. Yeah, and you talk about Is that the new DevOps? I got the new DevOps with Is that the new DevOps Like what you guys are move on to the next thing. at delivering that to I think you bring up a great point. But is the confidence truly there? I mean it was codified. Do you agree that people, I mean even the supply and one of the thing things I know it's the beginning, and the information that we get back the telemetry to do get that could be achieved with what we see and you got to kind of have that arc. that is the next biggest issue? Take a take a minute to give the plug. and are they delivering to my company That's the goal of what Great to have you on, Chris. finding the right path to Cloud Native.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Chris | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Chris Jones | PERSON | 0.99+ |
12 gig | QUANTITY | 0.99+ |
five year | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
two years | QUANTITY | 0.99+ |
six people | QUANTITY | 0.99+ |
two personas | QUANTITY | 0.99+ |
Adobe | ORGANIZATION | 0.99+ |
Java | TITLE | 0.99+ |
three months | QUANTITY | 0.99+ |
20 mile | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Seattle | LOCATION | 0.99+ |
two tools | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
eight cores | QUANTITY | 0.99+ |
KubeCon | EVENT | 0.99+ |
last year | DATE | 0.99+ |
GitOps | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
over two years | QUANTITY | 0.99+ |
HashiCorp | ORGANIZATION | 0.99+ |
Terraform | ORGANIZATION | 0.99+ |
two separate platforms | QUANTITY | 0.99+ |
24 | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
two ways | QUANTITY | 0.98+ |
third alternative | QUANTITY | 0.98+ |
each release | QUANTITY | 0.98+ |
Intuit | ORGANIZATION | 0.98+ |
third pillar | QUANTITY | 0.98+ |
2:00am | DATE | 0.98+ |
first jobs | QUANTITY | 0.98+ |
Mobile World Congress | EVENT | 0.98+ |
Cloud Native | TITLE | 0.98+ |
this year | DATE | 0.98+ |
late 2019 | DATE | 0.98+ |
Platform9 | TITLE | 0.98+ |
one environment | QUANTITY | 0.98+ |
last fall | DATE | 0.97+ |
Kubernetes | TITLE | 0.97+ |
yesterday | DATE | 0.97+ |
two experiences | QUANTITY | 0.97+ |
about eight years | QUANTITY | 0.97+ |
DevSecOps | TITLE | 0.97+ |
Git | TITLE | 0.97+ |
Flux | ORGANIZATION | 0.96+ |
CNCF | ORGANIZATION | 0.96+ |
two big contributors | QUANTITY | 0.96+ |
Cloud Native | TITLE | 0.96+ |
DevOps | TITLE | 0.96+ |
Rebars | ORGANIZATION | 0.95+ |
Ed Walsh & Thomas Hazel | A New Database Architecture for Supercloud
(bright music) >> Hi, everybody, this is Dave Vellante, welcome back to Supercloud 2. Last August, at the first Supercloud event, we invited the broader community to help further define Supercloud, we assessed its viability, and identified the critical elements and deployment models of the concept. The objectives here at Supercloud too are, first of all, to continue to tighten and test the concept, the second is, we want to get real world input from practitioners on the problems that they're facing and the viability of Supercloud in terms of applying it to their business. So on the program, we got companies like Walmart, Sachs, Western Union, Ionis Pharmaceuticals, NASDAQ, and others. And the third thing that we want to do is we want to drill into the intersection of cloud and data to project what the future looks like in the context of Supercloud. So in this segment, we want to explore the concept of data architectures and what's going to be required for Supercloud. And I'm pleased to welcome one of our Supercloud sponsors, ChaosSearch, Ed Walsh is the CEO of the company, with Thomas Hazel, who's the Founder, CTO, and Chief Scientist. Guys, good to see you again, thanks for coming into our Marlborough studio. >> Always great. >> Great to be here. >> Okay, so there's a little debate, I'm going to put you right in the spot. (Ed chuckling) A little debate going on in the community started by Bob Muglia, a former CEO of Snowflake, and he was at Microsoft for a long time, and he looked at the Supercloud definition, said, "I think you need to tighten it up a little bit." So, here's what he came up with. He said, "A Supercloud is a platform that provides a programmatically consistent set of services hosted on heterogeneous cloud providers." So he's calling it a platform, not an architecture, which was kind of interesting. And so presumably the platform owner is going to be responsible for the architecture, but Dr. Nelu Mihai, who's a computer scientist behind the Cloud of Clouds Project, he chimed in and responded with the following. He said, "Cloud is a programming paradigm supporting the entire lifecycle of applications with data and logic natively distributed. Supercloud is an open architecture that integrates heterogeneous clouds in an agnostic manner." So, Ed, words matter. Is this an architecture or is it a platform? >> Put us on the spot. So, I'm sure you have concepts, I would say it's an architectural or design principle. Listen, I look at Supercloud as a mega trend, just like cloud, just like data analytics. And some companies are using the principle, design principles, to literally get dramatically ahead of everyone else. I mean, things you couldn't possibly do if you didn't use cloud principles, right? So I think it's a Supercloud effect, you're able to do things you're not able to. So I think it's more a design principle, but if you do it right, you get dramatic effect as far as customer value. >> So the conversation that we were having with Muglia, and Tristan Handy of dbt Labs, was, I'll set it up as the following, and, Thomas, would love to get your thoughts, if you have a CRM, think about applications today, it's all about forms and codifying business processes, you type a bunch of stuff into Salesforce, and all the salespeople do it, and this machine generates a forecast. What if you have this new type of data app that pulls data from the transaction system, the e-commerce, the supply chain, the partner ecosystem, et cetera, and then, without humans, actually comes up with a plan. That's their vision. And Muglia was saying, in order to do that, you need to rethink data architectures and database architectures specifically, you need to get down to the level of how the data is stored on the disc. What are your thoughts on that? Well, first of all, I'm going to cop out, I think it's actually both. I do think it's a design principle, I think it's not open technology, but open APIs, open access, and you can build a platform on that design principle architecture. Now, I'm a database person, I love solving the database problems. >> I'm waited for you to launch into this. >> Yeah, so I mean, you know, Snowflake is a database, right? It's a distributed database. And we wanted to crack those codes, because, multi-region, multi-cloud, customers wanted access to their data, and their data is in a variety of forms, all these services that you're talked about. And so what I saw as a core principle was cloud object storage, everyone streams their data to cloud object storage. From there we said, well, how about we rethink database architecture, rethink file format, so that we can take each one of these services and bring them together, whether distributively or centrally, such that customers can access and get answers, whether it's operational data, whether it's business data, AKA search, or SQL, complex distributed joins. But we had to rethink the architecture. I like to say we're not a first generation, or a second, we're a third generation distributed database on pure, pure cloud storage, no caching, no SSDs. Why? Because all that availability, the cost of time, is a struggle, and cloud object storage, we think, is the answer. >> So when you're saying no caching, so when I think about how companies are solving some, you know, pretty hairy problems, take MySQL Heatwave, everybody thought Oracle was going to just forget about MySQL, well, they come out with Heatwave. And the way they solve problems, and you see their benchmarks against Amazon, "Oh, we crush everybody," is they put it all in memory. So you said no caching? You're not getting performance through caching? How is that true, and how are you getting performance? >> Well, so five, six years ago, right? When you realize that cloud object storage is going to be everywhere, and it's going to be a core foundational, if you will, fabric, what would you do? Well, a lot of times the second generation say, "We'll take it out of cloud storage, put in SSDs or something, and put into cache." And that adds a lot of time, adds a lot of costs. But I said, what if, what if we could actually make the first read hot, the first read distributed joins and searching? And so what we went out to do was said, we can't cache, because that's adds time, that adds cost. We have to make cloud object storage high performance, like it feels like a caching SSD. That's where our patents are, that's where our technology is, and we've spent many years working towards this. So, to me, if you can crack that code, a lot of these issues we're talking about, multi-region, multicloud, different services, everybody wants to send their data to the data lake, but then they move it out, we said, "Keep it right there." >> You nailed it, the data gravity. So, Bob's right, the data's coming in, and you need to get the data from everywhere, but you need an environment that you can deal with all that different schema, all the different type of technology, but also at scale. Bob's right, you cannot use memory or SSDs to cache that, that doesn't scale, it doesn't scale cost effectively. But if you could, and what you did, is you made object storage, S3 first, but object storage, the only persistence by doing that. And then we get performance, we should talk about it, it's literally, you know, hundreds of terabytes of queries, and it's done in seconds, it's done without memory caching. We have concepts of caching, but the only caching, the only persistence, is actually when we're doing caching, we're just keeping another side-eye track of things on the S3 itself. So we're using, actually, the object storage to be a database, which is kind of where Bob was saying, we agree, but that's what you started at, people thought you were crazy. >> And maybe make it live. Don't think of it as archival or temporary space, make it live, real time streaming, operational data. What we do is make it smart, we see the data coming in, we uniquely index it such that you can get your use cases, that are search, observability, security, or backend operational. But we don't have to have this, I dunno, static, fixed, siloed type of architecture technologies that were traditionally built prior to Supercloud thinking. >> And you don't have to move everything, essentially, you can do it wherever the data lands, whatever cloud across the globe, you're able to bring it together, you get the cost effectiveness, because the only persistence is the cheapest storage persistent layer you can buy. But the key thing is you cracked the code. >> We had to crack the code, right? That was the key thing. >> That's where the plans are. >> And then once you do that, then everything else gets easier to scale, your architecture, across regions, across cloud. >> Now, it's a general purpose database, as Bob was saying, but we use that database to solve a particular issue, which is around operational data, right? So, we agree with Bob's. >> Interesting. So this brings me to this concept of data, Jimata Gan is one of our speakers, you know, we talk about data fabric, which is a NetApp, originally NetApp concept, Gartner's kind of co-opted it. But so, the basic concept is, data lives everywhere, whether it's an S3 bucket, or a SQL database, or a data lake, it's just a node on the data mesh. So in your view, how does this fit in with Supercloud? Ed, you've said that you've built, essentially, an enabler for that, for the data mesh, I think you're an enabler for the Supercloud-like principles. This is a big, chewy opportunity, and it requires, you know, a team approach. There's got to be an ecosystem, there's not going to be one Supercloud to rule them all, so where does the ecosystem fit into the discussion, and where do you fit into the ecosystem? >> Right, so we agree completely, there's not one Supercloud in effect, but we use Supercloud principles to build our platform, and then, you know, the ecosystem's going to be built on leveraging what everyone else's secret powers are, right? So our power, our superpower, based upon what we built is, we deal with, if you're having any scale, or cost effective scale issues, with data, machine generated data, like business observability or security data, we are your force multiplier, we will take that in singularly, just let it, simply put it in your object storage wherever it sits, and we give you uniformity access to that using OpenAPI access, SQL, or you know, Elasticsearch API. So, that's what we do, that's our superpower. So I'll play it into data mesh, that's a perfect, we are a node on a data mesh, but I'll play it in the soup about how, the ecosystem, we see it kind of playing, and we talked about it in just in the last couple days, how we see this kind of possibly. Short term, our superpowers, we deal with this data that's coming at these environments, people, customers, building out observability or security environments, or vendors that are selling their own Supercloud, I do observability, the Datadogs of the world, dot dot dot, the Splunks of the world, dot dot dot, and security. So what we do is we fit in naturally. What we do is a cost effective scale, just land it anywhere in the world, we deal with ingest, and it's a cost effective, an order of magnitude, or two or three order magnitudes more cost effective. Allows them, their customers are asking them to do the impossible, "Give me fast monitoring alerting. I want it snappy, but I want it to keep two years of data, (laughs) and I want it cost effective." It doesn't work. They're good at the fast monitoring alerting, we're good at the long-term retention. And yet there's some gray area between those two, but one to one is actually cheaper, so we would partner. So the first ecosystem plays, who wants to have the ability to, really, all the data's in those same environments, the security observability players, they can literally, just through API, drag our data into their point to grab. We can make it seamless for customers. Right now, we make it helpful to customers. Your Datadog, we make a button, easy go from Datadog to us for logs, save you money. Same thing with Grafana. But you can also look at ecosystem, those same vendors, it used to be a year ago it was, you know, its all about how can you grow, like it's growth at all costs, now it's about cogs. So literally we can go an environment, you supply what your customer wants, but we can help with cogs. And one-on one in a partnership is better than you trying to build on your own. >> Thomas, you were saying you make the first read fast, so you think about Snowflake. Everybody wants to talk about Snowflake and Databricks. So, Snowflake, great, but you got to get the data in there. All right, so that's, can you help with that problem? >> I mean we want simple in, right? And if you have to have structure in, you're not simple. So the idea that you have a simple in, data lake, schema read type philosophy, but schema right type performance. And so what I wanted to do, what we have done, is have that simple lake, and stream that data real time, and those access points of Search or SQL, to go after whatever business case you need, security observability, warehouse integration. But the key thing is, how do I make that click, click, click answer, and do it quickly? And so what we want to do is, that first read has to be fast. Why? 'Cause then you're going to do all this siloing, layers, complexity. If your first read's not fast, you're at a disadvantage, particularly in cost. And nobody says I want less data, but everyone has to, whether they say we're going to shorten the window, we're going to use AI to choose, but in a security moment, when you don't have that answer, you're in trouble. And that's why we are this service, this Supercloud service, if you will, providing access, well-known search, well-known SQL type access, that if you just have one access point, you're at a disadvantage. >> We actually talked about Snowflake and BigQuery, and a different platform, Data Bricks. That's kind of where we see the phase two of ecosystem. One is easy, the low-hanging fruit is observability and security firms. But the next one is, what we do, our super power is dealing with this messy data that schema is changing like night and day. Pipelines are tough, and it's changing all the time, but you want these things fast, and it's big data around the world. That's the next point, just use us alongside, or inside, one of their platforms, and now we get the best of both worlds. Our superpower is keeping this messy data as a streaming, okay, not a batch thing, allow you to do that. So, that's the second one. And then to be honest, the third one, which plays you to Supercloud, it also plays perfectly in the data mesh, is if you really go to the ultimate thing, what we have done is made object storage, S3, GCS, and blob storage, we made it a database. Put, get, complex query with big joins. You know, so back to your original thing, and Muglia teed it up perfectly, we've done that. Now imagine if that's an ecosystem, who would want that? If it's, again, it's uniform available across all the regions, across all the clouds, and it's right next to where you are building a service, or a client's trying, that's where the ecosystem, I think people are going to use Superclouds for their superpowers. We're really good at this, allows that short term. I think the Snowflakes and the Data Bricks are the medium term, you know? And then I think eventually gets to, hey, listen if you can make object storage fast, you can just go after it with simple SQL queries, or elastic. Who would want that? I think that's where people are going to leverage it. It's not going to be one Supercloud, and we leverage the super clouds. >> Our viewpoint is smart object storage can be programmable, and so we agree with Bob, but we're not saying do it here, do it here. This core, fundamental layer across regions, across clouds, that everyone has? Simple in. Right now, it's hard to get data in for access for analysis. So we said, simply, we'll automate the entire process, give you API access across regions, across clouds. And again, how do you do a distributed join that's fast? How do you do a distributed join that doesn't cost you an arm or a leg? And how do you do it at scale? And that's where we've been focused. >> So prior, the cloud object store was a niche. >> Yeah. >> S3 obviously changed that. How standard is, essentially, object store across the different cloud platforms? Is that a problem for you? Is that an easy thing to solve? >> Well, let's talk about it. I mean we've fundamentally, yeah we've extracted it, but fundamentally, cloud object storage, put, get, and list. That's why it's so scalable, 'cause it doesn't have all these other components. That complexity is where we have moved up, and provide direct analytical API access. So because of its simplicity, and costs, and security, and reliability, it can scale naturally. I mean, really, distributed object storage is easy, it's put-get anywhere, now what we've done is we put a layer of intelligence, you know, call it smart object storage, where access is simple. So whether it's multi-region, do a query across, or multicloud, do a query across, or hunting, searching. >> We've had clients doing Amazon and Google, we have some Azure, but we see Amazon and Google more, and it's a consistent service across all of them. Just literally put your data in the bucket of choice, or folder of choice, click a couple buttons, literally click that to say "that's hot," and after that, it's hot, you can see it. But we're not moving data, the data gravity issue, that's the other. That it's already natively flowing to these pools of object storage across different regions and clouds. We don't move it, we index it right there, we're spinning up stateless compute, back to the Supercloud concept. But now that allows us to do all these other things, right? >> And it's no longer just cheap and deep object storage. Right? >> Yeah, we make it the same, like you have an analytic platform regardless of where you're at, you don't have to worry about that. Yeah, we deal with that, we deal with a stateless compute coming up -- >> And make it programmable. Be able to say, "I want this bucket to provide these answers." Right, that's really the hope, the vision. And the complexity to build the entire stack, and then connect them together, we said, the fabric is cloud storage, we just provide the intelligence on top. >> Let's bring it back to the customers, and one of the things we're exploring in Supercloud too is, you know, is Supercloud a solution looking for a problem? Is a multicloud really a problem? I mean, you hear, you know, a lot of the vendor marketing says, "Oh, it's a disaster, because it's all different across the clouds." And I talked to a lot of customers even as part of Supercloud too, they're like, "Well, I solved that problem by just going mono cloud." Well, but then you're not able to take advantage of a lot of the capabilities and the primitives that, you know, like Google's data, or you like Microsoft's simplicity, their RPA, whatever it is. So what are customers telling you, what are their near term problems that they're trying to solve today, and how are they thinking about the future? >> Listen, it's a real problem. I think it started, I think this is a a mega trend, just like cloud. Just, cloud data, and I always add, analytics, are the mega trends. If you're looking at those, if you're not considering using the Supercloud principles, in other words, leveraging what I have, abstracting it out, and getting the most out of that, and then build value on top, I think you're not going to be able to keep up, In fact, no way you're going to keep up with this data volume. It's a geometric challenge, and you're trying to do linear things. So clients aren't necessarily asking, hey, for Supercloud, but they're really saying, I need to have a better mechanism to simplify this and get value across it, and how do you abstract that out to do that? And that's where they're obviously, our conversations are more amazed what we're able to do, and what they're able to do with our platform, because if you think of what we've done, the S3, or GCS, or object storage, is they can't imagine the ingest, they can't imagine how easy, time to glass, one minute, no matter where it lands in the world, querying this in seconds for hundreds of terabytes squared. People are amazed, but that's kind of, so they're not asking for that, but they are amazed. And then when you start talking on it, if you're an enterprise person, you're building a big cloud data platform, or doing data or analytics, if you're not trying to leverage the public clouds, and somehow leverage all of them, and then build on top, then I think you're missing it. So they might not be asking for it, but they're doing it. >> And they're looking for a lens, you mentioned all these different services, how do I bring those together quickly? You know, our viewpoint, our service, is I have all these streams of data, create a lens where they want to go after it via search, go after via SQL, bring them together instantly, no e-tailing out, no define this table, put into this database. We said, let's have a service that creates a lens across all these streams, and then make those connections. I want to take my CRM with my Google AdWords, and maybe my Salesforce, how do I do analysis? Maybe I want to hunt first, maybe I want to join, maybe I want to add another stream to it. And so our viewpoint is, it's so natural to get into these lake platforms and then provide lenses to get that access. >> And they don't want it separate, they don't want something different here, and different there. They want it basically -- >> So this is our industry, right? If something new comes out, remember virtualization came out, "Oh my God, this is so great, it's going to solve all these problems." And all of a sudden it just got to be this big, more complex thing. Same thing with cloud, you know? It started out with S3, and then EC2, and now hundreds and hundreds of different services. So, it's a complex matter for a lot of people, and this creates problems for customers, especially when you got divisions that are using different clouds, and you're saying that the solution, or a solution for the part of the problem, is to really allow the data to stay in place on S3, use that standard, super simple, but then give it what, Ed, you've called superpower a couple of times, to make it fast, make it inexpensive, and allow you to do that across clouds. >> Yeah, yeah. >> I'll give you guys the last word on that. >> No, listen, I think, we think Supercloud allows you to do a lot more. And for us, data, everyone says more data, more problems, more budget issue, everyone knows more data is better, and we show you how to do it cost effectively at scale. And we couldn't have done it without the design principles of we're leveraging the Supercloud to get capabilities, and because we use super, just the object storage, we're able to get these capabilities of ingest, scale, cost effectiveness, and then we built on top of this. In the end, a database is a data platform that allows you to go after everything distributed, and to get one platform for analytics, no matter where it lands, that's where we think the Supercloud concepts are perfect, that's where our clients are seeing it, and we're kind of excited about it. >> Yeah a third generation database, Supercloud database, however we want to phrase it, and make it simple, but provide the value, and make it instant. >> Guys, thanks so much for coming into the studio today, I really thank you for your support of theCUBE, and theCUBE community, it allows us to provide events like this and free content. I really appreciate it. >> Oh, thank you. >> Thank you. >> All right, this is Dave Vellante for John Furrier in theCUBE community, thanks for being with us today. You're watching Supercloud 2, keep it right there for more thought provoking discussions around the future of cloud and data. (bright music)
SUMMARY :
And the third thing that we want to do I'm going to put you right but if you do it right, So the conversation that we were having I like to say we're not a and you see their So, to me, if you can crack that code, and you need to get the you can get your use cases, But the key thing is you cracked the code. We had to crack the code, right? And then once you do that, So, we agree with Bob's. and where do you fit into the ecosystem? and we give you uniformity access to that so you think about Snowflake. So the idea that you have are the medium term, you know? and so we agree with Bob, So prior, the cloud that an easy thing to solve? you know, call it smart object storage, and after that, it's hot, you can see it. And it's no longer just you don't have to worry about And the complexity to and one of the things we're and how do you abstract it's so natural to get and different there. and allow you to do that across clouds. I'll give you guys and we show you how to do it but provide the value, I really thank you for around the future of cloud and data.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Walmart | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
NASDAQ | ORGANIZATION | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Thomas | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
Ionis Pharmaceuticals | ORGANIZATION | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
Ed Walsh | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
Sachs | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
two years | QUANTITY | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
first | QUANTITY | 0.99+ |
Last August | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
dbt Labs | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Ed | PERSON | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Jimata Gan | PERSON | 0.99+ |
third one | QUANTITY | 0.99+ |
one minute | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first generation | QUANTITY | 0.99+ |
third generation | QUANTITY | 0.99+ |
Grafana | ORGANIZATION | 0.99+ |
second generation | QUANTITY | 0.99+ |
second one | QUANTITY | 0.99+ |
hundreds of terabytes | QUANTITY | 0.98+ |
SQL | TITLE | 0.98+ |
five | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
Databricks | ORGANIZATION | 0.98+ |
a year ago | DATE | 0.98+ |
ChaosSearch | ORGANIZATION | 0.98+ |
Muglia | PERSON | 0.98+ |
MySQL | TITLE | 0.98+ |
both worlds | QUANTITY | 0.98+ |
third thing | QUANTITY | 0.97+ |
Marlborough | LOCATION | 0.97+ |
theCUBE | ORGANIZATION | 0.97+ |
today | DATE | 0.97+ |
Supercloud | ORGANIZATION | 0.97+ |
Elasticsearch | TITLE | 0.96+ |
NetApp | TITLE | 0.96+ |
Datadog | ORGANIZATION | 0.96+ |
One | QUANTITY | 0.96+ |
EC2 | TITLE | 0.96+ |
each one | QUANTITY | 0.96+ |
S3 | TITLE | 0.96+ |
one platform | QUANTITY | 0.95+ |
Supercloud 2 | EVENT | 0.95+ |
first read | QUANTITY | 0.95+ |
six years ago | DATE | 0.95+ |
Jack Greenfield, Walmart | A Dive into Walmart's Retail Supercloud
>> Welcome back to SuperCloud2. This is Dave Vellante, and we're here with Jack Greenfield. He's the Vice President of Enterprise Architecture and the Chief Architect for the global technology platform at Walmart. Jack, I want to thank you for coming on the program. Really appreciate your time. >> Glad to be here, Dave. Thanks for inviting me and appreciate the opportunity to chat with you. >> Yeah, it's our pleasure. Now we call what you've built a SuperCloud. That's our term, not yours, but how would you describe the Walmart Cloud Native Platform? >> So WCNP, as the acronym goes, is essentially an implementation of Kubernetes for the Walmart ecosystem. And what that means is that we've taken Kubernetes off the shelf as open source, and we have integrated it with a number of foundational services that provide other aspects of our computational environment. So Kubernetes off the shelf doesn't do everything. It does a lot. In particular the orchestration of containers, but it delegates through API a lot of key functions. So for example, secret management, traffic management, there's a need for telemetry and observability at a scale beyond what you get from raw Kubernetes. That is to say, harvesting the metrics that are coming out of Kubernetes and processing them, storing them in time series databases, dashboarding them, and so on. There's also an angle to Kubernetes that gets a lot of attention in the daily DevOps routine, that's not really part of the open source deliverable itself, and that is the DevOps sort of CICD pipeline-oriented lifecycle. And that is something else that we've added and integrated nicely. And then one more piece of this picture is that within a Kubernetes cluster, there's a function that is critical to allowing services to discover each other and integrate with each other securely and with proper configuration provided by the concept of a service mesh. So Istio, Linkerd, these are examples of service mesh technologies. And we have gone ahead and integrated actually those two. There's more than those two, but we've integrated those two with Kubernetes. So the net effect is that when a developer within Walmart is going to build an application, they don't have to think about all those other capabilities where they come from or how they're provided. Those are already present, and the way the CICD pipelines are set up, it's already sort of in the picture, and there are configuration points that they can take advantage of in the primary YAML and a couple of other pieces of config that we supply where they can tune it. But at the end of the day, it offloads an awful lot of work for them, having to stand up and operate those services, fail them over properly, and make them robust. All of that's provided for. >> Yeah, you know, developers often complain they spend too much time wrangling and doing things that aren't productive. So I wonder if you could talk about the high level business goals of the initiative in terms of the hardcore benefits. Was the real impetus to tap into best of breed cloud services? Were you trying to cut costs? Maybe gain negotiating leverage with the cloud guys? Resiliency, you know, I know was a major theme. Maybe you could give us a sense of kind of the anatomy of the decision making process that went in. >> Sure, and in the course of answering your question, I think I'm going to introduce the concept of our triplet architecture which we haven't yet touched on in the interview here. First off, just to sort of wrap up the motivation for WCNP itself which is kind of orthogonal to the triplet architecture. It can exist with or without it. Currently does exist with it, which is key, and I'll get to that in a moment. The key drivers, business drivers for WCNP were developer productivity by offloading the kinds of concerns that we've just discussed. Number two, improving resiliency, that is to say reducing opportunity for human error. One of the challenges you tend to run into in a large enterprise is what we call snowflakes, lots of gratuitously different workloads, projects, configurations to the extent that by developing and using WCNP and continuing to evolve it as we have, we end up with cookie cutter like consistency across our workloads which is super valuable when it comes to building tools or building services to automate operations that would otherwise be manual. When everything is pretty much done the same way, that becomes much simpler. Another key motivation for WCNP was the ability to abstract from the underlying cloud provider. And this is going to lead to a discussion of our triplet architecture. At the end of the day, when one works directly with an underlying cloud provider, one ends up taking a lot of dependencies on that particular cloud provider. Those dependencies can be valuable. For example, there are best of breed services like say Cloud Spanner offered by Google or say Cosmos DB offered by Microsoft that one wants to use and one is willing to take the dependency on the cloud provider to get that functionality because it's unique and valuable. On the other hand, one doesn't want to take dependencies on a cloud provider that don't add a lot of value. And with Kubernetes, we have the opportunity, and this is a large part of how Kubernetes was designed and why it is the way it is, we have the opportunity to sort of abstract from the underlying cloud provider for stateless workloads on compute. And so what this lets us do is build container-based applications that can run without change on different cloud provider infrastructure. So the same applications can run on WCNP over Azure, WCNP over GCP, or WCNP over the Walmart private cloud. And we have a private cloud. Our private cloud is OpenStack based and it gives us some significant cost advantages as well as control advantages. So to your point, in terms of business motivation, there's a key cost driver here, which is that we can use our own private cloud when it's advantageous and then use the public cloud provider capabilities when we need to. A key place with this comes into play is with elasticity. So while the private cloud is much more cost effective for us to run and use, it isn't as elastic as what the cloud providers offer, right? We don't have essentially unlimited scale. We have large scale, but the public cloud providers are elastic in the extreme which is a very powerful capability. So what we're able to do is burst, and we use this term bursting workloads into the public cloud from the private cloud to take advantage of the elasticity they offer and then fall back into the private cloud when the traffic load diminishes to the point where we don't need that elastic capability, elastic capacity at low cost. And this is a very important paradigm that I think is going to be very commonplace ultimately as the industry evolves. Private cloud is easier to operate and less expensive, and yet the public cloud provider capabilities are difficult to match. >> And the triplet, the tri is your on-prem private cloud and the two public clouds that you mentioned, is that right? >> That is correct. And we actually have an architecture in which we operate all three of those cloud platforms in close proximity with one another in three different major regions in the US. So we have east, west, and central. And in each of those regions, we have all three cloud providers. And the way it's configured, those data centers are within 10 milliseconds of each other, meaning that it's of negligible cost to interact between them. And this allows us to be fairly agnostic to where a particular workload is running. >> Does a human make that decision, Jack or is there some intelligence in the system that determines that? >> That's a really great question, Dave. And it's a great question because we're at the cusp of that transition. So currently humans make that decision. Humans choose to deploy workloads into a particular region and a particular provider within that region. That said, we're actively developing patterns and practices that will allow us to automate the placement of the workloads for a variety of criteria. For example, if in a particular region, a particular provider is heavily overloaded and is unable to provide the level of service that's expected through our SLAs, we could choose to fail workloads over from that cloud provider to a different one within the same region. But that's manual today. We do that, but people do it. Okay, we'd like to get to where that happens automatically. In the same way, we'd like to be able to automate the failovers, both for high availability and sort of the heavier disaster recovery model between, within a region between providers and even within a provider between the availability zones that are there, but also between regions for the sort of heavier disaster recovery or maintenance driven realignment of workload placement. Today, that's all manual. So we have people moving workloads from region A to region B or data center A to data center B. It's clean because of the abstraction. The workloads don't have to know or care, but there are latency considerations that come into play, and the humans have to be cognizant of those. And automating that can help ensure that we get the best performance and the best reliability. >> But you're developing the dataset to actually, I would imagine, be able to make those decisions in an automated fashion over time anyway. Is that a fair assumption? >> It is, and that's what we're actively developing right now. So if you were to look at us today, we have these nice abstractions and APIs in place, but people run that machine, if you will, moving toward a world where that machine is fully automated. >> What exactly are you abstracting? Is it sort of the deployment model or, you know, are you able to abstract, I'm just making this up like Azure functions and GCP functions so that you can sort of run them, you know, with a consistent experience. What exactly are you abstracting and how difficult was it to achieve that objective technically? >> that's a good question. What we're abstracting is the Kubernetes node construct. That is to say a cluster of Kubernetes nodes which are typically VMs, although they can run bare metal in certain contexts, is something that typically to stand up requires knowledge of the underlying cloud provider. So for example, with GCP, you would use GKE to set up a Kubernetes cluster, and in Azure, you'd use AKS. We are actually abstracting that aspect of things so that the developers standing up applications don't have to know what the underlying cluster management provider is. They don't have to know if it's GCP, AKS or our own Walmart private cloud. Now, in terms of functions like Azure functions that you've mentioned there, we haven't done that yet. That's another piece that we have sort of on our radar screen that, we'd like to get to is serverless approach, and the Knative work from Google and the Azure functions, those are things that we see good opportunity to use for a whole variety of use cases. But right now we're not doing much with that. We're strictly container based right now, and we do have some VMs that are running in sort of more of a traditional model. So our stateful workloads are primarily VM based, but for serverless, that's an opportunity for us to take some of these stateless workloads and turn them into cloud functions. >> Well, and that's another cost lever that you can pull down the road that's going to drop right to the bottom line. Do you see a day or maybe you're doing it today, but I'd be surprised, but where you build applications that actually span multiple clouds or is there, in your view, always going to be a direct one-to-one mapping between where an application runs and the specific cloud platform? >> That's a really great question. Well, yes and no. So today, application development teams choose a cloud provider to deploy to and a location to deploy to, and they have to get involved in moving an application like we talked about today. That said, the bursting capability that I mentioned previously is something that is a step in the direction of automatic migration. That is to say we're migrating workload to different locations automatically. Currently, the prototypes we've been developing and that we think are going to eventually make their way into production are leveraging Istio to assess the load incoming on a particular cluster and start shedding that load into a different location. Right now, the configuration of that is still manual, but there's another opportunity for automation there. And I think a key piece of this is that down the road, well, that's a, sort of a small step in the direction of an application being multi provider. We expect to see really an abstraction of the fact that there is a triplet even. So the workloads are moving around according to whatever the control plane decides is necessary based on a whole variety of inputs. And at that point, you will have true multi-cloud applications, applications that are distributed across the different providers and in a way that application developers don't have to think about. >> So Walmart's been a leader, Jack, in using data for competitive advantages for decades. It's kind of been a poster child for that. You've got a mountain of IP in the form of data, tools, applications best practices that until the cloud came out was all On Prem. But I'm really interested in this idea of building a Walmart ecosystem, which obviously you have. Do you see a day or maybe you're even doing it today where you take what we call the Walmart SuperCloud, WCNP in your words, and point or turn that toward an external world or your ecosystem, you know, supporting those partners or customers that could drive new revenue streams, you know directly from the platform? >> Great questions, Dave. So there's really two things to say here. The first is that with respect to data, our data workloads are primarily VM basis. I've mentioned before some VMware, some straight open stack. But the key here is that WCNP and Kubernetes are very powerful for stateless workloads, but for stateful workloads tend to be still climbing a bit of a growth curve in the industry. So our data workloads are not primarily based on WCNP. They're VM based. Now that said, there is opportunity to make some progress there, and we are looking at ways to move things into containers that are currently running in VMs which are stateful. The other question you asked is related to how we expose data to third parties and also functionality. Right now we do have in-house, for our own use, a very robust data architecture, and we have followed the sort of domain-oriented data architecture guidance from Martin Fowler. And we have data lakes in which we collect data from all the transactional systems and which we can then use and do use to build models which are then used in our applications. But right now we're not exposing the data directly to customers as a product. That's an interesting direction that's been talked about and may happen at some point, but right now that's internal. What we are exposing to customers is applications. So we're offering our global integrated fulfillment capabilities, our order picking and curbside pickup capabilities, and our cloud powered checkout capabilities to third parties. And this means we're standing up our own internal applications as externally facing SaaS applications which can serve our partners' customers. >> Yeah, of course, Martin Fowler really first introduced to the world Zhamak Dehghani's data mesh concept and this whole idea of data products and domain oriented thinking. Zhamak Dehghani, by the way, is a speaker at our event as well. Last question I had is edge, and how you think about the edge? You know, the stores are an edge. Are you putting resources there that sort of mirror this this triplet model? Or is it better to consolidate things in the cloud? I know there are trade-offs in terms of latency. How are you thinking about that? >> All really good questions. It's a challenging area as you can imagine because edges are subject to disconnection, right? Or reduced connection. So we do place the same architecture at the edge. So WCNP runs at the edge, and an application that's designed to run at WCNP can run at the edge. That said, there are a number of very specific considerations that come up when running at the edge, such as the possibility of disconnection or degraded connectivity. And so one of the challenges we have faced and have grappled with and done a good job of I think is dealing with the fact that applications go offline and come back online and have to reconnect and resynchronize, the sort of online offline capability is something that can be quite challenging. And we have a couple of application architectures that sort of form the two core sets of patterns that we use. One is an offline/online synchronization architecture where we discover that we've come back online, and we understand the differences between the online dataset and the offline dataset and how they have to be reconciled. The other is a message-based architecture. And here in our health and wellness domain, we've developed applications that are queue based. So they're essentially business processes that consist of multiple steps where each step has its own queue. And what that allows us to do is devote whatever bandwidth we do have to those pieces of the process that are most latency sensitive and allow the queue lengths to increase in parts of the process that are not latency sensitive, knowing that they will eventually catch up when the bandwidth is restored. And to put that in a little bit of context, we have fiber lengths to all of our locations, and we have I'll just use a round number, 10-ish thousand locations. It's larger than that, but that's the ballpark, and we have fiber to all of them, but when the fiber is disconnected, When the disconnection happens, we're able to fall back to 5G and to Starlink. Starlink is preferred. It's a higher bandwidth. 5G if that fails. But in each of those cases, the bandwidth drops significantly. And so the applications have to be intelligent about throttling back the traffic that isn't essential, so that it can push the essential traffic in those lower bandwidth scenarios. >> So much technology to support this amazing business which started in the early 1960s. Jack, unfortunately, we're out of time. I would love to have you back or some members of your team and drill into how you're using open source, but really thank you so much for explaining the approach that you've taken and participating in SuperCloud2. >> You're very welcome, Dave, and we're happy to come back and talk about other aspects of what we do. For example, we could talk more about the data lakes and the data mesh that we have in place. We could talk more about the directions we might go with serverless. So please look us up again. Happy to chat. >> I'm going to take you up on that, Jack. All right. This is Dave Vellante for John Furrier and the Cube community. Keep it right there for more action from SuperCloud2. (upbeat music)
SUMMARY :
and the Chief Architect for and appreciate the the Walmart Cloud Native Platform? and that is the DevOps Was the real impetus to tap into Sure, and in the course And the way it's configured, and the humans have to the dataset to actually, but people run that machine, if you will, Is it sort of the deployment so that the developers and the specific cloud platform? and that we think are going in the form of data, tools, applications a bit of a growth curve in the industry. and how you think about the edge? and allow the queue lengths to increase for explaining the and the data mesh that we have in place. and the Cube community.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Martin Fowler | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Today | DATE | 0.99+ |
each | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
today | DATE | 0.99+ |
two things | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
each step | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
early 1960s | DATE | 0.99+ |
Starlink | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.98+ |
a day | QUANTITY | 0.97+ |
GCP | TITLE | 0.97+ |
Azure | TITLE | 0.96+ |
WCNP | TITLE | 0.96+ |
10 milliseconds | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.94+ |
Cloud Spanner | TITLE | 0.94+ |
Linkerd | ORGANIZATION | 0.93+ |
triplet | QUANTITY | 0.92+ |
three cloud providers | QUANTITY | 0.91+ |
Cube | ORGANIZATION | 0.9+ |
SuperCloud2 | ORGANIZATION | 0.89+ |
two core sets | QUANTITY | 0.88+ |
John Furrier | PERSON | 0.88+ |
one more piece | QUANTITY | 0.86+ |
two public clouds | QUANTITY | 0.86+ |
thousand locations | QUANTITY | 0.83+ |
Vice President | PERSON | 0.8+ |
10-ish | QUANTITY | 0.79+ |
WCNP | ORGANIZATION | 0.75+ |
decades | QUANTITY | 0.75+ |
three different major regions | QUANTITY | 0.74+ |
Ramesh Prabagaran, Prosimo.io | Defining the Network Supercloud
(upbeat music) >> Hello, and welcome to Supercloud2. I'm John Furrier, host of theCUBE here. We're exploring all the new Supercloud trends around multiple clouds, hyper scale gaps in their systems, new innovations, new applications, new companies, new products, new brands emerging from this big inflection point. Got a great guest who's going to unpack it with me today, Ramesh Prabagaran, who's the co-founder and CEO of Prosimo, CUBE alumni. Ramesh, legend in the industry, you've been around. You've seen many cycles. Welcome to Supercloud2. >> Thank you. You're being too kind. >> Well, you know, you guys have been a technical, great technical founding team, multiple ventures, multiple times around the track as they say, but now we're seeing something completely different. This is our second event, kind of we're doing to start the the ball rolling around unpacking this idea of Supercloud which evolved from a riff with me and Dave to now a working group paper, multiple definitions. People are saying they're Supercloud. CloudFlare says this is their version. Someone says there over there. Fitzi over there in the blog is always, you know, challenging us on our definitions, but it's, the consensus is though something's happening. >> Ramesh: Absolutely. >> And what's your take on this kind of big inflection point? >> Absolutely, so if you just look at kind of this in layers right, so you have hyper scalers that are innovating really quickly on underlying capabilities, and then you have enterprises adopting these technologies, right, there is a layer in the middle that I would say is largely missing, right? And one that addresses the gaps introduced by these new capabilities, by the hyper scalers. At the same time, one that actually spans, let's say multiple regions, multiple clouds and so forth. So that to me is kind of the Supercloud layer of sorts. One that helps enterprises adopt the underlying hyper scaler capabilities a lot faster, and at the same time brings a certain level of consistency and homogeneity also. >> What do you think the big driver of Supercloud is? Is it the industry growing up or is it the demand for new kinds of capabilities or both? Or just evolution? What's your take? >> I would say largely it depends on kind of who the entity is that you're talking about, right? And so I would say both. So if you look at one cohort here, it's adoption, right? If I have a externally facing digital presence, for example, then I'm going to scale that up and get to as many subscribers and users no matter what, right? And at that time it's a different set of problems. If you're looking at kind of traditional enterprise inward that are bringing apps into the cloud and so forth, it's a different set of care abouts, right? So both are, I would say, equally important problems to solve for. >> Well, one reality that we're definitely tracking, and it's not really a debate anymore, is hybrid. >> Ramesh: Yep >> Hybrid happened. It happened faster than most people thought. But, you know, we were talking about this in 2015 when it first got kicked around, but now you see hybrid in the cloud, on premises and the edge. This kind of forms that distributed computing paradigm that we've always been predicting. And so if that continues to play out the way it is, you're now going to have a completely distributed, connected internet and sets of systems, intra and external within companies. So again, the world is connected 100%. Everything's changing, right? >> And that introduces. >> It wasn't your grandfather's networking anymore or storage. The game is still the same, but the play, the components are acting differently. What's your take on this? >> Absolutely. No, absolutely. That's a very key important point, and it's one that we always ask our customers right at the front end, right? Because your starting assumptions matter. If you have workloads of workloads in the cloud and data center is something that you want to connect into, then you'll make decisions kind of keeping cloud in the center and then kind of bolt on technologies for what that means to extend it to the data center. If your center of gravity is in the data center, and then cloud is let's say 10% right now, but you see that growing, then what choices do you have? Right, do you want to bring your data center technologies into the cloud because you want that consistency in operations? Or do you want to start off fresh, right? So this is a really key, important question, and one that many of our customers are actually are grappling with, right? They have this notion that going cloud native is the right approach, but at the same time that means I have a bifurcation in kind of how do I operate my data center versus my cloud, right? Two different operating models, and slowly it'll shift over to one. But you're going to have to deal with dual reality for a while. >> I was talking to an old friend of mine, CIO, very experienced CIO. Big time company, large deployment, a lot of IT. I said, so what's the big trend everyone's telling me about IT's going. He goes no, not really. IT's not going away for me. It's going everywhere in the company. >> Ramesh: Exactly. >> So I need to scale my IT-like capabilities everywhere and then make it invisible. >> Ramesh: Correct. >> Which is essentially code words for saying it's going to be completely cloud native everywhere. This is what is happening. Do you agree? >> Absolutely right, and so if you look at what do enterprises care about it? The reason to go to the cloud is to get speed of operations, and it's apps, apps, apps, right? Do you ever have a conversation on networking and infrastructure first? No, that kind of gets brought into the conversation because you want to deal with users, applications and services, right? And so the end goal is essentially how do users communicate with apps and get the right experience, security and whatnot, and how do apps talk to each other and make sure that you get all of the connectivity and security requirements? Underneath the covers, what does this mean for infrastructure, networking, security and whatnot? It's actually going to be someone else's job, right? And you shouldn't have to think too much about it. So this whole notion of kind of making that transparent is real actually, right? But at the same time, us and all the guys that we talk to on the customer side, that's their job, right? Like we have to work towards making that transparent. Some are going to be in the form of capability, some are going to be driven by data, but that's really where the two worlds are going to come together. >> Lots of debates going on. We just heard from Bob Muglia here on Supercloud2. He said Supercloud's a platform that provides programmatically consistent services hosted on heterogeneous cloud providers. So the question that's being debated is is Supercloud a platform or an architecture in your view? >> Okay, that's a tough one actually. I'm going to side on the side on kind of the platform side right, and the reason for that is architectural choices are things that you make ahead of time. And you, once you're in, there really isn't a fork in the road, right? Platforms continue to evolve. You can iterate, innovate and so on and so forth. And so I'm thinking Supercloud is more of a platform because you do have a choice. Hey, am I going AWS, Azure, GCP. You make that choice. What is my center of gravity? You make that choice. That's kind of an architectural decision, right? Once you make that, then how do I make things work consistently across like two or three clouds? That's a platform choice. >> So who's responsible for the architecture as the platform, the vendor serving the platform or is the platform vendor agnostic? >> You know, this is where you have to kind of peel the onion in layers, right? If you talk about applications, you can't go to a developer team or an app team and say I want you to operate on Google or AWS. They're like I'll pick the cloud that I want, right? Now who are we talking to? The infrastructure guys and the networking guys, right? They want to make sure that it's not bifurcated. It's like, hey, I want to make sure whatever I build for AWS I can equally use that on Azure. I can equally use that on GCP. So if you're talking to more of the application centric teams who really want infrastructure to be transparent, they'll say, okay, I want to make this choice of whether this is AWS, Azure, GCP, and stick to that. And if you come kind of down the layers of the stack into infrastructure, they are thinking a little more holistically, a little more Supercloud, a little more multicloud, and that. >> That's a good point. So that brings up the deployment question. >> Ramesh: Exactly! >> I want to ask you the next question, okay, what is the preferred deployment in your opinion for a Supercloud narrative? Is it single instance, spread it around everywhere? What's the, do you have a single global instance or do you have everything synchronized? >> So I would say first layer of that Supercloud really kind of fix the holes that have been introduced as a result of kind of adopting the hyper scaler technologies, right? So each, the hyper scalers have been really good at innovating and providing really massive scale elastic capabilities, right? But once you start to build capabilities on top of that to help serve the application, there's a few holes start to show up. So first job of Supercloud really is to plug those holes, right? Second is can I get to an operating model, so that I can replicate this not just in a single region, but across multiple regions, same cloud, and then across multiple clouds, right? And so both of those need to be solved for in order to be (cross talking). >> So is that multiple instantiations of the stack or? >> Yeah, so this again depends on kind of the capability, right? So if you take a more solution view, and so I can speak for kind of networking security combined right? There you always take a solution view. You don't ever look at, you know, what does this mean for a single instance in a single region. You take a macro view, and then you then break it down into what does this mean for region, what does it mean for instance, what does this mean for AZs? And so on and so forth. So you kind of have to go top to bottom. >> Okay, welcome you down into the trap now. Okay, synchronizing the data, latency, these are all questions. So what does the network Supercloud look like to you? Because networking is big here. >> Ramesh: Yes, absolutely. >> This is what you guys do. >> Exactly, yeah. So the different set of problems as you go up the stack, right? So if you have hundreds of workloads in a single region, the set of problems you're dealing with there are kind of app native connectivity, how do I go from kind of east/west, all of those fun things, right? Which are usually bound in terms of latency. You don't have those challenges as much, but can you build your entire enterprise application architecture in one region? No, you're going to have to create multiple instances, right? So my data lake is invariably going to be in one place. My business logic is going to be spread across a few places. What does that bring in? I need to go across regions. Am I going to put those two regions right next to each other? No, I'm not going to, right? I'm going to have places in Europe. I'm going to have APAC, and I'm going to have a North American presence, and I need to bring all these things together. So this is where, back to your point, latency really matters, right? Because I need to be able to find out not just best path but also how do I reduce the millisecond, microseconds that my application cares about, which brings in a layer of optimization and then so on and so on and so forth. So this is what we call kind of to borrow the Prosimo language full stack networking, right? Because I'm not just dealing with how do I go from one region to another because that's laws of physics. I can only control so much. But there are a few elements up the application stack in software that you can tweak to actually bring these things closer and closer. >> And on that point, you're seeing security being talked a lot more at the network layer. So how do you secure the Supercloud at the network layer? What's that look like? >> Yeah, we've been grappling with essentially is security kind of foundational, and then is the network on top. And then we had an alternative viewpoint which is kind of network and then security on top. And the answer is actually it's neither, right? It's almost like a meshed up sandwich of sorts. So you need to have networking security work really well together, right? Case in point, I mean we were talking to a customer yesterday. He said, hey, I have my data lake in one region that needs to talk to an analytics service in a completely different region of a different cloud. These two things just need to be able to talk to each other, which means I need to bring elements of networking. I need to bring elements of security, secure access, app segmentation, all of those things. Very simple, I have an analytics service that needs to contact a data lake. That's what he starts with, but then before you know it, it actually brings up a whole stack underneath, so that's. >> VMware calls that cloud chaos. >> Ramesh: Yes, exactly. >> And then that's the halfway point between cloud smart. Cloud first, cloud chaos, cloud smart, and the next thing, you can skip that whole step. But again, again, it's pick your strategy right? Again, this comes back down to your earlier point. I want to ask you from a customer standpoint, you got the hyper scalers doing very, very well. >> Ramesh: Yep, absolutely. >> And I love what their Amazon's doing. I think Microsoft again though they had a little bit of downgrade are catching up fast, and they have their installed base. So you got the land of the installed bases. >> Correct. >> First and greater, better cloud. Install base getting better, almost as good, almost as good is a gift, but close. Now you have them specializing. Silicon, special silicon. So there's gaps for other services. >> Ramesh: Correct. >> And Amazon Web Services, Adam Selipsky's a open book saying, hey, we want our ecosystem to pick up these gaps and build on them. Go ahead, go to town. >> So this is where I think choices are tough, right? Because if you had one choice, you would work with it, and you would work around it, right? Now I have five different choices. Now what do I do? Our viewpoint is there are a bunch of things that say AWS does really, really well. Use that as a foundational layer, right? Like don't reinvent the wheel on those things. Transit gateways, global accelerators and whatnot, they exist for a reason. Billions of dollars have gone into building those things. Use that foundational layer, right? But what you want to build on top of that is actually driven by the application. The requirements of a lambda application that's serverless, it's very different than a packaged application that's responding for transactions, right? Like it's just completely very, very different. And so bring in the right set of capabilities required for those set of applications, and then you go based on that. This is also where I think whether something is a regional construct versus an overall global construct really, really matters, right? Because if you start with the assumption that everything is going to be built regionally, then it's someone else's job to make sure that all of these things are connected. But if you start with kind of the global purview, then the rest of them start to (cross talking). >> What are some of the things that the enterprises might want that are gaps that are going to be filled by the, by startups like you guys and the ecosystem because we're seeing the ecosystem form into two big camps. >> Ramesh: Yep. >> ISVs, which is an old school definition of independent software vendor, aka someone who writes software. >> Ramesh: Exactly. >> SaaS app. >> Ramesh: Correct. >> And then ecosystem software players that were once ISVs now have people building on top of them. >> Ramesh: Correct. >> They're building on top of the cloud. So you have that new hyper scale effect going on. >> Ramesh: Exactly. >> You got ISVs, which is software developers, software vendors. >> Ramesh: Correct. >> And ecosystems. >> Yep. >> What's that impact of that? Cause it's a new dynamic. >> Exactly, so if you take kind of enterprises, want to make sure that that their apps and the data center migrate to the cloud, new apps are developed the right way in the cloud, right? So that's kind of table stakes. So now what choices do they have? They listen to AWS and say, okay, I have all these cloud native services. I want to be able to instantiate all that. Now comes the interesting choice that they have to make. Do I go hire a whole bunch of people and do it myself or do I go there on the platform route, right? Because I made an architectural choice. Now I have to decide whether I want to do this myself or the platform choice. DIY works great for some, but you don't know what you're getting into, and it's people involved, right? People, process, all those fun things involved, right? So we show up there and say, you don't know what you don't know, right? Like because that's the nature of it. Why don't you invest in a platform like what what we provide, and then you actually build on top of it. We will, it's our job to make sure that we keep up with the innovation happening underneath the covers. And at the same time, this is not a closed ended system. You can actually build on top of our platform, right? And so that actually gives you a good mix. Now the care abouts are interesting. Some apps care about experience. Some apps care about latency. Some apps are extremely charty and extremely data intensive, but nobody wants to pay for it, right? And so it's a interesting Jenga that you have to play between experience versus security versus cost, right? And that makes kind of head of infrastructure and cloud platform teams' life really, really, really interesting. >> And this is why I love your background, and Stu Miniman, when he was with theCUBE, and now he's at Red Hat, we used to riff about the network and how network folks are now, those concepts are now up the top of the stack because the cloud is one big network effect. >> Ramesh: Exactly, correct. >> It's a computer. >> Yep, absolutely. No, and case in point, right, like say we're in let's say in San Jose here or or Palo Alto here, and let's say my application is sitting in London, right? The cloud gives you different express lanes. I can go down to my closest pop location provided by AWS and then I can go ride that all the way up to up to London. It's going to give me better performance, low latency, but I'm going to have to incur some costs associated with it. Or I can go all the wild internet all the way from Palo Alta up to kind of the ingress point into London and then go access, but I'm spending time on the wild internet, which means all kinds of fun things happen, right? But I'm not paying much, but my experience is not going to be so great. So, and there are various degrees of shade in them, of gray in the middle, right? So how do you pick what? It all kind of is driven by the applications. >> Well, we certainly want you back for Supercloud3, our next version of this virtual/live event here in our Palo Alto studios. Really appreciate you coming on. >> Absolutely. >> While you're here, give a quick plug for the company. Next minute, we can take a minute to talk about the success of the company. >> Ramesh: Absolutely. >> I know you got a fresh financing this past year. Plenty of money in the bank, going to ride this new wave, Supercloud wave. Give us a quick plug. >> Absolutely, yeah. So three years going on to four this calendar year. So it's an interesting time for the company. We have proven that our technology, product and our initial customers are quite happy with it. Now comes essentially more of those and scale and so forth. That's kind of the interesting phase that we are in. Also heartened to see quite a few of kind of really large and dominant players in the market, partners, channels and so forth, invest in us to take this to the next set of customers. I would say there's been a dramatic shift in the conversation with our customers. The first couple of years or so of the company, we are about three years old right now, was really about us educating them. This is what you need. This is what you need. Now actually it's a lot of just pull, right? We've seen a good indication, as much as a hate RFIs, a good indication is the number of RFIs that show up at our door saying we want you to participate in this because we want to understand more, right? And so as a, I think we are at an interesting point of the, of that shift. >> RFIs always like do all this work and hope for the best. Pray for a deal. You know, you guys on the right side of history. If a customer asks with respect to Supercloud, multicloud, is that your focus? Is that the direction you guys are going into? >> Yeah, so I would say we are kind of both, right? Supercloud and multicloud because we, our customers are hybrid, multiple clouds, all of the above, right? Our main pitch and kind of value back to the customers is go embrace cloud native because that's the right approach, right? It doesn't make sense to go reinvent the wheel on that one, but then make a really good choice about whether you want to do this yourself or invest in a platform to make your life easy. Because we have seen this story play out with many many enterprises, right? They pick the right technologies. They do a simple POC overnight, and they say, yeah, I can make this work for two apps, right? And then they say, yes, I can make this work for 100. You go down a certain path. You hit a wall. You hit a wall, and it's a hard wall. It's like, no, there isn't a thing that you can go around it. >> A lot of dead bodies laying around. >> Ramesh: Exactly. >> Dead wall. >> And then they have to unravel around that, and then they come talk to us, and they say, okay, now what? Like help me, help me through this journey. So I would say to the extent that you can do this diligence ahead of time, do that, and then, and then pick the right platform. >> You've got to have the talent. And you got to be geared up. You got to know what you're getting into. >> Ramesh: Exactly. >> You got to have the staff to do this. >> And cloud talent and skillset in particular, I mean there's lots available but it's in pockets right? And if you look at kind of web three companies, they've gone and kind of amassed all those guys, right? So enterprises are not left with the cream of the crop. >> John: They might be coming back. >> Exactly, exactly, so. >> With this downturn. Ramesh, great to see you and thanks for contributing to Supercloud2, and again, love your team. Very technical team, and you're in the right side of history in this one. Congratulations. >> Ramesh: No, and thank you, thank you very much. >> Okay, this is Supercloud2. I'm John Furrier with Dave Vellante. We'll be back right after this short break. (upbeat music)
