Image Title

Search Results for one big data:

Kickoff Day One | Big Data SV 2018


 

>> Speaker: Live from San Jose, it's theCUBE. Presenting Big Data Silicon Valley. Brought to you by SiliconANGLE Media and its eco-system partners. (soothing electronic music) >> Good morning everybody, and welcome to Big Data SV. My name is Dave Vellante, and this is our 10th big data event, we started in New York City, we've done five now, and this'll be our fifth in Silicon Valley, we've done five in New York City. And we started SiliconANGLE and Wikibon started covering the Big Data space in 2010, we did our first Hadoop World, which was actually the second Hadoop World in New York City. In 2011, we put out the industry's first big data report, and it caught the industry by fire, it was the hot topic. The concept of Hadoop was profound in that the idea was to take five megabytes of code and bring it to a petabyte of data, metaphorically if you will. Because moving data around was so problematic, and that concept really took hold. We asked questions at the time. Who will be the Red Hat of big data? Is this going to be a winner-take-all market? Will this trend, this big data trend, solve the problems that decision support, and business intelligence couldn't solve? We're going to talk about that today, and throughout the week. We've just released Wikibon's big data market study, and big data market shares, and key findings, I'm here with Peter Burris, who heads up the Wikibon research organization, and George Gilbert, who leads our big data research, gentleman, welcome to theCUBE. >> Hi Dave. >> Good to see you guys. >> Good to be here. >> So, we have this open source marketplace, it's been plagued by complexity, competition, the cloud really changed things. Peter, you've been studying this for a while, you just dropped that awesome report on Wikibon.com, what did you find? What were the key trends that you saw in that report? Lay it out for us. >> Well the most important trend is that users are starting drive what happens in the big data universe. For many years, it was the individuals that were primarily responsible for creating a lot of these open source tools, and in the process of creating these open source tools, they solved each other's problems, as opposed to solving user problems. Users then found themselves, or in a process found themselves, building out clusters, deploying Hadoop, really focusing a lot on the infrastructure, which had its pluses and minuses. But what we see happening in the marketplace today really is an emphasis on bifurcation, in the big data space, where we're seeing a continuing focus on the infrastructure elements, and we'll spend a fair amount of time talking about what that means from a hardware database and related technology standpoint, and then, a much more focused, based on user and enterprise experience, of how to turn this into applications that actually have a consequential impact on the business on machine learning, AI, how the pipelines work, how the personnel work, integrating business change and the way business thinks about the role that data's going to play, and that bifurcation is going to carry forward over the next few years, as we gain more experience, and the entire industry is going to go through a process of restructuring itself to serve both sides of those needs. >> Great, so George, I want to ask you, so this is not a winner-take-all market, there is no Red Hat of big data, it certainly is not Cloudera, you know, Hortonworks kind of threw a wrench maybe into some of those plans, and tryin' to play the long game with the pure open source play. The return on investment of big data oftentimes turned out to be a reduction in the denominator, a reduction of investment, if you will. Lowering spending relative to traditional data warehouses. I ask you, you've been following this business for a long time, did the big data promise fail to live up to expectations? >> (laughs) There are multiple layers to that question, and to the answer. I would say that let's offload some data warehousing, processing, was the application that IT could attack to justify their experimentation with big data technologies, which remain notoriously complicated to provision and to manage on PRIM. But as Peter was saying, to get sort of more value out of this investment, we're sort of now bumping up against the complexity of all the data science pipelines, whereas before we were bumping up the complexity of administering these Hadoop clusters, so no we've got the data there, it's kind of hard to manage, but now we have to sort of learn how to apply that using much more sophisticated techniques. It's interesting that you say denominator shrinks, because the cost of operation as you move to the cloud, there are many more options, and they're managed much better, so that cost comes down as people have more cloud options. The last point I would make is I do think packaged applications, whether they're from the big guys, or a lot of vertically focused, or even semi-custom apps from folks like IBM, or Accenture, those are going to be what drives mainstream deployment, to reach hundreds of millions of users of this technology. >> So I would just observe that, in my view, this whole big data trend wasn't a failure, we observed early on that the folks that were going to make the most money in big data were the practitioners, not the vendors. So we made a correct call there. In many respects I look at this as, you know when you paint, you got to prep. I feel like that last eight years has been the preparatory phases, you know, scraping, and getting things ready, getting your house in order, and now Peter, we're setting up for the digital business era, and the digital business era is about data, it's about applying machine intelligence, it's certainly taking advantage of cloud economics. Do you buy that premise? That we're now in a position to actually, many companies anyway, or some companies, to affect digital transformation? >> Well, the whole concept of digital transformation starts with the idea of data, and our observation, here at theCUBE and Wikibon, ultimately, is that the difference between a business and