SUMMARY :
Ramesh, legend in the You're being too kind. blog is always, you know, And one that addresses the gaps and get to as many subscribers and users and it's not really a This kind of forms that The game is still the same, but the play, and it's one that we It's going everywhere in the company. So I need to scale my it's going to be completely and make sure that you get So the question that's being debated is on kind of the platform side kind of peel the onion in layers, right? So that brings up the deployment question. And so both of those need to be solved for So you kind of have to go top to bottom. down into the trap now. in software that you can tweak So how do you secure the that needs to talk to an analytics service and the next thing, you So you got the land of Now you have them specializing. ecosystem to pick up these gaps and then you go based on that. and the ecosystem of independent software vendor, that were once ISVs now have So you have that new hyper is software developers, What's that impact of that? and the data center migrate to the cloud, because the cloud is of gray in the middle, right? you back for Supercloud3, quick plug for the company. Plenty of money in the bank, That's kind of the interesting Is that the direction all of the above, right? and then they come talk to us, And you got to be geared up. And if you look at kind Ramesh, great to see you Ramesh: No, and thank Okay, this is Supercloud2.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Ramesh | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Ramesh Prabagaran | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
2015 | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
Microsoft | ORGANIZATION | 0.99+ |
London | LOCATION | 0.99+ |
San Jose | LOCATION | 0.99+ |
John | PERSON | 0.99+ |
10% | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Adam Selipsky | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
100% | QUANTITY | 0.99+ |
100 | QUANTITY | 0.99+ |
two apps | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Palo Alta | LOCATION | 0.99+ |
Second | QUANTITY | 0.99+ |
two regions | QUANTITY | 0.99+ |
APAC | ORGANIZATION | 0.99+ |
First | QUANTITY | 0.99+ |
one choice | QUANTITY | 0.99+ |
second event | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
Prosimo | ORGANIZATION | 0.99+ |
Billions of dollars | QUANTITY | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
one region | QUANTITY | 0.98+ |
multicloud | ORGANIZATION | 0.98+ |
five different choices | QUANTITY | 0.98+ |
hundreds | QUANTITY | 0.98+ |
each | QUANTITY | 0.98+ |
first layer | QUANTITY | 0.98+ |
first | QUANTITY | 0.97+ |
two worlds | QUANTITY | 0.97+ |
Supercloud | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
single instance | QUANTITY | 0.97+ |
Supercloud2 | ORGANIZATION | 0.97+ |
two big camps | QUANTITY | 0.97+ |
one reality | QUANTITY | 0.96+ |
three companies | QUANTITY | 0.96+ |
today | DATE | 0.96+ |
SaaS | TITLE | 0.95+ |
CloudFlare | ORGANIZATION | 0.95+ |
first couple of years | QUANTITY | 0.95+ |
CUBE | ORGANIZATION | 0.94+ |
first job | QUANTITY | 0.94+ |
Supercloud wave | EVENT | 0.94+ |
Azure | ORGANIZATION | 0.94+ |
three clouds | QUANTITY | 0.93+ |
Opening Keynote | Supercloud2
(intro music plays) >> Okay, welcome back to Supercloud 2. I'm John Furrier with my co-host, Dave Vellante, here in our Palo Alto Studio, with a live performance all day unpacking the wave of Supercloud. This is our second edition. Back for keynote review here is Vittorio Viarengo, talking about the hype and the reality of the Supercloud momentum. Vittorio, great to see you. You got a presentation. Looking forward to hearing the update. >> It's always great to be here on this stage with you guys. >> John Furrier: (chuckles) So the business imperative for cloud right now is clear and the Supercloud wave points to the builders and they want to break through. VMware, you guys have a lot of builders in the ecosystem. Where do you guys see multicloud today? What's going on? >> So, what we see is, when we talk with our customers is that customers are in a state of cloud chaos. Raghu Raghuram, our CEO, introduced this term at our user conference and it really resonated with our customers. And the chaos comes from the fact that most enterprises have applications spread across private cloud, multiple hyperscalers, and the edge increasingly. And so with that, every hyperscaler brings their own vertical integrated stack of infrastructure development, platform security, and so on and so forth. And so our customers are left with a ballooning cost because they have to train their employees across multiple stacks. And the costs are only going up. >> John Furrier: Have you talked about the Supercloud with your customers? What are they looking for when they look at the business value of Cross-Cloud Services? Why are they digging into it? What are some of the reasons? >> First of all, let's put this in perspective. 90, 87% of customers use two or more cloud including the private cloud. And 55%, get this, 55% use three or more clouds, right? And so, when you talk to these customers they're all asking for two things. One, they find that managing the multicloud is more difficult than the private cloud. And that goes without saying because it's new, they don't have the skills, and they have many of these. And pretty much everybody, 87% of them, are seeing their cost getting out of control. And so they need a new approach. We believe that the industry needs a new approach to solving the multicloud problem, which you guys have introduced and you call it the Supercloud. We call it Cross-Cloud Services. But the idea is that- and the parallel goes back to the private cloud. In the private cloud, if you remember the old days, before we called it the private cloud, we would install SAP. And the CIO would go, "Oh, I hear SAP works great on HP hardware. Oh, let's buy the HP stack", right? (hosts laugh) And then you go, "Oh, oh, Oracle databases. They run phenomenally on Sun Stack." That's another stack. And it wasn't sustainable, right? And so, VMware came in with virtualization and made everything look the same. And we unleashed a tremendous era of growth and speed and cost saving for our customers. So we believe, and I think the industry also believes, if you look at the success of Supercloud, first instance and today, that we need to create a new level of abstraction in the cloud. And this abstraction needs to be at a higher level. It needs to be built around the lingua franca of the cloud, which is Kubernetes, APIs, open source stacks. And by doing so, we're going to allow our customers to have a more unified way of building, managing, running, connecting, and securing applications across cloud. >> So where should that standardization occur? 'Cause we're going to hear from some customers today. When I ask them about cloud chaos, they're like, "Well, the way we deal with cloud chaos is MonoCloud". They sort of put on the blinders, right? But of course, they may be risking not being able to take advantage of best-of-breed. So where should that standardization layer occur across clouds? >> [Vittorio Viarengo] Well, I also hear that from some customers. "Oh, we are one cloud". They are in denial. There's no question about it. In fact, when I met at our user conference with a number of CIOs, and I went around the room and I asked them, I saw the entire spectrum. (laughs) The person is in denial. "Oh, we're using AWS." I said, "Great." "And the private cloud, so we're all set." "Okay, thank you. Next." "Oh, the business units are using AWS." "Ah, okay. So you have three." "Oh, and we just bought a company that is using Google back in Europe." So, okay, so you got four right there. So that person in denial. Then, you have the second category of customers that are seeing the problem, they're ahead of the pack, and they're building their solution. We're going to hear from Walmart later today. >> Dave Vellante: Yeah. >> So they're building their own. Not everybody has the skills and the scale of Walmart to build their own. >> Dave Vellante: Right. >> So, eventually, then you get to the third category of customers. They're actually buying solutions from one of the many ISVs that you are going to talk with today. You know, whether it is Azure Corp or Snowflake or all this. I will argue, any new company, any new ISV, is by definition a multicloud service company, right? And so these people... Or they're buying our Cross-Cloud Services to solve this problem. So that's the spectrum of customers out there. >> What's the stack you're focusing on specifically? What is VMware? Because virtualization is not going away. You're seeing a lot more in the cloud with networking, for example, this abstraction layer. What specifically are you guys focusing on? >> [Vittorio Viarengo] So, I like to talk about this beyond what VMware does, just 'cause I think this is an industry movement. A market is forming around multicloud services. And so it's an approach that pretty much a whole industry is taking of building this abstraction layer. In our approach, it is to bring these services together to simplify things even further. So, initially, we were the first to see multicloud happening. You know, Raghu and Sanjay, back in what, like 2016, 17, saw this coming and our first foray in multicloud was to take this sphere and our hypervisor and port it natively on all the hyperscaling, which is a phenomenal solution to get your enterprise application in the cloud and modernize them. But then we realized that customers were already in the cloud natively. And so we had to have (all chuckle) a religion discussion internally and drop that hypervisor religion and say, "Hey, we need to go and help our customers where they are, in a native cloud". And that's where we brought back Pivotal. We built tons around it. We shifted. And then Aria. And so basically, our evolution was to go from, you know, our hypervisor to cloud native. And then eventually we ended up at what we believe is the most comprehensive multicloud services solution that covers Application Development with Tanzu, Management with Aria, and then you have NSX for security and user computing for connectivity. And so we believe that we have the most comprehensive set of integrated services to solve the challenges of multicloud, bringing excess simplicity into the picture. >> John Furrier: As some would say, multicloud and multi environment, when you get to the distributed computing with the edge, you're going to need that capability. And you guys have been very successful with private cloud. But to be devil's advocate, you guys have been great with private cloud, but some are saying like, you guys don't get public cloud yet. How do you answer that? Because there's a lot of work that you guys have done in public cloud and it seems like private cloud successes are moving up into public cloud. Like networking. You're seeing a lot of that being configured in. So the enterprise-grade solutions are moving into the cloud. So what would you say to the skeptics out there that say, "Oh, I think you got private cloud nailed down, but you don't really have public cloud." (chuckles) >> [Vittorio Viarengo] First of all, we love skeptics. Our engineering team love skeptics and love to prove them wrong. (John laughs) And I would never ever bet against our engineering team. So I believe that VMware has been so successful in building a private cloud and the technology that actually became the foundation for the public cloud. But that is always hard, to be known in a new environment, right? There's always that period where you have to prove yourself. But what I love about VMware is that VMware has what I believe, what I like to call "enterprise pragmatism". The private cloud is not going away. So we're going to help our customers there, and then, as they move to the cloud, we are going to give them an option to adopt the cloud at their own pace, with VMware cloud, to allow them to move to the cloud and be able to rely on the enterprise-class capabilities we built on-prem in the cloud. But then with Tanzu and Aria and the rest of the Cross-Cloud Service portfolio, being able to meet them where they are. If they're already in the cloud, have them have a single place to build application, a single place to manage application, and so on and so forth. >> John Furrier: You know, Dave, we were talking in the opening. Vittorio, I want to get your reaction to this because we were saying in the opening that the market's obviously pushing this next gen. You see ChatGPT and the success of these new apps that are coming out. The business models are demanding kind of a digital transformation. The tech, the builders, are out there, and you guys have a interesting view because your customer base is almost the canary in the coal mine because this is an Operations challenge as well as just enabling the cloud native. So, I want to get your thoughts on, you know, your customer base, VMware customers. They've been in IT Ops for generations. And now, as that crowd moves and sees this Supercloud environment, it's IT again, but it's everywhere. It's not just IT in a data center. It's on-premises, it's cloud, it's edge. So, almost, your customer base is like a canary in the coal mine for this movement of how do you operationalize multiple environments? Which includes clouds, which includes apps. I mean, this is the core question. >> [Vittorio Viarengo] Yeah. And I want to make this an industry conversation. Forget about VMware for a second. We believe that there are like four or five major pillars that you need to implement to create this level of abstraction. It starts from observability. If you don't know- You need to know where your apps are, where your data is, how the the applications are performing, what is the security posture, what is their performance? So then, you can do something about it. We call that the observability part of this, creating this abstraction. The second one is security. So you need to be- Sorry. Infrastructure. An infrastructure. Creating an abstraction layer for infrastructure means to be able to give the applications, and the developer who builds application, the right infrastructure for the application at the right time. Whether it is a VM, whether it's a Kubernetes cluster, or whether it's microservices, and so on and so forth. And so, that allows our developers to think about infrastructure just as code. If it is available, whatever application needs, whatever the cost makes sense for my application, right? The third part of security, and I can give you a very, very simple example. Say that I was talking to a CIO of a major insurance company in Europe and he is saying to me, "The developers went wild, built all these great front office applications. Now the business is coming to me and says, 'What is my compliance report?'" And the guy is saying, "Say that I want to implement the policy that says, 'I want to encrypt all my data no matter where it resides.' How does it do it? It needs to have somebody logging in into Amazon and configure it, then go to Google, configure it, go to the private cloud." That's time and cost, right? >> Yeah. >> So, you need to have a way to enforce security policy from the infrastructure to the app to the firewall in one place and distribute it across. And finally, the developer experience, right? Developers, developers, developers. (all laugh) We're always trying to keep up with... >> Host: You can dance if you want to do... >> [Vittorio Viarengo] Yeah, let's not make a fool of ourselves. More than usual. Developers are the kings and queens of the hill. They are. Why? Because they build the application. They're making us money and saving us money. And so we need- And right now, they have to go into these different stacks. So, you need to give developers two things. One, a common development experience across this different Kubernetes distribution. And two, a way for the operators. To your point. The operators have fallen behind the developers. And they cannot go to the developer there and tell them, "This is how you're going to do things." They have to see how they're doing things and figure out how to bring the gallery underneath so that developers can be developers, but the operators can lay down the tracks and the infrastructure there is secure and compliant. >> Dave Vellante: So two big inferences from that. One is self-serve infrastructure. You got- In a decentralized cloud, a Supercloud world, you got to have self-serve infrastructure, you got to be simple. And the second is governance. You mentioned security, but it's also governance. You know, data sovereignty as we talked about. So the question I have, Vittorio, is where does the customer start? >> [Vittorio Viarengo] So I, it always depends on the business need, but to me, the foundational layer is observability. If you don't know where your staff is, you cannot manage, you cannot secure it, you cannot manage its cost, right? So I think observability is the bar to entry. And then it depends on the business needs, right? So, we go back to the CIO that I talked to. He is clearly struggling with compliance and security. >> Hosts: Mm hmm. >> And so, like many customers. And so, that's maybe where they start. There are other customers that are a little behind the head of the pack in terms of building applications, right? And so they're looking at these, you know, innovative companies that have the developers that get the cloud and build all these application. They are leader in the industry. They're saying, "How do I get some of that?" Well, the way you get some of that is by adopting modern application development and platform operational capabilities. So, that's maybe, that's where they should start. And so on and so forth. It really depends on the business. To me, observability is the foundational part of this. >> John Furrier: Vittorio, we've been on this conversation with you for over a year and a half now with Supercloud. You've been a leader in seeing the wave, you and Raghu and the team at VMware, among other industry leaders. This is our second event. If you're- In the minute and a half that we have left, when you get asked, "what is this Supercloud multicloud Cross-Cloud thing? What's it mean?" I mean, I mentioned earlier, the market, the business models are changing, tech's changing, society needs more economic value out of the cloud. Builders are out there. If someone says, "Hey, Vittorio, what's the bottom line? What's really going on? Why should I pay attention to this wave? What's going on?" How would you describe the relevance of Supercloud? >> I think that this industry is full of smart vendors and smart customers. And if we are smart about it, we look at the history of IT and the history of IT repeats itself over and over again. You follow the- He said, "Follow the money." I say, "Follow the developers." That's how I made my career. I follow great developers. I look at, you know, Kit Colbert. I say, "Okay. I'm going to get behind that guy wherever he is going." And I try to add value to that person. I look at Raghu and all the great engineers that I was blessed to work with. And so the engineers go and explore new territories and then the rest of the stacks moves around. The developers have gone multicloud. And just like in any iteration of IT, at some point, the way you get the right scales at the right cost is with abstractions. And you can see it everywhere from, you know, bits and bytes, integration, to SOA, to APIs and microservices. You can see it now from best-of-breed hyperscaler across multiple clouds to creating an abstraction layer, a Supercloud, that creates a unified way of building, managing, running, securing, and accessing applications. So if you're a customer- (laughs) A minute and a half. (hosts chuckle) If you are customers that are out there and feeling the pain, you got to adopt this. If you are customers that is behind and saying, "Maybe you're in denial" look at the customers that are solving the problems today, and we're going to have some today. See what they're doing and learn from them so you don't make the same mistakes and you can get there ahead of it. >> Dave Vellante: Gracely's Law, John. Brian Gracely. That history repeats itself and- >> John Furrier: And I think one of these, "follow the developers" is interesting. And the other big wave, I want to get your comment real quick, is that developers aren't just application developers. They're network developers. The stack has completely been software-enabled so that you have software-defined networking, you have all kinds of software at all aspects of observability, infrastructure, security. The developers are everywhere. It's not just software. Software is everywhere. >> [Vittorio Viarengo] Yeah. Developers, developers, developers. The other thing that we can tell, I can tell, and we know, because we live in Silicon Valley. We worship developers but if you are out there in manufacturing, healthcare... If you have developers that understand this stuff, pamper them, keep them happy. (hosts laugh) If you don't have them, figure out where they hang out and go recruit them because developers indeed make the IT world go round. >> John Furrier: Vittorio, thank you for coming on with that opening keynote here for Supercloud 2. We're going to unpack what Supercloud is all about in our second edition of our live performance here in Palo Alto. Virtual event. We're going to talk to customers, experts, leaders, investors, everyone who's looking at the future, what's being enabled by this new big wave coming on called Supercloud. I'm John Furrier with Dave Vellante. We'll be right back after this short break. (ambient theme music plays)
SUMMARY :
of the Supercloud momentum. on this stage with you guys. and the Supercloud wave And the chaos comes from the fact And the CIO would go, "Well, the way we deal with that are seeing the problem, and the scale of Walmart So that's the spectrum You're seeing a lot more in the cloud and then you have NSX for security And you guys have been very and the rest of the that the market's obviously Now the business is coming to me and says, from the infrastructure if you want to do... and the infrastructure there And the second is governance. is the bar to entry. Well, the way you get some of that out of the cloud. the way you get the right scales Dave Vellante: Gracely's Law, John. And the other big wave, make the IT world go round. We're going to unpack what
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Vittorio Viarengo | PERSON | 0.99+ |
Vittorio | PERSON | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
John | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Brian Gracely | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
55% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Azure Corp | ORGANIZATION | 0.99+ |
four | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
third category | QUANTITY | 0.99+ |
87% | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
2016 | DATE | 0.99+ |
second edition | QUANTITY | 0.99+ |
A minute and a half | QUANTITY | 0.99+ |
second event | QUANTITY | 0.99+ |
second category | QUANTITY | 0.99+ |
Raghu Raghuram | PERSON | 0.99+ |
One | QUANTITY | 0.99+ |
Supercloud2 | EVENT | 0.99+ |
first | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Tanzu | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Supercloud | ORGANIZATION | 0.98+ |
Aria | ORGANIZATION | 0.98+ |
third part | QUANTITY | 0.98+ |
Gracely | PERSON | 0.98+ |
one | QUANTITY | 0.98+ |
second | QUANTITY | 0.97+ |
HP | ORGANIZATION | 0.97+ |
second one | QUANTITY | 0.97+ |
five major pillars | QUANTITY | 0.97+ |
SAP | ORGANIZATION | 0.97+ |
17 | DATE | 0.97+ |
over a year and a half | QUANTITY | 0.96+ |
First | QUANTITY | 0.96+ |
one cloud | QUANTITY | 0.96+ |
first instance | QUANTITY | 0.96+ |
Exploring a Supercloud Architecture | Supercloud2
(upbeat music) >> Welcome back everyone to Supercloud 2, live here in Palo Alto, our studio, where we're doing a live stage performance and virtually syndicating out around the world. I'm John Furrier with Dave Vellante, my co-host with the The Cube here. We've got Kit Colbert, the CTO of VM. We're doing a keynote on Cloud Chaos, the evolution of SuperCloud Architecture Kit. Great to see you, thanks for coming on. >> Yeah, thanks for having me back. It's great to be here for Supercloud 2. >> And so we're going to dig into it. We're going to do a Q&A. We're going to let you present. You got some slides. I really want to get this out there, it's really compelling story. Do the presentation and then we'll come back and discuss. Take it away. >> Yeah, well thank you. So, we had a great time at the original Supercloud event, since then, been talking to a lot of customers, and started to better formulate some of the thinking that we talked about last time So, let's jump into it. Just a few quick slides to sort of set the tone here. So, if we go to the the next slide, what that shows is the journey that we see customers on today, going from what we call Cloud First into this phase that many customers are stuck in, called Cloud Chaos, and where they want to get to, and this is the term customers actually use, we didn't make this up, we heard it from customers. This notion of Cloud Smart, right? How do they use cloud more effectively, more intelligently? Now, if you walk through this journey, customers start with Cloud First. They usually select a single cloud that they're going to standardize on, and when they do that, they have to build out a whole bunch of functionality around that cloud. Things you can see there on the screen, disaster recovery, security, how do they monitor it or govern it? Like, these are things that are non-negotiable, you've got to figure it out, and typically what they do is, they leverage solutions that are specific for that cloud, and that's fine when you have just one cloud. But if we build out here, what we see is that most customers are using more than just one, they're actually using multiple, not necessarily 10 or however many on the screen, but this is just as an example. And so what happens is, they have to essentially duplicate or replicate that stack they've built for each different cloud, and they do so in a kind of a siloed manner. This results in the Cloud Chaos term that that we talked about before. And this is where most businesses out there are, they're using two, maybe three public clouds. They've got some stuff on-prem and they've also got some stuff out at the edge. This is apps, data, et cetera. So, this is the situation, this is sort of that Cloud Chaos. So, the question is, how do we move from this phase to Cloud Smart? And this is where the architecture comes in. This is why architecture, I think, is so important. It's really about moving away from these single cloud services that just solve a problem for one cloud, to something we call a Cross-Cloud service. Something that can support a set of functionality across all clouds, and that means not just public clouds, but also private clouds, edge, et cetera, and when you evolve that across the board, what you get is this sort of Supercloud. This notion that we're talking about here, where you combine these cross-cloud services in many different categories. You can see some examples there on the screen. This is not meant to be a complete set of things, but just examples of what can be done. So, this is sort of the transition and transformation that we're talking about here, and I think the architecture piece comes in both for the individual cloud services as well as that Supercloud concept of how all those services come together. >> Great presentation., thanks for sharing. If you could pop back to that slide, on the Cloud Chaos one. I just want to get your thoughts on something there. This is like the layout of the stack. So, this slide here that I'm showing on the screen, that you presented, okay, take us through that complexity. This is the one where I wanted though, that looks like a spaghetti code mix. >> Yes. >> So, do you turn this into a Supercloud stack, right? Is that? >> well, I think it's, it's an evolving state that like, let's take one of these examples, like security. So, instead of implementing security individually in different ways, using different technologies, different tooling for each cloud, what you would do is say, "Hey, I want a single security solution that works across all clouds", right? A concrete example of this would be secure software supply chain. This is probably one of the top ones that I hear when I talk to customers. How do I know that the software I'm building is truly what I expect it to be, and not something that some hacker has gotten into, and polluted with malicious code? And what they do is that, typically today, their teams have gone off and created individual secure software supply chain solutions for each cloud. So, now they could say, "Hey, I can take a single implementation and just have different endpoints." It could go to Google, or AWS, or on-prem, or wherever have you, right? So, that's the sort of architectural evolution that we're talking about. >> You know, one of the things we hear, Dave, you've been on theCUBE all the time, and we, when we talk privately with customers who are asking us like, what's, what's going on? They have the same complaint, "I don't want to build a team, a dev team, for that stack." So, if you go back to that slide again, you'll see that, that illustrates the tech stack for the clouds and the clouds at the bottom. So, the number one complaint we hear, and I want to get your reaction to that, "I don't want to have a team to have to work on that. So, I'm going to pick one and then have a hedge secondary one, as a backup." Here, that's one, that's four, five, eight, ten, ten environments. >> Yeah, I got a lot. >> That's going to be the reality, so, what's the technical answer to that? >> Yeah, well first of all, let me just say, this picture is again not totally representative of reality oftentimes, because while that picture shows a solution for every cloud, oftentimes that's not the case. Oftentimes it's a line of business going off, starting to use a new cloud. They might solve one or two things, but usually not security, usually not some of these other things, right? So, I think from a technical standpoint, where you want to get to is, yes, that sort of common service, with a common operational team behind it, that is trained on that, that can work across clouds. And that's really I think the important evolution here, is that you don't need to replicate these operational teams, one for each cloud. You can actually have them more focused across all those clouds. >> Yeah, in fact, we were commenting on the opening today. Dave and I were talking about the benefits of the cloud. It's heterogeneous, which is a good thing, but it's complex. There's skill gaps and skill required, but at the end of the day, self-service of the cloud, and the elastic nature of it makes it the benefit. So, if you try to create too many common services, you lose the value of the cloud. So, what's the trade off, in your mind right now as customers start to look at okay, identity, maybe I'll have one single sign on, that's an obvious one. Other ones? What are the areas people are looking at from a combination, common set of services? Where do they start? What's the choices? What are some of the trade offs? 'Cause you can't do it everything. >> No, it's a great question. So, that's actually a really good point and as I answer your question, before I answer your question, the important point about that, as you saw here, you know, across cloud services or these set of Cross-Cloud services, the things that comprise the Supercloud, at least in my view, the point is not necessarily to completely abstract the underlying cloud. The point is to give a business optionality and choice, in terms of what it wants to abstract, and I think that gets to your question, is how much do you actually want to abstract from the underlying cloud? Now, what I find, is that typically speaking, cloud choice is driven at least from a developer or app team perspective, by the best of breed services. What higher level application type services do you need? A database or AI, you know, ML systems, for your application, and that's going to drive your choice of the cloud. So oftentimes, businesses I talk to, want to allow those services to shine through, but for other things that are not necessarily highly differentiated and yet are absolutely critical to creating a successful application, those are things that you want to standardize. Again, like things like security, the supply chain piece, cost management, like these things you need to, and you know, things like cogs become really, really important when you start operating at scale. So, those are the things in it that I see people wanting to focus on. >> So, there's a majority model. >> Yes. >> All right, and we heard of earlier from Walmart, who's fairly, you know, advanced, but at the same time their supercloud is pretty immature. So, what are you seeing in terms of supercloud momentum, crosscloud momentum? What's the starting point for customers? >> Yeah, so it's interesting, right, on that that three-tiered journey that I talked about, this Cloud Smart notion is, that is adoption of what you might call a supercloud or architecture, and most folks aren't there yet. Even the really advanced ones, even the really large ones, and I think it's because of the fact that, we as an industry are still figuring this out. We as an industry did not realize this sort of Cloud Chaos state could happen, right? We didn't, I think most folks thought they could standardize on one cloud and that'd be it, but as time has shown, that's simply not the case. As much as one might try to do that, that's not where you end up. So, I think there's two, there's two things here. Number one, for folks that are early in to the cloud, and are in this Cloud Chaos phase, we see the path out through standardization of these cross-cloud services through adoption of this sort of supercloud architecture, but the other thing I think is particularly exciting, 'cause I talked to a number of of businesses who are not yet in the Cloud Chaos phase. They're earlier on in the cloud journey, and I think the opportunity there is that they don't have to go through Cloud Chaos. They can actually skip that whole phase if they adopt this supercloud architecture from the beginning, and I think being thoughtful around that is really the key here. >> It's interesting, 'cause we're going to hear from Ionis Pharmaceuticals later, and they, yes there are multiple clouds, but the multiple clouds are largely separate, and so it's a business unit using that. So, they're not in Cloud Chaos, but they're not tapping the advantages that you could get for best of breed across those business units. So, to your point, they have an opportunity to actually build that architecture or take advantage of those cross-cloud services, prior to reaching cloud chaos. >> Well, I, actually, you know, I'd love to hear from them if, 'cause you say they're not in Cloud Chaos, but are they, I mean oftentimes I find that each BU, each line of business may feel like they're fine, in of themselves. >> Yes, exactly right, yes. >> But when you look at it from an overall company perspective, they're like, okay, things are pretty chaotic here. We don't have standardization, I don't, you know, like, again, security compliance, these things, especially in many regulated industries, become huge problems when you're trying to run applications across multiple clouds, but you don't have any of those company-wide standardizations. >> Well, this is a point. So, they have a big deal with AstraZeneca, who's got this huge ecosystem, they want to start sharing data across those ecosystem, and that's when they will, you know, that Cloud Chaos will, you know, come, come to fore, you would think. I want to get your take on something that Bob Muglia said earlier, which is, he kind of said, "Hey Dave, you guys got to tighten up your definition a little bit." So, he said a supercloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers. So, you know, thank you, that was nice and simple. However others in the community, we're going to hear from Dr. Nelu Mihai later, says, no, no, wait a minute, it's got to be an architecture, not a platform. Where do you land on this architecture v. platform thing? >> I look at it as, I dunno if it's, you call it maturity or just kind of a time horizon thing, but for me when I hear the word platform, I typically think of a single vendor. A single vendor provides this platform. That's kind of the beauty of a platform, is that there is a simplicity usually consistency to it. >> They did the architecture. (laughing) >> Yeah, exactly but I mean, well, there's obviously architecture behind it, has to be, but you as a customer don't necessarily need to deal with that. Now, I think one of the opportunities with Supercloud is that it's not going to be, or there is no single vendor that can solve all these problems. It's got to be the industry coming together as a community, inter-operating, working together, and so, that's why, for me, I think about it as an architecture, that there's got to be these sort of, well-defined categories of functionality. There's got to be well-defined interfaces between those categories of functionality to enable modularity, to enable businesses to be able to pick and choose the right sorts of services, and then weave those together into an overall supercloud. >> Okay, so you're not pitching, necessarily the platform, you're saying, hey, we have an architecture that's open. I go back to something that Vittorio said on August 9th, with the first Supercloud, because as well, remember we talked about abstracting, but at the same time giving developers access to those primitives. So he said, and this, I think your answer sort of confirms this. "I want to have my cake eat it too and not gain weight." >> (laughing) Right. Well and I think that's where the platform aspect can eventually come, after we've gotten aligned architecture, you're going to start to naturally see some vendors step up to take on some of the remaining complexity there. So, I do see platforms eventually emerging here, but I think where we have to start as an industry is around aligning, okay, what does this definition mean? What does that architecture look like? How do we enable interoperability? And then we can take the next step. >> Because it depends too, 'cause I would say Snowflake has a platform, and they've just defined the architecture, but we're not talking about infrastructure here, obviously, we're talking about something else. >> Well, I think that the Snowflake talks about, what he talks about, security and data, you're going to start to see the early movement around areas that are very spanning oriented, and I think that's the beginning of the trend and I think there's going to be a lot more, I think on the infrastructure side. And to your point about the platform architecture, that's actually a really good thought exercise because it actually makes you think about what you're designing in the first place, and that's why I want to get your reaction. >> Quote from- >> Well I just have to interrupt since, later on, you're going to hear from near Nir Zuk of Palo Alto Network. He says architecture and security historically, they don't go hand in hand, 'cause it's a big mess. >> It depends if you're whacking the mole or you actually proactively building something. Well Kit, I want to get your reaction from a quote from someone in our community who said about Supercloud, you know, "The Supercloud's great, there are issues around computer science rigors, and customer requirements." So, there's some issues around the science itself as well as not just listen to the customer, 'cause if that's the case, we'd have a better database, a better Oracle, right, so, but there's other, this tech involved, new tech. We need an open architecture with universal data modeling interconnecting among them, connectivity is a part of security, and then, once we get through that gate, figuring out the technical, the data, and the customer requirements, they say "Supercloud should be a loosely coupled platform with open architecture, plug and play, specialized services, ready for optimization, automation that can stand the test of time." What's your reaction to that sentiment? You like it, is that, does that sound good? >> Yeah, no, broadly aligns with my thinking, I think, and what I see from talking with customers as well. I mean, I like the, again, the, you know, listening to customer needs, prioritizing those things, focusing on some of the connective tissue networking, and data and some of these aspects talking about the open architecture, the interoperability, those are all things I think are absolutely critical. And then, yeah, like I think at the end. >> On the computer science side, do you see some science and engineering things that need to be engineered differently? We heard databases are radically going to change and that are inadequate for the new architecture. What are some of the things like that, from a science standpoint? >> Yeah, yeah, yeah. Some of the more academic research type things. >> More tech, or more better tech or is it? >> Yeah, look, absolutely. I mean I think that there's a bunch around, certainly around the data piece, around, you know, there's issues of data gravity, data mobility. How do you want to do that in a way that's performant? There's definitely issues around security as well. Like how do you enable like trust in these environments, there's got to be some sort of hardware rooted trusts, and you know, a whole bunch of various types of aspects there. >> So, a lot of work still be done. >> Yes, I think so. And that's why I look at this as, this is not a one year thing, or you know, it's going to be multi-years, and I think again, it's about all of us in the industry working together to come to an aligned picture of what that looks like. >> So, as the world's moved from private cloud to public cloud and now Cross-cloud services, supercloud, metacloud, whatever you want to call it, how have you sort of changed the way engineering's organized, developers sort of approached the problem? Has it changed and how? >> Yeah, absolutely. So, you know, it's funny, we at VMware, going through the same challenges as our customers and you know, any business, right? We use multiple clouds, we got a big, of course, on-prem footprint. You know, what we're doing is similar to what I see in many other customers, which, you see the evolution of a platform team, and so the platform team is really in charge of trying to develop a lot of these underlying services to allow our lines of business, our product teams, to be able to move as quickly as possible, to focus on the building, while we help with a lot of the operational overheads, right? We maintain security, compliance, all these other things. We also deal with, yeah, just making the developer's life as simple as possible. So, they do need to know some stuff about, you know, each public cloud they're using, those public cloud services, but at the same, time we can abstract a lot of the details they don't need to be in. So, I think this sort of delineation or separation, I should say, between the underlying platform team and the product teams is a very, very common pattern. >> You know, I noticed the four layers you talked about were observability, infrastructure, security and developers, on that slide, the last slide you had at the top, that was kind of the abstraction key areas that you guys at VMware are working? >> Those were just some groupings that we've come up with, but we like to debate them. >> I noticed data's in every one of them. >> Yeah, yep, data is key. >> It's not like, so, back to the data questions that security is called out as a pillar. Observability is just kind of watching everything, but it's all pretty much data driven. Of the four layers that you see, I take that as areas that you can. >> Standardize. >> Consistently rely on to have standard services. >> Yes. >> Which one do you start with? What's the, is there order of operations? >> Well, that's, I mean. >> 'Cause I think infrastructure's number one, but you had observability, you need to know what's going on. >> Yeah, well it really, it's highly dependent. Again, it depends on the business that we talk to and what, I mean, it really goes back to, what are your business priorities, right? And we have some customers who may want to get out of a data center, they want to evacuate the data center, and so what they want is then, consistent infrastructure, so they can just move those applications up to the cloud. They don't want to have to refactor them and we'll do it later, but there's an immediate and sort of urgent problem that they have. Other customers I talk to, you know, security becomes top of mind, or maybe compliance, because they're in a regulated industry. So, those are the sort of services they want to prioritize. So, I would say there is no single right answer, no one size fits all. The point about this architecture is really around the optionality of it, as it allows you as a business to decide what's most important and where you want to prioritize. >> How about the deployment models kit? Do, does a customer have that flexibility from a deployment model standpoint or do I have to, you know, approach it a specific way? Can you address that? >> Yeah, I mean deployment models, you're talking about how they how they consume? >> So, for instance, yeah, running a control plane in the cloud. >> Got it, got it. >> And communicating elsewhere or having a single global instance or instantiating that instance, and? >> So, that's a good point actually, and you know, the white paper that we released back in August, around this sort of concept, the Cross-cloud service. This is some of the stuff we need to figure out as an industry. So, you know when we talk about a Cross-cloud service, we can mean actually any of the things you just talked about. It could be a single instance that runs, let's say in one public cloud, but it supports all of 'em. Or it could be one that's multi-instance and that runs in each of the clouds, and that customers can take dependencies on whichever one, depending on what their use cases are or the, even going further than that, there's a type of Cross-cloud service that could actually be instantiated even in an air gapped or offline environment, and we have many, many businesses, especially heavily regulated ones that have that requirement, so I think, you know. >> Global don't forget global, regions, locales. >> Yeah, there's all sorts of performance latency issues that can be concerned about. So, most services today are the former, there are single sort of instance or set of instances within a single cloud that support multiple clouds, but I think what we're doing and where we're going with, you know, things like what we see with Kubernetes and service meshes and all these things, will better enable folks to hit these different types of cross-cloud service architectures. So, today, you as a customer probably wouldn't have too much choice, but where we're going, you'll see a lot more choice in the future. >> If you had to summarize for folks watching the importance of Supercloud movement, multi-cloud, cross-cloud services, as an industry in flexible, 'cause I'm always riffing on the whole old school network protocol stacks that got disrupted by TCP/IP, that's a little bit dated, we got people on the chat that are like, you know, 20 years old that weren't even born then. So, but this is a, one of those inflection points that's once in a generation inflection point, I'm sure you agree. What scoped the order of magnitude of the change and the opportunity around the marketplace, the business models, the technology, and ultimately benefits the society. >> Yeah. Wow. Getting bigger. >> You have 10 seconds, go. >> I know. Yeah. (laughing) No, look, so I think it is what we're seeing is really the next phase of what you might call cloud, right? This notion of delivering services, the way they've been packaged together, traditionally by the hyperscalers is now being challenged. and what we're seeing is really opening that up to new levels of innovation, and I think that will be huge for businesses because it'll help meet them where they are. Instead of needing to contort the businesses to, you know, make it work with the technology, the technology will support the business and where it's going. Give people more optionality, more flexibility in order to get there, and I think in the end, for us as individuals, it will just make for better experiences, right? You can get better performance, better interactivity, given that devices are so much of what we do, and so much of what we interact with all the time. This sort of flexibility and optionality will fundamentally better for us as individuals in our experiences. >> And we're seeing that with ChatGPT, everyone's talking about, just early days. There'll be more and more of things like that, that are next gen, like obviously like, wow, that's a fall out of your chair moment. >> It'll be the next wave of innovation that's unleashed. >> All right, Kit Colbert, thanks for coming on and sharing and exploring the Supercloud architecture, Cloud Chaos, the Cloud Smart, there's a transition progression happening and it's happening fast. This is the supercloud wave. If you're not on this wave, you'll be driftwood. That's a Pat Gelsinger quote on theCUBE. This is theCUBE Be right back with more Supercloud coverage, here in Palo Alto after this break. (upbeat music) (upbeat music continues)
SUMMARY :
We've got Kit Colbert, the CTO of VM. It's great to be here for Supercloud 2. We're going to let you present. and when you evolve that across the board, This is like the layout of the stack. How do I know that the So, the number one complaint we hear, is that you don't need to replicate and the elastic nature of and I think that gets to your question, So, what are you seeing in terms but the other thing I think that you could get for best of breed Well, I, actually, you know, I don't, you know, like, and that's when they will, you know, That's kind of the beauty of a platform, They did the architecture. is that it's not going to be, but at the same time Well and I think that's and they've just defined the architecture, beginning of the trend Well I just have to and the customer requirements, focusing on some of the that need to be engineered differently? Some of the more academic and you know, a whole bunch or you know, it's going to be multi-years, of the details they don't need to be in. that we've come up with, Of the four layers that you see, to have standard services. but you had observability, you is really around the optionality of it, running a control plane in the cloud. and that runs in each of the clouds, Global don't forget and where we're going with, you know, and the opportunity of what you might call cloud, right? that are next gen, like obviously like, It'll be the next wave of and exploring the Supercloud architecture,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
August 9th | DATE | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Pat Gelsinger | PERSON | 0.99+ |
10 seconds | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Ionis Pharmaceuticals | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
AstraZeneca | ORGANIZATION | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
August | DATE | 0.99+ |
two things | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
Vittorio | PERSON | 0.99+ |
20 years | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
one year | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
Kit | PERSON | 0.99+ |
three | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
each cloud | QUANTITY | 0.98+ |
one cloud | QUANTITY | 0.97+ |
each cloud | QUANTITY | 0.97+ |
ten | QUANTITY | 0.97+ |
VMware | ORGANIZATION | 0.96+ |
five | QUANTITY | 0.96+ |
single cloud | QUANTITY | 0.96+ |
single | QUANTITY | 0.96+ |
each line | QUANTITY | 0.96+ |
supercloud wave | EVENT | 0.96+ |
single instance | QUANTITY | 0.95+ |
Palo Alto Network | ORGANIZATION | 0.95+ |
four | QUANTITY | 0.94+ |
eight | QUANTITY | 0.94+ |
single vendor | QUANTITY | 0.94+ |
Cloud Chaos | TITLE | 0.94+ |
Nir Zuk | PERSON | 0.94+ |
three-tiered | QUANTITY | 0.93+ |
Cloud First | TITLE | 0.91+ |
four layers | QUANTITY | 0.91+ |
Cloud Smart | TITLE | 0.91+ |
Supercloud | TITLE | 0.89+ |
single implementation | QUANTITY | 0.88+ |
Supercloud 2 | EVENT | 0.87+ |
first place | QUANTITY | 0.84+ |
single right answer | QUANTITY | 0.84+ |
once | QUANTITY | 0.83+ |
single sort | QUANTITY | 0.82+ |
theCUBE's New Analyst Talks Cloud & DevOps