a digital business is, a digital business uses data as an asset, and that has an enormous implications, on operations, how you engage customers, how you institutionalize work, what your relationships are with technology companies, et cetera. But that core concept of using your data differently, and creating value, is absolutely essential, to this notion of big data and all the various things that we're talking about, because big data is the process by which you create business value out of data, that's ultimately what we're trying to do with all this stuff. So, to George's point, if we think about where we've been, and where we're going, in many respects, fundamentally, we're just kind of following almost a normal adoption process. So if we go back 10 years, to Yahoo, Google, and some of the tech companies that initiated a lot of this motion, they had very specific types of problems that they wanted to solve, they had enormous volumes of data that they wanted to use to solve their problem, and they created technology to do so. Where we kind of get hung up is in the diffusion out of those relatively, certainly very challenging, and very rich set of problems, that Facebook, and Yahoo, and everybody else had, as they try to diffuse that technology into other industries, we got caught up in the bumps. We had more failures, and we didn't get the returns we wanted. So, now what's happening is a lot of that domain expertise is coming back in, we're startin' to say, "Now we know "how to solve the problem, we have an approach "to how we're going to solve the problem," and the technology's being snapped into place to solve problems, as opposed to technology being snapped into place, or solve business problems, as opposed to technology being snapped into place to solve the technology problems of big data. >> So we're here talking to Peter Burris and George Gilbert, two analysts at Wikibon, we're here at the Forager, in San Jose, it's at 420 1st Street, and theCUBE has a week long, 1/2 a week long anyway, set of activities going on, we've got an event going on this evening, I think it starts at six o'clock, so come by, we got a breakfast briefing tomorrow, where the Wikibon analysts are laying out their recent market studies, we just dropped two market studies on Wikibon, one is the overall market size, and the other goes into market shares. I want to touch on those briefly. We're lookin' at about a 35 billion dollar market, growing to 100 billion over the next 10 years. As we observed early on, open source software had an effect where, most businesses, most industries start off, software's a big component of it, because of open source, the software revenues were muted in this business, but they're really starting to pick up now, it was a heavily services-oriented business, and still is, about 40%, right? And then software comprises about 30%, and hardware about 29%. You guys see that changing over time, correct? >> Well yeah, and in many respects, again, this is following almost a natural evolution, that's made more interesting by the fact that these are very complex problems, and new types of business problems, but, certainly George has done a lot of research on this, ultimately, what every company that operates in this space should be thinking about is, how is the industry, in aggregate, going to get to 100, to 200 million users in the next decade. Where a user is not someone who's playing with the data, or looking at Tableau, but a user is fundamentally someone who's using an application, or making a decision that's informed by data, that's made possible by these tools. And that's not something that's going to happen at a very, very low, hardware, cluster, database, level. It's going to happen elsewhere, and one of the big trends we see is, that there's going to be a lot of new packaged applications entering into the marketplace, that consume these tools, and make them viable for business to actually use. >> Well George, in 2012, Mike Olson declared it the year of the big data applications, that never happened. The action in software has been around database and software infrastructure, but what do you see in terms of the evolution of that software business? >> Well, continuing on the theme of the bifurcation, it was interesting to hear Peter talk about how the infrastructure that the big tech companies, and internet companies developed as a byproduct of building their own services, that stuff didn't work for mainstream, it didn't even work for most of the sophisticated enterprises, on the infrastructure side, what we're doing now is, we're seeing a convergence, where we're putting those pieces together in a way where they fit easily together enough so admins, mere admin, mortal admins and developers can work with them-- >> With cloud being the ultimate convergence. >> Yes, yes. And I would also say then it's the applications will really take it mainstream. Because even when we fit the platform stuff together, it's not going to be enough to go mainstream. >> Okay, and we got to wrap, but I just wanted to touch on some of the market share stuff that you guys just produced, and we'll be presenting this data tomorrow morning, Thursday morning here at the Forager, it's 420 1st Street, in San Jose. Not surprisingly, IBM came out as the leader, because of the large services component, they got about 8% of that-- >> Well, they play in all parts. >> They play in all, but services they dominate. So IBM, Splunk, actually, who never used the term big data during their ascendancy, they didn't tie into that meme, but they are a big data company-- >> And an example of a packaged application company leading a-- >> Both-- >> Absolutely. >> Both, the platform and app. >> And apps, right. Dell, Oracle, and now if you look at this, that's the overall, if you look at the software top 10, Splunk comes out on top, then Oracle, then IBM, and we'll be getting into that tomorrow morning at the breakfast, Peter Burris, George Gilbert, thanks so much for setting this up, that's for watching, we've got wall-to-wall coverage here, this is day one, Big Data SV. From San Jose, you're watching theCUBE. We'll be right back. (soothing electronic music)