(light music) >> Hi everybody. Welcome to this Cube Conversation. I'm really pleased to announce a collaboration with Rob Strechay. He's a guest cube analyst, and we'll be working together to extract the signal from the noise. Rob is a long-time product pro, working at a number of firms including AWS, HP, HPE, NetApp, Snowplow. I did a stint as an analyst at Enterprise Strategy Group. Rob, good to see you. Thanks for coming into our Marlboro Studios. >> Well, thank you for having me. It's always great to be here. >> I'm really excited about working with you. We've known each other for a long time. You've been in the Cube a bunch. You know, you're in between gigs, and I think we can have a lot of fun together. Covering events, covering trends. So. let's get into it. What's happening out there? We're sort of exited the isolation economy. Things were booming. Now, everybody's tapping the brakes. From your standpoint, what are you seeing out there? >> Yeah. I'm seeing that people are really looking how to get more out of their data. How they're bringing things together, how they're looking at the costs of Cloud, and understanding how are they building out their SaaS applications. And understanding that when they go in and actually start to use Cloud, it's not only just using the base services anymore. They're looking at, how do I use these platforms as a service? Some are easier than others, and they're trying to understand, how do I get more value out of that relationship with the Cloud? They're also consolidating the number of Clouds that they have, I would say to try to better optimize their spend, and getting better pricing for that matter. >> Are you seeing people unhook Clouds, or just reduce maybe certain Cloud activities and going maybe instead of 60/40 going 90/10? >> Correct. It's more like the 90/10 type of rule where they're starting to say, Hey I'm not going to get rid of Azure or AWS or Google. I'm going to move a portion of this over that I was using on this one service. Maybe I got a great two-year contract to start with on this platform as a service or a database as a service. I'm going to unhook from that and maybe go with an independent. Maybe with something like a Snowflake or a Databricks on top of another Cloud, so that I can consolidate down. But it also gives them more flexibility as well. >> In our last breaking analysis, Rob, we identified six factors that were reducing Cloud consumption. There were factors and customer tactics. And I want to get your take on this. So, some of the factors really, you got fewer mortgage originations. FinTech, obviously big Cloud user. Crypto, not as much activity there. Lower ad spending means less Cloud. And then one of 'em, which you kind of disagreed with was less, less analytics, you know, fewer... Less frequency of calculations. I'll come back to that. But then optimizing compute using Graviton or AMD instances moving to cheaper storage tiers. That of course makes sense. And then optimize pricing plans. Maybe going from On Demand, you know, to, you know, instead of pay by the drink, buy in volume. Okay. So, first of all, do those make sense to you with the exception? We'll come back and talk about the analytics piece. Is that what you're seeing from customers? >> Yeah, I think so. I think that was pretty much dead on with what I'm seeing from customers and the ones that I go out and talk to. A lot of times they're trying to really monetize their, you know, understand how their business utilizes these Clouds. And, where their spend is going in those Clouds. Can they use, you know, lower tiers of storage? Do they really need the best processors? Do they need to be using Intel or can they get away with AMD or Graviton 2 or 3? Or do they need to move in? And, I think when you look at all of these Clouds, they always have pricing curves that are arcs from the newest to the oldest stuff. And you can play games with that. And understanding how you can actually lower your costs by looking at maybe some of the older generation. Maybe your application was written 10 years ago. You don't necessarily have to be on the best, newest processor for that application per se. >> So last, I want to come back to this whole analytics piece. Last June, I think it was June, Dev Ittycheria, who's the-- I call him Dev. Spelled Dev, pronounced Dave. (chuckles softly) Same pronunciation, different spelling. Dev Ittycheria, CEO of Mongo, on the earnings call. He was getting, you know, hit. Things were starting to get a little less visible in terms of, you know, the outlook. And people were pushing him like... Because you're in the Cloud, is it easier to dial down? And he said, because we're the document database, we support transaction applications. We're less discretionary than say, analytics. Well on the Snowflake earnings call, that same month or the month after, they were all over Slootman and Scarpelli. Oh, the Mongo CEO said that they're less discretionary than analytics. And Snowflake was an interesting comment. They basically said, look, we're the Cloud. You can dial it up, you can dial it down, but the area under the curve over a period of time is going to be the same, because they get their customers to commit. What do you say? You disagreed with the notion that people are running their calculations less frequently. Is that because they're trying to do a better job of targeting customers in near real time? What are you seeing out there? >> Yeah, I think they're moving away from using people and more expensive marketing. Or, they're trying to figure out what's my Google ad spend, what's my Meta ad spend? And what they're trying to do is optimize that spend. So, what is the return on advertising, or the ROAS as they would say. And what they're looking to do is understand, okay, I have to collect these analytics that better understand where are these people coming from? How do they get to my site, to my store, to my whatever? And when they're using it, how do they they better move through that? What you're also seeing is that analytics is not only just for kind of the retail or financial services or things like that, but then they're also, you know, using that to make offers in those categories. When you move back to more, you know, take other companies that are building products and SaaS delivered products. They may actually go and use this analytics for making the product better. And one of the big reasons for that is maybe they're dialing back how many product managers they have. And they're looking to be more data driven about how they actually go and build the product out or enhance the product. So maybe they're, you know, an online video service and they want to understand why people are either using or not using the whiteboard inside the product. And they're collecting a lot of that product analytics in a big way so that they can go through that. And they're doing it in a constant manner. This first party type tracking within applications is growing rapidly by customers. >> So, let's talk about who wins in that. So, obviously the Cloud guys, AWS, Google and Azure. I want to come back and unpack that a little bit. Databricks and Snowflake, we reported on our last breaking analysis, it kind of on a collision course. You know, a couple years ago we were thinking, okay, AWS, Snowflake and Databricks, like perfect sandwich. And then of course they started to become more competitive. My sense is they still, you know, compliment each other in the field, right? But, you know, publicly, they've got bigger aspirations, they get big TAMs that they're going after. But it's interesting, the data shows that-- So, Snowflake was off the charts in terms of spending momentum and our EPR surveys. Our partner down in New York, they kind of came into line. They're both growing in terms of market presence. Databricks couldn't get to IPO. So, we don't have as much, you know, visibility on their financials. You know, Snowflake obviously highly transparent cause they're a public company. And then you got AWS, Google and Azure. And it seems like AWS appears to be more partner friendly. Microsoft, you know, depends on what market you're in. And Google wants to sell BigQuery. >> Yeah. >> So, what are you seeing in the public Cloud from a data platform perspective? >> Yeah. I think that was pretty astute in what you were talking about there, because I think of the three, Google is definitely I think a little bit behind in how they go to market with their partners. Azure's done a fantastic job of partnering with these companies to understand and even though they may have Synapse as their go-to and where they want people to go to do AI and ML. What they're looking at is, Hey, we're going to also be friendly with Snowflake. We're also going to be friendly with a Databricks. And I think that, Amazon has always been there because that's where the market has been for these developers. So, many, like Databricks' and the Snowflake's have gone there first because, you know, Databricks' case, they built out on top of S3 first. And going and using somebody's object layer other than AWS, was not as simple as you would think it would be. Moving between those. >> So, one of the financial meetups I said meetup, but the... It was either the CEO or the CFO. It was either Slootman or Scarpelli talking at, I don't know, Merrill Lynch or one of the other financial conferences said, I think it was probably their Q3 call. Snowflake said 80% of our business goes through Amazon. And he said to this audience, the next day we got a call from Microsoft. Hey, we got to do more. And, we know just from reading the financial statements that Snowflake is getting concessions from Amazon, they're buying in volume, they're renegotiating their contracts. Amazon gets it. You know, lower the price, people buy more. Long term, we're all going to make more money. Microsoft obviously wants to get into that game with Snowflake. They understand the momentum. They said Google, not so much. And I've had customers tell me that they wanted to use Google's AI with Snowflake, but they can't, they got to go to to BigQuery. So, honestly, I haven't like vetted that so. But, I think it's true. But nonetheless, it seems like Google's a little less friendly with the data platform providers. What do you think? >> Yeah, I would say so. I think this is a place that Google looks and wants to own. Is that now, are they doing the right things long term? I mean again, you know, you look at Google Analytics being you know, basically outlawed in five countries in the EU because of GDPR concerns, and compliance and governance of data. And I think people are looking at Google and BigQuery in general and saying, is it the best place for me to go? Is it going to be in the right places where I need it? Still, it's still one of the largest used databases out there just because it underpins a number of the Google services. So you almost get, like you were saying, forced into BigQuery sometimes, if you want to use the tech on top. >> You do strategy. >> Yeah. >> Right? You do strategy, you do messaging. Is it the right call by Google? I mean, it's not a-- I criticize Google sometimes. But, I'm not sure it's the wrong call to say, Hey, this is our ace in the hole. >> Yeah. >> We got to get people into BigQuery. Cause, first of all, BigQuery is a solid product. I mean it's Cloud native and it's, you know, by all, it gets high marks. So, why give the competition an advantage? Let's try to force people essentially into what is we think a great product and it is a great product. The flip side of that is, they're giving up some potential partner TAM and not treating the ecosystem as well as one of their major competitors. What do you do if you're in that position? >> Yeah, I think that that's a fantastic question. And the question I pose back to the companies I've worked with and worked for is, are you really looking to have vendor lock-in as your key differentiator to your service? And I think when you start to look at these companies that are moving away from BigQuery, moving to even, Databricks on top of GCS in Google, they're looking to say, okay, I can go there if I have to evacuate from GCP and go to another Cloud, I can stay on Databricks as a platform, for instance. So I think it's, people are looking at what platform as a service, database as a service they go and use. Because from a strategic perspective, they don't want that vendor locking. >> That's where Supercloud becomes interesting, right? Because, if I can run on Snowflake or Databricks, you know, across Clouds. Even Oracle, you know, they're getting into business with Microsoft. Let's talk about some of the Cloud players. So, the big three have reported. >> Right. >> We saw AWSs Cloud growth decelerated down to 20%, which is I think the lowest growth rate since they started to disclose public numbers. And they said they exited, sorry, they said January they grew at 15%. >> Yeah. >> Year on year. Now, they had some pretty tough compares. But nonetheless, 15%, wow. Azure, kind of mid thirties, and then Google, we had kind of low thirties. But, well behind in terms of size. And Google's losing probably almost $3 billion annually. But, that's not necessarily a bad thing by advocating and investing. What's happening with the Cloud? Is AWS just running into the law, large numbers? Do you think we can actually see a re-acceleration like we have in the past with AWS Cloud? Azure, we predicted is going to be 75% of AWS IAS revenues. You know, we try to estimate IAS. >> Yeah. >> Even though they don't share that with us. That's a huge milestone. You'd think-- There's some people who have, I think, Bob Evans predicted a while ago that Microsoft would surpass AWS in terms of size. You know, what do you think? >> Yeah, I think that Azure's going to keep to-- Keep growing at a pretty good clip. I think that for Azure, they still have really great account control, even though people like to hate Microsoft. The Microsoft sellers that are out there making those companies successful day after day have really done a good job of being in those accounts and helping people. I was recently over in the UK. And the UK market between AWS and Azure is pretty amazing, how much Azure there is. And it's growing within Europe in general. In the states, it's, you know, I think it's growing well. I think it's still growing, probably not as fast as it is outside the U.S. But, you go down to someplace like Australia, it's also Azure. You hear about Azure all the time. >> Why? Is that just because of the Microsoft's software state? It's just so convenient. >> I think it has to do with, you know, and you can go with the reasoning they don't break out, you know, Office 365 and all of that out of their numbers is because they have-- They're in all of these accounts because the office suite is so pervasive in there. So, they always have reasons to go back in and, oh by the way, you're on these old SQL licenses. Let us move you up here and we'll be able to-- We'll support you on the old version, you know, with security and all of these things. And be able to move you forward. So, they have a lot of, I guess you could say, levers to stay in those accounts and be interesting. At least as part of the Cloud estate. I think Amazon, you know, is hitting, you know, the large number. Laws of large numbers. But I think that they're also going through, and I think this was seen in the layoffs that they were making, that they're looking to understand and have profitability in more of those services that they have. You know, over 350 odd services that they have. And you know, as somebody who went there and helped to start yet a new one, while I was there. And finally, it went to beta back in September, you start to look at the fact that, that number of services, people, their own sellers don't even know all of their services. It's impossible to comprehend and sell that many things. So, I think what they're going through is really looking to rationalize a lot of what they're doing from a services perspective going forward. They're looking to focus on more profitable services and bringing those in. Because right now it's built like a layer cake where you have, you know, S3 EBS and EC2 on the bottom of the layer cake. And then maybe you have, you're using IAM, the authorization and authentication in there and you have all these different services. And then they call it EMR on top. And so, EMR has to pay for that entire layer cake just to go and compete against somebody like Mongo or something like that. So, you start to unwind the costs of that. Whereas Azure, went and they build basically ground up services for the most part. And Google kind of falls somewhere in between in how they build their-- They're a sort of layer cake type effect, but not as many layers I guess you could say. >> I feel like, you know, Amazon's trying to be a platform for the ecosystem. Yes, they have their own products and they're going to sell. And that's going to drive their profitability cause they don't have to split the pie. But, they're taking a piece of-- They're spinning the meter, as Ziyas Caravalo likes to say on every time Snowflake or Databricks or Mongo or Atlas is, you know, running on their system. They take a piece of the action. Now, Microsoft does that as well. But, you look at Microsoft and security, head-to-head competitors, for example, with a CrowdStrike or an Okta in identity. Whereas, it seems like at least for now, AWS is a more friendly place for the ecosystem. At the same time, you do a lot of business in Microsoft. >> Yeah. And I think that a lot of companies have always feared that Amazon would just throw, you know, bodies at it. And I think that people have come to the realization that a two pizza team, as Amazon would call it, is eight people. I think that's, you know, two slices per person. I'm a little bit fat, so I don't know if that's enough. But, you start to look at it and go, okay, if they're going to start out with eight engineers, if I'm a startup and they're part of my ecosystem, do I really fear them or should I really embrace them and try to partner closer with them? And I think the smart people and the smart companies are partnering with them because they're realizing, Amazon, unless they can see it to, you know, a hundred million, $500 million market, they're not going to throw eight to 16 people at a problem. I think when, you know, you could say, you could look at the elastic with OpenSearch and what they did there. And the licensing terms and the battle they went through. But they knew that Elastic had a huge market. Also, you had a number of ecosystem companies building on top of now OpenSearch, that are now domain on top of Amazon as well. So, I think Amazon's being pretty strategic in how they're doing it. I think some of the-- It'll be interesting. I think this year is a payout year for the cuts that they're making to some of the services internally to kind of, you know, how do we take the fat off some of those services that-- You know, you look at Alexa. I don't know how much revenue Alexa really generates for them. But it's a means to an end for a number of different other services and partners. >> What do you make of this ChatGPT? I mean, Microsoft obviously is playing that card. You want to, you want ChatGPT in the Cloud, come to Azure. Seems like AWS has to respond. And we know Google is, you know, sharpening its knives to come up with its response. >> Yeah, I mean Google just went and talked about Bard for the first time this week and they're in private preview or I guess they call it beta, but. Right at the moment to select, select AI users, which I have no idea what that means. But that's a very interesting way that they're marketing it out there. But, I think that Amazon will have to respond. I think they'll be more measured than say, what Google's doing with Bard and just throwing it out there to, hey, we're going into beta now. I think they'll look at it and see where do we go and how do we actually integrate this in? Because they do have a lot of components of AI and ML underneath the hood that other services use. And I think that, you know, they've learned from that. And I think that they've already done a good job. Especially for media and entertainment when you start to look at some of the ways that they use it for helping do graphics and helping to do drones. I think part of their buy of iRobot was the fact that iRobot was a big user of RoboMaker, which is using different models to train those robots to go around objects and things like that, so. >> Quick touch on Kubernetes, the whole DevOps World we just covered. The Cloud Native Foundation Security, CNCF. The security conference up in Seattle last week. First time they spun that out kind of like reinforced, you know, AWS spins out, reinforced from reinvent. Amsterdam's coming up soon, the CubeCon. What should we expect? What's hot in Cubeland? >> Yeah, I think, you know, Kubes, you're going to be looking at how OpenShift keeps growing and I think to that respect you get to see the momentum with people like Red Hat. You see others coming up and realizing how OpenShift has gone to market as being, like you were saying, partnering with those Clouds and really making it simple. I think the simplicity and the manageability of Kubernetes is going to be at the forefront. I think a lot of the investment is still going into, how do I bring observability and DevOps and AIOps and MLOps all together. And I think that's going to be a big place where people are going to be looking to see what comes out of CubeCon in Amsterdam. I think it's that manageability ease of use. >> Well Rob, I look forward to working with you on behalf of the whole Cube team. We're going to do more of these and go out to some shows extract the signal from the noise. Really appreciate you coming into our studio. >> Well, thank you for having me on. Really appreciate it. >> You're really welcome. All right, keep it right there, or thanks for watching. This is Dave Vellante for the Cube. And we'll see you next time. (light music)
SUMMARY :
I'm really pleased to It's always great to be here. and I think we can have the number of Clouds that they have, contract to start with those make sense to you And, I think when you look in terms of, you know, the outlook. And they're looking to My sense is they still, you know, in how they go to market And he said to this audience, is it the best place for me to go? You do strategy, you do messaging. and it's, you know, And I think when you start Even Oracle, you know, since they started to to be 75% of AWS IAS revenues. You know, what do you think? it's, you know, I think it's growing well. Is that just because of the And be able to move you forward. I feel like, you know, I think when, you know, you could say, And we know Google is, you know, And I think that, you know, you know, AWS spins out, and I think to that respect forward to working with you Well, thank you for having me on. And we'll see you next time.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amazon | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Bob Evans | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
HP | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Rob | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Oracle | ORGANIZATION | 0.99+ |
Rob Strechay | PERSON | 0.99+ |
New York | LOCATION | 0.99+ |
September | DATE | 0.99+ |
Seattle | LOCATION | 0.99+ |
January | DATE | 0.99+ |
Dev Ittycheria | PERSON | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
NetApp | ORGANIZATION | 0.99+ |
Amsterdam | LOCATION | 0.99+ |
75% | QUANTITY | 0.99+ |
UK | LOCATION | 0.99+ |
AWSs | ORGANIZATION | 0.99+ |
June | DATE | 0.99+ |
Snowplow | ORGANIZATION | 0.99+ |
eight | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
Scarpelli | PERSON | 0.99+ |
15% | QUANTITY | 0.99+ |
Australia | LOCATION | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
Slootman | PERSON | 0.99+ |
two-year | QUANTITY | 0.99+ |
AMD | ORGANIZATION | 0.99+ |
Europe | LOCATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
six factors | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
Merrill Lynch | ORGANIZATION | 0.99+ |
Last June | DATE | 0.99+ |
five countries | QUANTITY | 0.99+ |
eight people | QUANTITY | 0.99+ |
U.S. | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
16 people | QUANTITY | 0.99+ |
Databricks' | ORGANIZATION | 0.99+ |
Phil Brotherton, NetApp | Broadcom’s Acquisition of VMware
(upbeat music) >> Hello, this is Dave Vellante, and we're here to talk about the massive $61 billion planned acquisition of VMware by Broadcom. And I'm here with Phil Brotherton of NetApp to discuss the implications for customers, for the industry, and NetApp's particular point of view. Phil, welcome. Good to see you again. >> It's great to see you, Dave. >> So this topic has garnered a lot of conversation. What's your take on this epic event? What does it mean for the industry generally, and customers specifically? >> You know, I think time will tell a little bit, Dave. We're in the early days. We've, you know, so we heard the original announcements and then it's evolved a little bit, as we're going now. I think overall it'll be good for the ecosystem in the end. There's a lot you can do when you start combining what VMware can do with compute and some of the hardware assets of Broadcom. There's a lot of security things that can be brought, for example, to the infrastructure, that are very high-end and cool, and then integrated, so it's easy to do. So I think there's a lot of upside for it. There's obviously a lot of concern about what it means for vendor consolidation and pricing and things like that. So time will tell. >> You know, when this announcement first came out, I wrote a piece, you know, how "Broadcom will tame the VMware beast," I called it. And, you know, looked at Broadcom's history and said they're going to cut, they're going to raise prices, et cetera, et cetera. But I've seen a different tone, certainly, as Broadcom has got into the details. And I'm sure I and others maybe scared a lot of customers, but I think everybody's kind of calming down now. What are you hearing from customers about this acquisition? How are they thinking about it? >> You know, I think it varies. There's, I'd say generally we have like half our installed base, Dave, runs ESX Server, so the bulk of our customers use VMware, and generally they love VMware. And I'm talking mainly on-prem. We're just extending to the cloud now, really, at scale. And there's a lot of interest in continuing to do that, and that's really strong. The piece that's careful is this vendor, the cost issues that have come up. The things that were in your piece, actually. And what does that mean to me, and how do I balance that out? Those are the questions people are dealing with right now. >> Yeah, so there's obviously a lot of talk about the macro, the macro headwinds. Everybody's being a little cautious. The CIOs are tapping the brakes. We all sort of know that story. But we have some data from our partner ETR that ask, they go out every quarter and they survey, you know, 1500 or so IT practitioners, and they ask the ones that are planning to spend less, that are cutting, "How are you going to approach that? What's your primary methodology in terms of achieving, you know, cost optimization?" The number one, by far, answer was to consolidate redundant vendors. It was like, it's now up to about 40%. The second, distant second, was, "We're going to, you know, optimize cloud costs." You know, still significant, but it was really that consolidating the redundant vendors. Do you see that? How does NetApp fit into that? >> Yeah, that is an interesting, that's a very interesting bit of research, Dave. I think it's very right. One thing I would say is, because I've been in the infrastructure business in Silicon Valley now for 30 years. So these ups and downs are, that's a consistent thing in our industry, and I always think people should think of their infrastructure and cost management. That's always an issue, with infrastructure as cost management. What I've told customers forever is that when you look at cost management, our best customers at cost management are typically service providers. There's another aspect to cost management, is you want to automate as much as possible. And automation goes along with vendor consolidation, because how you automate different products, you don't want to have too many vendors in your layers. And what I mean by the layers of ecosystem, there's a storage layer, the network layer, the compute layer, like, the security layer, database layer, et cetera. When you think like that, everybody should pick their partners very carefully, per layer. And one last thought on this is, it's not like people are dumb, and not trying to do this. It's, when you look at what happens in the real world, acquisitions happen, things change as you go. And in these big customers, that's just normal, that things change. But you always have to have this push towards consolidating and picking your vendors very carefully. >> Also, just to follow up on that, I mean, you know, when you think about multi-cloud, and you mentioned, you know, you've got some big customers, they do a lot of M & A, it's kind of been multi-cloud by accident. "Oh, we got all these other tools and storage platforms and whatever it is." So where does NetApp fit in that whole consolidation equation? I'm thinking about, you know, cross-cloud services, which is a big VMware theme, thinking about a consistent experience, on-prem, hybrid, across the three big clouds, out to the edge. Where do you fit? >> So our view has been, and it was this view, and we extend it to the cloud, is that the data layer, so in our software, is called ONTAP, the data layer is a really important layer that provides a lot of efficiency. It only gets bigger, how you do compliance, how you do backup, DR, blah blah blah. All that data layer services needs to operate on-prem and on the clouds. So when you look at what we've done over the years, we've extended to all the clouds, our data layer. We've put controls, management tools, over the top, so that you can manage the entire data layer, on-prem and cloud, as one layer. And we're continuing to head down that path, 'cause we think that data layer is obviously the path to maximum ability to do compliance, maximum cost advantages, et cetera. So we've really been the company that set our sights on managing the data layer. Now, if you look at VMware, go up into the network layer, the compute layer, VMware is a great partner, and that's why we work with them so closely, is they're so perfect a fit for us, and they've been a great partner for 20 years for us, connecting those infrastructural data layers: compute, network, and storage. >> Well, just to stay on that for a second. I've seen recently, you kind of doubled down on your VMware alliance. You've got stuff at re:Invent I saw, with AWS, you're close to Azure, and I'm really talking about ONTAP, which is sort of an extension of what you were just talking about, Phil, which is, you know, it's kind of NetApp's storage operating system, if you will. It's a world class. But so, maybe talk about that relationship a little bit, and how you see it evolving. >> Well, so what we've been seeing consistently is, customers want to use the advantages of the cloud. So, point one. And when you have to completely refactor apps and all this stuff, it limits, it's friction. It limits what you can do, it raises costs. And what we did with VMware, VMware is this great platform for being able to run basically client-server apps on-prem and cloud, the exact same way. The problem is, when you have large data sets in the VMs, there's some cost issues and things, especially on the cloud. That drove us to work together, and do what we did. We GA-ed, we're the, so NetApp is the only independent storage, independent storage, say this right, independent storage platform certified to run with VMware cloud on Amazon. We GA-ed that last summer. We GA-ed with Azure, the Azure VMware service, a couple months ago. And you'll see news coming with GCP soon. And so the idea was, make it easy for customers to basically run in a hybrid model. And then if you back out and go, "What does that mean for you as a customer?", it's not saying you should go to the cloud, necessarily, or stay on-prem, or whatever. But it's giving you the flexibility to cost-optimize where you want to be. And from a data management point of view, ONTAP gives you the consistent data management, whichever way you decide to go. >> Yeah, so I've been following NetApp for decades, when you were Network Appliance, and I saw you go from kind of the workstation space into the enterprise. I saw you lean into virtualization really early on, and you've been a great VMware partner ever since. And you were early in cloud, so, sort of talking about, you know, that cross-cloud, what we call supercloud. I'm interested in what you're seeing in terms of specific actions that customers are taking. Like, I think about ELAs, and I think it's a two-edged sword. You know, should customers, you know, lean into ELAs right now? You know, what are you seeing there? You talked about, you know, sort of modernizing apps with things like Kubernetes, you know, cloud migration. What are some of the techniques that you're advising customers to take in the context of this acquisition? >> You know, so the basics of this are pretty easy. One is, and I think even Raghu, the CEO of VMware, has talked about this. Extending your ELA is probably a good idea. Like I said, customers love VMware, so having a commitment for a time, consistent cost management for a time is a good strategy. And I think that's why you're hearing ELA extensions being discussed. It's a good idea. The second part, and I think it goes to your surveys, that cost optimization point on the cloud is, moving to the cloud has huge advantages, but if you just kind of lift and shift, oftentimes the costs aren't realized the way you'd want. And the term "modernization," changing your app to use more Kubernetes, more cloud-native services, is often a consideration that goes into that. But that requires time. And you know, most companies have hundreds of apps, or thousands of apps, they have to consider modernizing. So you want to then think through the journey, what apps are going to move, what gets modernized, what gets lifted-shifted, how many data centers are you compressing? There's a lot of data center, the term I've been hearing is "data center evacuations," but data center consolidation. So that there's some even energy savings advantages sometimes with that. But the whole point, I mean, back up to my whole point, the whole point is having the infrastructure that gives you the flexibility to make the journey on your cost advantages and your business requirements. Not being forced to it. Like, it's not really a philosophy, it's more of a business optimization strategy. >> When you think about application modernization and Kubernetes, how does NetApp, you know, fit into that, as a data layer? >> Well, so if you kind of think, you said, like our journey, Dave, was, when we started our life, we were doing basically virtualization of volumes and things for technical customers. And the servers were always bare metal servers that we got involved with back then. This is, like, going back 20 years. Then everyone moved to VMs, and, like, it's probably, today, I mean, getting to your question in a second, but today, loosely, 20% bare metal servers, 80% virtual machines today. And containers is growing, now a big growing piece. So, if you will, sort of another level of virtual machines in containers. And containers were historically stateless, meaning the storage didn't have anything to do. Storage is always the stateful area in the architectures. But as containers are getting used more, stateful containers have become a big deal. So we've put a lot of emphasis into a product line we call Astra that is the world's best data management for containers. And that's both a cloud service and used on-prem in a lot of my customers. It's a big growth area. So that's what, when I say, like, one partner that can do data management, just, that's what we have to do. We have to keep moving with our customers to the type of data they want to store, and how do you store it most efficiently? Hey, one last thought on this is, where I really see this happening, there's a booming business right now in artificial intelligence, and we call it modern data analytics, but people combining big data lakes with AI, and that's where some of this, a lot of the container work comes in. We've extended objects, we have a thing we call file-object duality, to make it easy to bridge the old world of files to the new world of objects. Those all go hand in hand with app modernization. >> Yeah, it's a great thing about this industry. It never sits still. And you're right, it's- >> It's why I'm in it. >> Me too. Yeah, it's so much fun. There's always something. >> It is an abstraction layer. There's always going to be another abstraction layer. Serverless is another example. It's, you know, primarily stateless, that's probably going to, you know, change over time. All right, last question. In thinking about this Broadcom acquisition of VMware, in the macro climate, put a sort of bow on where NetApp fits into this equation. What's the value you bring in this context? >> Oh yeah, well it's like I said earlier, I think it's the data layer of, it's being the data layer that gives you what you guys call the supercloud, that gives you the ability to choose which cloud. Another thing, all customers are running at least two clouds, and you want to be able to pick and choose, and do it your way. So being the data layer, VMware is going to be in our infrastructures for at least as long as I'm in the computer business, Dave. I'm getting a little old. So maybe, you know, but "decades" I think is an easy prediction, and we plan to work with VMware very closely, along with our customers, as they extend from on-prem to hybrid cloud operations. That's where I think this will go. >> Yeah, and I think you're absolutely right. Look at the business case for migrating off of VMware. It just doesn't make sense. It works, it's world class, it recover... They've done so much amazing, you know, they used to be called, Moritz called it the software mainframe, right? And that's kind of what it is. I mean, it means it doesn't go down, right? And it supports virtually any application, you know, around the world, so. >> And I think getting back to your original point about your article, from the very beginning, is, I think Broadcom's really getting a sense of what they've bought, and it's going to be, hopefully, I think it'll be really a fun, another fun era in our business. >> Well, and you can drive EBIT a couple of ways. You can cut, okay, fine. And I'm sure there's some redundancies that they'll find. But there's also, you can drive top-line revenue. And you know, we've seen how, you know, EMC and then Dell used that growth from VMware to throw off free cash flow, and it was just, you know, funded so much, you know, innovation. So innovation is the key. Hock Tan has talked about that a lot. I think there's a perception that Broadcom, you know, doesn't invest in R & D. That's not true. I think they just get very focused with that investment. So, Phil, I really appreciate your time. Thanks so much for joining us. >> Thanks a lot, Dave. It's fun being here. >> Yeah, our pleasure. And thank you for watching theCUBE, your leader in enterprise and emerging tech coverage. (upbeat music)
SUMMARY :
Good to see you again. the industry generally, There's a lot you can do I wrote a piece, you know, and how do I balance that out? a lot of talk about the macro, is that when you look at cost management, and you mentioned, you know, so that you can manage and how you see it evolving. to cost-optimize where you want to be. and I saw you go from kind And you know, and how do you store it most efficiently? And you're right, it's- Yeah, it's so much fun. What's the value you and you want to be able They've done so much amazing, you know, and it's going to be, and it was just, you know, Thanks a lot, Dave. And thank you for watching theCUBE,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Phil | PERSON | 0.99+ |
Phil Brotherton | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
80% | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
20 years | QUANTITY | 0.99+ |
Phil Brotherton | PERSON | 0.99+ |
Broadcom | ORGANIZATION | 0.99+ |
20% | QUANTITY | 0.99+ |
30 years | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
$61 billion | QUANTITY | 0.99+ |
Raghu | PERSON | 0.99+ |
NetApp | ORGANIZATION | 0.99+ |
second part | QUANTITY | 0.99+ |
1500 | QUANTITY | 0.99+ |
one layer | QUANTITY | 0.99+ |
EMC | ORGANIZATION | 0.99+ |
Hock Tan | PERSON | 0.99+ |
today | DATE | 0.98+ |
hundreds of apps | QUANTITY | 0.98+ |
NetApp | TITLE | 0.98+ |
One | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
second | QUANTITY | 0.97+ |
ETR | ORGANIZATION | 0.97+ |
Is Supercloud an Architecture or a Platform | Supercloud2
(electronic music) >> Hi everybody, welcome back to Supercloud 2. I'm Dave Vellante with my co-host John Furrier. We're here at our tricked out Palo Alto studio. We're going live wall to wall all day. We're inserting a number of pre-recorded interviews, folks like Walmart. We just heard from Nir Zuk of Palo Alto Networks, and I'm really pleased to welcome in David Flynn. David Flynn, you may know as one of the people behind Fusion-io, completely changed the way in which people think about storing data, accessing data. David Flynn now the founder and CEO of a company called Hammerspace. David, good to see you, thanks for coming on. >> David: Good to see you too. >> And Dr. Nelu Mihai is the CEO and founder of Cloud of Clouds. He's actually built a Supercloud. We're going to get into that. Nelu, thanks for coming on. >> Thank you, Happy New Year. >> Yeah, Happy New Year. So I'm going to start right off with a little debate that's going on in the community if you guys would bring out this slide. So Bob Muglia early today, he gave a definition of Supercloud. He felt like we had to tighten ours up a little bit. He said a Supercloud is a platform, underscoring platform, that provides programmatically consistent services hosted on heterogeneous cloud providers. Now, Nelu, we have this shared doc, and you've been in there. You responded, you said, well, hold on. Supercloud really needs to be an architecture, or else we're going to have this stove pipe of stove pipes, really. And then you went on with more detail, what's the information model? What's the execution model? How are users going to interact with Supercloud? So I start with you, why architecture? The inference is that a platform, the platform provider's responsible for the architecture? Why does that not work in your view? >> No, the, it's a very interesting question. So whenever I think about platform, what's the connotation, you think about monolithic system? Yeah, I mean, I don't know whether it's true or or not, but there is this connotation of of monolithic. On the other hand, if you look at what's a problem right now with HyperClouds, from the customer perspective, they're very complex. There is a heterogeneous world where actually every single one of this HyperClouds has their own architecture. You need rocket scientists to build a cloud applications. Always there is this contradiction between cost and performance. They fight each other. And I'm quoting here a former friend of mine from Bell Labs who work at AWS who used to say "Cloud is cheap as long as you don't use it too much." (group chuckles) So clearly we need something that kind of plays from the principle point of view the role of an operating system, that seats on top of this heterogeneous HyperCloud, and there's nothing wrong by having these proprietary HyperClouds, think about processors, think about operating system and so on, so forth. But in order to build a system that is simple enough, I think we need to go deeper and understand. >> So the argument, the counterargument to that, David, is you'll never get there. You need a proprietary system to get to market sooner, to solve today's problem. Now I don't know where you stand on this platform versus architecture. I haven't asked you, but. >> I think there are aspects of both for sure. I mean it needs to be an architecture in the sense that it's broad based and open and so forth. But you know, platform, you could say as long as people can instantiate it themselves, on their own infrastructure, as long as it's something that can be deployed as, you know, software defined, you don't want the concept of platform being the monolith, you know, combined hardware and software. So it really depends on what you're focused on when you're saying platform, you know, I'd say as long as they software defined thing, to where it can literally run anywhere. I mean, because I really think what we're talking about here is the original concept of cloud computing. The ability to run anything anywhere, without having to care about the physical infrastructure. And what we have today is not that, the cloud today is a big mainframe in the sky, that just happens to be large enough that once you select which region, generally you have enough resources. But, you know, nowadays you don't even necessarily have enough resources in one region. and then you're kind of stuck. So we haven't really gotten to that utility model of computing. And you're also asked to rewrite your application, you know, to abandon the conveniences of high performance file access. You got to rewrite it to use object storage stuff. We have to get away from that. >> Okay, I want to just drill on that, 'cause I think I like that point about, there's not enough availability, but on the developer cloud, the original AWS premise was targeting developers, 'cause at that time, you have to provision a Sun box get a Cisco DSU/CSU, now you get on the cloud. But I think you're giving up the scale question, 'cause I think right now, scale is huge, enterprise grade versus cloud for developers. >> That's Right. >> Because I mean look at, Amazon, Azure, they got compute, they got storage, they got queuing, and some stuff. If you're doing a startup, you throw your app up there, localhost to cloud, no big deal. It's the scale thing that gets me- >> And you can tell by the fact that, in regions that are under high demand, right, like in London or LA, at least with the clients we work with in the median entertainment space, it costs twice as much for the exact same cloud instances that do the exact same amount of work, as somewhere out in rural Canada. So why is it you have such a cost differential, it has to do with that supply and demand, and the fact that the clouds aren't really the ability to run anything anywhere. Even within the same cloud vendor, you're stuck in a specific region. >> And that was never the original promise, right? I mean it was, we turned it into that. But the original promise was get rid of the heavy lifting of IT. >> Not have to run your own, yeah, exactly. >> And then it became, wow, okay I can run anywhere. And then you know, it's like web 2.0. You know people say why Supercloud, you and I talked about this, why do you need a name for Supercloud? It's like web 2.0. >> It's what Cloud was supposed to be. >> It's what cloud was supposed to be, (group laughing and talking) exactly, right. >> Cloud was supposed to be run anything anywhere, or at least that's what we took it as. But you're right, originally it was just, oh don't have to run your own infrastructure, and you can choose somebody else's infrastructure. >> And you did that >> But you're still bound to that. >> Dave: And People said I want more, right? >> But how do we go from here? >> That's, that's actually, that's a very good point, because indeed when the first HyperClouds were designed, were designed really focus on customers. I think Supercloud is an opportunity to design in the right way. Also having in mind the computer science rigor. And we should take advantage of that, because in fact actually, if cloud would've been designed properly from the beginning, probably wouldn't have needed Supercloud. >> David: You wouldn't have to have been asked to rewrite your application. >> That's correct. (group laughs) >> To use REST interfaces to your storage. >> Revisist history is always a good one. But look, cloud is great. I mean your point is cloud is a good thing. Don't hold it back. >> It is a very good thing. >> Let it continue. >> Let it go as as it is. >> Yeah, let that thing continue to grow. Don't impose restrictions on the cloud. Just refactor what you need to for scale or enterprise grade or availability. >> And you would agree with that, is that true or is it problem you're solving? >> Well yeah, I mean it, what the cloud is doing is absolutely necessary. What the public cloud vendors are doing is absolutely necessary. But what's been missing is how to provide a consistent interface, especially to persistent data. And have it be available across different regions, and across different clouds. 'cause data is a highly localized thing in current architecture. It only exists as rendered by the storage system that you put it in. Whether that's a legacy thing like a NetApp or an Isilon or even a cloud data service. It's localized to a specific region of the cloud in which you put that. We have to delocalize data, and provide a consistent interface to it across all sites. That's high performance, local access, but to global data. >> And so Walmart earlier today described their, what we call Supercloud, they call it the Walmart cloud native platform. And they use this triplet model. They have AWS and Azure, no, oh sorry, no AWS. They have Azure and GCP and then on-prem, where all the VMs live. When you, you know, probe, it turns out that it's only stateless in the cloud. (John laughs) So, the state stuff- >> Well let's just admit it, there is no such thing as stateless, because even the application binaries and libraries are state. >> Well I'm happy that I'm hearing that. >> Yeah, okay. >> Because actually I have a lot of debate (indistinct). If you think about no software running on a (indistinct) machine is stateless. >> David: Exactly. >> This is something that was- >> David: And that's data that needs to be distributed and provided consistently >> (indistinct) >> Across all the clouds, >> And actually, it's a nonsense, but- >> Dave: So it's an illusion, okay. (group talks over each other) >> (indistinct) you guys talk about stateless. >> Well, see, people make the confusion between state and persistent state, okay. Persistent state it's a different thing. State is a different thing. So, but anyway, I want to go back to your point, because there's a lot of debate here. People are talking about data, some people are talking about logic, some people are talking about networking. In my opinion is this triplet, which is data logic and connectivity, that has equal importance. And actually depending on the application, can have the center of gravity moving towards data, moving towards what I call execution units or workloads. And connectivity is actually the most important part of it. >> David: (indistinct). >> Some people are saying move the logic towards the data, some other people, and you are saying actually, that no, you have to build a distributed data mesh. What I'm saying is actually, you have to consider all these three variables, all these vector in order to decide, based on application, what's the most important. Because sometimes- >> John: So the application chooses >> That's correct. >> Well it it's what operating systems were in the past, was principally the thing that runs and manages the jobs, the job scheduler, and the thing that provides your persistent data (indistinct). >> Okay. So we finally got operating system into the equation, thank you. (group laughs) >> Nelu: I actually have a PhD in operating system. >> Cause what we're talking about is an operating system. So forget platform or architecture, it's an operating environment. Let's use it as a general term. >> All right. I think that's about it for me. >> All right, let's take (indistinct). Nelu, I want ask you quick, 'cause I want to give a, 'cause I believe it's an operating system. I think it's going to be a reset, refactored. You wrote to me, "The model of Supercloud has to be open theoretical, has to satisfy the rigors of computer science, and customer requirements." So unique to today, if the OS is going to be refactored, it's not going to be, may or may not be Red Hat or somebody else. This new OS, obviously requirements are for customers too but is what's the computer science that is needed? Where are we, what's the missing? Where's the science in this shift? It's not your standard OS it's not like an- (group talks over each other) >> I would beg to differ. >> (indistinct) truly an operation environment. But the, if you think about, and make analogies, what you need when you design a distributed system, well you need an information model, yeah. You need to figure out how the data is located and distributed. You need a model for the execution units, and you need a way to describe the interactions between all these objects. And it is my opinion that we need to go deeper and formalize these operations in order to make a step forward. And when we design Supercloud, and design something that is better than the current HyperClouds. And actually that is when we design something better, you make a system more efficient and it's going to be better from the cost point of view, from the performance point of view. But we need to add some math into all this customer focus centering and I really admire AWS and their executive team focusing on the customer. But now it's time to go back and see, if we apply some computer science, if you try to formalize to build a theoretical model of cloud, can we build a system that is better than existing ones? >> So David, how do you- >> this is what I'm saying. >> That's a good question >> How do You see the operating system of a, or operating environment of a decentralized cloud? >> Well I think it's layered. I mean we have operating systems that can run systems quite efficiently. Linux has sort of one in the data center, but we're talking about a layer on top of that. And I think we're seeing the emergence of that. For example, on the job scheduling side of things, Kubernetes makes a really good example. You know, you break the workload into the most granular units of compute, the containerized microservice, and then you use a declarative model to state what is needed and give the system the degrees of freedom that it can choose how to instantiate it. Because the thing about these distributed systems, is that the complexity explodes, right? Running a piece of hardware, running a single server is not a problem, even with all the many cores and everything like that. It's when you start adding in the networking, and making it so that you have many of them. And then when it's going across whole different data centers, you know, so, at that level the way you solve this is not manually (group laughs) and not procedurally. You have to change the language so it's intent based, it's a declarative model, and what you're stating is what is intended, and you're leaving it to more advanced techniques, like machine learning to decide how to instantiate that service across the cluster, which is what Kubernetes does, or how to instantiate the data across the diverse storage infrastructure. And that's what we do. >> So that's a very good point because actually what has been neglected with HyperClouds is really optimization and automation. But in order to be able to do both of these things, you need, I'm going back and I'm stubborn, you need to have a mathematical model, a theoretical model because what does automation mean? It means that we have to put machines to do the work instead of us, and machines work with what? Formula, with algorithms, they don't work with services. So I think Supercloud is an opportunity to underscore the importance of optimization and automation- >> Totally agree. >> In HyperCloud, and actually by doing that, we can also have an interesting connotation. We are also contributing to save our planet, because if you think right now. we're consuming a lot of energy on this HyperClouds and also all this AI applications, and I think we can do better and build the same kind of application using less energy. >> So yeah, great point, love that call out, the- you know, Dave and I always joke about the old, 'cause we're old, we talk about, you know, (Nelu Laughs) old history, OS/2 versus DOS, okay, OS's, OS/2 is silly better, first threaded OS, DOS never went away. So how does legacy play into this conversation? Because I buy the theoretical, I love the conversation. Okay, I think it's an OS, totally see it that way myself. What's the blocker? Is there a legacy that drags it back? Is the anchor dragging from legacy? Is there a DOS OS/2 moment? Is there an opportunity to flip the script? This is- >> I think that's a perfect example of why we need to support the existing interfaces, Operating Systems, real operating systems like Linux, understands how to present data, it's called a file system, block devices, things that that plumb in there. And by, you know, going to a REST interface and S3 and telling people they have to rewrite their applications, you can't even consume your application binaries that way, the OS doesn't know how to pull that sort of thing. So we, to get to cloud, to get to the ability to host massive numbers of tenants within a centralized infrastructure, you know, we abandoned these lower level interfaces to the OS and we have to go back to that. It's the reason why DOS ultimately won, is it had the momentum of the install base. We're seeing the same thing here. Whatever it is, it has to be a real file system and not a come down file system >> Nelu, what's your reaction, 'cause you're in the theoretical bandwagon. Let's get your reaction. >> No, I think it's a good, I'll give, you made a good analogy between OS/2 and DOS, but I'll go even farther saying, if you think about the evolution operating system didn't stop the evolution of underlying microprocessors, hardware, and so on and so forth. On the contrary, it was a catalyst for that. So because everybody could develop their own hardware, without worrying that the applications on top of operating system are going to modify. The same thing is going to happen with Supercloud. You're going to have the AWSs, you're going to have the Azure and the the GCP continue to evolve in their own way proprietary. But if we create on top of it the right interface >> The open, this is why open is important. >> That's correct, because actually you're going to see sometime ago, everybody was saying, remember venture capitals were saying, "AWS killed the world, nobody's going to come." Now you see what Oracle is doing, and then you're going to see other players. >> It's funny, Amazon's trying to be more like Microsoft. Microsoft's trying to be more like Amazon and Google- Oracle's just trying to say they have cloud. >> That's, that's correct, (group laughs) so, my point is, you're going to see a multiplication of this HyperClouds and cloud technology. So, the system has to be open in order to accommodate what it is and what is going to come. Okay, so it's open. >> So the the legacy- so legacy is an opportunity, not a blocker in your mind. And you see- >> That's correct, I think we should allow them to continue to to to be their own actually. But maybe you're going to find a way to connect with it. >> Amazon's the processor, and they're on the 80 80 80 right? >> That's correct. >> You're saying you love people trying to get put to work. >> That's a good analogy. >> But, performance levels you say good luck, right? >> Well yeah, we have to be able to take traditional applications, high performance applications, those that consume file system and persistent data. Those things have to be able to run anywhere. You need to be able to put, put them onto, you know, more elastic infrastructure. So, we have to actually get cloud to where it lives up to its billing. >> And that's what you're solving for, with Hammerspace, >> That's what we're solving for, making it possible- >> Give me the bumper sticker. >> Solving for how do you have massive quantities of unstructured file data? At the end of the day, all data ultimately is unstructured data. Have that persistent data available, across any data center, within any cloud, within any region on-prem, at the edge. And have not just the same APIs, but have the exact same data sets, and not sucked over a straw remote, but at extreme high performance, local access. So how do you have local access to globally shared distributed data? And that's what we're doing. We are orchestrating data globally across all different forms of storage infrastructure, so you have a consistent access at the highest performance levels, at the lowest level innate built into the OS, how to consume it as (indistinct) >> So are you going into the- all the clouds and natively building in there, or are you off cloud? >> So This is software that can run on cloud instances and provide high performance file within the cloud. It can take file data that's on-prem. Again, it's software, it can run in virtual or on physical servers. And it abstracts the data from the existing storage infrastructure, and makes the data visible and consumable and orchestratable across any of it. >> And what's the elevator pitch for Cloud of Cloud, give that too. >> Well, Cloud of Clouds creates a theoretical model of cloud, and it describes every single object in the cloud. Where is data, execution units, and connectivity, with one single class of very simple object. And I can, I can give you (indistinct) >> And the problem that solves is what? >> The problem that solves is, it creates this mathematical model that is necessary in order to do other interesting things, such as optimization, using sata engines, using automation, applying ML for instance. Or deep learning to automate all this clouds, if you think about in the industrial field, we know how to manage and automate huge plants. Why wouldn't it do the same thing in cloud? It's the same thing you- >> That's what you mean by theoretical model. >> Nelu: That's correct. >> Lay out the architecture, almost the bones of skeleton or something, or, and then- >> That's correct, and then on top of it you can actually build a platform, You can create your services, >> when you say math, you mean you put numbers to it, you kind of index it. >> You quantify this thing and you apply mathematical- It's really about, I can disclose this thing. It's really about describing the cloud as a knowledge graph for every single object in the graph for node, an edge is a vector. And then once you have this model, then you can apply the field theory, and linear algebra to do operation with these vectors. And it's, this creates a very interesting opportunity to let the math do this thing for us. >> Okay, so what happens with hyperscale, or it's like AWS in your model. >> So in, in my model actually, >> Are they happy with this, or they >> I'm very happy with that. >> Will they be happy with you? >> We create an interface to every single HyperCloud. We actually, we don't need to interface with the thousands of APIs, but you know, if we have the 80 20 rule, and we map these APIs into this graph, and then every single operation that is done in this graph is done from the beginning, in an optimized manner and also automation ready. >> That's going to be great. David, I want us to go back to you before we close real quick. You've had a lot of experience, multiple ventures on the front end. You talked to a lot of customers who've been innovating. Where are the classic (indistinct)? Cause you, you used to sell and invent product around the old school enterprises with storage, you know that that trajectory storage is still critical to store the data. Where's the classic enterprise grade mindset right now? Those customers that were buying, that are buying storage, they're in the cloud, they're lifting and shifting. They not yet put the throttle on DevOps. When they look at this Supercloud thing, Are they like a deer in the headlights, or are they like getting it? What's the, what's the classic enterprise look like? >> You're seeing people at different stages of adoption. Some folks are trying to get to the cloud, some folks are trying to repatriate from the cloud, because they've realized it's better to own than to rent when you use a lot of it. And so people are at very different stages of the journey. But the one thing that's constant is that there's always change. And the change here has to do with being able to change the location where you're doing your computing. So being able to support traditional workloads in the cloud, being able to run things at the edge, and being able to rationalize where the data ought to exist, and with a declarative model, intent-based, business objective-based, be able to swipe a mouse and have the data get redistributed and positioned across different vendors, across different clouds, that, we're seeing that as really top of mind right now, because everybody's at some point on this journey, trying to go somewhere, and it involves taking their data with them. (John laughs) >> Guys, great conversation. Thanks so much for coming on, for John, Dave. Stay tuned, we got a great analyst power panel coming right up. More from Palo Alto, Supercloud 2. Be right back. (bouncy music)
SUMMARY :
and I'm really pleased to And Dr. Nelu Mihai is the CEO So I'm going to start right off On the other hand, if you look at what's So the argument, the of platform being the monolith, you know, but on the developer cloud, It's the scale thing that gets me- the ability to run anything anywhere. of the heavy lifting of IT. Not have to run your And then you know, it's like web 2.0. It's what Cloud It's what cloud was supposed to be, and you can choose somebody bound to that. Also having in mind the to rewrite your application. That's correct. I mean your point is Yeah, let that thing continue to grow. of the cloud in which you put that. So, the state stuff- because even the application binaries If you think about no software running on Dave: So it's an illusion, okay. (indistinct) you guys talk And actually depending on the application, that no, you have to build the job scheduler, and the thing the equation, thank you. a PhD in operating system. about is an operating system. I think I think it's going to and it's going to be better at that level the way you But in order to be able to and build the same kind of Because I buy the theoretical, the OS doesn't know how to Nelu, what's your reaction, of it the right interface The open, this is "AWS killed the world, to be more like Microsoft. So, the system has to be open So the the legacy- to continue to to to put to work. You need to be able to put, And have not just the same APIs, and makes the data visible and consumable for Cloud of Cloud, give that too. And I can, I can give you (indistinct) It's the same thing you- That's what you mean when you say math, and linear algebra to do Okay, so what happens with hyperscale, the thousands of APIs, but you know, the old school enterprises with storage, and being able to rationalize Stay tuned, we got a
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Nelu | PERSON | 0.99+ |
David Flynn | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
AWS | ORGANIZATION | 0.99+ |
London | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
LA | LOCATION | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
OS/2 | TITLE | 0.99+ |
Nir Zuk | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Hammerspace | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Bell Labs | ORGANIZATION | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
DOS | TITLE | 0.99+ |
AWSs | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
twice | QUANTITY | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Canada | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
Nelu Laughs | PERSON | 0.98+ |
thousands | QUANTITY | 0.98+ |
first | QUANTITY | 0.97+ |
Linux | TITLE | 0.97+ |
HyperCloud | TITLE | 0.97+ |
Cloud of Cloud | TITLE | 0.97+ |
one | QUANTITY | 0.96+ |
Cloud of Clouds | ORGANIZATION | 0.95+ |
GCP | TITLE | 0.95+ |
Azure | TITLE | 0.94+ |
three variables | QUANTITY | 0.94+ |
one single class | QUANTITY | 0.94+ |
single server | QUANTITY | 0.94+ |
triplet | QUANTITY | 0.94+ |
one region | QUANTITY | 0.92+ |
NetApp | TITLE | 0.92+ |
DOS OS/2 | TITLE | 0.92+ |
Azure | ORGANIZATION | 0.92+ |
earlier today | DATE | 0.92+ |
Cloud of Clouds | TITLE | 0.91+ |
Jack Greenfield, Walmart | A Dive into Walmart's Retail Supercloud
>> Welcome back to SuperCloud2. This is Dave Vellante, and we're here with Jack Greenfield. He's the Vice President of Enterprise Architecture and the Chief Architect for the global technology platform at Walmart. Jack, I want to thank you for coming on the program. Really appreciate your time. >> Glad to be here, Dave. Thanks for inviting me and appreciate the opportunity to chat with you. >> Yeah, it's our pleasure. Now we call what you've built a SuperCloud. That's our term, not yours, but how would you describe the Walmart Cloud Native Platform? >> So WCNP, as the acronym goes, is essentially an implementation of Kubernetes for the Walmart ecosystem. And what that means is that we've taken Kubernetes off the shelf as open source, and we have integrated it with a number of foundational services that provide other aspects of our computational environment. So Kubernetes off the shelf doesn't do everything. It does a lot. In particular the orchestration of containers, but it delegates through API a lot of key functions. So for example, secret management, traffic management, there's a need for telemetry and observability at a scale beyond what you get from raw Kubernetes. That is to say, harvesting the metrics that are coming out of Kubernetes and processing them, storing them in time series databases, dashboarding them, and so on. There's also an angle to Kubernetes that gets a lot of attention in the daily DevOps routine, that's not really part of the open source deliverable itself, and that is the DevOps sort of CICD pipeline-oriented lifecycle. And that is something else that we've added and integrated nicely. And then one more piece of this picture is that within a Kubernetes cluster, there's a function that is critical to allowing services to discover each other and integrate with each other securely and with proper configuration provided by the concept of a service mesh. So Istio, Linkerd, these are examples of service mesh technologies. And we have gone ahead and integrated actually those two. There's more than those two, but we've integrated those two with Kubernetes. So the net effect is that when a developer within Walmart is going to build an application, they don't have to think about all those other capabilities where they come from or how they're provided. Those are already present, and the way the CICD pipelines are set up, it's already sort of in the picture, and there are configuration points that they can take advantage of in the primary YAML and a couple of other pieces of config that we supply where they can tune it. But at the end of the day, it offloads an awful lot of work for them, having to stand up and operate those services, fail them over properly, and make them robust. All of that's provided for. >> Yeah, you know, developers often complain they spend too much time wrangling and doing things that aren't productive. So I wonder if you could talk about the high level business goals of the initiative in terms of the hardcore benefits. Was the real impetus to tap into best of breed cloud services? Were you trying to cut costs? Maybe gain negotiating leverage with the cloud guys? Resiliency, you know, I know was a major theme. Maybe you could give us a sense of kind of the anatomy of the decision making process that went in. >> Sure, and in the course of answering your question, I think I'm going to introduce the concept of our triplet architecture which we haven't yet touched on in the interview here. First off, just to sort of wrap up the motivation for WCNP itself which is kind of orthogonal to the triplet architecture. It can exist with or without it. Currently does exist with it, which is key, and I'll get to that in a moment. The key drivers, business drivers for WCNP were developer productivity by offloading the kinds of concerns that we've just discussed. Number two, improving resiliency, that is to say reducing opportunity for human error. One of the challenges you tend to run into in a large enterprise is what we call snowflakes, lots of gratuitously different workloads, projects, configurations to the extent that by developing and using WCNP and continuing to evolve it as we have, we end up with cookie cutter like consistency across our workloads which is super valuable when it comes to building tools or building services to automate operations that would otherwise be manual. When everything is pretty much done the same way, that becomes much simpler. Another key motivation for WCNP was the ability to abstract from the underlying cloud provider. And this is going to lead to a discussion of our triplet architecture. At the end of the day, when one works directly with an underlying cloud provider, one ends up taking a lot of dependencies on that particular cloud provider. Those dependencies can be valuable. For example, there are best of breed services like say Cloud Spanner offered by Google or say Cosmos DB offered by Microsoft that one wants to use and one is willing to take the dependency on the cloud provider to get that functionality because it's unique and valuable. On the other hand, one doesn't want to take dependencies on a cloud provider that don't add a lot of value. And with Kubernetes, we have the opportunity, and this is a large part of how Kubernetes was designed and why it is the way it is, we have the opportunity to sort of abstract from the underlying cloud provider for stateless workloads on compute. And so what this lets us do is build container-based applications that can run without change on different cloud provider infrastructure. So the same applications can run on WCNP over Azure, WCNP over GCP, or WCNP over the Walmart private cloud. And we have a private cloud. Our private cloud is OpenStack based and it gives us some significant cost advantages as well as control advantages. So to your point, in terms of business motivation, there's a key cost driver here, which is that we can use our own private cloud when it's advantageous and then use the public cloud provider capabilities when we need to. A key place with this comes into play is with elasticity. So while the private cloud is much more cost effective for us to run and use, it isn't as elastic as what the cloud providers offer, right? We don't have essentially unlimited scale. We have large scale, but the public cloud providers are elastic in the extreme which is a very powerful capability. So what we're able to do is burst, and we use this term bursting workloads into the public cloud from the private cloud to take advantage of the elasticity they offer and then fall back into the private cloud when the traffic load diminishes to the point where we don't need that elastic capability, elastic capacity at low cost. And this is a very important paradigm that I think is going to be very commonplace ultimately as the industry evolves. Private cloud is easier to operate and less expensive, and yet the public cloud provider capabilities are difficult to match. >> And the triplet, the tri is your on-prem private cloud and the two public clouds that you mentioned, is that right? >> That is correct. And we actually have an architecture in which we operate all three of those cloud platforms in close proximity with one another in three different major regions in the US. So we have east, west, and central. And in each of those regions, we have all three cloud providers. And the way it's configured, those data centers are within 10 milliseconds of each other, meaning that it's of negligible cost to interact between them. And this allows us to be fairly agnostic to where a particular workload is running. >> Does a human make that decision, Jack or is there some intelligence in the system that determines that? >> That's a really great question, Dave. And it's a great question because we're at the cusp of that transition. So currently humans make that decision. Humans choose to deploy workloads into a particular region and a particular provider within that region. That said, we're actively developing patterns and practices that will allow us to automate the placement of the workloads for a variety of criteria. For example, if in a particular region, a particular provider is heavily overloaded and is unable to provide the level of service that's expected through our SLAs, we could choose to fail workloads over from that cloud provider to a different one within the same region. But that's manual today. We do that, but people do it. Okay, we'd like to get to where that happens automatically. In the same way, we'd like to be able to automate the failovers, both for high availability and sort of the heavier disaster recovery model between, within a region between providers and even within a provider between the availability zones that are there, but also between regions for the sort of heavier disaster recovery or maintenance driven realignment of workload placement. Today, that's all manual. So we have people moving workloads from region A to region B or data center A to data center B. It's clean because of the abstraction. The workloads don't have to know or care, but there are latency considerations that come into play, and the humans have to be cognizant of those. And automating that can help ensure that we get the best performance and the best reliability. >> But you're developing the dataset to actually, I would imagine, be able to make those decisions in an automated fashion over time anyway. Is that a fair assumption? >> It is, and that's what we're actively developing right now. So if you were to look at us today, we have these nice abstractions and APIs in place, but people run that machine, if you will, moving toward a world where that machine is fully automated. >> What exactly are you abstracting? Is it sort of the deployment model or, you know, are you able to abstract, I'm just making this up like Azure functions and GCP functions so that you can sort of run them, you know, with a consistent experience. What exactly are you abstracting and how difficult was it to achieve that objective technically? >> that's a good question. What we're abstracting is the Kubernetes node construct. That is to say a cluster of Kubernetes nodes which are typically VMs, although they can run bare metal in certain contexts, is something that typically to stand up requires knowledge of the underlying cloud provider. So for example, with GCP, you would use GKE to set up a Kubernetes cluster, and in Azure, you'd use AKS. We are actually abstracting that aspect of things so that the developers standing up applications don't have to know what the underlying cluster management provider is. They don't have to know if it's GCP, AKS or our own Walmart private cloud. Now, in terms of functions like Azure functions that you've mentioned there, we haven't done that yet. That's another piece that we have sort of on our radar screen that, we'd like to get to is serverless approach, and the Knative work from Google and the Azure functions, those are things that we see good opportunity to use for a whole variety of use cases. But right now we're not doing much with that. We're strictly container based right now, and we do have some VMs that are running in sort of more of a traditional model. So our stateful workloads are primarily VM based, but for serverless, that's an opportunity for us to take some of these stateless workloads and turn them into cloud functions. >> Well, and that's another cost lever that you can pull down the road that's going to drop right to the bottom line. Do you see a day or maybe you're doing it today, but I'd be surprised, but where you build applications that actually span multiple clouds or is there, in your view, always going to be a direct one-to-one mapping between where an application runs and the specific cloud platform? >> That's a really great question. Well, yes and no. So today, application development teams choose a cloud provider to deploy to and a location to deploy to, and they have to get involved in moving an application like we talked about today. That said, the bursting capability that I mentioned previously is something that is a step in the direction of automatic migration. That is to say we're migrating workload to different locations automatically. Currently, the prototypes we've been developing and that we think are going to eventually make their way into production are leveraging Istio to assess the load incoming on a particular cluster and start shedding that load into a different location. Right now, the configuration of that is still manual, but there's another opportunity for automation there. And I think a key piece of this is that down the road, well, that's a, sort of a small step in the direction of an application being multi provider. We expect to see really an abstraction of the fact that there is a triplet even. So the workloads are moving around according to whatever the control plane decides is necessary based on a whole variety of inputs. And at that point, you will have true multi-cloud applications, applications that are distributed across the different providers and in a way that application developers don't have to think about. >> So Walmart's been a leader, Jack, in using data for competitive advantages for decades. It's kind of been a poster child for that. You've got a mountain of IP in the form of data, tools, applications best practices that until the cloud came out was all On Prem. But I'm really interested in this idea of building a Walmart ecosystem, which obviously you have. Do you see a day or maybe you're even doing it today where you take what we call the Walmart SuperCloud, WCNP in your words, and point or turn that toward an external world or your ecosystem, you know, supporting those partners or customers that could drive new revenue streams, you know directly from the platform? >> Great question, Steve. So there's really two things to say here. The first is that with respect to data, our data workloads are primarily VM basis. I've mentioned before some VMware, some straight open stack. But the key here is that WCNP and Kubernetes are very powerful for stateless workloads, but for stateful workloads tend to be still climbing a bit of a growth curve in the industry. So our data workloads are not primarily based on WCNP. They're VM based. Now that said, there is opportunity to make some progress there, and we are looking at ways to move things into containers that are currently running in VMs which are stateful. The other question you asked is related to how we expose data to third parties and also functionality. Right now we do have in-house, for our own use, a very robust data architecture, and we have followed the sort of domain-oriented data architecture guidance from Martin Fowler. And we have data lakes in which we collect data from all the transactional systems and which we can then use and do use to build models which are then used in our applications. But right now we're not exposing the data directly to customers as a product. That's an interesting direction that's been talked about and may happen at some point, but right now that's internal. What we are exposing to customers is applications. So we're offering our global integrated fulfillment capabilities, our order picking and curbside pickup capabilities, and our cloud powered checkout capabilities to third parties. And this means we're standing up our own internal applications as externally facing SaaS applications which can serve our partners' customers. >> Yeah, of course, Martin Fowler really first introduced to the world Zhamak Dehghani's data mesh concept and this whole idea of data products and domain oriented thinking. Zhamak Dehghani, by the way, is a speaker at our event as well. Last question I had is edge, and how you think about the edge? You know, the stores are an edge. Are you putting resources there that sort of mirror this this triplet model? Or is it better to consolidate things in the cloud? I know there are trade-offs in terms of latency. How are you thinking about that? >> All really good questions. It's a challenging area as you can imagine because edges are subject to disconnection, right? Or reduced connection. So we do place the same architecture at the edge. So WCNP runs at the edge, and an application that's designed to run at WCNP can run at the edge. That said, there are a number of very specific considerations that come up when running at the edge, such as the possibility of disconnection or degraded connectivity. And so one of the challenges we have faced and have grappled with and done a good job of I think is dealing with the fact that applications go offline and come back online and have to reconnect and resynchronize, the sort of online offline capability is something that can be quite challenging. And we have a couple of application architectures that sort of form the two core sets of patterns that we use. One is an offline/online synchronization architecture where we discover that we've come back online, and we understand the differences between the online dataset and the offline dataset and how they have to be reconciled. The other is a message-based architecture. And here in our health and wellness domain, we've developed applications that are queue based. So they're essentially business processes that consist of multiple steps where each step has its own queue. And what that allows us to do is devote whatever bandwidth we do have to those pieces of the process that are most latency sensitive and allow the queue lengths to increase in parts of the process that are not latency sensitive, knowing that they will eventually catch up when the bandwidth is restored. And to put that in a little bit of context, we have fiber lengths to all of our locations, and we have I'll just use a round number, 10-ish thousand locations. It's larger than that, but that's the ballpark, and we have fiber to all of them, but when the fiber is disconnected, and it does get disconnected on a regular basis. In fact, I forget the exact number, but some several dozen locations get disconnected daily just by virtue of the fact that there's construction going on and things are happening in the real world. When the disconnection happens, we're able to fall back to 5G and to Starlink. Starlink is preferred. It's a higher bandwidth. 5G if that fails. But in each of those cases, the bandwidth drops significantly. And so the applications have to be intelligent about throttling back the traffic that isn't essential, so that it can push the essential traffic in those lower bandwidth scenarios. >> So much technology to support this amazing business which started in the early 1960s. Jack, unfortunately, we're out of time. I would love to have you back or some members of your team and drill into how you're using open source, but really thank you so much for explaining the approach that you've taken and participating in SuperCloud2. >> You're very welcome, Dave, and we're happy to come back and talk about other aspects of what we do. For example, we could talk more about the data lakes and the data mesh that we have in place. We could talk more about the directions we might go with serverless. So please look us up again. Happy to chat. >> I'm going to take you up on that, Jack. All right. This is Dave Vellante for John Furrier and the Cube community. Keep it right there for more action from SuperCloud2. (upbeat music)
SUMMARY :
and the Chief Architect for and appreciate the the Walmart Cloud Native Platform? and that is the DevOps Was the real impetus to tap into Sure, and in the course And the way it's configured, and the humans have to the dataset to actually, but people run that machine, if you will, Is it sort of the deployment so that the developers and the specific cloud platform? and that we think are going in the form of data, tools, applications a bit of a growth curve in the industry. and how you think about the edge? and allow the queue lengths to increase for explaining the and the data mesh that we have in place. and the Cube community.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Steve | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Martin Fowler | PERSON | 0.99+ |
US | LOCATION | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Today | DATE | 0.99+ |
each | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Starlink | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
two things | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
each step | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
early 1960s | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
a day | QUANTITY | 0.98+ |
GCP | TITLE | 0.97+ |
Azure | TITLE | 0.96+ |
WCNP | TITLE | 0.96+ |
10 milliseconds | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.94+ |
Cloud Spanner | TITLE | 0.94+ |
Linkerd | ORGANIZATION | 0.93+ |
Cube | ORGANIZATION | 0.93+ |
triplet | QUANTITY | 0.92+ |
three cloud providers | QUANTITY | 0.91+ |
two core sets | QUANTITY | 0.88+ |
John Furrier | PERSON | 0.86+ |
one more piece | QUANTITY | 0.86+ |
SuperCloud2 | ORGANIZATION | 0.86+ |
two public clouds | QUANTITY | 0.86+ |
thousand locations | QUANTITY | 0.83+ |
Vice President | PERSON | 0.8+ |
10-ish | QUANTITY | 0.79+ |
WCNP | ORGANIZATION | 0.75+ |
decades | QUANTITY | 0.75+ |
three different major regions | QUANTITY | 0.74+ |
Asvin Ramesh, HashiCorp | Palo Alto Networks Ignite22
(upbeat music) >> Announcer: TheCUBE presents Ignite '22 brought to you by Palo Alto Networks. >> Welcome back to Las Vegas guys and girls. Lisa Martin here with Dave Vellante. This is day one of the cube's two day coverage of Palo Alto Networks Ignite at the MGM Grand. Dave, we've been having some great conversations today, we have a great two day lineup execs from Palo Alto, it's partner network, customers, et cetera. Going to be talking about infrastructure as code. We talk about that a lot, how Palo is partnering with its partner ecosystem to really help customers deliver security across the organization. >> We do a predictions post every year. Hopefully you can hear me. So we do this predictions post every year. I've done it for a number of years, and I want to say it was either 2018 or 2019, we predicted that HashiCorp was one of these companies to watch. And then last August, on August 9th, we had supercloud event in Palo Alto. We had David McJannet in, who is the CEO of HashiCorp. And we really see Hashi as a key player in terms of affecting multicloud consistency. Sometimes we call it supercloud, you building on top of the hyperscale cloud. So super excited to have HashiCorp on. >> Really an important conversation. We've got an alumni back with us. Asvin Ramesh is here the senior director of Alliances at HashiCorp. Welcome back. >> Yeah, thank you. Good to be back. >> Great to have you. Talk to us a little bit about what's going on at HashiCorp, your relationship with Palo Alto Networks, and what's in it for customers. >> Yeah, no, no, great question. So, Palo Alto has been a fantastic partner of ours for many years now. We started way back in 2018, 2019 focusing on the basics, putting integrations in place that customers can be using together. And so it's been a great journey. Both are very synergistic. Palo Alto is focused on multicloud, so are we, we focus on cloud infrastructure automation, and ensuring that customers are able to bring in agility, reliability, security, and be able to deliver to their business. And then Palo Alto brings in great security components to that multicloud story. So it's a great story altogether. >> Some of the challenges that organizations have been facing. Palo Alto just released a survey, I think this morning if I can find it here what's next in cyber organizations facing massive headwinds ransomware becoming a household word, business email compromise being a challenge. But also in the last couple of years the massive shift to multi-club or organizations are living an operating need to do so securely. It's no longer nice to have anymore. It's absolutely table stakes for survival, and being able to thrive and grow for any business. >> Yeah, no, I think it's almost a sort of rethinking of how you would build your infrastructure up. So the more times you do it right the better you are built to scale. That's been one of the bedrocks of how we've been working with Palo Alto, which is rethinking how should IT be building their infrastructure in a multicloud world. And I think the market timing is right for both of us in terms of the progress that we've been able to make. >> So, I mean Terraform has really become sort of a key ingredient to the cloud operating model, especially across clouds. Kind of describe how partners, and customers are are implementing that cross-cloud capability. What's that journey look like? What's the level of maturity today? >> Yeah, great question, Dave. So we sort of see customers in three buckets. The first bucket is when customers are in the initial phases of their cloud journey. So they have disparate teams in their business units try out clouds themselves. Typically there is some event that occurs either some sort of a security scare or a a cloud cost event that triggers a rethinking of how they should be thinking about this in a scalable way. So that leads to where the cloud operating model which is a framework that HashiCorp has. And we use that successfully with customers to talk them through how they should be thinking about their process, about how they should be standardizing how people operate, and then the products they should be including, but then you come to that stage, and you start to think about a centralized platform team that is putting in golden workflows, that is putting in as a service mindset for their business units thinking through policies at a corporate level. And then that is a second stage. And then, but this is also in some customers more around public clouds. But then the third stage that we see is when they start embracing their private cloud or the on-prem data center, and have the same principles address across both public clouds, and the on-prem data center, and then Terraform scale for any infrastructure. So, once you start to put these practices in place not just from a technology standpoint, but from a process, and product standpoint, you're easily able to scale with that central platform organization. >> So, it's all about that consistency across your estate irrespective of whether it's on-prem in AWS, Azure, Google, the Edge, maybe. I mean, that's starting, right? >> Asvin: Yes. >> And so when you talk about the... Break it down a little bit process and product, where do you and Palo Alto sort of partner and add value? What's that experience like? >> Yeah, so, I think as I mentioned earlier the bedrock is having ways in which customers are able to use our products together, right? And then being able to evangelize the usage of that product. So one example I'll give you is with Prisma Cloud, and Terraform Cloud to your point about Terraform earlier. So customers can be using Prisma Cloud with Terraform Cloud in a way that you can get security context telemetry during an infrastructure run, and then use policies that you have in Prisma Cloud to be able to get or run or to implement or run or make sure essentially it is adhering to your security policy or any other audits that you want to create or any other cost that you want to be able to control. >> Where are your customer conversations these days? We know that security is a board level conversation. Interestingly, in that same survey that Palo Alto released this morning that I mentioned they found that there's a big lack of alignment between the board and the C-suite staff, the executive suite in terms of security. Where are your conversations, and how are you maybe facilitating that alignment that needs to be there? Because security it's not a nice to have. >> Yeah, I think in our experience, the alignment is there. I think especially with the macro environment it's more about where where do you allocate those resources. I think those are conversations that we're just starting to see happen, but I think it's the natural progression of how the environment is moving, and maybe another quarter or two, I think we'll see greater alignment there. >> So, and I saw some data that said I guess it was a study you guys did 90% of customer say multicloud is working for them. That surprised me 'cause you hear all this negativity around multicloud, I've been kind of negative about multicloud to be honest. Like that's a symptom of MNA, and a or multi-vendor. But how do you interpret that? When they say multicloud is working? How so? >> Yeah, I think the maturity of customers are varied as I mentioned through the stages, right? So, there are customers who even in the initial phases of their journey where they have different business units using different clouds, and from a C standpoint that might still look like multicloud, right? Though the way we think about it is you should be really in stage two, and stage three to real leverage the real power of multicloud. But I think it's that initial hump that you need to go through, and being able to get oriented towards it, have the right set of skillsets, the thought process, the product, the process in place. And once you have that then you'll start reaping the benefits over a period of time, especially when some other environments events happen, and you're able to easily adjust to that because you're leveraging this multicloud environment, and you have a clear policy of where you'll use which cloud. >> So I interpreted that data as, okay, multicloud is working from the standpoint of we are multicloud, okay? So, and our business is working, but when I talk to customers, they want more to your point, they want that consistent experience. And so it's been by, to use somebody else's term, by default. Chuck Whitten I think came up with that term versus by design. And now I think they have an objective of, okay, let's make multicloud work even better. Maybe I can say that. And so what does that experience look like? That means a common experience all the way through my stack, my infrastructure stack, which is that's going to be interesting to see how that goes down 'cause you got three separate clouds, and are doing their own APIs. But certainly from a security standpoint, the PaaS layer, even as I go up the stack, how do you see that outcome, and say the next two to five years? >> Yeah, so, we go back to our customers, and they're very successful ones who've used the cloud operating model. And for us the cloud operating model for us includes four layers. So on the infrastructure layer, we have Terraform and Packer, on the security layer we have Vault and Boundary, on the networking layer we have Consul, and then on applications we have Nomad and Waypoint. But then you really look at, from a people process, and product standpoint, for people it's how do you standardize the workflows that they're able to use, right? So if you have a central platform team in place that is looking at common use cases that multiple business units are using. and then creates a golden workflow, for example, right? For these various business units to be able to use or creates what we call a system of record for cloud adoption it helps multiple business units then latch onto this work that this central platform team is doing. And they need to have a product mindset, right? So not like a project that you just start and end with. You have this continuous improvement mindset within that platform team. And they build these processes, they build these golden workflows, they build these policies in place, and then they offer that as a service to the business units to be able to use. So that increases the adoption of multicloud. And also more importantly, you can then allow that multicloud usage to be governed in the way that aligns with your overall corporate objectives. And obviously in self-interest, you'd use Terraform or Vault because you can then use it across multiple clouds. >> Well, let's say I buy into that. Okay, great. So I want that common experience 'cause so when you talk about infrastructure, take us through an example. So when I hear infrastructure, I say, okay if I'm using an S3 bucket over here an Azure blob over there, they got different APIs, they got different primitives. I want you to abstract that away. Is that what you do? >> Yeah, so I think we've seen different use cases being used across different clouds too. So I don't think it's sort of as simple as, hey, should I use this or that? It is ensuring that the common tool that you use to be able to leverage safer provisioning, right? Is Terraform. So the central team is then trained in not only just usage of Terraform open source, but their Terraform cloud, which is our managed service, and Terraform enterprise which is the self-managed, but on-prem product, it's them being qualified to be able to build these consistent workflows using whatever tool that they have or whatever skew that they have from Terraform. And then applying business logic on top of that to your point about, hey, we'd like to use AWS for these kind of workloads. We'd like to use GCP, for example, on data or use Microsoft Azure for some other type of- >> Collaboration >> Right? But the common tooling, right? Remains around the usage of Terraform, and they've trained their teams there's a standard workflow, there's standard process around it. >> Asvin, I was looking at that survey the HashiCorp state of cloud strategy survey, and it talked about skill shortages as being the number one barrier to multicloud. We talk about the cyber skills gap all the time. It's huge. It's obviously a huge issue. I saw some numbers just the other day that there's 26 million developers but there's less than 3 million cybersecurity professionals. How does HashiCorp and Palo Alto Networks, how do you help customers address that skills gap so that they that they can leverage multicloud as a driver of the business? >> Yeah, another great question. So I think I'd say in two or three different ways. One is be able to provide greater documentation for our customers to be able to self use the product so that with the existing people, for example, you build out a known example, right? You're trying to achieve this goal here is how you use our products together. And so they'll be able to self-service, right? So that's one. Second is obviously both of us have great services partners, so we are always working with these services partners to get their teams trained and scaled up around these skill gaps. And I think I'd say the third which is where we see a lot of adoption is around usage of the managed services that we have. If you take Palo Alto's example in this Palo Alto will speak better to it, but they have SOC services, right? That you can consume. So, they're performing that service for you. Similarly, on our side we have a HashiCorp Cloud Platform, HCP, where you can consume Vault as a service, you can consume Consul as a service. Terraform cloud is a managed service, so you don't need as many people to be able to run that service. And we abstract all the complexity associated with that by ourselves, right? So I'd say these are the three ways that we address it. >> So Zero Trust across big buzzword. We heard this in this morning keynotes, AWS is always saying, well, we'll talk about it too, but, okay, customers are starting to talk about Zero Trust. You talk to CISOs, they're like, yes, we're adopting this mentality of unless you're trusted, we don't trust you. So, okay, cool. So you think about the cloud you've got the shared responsibility model, and then you've got the application developers are being asked to do more, secure the code. You got the CISO now has to deal with not only the shared responsibility model, but shared responsibility models across clouds, and got to bring his or her security ethos to the app dev team, and then you got to audit kind of making sure they're like the last line of defense. So my question is when you think about code security and Zero Trust in that new environment the problem with a lot of the clouds is they don't make the CISOs life any easier. So I got to believe that your objective with Palo Alto is to actually make the organization's lives easier. So, how do you deal with all that complexity in specifically in a Zero Trust multicloud environment? >> Yeah, so I'll give you a specific example. So, on code to cloud security which is one of Palo Alto's sort of key focus area is that Prisma Cloud and Terraform Cloud example that I gave, right? Where you'd be able to use what we call run tasks essentially, web hook integrations to be able to get a run or provide some telemetry back to Prisma Cloud for customers to be able to make a decision. On the Zero Trust side, we partner both on the Prisma Cloud side, and the Cortex XSOAR side around our products of Vault and and Consul. So what Vault does is it allows you to control secrets, it allows you to store secrets. So a Prisma Cloud or a Cortex customer can be using secrets from Vault familiarly for that particular transaction or workflow itself, right? Rather than, and so it's based on identity, and not on the basis of just the secret sort of lying around. Same thing with console helps you with discovery, and management of services. So, Cortex and you can automate, a lot of this work can get automated using the product that I talked about from Zero Trust. I think the key thing for Zero Trust in our view is it is a end destination, right? So it'll take certain time, depends on the enterprise, depends on where things are. It's a question of specifically focusing on value that Palo Alto and HashiCorp's products bring to solve specific use cases within that Zero Trust bucket, and solve one problem at a time rather than try to say that, hey, only Palo Alto, and only HashiCorp or whatever will solve everything in Zero Trust, right? Because that is not going to be- >> And to your point, it's never going to end, right? I mean you're talk about Cortex bringing a lot of automation. You guys bring a lot of automation now Palo Alto just bought Cider Security. Now we're getting into supply chain. I mean it going to hit it at the edge and IoT, the people don't want another IoT stove pipe. >> Lisa: No. >> Right? They want that to be part of the whole picture. So, you're never done. >> Yeah, no, but it is this continuous journey, right? And again, different companies are different parts of that journey, and then you go and rinse and repeat, you maybe acquire another company, and then they have a different maturity, so you get them on board on this. And so we see this as a multi-generational shift as Dave like to call it. And we're happy to be in the middle of it with Palo Alto Networks. >> It's definitely a multi-generational shift. Asvin, it's been great having you back on theCUBE. Thank you for giving us the update on what Hashi and Palo Alto are doing, the value in it for customers, the cloud operating model. And we should mention that HashiCorp yesterday just won a Technology Partner of the Year award. Congratulations. Yes. >> We're very, very thrilled with the recognition from Palo Alto Networks for the Technology Partner of the Year. >> Congrats. >> Thank you Keep up the great partnership. Thank you so much. We appreciate your insights. >> Thank you so much. >> For our guest, and for Dave Vellante, I'm Lisa Martin, live in Las Vegas. You watching theCUBE, the leader in live enterprise and emerging tech coverage. (upbeat music)
SUMMARY :
brought to you by Palo Alto Networks. This is day one of the So super excited to have HashiCorp on. the senior director of Good to be back. Great to have you. and be able to deliver to their business. the massive shift to multi-club So the more times you do it right sort of a key ingredient to So that leads to where So, it's all about that And so when you talk about the... and Terraform Cloud to your that needs to be there? of how the environment is moving, So, and I saw some data that said that you need to go through, and say the next two to five years? So that increases the Is that what you do? It is ensuring that the common tool But the common tooling, right? as a driver of the business? for our customers to be and got to bring his or her security ethos and not on the basis of just the secret And to your point, it's be part of the whole picture. and then you go and rinse and repeat, Partner of the Year award. for the Technology Partner of the Year. Thank you so much. the leader in live enterprise
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Asvin Ramesh | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
HashiCorp | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
2018 | DATE | 0.99+ |
2019 | DATE | 0.99+ |
Chuck Whitten | PERSON | 0.99+ |
David McJannet | PERSON | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
90% | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
two day | QUANTITY | 0.99+ |
Palo | ORGANIZATION | 0.99+ |
Zero Trust | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
Asvin | PERSON | 0.99+ |
both | QUANTITY | 0.99+ |
third | QUANTITY | 0.99+ |
Second | QUANTITY | 0.99+ |
Terraform | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Vault | ORGANIZATION | 0.99+ |
August 9th | DATE | 0.99+ |
Both | QUANTITY | 0.99+ |
Cortex | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
last August | DATE | 0.98+ |
multicloud | ORGANIZATION | 0.98+ |
third stage | QUANTITY | 0.98+ |
three ways | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
first bucket | QUANTITY | 0.97+ |
Zero Trust | ORGANIZATION | 0.97+ |
Consul | ORGANIZATION | 0.97+ |
Hashi | ORGANIZATION | 0.96+ |
three buckets | QUANTITY | 0.96+ |
less than 3 million cybersecurity | QUANTITY | 0.96+ |
one problem | QUANTITY | 0.95+ |
second stage | QUANTITY | 0.95+ |
quarter | QUANTITY | 0.95+ |
Anurag Gupta, Shoreline io | AWS re:Invent 2022 - Global Startup Program
(gentle music) >> Now welcome back to theCUBE, everyone. I'm John Walls, and once again, we're glad to have you here for AWS re:Invent 22. Our coverage continues here on Thursday, day three, of what has been a jam-packed week of tech and AWS, of course, has been the great host for this. It's now a pleasure to welcome in Anurag Gupta, who is the founder and CEO of Shoreline, joining us here as part of the AWS Global Showcase Startup Program, and Anurag, good to see you, sir. Thanks for joining us. >> Thank you so much. >> Tell us about Shoreline, about what you're up to. >> So we're a DevOps company. We're really focused on repairing issues. If you think about it, there are a ton DevOps companies and we all went to the cloud in order to gain faster innovation and by and large check. Then all of the things involved in getting things into production, artifact generation, testing, configuration management, deployment, also by and large, automated. Now pity the poor SRE who's getting the deluge of stuff on them, every week, every two days, sometimes multiple times a day, and it's complicated, right? Kubernetes, VMs, lots of services, multiple clouds, sometimes, and you know, they need to know a little bit about everything. And you know what, there are a ton of companies that actually help you with what we call Day-2 Ops. It's just that most of them help you with observability, telling you what's gone wrong, or incident management, routing something to someone. But you know, back when I was at AWS, I never got really that excited about one more dashboard to look at or one more like better ticket routing. What used to really excite me was having some issue extinguished forever. And if you think about it, like the first five minutes of an incident are detecting and routing. The next hour, two hours, is some human being going in and fixing it, so that feels like the big opportunity to reduce, so hopefully we can talk a little bit about different ways that one can do that. >> What about Day-2 Ops? Just tell me about how you define that. >> So I basically define it as once the software goes into a production, just making sure things stay up and are healthy and you're resilient and you don't get errors and all of those sorts of things because everything breaks sooner or later, you know, to a greater or lesser degree. >> Especially that SRE you're talking about, right? >> Yeah. >> So let's go back to that scenario. Yeah, you pity the poor soul because they do have to be a little expert in everything. >> Exactly. >> And that's really challenging and we all know that, that's really hard. So how do you go about trying to lighten that burden, then? >> So when you look at the numbers, about somewhere between 40% to even 95% of the alarms that fire, the alerts that fire, are false positives and that's crazy. Why is someone waking up just to deal with? >> It's a lot of wasted time, isn't it? >> A lot of wasted time. And you know, you're also training someone into what I call ClickOps, just to go in and click the button and resolve it and you don't actually know if it was the false positive or it's the rare real positive, and so that's a challenge, right? And so the first thing to do is to figure out where the false positives are. Like, let's say Datadog tells you that CPU is high and alarms. Is that a good thing or a bad thing? It's hard for them to tell, right? But you have to then introspect it into something precise like, oh, CPU is high, but response times are standard and the request rate is high. Okay, that's a good thing. I'm going to ignore this. Or CPU is high, but it kind of resolves itself, so I'm going to not wake anybody up. Or CPU is high and oh, it's the darn JVM starting to garbage collect again, so let me go and take a heap dump and give that to my dev team and then bounce the JVM and you know, without waking anybody up, or CPU is high, I have no idea what's going on. Now it's time to wake somebody up. You know, what you want to use humans for is the ability to think about novel stuff, not to do repetitive stuff, so that's the first step. The second step is, about 40% of what remains is repetitive and straightforward. So like a disk is full, I'd better clean up the garbage on the disk or maybe grow the disk. People shouldn't wake up to deal to grow a disk. And so for that, what you want to do is just have those sorts of things get automated away. One of the nice things about Shoreline is, is that we take the experience in what we build for one company, and if they're willing, provide it to everybody else. Our belief is, a central tenant is, if someone somewhere fixes something, everyone everywhere should gain the benefit because we all sit on the same three clouds, we all sit on the same set of database infrastructure, et cetera. We should all get the same benefits. Why do we have to scar our own backs rather than benefiting from somebody else's scar tissue, so that's the second thing. The third thing is, okay, let's say it's not straightforward, not something I've seen before, then in that case, what often happens is on average like eight people get involved. You know, it initially goes to L1 support or L1 ops and, but they don't necessarily know because, as you say, the environment's complex. And so, you know, they go into Slack and they say, "At here, can somebody help me with this?" And those things take a much longer time, so wouldn't it be better that if your best SRE is able to say, "Hey, check these 20 things and then run these actions." We could convert that into like a Jupyter Notebook where you could say the incident got fired I pre-populated all the diagnostics, and then I tell people very precisely, "If you see this, run this, et cetera." Like a wiki, but actually something you could run right in this product. And then, you know, last piece of the puzzle, the smaller piece, is sometimes new things happen and when something new happens, what you want is sort of the central tech of Shoreline, which is parallel distributed, real-time debugging. And so the ability to do, you know, execute a command across your fleet rather than individual boxes so that you can say something like, "I'm hearing that my credit card app is slow. For everything tagged as being part of my credit card app, please run for everything that's running over 90% CPU, please run a top command." And so, you know, then you can run in the same time on one host as you can on 30,000 and that helps a lot. So that's the core of what we do. People use us for all sorts of things, also preventative maintenance, you know, just the proactive regular things. You know, like your car, you do an oil change, well, you know, you need to rotate your certs, certificates. You need to make sure that, you know, there isn't drift in your configurations, there isn't drift in your software. There's also security elements to it, right? You want to make sure that you aren't getting weird inbound/outbound traffic across to ports you don't expect to be open. You don't want to have these processes running, you know, maybe something's bad. And so that's all the kind of weird anomaly detection that's easy to do if you run things in a distributed parallel way across everything. That's super hard to do if you have to go and Whac-A-Mole across one box after the next. >> Well, which leads to a question just in terms of setting priorities then, which is what you're talking about helping companies establish priorities, this hierarchy of level one warning, level two, level three, level four. Sounds like that should be a basic, right? But you're saying that's not, that's not really happening in the enterprise. >> Well, you know, I would say that if you hadn't automated deployments, you should do that first. If you haven't automated your testing pipeline, shame on you, you should do that like a year ago. But now it's time to help people in production because you've done that other work and people are suffering. You know, the crazy thing about the cloud is, is that companies spend about three times more on the human beings to operate their cloud infrastructure as on the cloud infrastructure itself. I've yet to hear anybody say that their cloud bill is too low, you know, so, you know, there's a clearer savings also available. And you know, back when I was at AWS, obviously I had to keep the lights on too, but you know, I had to do that, but it's kind of a tax on my engineers and I'd really spend, prefer to spend the head count on innovation, on doing things that delight my customers. You never delight your customers by keeping the lights on, you just avoid irritating them by turning 'em off, right? >> So why are companies so fixed in on spending so much time on manually repairing things and not looking for these kinds of little, much more elegant solution and cost-efficient, time-saving, so on so forth. >> Yeah, I think there just hasn't been very much in this space as yet because it's a hard, hard problem to solve. You know, automation's a little bit scary and that's the reality of it and the way you make it less scary is by proving it out, by doing the simple things first, like reducing the alert fatigue, you know, that's easy. You know, providing notebooks to people so that they can click things and do things in a straightforward way. That's pretty easy. The full automation, that's kind of the North Star, that's what we aspire to do. But you know, people get there over time and one of our customers had 700 instances of this particular incident solved for them last week. You imagine how many human beings would've been doing it otherwise, you know? >> Right. >> That's just one thing, you know? >> How many did it take the build a pyramid? How many decades did that take, right? You had an announcement this week. I don't think we've talked about that. >> No, yeah, so we just announced Incident Insights, which is a free product that lets people plug into initially PagerDuty and pretty soon the Opsgenie ServiceNow, et cetera. And what you can do is, is you give us an API key read-only and we will suck your PagerDuty data out. We apply some lightweight ML unsupervised learning, and in a couple of minutes, we categorize all of your incidents so that you can understand which are the ones that happen most often and are getting resolved really quickly. That's ClickOps, right? Those alarms shouldn't fire. Which are the ones that involve a lot of people? Those are good candidates to build a notebook. Which are the ones that happen again and again and again? Those are good candidates for automation. And so, I think one of the challenges people have is, is that they don't actually know what their teams are doing and so this is intended to provide them that visibility. One of our very first customers was doing the beta test for us on it. He used to tell us he had about 100 tickets, incidents a week. You know, he brought this tool in and he had 2,100 last week and was all, you know, like these false alarms, so while he's giving us- >> That was eye opening for him to see that, sure. >> And why he's, you know, looking at it, you know, he's just like filing Jiras to say, "Oh, change this threshold, cancel this alarm forever." You know, all of that kind of stuff. Before you get to do the fancy work, you got to clean your room before you get to do anything else, right? >> Right, right, dinner before dessert, basically. >> There you go. >> Hey, thanks for the insights on this and again the name of the new product, by the way, is... >> Incident Insights. >> Incident Insights. >> Totally free. >> Free. >> Yeah, it takes a couple of minutes to set up. Go to the website, Shoreline.io/insight and you can be up and running in a couple of minutes. >> Outstanding, again, the company is Shoreline. This is Anurag Gupta, and thank you for being with us. We appreciate it. >> Appreciate it, thank you. >> Glad to have to here on theCUBE. Back with more from AWA re:Invent 22. You're watching theCUBE, the leader in high-tech coverage. (gentle music)
SUMMARY :
of the AWS Global Showcase about what you're up to. But you know, back when I was at AWS, Just tell me about how you define that. and you don't get errors Yeah, you pity the poor soul So how do you go about trying So when you look at the numbers, And so the ability to do, you know, in the enterprise. And you know, back when I was at AWS, and not looking for these kinds of little, and the way you make it less the build a pyramid? and was all, you know, for him to see that, sure. And why he's, you know, before dessert, basically. and again the name of the new and you can be up and running thank you for being with us. Glad to have to here on theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Walls | PERSON | 0.99+ |
Shoreline | ORGANIZATION | 0.99+ |
Anurag Gupta | PERSON | 0.99+ |
Thursday | DATE | 0.99+ |
2,100 | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
700 instances | QUANTITY | 0.99+ |
Anurag | PERSON | 0.99+ |
20 things | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
first step | QUANTITY | 0.99+ |
Jiras | PERSON | 0.99+ |
second thing | QUANTITY | 0.99+ |
30,000 | QUANTITY | 0.99+ |
two hours | QUANTITY | 0.99+ |
eight people | QUANTITY | 0.99+ |
second step | QUANTITY | 0.99+ |
95% | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
third thing | QUANTITY | 0.99+ |
one box | QUANTITY | 0.99+ |
about 100 tickets | QUANTITY | 0.98+ |
first five minutes | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
one thing | QUANTITY | 0.97+ |
this week | DATE | 0.97+ |
one company | QUANTITY | 0.97+ |
a year ago | DATE | 0.96+ |
first thing | QUANTITY | 0.96+ |
first | QUANTITY | 0.96+ |
Shoreline.io/insight | OTHER | 0.96+ |
SRE | ORGANIZATION | 0.95+ |
about three times | QUANTITY | 0.95+ |
three clouds | QUANTITY | 0.95+ |
Jupyter | ORGANIZATION | 0.94+ |
Datadog | ORGANIZATION | 0.94+ |
over 90% CPU | QUANTITY | 0.93+ |
one host | QUANTITY | 0.93+ |
Global Showcase Startup Program | EVENT | 0.92+ |
about 40% | QUANTITY | 0.91+ |
level four | QUANTITY | 0.91+ |
a week | QUANTITY | 0.9+ |
first customers | QUANTITY | 0.9+ |
one more | QUANTITY | 0.89+ |
every two days | QUANTITY | 0.86+ |
level three | QUANTITY | 0.86+ |
level one | QUANTITY | 0.85+ |
Day | QUANTITY | 0.85+ |
PagerDuty | ORGANIZATION | 0.84+ |
level two | QUANTITY | 0.81+ |
re:Invent 2022 - Global Startup Program | TITLE | 0.8+ |
Shoreline io | ORGANIZATION | 0.78+ |
Incident | ORGANIZATION | 0.73+ |
ClickOps | ORGANIZATION | 0.71+ |
Day | TITLE | 0.7+ |
times a day | QUANTITY | 0.69+ |
theCUBE | ORGANIZATION | 0.67+ |
next hour | DATE | 0.66+ |
2 | TITLE | 0.65+ |
theCUBE | TITLE | 0.63+ |
Kubernetes | TITLE | 0.62+ |
day three | QUANTITY | 0.62+ |
every | QUANTITY | 0.6+ |
ton of companies | QUANTITY | 0.6+ |
Invent 22 | TITLE | 0.59+ |
Star | LOCATION | 0.59+ |
Opsgenie | ORGANIZATION | 0.57+ |
AWA | ORGANIZATION | 0.57+ |
Invent | EVENT | 0.53+ |
Slack | TITLE | 0.52+ |
PagerDuty | TITLE | 0.48+ |
22 | TITLE | 0.46+ |
2 | QUANTITY | 0.43+ |
L1 | ORGANIZATION | 0.33+ |
ServiceNow | COMMERCIAL_ITEM | 0.32+ |
re | EVENT | 0.27+ |
Bernd Schlotter & Neil Lomax, SoftwareOne | AWS re:Invent 2022
(bright upbeat music) >> Hello, wonderful Cloud community and welcome back to our wall-to-wall coverage of AWS re:Invent here in Las Vegas, Nevada. I'm Savannah Peterson, joined by the brilliant John Furrier. John, how you doing this afternoon? >> Doing great, feeling good. We've got day three here, another day tomorrow. Wall-to-wall coverage we're already over a hundred something videos, live getting up. >> You're holding up well. >> And then Cloud show is just popping. It's back to pre-pandemic levels. The audience is here, what recession? But there is one coming but apparently doesn't seem to be an unnoticed with the Cloud community. >> I think, we'll be talking a little bit about that in our next interview in the state of the union. Not just our union, but the the general global economy and the climate there with some fabulous guests from Software One. Please welcome Neil and Bernd, welcome to the show, guys. How you doing? >> Great, thank you. >> Really good. >> Yeah, like you said, just getting over the jet lag. >> Yeah, yeah. Pretty good today, yeah, (laughing loudly) glad we did it today. >> I love that Neil, set your smiling and I can feel your energy. Tell us a little bit about Software One and what you all do. >> Yeah, so Software One we're a software and Cloud solutions provider. We're in 90 countries. We have 65,000 customers. >> Savannah: Just a few. >> Yeah, and we really focus on being close to the customers and helping customers through their software and Cloud journey. So we transact, we sell software in Cloud, 10,000 different ISVs. And then on top of that we a lot of services around the spend optimization FinOps we'll talk about as well, and lots of other areas. But yeah, we're really a large scale partner in this space. >> That's awesome. FinOps, cost optimization, pretty much all we've been talking about here on the give. It's very much a hot topic. I'm actually excited about this and Bernd I'm going to throw this one to you first. We haven't actually done a proper definition of what FinOps is at the show yet. What is FinOps? >> Well, largely speaking it's Cloud cost optimization but for us it's a lot more than for others. That's our superpower. We do it all. We do the technology side but we also do the licensing side. So, we have a differentiated offering. If you would look at the six Rs of application migration we do it all, not even an Accenture as it all. And that is our differentiation. >> You know, yesterday Adams left was on the Keynote. He's like waving his hands around. It's like, "Hey, we got if you want to tighten your belt, come to the Cloud." I'm like, wait a minute. In 2008 when the last recession, Amazon wasn't a factor. They were small. Now they're massive, they're huge. They're a big part of the economic equation. What does belt tightening mean? Like what does that mean? Like do customers just go to the marketplace? Do they go, do you guys, so a lot of moving parts now on how they're buying software and they're fine tuning their Cloud too. It's not just eliminate budget, it's fine tune the machine if you will... >> 'make a smarter Cloud. >> Explain this phenomenon, how people are tackling this cost optimization, Cloud optimization. 'Cause they're not going to stop building. >> No. >> This is right sizing and tuning and cutting. >> Yeah, we see, of course with so many customers in so many countries, we have a lot of different views on maturity and we see customers taking the FinOps journey at different paces. But fundamentally what we see is that it's more of an afterthought and coming in at a panic stage rather than building it and engaging with it from the beginning and doing it continuously. And really that's the huge opportunity and AWS is a big believer in this of continued optimization of the Cloud is a confident Cloud. A confident Cloud means you'll do more with it. If you lose confidence in that bill in what how much it's costing you, you're going to retract. And so it's really about making sure all customers know exactly what's in there, how it's optimized, restocking, reformatting applications, getting more out of the microservices and getting more value out the Cloud and that will help them tighten that belt. >> So the euphoric enthusiasm of previous years of building water just fallen the pipes leaving the lights on when you go to bed. I mean that's kind of the mentality. People were not literally I won't say they weren't not paying attention but there was some just keep going we're all good now it's like whoa, whoa. We turn that service off and no one's using it or do automation. So there's a lot more of that mindset emerging. We're hearing that for the first time price performance being mindful of what's on and off common sense basically. >> Yeah, but it's not just that the lights are on and the faucets are open it's also the air condition is running. So the FinOps foundation is estimating that about a third of Cloud spend is waste and that's where FinOps comes in. We can help customers be more efficient in the Cloud and lower their Cloud spend while doing the same or more. >> So, let's dig in a little bit there. How do you apply FinOps when migrating to the Cloud? >> Well, you start with the business case and you're not just looking at infrastructure costs like most people do you ought look at software licensing costs. For example, if you run SQL on-premise you have an enterprise agreement. But if you move it to the Cloud you may actually take a different more favorable licensing agreement and save a lot of money. And these things are hidden. They're not to be seen but they need to be part of the business case. >> When you look at the modernization trend we had an analyst on our session with David Vellante and Zs (indistinct) from ZK Consulting. He had an interesting comment. He said, "Spend more in Cloud to save more." Which is a mindset that doesn't come across right. Wait a minute, spend more, save more. You can do bet right now with the Clouds kind of the the thesis of FinOps, you don't have to cut. Just kind of cut the waste out but still spend and build if you're smart, there's a lot more of that going on. What does that mean? >> I mean, yeah I've got a good example of this is, we're the largest Microsoft provider in the world. And when of course when you move Microsoft workloads to the Cloud, you don't... Maybe you don't want a server, you can go serverless, right? So you may not win a server. Bernd said SQL, right? So, it's not just about putting applications in the Cloud and workloads in the Cloud. It's about modernizing them and then really taking advantage of what you can really do in the Cloud. And I think that's where the customers are still pretty immature. They're still on that journey of throwing stuff in there and then realizing actually they can take way more advantage of what services are in there to reduce the amount and get even more in there. >> Yeah, and so the... You want to say, something? >> How much, just building on the stereotypical image of Cloud customer is the marketing person with a credit card, right? And there are many of them and they all buy their own Cloud and companies have a hard time consolidating the spend pulling it together, even within a country. But across countries across the globe, it's really, really hard. If you pull it all together, you get a better discount. You spend more to save more. >> Yeah, and also there's a human piece. We had an intern two summers ago playing with our Cloud. We're on a Cloud with our media plus stack left a service was playing around doing some tinkering and like, where's this bill? What is this extra $20,000 came from. It just, we left a service on... >> It's a really good point actually. It's something that we see almost every day right now which is customers also not understanding what they've put in the Cloud and what the implications of spikes are. And also therefore having really robust monitoring and processes and having a partner that can look after that for them. Otherwise we've got customers where they've been really shocked about not doing things the right way because they've empowered the business but also not with the maturity that the business needs to have that responsibility. >> And that's a great point. New people coming in and or people being platooned through new jobs are getting used to the Cloud. That's a great point. I got that brings up my security question 'cause this comes up a lot. So that's what's a lot of spend of people dialing up more security. Obviously people try everything with security, every tool, every platform, and throw everything at the problem. How does that impact the FinOps equation? 'Cause Dev SecOps is now part of everything. Okay, moving security at the CICD pipeline, that's cool. Check Cloud native applications, microservices event-based services check. But now you've got more security. How does that factor into the cost side? What you guys look at that can you share your thoughts on how your customers are managing their security posture without getting kind of over the barrel, if you will? >> Since we are at AWS re:Invent, right? We can talk about the well architected framework of AWS and there's six components to it. And there's reliability, there's security cost, performance quality, operational quality and sustainability. And so when we think about migrating apps to the Cloud or modernizing them in the Cloud security is always a table stakes. >> And it has to be, yeah, go ahead. >> I really like what AWS is doing with us on that. We partner very closely on that area. And to give you a parallel example of Microsoft I don't feel very good about that at the moment. We see a lot of customers right now that get hacked and normally it's... >> 'yeah that's such a topic. >> You mean on Azure? >> Yeah, and what happens is that they normally it's a crypto mining script that the customer comes in they come in as the customer get hacked and then they... We saw an incident the other day where we had 2,100 security incidents in a minute where it all like exploded on the customer side. And so that's also really important is that the customer's understanding that security element also who they're letting in and out of their organization and also the responsibility they have if things go bad. And that's also not aware, like when they get hacked, are they responsible for that? Are they not responsible? Is the provider... >> 'shared responsibility? >> Yeah. >> 'well that security data lake the open cybersecurity schema framework. That's going to be very interesting to see how that plays out to your point. >> Absolutely, absolutely. >> Yeah, it is fascinating and it does require a lot of collaboration. What other trends, what other big challenges are you seeing? You're obviously working with customers at incredible scale. What are some of the other problems you're helping them tackle? >> I think we work with customers from SMB all the way up to enterprise and public sector. But what we see is more in the enterprise space. So we see a lot of customers willing to commit a lot to the Cloud based on all the themes that we've set but not commit financially for all the PNLs that they run in all the business units of all the different companies that they may own in different countries. So it's like, how can I commit but not be responsible on the hook for the bill that comes in. And we see this all the time right now and we are working closely with AWS on this. And we see the ability for customers to commit centrally but decentralized billing, decentralized optimization and decentralized FinOps. So that's that educational layer within the business units who owns the PNL where they get that fitness and they own what they're spending but the company is alone can commit to AWS. And I think that's a big trend that we are seeing is centralized commitment but decentralized ownership in that model. >> And that's where the marketplaces kind of fit in as well. >> Absolutely. >> Yeah, yeah. Do you want to add some more on that? >> I mean the marketplace, if you're going to cut your bill you go to the marketplace right there you want single dashboard or your marketplace what's the customer going to do when they're going to tighten their belts? What do they do? What's their workflow, marketplace? What's the process? >> Well, on marketplaces, the larger companies will have a private marketplace with dedicated pricing managed service they can call off. But that's for the software of the shelf. They still have the data centers they still have all the legacy and they need to do the which ones are we going to keep which ones are we going to retire, we repurchase, we license, rehouse, relocate, all of those things. >> That's your wheelhouse. >> It's a three, yes is our wheelhouse. It's a three to five year process for most companies. >> This could be a tailwind for you guys. This is like a good time. >> I mean FinOps is super cool and super hot right now. >> Not that you're biased? (all laughing loudly) >> But look, it's great to see it because well we are the magic quadrant leader in software asset management, which is a pedigree of ours. But we always had to convince customers to do that because they're always worried, oh what you're going to find do I have an audit? Do I have to give Oracles some more money or SAP some more money? So there's always like, you know... >> 'don't, (indistinct). >> How compliant do I really want? >> Is anyone paying attention to this? >> Well FinOps it's all upside. Like it's all upside. And so it's completely flipped. And now we speak to most customers that are building FinOps internally and then they're like, hold on a minute I'm a bank. Why do I have hundred people doing FinOps? And so that's the trend that we've seen because they just get more and more value out of it all the time. >> Well also the key mindset is that the consumption based model of Cloud you mentioned Oracle 'cause they're stuck in that whoa, whoa, whoa, how many servers license and they're stuck in that extortion. And now they got Cloud once you're on a variable, what's the downside? >> Exactly and then you can look at all the applications, see where you can go serverless see where you can go native services all that sort of stuff is all upside. >> And for the major workloads like SAP and Oracle and Microsoft defined that customers save in the millions. >> Well just on that point, those VMware, SAP, these workloads they're being rolled and encapsulated into containers and Kubernetes run times moved into the Cloud, they're being refactored. So that's a whole nother ballgame. >> Yes. Lift and shift usually doesn't save you any money. So that's relocation with containers may save you money but in some cases you have to... >> 'it's more in the Cloud now than ever before. >> Yeah >> Yeah, yeah. >> Before we take him to the challenge portion we have a little quiz for you, or not a quiz, but a little prop for you in a second. I want to talk about your role. You have a very important role at the FinOps Foundation and why don't you tell me more about that? You, why don't you go. >> All right, so yeah I mean we are a founding member of the Finops organization. You can tell I'm super passionate about it as well. >> I wanted to keep that club like a poster boy for FinOps right now. It's great, I love the energy. >> You have some VA down that is going to go up on the table and dance, (all laughing loudly) >> We're ready for it. We're waiting for that performance here on theCUBE this week. I promise I would keep everyone up an alert... >> 'and it's on the post. And our value to the foundation is first of all the feedback we get from all our customers, right? We can bring that back as an organization to that also as one of the founding members. We're one of the only ones that really deliver services and platforms. So we'll work with Cloud health, Cloud ability our own platform as well, and we'll do that. And we have over 200 practitioners completely dedicated to FinOps as well. So, it's a great foundation, they're doing an amazing job and we're super proud to be part of that. >> Yeah, I love that you're contributing to the community as well as supporting it, looking after your customers. All right, so our new tradition here on theCUBE at re:Invent 'cause we're looking for your 32nd Instagram reel hot take sizzle of thought leadership on the number one takeaway most important theme of the show this year Bernd do you want to go first? >> Of the re:Invent show or whatever? >> You can interpret that however you want. We've gotten some unique interpretations throughout the week, so we're probing. >> Everybody's looking for the superpower to do more with less in the Cloud. That will be the theme of 2023. >> Perfect, I love that. 10 seconds, your mic very efficient. You're clearly providing an efficient solution based on that answer. >> I won't that much. That's... (laughing loudly) >> It's the quiz. And what about you Neil? Give us your, (indistinct) >> I'm going to steal your comment. It's exactly what I was thinking earlier. Tech is super resilient and tech is there for customers when they want to invest and modernize and do fun stuff and they're also there for when they want to save money. So we are always like a constant and you see that here. It's like this is... It's always happening here, always happening. >> It is always happening. It really can feel the energy. I hope that the show is just as energetic and fun for you guys. As the last few minutes here on theCUBE has been thank you both for joining us. >> Thanks. >> Thank you very much. >> And thank you all so much for tuning in. I hope you enjoyed this conversation about FinOps, Cloud confidence and all things AWS re:Invent. We're here in Las Vegas, Nevada with John Furrier, my name is Savannah Peterson. You're watching theCUBE, the leader in high tech coverage. (bright upbeat music)
SUMMARY :
by the brilliant John Furrier. Wall-to-wall coverage we're already It's back to pre-pandemic levels. and the climate there getting over the jet lag. glad we did it today. Software One and what you all do. Yeah, so Software One Yeah, and we really focus I'm going to throw this one to you first. We do the technology side the machine if you will... 'Cause they're not going to stop building. and tuning and cutting. And really that's the huge opportunity leaving the lights on when you go to bed. and the faucets are open How do you apply FinOps of the business case. kind of the the thesis of in the Cloud and workloads in the Cloud. Yeah, and so the... of Cloud customer is the marketing person Yeah, and also there's a human piece. that the business needs the barrel, if you will? We can talk about the well about that at the moment. and also the responsibility that plays out to your point. What are some of the other problems for all the PNLs that they run And that's where the Do you want to add some more on that? But that's for the software of the shelf. It's a three to five year This could be a tailwind for you guys. I mean FinOps is super So there's always like, you know... And so that's the trend that we've seen that the consumption based model of Cloud Exactly and then you can And for the major moved into the Cloud, but in some cases you have to... 'it's more in the Cloud and why don't you tell me more about that? of the Finops organization. It's great, I love the energy. on theCUBE this week. is first of all the feedback we get on the number one takeaway that however you want. Everybody's looking for the superpower on that answer. I won't that much. And what about you Neil? constant and you see that here. I hope that the show is just as energetic And thank you all