Published Date : Mar 7 2018

SUMMARY :

Brought to you by SiliconANGLE Media and it caught the industry by fire, it was the hot topic. the cloud really changed things. and in the process of creating these open source tools, fail to live up to expectations? and to the answer. and the digital business era is about data, and all the various things that we're talking about, and the other goes into market shares. and one of the big trends we see is, and software infrastructure, but what do you see it's not going to be enough to go mainstream. some of the market share stuff that you guys just produced, they play in all parts. but they are a big data company-- that's the overall, if you look at the software top 10,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

Dave VellantePERSON

0.99+

OracleORGANIZATION

0.99+

IBMORGANIZATION

0.99+

GeorgePERSON

0.99+

YahooORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Peter BurrisPERSON

0.99+

Mike OlsonPERSON

0.99+

FacebookORGANIZATION

0.99+

DellORGANIZATION

0.99+

2012DATE

0.99+

George GilbertPERSON

0.99+

PeterPERSON

0.99+

New York CityLOCATION

0.99+

WikibonORGANIZATION

0.99+

San JoseLOCATION

0.99+

2011DATE

0.99+

SiliconANGLEORGANIZATION

0.99+

tomorrow morningDATE

0.99+

SplunkORGANIZATION

0.99+

420 1st StreetLOCATION

0.99+

100 billionQUANTITY

0.99+

2010DATE

0.99+

Silicon ValleyLOCATION

0.99+

fiveQUANTITY

0.99+

100QUANTITY

0.99+

BothQUANTITY

0.99+

tomorrowDATE

0.99+

AccentureORGANIZATION

0.99+

Thursday morningDATE

0.99+

HortonworksORGANIZATION

0.99+

fifthQUANTITY

0.99+

about 29%QUANTITY

0.99+

six o'clockDATE

0.99+

secondQUANTITY

0.99+

about 30%QUANTITY

0.98+

next decadeDATE

0.98+

two analystsQUANTITY

0.98+

ForagerORGANIZATION

0.98+

Day OneQUANTITY

0.97+

oneQUANTITY

0.97+

SiliconANGLE MediaORGANIZATION

0.97+

firstQUANTITY

0.97+

about 40%QUANTITY

0.97+

Wikibon.comORGANIZATION

0.97+

TableauTITLE

0.97+

1/2 a weekQUANTITY

0.96+

both sidesQUANTITY

0.96+

Hadoop WorldEVENT

0.96+

a weekQUANTITY

0.96+

10 yearsQUANTITY

0.96+

theCUBEORGANIZATION

0.96+

todayDATE

0.96+

about 8%QUANTITY

0.95+

200 million usersQUANTITY

0.93+

ClouderaORGANIZATION

0.92+

35 billion dollarQUANTITY

0.92+

this eveningDATE

0.91+

two market studiesQUANTITY

0.9+

five megabytes of codeQUANTITY

0.89+

Red HatORGANIZATION

0.88+

hundreds of millionsQUANTITY

0.87+

SVTITLE

0.85+

Big Data SV 2018EVENT

0.85+

Opening Panel | Generative AI: Hype or Reality | AWS Startup Showcase S3 E1


 