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Neil | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jonathan | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Ajay Patel | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
$3 | QUANTITY | 0.99+ |
Peter Burris | PERSON | 0.99+ |
Jonathan Ebinger | PERSON | 0.99+ |
Anthony | PERSON | 0.99+ |
Mark Andreesen | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Yahoo | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Paul Gillin | PERSON | 0.99+ |
Matthias Becker | PERSON | 0.99+ |
Greg Sands | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Jennifer Meyer | PERSON | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
Target | ORGANIZATION | 0.99+ |
Blue Run Ventures | ORGANIZATION | 0.99+ |
Robert | PERSON | 0.99+ |
Paul Cormier | PERSON | 0.99+ |
Paul | PERSON | 0.99+ |
OVH | ORGANIZATION | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Sony | ORGANIZATION | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
Robin | PERSON | 0.99+ |
Red Cross | ORGANIZATION | 0.99+ |
Tom Anderson | PERSON | 0.99+ |
Andy Jazzy | PERSON | 0.99+ |
Korea | LOCATION | 0.99+ |
Howard | PERSON | 0.99+ |
Sharad Singal | PERSON | 0.99+ |
DZNE | ORGANIZATION | 0.99+ |
U.S. | LOCATION | 0.99+ |
five minutes | QUANTITY | 0.99+ |
$2.7 million | QUANTITY | 0.99+ |
Tom | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Matthias | PERSON | 0.99+ |
Matt | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
Jesse | PERSON | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Steve Mullaney, CEO, Aviatrix | AWS re:Invent 2022
(upbeat music) >> You got it, it's theCUBE. We are in Vegas. This is the Cube's live coverage day one of the full event coverage of AWS reInvent '22 from the Venetian Expo Center. Lisa Martin here with Dave Vellante. We love being in Vegas, Dave. >> Well, you know, this is where Super Cloud sort of was born. >> It is. >> Last year, just about a year ago. Steve Mullaney, CEO of of Aviatrix, you know, kind of helped us think it through. And we got some fun stories around. It's happening, but... >> It is happening. We're going to be talking about Super Cloud guys. >> I guess I just did the intro, Steve Mullaney >> You did my intro, don't do it again. >> Sorry I stole that from you, yeah. >> Steve Mullaney, joined just once again, one of our alumni. Steve, great to have you back on the program. >> Thanks for having me back. >> Dave: It's happening. >> It is happening. >> Dave: We talked about a year ago. Net Studio was right there. >> That was two years. Was that year ago, that was a year ago. >> Dave: It was last year. >> Yeah, I leaned over >> What's happening? >> so it's happening. It's happening. You know what, the thing I noticed what's happening now is the maturity of the cloud, right? So, if you think about this whole journey to cloud that has been, what, AWS 12 years. But really over the last few years is when enterprises have really kind of joined that journey. And three or four years ago, and this is why I came out of retirement and went to Aviatrix, was they all said, okay, now we're going to do cloud. You fast forward now three, four years from now, all of a sudden those five-year plans of evacuating the data center, they got one year left, two year left, and they're going, oh crap, we don't have five years anymore. We're, now the maturity's starting to say, we're starting to put more apps into the cloud. We're starting to put business critical apps like SAP into the cloud. This is not just like the low-hanging fruit anymore. So what's happening now is the business criticality, the scale, the maturity. And they're all now starting to hit a lot of limits that have been put into the CSPs that you never used to hit when you didn't have business critical and you didn't have that scale. They were always there. The rocks were always there. Just it was, you never hit 'em. People are starting to hit 'em now. So what's happening now is people are realizing, and I'm going to jump the gun, you asked me for my bumper sticker. The bumper sticker for Aviatrix is, "Good enough is no longer good enough." Now it's funny, it came in a keynote today, but what we see from our customers is it's time to upgrade the native constructs of networking and network security to be enterprise-grade now. It's no longer good enough to just use the native constructs because of a lack of visibility, the lack of controls, the lack of troubleshooting capabilities, all these things. "I now need enterprise grade networking." >> Let me ask you a question 'cause you got a good historical perspective on the industry. When you think about when Maritz was running VMWare. He was like any app, he said basically we're building a software mainframe. And they kind of did that, right? But then they, you know, hit the issue with scale, right? And they can't replicate the cloud. Are there things that we can draw from that experience and apply that to the cloud? What's the same, what's different? >> Oh yeah. So, 1992, do you remember what happened in 1992? I do this, weird German software company called SAP >> Yeah, R3. announced a release as R/3. Which was their first three-tier client-server application of SAP. Before that it ran on mainframes, TCP/IP. Remember that Protocol War? Guess what happened post-1992, everybody goes up like this. Infrastructure completely changes. Cisco, EMC, you name it, builds out these PCE client-server architectures. The WAN changes, MPLS, the campus, everything's home running back to that data center running SAP. That was the last 30 years ago. Great transformation of SAP. They've did it again. It's called S/4Hana. And now it's running and people are switching to S/4Hana and they're moving to the cloud. It's just starting. And that is going to alter how you build infrastructure. And so when you have that, being able to troubleshoot in hours versus minutes is a big deal. This is business critical, millions of dollars. This is not fun and games. So again, back to my, what was good enough for the last three or four years for enterprises no longer good enough, now I'm running business critical apps like SAP, and it's going to completely change infrastructure. That's happening in the cloud right now. And that's obviously a significant seismic shift, but what are some of the barriers that customers have been able to eliminate in order to get there? Or is it just good enough isn't good enough anymore? >> Barriers in terms of, well, I mean >> Lisa: The adoption. Yeah well, I mean, I think it's all the things that they go to cloud is, you know, the complexity, really, it's the agility, right? So the barrier that they have to get over is how do I keep the developer happy because the developer went to the cloud in the first place, why? Swipe the credit card because IT wasn't doing their job, 'cause every time I asked them for something, they said no. So I went around 'em. We need that. That's what they have to overcome in the move to the cloud. That is the obstacle is how do I deliver that visibility, that control, the enterprise, great functionality, but yet give the developer what they want. Because the minute I stop giving them that swipe the card operational model, what do you think they're going to do? They're going to go around me again and I can't, and the enterprise can't have that. >> That's a cultural shift. >> That's the main barrier they've got to overcome. >> Let me ask you another question. Is what we think of as mission critical, the definition changing? I mean, you mentioned SAP, obviously that's mission critical for operations, but you're also seeing new applications being developed in the cloud. >> I would say anything that's, I call business critical, same thing, but it's, business critical is internal to me, like SAP, but also anything customer-facing. That's business critical to me. If that app goes down or it has a problem, I'm not collecting revenue. So, you know, back 30 years ago, we didn't have a lot of customer-facing apps, right? It really was just SAP. I mean there wasn't a heck of a lot of cust- There were customer-facing things. But you didn't have all the digitalization that we have now, like the digital economy, where that's where the real explosion has come, is you think about all the customer-facing applications. And now every enterprise is what? A technology, digital company with a customer-facing and you're trying to get closer and closer to who? The consumer. >> Yeah, self-service. >> Self-service, B2C, everybody wants to do that. Get out of the middle man. And those are business critical applications for people. >> So what's needed under the covers to make all this happen? Give us a little double click on where you guys fit. >> You need consistent architecture. Obviously not just for one cloud, but for any cloud. But even within one cloud, forget multicloud, it gets worst with multicloud. You need a consistent architecture, right? That is automated, that is as code. I can't have the human involved. These are all, this is the API generation, you've got to be able to use automation, Terraform. And all the way from the application development platform you know, through Jenkins and all other software, through CICD pipeline and Terraform, when you, when that developer says, I want infrastructure, it has to go build that infrastructure in real time. And then when it says, I don't need it anymore it's got to take it away. And you cannot have a human involved in that process. That's what's completely changed. And that's what's giving the agility. And that's kind of a cloud model, right? Use software. >> Well, okay, so isn't that what serverless does, right? >> That's part of it. Absolutely. >> But I might still want control sometimes over the runtime if I'm running those mission critical applications. Everything in enterprise is a heterogeneous thing. It's like people, people say, well there's going to, the people going to repatriate back to on-prem, they are not repatriating back to on-prem. >> We were just talking about that, I'm like- >> Steve: It's not going to happen, right? >> It's a myth, it's a myth. >> And there's things that maybe shouldn't have ever gone into the cloud, I get that. Look, do people still have mainframes? Of course. There's certain things that you just, doesn't make sense to move to the new generation. There were things, certain applications that are very static, they weren't dynamic. You know what, keeping it on-prem it's, probably makes sense. So some of those things maybe will go back, but they never should have gone. But we are not repatriating ever, you know, that's not going to happen. >> No I agree. I mean, you know, there was an interesting paper by Andreessen, >> Yeah. >> But, I mean- >> Steve: Yeah it was a little self-serving for some company that need more funding, yeah. You look at the numbers. >> Steve: Yeah. >> It tells the story. It's just not happening. >> No. And the reason is, it's that agility, right? And so that's what people, I would say that what you need to do is, and in order to get that agility, you have to have that consistency. You have to have automation, you have to get these people out of the way. You have to use software, right? So it's that you have that swipe the card operational model for the developers. They don't want to hear the word no. >> Lisa: Right. >> What do you think is going to happen with AWS? Because we heard, I don't know if you heard Selipsky's keynote this morning, but you've probably heard the hallway talk. >> Steve: I did, yeah. >> Okay. You did. So, you know, connecting the dots, you know doubling down on all the primitives, that we expected. We kind of expected more of the higher level stuff, which really didn't see much of that, a little bit. >> Steve: Yeah. So, you know, there's a whole thing about, okay, does the cloud get commoditized? Does it not? I think the secret weapon's the ecosystem, right? Because they're able to sell through with guys like you. Make great margins on that. >> Steve: Yeah, well, yeah. >> What are your thoughts though on the future of AWS? >> IAS is going to get commoditized. So this is the fallacy that a lot of the CSPs have, is they thought that they were going to commoditize enterprise. It never happens that way. What's going to happen is infrastructure as a service, the lower level, which is why you see all the CSPs talking about what? Oracle Cloud, industry cloud. >> Well, sure, absolutely, yeah. >> We got to get to the apps, we got to get to SAP, we got to get to all that, because that's not going to get commoditized, right. But all the infrastructural service where AWS is king that is going to get commoditized, absolutely. >> Okay, so, but historically, you know Cisco's still got 60% plus gross margins. EMC always had good margin. How pure is the lone survivor in Flash? They got 70% gross margins. So infrastructure actually has always been a pretty good business. >> Yeah that's true. But it's a hell of a lot easier, particularly with people like Aviatrix and others that are building these common architectural things that create simplicity and abstract the way the complexities of underneath such that we allow your network to run an AWS, Azure, Google, Oracle, whatever, exactly the same. So it makes it a hell of a lot easier >> Dave: Super cloud. >> to go move. >> But I want to tap your brain because you have a good perspective of this because servers used to be a great margin business too on-prem and now it's not. It's a low margin business 'cause all the margin went to Intel. >> Yeah. But the cloud guys, you know, AWS in particular, makes a ton of dough on servers, so, or compute. So it's going to be interesting to see over time if that gets com- that's why they're going so hard after silicon. >> I think if they can, I think if you can capture the workload. So AWS and everyone else, as another example, this SAP, they call that a gravity workload. You know what gravity workload is? It's a black hole. It drags everything else with it. If you get SAP or Oracle or a mainframe app, it ain't going anywhere. And then what's going to happen is all your other apps are going to follow it. So that's what they're all going to fight for, is type of app. >> You said something earlier about, forget multicloud, for a moment, but, that idea of the super cloud, this abstraction layer, I mean, is that a real business value for customers other than, oh I got all these clouds, I need 'em to work together. You know, from your perspective from Aviatrix perspective, is it an opportunity for you to build on top of that? Or are you just looking at, look, I'm going to do really good work in AWS, in Azure? Now we're making the same experience. >> I hear this every single day from our customers is they look and they say, good enough isn't good enough. I've now hit the point, I'm hitting route limitations. I'm hitting, I'm doing things manually, and that's fine when I don't have that many applications or I don't have mission critical. The dogs are eating the dog food, we're going into the cloud and they're looking and then saying this is not an operational model for me. I've hit the point where I can't keep doing this, I can't throw bodies at this, I need software. And that's the opportunity for us, is they look and they say, I'm doing it in one cloud, but, and there's zero chance I'm going to be able to figure that out in the two or three other clouds. Every enterprise I talk to says multicloud is inevitable. Whether they're in it now, they all know they're going to go, because it's the business units that demand it. It's not the IT teams that demand it, it's the line of business that says, I like GCP for this reason. >> The driver's functionality that they're getting. >> It's the app teams that say, I have this service and GCP's better at it than AWS. >> Yeah, so it's not so much a cost game or the end all coffee mug, right? >> No, no. >> Google does this better than Microsoft, or better than- >> If you asked an IT person, they would rather not have multicloud. They actually tried to fight it. No, why would you want to support four clouds when you could support one right? That's insane. >> Dave and Lisa: Right. If they didn't have a choice and, and so it, the decision was made without them, and actually they weren't even notified until day before. They said, oh, good news, we're going to GCP tomorrow. Well, why wasn't I notified? Well, we're notifying you now. >> Yeah, you would've said, no. >> Steve: This is cloud bottle, let's go. >> Super cloud again. Did you see the Berkeley paper, sky computing I think they call it? Down at Berkeley, yep Dave Linthicum from Deloitte. He's talking about, I think he calls it meta cloud. It's happening. >> Yeah, yeah, yeah. >> It's happening. >> No, and because customers, customers want that. They... >> And talk about some customer example or two that you think really articulates the value of why it's happening and the outcomes that it's generating. >> I mean, I was just talking to Lamb Weston last night. So we had a reception, Lamb Weston, huge, frozen potatoes. They serve like, I dunno, some ungodly percentage of all the french fries to all the fast food. It's unbelievable what they do. Do you know, they have special chemicals they put on the french fries. So when you get your DoorDash, they stay crispy longer. They've invented that patented it. But anyway, it's all these businesses you've never heard of and they do all the, and again, they're moving to SAP or they're actually SAP in the cloud, they're one of the first ones. They did it through Accenture. They're pulling it back off from Accenture. They're not happy with the service they're getting. They're going to use us for their networking and network security because they're going to get that visibility and control back. And they're going to repatriate it back from a managed service and bring it back and run it in-house. And the SAP basis engineers want it to happen because they see the visibility and control that the infrastructure guy's going to get because of us, which leads to, all they care about is uptime and performance. That's it. And they're going to say the infrastructure team's going to lead to better uptime and better performance if it's running on Aviatrix. >> And business performance and uptime, business critical >> That is the business. That is the business. >> It is. So what are some of the things next coming down the pike from Aviatrix? Any secret sauce you can share? >> Lot of secrets. So, two secrets. One, the next thing people really want to do, embedded network security into the network. We've kind of talked about this. You're going to be seeing some things from us. Where does network security belong? In the network. Embedded in the fabric of the network, not as this dumb device called the next-gen firewall that you steer traffic to. It has to be into the fabric of what we do, what we call airspace. You're going to see us talk about that. And then the next thing, back to the maturity of the cloud, as they build out the core, guess what they're doing? It's this thing called edge, Dave, right? And guess what they're going to do? It's not about connecting the cloud to the edge to the cloud with dumb things like SD-WAN, right? Or SaaS. It's actually the other way around. Go into the cloud, turn around, look out at the edge and say, how do I extend the cloud out to the edge, and make it look like a VPC. That's what people are doing. Why, 'cause I want the operational model. I want all the things that I can do in the cloud out at the edge. And everyone knows it's been in networking. I've been in networking for 37 years. He who wins the core does what? Wins the edge, 'cause that's what happens. You do it first in the core and then you want one architecture, one common architecture, one consistent way of doing everything. And that's going to go out to the edge and it's going to look like a VPC from an operational model. >> And Amazon's going to support that, no doubt. >> Yeah, I mean every, you know, every, and then it's just how do you want to go do that? And us as the networking and network security provider, we're getting dragged to the edge by our customer. Because you're my networking provider. And that means, end to end. And they're trying to drag us into on-prem too, yeah. >> Lot's going on, you're going to have to come back- >> Because they want one networking vendor. >> But wait, and you say what? >> We will never do like switches and any of the keep Arista, the Cisco, and all that kind of stuff. But we will start sucking in net flow. We will start doing, from an operational perspective, we will integrate a lot of the things that are happening in on-prem into our- >> No halfway house. >> Copilot. >> No halfway house, no two architectures. But you'll take the data in. >> You want one architecture. >> Yeah. >> Yeah, totally. >> Right play. >> Amazing stuff. >> And he who wins the core, guess what's more strategic to them? What's more strategic on-prem or cloud? Cloud. >> It flipped three years ago. >> Dave: Yeah. >> So he who wins in the clouds going to win everywhere. >> Got it, We'll keep our eyes on that. >> Steve: Cause and effect. >> Thank you so much for joining us. We've got your bumper sticker already. It's been a great pleasure having you on the program. You got to come back, there's so, we've- >> You posting the bumper sticker somewhere? >> Lisa: It's going to be our Instagram. >> Oh really, okay. >> And an Instagram sto- This is new for you guys. Always coming up with new ideas. >> Raising the bar. >> It is, it is. >> Me advance, I mean, come on. >> I love it. >> All right, for our guest Steve Mullaney and Dave Vellante, I'm Lisa Martin. You're watching theCUBE, the leader in live enterprise and emerging tech coverage.
SUMMARY :
This is the Cube's live coverage day one Well, you know, this is where you know, kind of helped We're going to be talking don't do it again. I stole that from you, yeah. Steve, great to have you Dave: We talked about Was that year ago, that was a year ago. We're, now the maturity's starting to say, and apply that to the cloud? 1992, do you remember And that is going to alter in the move to the cloud. That's the main barrier being developed in the cloud. like the digital economy, Get out of the middle man. covers to make all this happen? And all the way from the That's part of it. the people going to into the cloud, I get that. I mean, you know, there You look at the numbers. It tells the story. and in order to get that agility, going to happen with AWS? of the higher level stuff, does the cloud get commoditized? a lot of the CSPs have, that is going to get How pure is the lone survivor in Flash? and abstract the way 'cause all the margin went to Intel. But the cloud guys, you capture the workload. of the super cloud, this And that's the opportunity that they're getting. It's the app teams that say, to support four clouds the decision was made without them, Did you see the Berkeley paper, No, and that you think really that the infrastructure guy's That is the business. coming down the pike from Aviatrix? It's not about connecting the cloud to And Amazon's going to And that means, end to end. Because they want and any of the keep Arista, the Cisco, But you'll take the data in. And he who wins the core, clouds going to win everywhere. You got to come back, there's so, we've- This is new for you guys. the leader in live enterprise
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Steve | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Steve Mullaney | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Vegas | LOCATION | 0.99+ |
Dave | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
60% | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Dave Linthicum | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
37 years | QUANTITY | 0.99+ |
Aviatrix | ORGANIZATION | 0.99+ |
EMC | ORGANIZATION | 0.99+ |
five-year | QUANTITY | 0.99+ |
1992 | DATE | 0.99+ |
Deloitte | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
five years | QUANTITY | 0.99+ |
Last year | DATE | 0.99+ |
Accenture | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
a year ago | DATE | 0.99+ |
Andreessen | PERSON | 0.99+ |
Arista | ORGANIZATION | 0.99+ |
Lamb Weston | ORGANIZATION | 0.99+ |
three | DATE | 0.99+ |
tomorrow | DATE | 0.99+ |
Net Studio | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
One | QUANTITY | 0.98+ |
last year | DATE | 0.98+ |
SAP | ORGANIZATION | 0.98+ |
today | DATE | 0.98+ |
Lamb Weston | ORGANIZATION | 0.98+ |
last night | DATE | 0.98+ |
Berkeley | ORGANIZATION | 0.98+ |
one cloud | QUANTITY | 0.98+ |
one cloud | QUANTITY | 0.98+ |
two secrets | QUANTITY | 0.97+ |
two architectures | QUANTITY | 0.97+ |
last 30 years ago | DATE | 0.97+ |
12 years | QUANTITY | 0.97+ |
zero chance | QUANTITY | 0.97+ |
three years ago | DATE | 0.97+ |
Venetian Expo Center | LOCATION | 0.97+ |
Adrian Kunzle, OwnBackup | AWS re:Invent 2022
>>Hey everyone. Welcome back to the Cube's live coverage of AWS Reinvent 2022. This is day one, I should say evening one of three and a half days of wall to wall coverage on the cube. Lisa Martin here with Dave Ante. Dave, we love talking about data, but the most important thing about data is if there's a breach, which are happening more and more frequently, that you can get it back. So data backup, data protection, data resiliency, hugely >>Important. Well, it used to be you got snake bit and then you closed the barn door after the horse ran away. Now I think people are a lot more aware that they gotta protect their data and be proactive about it. It can't just be an afterthought. >>It can't be an afterthought. We've got the CTO of own backup here. We're gonna be talking about that Adrian Consul. Adrian, welcome to the Cube. >>Thanks for having me. >>Talk a little bit about own backup. The what is unique about it? >>So we are the leading SaaS data protection vendor. We've built a business based on the fact that SAS has become a center of gravity for a lot of companies. Now, a lot of people have moved with digital transformation and more recently with the covid effects to digitize their business. Our platform is powered by aws. We've got 5,000 plus customers that trust what we do and to look after their data. We help them with resiliency, compliance, security, and we do it for people who are using Salesforce, ServiceNow, and Microsoft Dynamics 365 people >>Are gonna say, wait a minute, my data in the cloud isn't already backed up. Why do I Right. That's what they're gonna say. So how do you >>Respond? Yes. Lots of people say that. That is exactly right. So what people are beginning to realize much more is that there's actually a shared responsibility model between your SaaS provider and yourselves. And you know, the SaaS providers do a phenomenal job of giving you disaster recovery, a database copy, networking infrastructure, a bunch of security controls at that level. But they're pretty frank about the data you put in there is your data, right? And just that it's up to you to put the data in there. It's also up to you to keep it in there. And that's not so easy when you've got lots of integrations. You've got users running around in the applications, et cetera. So yeah, the heart of it is, it's your data, you put it in there, you better be looking after it too. >>That's so important for customers to understand what is Salesforce's responsibility? What's my responsibility to the really nail that? What are some of the main challenges as we see the cybersecurity landscape has changed so much in the last couple of years? Ransomware is now a, when it's gonna happen to us. How often, what's gonna be the significance? What are some of the main challenges that you're talking with customers about these days? >>So really on the data side, it definitely hinges around ransomware. But I would also say when you think about what digital transformation has done for customers, moved you to a world where you've gotta be on 24 7, right? You can't afford to have systems down, whether that's your public website or even things your salespeople are using. And so on the, on the data side, we talk a lot with our customers about really recovery. Not so much about backup. Backup is in our name, but our product is called Recover. And there's a reason for that. We're trying to focus on how can we help customers quickly get back to a good state when they've had an incident. So that's kind of the data side of it. On the security side of it, it's really about how do they manage all the controls that SaaS providers now give them. >>Make sure the right people in their organization can see the right data and the data. They should not be able to see the data they shouldn't be able to see. And that's just getting increasingly complex, really anchored around the fact that the volume of the data is growing, the complexity of that data is growing and really the sensitivity of that data is growing, right? When you think about all the data privacy rules, 10 years ago we didn't care about keeping a whole bunch of data around. Now you've kind of gotta get rid of it. So you've actually gotta manage it through its lifecycle. >>So the shared responsibility model has applied to data protection is, is kind of an interesting topic cuz you always think about it for security and I know security and data protection are these adjacencies, but it's a complicated situation cuz you've got shared responsibility models now across multiple clouds. It's gotta be way more complicated across SaaS because you've got different policies, you've got a lot more SaaS than you have. There's three clouds, four, if you put in Alibaba, you know, and yeah, I know this hosting and Oracle and IBM, et cetera, but hyperscalers and so, but there's dozens if not hundreds of SaaS products at a company. So are you able to create a consistent experience and, and for your customers across all those, now of course, I know you're not doing hundreds and thousands of SaaS products, but you got, you know, pretty big ones here. ServiceNow, Salesforce, right? 365. Let's start >>There. So, so consistency we are hoping will come honestly where the industry is right now. It's getting, getting each one in a state where you are comfortable with it, >>Right? Get it protected. >>Yeah. Take a sales force. A typical sales force environment right now has a survey we did recently, about 2000 fields that have sensitive data in it in some way, shape or form. You've couple that with about 80, 85% of the users can see some fields that are sensitive. How you manage that matrix is, is just really hard. And that's part of what our secure product brings to the table, helps you understand who can see what and why they can see it. >>So where are your customer conversations these days? Are you talking to CIOs and CISOs? Is this, is this at that level >>It for some of our customers? Yes, it absolutely gets there. The, the real core of our discussion is the guy who owns and runs the sales technology, for example, right? Or the ServiceNow technology or typically a center of excellence. Those have been, those have been a key way for us to help an organization understand what the risks are, what's necessary, what they're having to do given that they don't have a backup now and have those, those shared responsibility model conversations. That's kind of where >>It starts. Are you finding that most customers are not backing up Salesforce, for example, or ServiceNow? Or are they switching from a competitor over to own back? >>Sad to say that it's mostly not. Yeah, it's, it's predominantly, I thought my cloud provider had me covered for that. >>So the market is huge. Yes. Massive opportunity. Yeah. >>Yeah. If you think of the number of Salesforce instances, not ignoring ServiceNow and Dynamics for a moment, Salesforce talks about, I don't know, 150,000 customers somewhere in that mark and we have 500 of them. >>So how do you get the first penguin off the iceberg? What's the sort of customer conversation like just in terms of, you know, educating them and sending them and, and kind of pushing 'em over the edge so that they actually do start protecting their data? >>Yeah, so, so sadly it sometimes starts with, I had a data loss, I spent weeks working at it, I got 75% of my data back, but not all of it. And that's a real customer quote. And in other cases it's, sorry. In other cases it's how do we, you know, how are you thinking about your sales source environment, particularly customers that have a lot of them, how sensitive is the data? How critical is the data in there? What are you doing to protect it? Today we have some people doing, doing weekly exports, which Salesforce provides. It's a manual step. The first penguin off the iceberg, as you say, it's kind of to say, Hey, well why didn't you automate that? Right? Don't have to rely on somebody on a Tuesday pulling the data down. So that's, those are places where it starts. >>Yeah. So, you know, Lisa, I was saying earlier that, you know, it closed the barn door, right? And that's, that's essentially what Adrian's saying is you've, you've got, you basically gotta look for that customer that's been snake bitten. Yeah. But generally speaking, I feel like there's more awareness. I was gonna ask you, you know, in this economic climate is, is data protection recession proof? And I think it's, it's not right. People sort of, but at the same time, if you're not proactive about it, you really could hurt your business. Absolutely. So what, what are your thoughts on customers getting more efficient with regard to their, their data estate, their data protection? Can you turn it into a positive? >>I think, I think it absolutely is a positive. Obviously we're in an environment where CIOs are having to look at every penny they're spending. But if you think about what you're using the data for, you're making business decisions based on this data every day. Your, your entire organization is making business decisions. So if you've got missing data or inaccurate data, you're making suboptimal decisions, right? So that comes back to data protection, comes back to brand reputation. Yes. And it comes back to how quickly can you get the data back into the shape you need it to be. And that again, is why we focus on the recovery side of the equation, not just the backup side. Right. Sorry. I would also say that in these recession bit times you've got fewer people doing as much work as you had before that raises the chance of errors. And we see across our customer base 50% of the data corruption or or data loss occurrences happen cause a human did something by mistake. Yeah, sure. And if you up the, the stress of those humans, you're gonna get more errors. >>Should you, when you're talking with IT professionals or maybe sales leaders, should it be thinking differently about spend for data protection versus general spend? Given that the whole point is to be able to recover data when something happens? >>I think you have to think about it from a kind of a risk and a business continuity perspective, right? Data protection tangibly reduces your business risk, right? It gets you back up faster. It, it helps you stay running. It helps ensure that the right people have access to the right data and from a secure standpoint and, and all of those just lower your risk. And if you're having discussions as CIOs should be with their business counterparts around business continuity, with the criticality of the data that's in Salesforce and these other SaaS applications today, I think it's pretty obvious that, that you should have a strong data protection strategy around >>It. Absolutely. >>Your business is at >>Risk, right? And nobody wants to be the next headline. No. My last question for you, Adrian, is if there was a billboard near your headquarters, what's that? What would it say? What's that tagline about own backup that really nails it home? >>I think it's, nobody operating in the cloud should ever lose data and that's what we're here to do. >>Excellent. Adrian, it's been a pleasure having you on the program. Thank you for talking with David, me, great talking to you about and back up what you guys are doing and really how organizations need to be very aware of that shared responsibility model. It sounds like you guys are well on your way to helping them understand that. We appreciate your time. >>Thank you both. Thank you. Best of luck. >>Appreciate it. Thank our pleasure. For our guest and Dave Ante, I'm Lisa Martin. You're watching The Cube, the leader in emerging and enterprise tech coverage.
SUMMARY :
that you can get it back. Well, it used to be you got snake bit and then you closed the barn door after the horse ran away. We've got the CTO of own backup here. The what is unique about it? a business based on the fact that SAS has become a center of gravity for So how do you And just that it's up to you to put the data in there. What are some of the main challenges as we see the But I would also say when you think about what When you think about all the data privacy rules, 10 years ago we didn't care about keeping a whole bunch of data around. So are you able to create a consistent experience one in a state where you are comfortable with it, Get it protected. How you manage that matrix is, the real core of our discussion is the guy who owns and runs the Are you finding that most customers are not backing up Salesforce, Sad to say that it's mostly not. So the market is huge. moment, Salesforce talks about, I don't know, 150,000 customers somewhere in that how do we, you know, how are you thinking about your sales source environment, you know, it closed the barn door, right? And it comes back to how quickly can you get the data back into the shape you need it to be. I think you have to think about it from a kind of a risk and a business continuity perspective, right? And nobody wants to be the next headline. that's what we're here to do. It sounds like you guys are well on your way to helping them understand that. Thank you both. the leader in emerging and enterprise tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Adrian | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Adrian Kunzle | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Dave Ante | PERSON | 0.99+ |
75% | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
500 | QUANTITY | 0.99+ |
hundreds | QUANTITY | 0.99+ |
150,000 customers | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
dozens | QUANTITY | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
Tuesday | DATE | 0.98+ |
first penguin | QUANTITY | 0.98+ |
about 2000 fields | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
50% | QUANTITY | 0.98+ |
SAS | ORGANIZATION | 0.98+ |
10 years ago | DATE | 0.98+ |
Microsoft | ORGANIZATION | 0.98+ |
four | QUANTITY | 0.97+ |
about 80, 85% | QUANTITY | 0.97+ |
5,000 plus customers | QUANTITY | 0.97+ |
Salesforce | ORGANIZATION | 0.97+ |
Salesforce | TITLE | 0.96+ |
aws | ORGANIZATION | 0.96+ |
The Cube | TITLE | 0.96+ |
OwnBackup | ORGANIZATION | 0.92+ |
last couple of years | DATE | 0.91+ |
one | QUANTITY | 0.9+ |
Dynamics 365 | TITLE | 0.89+ |
each one | QUANTITY | 0.89+ |
three clouds | QUANTITY | 0.88+ |
ServiceNow | TITLE | 0.88+ |
today | DATE | 0.87+ |
Dynamics | TITLE | 0.86+ |
three and a half days | QUANTITY | 0.8+ |
SaaS | QUANTITY | 0.74+ |
Adrian Consul | PERSON | 0.73+ |
Reinvent 2022 | TITLE | 0.73+ |
2022 | DATE | 0.72+ |
24 | QUANTITY | 0.71+ |
Invent | EVENT | 0.67+ |
day one | QUANTITY | 0.64+ |
Cube | ORGANIZATION | 0.52+ |
ServiceNow | ORGANIZATION | 0.51+ |
thousands | QUANTITY | 0.5+ |
7 | QUANTITY | 0.29+ |
365 | TITLE | 0.29+ |
Dev Ittycheria, MongoDB | Cube Conversation: Partner Exclusive
>>Hi, I'm John Ferry with the Cube. We're here for a special exclusive conversation with David Geria, the CEO of Mongo MongoDB. Well established leading platform. It's been around for, I mean, decades. So continues to become the platform of choice for high performance data. This modern data stack that's emerging, a big part of the story here at a reinvent 2022 on top of an already performing a cloud with, you know, chips and silicon specialized instances, the world's gonna be getting faster, smaller, higher performance, lower cost specialized. Dave, thanks for taking the time with me today, >>John. It's great to be here. Thank you for having me. >>Do you see yourself as a ISV or you just go with that, because that's kind of a nomenclature >>When, when I think of the term isv, I think of the notion of someone building an end solution for customer to get something done. Or what we're building is essentially a developer data platform and we have thousands of ISVs who build software applications on our platform. So how could we be an isv? Because by definition I, you know, we enable people to do so many different things and you know, they can be the, you know, the largest companies of the world trying to transform their business or startups who are trying to disrupt either existing industries or create new ones. And so that's, and, and that's how our customers view MongoDB and, and the whole Atlas platform basically enables them to do some amazing things. The reason for that is, you know, you know, we believe that what we are enabling developers to do is be able to reduce the friction and the work required to build modern applications through the document model, which is really intuitive to the way developers think and code through the distributed nature of platforms. >>So, you know, things like charting no other company on the planet offers the capabilities we do to enable people to build the most highly performant and scalable applications. And also what we also do is enable people to, you know, run different types of workloads on our platform. So we have obviously transactional, we have search, we have time series, we enable people to do things like sophisticated device synchronization from Edge to the back end. We do graph, we do real time analytics. So being able to consolidate all that with developers on one elegant unified platform really makes, you know, it attractive for developers to build on long >>Db. You know, you guys are a feature partner of aws and I would speculate, I don't know if you can comment on this, but I would imagine that you probably produce a lot of revenue for Amazon because you really can't turn off EC two when you do a database work. So, you know, you kind of crank it all the time. You guys are a top partner. How long have you guys been a partner with aws? What's the relationship? >>The relationship's been strong, actually, Amazon spoke at one of our first user conferences in 2013. And since then we've been working together. We've been at reinvent since essentially 2015. And we've been a premier partner, an Emerald sponsor for the last Nu you know, I think four or five years. And so we're very committed to the relationship and I think there's some things that we have a lot, we have a lot of things in common. We care a lot about customers and for us, our customers, our developers, we care a lot about removing friction from their day to day work to move, be able to move fast and be able to, in order to seize new opportunities and respond to new threats. And so consequently, I think the partnership, obviously by nature of our, our common objectives has really come together. >>Talk about the journey of Mongo. I mean, you look back at the history, I, you go back the old lamp stack days, right? So you know, the day developer traction is just really kind of stuck at the none. I mean, it's, it's really well known. And I remember over the conversations, Dave Mongo doesn't scale. I mean, every year we heard something along those lines cuz it just kept scaling. I heard the same thing with AWS back in 2013 timeframe. You, oh, it's just, it's really not for a real prime time. It's, it's for hobbyists, not so much builders, maybe startup cloud, but that developer traction is translated. Can you take us through the journey of Mongo where it is now and, and kinda look back and, and, and take us through what's the state of the art now, >>Right? So just for those of you who, who, those, you know, those in your audience who don't know too much about Mon Be I'll just, you know, start with the background. The company was astounded by developers. It was basically the CTO and some key developers from Double Click who really saw the challenges and the limitations of the relational database architecture because they're trying to serve billions of ads per day and they constantly need to work on the constraints and relational database. And so they essentially decided, why don't we just build a database that we'd want to use? And that was a catalyst to starting MongoDB. The first thing they focused on was, rather than having a tabler data structure, they focused on a document data structure. Why documents? Because there's much more natural and intuitive to work with data and documents in terms of you can set parent child relationships and how you just think about the relationship with data is much more natural in a document than trying to connect data in a, you know, in hundreds of different tables. >>And so that enabled developers to just move so much faster. The second thing they focused on was building a truly distributed architecture, not kind of some adjunct, you know, you know, architecture that maybe made the existing architecture a little bit more scalable. They really took from the ground up a truly distributed architecture. So where you can do native replication, you can do charting and you can do it on a global basis. And so that was the, the other profound, you know, thing that they did. And then since then, what we've also done is, you know, the document model is truly a super set of other models. So we enabled other capabilities like search you can do joins, so you can do very transaction intensive use case among be where fully asset compliant. So you have the highest forms of data guarantees you can do very sophisticated things like time series, you can do device synchronization, you can do real time analytics because we can carve off read only nodes to be able to read and query data in real time rather than have to offload that data into a data warehouse. >>And so that enables developers to just build a wide variety of, of application longing to be, and they get one unified developer interface. It's highly elegant and seamless. And so essentially the cost and tax of matching multiple point tools goes away when, when I think of the term isv, I think of the notion of someone building an end solution for a customer to get something done. Or what we're building is essentially a developer data platform and we have thousands of ISVs who build software applications on our platform. So how could we be an isv? Because by definition I, you know, we enable people to do so many different things and you know, they can be the, you know, the largest companies in the world trying to transform their business or startups or trying to disrupt either existing industries or create new ones. And so that's, and and that's how our customers view MongoDB and, and the whole Atlas platform basically enables them to do some amazing things. >>Yeah, we're seeing a lot of activity on the Atlas. Do you see yourself as a ISV or you just go with that because that's kind of a nomenclature? >>No, we don't view ourselves as ISV at all. We view ourselves as a developer data platform. And the reason for that is, you know, you know, we believe that what we are enabling developers to do is be able to reduce the friction and the work required to build modern applications through the document model, which is really intuitive to the way developers think and code through the distributed nature of platforms. So, you know, things like sharding, no other company on the planet offers the capabilities we do to enable people to build the most highly performant and scalable applications. And also what we also do is enable people to, you know, run different types of workflows on our platform. So we have obviously transactional, we have search, we have time series, we enable people to do things like sophisticated device synchronization from Edge to the back end. We do graph, we do real time analytics. So being able to consolidate all that with developers on one elegant unified platform really makes, you know, it attractive for developers to build on long ndb. >>You know, the cloud adoption really is putting a lot of pressure on these systems and you're seeing companies in the ecosystem and AWS stepping up, you guys are doing great job, but we're seeing a lot more acceleration around it, on staying on premise for certain use cases. Yet you got the cloud as well growing for workloads and, and you get this hybrid steady state as an operational mode. I call that 10 of the classic cloud adoption track record. You guys are an example of multiple iterations in cloud. You're doing a lot more, we're starting to see this tipping point with others and customers coming kind of on that same pattern. Building platforms on top of aws on top of the primitives, more horsepower, higher level services, industry specific capabilities with data. I mean this is a new kind of cloud, kind of a next generation, you knows next gen you got the classic high performance infrastructure, it's getting better and better, but now you've got this new application platform, you know, reminds me of the old asp, you know, if you will. I mean, so are you seeing customers doing things differently? Can you share your, your reaction to this role of, you know, this new kind of SaaS platform that just isn't an application, it's, it's more, it's deeper than that. What's going on here? We call it super cloud, but >>Like what? Yeah, so essentially what what, you know, a lot of our customers doing, and by the way we have over 37,000 customers of all shapes and sizes from the largest companies in the world to cutting edge startups who are building applications among B, why do they choose MongoDB? Because essentially it's the, you know, the fastest way to innovate and the reason it's the fastest way to innovate is because they can work with data so much easier than working with data on other types of architecture. So the document model is profoundly a breakthrough way to work with data to make it very, very easy. So customers are essentially building these modern applications, you know, applications built on microservices, event driven architectures, you know, addressing sophisticated use cases like time series to, and then ultimately now they're getting into machine learning. We have a bunch of companies building machine learning applications on top of MongoDB. And the reason they're doing that is because one, they get the benefits of being able to, you know, build and work with, with data so much easier than any other platform. And it's highly scale and performant in a way that no other platform is. So literally they can run their, you know, workloads both locally and one, you know, autonomous zone or they can basically be or available zone or they could be basically, you know, anywhere in the world. And we also offer multicloud capabilities, which I can get into later. >>Let's talk about the performance side. I know I was speaking with some Amazon folks every year it's the same story. They're really working on the physics, they're getting the chips, they wanna squeeze as much energy out of that. I've never met a developer that said they wanna run their workload on a slower platform or slower hardware. We know said no developer, right? No one wants to do that. >>Correct. >>So you guys have a lot of experience tuning in with Graviton instances, we're seeing a lot more AWS EC two instances, we're seeing a lot more kind of integrated end to end stories. Data is now security, it's tied into data stacks or data modern kind of data hybrid stack. A lot going on around the hardware performance specialization, the role of data, kind of a modern data stack emerging. What, what's your thoughts on the that that Yeah, >>I, I think if you had asked me, you know, when the cloud started going vogue, like you know, the, you know, the, the later part of the last decade and told me, you know, sitting here 12, 15 years later, would you know, would we be talking about, you know, chip processing speeds? I'd probably thought, nah, we would've moved on by then. But what's really clear is that customers, to your point, customers care about performance, they care about price performance, right? So AWS's investments in Graviton, we have actually deployed a significant portion of our at fleet on Amazon now runs on Graviton. You know, they've built other chip sets like train and, and inferential for like, you know, training models and running inferences. They're doing things like Nitro. And so what that really speaks to is that the cloud providers are focusing on the price performance of their, as you call it, their primitives and their infrastructure and the infrastructure layer that are still very, very important. >>And, and you know, if you look at their revenue, about 60 to 70% of the revenue comes from that pure infrastructure. So to your point, they can't offer a second class solution and still win. So given that now they're seeing a lot of competition from Azure, Azure's building their own chip sets, Google's already obviously doing that and and building specialized chip sets for machine learning. You're seeing these cloud providers compete. So they have to really compete to make their platform the most performant, the most price competitive in the marketplace. Which gives us a great platform to build on to enable developers to build these incredibly highly performant applications that customers are now demand. >>I think that's a really great point. I mean, you know, it's so funny Dave, because you know, I remember those, we don't talk speeds and feeds anymore. We're not talking about boxes. I mean that's old kind of school thinking because it was a data center mentality, speeds and feeds and that was super important. But we're kind of coming back to that in the cloud now in distributed architecture, as you put your platforms out there for developers, you have to run fast. You gotta, you can't give the developer subpar or any kind of performance that's, they'll, they'll go somewhere else. I mean that's the reality of what developers, no one, again, no one says I wanna go on the slower platform unless it's some sort of policy based on price or some sort of thing. But, but for the most part it's gotta run fast. So you got the tail of two clouds going on here, you got Amazon classic ias, keep making it faster under the hood. >>And then you got the new abstraction layers of the higher level services. That's where you guys are bridging this new, new generational shift where it's like, hey, you know what? I can go, I can run a headless application, I can run a SAS app that's refactored with data. So you've seen a lot more innovation with developers, you know, running stuff in, in the C I C D pipeline that was once it, and you're seeing security and data operations kind of emerging as a structural change of how companies are, are are transforming on the business side. What's your reaction to that business transformation and the role of the developer? >>Right, so I mean I have to obviously give amazing kudos to the, you know, to AWS and the Amazon team for what they've built. Obviously they're the ones who kind of created the cloud industry and they continue to push the innovation in the space. I mean today they have over 300 services and you know, obviously, you know, no star today is building anything not on the cloud because they have so many building blocks to start with. But what we though have found from our talking to our customers is that in some ways there is still, you know, the onus is on the customer to figure out which building block to use to be able to stitch together the applications and solutions they wanna build. And what we have done is taken essentially an opinionated point of view and said we will enable you to do that. >>You know, using one data model. You know, Amazon today offers I think 17 or 18 different types of databases. We don't think like, you know, having a tool for every job makes sense because over time the tax and cost of learning, managing and supporting those different applications just don't make a lot of sense or just become cost prohibitive. And so we think offering one data model, one, you know, elegant user experience, you know, one way to address the broadest set of of use cases is that we think is a better way. But clearly customers have choice. They can use Amazon's primitives and those second layer services as you as you described, or they can use us. Unfortunately we've seen a lot of customers come to us with our approach and so does Amazon. And I have to give obviously again kudos and Amazon is very customer obsessed and so we have a great relationship with them, both technically in terms of the product integrations we do as well as working with 'em in the field, you know, on joint customer opportunities. >>Speaking of, while you mentioned that, I wanna just ask you, how is that marketplace relationship going with aws? Some of the partners are really seeing great economic and joint selling or them selling your, your stuff. So there's a real revenue pop there in that religion. Can you comment on that? >>So we had been working the partner in the marketplace for many years now, more from a field point of view where customers could leverage their existing commitments to AWS and leverage essentially, you know, using Atlas and applying in an atlas towards their commits. There was also some sales incentives for people in the field to basically work together so that, you know, everyone won should we collectively win a customer? What we recently announced is as pay as you Go initiative, where literally a customer on the Amazon marketplace can basically turn up, you know, an Alice instance with no commitment. So it's so easy. So we're just pushing the envelope to just reduce the friction for people to use Atlas on aws. And it's working really very well. The uptake has been been very strong and and we feel like we're just getting started because we're so excited about the results we're >>Seeing. You know, one of the things that's kind of not core in the keynote theme, but I think it's underlying message is clear in the industry, is the developer productivity. You said making things easy is a big deal, self-service, getting in and trying, these are what developer friendly tools are like and platform. So I have to ask you, cuz this comes up a lot in our kind of business conversation, is, is if you take digital transformation concept to its completion, assuming now you know, as a thought exercise, you completely transform a company with technology that's, that is the business transformation outcome. Take it to completion. What does that look like? I mean, if you go there you'd say, okay, the company is the app, the company is the data, it's not a department serving the business, it's the business. And so I think this is kind of what we're seeing as the next big mountain climb, which is companies that do transform there, they are technology companies, they're not a department like it. So I think a lot of companies are kind of saying, wait a minute, why would we have a department? It should be the company. What's your your your view on this because this >>Yeah, so I I've had the for good fortune of being able to talk to thousand customers all over the world. And you know, one thing John, they never tell me, they never tell me that they're innovating too quickly. In fact, they always tell me the reverse. They tell me all the obstacles and impediments they have to be able to be able to be able to move fast. So one of the reasons they gravitate to MongoDB is just the speed that they wish they can build applications to, to your point, developer productivity. And by definition, developer productivity is a proxy for innovation. The faster you can make your developers, you know, move, the faster they can push out code, the faster they can iterate and build new solutions or add more capabilities on the existing applications, the faster you can innovate either to, again, seize new opportunities or to respond to new threats in your business. >>And so that resonates with every C level executive. And to your point, the developers not some side hustle that they kind of think about once in a while. It's core to the business. So developers have amassed enormous amount of power and influence. You know, their, their, their engineering teams are front and center in terms of how they think about building capabilities and and building their business. And that's also obviously enabled, you know, to your point, every software company, every company's not becoming a software company because it all starts with softwares, software enables, defines or creates almost every company's value proposition. >>You know, it makes me smile because I love operating systems as one of my hobbies in college was, you know, systems programming and I remember those network kind of like the operating systems, the cloud. So, you know, everything's got specialized capabilities and that's a big theme here at Reinvent. If you look at the announcements Monday night with Peter DeSantis, you got, you got new instances, new chips. So this whole engine kind of specialized component is like an engine. You got a core and you got other subsystems. This is gonna be an integral part of how companies architect their platform or you know, Adam calls it the landing zone or whatever they wanna call it. But you gotta start seeing a new architectural thinking for companies. What's your, can you share your experience on how companies should look at this opportunity as a plethora of more goodness on the hardware? On hardware, but like chips and instances? Cause now you can mix and match. You've got, you've got, you got everything you need to kind of not roll your own but like really build foundational high performance capabilities. >>Yeah, so I I, so I think this is where I think Amazon is really enabling all companies, including, you know, companies like Mon db, you know, push the envelope and innovation. So for example, you know, the, the next big hurdle for us, I think we've seen two big platform shifts over the last 15 years of platform shifts, you know, to mobile and the platform shift to cloud. I believe the next big platform shift is going from dumb apps to smart apps, which you're building in, you know, machine learning and you know, AI and just very sophisticated automation. And when you start automating human decision making, rather than, you know, looking at a dashboard and saying, okay, I see the data now, now I have to do this. You can automate that into your applications and make your applications leveraging real time data become that much more smart. And that ultimately then becomes a developer challenge. And so we feel really good about our position in taking advantage of those next big trends and software leveraging the price performance curves that, you know, Amazon continues to push in terms of their hardware performance, networking performance, you know, you know, price, performance and storage to build those next generation of modern applications. >>Okay, so let me get this straight. You have next generation intelligent smart apps and you have AI generative solutions coming out around the corner. This is like pretty good position for Mongo to be in with data. I mean, this is what you do, you're in that exactly of the action. What's it like? I mean, you must be like trying to shake the world and wake up. The world's starting to wake up now through this. So what's, what's it like? >>Well, I mean we're really excited and bullish about the future. We think that we're well positioned because we know as to your point, you know, we have amassed amazing amount of developer mindshare. We are the most popular modern data platform out there in the world. There's developers in almost every corner of the planet using us to do something. And to your point, leveraging data and these advances in machine learning ai. And we think the more AI becomes democratized, not, you know, done by a bunch of data scientists sitting in some corner office, but essentially enabling developers to have the tools to build these very, very sophisticated, smart applications will, you know, will position as well. So that's, you know, obviously gonna be a focus for us over the, frankly, I think this is gonna be like a 10 year, 10 15 year run and we're just getting started in this whole >>Area. I think you guys are really well positioned. I think that's a great point. And Adam mentioned to me and, and Mike interviewed, he said on stage talk about it, the role of a data analyst kind of goes away. Everyone's a data analyst, right? You'll still see specialization on, on core data engineering, which is kind of like an SRE role for data. So data ops and data as code is a big deal making data applications. So again, exciting times and you guys are well positioned. If you had to bumper sticker the event this week here at Reinvent, what would you, how would you categorize this this point in time? I mean, Adam's great leader, he is gonna help educate customers how to use technology to, for business advantage and transformation. You know, Andy did a great job making technology great and innovative and setting the table, Adam's gotta bring it to the enterprises and businesses. So it's gonna be an interesting point in time we're in now. What, how would you categorize this year's reinvent, >>Right? I think the, the, the tech world is pivoting towards what I'd call rationalization or cost optimization. I think people obviously in, you know, the last 10 years have, you know, it's all about speed, speed, speed. And I think people still value speed, but they wanna do it at some sort of predictable cost model. And I think you're gonna see a lot more focus around cost and cost optimization. That's where we think having one platform is by definition of vendor consolidation way for people to cut costs so that they can basically, you know, still move fast but don't have to incur the tax of using a whole bunch of different point tools. And so we think we're well positioned. So the bumper sticker I think about is essentially, you know, do more for less with MongoDB. >>Yeah. And the developers on the front lines. Great stuff. You guys are great partner, a top partner at AWS and great reflection on, on where you guys been, but really where you are now and great opportunity. David Didier, thank you so much for spending the time and it's been great following Mongo and the continued rise of, of developers of the on the front lines really driving the business and that, and they are, I know, driving the business, so, and I think they're gonna continue Smart apps, intelligent apps, ai, generative apps are coming. I mean this is real. >>Thanks John. It's great speaking with >>You. Yeah, thanks. Thanks so much. Okay.
SUMMARY :
of an already performing a cloud with, you know, chips and silicon specialized instances, Thank you for having me. I, you know, we enable people to do so many different things and you know, they can be the, And also what we also do is enable people to, you know, run different types So, you know, you kind of crank it all the time. an Emerald sponsor for the last Nu you know, I think four or five years. So you know, the day developer traction is just really kind of stuck at the So just for those of you who, who, those, you know, those in your audience who don't know too much about Mon And so that was the, the other profound, you know, things and you know, they can be the, you know, the largest companies in the world trying to transform Do you see yourself as a ISV or you you know, you know, we believe that what we are enabling developers to do is be able to reduce know, reminds me of the old asp, you know, if you will. Yeah, so essentially what what, you know, a lot of our customers doing, and by the way we have over 37,000 Let's talk about the performance side. So you guys have a lot of experience tuning in with Graviton instances, we're seeing a lot like you know, the, you know, the, the later part of the last decade and told me, you know, And, and you know, if you look at their revenue, about 60 to 70% I mean, you know, it's so funny Dave, because you know, I remember those, And then you got the new abstraction layers of the higher level services. to the, you know, to AWS and the Amazon team for what they've built. And so we think offering one data model, one, you know, elegant user experience, Can you comment on that? can basically turn up, you know, an Alice instance with no commitment. is, is if you take digital transformation concept to its completion, assuming now you And you know, one thing John, they never tell me, they never tell me that they're innovating too quickly. you know, to your point, every software company, every company's not becoming a software company because or you know, Adam calls it the landing zone or whatever they wanna call it. So for example, you know, the, the next big hurdle for us, I think we've seen two big platform shifts over the I mean, this is what you do, So that's, you know, you guys are well positioned. I think people obviously in, you know, the last 10 years have, on where you guys been, but really where you are now and great opportunity. Thanks so much.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Mike | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Andy | PERSON | 0.99+ |
David Didier | PERSON | 0.99+ |
David Geria | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
Dave | PERSON | 0.99+ |
17 | QUANTITY | 0.99+ |
2015 | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Peter DeSantis | PERSON | 0.99+ |
John Ferry | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
four | QUANTITY | 0.99+ |
10 year | QUANTITY | 0.99+ |
Monday night | DATE | 0.99+ |
Dev Ittycheria | PERSON | 0.99+ |
hundreds | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Dave Mongo | PERSON | 0.99+ |
five years | QUANTITY | 0.99+ |
aws | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
Atlas | TITLE | 0.99+ |
Mongo | PERSON | 0.99+ |
Mongo MongoDB | ORGANIZATION | 0.99+ |
over 300 services | QUANTITY | 0.99+ |
Double Click | ORGANIZATION | 0.98+ |
10 | QUANTITY | 0.98+ |
over 37,000 customers | QUANTITY | 0.98+ |
one platform | QUANTITY | 0.98+ |
MongoDB | TITLE | 0.98+ |
Emerald | ORGANIZATION | 0.98+ |
Mongo | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
this week | DATE | 0.98+ |
thousand customers | QUANTITY | 0.97+ |
second layer | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
about 60 | QUANTITY | 0.97+ |
EC two | TITLE | 0.96+ |
two clouds | QUANTITY | 0.95+ |
Reinvent | ORGANIZATION | 0.95+ |
second thing | QUANTITY | 0.94+ |
Azure | ORGANIZATION | 0.94+ |
one data model | QUANTITY | 0.93+ |
second class | QUANTITY | 0.92+ |
last decade | DATE | 0.92+ |
Nitro | ORGANIZATION | 0.9+ |
one data | QUANTITY | 0.89+ |
15 year | QUANTITY | 0.89+ |
70% | QUANTITY | 0.89+ |
Ali Ghodsi, Databricks | Cube Conversation Partner Exclusive
(outro music) >> Hey, I'm John Furrier, here with an exclusive interview with Ali Ghodsi, who's the CEO of Databricks. Ali, great to see you. Preview for reinvent. We're going to launch this story, exclusive Databricks material on the notes, after the keynotes prior to the keynotes and after the keynotes that reinvent. So great to see you. You know, you've been a partner of AWS for a very, very long time. I think five years ago, I think I first interviewed you, you were one of the first to publicly declare that this was a place to build a company on and not just post an application, but refactor capabilities to create, essentially a platform in the cloud, on the cloud. Not just an ISV; Independent Software Vendor, kind of an old term, we're talking about real platform like capability to change the game. Can you talk about your experience as an AWS partner? >> Yeah, look, so we started in 2013. I swiped my personal credit card on AWS and some of my co-founders did the same. And we started building. And we were excited because we just thought this is a much better way to launch a company because you can just much faster get time to market and launch your thing and you can get the end users much quicker access to the thing you're building. So we didn't really talk to anyone at AWS, we just swiped a credit card. And eventually they told us, "Hey, do you want to buy extra support?" "You're asking a lot of advanced questions from us." "Maybe you want to buy our advanced support." And we said, no, no, no, no. We're very advanced ourselves, we know what we're doing. We're not going to buy any advanced support. So, you know, we just built this, you know, startup from nothing on AWS without even talking to anyone there. So at some point, I think around 2017, they suddenly saw this company with maybe a hundred million ARR pop up on their radar and it's driving massive amounts of compute, massive amounts of data. And it took a little bit in the beginning just us to get to know each other because as I said, it's like we were not on their radar and we weren't really looking, we were just doing our thing. And then over the years the partnership has deepened and deepened and deepened and then with, you know, Andy (indistinct) really leaning into the partnership, he mentioned us at Reinvent. And then we sort of figured out a way to really integrate the two service, the Databricks platform with AWS . And today it's an amazing partnership. You know, we directly connected with the general managers for the services. We're connected at the CEO level, you know, the sellers get compensated for pushing Databricks, we're, we have multiple offerings on their marketplace. We have a native offering on AWS. You know, we're prominently always sort of marketed and you know, we're aligned also vision wise in what we're trying to do. So yeah, we've come a very, very long way. >> Do you consider yourself a SaaS app or an ISV or do you see yourself more of a platform company because you have customers. How would you categorize your category as a company? >> Well, it's a data platform, right? And actually the, the strategy of the Databricks is take what's otherwise five, six services in the industry or five, six different startups, but do them as part of one data platform that's integrated. So in one word, the strategy of data bricks is "unification." We call it the data lake house. But really the idea behind the data lake house is that of unification, or in more words it's, "The whole is greater than the sum of its parts." So you could actually go and buy five, six services out there or actually use five, six services from the cloud vendors, stitch it together and it kind of resembles Databricks. Our power is in doing those integrated, together in a way in which it's really, really easy and simple to use for end users. So yeah, we're a data platform. I wouldn't, you know, ISV that's a old term, you know, Independent Software Vendor. You know, I think, you know, we have actually a whole slew of ISVs on top of Databricks, that integrate with our platform. And you know, in our marketplace as well as in our partner connect, we host those ISVs that then, you know, work on top of the data that we have in the Databricks, data lake house. >> You know, I think one of the things your journey has been great to document and watch from the beginning. I got to give you guys credit over there and props, congratulations. But I think you're the poster child as a company to what we see enterprises doing now. So go back in time when you guys swiped a credit card, you didn't need attending technical support because you guys had brains, you were refactoring, rethinking. It wasn't just banging out software, you had, you were doing some complex things. It wasn't like it was just write some software hosted on server. It was really a lot more. And as a result your business worth billions of dollars. I think 38 billion or something like that, big numbers, big numbers of great revenue growth as well, billions in revenue. You have customers, you have an ecosystem, you have data applications on top of Databricks. So in a way you're a cloud on top of the cloud. So is there a cloud on top of the cloud? So you have ISVs, Amazon has ISVs. Can you take us through what this means and at this point in history, because this seems to be an advanced version of benefits of platforming and refactoring, leveraging say AWS. >> Yeah, so look, when we started, there was really only one game in town. It was AWS. So it was one cloud. And the strategy of the company then was, well Amazon had this beautiful set of services that they're building bottom up, they have storage, compute, networking, and then they have databases and so on. But it's a lot of services. So let us not directly compete with AWS and try to take out one of their services. Let's not do that because frankly we can't. We were not of that size. They had the scale, they had the size and they were the only cloud vendor in town. So our strategy instead was, let's do something else. Let's not compete directly with say, a particular service they're building, let's take a different strategy. What if we had a unified holistic data platform, where it's just one integrated service end to end. So think of it as Microsoft office, which contains PowerPoint, and Word, and Excel and even Access, if you want to use it. What if we build that and AWS has this really amazing knack for releasing things, you know services, lots of them, every reinvent. And they're sort of a DevOps person's dream and you can stitch these together and you know you have to be technical. How do we elevate that and make it simpler and integrate it? That was our original strategy and it resonated with a segment of the market. And the reason it worked with AWS so that we wouldn't butt heads with AWS was because we weren't a direct replacement for this service or for that service, we were taking a different approach. And AWS, because credit goes to them, they're so customer obsessed, they would actually do what's right for the customer. So if the customer said we want this unified thing, their sellers would actually say, okay, so then you should use Databricks. So they truly are customer obsessed in that way. And I really mean it, John. Things have changed over the years. They're not the only cloud anymore. You know, Azure is real, GCP is real, there's also Alibaba. And now over 70% of our customers are on more than one cloud. So now what we hear from them is, not only want, do we want a simplified, unified thing, but we want it also to work across the clouds. Because those of them that are seriously considering multiple clouds, they don't want to use a service on cloud one and then use a similar service on cloud two. But it's a little bit different. And now they have to do twice the work to make it work. You know, John, it's hard enough as it is, like it's this data stuff and analytics. It's not a walk in the park, you know. You hire an administrator in the back office that clicks a button and its just, now you're a data driven digital transformed company. It's hard. If you now have to do it again on the second cloud with different set of services and then again on a third cloud with a different set of services. That's very, very costly. So the strategy then has changed that, how do we take that unified simple approach and make it also the same and standardize across the clouds, but then also integrate it as far down as we can on each of the clouds. So that you're not giving up any of the benefits that the particular cloud has. >> Yeah, I think one of the things that we see, and I want get your reaction to this, is this rise of the super cloud as we call it. I think you were involved in the Sky paper that I saw your position paper came out after we had introduced Super Cloud, which is great. Congratulations to the Berkeley team, wearing the hat here. But you guys are, I think a driver of this because you're creating the need for these things. You're saying, okay, we went on one cloud with AWS and you didn't hide that. And now you're publicly saying there's other clouds too, increased ham for your business. And customers have multiple clouds in their infrastructure for the best of breed that they have. Okay, get that. But there's still a challenge around the innovation, growth that's still around the corner. We still have a supply chain problem, we still have skill gaps. You know, you guys are unique at Databricks as other these big examples of super clouds that are developing. Enterprises don't have the Databricks kind of talent. They need, they need turnkey solutions. So Adam and the team at Amazon are promoting, you know, more solution oriented approaches higher up on the stack. You're starting to see kind of like, I won't say templates, but you know, almost like application specific headless like, low code, no code capability to accelerate clients who are wanting to write code for the modern error. Right, so this kind of, and then now you, as you guys pointed out with these common services, you're pushing the envelope. So you're saying, hey, I need to compete, I don't want to go to my customers and have them to have a staff or this cloud and this cloud and this cloud because they don't have the staff. Or if they do, they're very unique. So what's your reaction? Because this kind is the, it kind of shows your leadership as a partner of AWS and the clouds, but also highlights I think what's coming. But you share your reaction. >> Yeah, look, it's, first of all, you know, I wish I could take credit for this but I can't because it's really the customers that have decided to go on multiple clouds. You know, it's not Databricks that you know, push this or some other vendor, you know, that, Snowflake or someone who pushed this and now enterprises listened to us and they picked two clouds. That's not how it happened. The enterprises picked two clouds or three clouds themselves and we can get into why, but they did that. So this largely just happened in the market. We as data platforms responded to what they're then saying, which is they're saying, "I don't want to redo this again on the other cloud." So I think the writing is on the wall. I think it's super obvious what's going to happen next. They will say, "Any service I'm using, it better work exactly the same on all the clouds." You know, that's what's going to happen. So in the next five years, every enterprise will say, "I'm going to use the service, but you better make sure that this service works equally well on all of the clouds." And obviously the multicloud vendors like us, are there to do that. But I actually think that what you're going to see happening is that you're going to see the cloud vendors changing the existing services that they have to make them work on the other clouds. That's what's goin to happen, I think. >> Yeah, and I think I would add that, first of all, I agree with you. I think that's going to be a forcing function. Because I think you're driving it. You guys are in a way, one, are just an actor in the driving this because you're on the front end of this and there are others and there will be people following. But I think to me, I'm a cloud vendor, I got to differentiate. Adam, If I'm Adam Saleski, I got to say, "Hey, I got to differentiate." So I don't wan to get stuck in the middle, so to speak. Am I just going to innovate on the hardware AKA infrastructure or am I going to innovate at the higher level services? So what we're talking about here is the tail of two clouds within Amazon, for instance. So do I innovate on the silicon and get low level into the physics and squeeze performance out of the hardware and infrastructure? Or do I focus on ease of use at the top of the stack for the developers? So again, there's a channel of two clouds here. So I got to ask you, how do they differentiate? Number one and number two, I never heard a developer ever say, "I want to run my app or workload on the slower cloud." So I mean, you know, back when we had PCs you wanted to go, "I want the fastest processor." So again, you can have common level services, but where is that performance differentiation with the cloud? What do the clouds do in your opinion? >> Yeah, look, I think it's pretty clear. I think that it's, this is, you know, no surprise. Probably 70% or so of the revenue is in the lower infrastructure layers, compute, storage, networking. And they have to win that. They have to be competitive there. As you said, you can say, oh you know, I guess my CPUs are slower than the other cloud, but who cares? I have amazing other services which only work on my cloud by the way, right? That's not going to be a winning recipe. So I think all three are laser focused on, we going to have specialized hardware and the nuts and bolts of the infrastructure, we can do it better than the other clouds for sure. And you can see lots of innovation happening there, right? The Graviton chips, you know, we see huge price performance benefits in those chips. I mean it's real, right? It's basically a 20, 30% free lunch. You know, why wouldn't you, why wouldn't you go for it there? There's no downside. You know, there's no, "got you" or no catch. But we see Azure doing the same thing now, they're also building their own chips and we know that Google builds specialized machine learning chips, TPU, Tenor Processing Units. So their legs are focused on that. I don't think they can give up that or focused on higher levels if they had to pick bets. And I think actually in the next few years, most of us have to make more, we have to be more deliberate and calculated in the picks we do. I think in the last five years, most of us have said, "We'll do all of it." You know. >> Well you made a good bet with Spark, you know, the duke was pretty obvious trend that was, everyone was shut on that bandwagon and you guys picked a big bet with Spark. Look what happened with you guys? So again, I love this betting kind of concept because as the world matures, growth slows down and shifts and that next wave of value coming in, AKA customers, they're going to integrate with a new ecosystem. A new kind of partner network for AWS and the other clouds. But with aws they're going to need to nurture the next Databricks. They're going to need to still provide that SaaS, ISV like experience for, you know, a basic software hosting or some application. But I go to get your thoughts on this idea of multiple clouds because if I'm a developer, the old days was, old days, within our decade, full stack developer- >> It was two years ago, yeah (John laughing) >> This is a decade ago, full stack and then the cloud came in, you kind had the half stack and then you would do some things. It seems like the clouds are trying to say, we want to be the full stack or not. Or is it still going to be, you know, I'm an application like a PC and a Mac, I'm going to write the same application for both hardware. I mean what's your take on this? Are they trying to do full stack and you see them more like- >> Absolutely. I mean look, of course they're going, they have, I mean they have over 300, I think Amazon has over 300 services, right? That's not just compute, storage, networking, it's the whole stack, right? But my key point is, I think they have to nail the core infrastructure storage compute networking because the three clouds that are there competing, they're formidable companies with formidable balance sheets and it doesn't look like any of them is going to throw in the towel and say, we give up. So I think it's going to intensify. And given that they have a 70% revenue on that infrastructure layer, I think they, if they have to pick their bets, I think they'll focus it on that infrastructure layer. I think the layer above where they're also placing bets, they're doing that, the full stack, right? But there I think the demand will be, can you make that work on the other clouds? And therein lies an innovator's dilemma because if I make it work on the other clouds, then I'm foregoing that 70% revenue of the infrastructure. I'm not getting it. The other cloud vendor is going to get it. So should I do that or not? Second, is the other cloud vendor going to be welcoming of me making my service work on their cloud if I am a competing cloud, right? And what kind of terms of service are I giving me? And am I going to really invest in doing that? And I think right now we, you know, most, the vast, vast, vast majority of the services only work on the one cloud that you know, it's built on. It doesn't work on others, but this will shift. >> Yeah, I think the innovators dilemma is also very good point. And also add, it's an integrators dilemma too because now you talk about integration across services. So I believe that the super cloud movement's going to happen before Sky. And I think what explained by that, what you guys did and what other companies are doing by representing advanced, I call platform engineering, refactoring an existing market really fast, time to value and CAPEX is, I mean capital, market cap is going to be really fast. I think there's going to be an opportunity for those to emerge that's going to set the table for global multicloud ultimately in the future. So I think you're going to start to see the same pattern of what you guys did get in, leverage the hell out of it, use it, not in the way just to host, but to refactor and take down territory of markets. So number one, and then ultimately you get into, okay, I want to run some SLA across services, then there's a little bit more complication. I think that's where you guys put that beautiful paper out on Sky Computing. Okay, that makes sense. Now if you go to today's market, okay, I'm betting on Amazon because they're the best, this is the best cloud win scenario, not the most robust cloud. So if I'm a developer, I want the best. How do you look at their bet when it comes to data? Because now they've got machine learning, Swami's got a big keynote on Wednesday, I'm expecting to see a lot of AI and machine learning. I'm expecting to hear an end to end data story. This is what you do, so as a major partner, how do you view the moves Amazon's making and the bets they're making with data and machine learning and AI? >> First I want to lift off my hat to AWS for being customer obsessed. So I know that if a customer wants Databricks, I know that AWS and their sellers will actually help us get that customer deploy Databricks. Now which of the services is the customer going to pick? Are they going to pick ours or the end to end, what Swami is going to present on stage? Right? So that's the question we're getting. But I wanted to start with by just saying, their customer obsessed. So I think they're going to do the right thing for the customer and I see the evidence of it again and again and again. So kudos to them. They're amazing at this actually. Ultimately our bet is, customers want this to be simple, integrated, okay? So yes there are hundreds of services that together give you the end to end experience and they're very customizable that AWS gives you. But if you want just something simply integrated that also works across the clouds, then I think there's a special place for Databricks. And I think the lake house approach that we have, which is an integrated, completely integrated, we integrate data lakes with data warehouses, integrate workflows with machine learning, with real time processing, all these in one platform. I think there's going to be tailwinds because I think the most important thing that's going to happen in the next few years is that every customer is going to now be obsessed, given the recession and the environment we're in. How do I cut my costs? How do I cut my costs? And we learn this from the customers they're adopting the lake house because they're thinking, instead of using five vendors or three vendors, I can simplify it down to one with you and I can cut my cost. So I think that's going to be one of the main drivers of why people bet on the lake house because it helps them lower their TCO; Total Cost of Ownership. And it's as simple as that. Like I have three things right now. If I can get the same job done of those three with one, I'd rather do that. And by the way, if it's three or four across two clouds and I can just use one and it just works across two clouds, I'm going to do that. Because my boss is telling me I need to cut my budget. >> (indistinct) (John laughing) >> Yeah, and I'd rather not to do layoffs and they're asking me to do more. How can I get smaller budgets, not lay people off and do more? I have to cut, I have to optimize. What's happened in the last five, six years is there's been a huge sprawl of services and startups, you know, you know most of them, all these startups, all of them, all the activity, all the VC investments, well those companies sold their software, right? Even if a startup didn't make it big, you know, they still sold their software to some vendors. So the ecosystem is now full of lots and lots and lots and lots of different software. And right now people are looking, how do I consolidate, how do I simplify, how do I cut my costs? >> And you guys have a great solution. You're also an arms dealer and a innovator. So I have to ask this question, because you're a professor of the industry as well as at Berkeley, you've seen a lot of the historical innovations. If you look at the moment we're in right now with the recession, okay we had COVID, okay, it changed how people work, you know, people working at home, provisioning VLAN, all that (indistinct) infrastructure, okay, yeah, technology and cloud health. But we're in a recession. This is the first recession where the Amazon and the other cloud, mainly Amazon Web Services is a major economic puzzle in the piece. So they were never around before, even 2008, they were too small. They're now a major economic enabler, player, they're serving startups, enterprises, they have super clouds like you guys. They're a force and the people, their customers are cutting back but also they can also get faster. So agility is now an equation in the economic recovery. And I want to get your thoughts because you just brought that up. Customers can actually use the cloud and Databricks to actually get out of the recovery because no one's going to say, stop making profit or make more profit. So yeah, cut costs, be more efficient, but agility's also like, let's drive more revenue. So in this digital transformation, if you take this to conclusion, every company transforms, their company is the app. So their revenue is tied directly to their technology deployment. What's your reaction and comment to that because this is a new historical moment where cloud and scale and data, actually could be configured in a way to actually change the nature of a business in such a short time. And with the recession looming, no one's got time to wait. >> Yeah, absolutely. Look, the secular tailwind in the market is that of, you know, 10 years ago it was software is eating the world, now it's AI's going to eat all of software software. So more and more we're going to have, wherever you have software, which is everywhere now because it's eaten the world, it's going to be eaten up by AI and data. You know, AI doesn't exist without data so they're synonymous. You can't do machine learning if you don't have data. So yeah, you're going to see that everywhere and that automation will help people simplify things and cut down the costs and automate more things. And in the cloud you can also do that by changing your CAPEX to OPEX. So instead of I invest, you know, 10 million into a data center that I buy, I'm going to have headcount to manage the software. Why don't we change this to OPEX? And then they are going to optimize it. They want to lower the TCO because okay, it's in the cloud. but I do want the costs to be much lower that what they were in the previous years. Last five years, nobody cared. Who cares? You know what it costs. You know, there's a new brave world out there. Now there's like, no, it has to be efficient. So I think they're going to optimize it. And I think this lake house approach, which is an integration of the lakes and the warehouse, allows you to rationalize the two and simplify them. It allows you to basically rationalize away the data warehouse. So I think much faster we're going to see the, why do I need the data warehouse? If I can get the same thing done with the lake house for fraction of the cost, that's what's going to happen. I think there's going to be focus on that simplification. But I agree with you. Ultimately everyone knows, everybody's a software company. Every company out there is a software company and in the next 10 years, all of them are also going to be AI companies. So that is going to continue. >> (indistinct), dev's going to stop. And right sizing right now is a key economic forcing function. Final question for you and I really appreciate you taking the time. This year Reinvent, what's the bumper sticker in your mind around what's the most important industry dynamic, power dynamic, ecosystem dynamic that people should pay attention to as we move from the brave new world of okay, I see cloud, cloud operations. I need to really make it structurally change my business. How do I, what's the most important story? What's the bumper sticker in your mind for Reinvent? >> Bumper sticker? lake house 24. (John laughing) >> That's data (indistinct) bumper sticker. What's the- >> (indistinct) in the market. No, no, no, no. You know, it's, AWS talks about, you know, all of their services becoming a lake house because they want the center of the gravity to be S3, their lake. And they want all the services to directly work on that, so that's a lake house. We're Bumper see Microsoft with Synapse, modern, you know the modern intelligent data platform. Same thing there. We're going to see the same thing, we already seeing it on GCP with Big Lake and so on. So I actually think it's the how do I reduce my costs and the lake house integrates those two. So that's one of the main ways you can rationalize and simplify. You get in the lake house, which is the name itself is a (indistinct) of two things, right? Lake house, "lake" gives you the AI, "house" give you the database data warehouse. So you get your AI and you get your data warehousing in one place at the lower cost. So for me, the bumper sticker is lake house, you know, 24. >> All right. Awesome Ali, well thanks for the exclusive interview. Appreciate it and get to see you. Congratulations on your success and I know you guys are going to be fine. >> Awesome. Thank you John. It's always a pleasure. >> Always great to chat with you again. >> Likewise. >> You guys are a great team. We're big fans of what you guys have done. We think you're an example of what we call "super cloud." Which is getting the hype up and again your paper speaks to some of the innovation, which I agree with by the way. I think that that approach of not forcing standards is really smart. And I think that's absolutely correct, that having the market still innovate is going to be key. standards with- >> Yeah, I love it. We're big fans too, you know, you're doing awesome work. We'd love to continue the partnership. >> So, great, great Ali, thanks. >> Take care (outro music)
SUMMARY :
after the keynotes prior to the keynotes and you know, we're because you have customers. I wouldn't, you know, I got to give you guys credit over there So if the customer said we So Adam and the team at So in the next five years, But I think to me, I'm a cloud vendor, and calculated in the picks we do. But I go to get your thoughts on this idea Or is it still going to be, you know, And I think right now we, you know, So I believe that the super cloud I can simplify it down to one with you and startups, you know, and the other cloud, And in the cloud you can also do that I need to really make it lake house 24. That's data (indistinct) of the gravity to be S3, and I know you guys are going to be fine. It's always a pleasure. We're big fans of what you guys have done. We're big fans too, you know,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amazon | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
2013 | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
Alibaba | ORGANIZATION | 0.99+ |
2008 | DATE | 0.99+ |
five vendors | QUANTITY | 0.99+ |
Adam Saleski | PERSON | 0.99+ |
five | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
Ali | PERSON | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
three vendors | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
Wednesday | DATE | 0.99+ |
Excel | TITLE | 0.99+ |
38 billion | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Word | TITLE | 0.99+ |
three | QUANTITY | 0.99+ |
two clouds | QUANTITY | 0.99+ |
Andy | PERSON | 0.99+ |
three clouds | QUANTITY | 0.99+ |
10 million | QUANTITY | 0.99+ |
PowerPoint | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
twice | QUANTITY | 0.99+ |
Second | QUANTITY | 0.99+ |
over 300 services | QUANTITY | 0.99+ |
one game | QUANTITY | 0.99+ |
second cloud | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Sky | ORGANIZATION | 0.99+ |
one word | QUANTITY | 0.99+ |
OPEX | ORGANIZATION | 0.99+ |
two things | QUANTITY | 0.98+ |
two years ago | DATE | 0.98+ |
Access | TITLE | 0.98+ |
over 300 | QUANTITY | 0.98+ |
six years | QUANTITY | 0.98+ |
over 70% | QUANTITY | 0.98+ |
five years ago | DATE | 0.98+ |
Ali Ghosdi, Databricks | AWS Partner Exclusive
(outro music) >> Hey, I'm John Furrier, here with an exclusive interview with Ali Ghodsi, who's the CEO of Databricks. Ali, great to see you. Preview for reinvent. We're going to launch this story, exclusive Databricks material on the notes, after the keynotes prior to the keynotes and after the keynotes that reinvent. So great to see you. You know, you've been a partner of AWS for a very, very long time. I think five years ago, I think I first interviewed you, you were one of the first to publicly declare that this was a place to build a company on and not just post an application, but refactor capabilities to create, essentially a platform in the cloud, on the cloud. Not just an ISV; Independent Software Vendor, kind of an old term, we're talking about real platform like capability to change the game. Can you talk about your experience as an AWS partner? >> Yeah, look, so we started in 2013. I swiped my personal credit card on AWS and some of my co-founders did the same. And we started building. And we were excited because we just thought this is a much better way to launch a company because you can just much faster get time to market and launch your thing and you can get the end users much quicker access to the thing you're building. So we didn't really talk to anyone at AWS, we just swiped a credit card. And eventually they told us, "Hey, do you want to buy extra support?" "You're asking a lot of advanced questions from us." "Maybe you want to buy our advanced support." And we said, no, no, no, no. We're very advanced ourselves, we know what we're doing. We're not going to buy any advanced support. So, you know, we just built this, you know, startup from nothing on AWS without even talking to anyone there. So at some point, I think around 2017, they suddenly saw this company with maybe a hundred million ARR pop up on their radar and it's driving massive amounts of compute, massive amounts of data. And it took a little bit in the beginning just us to get to know each other because as I said, it's like we were not on their radar and we weren't really looking, we were just doing our thing. And then over the years the partnership has deepened and deepened and deepened and then with, you know, Andy (indistinct) really leaning into the partnership, he mentioned us at Reinvent. And then we sort of figured out a way to really integrate the two service, the Databricks platform with AWS . And today it's an amazing partnership. You know, we directly connected with the general managers for the services. We're connected at the CEO level, you know, the sellers get compensated for pushing Databricks, we're, we have multiple offerings on their marketplace. We have a native offering on AWS. You know, we're prominently always sort of marketed and you know, we're aligned also vision wise in what we're trying to do. So yeah, we've come a very, very long way. >> Do you consider yourself a SaaS app or an ISV or do you see yourself more of a platform company because you have customers. How would you categorize your category as a company? >> Well, it's a data platform, right? And actually the, the strategy of the Databricks is take what's otherwise five, six services in the industry or five, six different startups, but do them as part of one data platform that's integrated. So in one word, the strategy of data bricks is "unification." We call it the data lake house. But really the idea behind the data lake house is that of unification, or in more words it's, "The whole is greater than the sum of its parts." So you could actually go and buy five, six services out there or actually use five, six services from the cloud vendors, stitch it together and it kind of resembles Databricks. Our power is in doing those integrated, together in a way in which it's really, really easy and simple to use for end users. So yeah, we're a data platform. I wouldn't, you know, ISV that's a old term, you know, Independent Software Vendor. You know, I think, you know, we have actually a whole slew of ISVs on top of Databricks, that integrate with our platform. And you know, in our marketplace as well as in our partner connect, we host those ISVs that then, you know, work on top of the data that we have in the Databricks, data lake house. >> You know, I think one of the things your journey has been great to document and watch from the beginning. I got to give you guys credit over there and props, congratulations. But I think you're the poster child as a company to what we see enterprises doing now. So go back in time when you guys swiped a credit card, you didn't need attending technical support because you guys had brains, you were refactoring, rethinking. It wasn't just banging out software, you had, you were doing some complex things. It wasn't like it was just write some software hosted on server. It was really a lot more. And as a result your business worth billions of dollars. I think 38 billion or something like that, big numbers, big numbers of great revenue growth as well, billions in revenue. You have customers, you have an ecosystem, you have data applications on top of Databricks. So in a way you're a cloud on top of the cloud. So is there a cloud on top of the cloud? So you have ISVs, Amazon has ISVs. Can you take us through what this means and at this point in history, because this seems to be an advanced version of benefits of platforming and refactoring, leveraging say AWS. >> Yeah, so look, when we started, there was really only one game in town. It was AWS. So it was one cloud. And the strategy of the company then was, well Amazon had this beautiful set of services that they're building bottom up, they have storage, compute, networking, and then they have databases and so on. But it's a lot of services. So let us not directly compete with AWS and try to take out one of their services. Let's not do that because frankly we can't. We were not of that size. They had the scale, they had the size and they were the only cloud vendor in town. So our strategy instead was, let's do something else. Let's not compete directly with say, a particular service they're building, let's take a different strategy. What if we had a unified holistic data platform, where it's just one integrated service end to end. So think of it as Microsoft office, which contains PowerPoint, and Word, and Excel and even Access, if you want to use it. What if we build that and AWS has this really amazing knack for releasing things, you know services, lots of them, every reinvent. And they're sort of a DevOps person's dream and you can stitch these together and you know you have to be technical. How do we elevate that and make it simpler and integrate it? That was our original strategy and it resonated with a segment of the market. And the reason it worked with AWS so that we wouldn't butt heads with AWS was because we weren't a direct replacement for this service or for that service, we were taking a different approach. And AWS, because credit goes to them, they're so customer obsessed, they would actually do what's right for the customer. So if the customer said we want this unified thing, their sellers would actually say, okay, so then you should use Databricks. So they truly are customer obsessed in that way. And I really mean it, John. Things have changed over the years. They're not the only cloud anymore. You know, Azure is real, GCP is real, there's also Alibaba. And now over 70% of our customers are on more than one cloud. So now what we hear from them is, not only want, do we want a simplified, unified thing, but we want it also to work across the clouds. Because those of them that are seriously considering multiple clouds, they don't want to use a service on cloud one and then use a similar service on cloud two. But it's a little bit different. And now they have to do twice the work to make it work. You know, John, it's hard enough as it is, like it's this data stuff and analytics. It's not a walk in the park, you know. You hire an administrator in the back office that clicks a button and its just, now you're a data driven digital transformed company. It's hard. If you now have to do it again on the second cloud with different set of services and then again on a third cloud with a different set of services. That's very, very costly. So the strategy then has changed that, how do we take that unified simple approach and make it also the same and standardize across the clouds, but then also integrate it as far down as we can on each of the clouds. So that you're not giving up any of the benefits that the particular cloud has. >> Yeah, I think one of the things that we see, and I want get your reaction to this, is this rise of the super cloud as we call it. I think you were involved in the Sky paper that I saw your position paper came out after we had introduced Super Cloud, which is great. Congratulations to the Berkeley team, wearing the hat here. But you guys are, I think a driver of this because you're creating the need for these things. You're saying, okay, we went on one cloud with AWS and you didn't hide that. And now you're publicly saying there's other clouds too, increased ham for your business. And customers have multiple clouds in their infrastructure for the best of breed that they have. Okay, get that. But there's still a challenge around the innovation, growth that's still around the corner. We still have a supply chain problem, we still have skill gaps. You know, you guys are unique at Databricks as other these big examples of super clouds that are developing. Enterprises don't have the Databricks kind of talent. They need, they need turnkey solutions. So Adam and the team at Amazon are promoting, you know, more solution oriented approaches higher up on the stack. You're starting to see kind of like, I won't say templates, but you know, almost like application specific headless like, low code, no code capability to accelerate clients who are wanting to write code for the modern error. Right, so this kind of, and then now you, as you guys pointed out with these common services, you're pushing the envelope. So you're saying, hey, I need to compete, I don't want to go to my customers and have them to have a staff or this cloud and this cloud and this cloud because they don't have the staff. Or if they do, they're very unique. So what's your reaction? Because this kind is the, it kind of shows your leadership as a partner of AWS and the clouds, but also highlights I think what's coming. But you share your reaction. >> Yeah, look, it's, first of all, you know, I wish I could take credit for this but I can't because it's really the customers that have decided to go on multiple clouds. You know, it's not Databricks that you know, push this or some other vendor, you know, that, Snowflake or someone who pushed this and now enterprises listened to us and they picked two clouds. That's not how it happened. The enterprises picked two clouds or three clouds themselves and we can get into why, but they did that. So this largely just happened in the market. We as data platforms responded to what they're then saying, which is they're saying, "I don't want to redo this again on the other cloud." So I think the writing is on the wall. I think it's super obvious what's going to happen next. They will say, "Any service I'm using, it better work exactly the same on all the clouds." You know, that's what's going to happen. So in the next five years, every enterprise will say, "I'm going to use the service, but you better make sure that this service works equally well on all of the clouds." And obviously the multicloud vendors like us, are there to do that. But I actually think that what you're going to see happening is that you're going to see the cloud vendors changing the existing services that they have to make them work on the other clouds. That's what's goin to happen, I think. >> Yeah, and I think I would add that, first of all, I agree with you. I think that's going to be a forcing function. Because I think you're driving it. You guys are in a way, one, are just an actor in the driving this because you're on the front end of this and there are others and there will be people following. But I think to me, I'm a cloud vendor, I got to differentiate. Adam, If I'm Adam Saleski, I got to say, "Hey, I got to differentiate." So I don't wan to get stuck in the middle, so to speak. Am I just going to innovate on the hardware AKA infrastructure or am I going to innovate at the higher level services? So what we're talking about here is the tail of two clouds within Amazon, for instance. So do I innovate on the silicon and get low level into the physics and squeeze performance out of the hardware and infrastructure? Or do I focus on ease of use at the top of the stack for the developers? So again, there's a channel of two clouds here. So I got to ask you, how do they differentiate? Number one and number two, I never heard a developer ever say, "I want to run my app or workload on the slower cloud." So I mean, you know, back when we had PCs you wanted to go, "I want the fastest processor." So again, you can have common level services, but where is that performance differentiation with the cloud? What do the clouds do in your opinion? >> Yeah, look, I think it's pretty clear. I think that it's, this is, you know, no surprise. Probably 70% or so of the revenue is in the lower infrastructure layers, compute, storage, networking. And they have to win that. They have to be competitive there. As you said, you can say, oh you know, I guess my CPUs are slower than the other cloud, but who cares? I have amazing other services which only work on my cloud by the way, right? That's not going to be a winning recipe. So I think all three are laser focused on, we going to have specialized hardware and the nuts and bolts of the infrastructure, we can do it better than the other clouds for sure. And you can see lots of innovation happening there, right? The Graviton chips, you know, we see huge price performance benefits in those chips. I mean it's real, right? It's basically a 20, 30% free lunch. You know, why wouldn't you, why wouldn't you go for it there? There's no downside. You know, there's no, "got you" or no catch. But we see Azure doing the same thing now, they're also building their own chips and we know that Google builds specialized machine learning chips, TPU, Tenor Processing Units. So their legs are focused on that. I don't think they can give up that or focused on higher levels if they had to pick bets. And I think actually in the next few years, most of us have to make more, we have to be more deliberate and calculated in the picks we do. I think in the last five years, most of us have said, "We'll do all of it." You know. >> Well you made a good bet with Spark, you know, the duke was pretty obvious trend that was, everyone was shut on that bandwagon and you guys picked a big bet with Spark. Look what happened with you guys? So again, I love this betting kind of concept because as the world matures, growth slows down and shifts and that next wave of value coming in, AKA customers, they're going to integrate with a new ecosystem. A new kind of partner network for AWS and the other clouds. But with aws they're going to need to nurture the next Databricks. They're going to need to still provide that SaaS, ISV like experience for, you know, a basic software hosting or some application. But I go to get your thoughts on this idea of multiple clouds because if I'm a developer, the old days was, old days, within our decade, full stack developer- >> It was two years ago, yeah (John laughing) >> This is a decade ago, full stack and then the cloud came in, you kind had the half stack and then you would do some things. It seems like the clouds are trying to say, we want to be the full stack or not. Or is it still going to be, you know, I'm an application like a PC and a Mac, I'm going to write the same application for both hardware. I mean what's your take on this? Are they trying to do full stack and you see them more like- >> Absolutely. I mean look, of course they're going, they have, I mean they have over 300, I think Amazon has over 300 services, right? That's not just compute, storage, networking, it's the whole stack, right? But my key point is, I think they have to nail the core infrastructure storage compute networking because the three clouds that are there competing, they're formidable companies with formidable balance sheets and it doesn't look like any of them is going to throw in the towel and say, we give up. So I think it's going to intensify. And given that they have a 70% revenue on that infrastructure layer, I think they, if they have to pick their bets, I think they'll focus it on that infrastructure layer. I think the layer above where they're also placing bets, they're doing that, the full stack, right? But there I think the demand will be, can you make that work on the other clouds? And therein lies an innovator's dilemma because if I make it work on the other clouds, then I'm foregoing that 70% revenue of the infrastructure. I'm not getting it. The other cloud vendor is going to get it. So should I do that or not? Second, is the other cloud vendor going to be welcoming of me making my service work on their cloud if I am a competing cloud, right? And what kind of terms of service are I giving me? And am I going to really invest in doing that? And I think right now we, you know, most, the vast, vast, vast majority of the services only work on the one cloud that you know, it's built on. It doesn't work on others, but this will shift. >> Yeah, I think the innovators dilemma is also very good point. And also add, it's an integrators dilemma too because now you talk about integration across services. So I believe that the super cloud movement's going to happen before Sky. And I think what explained by that, what you guys did and what other companies are doing by representing advanced, I call platform engineering, refactoring an existing market really fast, time to value and CAPEX is, I mean capital, market cap is going to be really fast. I think there's going to be an opportunity for those to emerge that's going to set the table for global multicloud ultimately in the future. So I think you're going to start to see the same pattern of what you guys did get in, leverage the hell out of it, use it, not in the way just to host, but to refactor and take down territory of markets. So number one, and then ultimately you get into, okay, I want to run some SLA across services, then there's a little bit more complication. I think that's where you guys put that beautiful paper out on Sky Computing. Okay, that makes sense. Now if you go to today's market, okay, I'm betting on Amazon because they're the best, this is the best cloud win scenario, not the most robust cloud. So if I'm a developer, I want the best. How do you look at their bet when it comes to data? Because now they've got machine learning, Swami's got a big keynote on Wednesday, I'm expecting to see a lot of AI and machine learning. I'm expecting to hear an end to end data story. This is what you do, so as a major partner, how do you view the moves Amazon's making and the bets they're making with data and machine learning and AI? >> First I want to lift off my hat to AWS for being customer obsessed. So I know that if a customer wants Databricks, I know that AWS and their sellers will actually help us get that customer deploy Databricks. Now which of the services is the customer going to pick? Are they going to pick ours or the end to end, what Swami is going to present on stage? Right? So that's the question we're getting. But I wanted to start with by just saying, their customer obsessed. So I think they're going to do the right thing for the customer and I see the evidence of it again and again and again. So kudos to them. They're amazing at this actually. Ultimately our bet is, customers want this to be simple, integrated, okay? So yes there are hundreds of services that together give you the end to end experience and they're very customizable that AWS gives you. But if you want just something simply integrated that also works across the clouds, then I think there's a special place for Databricks. And I think the lake house approach that we have, which is an integrated, completely integrated, we integrate data lakes with data warehouses, integrate workflows with machine learning, with real time processing, all these in one platform. I think there's going to be tailwinds because I think the most important thing that's going to happen in the next few years is that every customer is going to now be obsessed, given the recession and the environment we're in. How do I cut my costs? How do I cut my costs? And we learn this from the customers they're adopting the lake house because they're thinking, instead of using five vendors or three vendors, I can simplify it down to one with you and I can cut my cost. So I think that's going to be one of the main drivers of why people bet on the lake house because it helps them lower their TCO; Total Cost of Ownership. And it's as simple as that. Like I have three things right now. If I can get the same job done of those three with one, I'd rather do that. And by the way, if it's three or four across two clouds and I can just use one and it just works across two clouds, I'm going to do that. Because my boss is telling me I need to cut my budget. >> (indistinct) (John laughing) >> Yeah, and I'd rather not to do layoffs and they're asking me to do more. How can I get smaller budgets, not lay people off and do more? I have to cut, I have to optimize. What's happened in the last five, six years is there's been a huge sprawl of services and startups, you know, you know most of them, all these startups, all of them, all the activity, all the VC investments, well those companies sold their software, right? Even if a startup didn't make it big, you know, they still sold their software to some vendors. So the ecosystem is now full of lots and lots and lots and lots of different software. And right now people are looking, how do I consolidate, how do I simplify, how do I cut my costs? >> And you guys have a great solution. You're also an arms dealer and a innovator. So I have to ask this question, because you're a professor of the industry as well as at Berkeley, you've seen a lot of the historical innovations. If you look at the moment we're in right now with the recession, okay we had COVID, okay, it changed how people work, you know, people working at home, provisioning VLAN, all that (indistinct) infrastructure, okay, yeah, technology and cloud health. But we're in a recession. This is the first recession where the Amazon and the other cloud, mainly Amazon Web Services is a major economic puzzle in the piece. So they were never around before, even 2008, they were too small. They're now a major economic enabler, player, they're serving startups, enterprises, they have super clouds like you guys. They're a force and the people, their customers are cutting back but also they can also get faster. So agility is now an equation in the economic recovery. And I want to get your thoughts because you just brought that up. Customers can actually use the cloud and Databricks to actually get out of the recovery because no one's going to say, stop making profit or make more profit. So yeah, cut costs, be more efficient, but agility's also like, let's drive more revenue. So in this digital transformation, if you take this to conclusion, every company transforms, their company is the app. So their revenue is tied directly to their technology deployment. What's your reaction and comment to that because this is a new historical moment where cloud and scale and data, actually could be configured in a way to actually change the nature of a business in such a short time. And with the recession looming, no one's got time to wait. >> Yeah, absolutely. Look, the secular tailwind in the market is that of, you know, 10 years ago it was software is eating the world, now it's AI's going to eat all of software software. So more and more we're going to have, wherever you have software, which is everywhere now because it's eaten the world, it's going to be eaten up by AI and data. You know, AI doesn't exist without data so they're synonymous. You can't do machine learning if you don't have data. So yeah, you're going to see that everywhere and that automation will help people simplify things and cut down the costs and automate more things. And in the cloud you can also do that by changing your CAPEX to OPEX. So instead of I invest, you know, 10 million into a data center that I buy, I'm going to have headcount to manage the software. Why don't we change this to OPEX? And then they are going to optimize it. They want to lower the TCO because okay, it's in the cloud. but I do want the costs to be much lower that what they were in the previous years. Last five years, nobody cared. Who cares? You know what it costs. You know, there's a new brave world out there. Now there's like, no, it has to be efficient. So I think they're going to optimize it. And I think this lake house approach, which is an integration of the lakes and the warehouse, allows you to rationalize the two and simplify them. It allows you to basically rationalize away the data warehouse. So I think much faster we're going to see the, why do I need the data warehouse? If I can get the same thing done with the lake house for fraction of the cost, that's what's going to happen. I think there's going to be focus on that simplification. But I agree with you. Ultimately everyone knows, everybody's a software company. Every company out there is a software company and in the next 10 years, all of them are also going to be AI companies. So that is going to continue. >> (indistinct), dev's going to stop. And right sizing right now is a key economic forcing function. Final question for you and I really appreciate you taking the time. This year Reinvent, what's the bumper sticker in your mind around what's the most important industry dynamic, power dynamic, ecosystem dynamic that people should pay attention to as we move from the brave new world of okay, I see cloud, cloud operations. I need to really make it structurally change my business. How do I, what's the most important story? What's the bumper sticker in your mind for Reinvent? >> Bumper sticker? lake house 24. (John laughing) >> That's data (indistinct) bumper sticker. What's the- >> (indistinct) in the market. No, no, no, no. You know, it's, AWS talks about, you know, all of their services becoming a lake house because they want the center of the gravity to be S3, their lake. And they want all the services to directly work on that, so that's a lake house. We're Bumper see Microsoft with Synapse, modern, you know the modern intelligent data platform. Same thing there. We're going to see the same thing, we already seeing it on GCP with Big Lake and so on. So I actually think it's the how do I reduce my costs and the lake house integrates those two. So that's one of the main ways you can rationalize and simplify. You get in the lake house, which is the name itself is a (indistinct) of two things, right? Lake house, "lake" gives you the AI, "house" give you the database data warehouse. So you get your AI and you get your data warehousing in one place at the lower cost. So for me, the bumper sticker is lake house, you know, 24. >> All right. Awesome Ali, well thanks for the exclusive interview. Appreciate it and get to see you. Congratulations on your success and I know you guys are going to be fine. >> Awesome. Thank you John. It's always a pleasure. >> Always great to chat with you again. >> Likewise. >> You guys are a great team. We're big fans of what you guys have done. We think you're an example of what we call "super cloud." Which is getting the hype up and again your paper speaks to some of the innovation, which I agree with by the way. I think that that approach of not forcing standards is really smart. And I think that's absolutely correct, that having the market still innovate is going to be key. standards with- >> Yeah, I love it. We're big fans too, you know, you're doing awesome work. We'd love to continue the partnership. >> So, great, great Ali, thanks. >> Take care (outro music)
SUMMARY :
after the keynotes prior to the keynotes and you know, we're because you have customers. I wouldn't, you know, I got to give you guys credit over there So if the customer said we So Adam and the team at So in the next five years, But I think to me, I'm a cloud vendor, and calculated in the picks we do. But I go to get your thoughts on this idea Or is it still going to be, you know, And I think right now we, you know, So I believe that the super cloud I can simplify it down to one with you and startups, you know, and the other cloud, And in the cloud you can also do that I need to really make it lake house 24. That's data (indistinct) of the gravity to be S3, and I know you guys are going to be fine. It's always a pleasure. We're big fans of what you guys have done. We're big fans too, you know,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
2013 | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
Alibaba | ORGANIZATION | 0.99+ |
2008 | DATE | 0.99+ |
Ali Ghosdi | PERSON | 0.99+ |
five vendors | QUANTITY | 0.99+ |
Adam Saleski | PERSON | 0.99+ |
five | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
Ali | PERSON | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
three vendors | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
Wednesday | DATE | 0.99+ |
Excel | TITLE | 0.99+ |
38 billion | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Word | TITLE | 0.99+ |
three | QUANTITY | 0.99+ |
two clouds | QUANTITY | 0.99+ |
Andy | PERSON | 0.99+ |