(light airy music) >> Hello, everyone, welcome to theCUBE's presentation of the AWS Startup Showcase, AI and machine learning. "Top Startups Building Generative AI on AWS." This is season three, episode one of the ongoing series covering the exciting startups from the AWS ecosystem, talking about AI machine learning. We have three great guests Bratin Saha, VP, Vice President of Machine Learning and AI Services at Amazon Web Services. Tom Mason, the CTO of Stability AI, and Aidan Gomez, CEO and co-founder of Cohere. Two practitioners doing startups and AWS. Gentlemen, thank you for opening up this session, this episode. Thanks for coming on. >> Thank you. >> Thank you. >> Thank you. >> So the topic is hype versus reality. So I think we're all on the reality is great, hype is great, but the reality's here. I want to get into it. Generative AI's got all the momentum, it's going mainstream, it's kind of come out of the behind the ropes, it's now mainstream. We saw the success of ChatGPT, opens up everyone's eyes, but there's so much more going on. Let's jump in and get your early perspectives on what should people be talking about right now? What are you guys working on? We'll start with AWS. What's the big focus right now for you guys as you come into this market that's highly active, highly hyped up, but people see value right out of the gate? >> You know, we have been working on generative AI for some time. In fact, last year we released Code Whisperer, which is about using generative AI for software development and a number of customers are using it and getting real value out of it. So generative AI is now something that's mainstream that can be used by enterprise users. And we have also been partnering with a number of other companies. So, you know, stability.ai, we've been partnering with them a lot. We want to be partnering with other companies as well. In seeing how we do three things, you know, first is providing the most efficient infrastructure for generative AI. And that is where, you know, things like Trainium, things like Inferentia, things like SageMaker come in. And then next is the set of models and then the third is the kind of applications like Code Whisperer and so on. So, you know, it's early days yet, but clearly there's a lot of amazing capabilities that will come out and something that, you know, our customers are starting to pay a lot of attention to. >> Tom, talk about your company and what your focus is and why the Amazon Web Services relationship's important for you? >> So yeah, we're primarily committed to making incredible open source foundation models and obviously stable effusions been our kind of first big model there, which we trained all on AWS. We've been working with them over the last year and a half to develop, obviously a big cluster, and bring all that compute to training these models at scale, which has been a really successful partnership. And we're excited to take it further this year as we develop commercial strategy of the business and build out, you know, the ability for enterprise customers to come and get all the value from these models that we think they can get. So we're really excited about the future. We got hugely exciting pipeline for this year with new modalities and video models and wonderful things and trying to solve images for once and for all and get the kind of general value and value proposition correct for customers. So it's a really exciting time and very honored to be part of it. >> It's great to see some of your customers doing so well out there. Congratulations to your team. Appreciate that. Aidan, let's get into what you guys do. What does Cohere do? What are you excited about right now? >> Yeah, so Cohere builds large language models, which are the backbone of applications like ChatGPT and GPT-3. We're extremely focused on solving the issues with adoption for enterprise. So it's great that you can make a super flashy demo for consumers, but it takes a lot to actually get it into billion user products and large global enterprises. So about six months ago, we released our command models, which are some of the best that exist for large language models. And in December, we released our multilingual text understanding models and that's on over a hundred different languages and it's trained on, you know, authentic data directly from native speakers. And so we're super excited to continue pushing this into enterprise and solving those barriers for adoption, making this transformation a reality. >> Just real quick, while I got you there on the new products coming out. Where are we in the progress? People see some of the new stuff out there right now. There's so much more headroom. Can you just scope out in your mind what that looks like? Like from a headroom standpoint? Okay, we see ChatGPT. "Oh yeah, it writes my papers for me, does some homework for me." I mean okay, yawn, maybe people say that, (Aidan chuckles) people excited or people are blown away. I mean, it's helped theCUBE out, it helps me, you know, feed up a little bit from my write-ups but it's not always perfect. >> Yeah, at the moment it's like a writing assistant, right? And it's still super early in the technologies trajectory. I think it's fascinating and it's interesting but its impact is still really limited. I think in the next year, like within the next eight months, we're going to see some major changes. You've already seen the very first hints of that with stuff like Bing Chat, where you augment these dialogue models with an external knowledge base. So now the models can be kept up to date to the millisecond, right? Because they can search the web and they can see events that happened a millisecond ago. But that's still limited in the sense that when you ask the question, what can these models actually do? Well they can just write text back at you. That's the extent of what they can do. And so the real project, the real effort, that I think we're all working towards is actually taking action. So what happens when you give these models the ability to use tools, to use APIs? What can they do when they can actually affect change out in the real world, beyond just streaming text back at the user? I think that's the really exciting piece. >> Okay, so I wanted to tee that up early in the segment 'cause I want to get into the customer applications. We're seeing early adopters come in, using the technology because they have a lot of data, they have a lot of large language model opportunities and then there's a big fast follower wave coming behind it. I call that the people who are going to jump in the pool early and get into it. They might not be advanced. Can you guys share what customer applications are being used with large language and vision models today and how they're using it to transform on the early adopter side, and how is that a tell sign of what's to come? >> You know, one of the things we have been seeing both with the text models that Aidan talked about as well as the vision models that stability.ai does, Tom, is customers are really using it to change the way you interact with information. You know, one example of a customer that we have, is someone who's kind of using that to query customer conversations and ask questions like, you know, "What was the customer issue? How did we solve it?" And trying to get those kinds of insights that was previously much harder to do. And then of course software is a big area. You know, generating software, making that, you know, just deploying it in production. Those have been really big areas that we have seen customers start to do. You know, looking at documentation, like instead of you know, searching for stuff and so on, you know, you just have an interactive way, in which you can just look at the documentation for a product. You know, all of this goes to where we need to take the technology. One of which is, you know, the models have to be there but they have to work reliably in a production setting at scale, with privacy, with security, and you know, making sure all of this is happening, is going to be really key. That is what, you know, we at AWS are looking to do, which is work with partners like stability and others and in the open source and really take all of these and make them available at scale to customers, where they work reliably. >> Tom, Aidan, what's your thoughts on this? Where are customers landing on this first use cases or set of low-hanging fruit use cases or applications? >> Yeah, so I think like the first group of adopters that really found product market fit were the copywriting companies. So one great example of that is HyperWrite. Another one is Jasper. And so for Cohere, that's the tip of the iceberg, like there's a very long tail of usage from a bunch of different applications. HyperWrite is one of our customers, they help beat writer's block by drafting blog posts, emails, and marketing copy. We also have a global audio streaming platform, which is using us the power of search engine that can comb through podcast transcripts, in a bunch of different languages. Then a global apparel brand, which is using us to transform how they interact with their customers through a virtual assistant, two dozen global news outlets who are using us for news summarization. So really like, these large language models, they can be deployed all over the place into every single industry sector, language is everywhere. It's hard to think of any company on Earth that doesn't use language. So it's, very, very- >> We're doing it right now. We got the language coming in. >> Exactly. >> We'll transcribe this puppy. All right. Tom, on your side, what do you see the- >> Yeah, we're seeing some amazing applications of it and you know, I guess that's partly been, because of the growth in the open source community and some of these applications have come from there that are then triggering this secondary wave of innovation, which is coming a lot from, you know, controllability and explainability of the model. But we've got companies like, you know, Jasper, which Aidan mentioned, who are using stable diffusion for image generation in block creation, content creation. We've got Lensa, you know, which exploded, and is built on top of stable diffusion for fine tuning so people can bring themselves and their pets and you know, everything into the models. So we've now got fine tuned stable diffusion at scale, which is democratized, you know, that process, which is really fun to see your Lensa, you know, exploded. You know, I think it was the largest growing app in the App Store at one point. And lots of other examples like NightCafe and Lexica and Playground. So seeing lots of cool applications. >> So much applications, we'll probably be a customer for all you guys. We'll definitely talk after. But the challenges are there for people adopting, they want to get into what you guys see as the challenges that turn into opportunities. How do you see the customers adopting generative AI applications? For example, we have massive amounts of transcripts, timed up to all the videos. I don't even know what to do. Do I just, do I code my API there. So, everyone has this problem, every vertical has these use cases. What are the challenges for people getting into this and adopting these applications? Is it figuring out what to do first? Or is it a technical setup? Do they stand up stuff, they just go to Amazon? What do you guys see as the challenges? >> I think, you know, the first thing is coming up with where you think you're going to reimagine your customer experience by using generative AI. You know, we talked about Ada, and Tom talked about a number of these ones and you know, you pick up one or two of these, to get that robust. And then once you have them, you know, we have models and we'll have more models on AWS, these large language models that Aidan was talking about. Then you go in and start using these models and testing them out and seeing whether they fit in use case or not. In many situations, like you said, John, our customers want to say, "You know, I know you've trained these models on a lot of publicly available data, but I want to be able to customize it for my use cases. Because, you know, there's some knowledge that I have created and I want to be able to use that." And then in many cases, and I think Aidan mentioned this. You know, you need these models to be up to date. Like you can't have it staying. And in those cases, you augmented with a knowledge base, you know you have to make sure that these models are not hallucinating. And so you need to be able to do the right kind of responsible AI checks. So, you know, you start with a particular use case, and there are a lot of them. Then, you know, you can come to AWS, and then look at one of the many models we have and you know, we are going to have more models for other modalities as well. And then, you know, play around with the models. We have a playground kind of thing where you can test these models on some data and then you can probably, you will probably want to bring your own data, customize it to your own needs, do some of the testing to make sure that the model is giving the right output and then just deploy it. And you know, we have a lot of tools. >> Yeah. >> To make this easy for our customers. >> How should people think about large language models? Because do they think about it as something that they tap into with their IP or their data? Or is it a large language model that they apply into their system? Is the interface that way? What's the