three clouds | QUANTITY | 0.99+ |
10 million | QUANTITY | 0.99+ |
PowerPoint | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
twice | QUANTITY | 0.99+ |
Second | QUANTITY | 0.99+ |
over 300 services | QUANTITY | 0.99+ |
one game | QUANTITY | 0.99+ |
second cloud | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Sky | ORGANIZATION | 0.99+ |
one word | QUANTITY | 0.99+ |
OPEX | ORGANIZATION | 0.99+ |
two things | QUANTITY | 0.98+ |
two years ago | DATE | 0.98+ |
Access | TITLE | 0.98+ |
over 300 | QUANTITY | 0.98+ |
six years | QUANTITY | 0.98+ |
over 70% | QUANTITY | 0.98+ |
five years ago | DATE | 0.98+ |
Tim Yocum, Influx Data | Evolving InfluxDB into the Smart Data Platform
(soft electronic music) >> Okay, we're back with Tim Yocum who is the Director of Engineering at InfluxData. Tim, welcome, good to see you. >> Good to see you, thanks for having me. >> You're really welcome. Listen, we've been covering opensource software on theCUBE for more than a decade and we've kind of watched the innovation from the big data ecosystem, the cloud is being built out on opensource, mobile, social platforms, key databases, and of course, InfluxDB. And InfluxData has been a big consumer and crontributor of opensource software. So my question to you is where have you seen the biggest bang for the buck from opensource software? >> So yeah, you know, Influx really, we thrive at the intersection of commercial services and opensource software, so OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services, templating engines. Our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants. And like you've mentioned, even better, we contribute a lot back to the projects that we use, as well as our own product InfluxDB. >> But I got to ask you, Tim, because one of the challenge that we've seen, in particular, you saw this in the heyday of Hadoop, the innovations come so fast and furious, and as a software company, you got to place bets, you got to commit people, and sometimes those bets can be risky and not pay off. So how have you managed this challenge? >> Oh, it moves fast, yeah. That's a benefit, though, because the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we tend to do is we fail fast and fail often; we try a lot of things. You know, you look at Kubernetes, for example. That ecosystem is driven by thousands of intelligent developers, engineers, builders. They're adding value every day, so we have to really keep up with that. And as the stack changes, we try different technologies, we try different methods. And at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's something that we just do every day. >> So we have a survey partner down in New York City called Enterprise Technology Research, ETR, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes, is one of the areas that is kind of, it's been off the charts and seen the most significant adoption and velocity particularly along with cloud, but really, Kubernetes is just, you know, still up and to the right consistently, even with the macro headwinds and all of the other stuff that we're sick of talking about. So what do you do with Kubernetes in the platform? >> Yeah, it's really central to our ability to run the product. When we first started out, we were just on AWS and the way we were running was a little bit like containers junior. Now we're running Kubernetes everywhere at AWS, Azure, Google cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code. So our developers can focus on delivering services not trying to learn the intricacies of Amazon, Azure, and Google, and figure out how to deliver services on those three clouds with all of their differences. >> Just a followup on that, is it now, so I presume it sounds like there's a PaaS layer there to allow you guys to have a consistent experience across clouds and out to the edge, wherever. Is that correct? >> Yeah, so we've basically built more or less platform engineering is this the new, hot phrase. Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that just gets all of the underlying infrastructure out of the way and lets them focus on delivering Influx cloud. >> And I know I'm taking a little bit of a tangent, but is that, I'll call it a PaaS layer, if I can use that term, are there specific attributes to InfluxDB or is it kind of just generally off-the-shelf PaaS? Is there any purpose built capability there that is value-add or is it pretty much generic? >> So we really build, we look at things with a build versus buy, through a build versus buy lens. Some things we want to leverage, cloud provider services, for instance, POSTGRES databases for metadata, perhaps. Get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can deliver on, that has consistency, that is all generated from code. that we can, as an SRE group, as an OPS team, that we can manage with very few people, really, and we can stamp out clusters across multiple regions in no time. >> So sometimes you build, sometimes you buy it. How do you make those decisions and what does that mean for the platform and for customers? >> Yeah, so what we're doing is, it's like everybody else will do. We're looking for trade-offs that make sense. We really want to protect our customers' data, so we look for services that support our own software with the most up-time reliability and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team and of course, for our customers; you don't even see that. But we don't want to try to reinvent the wheel, like I had mentioned with SQL datasource for metadata, perhaps. Let's build on top of what of these three large cloud providers have already perfected and we can then focus on our platform engineering and we can help our developers then focus on the InfluxData software, the Influx cloud software. >> So take it to the customer level. What does it mean for them, what's the value that they're going to get out of all these innovations that we've been talking about today, and what can they expect in the future? >> So first of all, people who use the OSS product are really going to be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across over four billion series keys that people have stored, so there's a proven ability to scale. Now in terms of the opensource software and how we've developed the platform, you're getting highly available, high cardinality time-series platform. We manage it and really, as I had mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in realtime. We deploy to our platform every day, repeatedly, all the time. And it's that continuous deployment that allow us to continue testing things in flight, rolling things out that change, new features, better ways of doing deployments, safer ways of doing deployments. All of that happens behind the scenes and like we had mentioned earllier, Kubernetes, I mean, that allows us to get that done. We couldn't do it without having that platform as a base layer for us to then put our software on. So we iterate quickly. When you're on the Influx cloud platform, you really are able to take advantage of new features immediately. We roll things out every day and as those things go into production, you have the ability to use them. And so in the then, we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let us do that for you. >> That makes sense. Are the innovations that we're talking about in the evolution of InfluxDB, do you see that as sort of a natural evolution for existing customers? Is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >> Yeah, it really is. It's a little bit of both. Any engineer will say, "Well it depends." So cloud-native technologies are really the hot thing, IoT, industrial IoT especially. People want to just shove tons of data out there and be able to do queries immediately and they don't want to manage infrastructure. What we've started to see are people that use the cloud service as their datastore backbone and then they use edge computing with our OSS product to ingest data from say, multiple production lines, and down-sample that data, send the rest of that data off to Influx cloud where the heavy processing takes place. So really, us being in all the different clouds and iterating on that, and being in all sorts of different regions, allows for people to really get out of the business of trying to manage that big data, have us take care of that. And, of course, as we change the platform, endusers benefit from that immediately. >> And so obviously you've taken away a lot of the heavy lifting for the infrastructure. Would you say the same things about security, especially as you go out to IoT at the edge? How should we be thinking about the value that you bring from a security perspective? >> We take security super seriously. It's built into our DNA. We do a lot of work to ensure that our platform is secure, that the data that we store is kept private. It's, of course, always a concern, you see in the news all the time, companies being compromised. That's something that you can have an entire team working on which we do, to make sure that the data that you have, whether it's in transit, whether it's at rest is always kept secure, is only viewable by you. You look at things like software bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software and we do that, you know, as we use new tools. That's something, that's just part of our jobs to make sure that the platform that we're running has fully vetted software. And you know, with opensource especially, that's a lot of work, and so it's definitely new territory. Supply chain attacks are definitely happening at a higher clip that they used to but that is really just part of a day in the life for folks like us that are building platforms. >> And that's key, especially when you start getting into the, you know, that we talk about IoT and the operations technologies, the engineers running that infrastrucutre. You know, historically, as you know, Tim, they would air gap everything; that's how they kept it safe. But that's not feasible anymore. Everything's-- >> Can't do that. >> connected now, right? And so you've got to have a partner that is, again, take away that heavy lifting to R&D so you can focus on some of the other activities. All right, give us the last word and the key takeaways from your perspective. >> Well, you know, from my perspective, I see it as a two-lane approach, with Influx, with any time-series data. You've got a lot of stuff that you're going to run on-prem. What you had mentioned, air gapping? Sure, there's plenty of need for that. But at the end of the day, people that don't want to run big datacenters, people that want to entrust their data to a company that's got a full platform set up for them that they can build on, send that data over to the cloud. The cloud is not going away. I think a more hybrid approach is where the future lives and that's what we're prepared for. >> Tim, really appreciate you coming to the program. Great stuff, good to see you. >> Thanks very much, appreciate it. >> Okay in a moment, I'll be back to wrap up today's session. You're watching theCUBE. (soft electronic music)
SUMMARY :
the Director of Engineering at InfluxData. So my question to you back to the projects that we use, in the heyday of Hadoop, And at the end of the day, we and all of the other stuff and the way we were and out to the edge, wherever. And so that just gets all of that we can manage with for the platform and for customers? and we can then focus on that they're going to get And so in the then, we want you to focus about in the evolution of InfluxDB, and down-sample that data, that you bring from a that the data that you have, and the operations technologies, and the key takeaways that data over to the cloud. you coming to the program. to wrap up today's session.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Yocum | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
InfluxData | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
New York City | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
two-lane | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
tomorrow | DATE | 0.98+ |
today | DATE | 0.98+ |
more than a decade | QUANTITY | 0.98+ |
270 terabytes | QUANTITY | 0.98+ |
InfluxDB | TITLE | 0.98+ |
one | QUANTITY | 0.97+ |
about 1500 CIOs | QUANTITY | 0.97+ |
Influx | ORGANIZATION | 0.96+ |
Azure | ORGANIZATION | 0.94+ |
one way | QUANTITY | 0.93+ |
single server | QUANTITY | 0.93+ |
first | QUANTITY | 0.92+ |
PaaS | TITLE | 0.92+ |
Kubernetes | TITLE | 0.91+ |
Enterprise Technology Research | ORGANIZATION | 0.91+ |
Kubernetes | ORGANIZATION | 0.91+ |
three clouds | QUANTITY | 0.9+ |
ETR | ORGANIZATION | 0.89+ |
tons of data | QUANTITY | 0.87+ |
rsus | ORGANIZATION | 0.87+ |
Hadoop | TITLE | 0.85+ |
over four billion series | QUANTITY | 0.85+ |
three large cloud providers | QUANTITY | 0.74+ |
three different cloud providers | QUANTITY | 0.74+ |
theCUBE | ORGANIZATION | 0.66+ |
SQL | TITLE | 0.64+ |
opensource | ORGANIZATION | 0.63+ |
intelligent developers | QUANTITY | 0.57+ |
POSTGRES | ORGANIZATION | 0.52+ |
earllier | ORGANIZATION | 0.5+ |
Azure | TITLE | 0.49+ |
InfluxDB | OTHER | 0.48+ |
cloud | TITLE | 0.4+ |
Evolving InfluxDB into the Smart Data Platform
>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now in this program we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away, just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally I would just say please, like watch in ICE in Tim's sessions, like these are two of our best and brightest, They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time really hot area. As Brian said in a moment, I'll be right back with Anna East dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't wanna miss this >>Time series Data is everywhere. The number of sensors, systems and applications generating time series data increases every day. All these data sources producing so much data can cause analysis paralysis. Influx DB is an entire platform designed with everything you need to quickly build applications that generate value from time series data influx. DB Cloud is a serverless solution, which means you don't need to buy or manage your own servers. There's no need to worry about provisioning because you only pay for what you use. Influx DB Cloud is fully managed so you get the newest features and enhancements as they're added to the platform's code base. It also means you can spend time building solutions and delivering value to your users instead of wasting time and effort managing something else. Influx TVB Cloud offers a range of security features to protect your data, multiple layers of redundancy ensure you don't lose any data access controls ensure that only the people who should see your data can see it. >>And encryption protects your data at rest and in transit between any of our regions or cloud providers. InfluxDB uses a single API across the entire platform suite so you can build on open source, deploy to the cloud and then then easily query data in the cloud at the edge or on prem using the same scripts. And InfluxDB is schemaless automatically adjusting to changes in the shape of your data without requiring changes in your application. Logic. InfluxDB Cloud is production ready from day one. All it needs is your data and your imagination. Get started today@influxdata.com slash cloud. >>Okay, we're back. I'm Dave Valante with a Cube and you're watching evolving Influx DB into the smart data platform made possible by influx data. Anna ETOs Georgio is here, she's a developer advocate for influx data and we're gonna dig into the rationale and value contribution behind several open source technologies that Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the world of data into real-time analytics and is welcome to the program. Thanks for coming on. >>Hi, thank you so much. It's a pleasure to be here. >>Oh, you're very welcome. Okay, so IX is being touted as this next gen open source core for Influx db. And my understanding is that it leverages in memory of course for speed. It's a kilo store, so it gives you a compression efficiency, it's gonna give you faster query speeds, you store files and object storage, so you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features, but what are the high level value points that people should understand? >>Sure, that's a great question. So some of the main requirements that IOx is trying to achieve and some of the most impressive ones to me, the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want, whether that's live tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metrics queries, we also wanna have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import super useful. Also broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like sql, Python, and maybe even pandas in the future. >>Okay, so lot there. Now we talked to Brian about how you're using Rust and which is not a new programming language and of course we had some drama around Rust during the pandemic with the Mozilla layoffs, but the formation of the Rust Foundation really addressed any of those concerns. You got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really, the adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with rust, but why rust as an alternative to say c plus plus for example? >>Sure, that's a great question. So Russ was chosen because of his exceptional performance and reliability. So while Russ is synt tactically similar to c plus plus and it has similar performance, it also compiles to a native code like c plus plus. But unlike c plus plus, it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers. And dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like c plus plus. So Russ like helps meet that requirement of having no limits on ality, for example, because it's, we're also using the Russ implementation of Apache Arrow and this control over memory and also Russ Russ's packaging system called crates IO offers everything that you need out of the box to have features like AY and a weight to fix race conditions, to protection against buffering overflows and to ensure thread safe async cashing structures as well. So essentially it's just like has all the control, all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high ity use cases. >>Yeah, and the more I learn about the, the new engine and, and the platform IOCs et cetera, you know, you, you see things like, you know, the old days not even to even today you do a lot of garbage collection in these, in these systems and there's an inverse, you know, impact relative to performance. So it looks like you really, you know, the community is modernizing the platform, but I wanna talk about Apache Arrow for a moment. It it's designed to address the constraints that are associated with analyzing large data sets. We, we know that, but please explain why, what, what is Arrow and and what does it bring to Influx db? >>Sure, yeah. So Arrow is a, a framework for defining in memory calmer data. And so much of the efficiency and performance of IOx comes from taking advantage of calmer data structures. And I will, if you don't mind, take a moment to kind of of illustrate why column or data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our stove. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value, maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the stove. Well usually our room temperature is regulated so those values don't change very often. >>So when you have calm oriented st calm oriented storage, essentially you take each row, each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same, then you'll, you might be able to imagine how equal values will then enable each other and when they neighbor each other in the storage format, this provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you wanna define like the men and max value of the temperature in the room across a thousand different points, you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of calmer oriented storage. >>So if you had a row oriented storage, you'd first have to look at every field like the temperature in, in the room and the temperature of the stove. You'd have to go across every tag value that maybe describes where the room is located or what model the stove is. And every timestamp you'd then have to pluck out that one temperature value that you want at that one time stamp and do that for every single row. So you're scanning across a ton more data and that's why Rowe Oriented doesn't provide the same efficiency as calmer and Apache Arrow is in memory calmer data, commoner data fit framework. So that's where a lot of the advantages come >>From. Okay. So you basically described like a traditional database, a row approach, but I've seen like a lot of traditional database say, okay, now we've got, we can handle colo format versus what you're talking about is really, you know, kind of native i, is it not as effective? Is the, is the foreman not as effective because it's largely a, a bolt on? Can you, can you like elucidate on that front? >>Yeah, it's, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why, why RO row oriented storage isn't as efficient as calm, calmer oriented storage. Yeah. >>Got it. So let's talk about Arrow Data Fusion. What is data fusion? I know it's written in Rust, but what does it bring to the table here? >>Sure. So it's an extensible query execution framework and it uses Arrow as it's in memory format. So the way that it helps in influx DB IOCs is that okay, it's great if you can write unlimited amount of cardinality into influx Cbis, but if you don't have a query engine that can successfully query that data, then I don't know how much value it is for you. So Data fusion helps enable the, the query process and transformation of that data. It also has a PANDAS API so that you could take advantage of PANDAS data frames as well and all of the machine learning tools associated with Pandas. >>Okay. You're also leveraging Par K in the platform cause we heard a lot about Par K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Parque and why is it important? >>Sure. So parque is the column oriented durable file format. So it's important because it'll enable bulk import, bulk export, it has compatibility with Python and Pandas, so it supports a broader ecosystem. Par K files also take very little disc disc space and they're faster to scan because again, they're column oriented in particular, I think PAR K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the, the benefits of par k. >>Got it. Very popular. So and he's, what exactly is influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >>Sure. So Influx DB first has contributed a lot of different, different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing with flux. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up, then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >>Yeah. Got it. You got that virtuous cycle going, the people call the flywheel. Give us your last thoughts and kind of summarize, you know, where what, what the big takeaways are from your perspective. >>So I think the big takeaway is that influx data is doing a lot of really exciting things with Influx DB IOx and I really encourage, if you are interested in learning more about the technologies that Influx is leveraging to produce IOCs, the challenges associated with it and all of the hard work questions and you just wanna learn more, then I would encourage you to go to the monthly Tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel look for the influx DDB unders IAC channel specifically to learn more about how to join those office hours and those monthly tech tech talks as well as ask any questions they have about iacs, what to expect and what you'd like to learn more about. I as a developer advocate, I wanna answer your questions. So if there's a particular technology or stack that you wanna dive deeper into and want more explanation about how INFLUX DB leverages it to build IOCs, I will be really excited to produce content on that topic for you. >>Yeah, that's awesome. You guys have a really rich community, collaborate with your peers, solve problems, and, and you guys super responsive, so really appreciate that. All right, thank you so much Anise for explaining all this open source stuff to the audience and why it's important to the future of data. >>Thank you. I really appreciate it. >>All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yoakum, he's the director of engineering for Influx Data and we're gonna talk about how you update a SAS engine while the plane is flying at 30,000 feet. You don't wanna miss this. >>I'm really glad that we went with InfluxDB Cloud for our hosting because it has saved us a ton of time. It's helped us move faster, it's saved us money. And also InfluxDB has good support. My name's Alex Nada. I am CTO at Noble nine. Noble Nine is a platform to measure and manage service level objectives, which is a great way of measuring the reliability of your systems. You can essentially think of an slo, the product we're providing to our customers as a bunch of time series. So we need a way to store that data and the corresponding time series that are related to those. The main reason that we settled on InfluxDB as we were shopping around is that InfluxDB has a very flexible query language and as a general purpose time series database, it basically had the set of features we were looking for. >>As our platform has grown, we found InfluxDB Cloud to be a really scalable solution. We can quickly iterate on new features and functionality because Influx Cloud is entirely managed, it probably saved us at least a full additional person on our team. We also have the option of running InfluxDB Enterprise, which gives us the ability to even host off the cloud or in a private cloud if that's preferred by a customer. Influx data has been really flexible in adapting to the hosting requirements that we have. They listened to the challenges we were facing and they helped us solve it. As we've continued to grow, I'm really happy we have influx data by our side. >>Okay, we're back with Tim Yokum, who is the director of engineering at Influx Data. Tim, welcome. Good to see you. >>Good to see you. Thanks for having me. >>You're really welcome. Listen, we've been covering open source software in the cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem. The cloud has been being built out on open source, mobile, social platforms, key databases, and of course influx DB and influx data has been a big consumer and contributor of open source software. So my question to you is, where have you seen the biggest bang for the buck from open source software? >>So yeah, you know, influx really, we thrive at the intersection of commercial services and open, so open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services temping engines. Our, our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants and like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product influx db. >>You know, but I gotta ask you, Tim, because one of the challenge that that we've seen in particular, you saw this in the heyday of Hadoop, the, the innovations come so fast and furious and as a software company you gotta place bets, you gotta, you know, commit people and sometimes those bets can be risky and not pay off well, how have you managed this challenge? >>Oh, it moves fast. Yeah, that, that's a benefit though because it, the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we, what we tend to do is, is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example, that ecosystem is driven by thousands of intelligent developers, engineers, builders, they're adding value every day. So we have to really keep up with that. And as the stack changes, we, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's, it's something that we just do every day. >>So we have a survey partner down in New York City called Enterprise Technology Research etr, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity particularly, you know, along with cloud. But, but really Kubernetes is just, you know, still up until the right consistently even with, you know, the macro headwinds and all, all of the stuff that we're sick of talking about. But, so what are you doing with Kubernetes in the platform? >>Yeah, it, it's really central to our ability to run the product. When we first started out, we were just on AWS and, and the way we were running was, was a little bit like containers junior. Now we're running Kubernetes everywhere at aws, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code so our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. >>Just to follow up on that, is it, no. So I presume it's sounds like there's a PAs layer there to allow you guys to have a consistent experience across clouds and out to the edge, you know, wherever is that, is that correct? >>Yeah, so we've basically built more or less platform engineering, This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that, that just gets all of the underlying infrastructure out of the way and, and lets them focus on delivering influx cloud. >>Yeah, and I know I'm taking a little bit of a tangent, but is that, that, I'll call it a PAs layer if I can use that term. Is that, are there specific attributes to Influx db or is it kind of just generally off the shelf paths? You know, are there, is, is there any purpose built capability there that, that is, is value add or is it pretty much generic? >>So we really build, we, we look at things through, with a build versus buy through a, a build versus by lens. Some things we want to leverage cloud provider services, for instance, Postgres databases for metadata, perhaps we'll get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can, can deliver on that has consistency that is, is all generated from code that we can as a, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions and in no time. >>So how, so sometimes you build, sometimes you buy it. How do you make those decisions and and what does that mean for the, for the platform and for customers? >>Yeah, so what we're doing is, it's like everybody else will do, we're we're looking for trade offs that make sense. You know, we really want to protect our customers data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, like I had mentioned with SQL data stores for metadata, perhaps let's build on top of what of these three large cloud providers have already perfected. And we can then focus on our platform engineering and we can have our developers then focus on the influx data, software, influx, cloud software. >>So take it to the customer level, what does it mean for them? What's the value that they're gonna get out of all these innovations that we've been been talking about today and what can they expect in the future? >>So first of all, people who use the OSS product are really gonna be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across, over 4 billion series keys that people have stored. So there's a proven ability to scale now in terms of the open source, open source software and how we've developed the platform. You're getting highly available high cardinality time series platform. We manage it and, and really as, as I mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in real time. We deploy to our platform every day repeatedly all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change new features, better ways of doing deployments, safer ways of doing deployments. >>All of that happens behind the scenes. And like we had mentioned earlier, Kubernetes, I mean that, that allows us to get that done. We couldn't do it without having that platform as a, as a base layer for us to then put our software on. So we, we iterate quickly. When you're on the, the Influx cloud platform, you really are able to, to take advantage of new features immediately. We roll things out every day and as those things go into production, you have, you have the ability to, to use them. And so in the end we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let, let us do that for you. So, >>And that makes sense, but so is the, is the, are the innovations that we're talking about in the evolution of Influx db, do, do you see that as sort of a natural evolution for existing customers? I, is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >>Yeah, it really is it, it's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are, are really the hot thing. Iot, industrial iot especially, people want to just shove tons of data out there and be able to do queries immediately and they don't wanna manage infrastructure. What we've started to see are people that use the cloud service as their, their data store backbone and then they use edge computing with R OSS product to ingest data from say, multiple production lines and downsample that data, send the rest of that data off influx cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that and being in all sorts of different regions allows for people to really get out of the, the business of man trying to manage that big data, have us take care of that. And of course as we change the platform end users benefit from that immediately. And, >>And so obviously taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IOT and the Edge? How should we be thinking about the value that you bring from a security perspective? >>Yeah, we take, we take security super seriously. It, it's built into our dna. We do a lot of work to ensure that our platform is secure, that the data we store is, is kept private. It's of course always a concern. You see in the news all the time, companies being compromised, you know, that's something that you can have an entire team working on, which we do to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You know, you look at things like software, bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that, that's just part of our jobs to make sure that the platform that we're running it has, has fully vetted software and, and with open source especially, that's a lot of work. And so it's, it's definitely new territory. Supply chain attacks are, are definitely happening at a higher clip than they used to, but that is, that is really just part of a day in the, the life for folks like us that are, are building platforms. >>Yeah, and that's key. I mean especially when you start getting into the, the, you know, we talk about IOT and the operations technologies, the engineers running the, that infrastructure, you know, historically, as you know, Tim, they, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >>That >>Connected now, right? And so you've gotta have a partner that is again, take away that heavy lifting to r and d so you can focus on some of the other activities. Right. Give us the, the last word and the, the key takeaways from your perspective. >>Well, you know, from my perspective I see it as, as a a two lane approach with, with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, what you had mentioned, air gaping. Sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want torus their data to, to a company that's, that's got a full platform set up for them that they can build on, send that data over to the cloud, the cloud is not going away. I think more hybrid approach is, is where the future lives and that's what we're prepared for. >>Tim, really appreciate you coming to the program. Great stuff. Good to see you. >>Thanks very much. Appreciate it. >>Okay, in a moment I'll be back to wrap up. Today's session, you're watching The Cube. >>Are you looking for some help getting started with InfluxDB Telegraph or Flux Check >>Out Influx DB University >>Where you can find our entire catalog of free training that will help you make the most of your time series data >>Get >>Started for free@influxdbu.com. >>We'll see you in class. >>Okay, so we heard today from three experts on time series and data, how the Influx DB platform is evolving to support new ways of analyzing large data sets very efficiently and effectively in real time. And we learned that key open source components like Apache Arrow and the Rust Programming environment Data fusion par K are being leveraged to support realtime data analytics at scale. We also learned about the contributions in importance of open source software and how the Influx DB community is evolving the platform with minimal disruption to support new workloads, new use cases, and the future of realtime data analytics. Now remember these sessions, they're all available on demand. You can go to the cube.net to find those. Don't forget to check out silicon angle.com for all the news related to things enterprise and emerging tech. And you should also check out influx data.com. There you can learn about the company's products. You'll find developer resources like free courses. You could join the developer community and work with your peers to learn and solve problems. And there are plenty of other resources around use cases and customer stories on the website. This is Dave Valante. Thank you for watching Evolving Influx DB into the smart data platform, made possible by influx data and brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SUMMARY :
we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, you know, all of the, the real time queries, the, the multiple language query support, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try And so just, you know, being careful, maybe a little cautious in terms And you can do some experimentation and, you know, using the cloud resources. You know, this is a new very sort of popular systems language, you know, really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. going out and you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. goes, goes beyond just the historical into the real time really hot area. There's no need to worry about provisioning because you only pay for what you use. InfluxDB uses a single API across the entire platform suite so you can build on Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the Hi, thank you so much. it's gonna give you faster query speeds, you store files and object storage, it aims to have no limits on cardinality and also allow you to write any kind of event data that It's really, the adoption is really starting to get steep on all the control, all the fine grain control, you need to take you know, the community is modernizing the platform, but I wanna talk about Apache And so you can answer that question and you have those immediately available to you. out that one temperature value that you want at that one time stamp and do that for every talking about is really, you know, kind of native i, is it not as effective? Yeah, it's, it's not as effective because you have more expensive compression and So let's talk about Arrow Data Fusion. It also has a PANDAS API so that you could take advantage of PANDAS What are you doing with and Pandas, so it supports a broader ecosystem. What's the value that you're bringing to the community? And I think kind of the idea here is that if you can improve kind of summarize, you know, where what, what the big takeaways are from your perspective. the hard work questions and you All right, thank you so much Anise for explaining I really appreciate it. Data and we're gonna talk about how you update a SAS engine while I'm really glad that we went with InfluxDB Cloud for our hosting They listened to the challenges we were facing and they helped Good to see you. Good to see you. So my question to you is, So yeah, you know, influx really, we thrive at the intersection of commercial services and open, You know, you look at Kubernetes for example, But, but really Kubernetes is just, you know, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. to the edge, you know, wherever is that, is that correct? This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us Is that, are there specific attributes to Influx db as an SRE group, as an ops team, that we can manage with very few people So how, so sometimes you build, sometimes you buy it. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, and really as, as I mentioned earlier, we can keep up with the state of the art. the end we want you to focus on getting actual insights from your data instead of running infrastructure, So cloud native technologies are, are really the hot thing. You see in the news all the time, companies being compromised, you know, technologies, the engineers running the, that infrastructure, you know, historically, as you know, take away that heavy lifting to r and d so you can focus on some of the other activities. with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, Tim, really appreciate you coming to the program. Thanks very much. Okay, in a moment I'll be back to wrap up. brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
David Brown | PERSON | 0.99+ |
Tim Yoakum | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Stu | PERSON | 0.99+ |
Herain Oberoi | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Kamile Taouk | PERSON | 0.99+ |
John Fourier | PERSON | 0.99+ |
Rinesh Patel | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Santana Dasgupta | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Canada | LOCATION | 0.99+ |
BMW | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ICE | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Jack Berkowitz | PERSON | 0.99+ |
Australia | LOCATION | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Venkat | PERSON | 0.99+ |
Michael | PERSON | 0.99+ |
Camille | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Venkat Krishnamachari | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Don Tapscott | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Intercontinental Exchange | ORGANIZATION | 0.99+ |
Children's Cancer Institute | ORGANIZATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
telco | ORGANIZATION | 0.99+ |
Sabrina Yan | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
Sabrina | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
MontyCloud | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Leo | PERSON | 0.99+ |
COVID-19 | OTHER | 0.99+ |
Santa Ana | LOCATION | 0.99+ |
UK | LOCATION | 0.99+ |
Tushar | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Valente | PERSON | 0.99+ |
JL Valente | PERSON | 0.99+ |
1,000 | QUANTITY | 0.99+ |
Evolving InfluxDB into the Smart Data Platform Full Episode
>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now in this program we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away, just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally I would just say please, like watch in ICE in Tim's sessions, like these are two of our best and brightest, They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time really hot area. As Brian said in a moment, I'll be right back with Anna East dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't wanna miss this >>Time series Data is everywhere. The number of sensors, systems and applications generating time series data increases every day. All these data sources producing so much data can cause analysis paralysis. Influx DB is an entire platform designed with everything you need to quickly build applications that generate value from time series data influx. DB Cloud is a serverless solution, which means you don't need to buy or manage your own servers. There's no need to worry about provisioning because you only pay for what you use. Influx DB Cloud is fully managed so you get the newest features and enhancements as they're added to the platform's code base. It also means you can spend time building solutions and delivering value to your users instead of wasting time and effort managing something else. Influx TVB Cloud offers a range of security features to protect your data, multiple layers of redundancy ensure you don't lose any data access controls ensure that only the people who should see your data can see it. >>And encryption protects your data at rest and in transit between any of our regions or cloud providers. InfluxDB uses a single API across the entire platform suite so you can build on open source, deploy to the cloud and then then easily query data in the cloud at the edge or on prem using the same scripts. And InfluxDB is schemaless automatically adjusting to changes in the shape of your data without requiring changes in your application. Logic. InfluxDB Cloud is production ready from day one. All it needs is your data and your imagination. Get started today@influxdata.com slash cloud. >>Okay, we're back. I'm Dave Valante with a Cube and you're watching evolving Influx DB into the smart data platform made possible by influx data. Anna ETOs Georgio is here, she's a developer advocate for influx data and we're gonna dig into the rationale and value contribution behind several open source technologies that Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the world of data into real-time analytics and is welcome to the program. Thanks for coming on. >>Hi, thank you so much. It's a pleasure to be here. >>Oh, you're very welcome. Okay, so IX is being touted as this next gen open source core for Influx db. And my understanding is that it leverages in memory of course for speed. It's a kilo store, so it gives you a compression efficiency, it's gonna give you faster query speeds, you store files and object storage, so you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features, but what are the high level value points that people should understand? >>Sure, that's a great question. So some of the main requirements that IOx is trying to achieve and some of the most impressive ones to me, the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want, whether that's live tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metrics queries, we also wanna have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import super useful. Also broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like sql, Python, and maybe even pandas in the future. >>Okay, so lot there. Now we talked to Brian about how you're using Rust and which is not a new programming language and of course we had some drama around Rust during the pandemic with the Mozilla layoffs, but the formation of the Rust Foundation really addressed any of those concerns. You got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really, the adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with rust, but why rust as an alternative to say c plus plus for example? >>Sure, that's a great question. So Russ was chosen because of his exceptional performance and reliability. So while Russ is synt tactically similar to c plus plus and it has similar performance, it also compiles to a native code like c plus plus. But unlike c plus plus, it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers. And dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like c plus plus. So Russ like helps meet that requirement of having no limits on ality, for example, because it's, we're also using the Russ implementation of Apache Arrow and this control over memory and also Russ Russ's packaging system called crates IO offers everything that you need out of the box to have features like AY and a weight to fix race conditions, to protection against buffering overflows and to ensure thread safe async cashing structures as well. So essentially it's just like has all the control, all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high ity use cases. >>Yeah, and the more I learn about the, the new engine and, and the platform IOCs et cetera, you know, you, you see things like, you know, the old days not even to even today you do a lot of garbage collection in these, in these systems and there's an inverse, you know, impact relative to performance. So it looks like you really, you know, the community is modernizing the platform, but I wanna talk about Apache Arrow for a moment. It it's designed to address the constraints that are associated with analyzing large data sets. We, we know that, but please explain why, what, what is Arrow and and what does it bring to Influx db? >>Sure, yeah. So Arrow is a, a framework for defining in memory calmer data. And so much of the efficiency and performance of IOx comes from taking advantage of calmer data structures. And I will, if you don't mind, take a moment to kind of of illustrate why column or data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our stove. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value, maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the stove. Well usually our room temperature is regulated so those values don't change very often. >>So when you have calm oriented st calm oriented storage, essentially you take each row, each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same, then you'll, you might be able to imagine how equal values will then enable each other and when they neighbor each other in the storage format, this provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you wanna define like the men and max value of the temperature in the room across a thousand different points, you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of calmer oriented storage. >>So if you had a row oriented storage, you'd first have to look at every field like the temperature in, in the room and the temperature of the stove. You'd have to go across every tag value that maybe describes where the room is located or what model the stove is. And every timestamp you'd then have to pluck out that one temperature value that you want at that one time stamp and do that for every single row. So you're scanning across a ton more data and that's why Rowe Oriented doesn't provide the same efficiency as calmer and Apache Arrow is in memory calmer data, commoner data fit framework. So that's where a lot of the advantages come >>From. Okay. So you basically described like a traditional database, a row approach, but I've seen like a lot of traditional database say, okay, now we've got, we can handle colo format versus what you're talking about is really, you know, kind of native i, is it not as effective? Is the, is the foreman not as effective because it's largely a, a bolt on? Can you, can you like elucidate on that front? >>Yeah, it's, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why, why RO row oriented storage isn't as efficient as calm, calmer oriented storage. Yeah. >>Got it. So let's talk about Arrow Data Fusion. What is data fusion? I know it's written in Rust, but what does it bring to the table here? >>Sure. So it's an extensible query execution framework and it uses Arrow as it's in memory format. So the way that it helps in influx DB IOCs is that okay, it's great if you can write unlimited amount of cardinality into influx Cbis, but if you don't have a query engine that can successfully query that data, then I don't know how much value it is for you. So Data fusion helps enable the, the query process and transformation of that data. It also has a PANDAS API so that you could take advantage of PANDAS data frames as well and all of the machine learning tools associated with Pandas. >>Okay. You're also leveraging Par K in the platform cause we heard a lot about Par K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Parque and why is it important? >>Sure. So parque is the column oriented durable file format. So it's important because it'll enable bulk import, bulk export, it has compatibility with Python and Pandas, so it supports a broader ecosystem. Par K files also take very little disc disc space and they're faster to scan because again, they're column oriented in particular, I think PAR K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the, the benefits of par k. >>Got it. Very popular. So and he's, what exactly is influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >>Sure. So Influx DB first has contributed a lot of different, different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing with flux. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up, then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >>Yeah. Got it. You got that virtuous cycle going, the people call the flywheel. Give us your last thoughts and kind of summarize, you know, where what, what the big takeaways are from your perspective. >>So I think the big takeaway is that influx data is doing a lot of really exciting things with Influx DB IOx and I really encourage, if you are interested in learning more about the technologies that Influx is leveraging to produce IOCs, the challenges associated with it and all of the hard work questions and you just wanna learn more, then I would encourage you to go to the monthly Tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel look for the influx DDB unders IAC channel specifically to learn more about how to join those office hours and those monthly tech tech talks as well as ask any questions they have about iacs, what to expect and what you'd like to learn more about. I as a developer advocate, I wanna answer your questions. So if there's a particular technology or stack that you wanna dive deeper into and want more explanation about how INFLUX DB leverages it to build IOCs, I will be really excited to produce content on that topic for you. >>Yeah, that's awesome. You guys have a really rich community, collaborate with your peers, solve problems, and, and you guys super responsive, so really appreciate that. All right, thank you so much Anise for explaining all this open source stuff to the audience and why it's important to the future of data. >>Thank you. I really appreciate it. >>All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yoakum, he's the director of engineering for Influx Data and we're gonna talk about how you update a SAS engine while the plane is flying at 30,000 feet. You don't wanna miss this. >>I'm really glad that we went with InfluxDB Cloud for our hosting because it has saved us a ton of time. It's helped us move faster, it's saved us money. And also InfluxDB has good support. My name's Alex Nada. I am CTO at Noble nine. Noble Nine is a platform to measure and manage service level objectives, which is a great way of measuring the reliability of your systems. You can essentially think of an slo, the product we're providing to our customers as a bunch of time series. So we need a way to store that data and the corresponding time series that are related to those. The main reason that we settled on InfluxDB as we were shopping around is that InfluxDB has a very flexible query language and as a general purpose time series database, it basically had the set of features we were looking for. >>As our platform has grown, we found InfluxDB Cloud to be a really scalable solution. We can quickly iterate on new features and functionality because Influx Cloud is entirely managed, it probably saved us at least a full additional person on our team. We also have the option of running InfluxDB Enterprise, which gives us the ability to even host off the cloud or in a private cloud if that's preferred by a customer. Influx data has been really flexible in adapting to the hosting requirements that we have. They listened to the challenges we were facing and they helped us solve it. As we've continued to grow, I'm really happy we have influx data by our side. >>Okay, we're back with Tim Yokum, who is the director of engineering at Influx Data. Tim, welcome. Good to see you. >>Good to see you. Thanks for having me. >>You're really welcome. Listen, we've been covering open source software in the cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem. The cloud has been being built out on open source, mobile, social platforms, key databases, and of course influx DB and influx data has been a big consumer and contributor of open source software. So my question to you is, where have you seen the biggest bang for the buck from open source software? >>So yeah, you know, influx really, we thrive at the intersection of commercial services and open, so open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services temping engines. Our, our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants and like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product influx db. >>You know, but I gotta ask you, Tim, because one of the challenge that that we've seen in particular, you saw this in the heyday of Hadoop, the, the innovations come so fast and furious and as a software company you gotta place bets, you gotta, you know, commit people and sometimes those bets can be risky and not pay off well, how have you managed this challenge? >>Oh, it moves fast. Yeah, that, that's a benefit though because it, the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we, what we tend to do is, is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example, that ecosystem is driven by thousands of intelligent developers, engineers, builders, they're adding value every day. So we have to really keep up with that. And as the stack changes, we, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's, it's something that we just do every day. >>So we have a survey partner down in New York City called Enterprise Technology Research etr, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity particularly, you know, along with cloud. But, but really Kubernetes is just, you know, still up until the right consistently even with, you know, the macro headwinds and all, all of the stuff that we're sick of talking about. But, so what are you doing with Kubernetes in the platform? >>Yeah, it, it's really central to our ability to run the product. When we first started out, we were just on AWS and, and the way we were running was, was a little bit like containers junior. Now we're running Kubernetes everywhere at aws, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code so our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. >>Just to follow up on that, is it, no. So I presume it's sounds like there's a PAs layer there to allow you guys to have a consistent experience across clouds and out to the edge, you know, wherever is that, is that correct? >>Yeah, so we've basically built more or less platform engineering, This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that, that just gets all of the underlying infrastructure out of the way and, and lets them focus on delivering influx cloud. >>Yeah, and I know I'm taking a little bit of a tangent, but is that, that, I'll call it a PAs layer if I can use that term. Is that, are there specific attributes to Influx db or is it kind of just generally off the shelf paths? You know, are there, is, is there any purpose built capability there that, that is, is value add or is it pretty much generic? >>So we really build, we, we look at things through, with a build versus buy through a, a build versus by lens. Some things we want to leverage cloud provider services, for instance, Postgres databases for metadata, perhaps we'll get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can, can deliver on that has consistency that is, is all generated from code that we can as a, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions and in no time. >>So how, so sometimes you build, sometimes you buy it. How do you make those decisions and and what does that mean for the, for the platform and for customers? >>Yeah, so what we're doing is, it's like everybody else will do, we're we're looking for trade offs that make sense. You know, we really want to protect our customers data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, like I had mentioned with SQL data stores for metadata, perhaps let's build on top of what of these three large cloud providers have already perfected. And we can then focus on our platform engineering and we can have our developers then focus on the influx data, software, influx, cloud software. >>So take it to the customer level, what does it mean for them? What's the value that they're gonna get out of all these innovations that we've been been talking about today and what can they expect in the future? >>So first of all, people who use the OSS product are really gonna be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across, over 4 billion series keys that people have stored. So there's a proven ability to scale now in terms of the open source, open source software and how we've developed the platform. You're getting highly available high cardinality time series platform. We manage it and, and really as, as I mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in real time. We deploy to our platform every day repeatedly all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change new features, better ways of doing deployments, safer ways of doing deployments. >>All of that happens behind the scenes. And like we had mentioned earlier, Kubernetes, I mean that, that allows us to get that done. We couldn't do it without having that platform as a, as a base layer for us to then put our software on. So we, we iterate quickly. When you're on the, the Influx cloud platform, you really are able to, to take advantage of new features immediately. We roll things out every day and as those things go into production, you have, you have the ability to, to use them. And so in the end we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let, let us do that for you. So, >>And that makes sense, but so is the, is the, are the innovations that we're talking about in the evolution of Influx db, do, do you see that as sort of a natural evolution for existing customers? I, is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >>Yeah, it really is it, it's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are, are really the hot thing. Iot, industrial iot especially, people want to just shove tons of data out there and be able to do queries immediately and they don't wanna manage infrastructure. What we've started to see are people that use the cloud service as their, their data store backbone and then they use edge computing with R OSS product to ingest data from say, multiple production lines and downsample that data, send the rest of that data off influx cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that and being in all sorts of different regions allows for people to really get out of the, the business of man trying to manage that big data, have us take care of that. And of course as we change the platform end users benefit from that immediately. And, >>And so obviously taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IOT and the Edge? How should we be thinking about the value that you bring from a security perspective? >>Yeah, we take, we take security super seriously. It, it's built into our dna. We do a lot of work to ensure that our platform is secure, that the data we store is, is kept private. It's of course always a concern. You see in the news all the time, companies being compromised, you know, that's something that you can have an entire team working on, which we do to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You know, you look at things like software, bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that, that's just part of our jobs to make sure that the platform that we're running it has, has fully vetted software and, and with open source especially, that's a lot of work. And so it's, it's definitely new territory. Supply chain attacks are, are definitely happening at a higher clip than they used to, but that is, that is really just part of a day in the, the life for folks like us that are, are building platforms. >>Yeah, and that's key. I mean especially when you start getting into the, the, you know, we talk about IOT and the operations technologies, the engineers running the, that infrastructure, you know, historically, as you know, Tim, they, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >>That >>Connected now, right? And so you've gotta have a partner that is again, take away that heavy lifting to r and d so you can focus on some of the other activities. Right. Give us the, the last word and the, the key takeaways from your perspective. >>Well, you know, from my perspective I see it as, as a a two lane approach with, with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, what you had mentioned, air gaping. Sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want torus their data to, to a company that's, that's got a full platform set up for them that they can build on, send that data over to the cloud, the cloud is not going away. I think more hybrid approach is, is where the future lives and that's what we're prepared for. >>Tim, really appreciate you coming to the program. Great stuff. Good to see you. >>Thanks very much. Appreciate it. >>Okay, in a moment I'll be back to wrap up. Today's session, you're watching The Cube. >>Are you looking for some help getting started with InfluxDB Telegraph or Flux Check >>Out Influx DB University >>Where you can find our entire catalog of free training that will help you make the most of your time series data >>Get >>Started for free@influxdbu.com. >>We'll see you in class. >>Okay, so we heard today from three experts on time series and data, how the Influx DB platform is evolving to support new ways of analyzing large data sets very efficiently and effectively in real time. And we learned that key open source components like Apache Arrow and the Rust Programming environment Data fusion par K are being leveraged to support realtime data analytics at scale. We also learned about the contributions in importance of open source software and how the Influx DB community is evolving the platform with minimal disruption to support new workloads, new use cases, and the future of realtime data analytics. Now remember these sessions, they're all available on demand. You can go to the cube.net to find those. Don't forget to check out silicon angle.com for all the news related to things enterprise and emerging tech. And you should also check out influx data.com. There you can learn about the company's products. You'll find developer resources like free courses. You could join the developer community and work with your peers to learn and solve problems. And there are plenty of other resources around use cases and customer stories on the website. This is Dave Valante. Thank you for watching Evolving Influx DB into the smart data platform, made possible by influx data and brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SUMMARY :