interaction look like? >> In many situations, you can use these models out of the box. But in typical, in most of the other situations, you will want to customize it with your own data or with your own expectations. So the typical use case would be, you know, these are models are exposed through APIs. So the typical use case would be, you know you're using these APIs a little bit for testing and getting familiar and then there will be an API that will allow you to train this model further on your data. So you use that AI, you know, make sure you augmented the knowledge base. So then you use those APIs to customize the model and then just deploy it in an application. You know, like Tom was mentioning, a number of companies that are using these models. So once you have it, then you know, you again, use an endpoint API and use it in an application. >> All right, I love the example. I want to ask Tom and Aidan, because like most my experience with Amazon Web Service in 2007, I would stand up in EC2, put my code on there, play around, if it didn't work out, I'd shut it down. Is that a similar dynamic we're going to see with the machine learning where developers just kind of log in and stand up infrastructure and play around and then have a cloud-like experience? >> So I can go first. So I mean, we obviously, with AWS working really closely with the SageMaker team, do fantastic platform there for ML training and inference. And you know, going back to your point earlier, you know, where the data is, is hugely important for companies. Many companies bringing their models to their data in AWS on-premise for them is hugely important. Having the models to be, you know, open sources, makes them explainable and transparent to the adopters of those models. So, you know, we are really excited to work with the SageMaker team over the coming year to bring companies to that platform and make the most of our models. >> Aidan, what's your take on developers? Do they just need to have a team in place, if we want to interface with you guys? Let's say, can they start learning? What do they got to do to set up? >> Yeah, so I think for Cohere, our product makes it much, much easier to people, for people to get started and start building, it solves a lot of the productionization problems. But of course with SageMaker, like Tom was saying, I think that lowers a barrier even further because it solves problems like data privacy. So I want to underline what Bratin was saying earlier around when you're fine tuning or when you're using these models, you don't want your data being incorporated into someone else's model. You don't want it being used for training elsewhere. And so the ability to solve for enterprises, that data privacy and that security guarantee has been hugely important for Cohere, and that's very easy to do through SageMaker. >> Yeah. >> But the barriers for using this technology are coming down super quickly. And so for developers, it's just becoming completely intuitive. I love this, there's this quote from Andrej Karpathy. He was saying like, "It really wasn't on my 2022 list of things to happen that English would become, you know, the most popular programming language." And so the barrier is coming down- >> Yeah. >> Super quickly and it's exciting to see. >> It's going to be awesome for all the companies here, and then we'll do more, we're probably going to see explosion of startups, already seeing that, the maps, ecosystem maps, the landscape maps are happening. So this is happening and I'm convinced it's not yesterday's chat bot, it's not yesterday's AI Ops. It's a whole another ballgame. So I have to ask you guys for the final question before we kick off the company's showcasing here. How do you guys gauge success of generative AI applications? Is there a lens to look through and say, okay, how do I see success? It could be just getting a win or is it a bigger picture? Bratin we'll start with you. How do you gauge success for generative AI? >> You know, ultimately it's about bringing business value to our customers. And making sure that those customers are able to reimagine their experiences by using generative AI. Now the way to get their ease, of course to deploy those models in a safe, effective manner, and ensuring that all of the robustness and the security guarantees and the privacy guarantees are all there. And we want to make sure that this transitions from something that's great demos to actual at scale products, which means making them work reliably all of the time not just some of the time. >> Tom, what's your gauge for success? >> Look, I think this, we're seeing a completely new form of ways to interact with data, to make data intelligent, and directly to bring in new revenue streams into business. So if businesses can use our models to leverage that and generate completely new revenue streams and ultimately bring incredible new value to their customers, then that's fantastic. And we hope we can power that revolution. >> Aidan, what's your take? >> Yeah, reiterating Bratin and Tom's point, I think that value in the enterprise and value in market is like a huge, you know, it's the goal that we're striving towards. I also think that, you know, the value to consumers and actual users and the transformation of the surface area of technology to create experiences like ChatGPT that are magical and it's the first time in human history we've been able to talk to something compelling that's not a human. I think that in itself is just extraordinary and so exciting to see. >> It really brings up a whole another category of markets. B2B, B2C, it's B2D, business to developer. Because I think this is kind of the big trend the consumers have to win. The developers coding the apps, it's a whole another sea change. Reminds me everyone use the "Moneyball" movie as example during the big data wave. Then you know, the value of data. There's a scene in "Moneyball" at the end, where Billy Beane's getting the offer from the Red Sox, then the owner says to the Red Sox, "If every team's not rebuilding their teams based upon your model, there'll be dinosaurs." I think that's the same with AI here. Every company will have to need to think about their business model and how they operate with AI. So it'll be a great run. >> Completely Agree >> It'll be a great run. >> Yeah. >> Aidan, Tom, thank you so much for sharing about your experiences at your companies and congratulations on your success and it's just the beginning. And Bratin, thanks for coming on representing AWS. And thank you, appreciate for what you do. Thank you. >> Thank you, John. Thank you, Aidan. >> Thank you John. >> Thanks so much. >> Okay, let's kick off season three, episode one. I'm John Furrier, your host. Thanks for watching. (light airy music)