we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, you know, all of the, the real time queries, the, the multiple language query support, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try And so just, you know, being careful, maybe a little cautious in terms And you can do some experimentation and, you know, using the cloud resources. You know, this is a new very sort of popular systems language, you know, really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. going out and you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. goes, goes beyond just the historical into the real time really hot area. There's no need to worry about provisioning because you only pay for what you use. InfluxDB uses a single API across the entire platform suite so you can build on Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the Hi, thank you so much. it's gonna give you faster query speeds, you store files and object storage, it aims to have no limits on cardinality and also allow you to write any kind of event data that It's really, the adoption is really starting to get steep on all the control, all the fine grain control, you need to take you know, the community is modernizing the platform, but I wanna talk about Apache And so you can answer that question and you have those immediately available to you. out that one temperature value that you want at that one time stamp and do that for every talking about is really, you know, kind of native i, is it not as effective? Yeah, it's, it's not as effective because you have more expensive compression and So let's talk about Arrow Data Fusion. It also has a PANDAS API so that you could take advantage of PANDAS What are you doing with and Pandas, so it supports a broader ecosystem. What's the value that you're bringing to the community? And I think kind of the idea here is that if you can improve kind of summarize, you know, where what, what the big takeaways are from your perspective. the hard work questions and you All right, thank you so much Anise for explaining I really appreciate it. Data and we're gonna talk about how you update a SAS engine while I'm really glad that we went with InfluxDB Cloud for our hosting They listened to the challenges we were facing and they helped Good to see you. Good to see you. So my question to you is, So yeah, you know, influx really, we thrive at the intersection of commercial services and open, You know, you look at Kubernetes for example, But, but really Kubernetes is just, you know, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. to the edge, you know, wherever is that, is that correct? This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us Is that, are there specific attributes to Influx db as an SRE group, as an ops team, that we can manage with very few people So how, so sometimes you build, sometimes you buy it. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, and really as, as I mentioned earlier, we can keep up with the state of the art. the end we want you to focus on getting actual insights from your data instead of running infrastructure, So cloud native technologies are, are really the hot thing. You see in the news all the time, companies being compromised, you know, technologies, the engineers running the, that infrastructure, you know, historically, as you know, take away that heavy lifting to r and d so you can focus on some of the other activities. with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, Tim, really appreciate you coming to the program. Thanks very much. Okay, in a moment I'll be back to wrap up. brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
Tim Yoakum | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Tim | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
16 times | QUANTITY | 0.99+ |
two rows | QUANTITY | 0.99+ |
New York City | LOCATION | 0.99+ |
60,000 people | QUANTITY | 0.99+ |
Rust | TITLE | 0.99+ |
Influx | ORGANIZATION | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
Python | TITLE | 0.99+ |
three experts | QUANTITY | 0.99+ |
InfluxDB | TITLE | 0.99+ |
both | QUANTITY | 0.99+ |
each row | QUANTITY | 0.99+ |
two lane | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
Noble nine | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
Flux | ORGANIZATION | 0.99+ |
Influx DB | TITLE | 0.99+ |
each column | QUANTITY | 0.99+ |
270 terabytes | QUANTITY | 0.99+ |
cube.net | OTHER | 0.99+ |
twice | QUANTITY | 0.99+ |
Bryan | PERSON | 0.99+ |
Pandas | TITLE | 0.99+ |
c plus plus | TITLE | 0.99+ |
three years ago | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
more than a decade | QUANTITY | 0.98+ |
Apache | ORGANIZATION | 0.98+ |
dozens | QUANTITY | 0.98+ |
free@influxdbu.com | OTHER | 0.98+ |
30,000 feet | QUANTITY | 0.98+ |
Rust Foundation | ORGANIZATION | 0.98+ |
two temperature values | QUANTITY | 0.98+ |
In Flux Data | ORGANIZATION | 0.98+ |
one time stamp | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
Russ | PERSON | 0.98+ |
IOT | ORGANIZATION | 0.98+ |
Evolving InfluxDB | TITLE | 0.98+ |
first | QUANTITY | 0.97+ |
Influx data | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
first one | QUANTITY | 0.97+ |
Influx DB University | ORGANIZATION | 0.97+ |
SQL | TITLE | 0.97+ |
The Cube | TITLE | 0.96+ |
Influx DB Cloud | TITLE | 0.96+ |
single server | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.96+ |
Lisa-Marie Namphy, Cockroach Labs & Jake Moshenko, Authzed | KubeCon + CloudNativeCon NA 2022
>>Good evening, brilliant humans. My name is Savannah Peterson and very delighted to be streaming to you. Live from the Cube Studios here in Motor City, Michigan. I've got John Furrier on my left. John, this is our last interview of the day. Energy just seems to keep oozing. How >>You doing? Take two, Three days of coverage, the queue love segments. This one's great cuz we have a practitioner who's implementing all the hard core talks to be awesome. Can't wait to get into it. >>Yeah, I'm very excited for this one. If it's not very clear, we are a community focused community is a huge theme here at the show at Cape Con. And our next guests are actually a provider and a customer. Turning it over to you. Lisa and Jake, welcome to the show. >>Thank you so much for having us. >>It's great to be here. It is our pleasure. Lisa, you're with Cockroach. Just in case the audience isn't familiar, give us a quick little sound bite. >>We're a distributed sequel database. Highly scalable, reliable. The database you can't kill, right? We will survive the apocalypse. So very resilient. Our customers, mostly retail, FinTech game meet online gambling. They, they, they need that resiliency, they need that scalability. So the indestructible database is the elevator pitch >>And the success has been very well documented. Valuation obviously is a scorp guard, but huge customers. We were at the Escape 19. Just for the record, the first ever multi-cloud conference hasn't come back baby. Love it. It'll come back soon. >>Yeah, well we did a similar version of it just a month ago and I was, that was before Cockroach. I was a different company there talking a lot about multi-cloud. So, but I'm, I've been a car a couple of years now and I run community, I run developer relations. I'm still also a CNCF ambassador, so I lead community as well. I still run a really large user group in the San Francisco Bay area. So we've just >>Been in >>Community, take through the use case. Jake's story set us up. >>Well I would like Jake to take him through the use case and Cockroach is a part of it, but what they've built is amazing. And also Jake's history is amazing. So you can start Jake, >>Wherever you take >>Your Yeah, sure. I'm Jake, I'm CEO and co-founder of Offset. Oted is the commercial entity behind Spice Dvy and Spice Dvy is a permission service. Cool. So a permission service is something that lets developers and let's platform teams really unlock the full potential of their applications. So a lot of people get stuck on My R back isn't flexible enough. How do I do these fine grain things? How do I do these complex sharing workflows that my product manager thinks is so important? And so our service enables those platform teams and developers to do those kinds of things. >>What's your, what's your infrastructure? What's your setup look like? What, how are you guys looking like on the back end? >>Sure. Yeah. So we're obviously built on top of Kubernetes as well. One of the reasons that we're here. So we use Kubernetes, we use Kubernetes operators to orchestrate everything. And then we use, use Cockroach TV as our production data store, our production backend data store. >>So I'm curious, cause I love when these little matchmakers come together. You said you've now been presenting on a little bit of a road show, which is very exciting. Lisa, how are you and the team surfacing stories like Jakes, >>Well, I mean any, any place we can obviously all the social medias, all the blogs, How >>Are you finding it though? >>How, how did you Oh, like from our customers? Yeah, we have an open source version so people start to use us a long time before we even sometimes know about them. And then they'll come to us and they'll be like, I love Cockroach, and like, tell me about it. Like, tell me what you build and if it's interesting, you know, we'll we'll try to give it some light. And it's always interesting to me what people do with it because it's an interesting technology. I like what they've done with it. I mean the, the fact that it's globally distributed, right? That was like a really important thing to you. Totally. >>Yeah. We're also long term fans of Cockroach, so we actually all work together out of Workbench, which was a co-working space and investor in New York City. So yeah, we go way back. We knew the founders. I, I'm constantly saying like if I could have invested early in cockroach, that would've been the easiest check I could have ever signed. >>Yeah, that's awesome. And then we've been following that too and you guys are now using them, but folks that are out there looking to have the, the same challenges, what are the big challenges on selecting the database? I mean, as you know, the history of Cockroach and you're originating the story, folks out there might not know and they're also gonna choose a database. What's the, what's the big challenge that they can solve that that kind of comes together? What, what would you describe that? >>Sure. So we're, as I said, we're a permission service and per the data that you store in a permission service is incredibly sensitive. You need it to be around, right? You need it to be available. If the permission service goes down, almost everything else goes down because it's all calling into the permission service. Is this user allowed to do this? Are they allowed to do that? And if we can't answer those questions, then our customer is down, right? So when we're looking at a database, we're looking for reliability, we're looking for durability, disaster recovery, and then permission services are one of the only services that you usually don't shard geographically. So if you look at like AWS's iam, that's a global service, even though the individual things that they run are actually sharded by region. So we also needed a globally distributed database with all of those other properties. So that's what led us >>To, this is a huge topic. So man, we've been talking about all week the cloud is essentially distributed database at this point and it's distributed system. So distributed database is a hot topic, totally not really well reported. A lot of people talking about it, but how would you describe this distributed trend that's going on? What are the key reasons that they're driving it? What's making this more important than ever in your mind, in your opinion? >>I mean, for our use case, it was just a hard requirement, right? We had to be able to have this global service. But I think just for general use cases, a distributed database, distributed database has that like shared nothing architecture that allows you to kind of keep it running and horizontally scale it. And as your requirements and as your applications needs change, you can just keep adding on capacity and keep adding on reliability and availability. >>I'd love to get both of your opinion. You've been talking about the, the, the, the phases of customers, the advanced got Kubernetes going crazy distributed, super alpha geek. Then you got the, the people who are building now, then you got the lagers who are coming online. Where do you guys see the market now in terms of, I know the Alphas are all building all the great stuff and you guys had great success with all the top logos and they're all doing hardcore stuff. As the mainstream enterprise comes in, where's their psychology, what's on their mind? What's, you share any insight into your perspective on that? Because we're seeing a lot more of it folks becoming like real cloud players. >>Yeah, I feel like in mainstream enterprise hasn't been lagging as much as people think. You know, certainly there's been pockets in big enterprises that have been looking at this and as distributed sequel, it gives you that scalability that it's absolutely essential for big enterprises. But also it gives you the, the multi-region, you know, the, you have to be globally distributed. And for us, for enterprises, you know, you need your data near where the users are. I know this is hugely important to you as well. So you have to be able to have a multi-region functionality and that's one thing that distributed SQL lets you build and that what we built into our product. And I know that's one of the things you like too. >>Yeah, well we're a brand new product. I mean we only founded the company two years ago, but we're actually getting inbound interest from big enterprises because we solve the kinds of challenges that they have and whether, I mean, most of them already do have a cockroach footprint, but whether they did or didn't, once they need to bring in our product, they're going to be adopting cockroach transitively anyway. >>So, So you're built on top of Cockroach, right? And Spice dv, is that open source or? >>It >>Is, yep. Okay. And explain the role of open source and your business model. Can you take a minute to talk about the relevance of that? >>Yeah, open source is key. My background is, before this I was at Red Hat. Before that we were at CoreOS, so CoreOS acquisition and before that, >>One of the best acquisitions that ever happened for the value. That was a great, great team. Yeah, >>We, we, we had fun and before that we built Qua. So my co-founders and I, we built Quay, which is a, a first private docker registry. So CoreOS and, and all of those things are all open source or deeply open source. So it's just in our dna. We also see it as part of our go-to market motion. So if you are a database, a lot of people won't even consider what you're doing without being open source. Cuz they say, I don't want to take a, I don't want to, I don't want to end up in an Oracle situation >>Again. Yeah, Oracle meaning they go, you get you locked in, get you in a headlock, Increase prices. >>Yeah. Oh yeah, >>Can, can >>I got triggered. >>You need to talk about your PTSD there >>Or what. >>I mean we have 20,000 stars on GitHub because we've been open and transparent from the beginning. >>Yeah. And it >>Well, and both of your projects were started based on Google Papers, >>Right? >>That is true. Yep. And that's actually, so we're based off of the Google Zans of our paper. And as you know, Cockroach is based off of the Google Span paper and in the the Zanzibar paper, they have this globally distributed database that they're built on top of. And so when I said we're gonna go and we're gonna make a company around the Zabar paper, people would go, Well, what are you gonna do for Span? And I was like, Easy cockroach, they've got us covered. >>Yeah, I know the guys and my friends. Yeah. So the question is why didn't you get into the first round of Cockroach? She said don't answer that. >>The question he did answer though was one of those age old arguments in our community about pronunciation. We used to argue about Quay, I always called it Key of course. And the co-founder obviously knows how it's pronounced, you know, it's the et cd argument, it's the co cuddl versus the control versus coo, CTL Quay from the co-founder. That is end of argument. You heard it here first >>And we're keeping it going with Osted. So awesome. A lot of people will say Zeed or, you know, so we, we just like to have a little ambiguity >>In the, you gotta have some semantic arguments, arm wrestling here. I mean, it keeps, it keeps everyone entertained, especially on the over the weekend. What's, what's next? You got obviously Kubernetes in there. Can you explain the relationship between Kubernetes, how you're handling Spice dv? What, what does the Kubernetes piece fit in and where, where is that going to be going? >>Yeah, great question. Our flagship product right now is a dedicated, and in a dedicated, what we're doing is we're spinning up a single tenant Kubernetes cluster. We're installing all of our operator suite, and then we're installing the application and running it in a single tenant fashion for our customers in the same region, in the same data center where they're running their applications to minimize latency. Because of this, as an authorization service, latency gets passed on directly to the end user. So everybody's trying to squeeze the latency down as far as they can. And our strategy is to just run these single tenant stacks for people with the minimal latency that we can and give them a VPC dedicated link very similar to what Cockroach does in their dedicated >>Product. And the distributed architecture makes that possible because it's lighter way, it's not as heavy. Is that one of the reasons? >>Yep. And Kubernetes really gives us sort of like a, a level playing field where we can say, we're going going to take the provider, the cloud providers Kubernetes offering, normalize it, lay down our operators, and then use that as the base for delivering >>Our application. You know, Jake, you made me think of something I wanted to bring up with other guests, but now since you're here, you're an expert, I wanna bring that up, but talk about Super Cloud. We, we coined that term, but it's kind of multi-cloud, is that having workloads on multiple clouds is hard. I mean there are, they are, there are workloads on, on clouds, but the complexity of one clouds, let's take aws, they got availability zones, they got regions, you got now data issues in each one being global, not that easy on one cloud, nevermind all clouds. Can you share your thoughts on how you see that progression? Because when you start getting, as its distributed database, a lot of good things might come up that could fit into solving the complexity of global workloads. Could you share your thoughts on or scoping that problem space of, of geography? Yeah, because you mentioned latency, like that's huge. What are some of the other challenges that other people have with mobile? >>Yeah, absolutely. When you have a service like ours where the data is small, but very critical, you can get a vendor like Cockroach to step in and to fill that gap and to give you that globally distributed database that you can call into and retrieve the data. I think the trickier issues come up when you have larger data, you have huge binary blobs. So back when we were doing Quay, we wanted to be a global service as well, but we had, you know, terabytes, petabytes of data that we were like, how do we get this replicated everywhere and not go broke? Yeah. So I think those are kind of the interesting issues moving forward is what do you do with like those huge data lakes, the huge amount of data, but for the, the smaller bits, like the things that we can keep in a relational database. Yeah, we're, we're happy that that's quickly becoming a solved >>Problem. And by the way, that that data problem also is compounded when the architecture goes to the edge. >>Totally. >>I mean this is a big issue. >>Exactly. Yeah. Edge is something that we're thinking a lot about too. Yeah, we're lucky that right now the applications that are consuming us are in a data center already. But as they start to move to the edge, we're going to have to move to the edge with them. And it's a story that we're gonna have to figure out. >>All right, so you're a customer cockroach, what's the testimonial if I put you on the spot, say, hey, what's it like working with these guys? You know, what, what's the, what's the, you know, the founders, so you know, you give a good description, little biased, but we'll, we'll we'll hold you on it. >>Yeah. Working with Cockroach has been great. We've had a couple things that we've run into along the way and we've gotten great support from our account managers. They've brought in the right technical expertise when we need it. Cuz what we're doing with Cockroach is not you, you couldn't do it on Postgres, right? So it's not just a simple rip and replace for us, we're using all of the features of Cockroach, right? We're doing as of system time queries, we're doing global replication. We're, you know, we're, we're consuming it all. And so we do need help from them sometimes and they've been great. Yeah. >>And that's natural as they grow their service. I mean the world's changing. >>Well I think one of the important points that you mentioned with multi-cloud, we want you to have the choice. You know, you can run it in in clouds, you can run it hybrid, you can run it OnPrem, you can do whatever you want and it's just, it's one application that you can run in these different data centers. And so really it's up to you how do you want to build your infrastructure? >>And one of the things we've been talking about, the super cloud concept that we've been issue getting a lot of contrary, but, but people are leaning into it is that it's the refactoring and taking advantage of the services. Like what you mentioned about cockroach. People are doing that now on cloud going the lift and shift market kind of had it time now it's like hey, I can start taking advantage of these higher level services or capability of someone else's stack and refactoring it. So I think that's a dynamic that I'm seeing a lot more of. And it sounds like it's working out great in this situation. >>I just came from a talk and I asked them, you know, what don't you wanna put in the cloud and what don't you wanna run in Kubernetes or on containers and good Yeah. And the customers that I was on stage with, one of the guys made a joke and he said I would put my dog in a container room. I could, he was like in the category, which is his right, which he is in the category of like, I'll put everything in containers and these are, you know, including like mis critical apps, heritage apps, since they don't wanna see legacy anymore. Heritage apps, these are huge enterprises and they wanna put everything in the cloud. Everything >>You so want your dog that gets stuck on the airplane when it's on the tarmac. >>Oh >>God, that's, she was the, don't take that analogy. Literally don't think about that. Well that's, >>That's let's not containerize. >>There's always supply chain concern. >>It. So I mean going macro and especially given where we are cncf, it's all about open source. Do y'all think that open source builds a better future? >>Yeah and a better past. I mean this is, so much of this software is founded on open source. I, we wouldn't be here really. I've been in open source community for many, many years so I wouldn't say I'm biased. I would say this is how we build software. I came from like in a high school we're all like, oh let's build a really cool application. Oh you know what? I built this cuz I needed it, but maybe somebody else needs it too. And you put it out there and that is the ethos of Silicon Valley, right? That's where we grew up. So I've always had that mindset, you know, and social coding and why I have three people, right? Working on the same thing when one person you could share it's so inefficient. All of that. Yeah. So I think it's great that people work on what they're really good at. You know, we all, now you need some standardization, you need some kind of control around this whole thing. Sometimes some foundations to, you know, herd the cats. Yeah. But it's, it's great. Which is why I'm a c CF ambassador and I spend a lot of time, you know, in my free time talking about open source. Yeah, yeah. >>It's clear how passionate you are about it. Jake, >>This is my second company that we founded now and I don't think either of them could have existed without the base of open source, right? Like when you look at I have this cool idea for an app or a company and I want to go try it out, the last thing I want to do is go and negotiate with a vendor to get like the core data component. Yeah. To even be able to get to the >>Prototypes. NK too, by the way. Yeah. >>Hey >>Nk >>Or hire, you know, a bunch of PhDs to go and build that core component for me. So yeah, I mean nobody can argue that >>It truly is, I gotta say a best time if you're a developer right now, it's awesome to be a developer right now. It's only gonna get better. As we were riff from the last session about productivity, we believe that if you follow the digital transformation to its conclusion, developers and it aren't a department serving the business, they are the business. And that means they're running the show, which means that now their entire workflow is gonna change. It's gonna be have to be leveraging services partnering. So yeah, open source just fills that. So the more code coming up, it's just no doubt in our mind that that's go, that's happening and will accelerate. So yeah, >>You know, no one company is gonna be able to compete with a community. 50,000 users contributing versus you riding it yourself in your garage with >>Your dogs. Well it's people driven too. It's humans not container. It's humans working together. And here you'll see, I won't say horse training, that's a bad term, but like as projects start to get traction, hey, why don't we come together as, as the world starts to settle and the projects have traction, you start to see visibility into use cases, functionality. Some projects might not be, they have to kind of see more kind >>Of, not every feature is gonna be development. Oh. So I mean, you know, this is why you connect with truly brilliant people who can architect and distribute sequel database. Like who thought of that? It's amazing. It's as, as our friend >>You say, Well let me ask you a question before we wrap up, both by time, what is the secret of Kubernetes success? What made Kubernetes specifically successful? Was it timing? Was it the, the unambitious nature of it, the unification of it? Was it, what was the reason why is Kubernetes successful, right? And why nothing else? >>Well, you know what I'm gonna say? So I'm gonna let Dave >>First don't Jake, you go first. >>Oh boy. If we look at what was happening when Kubernetes first came out, it was, Mesosphere was kind of like the, the big player in the space. I think Kubernetes really, it had the backing from the right companies. It had the, you know, it had the credibility, it was sort of loosely based on Borg, but with the story of like, we've fixed everything that was broken in Borg. Yeah. And it's better now. Yeah. So I think it was just kind and, and obviously people were looking for a solution to this problem as they were going through their containerization journey. And I, yeah, I think it was just right >>Place, the timing consensus of hey, if we just let this happen, something good might come together for everybody. That's the way I felt. I >>Think it was right place, right time, right solution. And then it just kind of exploded when we were at Cores. Alex Povi, our ceo, he heard about Kubernetes and he was like, you know, we, we had a thing called Fleet D or we had a tool called Fleet. And he's like, Nope, we're all in on Kubernetes now. And that was an amazing Yeah, >>I remember that interview. >>I, amazing decision. >>Yeah, >>It's clear we can feel the shift. It's something that's come up a lot this week is is the commitment. Everybody's all in. People are ready for their transformation and Kubernetes is definitely gonna be the orchestrator that we're >>Leveraging. Yeah. And it's an amazing community. But it was, we got lucky that the, the foundational technology, I mean, you know, coming out of Google based on Go conferences, based on Go, it's no to coincidence that this sort of nature of, you know, pods horizontally, scalable, it's all fits together. I does make sense. Yeah. I mean, no offense to Python and some of the other technologies that were built in other languages, but Go is an awesome language. It's so, so innovative. Innovative things you could do with it. >>Awesome. Oh definitely. Jake, I'm very curious since we learned on the way and you are a Detroit native? >>I am. Yep. I grew up in the in Warren, which is just a suburb right outside of Detroit. >>So what does it mean to you as a Michigan born bloke to be here, see your entire community invade? >>It is, I grew up coming to the Detroit Auto Show in this very room >>That brought me to Detroit the first time. Love n a I a s. Been there with our friends at Ford just behind us. >>And it's just so interesting to me to see the accumulation, the accumulation of tech coming to Detroit cuz it's really not something that historically has been a huge presence. And I just love it. I love to see the activity out on the streets. I love to see all the restaurants and coffee shops full of people. Just, I might tear up. >>Well, I was wondering if it would give you a little bit of that hometown pride and also the joy of bringing your community together. I mean, this is merging your two probably most core communities. Yeah, >>Yeah. Your >>Youth and your, and your career. It doesn't get more personal than that really. Right. >>It's just been, it's been really exciting to see the energy. >>Well thanks for going on the queue. Thanks for sharing. Appreciate it. Thanks >>For having us. Yeah, thank you both so much. Lisa, you were a joy of ball of energy right when you walked up. Jake, what a compelling story. Really appreciate you sharing it with us. John, thanks for the banter and the fabulous questions. I'm >>Glad I could help out. >>Yeah, you do. A lot more than help out sweetheart. And to all of you watching the Cube today, thank you so much for joining us live from Detroit, the Cube Studios. My name is Savannah Peterson and we'll see you for our event wrap up next.
SUMMARY :
Live from the Cube Studios here in Motor City, Michigan. implementing all the hard core talks to be awesome. here at the show at Cape Con. case the audience isn't familiar, give us a quick little sound bite. The database you can't And the success has been very well documented. I was a different company there talking a lot about multi-cloud. Community, take through the use case. So you can start Jake, So a lot of people get stuck on My One of the reasons that we're here. Lisa, how are you and the team surfacing stories like Like, tell me what you build and if it's interesting, We knew the founders. I mean, as you know, of the only services that you usually don't shard geographically. A lot of people talking about it, but how would you describe this distributed trend that's going on? like shared nothing architecture that allows you to kind of keep it running and horizontally scale the market now in terms of, I know the Alphas are all building all the great stuff and you And I know that's one of the things you like too. I mean we only founded the company two years ago, but we're actually getting Can you take a minute to talk about the Before that we were at CoreOS, so CoreOS acquisition and before that, One of the best acquisitions that ever happened for the value. So if you are a database, And as you know, Cockroach is based off of the Google Span paper and in the the Zanzibar paper, So the question is why didn't you get into obviously knows how it's pronounced, you know, it's the et cd argument, it's the co cuddl versus the control versus coo, you know, so we, we just like to have a little ambiguity Can you explain the relationship between Kubernetes, how you're handling Spice dv? And our strategy is to just run these single tenant stacks for people And the distributed architecture makes that possible because it's lighter way, can say, we're going going to take the provider, the cloud providers Kubernetes offering, You know, Jake, you made me think of something I wanted to bring up with other guests, but now since you're here, I think the trickier issues come up when you have larger data, you have huge binary blobs. And by the way, that that data problem also is compounded when the architecture goes to the edge. But as they start to move to the edge, we're going to have to move to the edge with them. You know, what, what's the, what's the, you know, the founders, so you know, We're, you know, we're, we're consuming it all. I mean the world's changing. And so really it's up to you how do you want to build your infrastructure? And one of the things we've been talking about, the super cloud concept that we've been issue getting a lot of contrary, but, but people are leaning into it I just came from a talk and I asked them, you know, what don't you wanna put in the cloud and God, that's, she was the, don't take that analogy. It. So I mean going macro and especially given where we are cncf, So I've always had that mindset, you know, and social coding and why I have three people, It's clear how passionate you are about it. Like when you look at I have this cool idea for an app or a company and Yeah. Or hire, you know, a bunch of PhDs to go and build that core component for me. you follow the digital transformation to its conclusion, developers and it aren't a department serving you riding it yourself in your garage with you start to see visibility into use cases, functionality. Oh. So I mean, you know, this is why you connect with It had the, you know, it had the credibility, it was sort of loosely based on Place, the timing consensus of hey, if we just let this happen, something good might come was like, you know, we, we had a thing called Fleet D or we had a tool called Fleet. It's clear we can feel the shift. I mean, you know, coming out of Google based on Go conferences, based on Go, it's no to coincidence that this Jake, I'm very curious since we learned on the way and you are a I am. That brought me to Detroit the first time. And it's just so interesting to me to see the accumulation, Well, I was wondering if it would give you a little bit of that hometown pride and also the joy of bringing your community together. It doesn't get more personal than that really. Well thanks for going on the queue. Yeah, thank you both so much. And to all of you watching the Cube today,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jake | PERSON | 0.99+ |
Alex Povi | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
New York City | LOCATION | 0.99+ |
Detroit | LOCATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
20,000 stars | QUANTITY | 0.99+ |
Python | TITLE | 0.99+ |
Zeed | PERSON | 0.99+ |
both | QUANTITY | 0.99+ |
Cockroach | ORGANIZATION | 0.99+ |
San Francisco Bay | LOCATION | 0.99+ |
second company | QUANTITY | 0.99+ |
Postgres | ORGANIZATION | 0.99+ |
Ford | ORGANIZATION | 0.99+ |
50,000 users | QUANTITY | 0.99+ |
three people | QUANTITY | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Motor City, Michigan | LOCATION | 0.99+ |
Warren | LOCATION | 0.99+ |
Michigan | LOCATION | 0.99+ |
Spice Dvy | ORGANIZATION | 0.99+ |
Detroit Auto Show | EVENT | 0.99+ |
Cockroach Labs | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
Offset | ORGANIZATION | 0.99+ |
Cube Studios | ORGANIZATION | 0.99+ |
KubeCon | EVENT | 0.99+ |
a month ago | DATE | 0.99+ |
two years ago | DATE | 0.98+ |
Jake Moshenko | PERSON | 0.98+ |
One | QUANTITY | 0.98+ |
one person | QUANTITY | 0.98+ |
first time | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
Kubernetes | TITLE | 0.98+ |
Three days | QUANTITY | 0.97+ |
GitHub | ORGANIZATION | 0.97+ |
First | QUANTITY | 0.97+ |
Dave | PERSON | 0.96+ |
this week | DATE | 0.96+ |
CoreOS | ORGANIZATION | 0.96+ |
Quay | ORGANIZATION | 0.96+ |
Silicon Valley | LOCATION | 0.96+ |
Qua | ORGANIZATION | 0.95+ |
one application | QUANTITY | 0.95+ |
Jakes | PERSON | 0.94+ |
first round | QUANTITY | 0.94+ |
today | DATE | 0.94+ |
Oted | ORGANIZATION | 0.93+ |
Google Zans | ORGANIZATION | 0.93+ |
Authzed | ORGANIZATION | 0.92+ |
Cockroach | PERSON | 0.92+ |
Marie Namphy | PERSON | 0.92+ |
Andy Goldstein & Tushar Katarki, Red Hat | KubeCon + CloudNativeCon NA 2022
>>Hello everyone and welcome back to Motor City, Michigan. We're live from the Cube and my name is Savannah Peterson. Joined this afternoon with my co-host John Ferer. John, how you doing? Doing >>Great. This next segment's gonna be awesome about application modernization, scaling pluses. This is what's gonna, how are the next generation software revolution? It's gonna be >>Fun. You know, it's kind of been a theme of our day today is scale. And when we think about the complex orchestration platform that is Kubernetes, everyone wants to scale faster, quicker, more efficiently, and our guests are here to tell us all about that. Please welcome to Char and Andy, thank you so much for being here with us. You were on the Red Hat OpenShift team. Yeah. I suspect most of our audience is familiar, but just in case, let's give 'em a quick one-liner pitch so everyone's on the same page. Tell us about OpenShift. >>I, I'll take that one. OpenShift is our ES platform is our ES distribution. You can consume it as a self-managed platform or you can consume it as a managed service on on public clouds. And so we just call it all OpenShift. So it's basically Kubernetes, but you know, with a CNCF ecosystem around it to make things more easier. So maybe there's two >>Lights. So what does being at coupon mean for you? How does it feel to be here? What's your initial takes? >>Exciting. I'm having a fantastic time. I haven't been to coupon since San Diego, so it's great to be back in person and see old friends, make new friends, have hallway conversations. It's, it's great as an engineer trying to work in this ecosystem, just being able to, to be in the same place with these folks. >>And you gotta ask, before we came on camera, you're like, this is like my sixth co con. We were like, we're seven, you know, But that's a lot of co coupons. It >>Is, yes. I mean, so what, >>Yes. >>Take us status >>For sure. Where we are now. Compare and contrast co. Your first co con, just scope it out. What's the magnitude of change? If you had to put a pin on that, because there's a lot of new people coming in, they might not have seen where it's come from and how we got here is maybe not how we're gonna get to the next >>Level. I've seen it grow tremendously since the first one I went to, which I think was Austin several years ago. And what's great is seeing lots of new people interested in contributing and also seeing end users who are trying to figure out the best way to take advantage of this great ecosystem that we have. >>Awesome. And the project management side, you get the keys to the Kingdom with Red Hat OpenShift, which has been successful. Congratulations by the way. Thank you. We watched that grow and really position right on the wave. It's going great. What's the update on on the product? Kind of, you're in a good, good position right now. Yeah, >>No, we we're feeling good about it. It's all about our customers. Obviously the fact that, you know, we have thousands of customers using OpenShift as the cloud native platform, the container platform. We're very excited. The great thing about them is that, I mean you can go to like OpenShift Commons is kind of a user group that we run on the first day, like on Tuesday we ran. I mean you should see the number of just case studies that our customers went through there, you know? And it is fantastic to see that. I mean it's across so many different industries, across so many different use cases, which is very exciting. >>One of the things we've been reporting here in the Qla scene before, but here more important is just that if you take digital transformation to the, to its conclusion, the IT department and developers, they're not a department to serve the business. They are the business. Yes. That means that the developers are deciding things. Yeah. And running the business. Prove their code. Yeah. Okay. If that's, if that takes place, you gonna have scale. And we also said on many cubes, certainly at Red Hat Summit and other ones, the clouds are distributed computer, it's distributed computing. So you guys are focusing on this project, Andy, that you're working on kcp. >>Yes. >>Which is, I won't platform Kubernetes platform for >>Control >>Planes. Control planes. Yes. Take us through, what's the focus on why is that important and why is that relate to the mission of developers being in charge and large scale? >>Sure. So a lot of times when people are interested in developing on Kubernetes and running workloads, they need a cluster of course. And those are not cheap. It takes time, it takes money, it takes resources to get them. And so we're trying to make that faster and easier for, for end users and everybody involved. So with kcp, we've been able to take what looks like one normal Kubernetes and partition it. And so everybody gets a slice of it. You're an administrator in your little slice and you don't have to ask for permission to install new APIs and they don't conflict with anybody else's APIs. So we're really just trying to make it super fast and make it super flexible. So everybody is their own admin. >>So the developer basically looks at it as a resource blob. They can do whatever they want, but it's shared and provisioned. >>Yes. One option. It's like, it's like they have their own cluster, but you don't have to go through the process of actually provisioning a full >>Cluster. And what's the alternative? What's the what's, what's the, what's the benefit and what was the alternative to >>This? So the alternative, you spin up a full cluster, which you know, maybe that's three control plane nodes, you've got multiple workers, you've got a bunch of virtual machines or bare metal, or maybe you take, >>How much time does that take? Just ballpark. >>Anywhere from five minutes to an hour you can use cloud services. Yeah. Gke, E Ks and so on. >>Keep banging away. You're configuring. Yeah. >>Those are faster. Yeah. But it's still like, you still have to wait for that to happen and it costs money to do all of that too. >>Absolutely. And it's complex. Why do something that's been done, if there's a tool that can get you a couple steps down the path, which makes a ton of sense. Something that we think a lot when we're talking about scale. You mentioned earlier, Tohar, when we were chatting before the cams were alive, scale means a lot of different things. Can you dig in there a little bit? >>Yeah, I >>Mean, so when, when >>We talk about scale, >>We are talking about from a user perspective, we are talking about, you know, there are more users, there are more applications, there are more workloads, there are more services being run on Kubernetes now, right? So, and OpenShift. So, so that's one dimension of this scale. The other dimension of the scale is how do you manage all the underlying infrastructure, the clusters, the name spaces, and all the observability data, et cetera. So that's at least two levels of scale. And then obviously there's a third level of scale, which is, you know, there is scale across not just different clouds, but also from cloud to the edge. So there is that dimension of scale. So there are several dimensions of this scale. And the one that again, we are focused on here really is about, you know, this, the first one that I talk about is a user. And when I say user, it could be a developer, it could be an application architect, or it could be an application owner who wants to develop Kubernetes applications for Kubernetes and wants to publish those APIs, if you will, and make it discoverable and then somebody consumes it. So that's the scale we are talking about >>Here. What are some of the enterprise, you guys have a lot of customers, we've talked to you guys before many, many times and other subjects, Red Hat, I mean you guys have all the customers. Yeah. Enterprise, they've been there, done that. And you know, they're, they're savvy. Yeah. But the cloud is a whole nother ballgame. What are they thinking about? What's the psychology of the customer right now? Because now they have a lot of choices. Okay, we get it, we're gonna re-platform refactor apps, we'll keep some legacy on premises for whatever reasons. But cloud pretty much is gonna be the game. What's the mindset right now of the customer base? Where are they in their, in their psych? Not the executive, but more of the the operators or the developers? >>Yeah, so I mean, first of all, different customers are at different levels of maturity, I would say in this. They're all on a journey how I like to describe it. And in this journey, I mean, I see a customers who are really tip of the sphere. You know, they have containerized everything. They're cloud native, you know, they use best of tools, I mean automation, you know, complete automation, you know, quick deployment of applications and all, and life cycle of applications, et cetera. So that, that's kind of one end of this spectrum >>Advanced. Then >>The advances, you know, and, and I, you know, I don't, I don't have any specific numbers here, but I'd say there are quite a few of them. And we see that. And then there is kind of the middle who are, I would say, who are familiar with containers. They know what app modernization, what a cloud application means. They might have tried a few. So they are in the journey. They are kind of, they want to get there. They have some other kind of other issues, organizational or talent and so, so on and so forth. Kinds of issues to get there. And then there are definitely the quota, what I would call the lag arts still. And there's lots of them. But I think, you know, Covid has certainly accelerated a lot of that. I hear that. And there is definitely, you know, more, the psychology is definitely more towards what I would say public cloud. But I think where we are early also in the other trend that I see is kind of okay, public cloud great, right? So people are going there, but then there is the so-called edge also. Yeah. That is for various regions. You, you gotta have a kind of a regional presence, a edge presence. And that's kind of the next kind of thing taking off here. And we can talk more >>About it. Yeah, let's talk about that a little bit because I, as you know, as we know, we're very excited about Edge here at the Cube. Yeah. What types of trends are you seeing? Is that space emerges a little bit more firmly? >>Yeah, so I mean it's, I mean, so we, when we talk about Edge, you're talking about, you could talk about Edge as a, as a retail, I mean locations, right? >>Could be so many things edges everywhere. Everywhere, right? It's all around us. Quite literally. Even on the >>Scale. Exactly. In space too. You could, I mean, in fact you mentioned space. I was, I was going to >>Kinda, it's this world, >>My space actually Kubernetes and OpenShift running in space, believe it or not, you know, So, so that's the edge, right? So we have Industrial Edge, we have Telco Edge, we have a 5g, then we have, you know, automotive edge now and, and, and retail edge and, and more, right? So, and space, you know, So it's very exciting there. So the reason I tag back to that question that you asked earlier is that that's where customers are. So cloud is one thing, but now they gotta also think about how do I, whatever I do in the cloud, how do I bring it to the edge? Because that's where my end users are, my customers are, and my data is, right? So that's the, >>And I think Kubernetes has brought that attention to the laggards. We had the Laed Martin on yesterday, which is an incredible real example of Kubernetes at the edge. It's just incredible story. We covered it also wrote a story about it. So compelling. Cuz it makes it real. Yes. And Kubernetes is real. So then the question is developer productivity, okay, Things are starting to settle in. We've got KCP scaling clusters, things are happening. What about the tool chains? And how do I develop now I got scale of development, more code coming in. I mean, we are speculating that in the future there's so much code in open source that no one has to write code anymore. Yeah. At some point it's like this gluing things together. So the developers need to be productive. How are we gonna scale the developer equation and eliminate the, the complexity of tool chains and environments. Web assembly is super hyped up at this show. I don't know why, but sounds good. No one, no one can tell me why, but I can kind of connect the dots. But this is a big thing. >>Yeah. And it's fitting that you ask about like no code. So we've been working with our friends at Cross Plain and have integrated with kcp the ability to no code, take a whole bunch of configuration and say, I want a database. I want to be a, a provider of databases. I'm in an IT department, there's a bunch of developers, they don't wanna have to write code to create databases. So I can just take, take my configuration and make it available to them. And through some super cool new easy to use tools that we have as a developer, you can just say, please give me a database and you don't have to write any code. I don't have to write any code to maintain that database. I'm actually using community tooling out there to get that spun up. So there's a lot of opportunities out there. So >>That's ease of use check. What about a large enterprise that's got multiple tool chains and you start having security issues. Does that disrupt the tool chain capability? Like there's all those now weird examples emerging, not weird, but like real plumbing challenges. How do you guys see that evolving with Red >>Hat and Yeah, I mean, I mean, talking about that, right? The software, secure software supply chain is a huge concern for everyone after, especially some of the things that have happened in the past few >>Years. Massive team here at the show. Yeah. And just within the community, we're all a little more aware, I think, even than we were before. >>Before. Yeah. Yeah. And, and I think the, so to step back, I mean from, so, so it's not just even about, you know, run time vulnerability scanning, Oh, that's important, but that's not enough, right? So we are talking about, okay, how did that container, or how did that workload get there? What is that workload? What's the prominence of this workload? How did it get created? What is in it? You know, and what, what are, how do I make, make sure that there are no unsafe attack s there. And so that's the software supply chain. And where Red Hat is very heavily invested. And as you know, with re we kind of have roots in secure operating system. And rel one of the reasons why Rel, which is the foundation of everything we do at Red Hat, is because of security. So an OpenShift has always been secure out of the box with things like scc, rollbacks access control, we, which we added very early in the product. >>And now if you kind of bring that forward, you know, now we are talking about the complete software supply chain security. And this is really about right how from the moment the, the, the developer rights code and checks it into a gateway repository from there on, how do you build it? How do you secure it at each step of the process, how do you sign it? And we are investing and contributing to the community with things like cosign and six store, which is six store project. And so that secures the supply chain. And then you can use things like algo cd and then finally we can do it, deploy it onto the cluster itself. And then we have things like acs, which can do vulnerability scanning, which is a container security platform. >>I wanna thank you guys for coming on. I know Savannah's probably got a last question, but my last question is, could you guys each take a minute to answer why has Kubernetes been so successful today? What, what was the magic of Kubernetes that made it successful? Was it because no one forced it? Yes. Was it lightweight? Was it good timing, right place at the right time community? What's the main reason that Kubernetes is enabling all this, all this shift and goodness that's coming together, kind of defacto unifies people, the stacks, almost middleware markets coming around. Again, not to use that term middleware, but it feels like it's just about to explode. Yeah. Why is this so successful? I, >>I think, I mean, the shortest answer that I can give there really is, you know, as you heard the term, I think Satya Nala from Microsoft has used it. I don't know if he was the original person who pointed, but every company wants to be a software company or is a software company now. And that means that they want to develop stuff fast. They want to develop stuff at scale and develop at, in a cloud native way, right? You know, with the cloud. So that's, and, and Kubernetes came at the right time to address the cloud problem, especially across not just one public cloud or two public clouds, but across a whole bunch of public clouds and infrastructure as, and what we call the hybrid clouds. I think the ES is really exploded because of hybrid cloud, the need for hybrid cloud. >>And what's your take on the, the magic Kubernetes? What made it, what's making it so successful? >>I would agree also that it came about at the right time, but I would add that it has great extensibility and as developers we take it advantage of that every single day. And I think that the, the patterns that we use for developing are very consistent. And I think that consistency that came with Kubernetes, just, you have so many people who are familiar with it and so they can follow the same patterns, implement things similarly, and it's just a good fit for the way that we want to get our software out there and have, and have things operate. >>Keep it simple, stupid almost is that acronym, but the consistency and the de facto alignment Yes. Behind it just created a community. So, so then the question is, are the developers now setting the standards? That seems like that's the new way, right? I mean, >>I'd like to think so. >>So I mean hybrid, you, you're touching everything at scale and you also have mini shift as well, right? Which is taking a super macro micro shift. You ma micro shift. Oh yeah, yeah, exactly. It is a micro shift. That is, that is fantastic. There isn't a base you don't cover. You've spoken a lot about community and both of you have, and serving the community as well as your engagement with them from a, I mean, it's given that you're both leaders stepping back, how, how Community First is Red Hat and OpenShift as an organization when it comes to building the next products and, and developing. >>I'll take and, and I'm sure Andy is actually the community, so I'm sure he'll want to a lot of it. But I mean, right from the start, we have roots in open source. I'll keep it, you know, and, and, and certainly with es we were one of the original contributors to Kubernetes other than Google. So in some ways we think about as co-creators of es, they love that. And then, yeah, then we have added a lot of things in conjunction with the, I I talk about like SCC for Secure, which has become part security right now, which the community, we added things like our back and other what we thought were enterprise features needed because we actually wanted to build a product out of it and sell it to customers where our customers are enterprises. So we have worked with the community. Sometimes we have been ahead of the community and we have convinced the community. Sometimes the community has been ahead of us for other reasons. So it's been a great collaboration, which is I think the right thing to do. But Andy, as I said, >>Is the community well set too? Are well said. >>Yes, I agree with all of that. I spend most of my days thinking about how to interact with the community and engage with them. So the work that we're doing on kcp, we want it to be a community project and we want to involve as many people as we can. So it is a heavy focus for me and my team. And yeah, we we do >>It all the time. How's it going? How's the project going? You feel good >>About it? I do. It is, it started as an experiment or set of prototypes and has grown leaps and bounds from it's roots and it's, it's fantastic. Yeah. >>Controlled planes are hot data planes control planes. >>I >>Know, I love it. Making things work together horizontally scalable. Yeah. Sounds like cloud cloud native. >>Yeah. I mean, just to add to it, there are a couple of talks that on KCP at Con that our colleagues s Stephan Schemanski has, and I, I, I would urge people who have listening, if they have, just Google it, if you will, and you'll get them. And those are really awesome talks to get more about >>It. Oh yeah, no, and you can tell on GitHub that KCP really is a community project and how many people are participating. It's always fun to watch the action live to. Sure. Andy, thank you so much for being here with us, John. Wonderful questions this afternoon. And thank all of you for tuning in and listening to us here on the Cube Live from Detroit. I'm Savannah Peterson. Look forward to seeing you again very soon.
SUMMARY :
John, how you doing? This is what's gonna, how are the next generation software revolution? is familiar, but just in case, let's give 'em a quick one-liner pitch so everyone's on the same page. So it's basically Kubernetes, but you know, with a CNCF ecosystem around it to How does it feel to be here? I haven't been to coupon since San Diego, so it's great to be back in And you gotta ask, before we came on camera, you're like, this is like my sixth co con. I mean, so what, What's the magnitude of change? And what's great is seeing lots of new people interested in contributing And the project management side, you get the keys to the Kingdom with Red Hat OpenShift, I mean you should see the number of just case studies that our One of the things we've been reporting here in the Qla scene before, but here more important is just that if you mission of developers being in charge and large scale? And so we're trying to make that faster and easier for, So the developer basically looks at it as a resource blob. It's like, it's like they have their own cluster, but you don't have to go through the process What's the what's, what's the, what's the benefit and what was the alternative to How much time does that take? Anywhere from five minutes to an hour you can use cloud services. Yeah. do all of that too. Why do something that's been done, if there's a tool that can get you a couple steps down the And the one that again, we are focused And you know, they're, they're savvy. they use best of tools, I mean automation, you know, complete automation, And there is definitely, you know, more, the psychology Yeah, let's talk about that a little bit because I, as you know, as we know, we're very excited about Edge here at the Cube. Even on the You could, I mean, in fact you mentioned space. So the reason I tag back to So the developers need to be productive. And through some super cool new easy to use tools that we have as a How do you guys see that evolving with Red I think, even than we were before. And as you know, with re we kind of have roots in secure operating And so that secures the supply chain. I wanna thank you guys for coming on. I think, I mean, the shortest answer that I can give there really is, you know, the patterns that we use for developing are very consistent. Keep it simple, stupid almost is that acronym, but the consistency and the de facto alignment Yes. and serving the community as well as your engagement with them from a, it. But I mean, right from the start, we have roots in open source. Is the community well set too? So the work that we're doing on kcp, It all the time. I do. Yeah. And those are really awesome talks to get more about And thank all of you
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Ferer | PERSON | 0.99+ |
Stephan Schemanski | PERSON | 0.99+ |
Andy | PERSON | 0.99+ |
Char | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Andy Goldstein | PERSON | 0.99+ |
San Diego | LOCATION | 0.99+ |
five minutes | QUANTITY | 0.99+ |
Tushar Katarki | PERSON | 0.99+ |
Tuesday | DATE | 0.99+ |
thousands | QUANTITY | 0.99+ |
Satya Nala | PERSON | 0.99+ |
seven | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
Edge | ORGANIZATION | 0.99+ |
Detroit | LOCATION | 0.99+ |
Motor City, Michigan | LOCATION | 0.99+ |
third level | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Cross Plain | ORGANIZATION | 0.99+ |
six store | QUANTITY | 0.99+ |
Cube | ORGANIZATION | 0.99+ |
one-liner | QUANTITY | 0.99+ |
One option | QUANTITY | 0.99+ |
ORGANIZATION | 0.98+ | |
OpenShift | TITLE | 0.98+ |
Covid | PERSON | 0.98+ |
one | QUANTITY | 0.98+ |
an hour | QUANTITY | 0.98+ |
Red Hat | ORGANIZATION | 0.98+ |
Telco Edge | ORGANIZATION | 0.98+ |
KubeCon | EVENT | 0.98+ |
first one | QUANTITY | 0.98+ |
CloudNativeCon | EVENT | 0.98+ |
Austin | LOCATION | 0.98+ |
OpenShift | ORGANIZATION | 0.97+ |
sixth co con. | QUANTITY | 0.97+ |
each step | QUANTITY | 0.97+ |
ES | TITLE | 0.97+ |
several years ago | DATE | 0.97+ |
today | DATE | 0.97+ |
Kubernetes | TITLE | 0.96+ |
first co con | QUANTITY | 0.96+ |
KCP | ORGANIZATION | 0.95+ |
One | QUANTITY | 0.95+ |
both leaders | QUANTITY | 0.94+ |
cosign | ORGANIZATION | 0.94+ |
two public clouds | QUANTITY | 0.94+ |
Community First | ORGANIZATION | 0.93+ |
one dimension | QUANTITY | 0.91+ |
Red Hat OpenShift | ORGANIZATION | 0.91+ |
first day | QUANTITY | 0.91+ |
Industrial Edge | ORGANIZATION | 0.9+ |
SCC | ORGANIZATION | 0.89+ |
each | QUANTITY | 0.89+ |
one thing | QUANTITY | 0.88+ |
customers | QUANTITY | 0.86+ |
NA 2022 | EVENT | 0.86+ |
GitHub | ORGANIZATION | 0.85+ |
single day | QUANTITY | 0.85+ |
a minute | QUANTITY | 0.83+ |
Red Hat Summit | EVENT | 0.79+ |
Cube Live | TITLE | 0.77+ |