Published Date : Mar 9 2023

SUMMARY :

of the AWS Startup Showcase, of the behind the ropes, and something that, you know, and build out, you know, Aidan, let's get into what you guys do. and it's trained on, you know, it helps me, you know, the ability to use tools, to use APIs? I call that the people and you know, making sure the first group of adopters We got the language coming in. Tom, on your side, what do you see the- and you know, everything into the models. they want to get into what you guys see and you know, you pick for our customers. then you know, you again, All right, I love the example. and make the most of our models. And so the ability to And so the barrier is coming down- and it's exciting to see. So I have to ask you guys and ensuring that all of the robustness and directly to bring in new and it's the first time in human history the consumers have to win. and it's just the beginning. I'm John Furrier, your host.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

TomPERSON

0.99+

Tom MasonPERSON

0.99+

AidanPERSON

0.99+

Red SoxORGANIZATION

0.99+

AWSORGANIZATION

0.99+

Andrej KarpathyPERSON

0.99+

Bratin SahaPERSON

0.99+

DecemberDATE

0.99+

2007DATE

0.99+

John FurrierPERSON

0.99+

Aidan GomezPERSON

0.99+

AmazonORGANIZATION

0.99+

Amazon Web ServicesORGANIZATION

0.99+

Billy BeanePERSON

0.99+

BratinPERSON

0.99+

MoneyballTITLE

0.99+

oneQUANTITY

0.99+

AdaPERSON

0.99+

last yearDATE

0.99+

twoQUANTITY

0.99+

EarthLOCATION

0.99+

yesterdayDATE

0.99+

Two practitionersQUANTITY

0.99+

Amazon Web ServicesORGANIZATION

0.99+

ChatGPTTITLE

0.99+

next yearDATE

0.99+

Code WhispererTITLE

0.99+

thirdQUANTITY

0.99+

this yearDATE

0.99+

App StoreTITLE

0.99+

first timeQUANTITY

0.98+

firstQUANTITY

0.98+

InferentiaTITLE

0.98+

EC2TITLE

0.98+

GPT-3TITLE

0.98+

bothQUANTITY

0.98+

LensaTITLE

0.98+

SageMakerORGANIZATION

0.98+

three thingsQUANTITY

0.97+

CohereORGANIZATION

0.96+

over a hundred different languagesQUANTITY

0.96+

EnglishOTHER

0.96+

one exampleQUANTITY

0.96+

about six months agoDATE

0.96+

OneQUANTITY

0.96+

first useQUANTITY

0.96+

SageMakerTITLE

0.96+

Bing ChatTITLE

0.95+

one pointQUANTITY

0.95+

TrainiumTITLE

0.95+

LexicaTITLE

0.94+

PlaygroundTITLE

0.94+

three great guestsQUANTITY

0.93+

HyperWriteTITLE

0.92+

SiliconANGLE News | Beyond the Buzz: A deep dive into the impact of AI


 

(upbeat music) >> Hello, everyone, welcome to theCUBE. I'm John Furrier, the host of theCUBE in Palo Alto, California. Also it's SiliconANGLE News. Got two great guests here to talk about AI, the impact of the future of the internet, the applications, the people. Amr Awadallah, the founder and CEO, Ed Alban is the CEO of Vectara, a new startup that emerged out of the original Cloudera, I would say, 'cause Amr's known, famous for the Cloudera founding, which was really the beginning of the big data movement. And now as AI goes mainstream, there's so much to talk about, so much to go on. And plus the new company is one of the, now what I call the wave, this next big wave, I call it the fifth wave in the industry. You know, you had PCs, you had the internet, you had mobile. This generative AI thing is real. And you're starting to see startups come out in droves. Amr obviously was founder of Cloudera, Big Data, and now Vectara. And Ed Albanese, you guys have a new company. Welcome to the show. >> Thank you. It's great to be here. >> So great to see you. Now the story is theCUBE started in the Cloudera office. Thanks to you, and your friendly entrepreneurship views that you have. We got to know each other over the years. But Cloudera had Hadoop, which was the beginning of what I call the big data wave, which then became what we now call data lakes, data oceans, and data infrastructure that's developed from that. It's almost interesting to look back 12 plus years, and see that what AI is doing now, right now, is opening up the eyes to the mainstream, and the application's almost mind blowing. You know, Sati Natel called it the Mosaic Moment, didn't say Netscape, he built Netscape (laughing) but called it the Mosaic Moment. You're seeing companies in startups, kind of the alpha geeks running here, because this is the new frontier, and there's real meat on the bone, in terms of like things to do. Why? Why is this happening now? What's is the confluence of the forces happening, that are making this happen? >> Yeah, I mean if you go back to the Cloudera days, with big data, and so on, that was more about data processing. Like how can we process data, so we can extract numbers from it, and do reporting, and maybe take some actions, like this is a fraud transaction, or this is not. And in the meanwhile, many of the researchers working in the neural network, and deep neural network space, were trying to focus on data understanding, like how can I understand the data, and learn from it, so I can take actual actions, based on the data directly, just like a human does. And we were only good at doing that at the level of somebody who was five years old, or seven years old, all the way until about 2013. And starting in 2013, which is only 10 years ago, a number of key innovations started taking place, and each one added on. It was no major innovation that just took place. It was a couple of really incremental ones, but they added on top of each other, in a very exponentially additive way, that led to, by the end of 2019, we now have models, deep neural network models, that can read and understand human text just like we do. Right? And they can reason about it, and argue with you, and explain it to you. And I think that's what is unlocking this whole new wave of innovation that we're seeing right now. So data understanding would be the essence of it. >> So it's not a Big Bang kind of theory, it's been evolving over time, and I think that the tipping point has been the advancements and other things. I mean look at cloud computing, and look how fast it just crept up on AWS. I mean AWS you back three, five years ago, I was talking to Swami yesterday, and their big news about AI, expanding the Hugging Face's relationship with AWS. And just three, five years ago, there wasn't a model training models out there. But as compute comes out, and you got more horsepower,, these large language models, these foundational models, they're flexible, they're not monolithic silos, they're interacting. There's a whole new, almost fusion of data happening. Do you see that? I mean is that part of this? >> Of course, of course. I mean this wave is building on all the previous waves. We wouldn't be at this point if we did not have hardware that can scale, in a very efficient way. We wouldn't be at this point, if we don't have data that we're collecting about everything we do, that we're able to process in this way. So this, this movement, this motion, this phase we're in, absolutely builds on the shoulders of all the previous phases. For some of the observers from the outside, when they see chatGPT for the first time, for them was like, "Oh my god, this just happened overnight." Like it didn't happen overnight. (laughing) GPT itself, like GPT3, which is what chatGPT is based on, was released a year ahead of chatGPT, and many of us were seeing the power it can provide, and what it can do. I don't know if Ed agrees with that. >> Yeah, Ed? >> I do. Although I would acknowledge that the possibilities now, because of what we've hit from a maturity standpoint, have just opened up in an incredible way, that just wasn't tenable even three years ago. And that's what makes it, it's true that it developed incrementally, in the same way that, you know, the possibilities of a mobile handheld device, you know, in 2006 were there, but when the iPhone came out, the possibilities just exploded. And that's the moment we're in. >> Well, I've had many conversations over the past couple months around this area with chatGPT. John Markoff told me the other day, that he calls it, "The five dollar toy," because it's not that big of a deal, in context to what AI's doing behind the scenes, and all the work that's done on ethics, that's happened over the years, but it has woken up the mainstream, so everyone immediately jumps to ethics. "Does it work? "It's not factual," And everyone who's inside the industry is like, "This is amazing." 'Cause you have two schools of thought there. One's like, people that think this is now the beginning of next gen, this is now we're here, this ain't your grandfather's chatbot, okay?" With NLP, it's got reasoning, it's got other things. >> I'm in that camp for sure. >> Yeah. Well I mean, everyone who knows what's going on is in that camp. And as the naysayers start to get through this, and they go, "Wow, it's not just plagiarizing homework, "it's helping me be better. "Like it could rewrite my memo, "bring the lead to the top." It's so the format of the user interface is interesting, but it's still a data-driven app. >> Absolutely. >> So where does it go from here? 'Cause I'm not even calling this the first ending. This is like pregame, in my opinion. What do you guys see this going, in terms of scratching the surface to what happens next? >> I mean, I'll start with, I just don't see how an application is going to look the same in the next three years. Who's going to want to input data manually, in a form field? Who is going to want, or expect, to have to put in some text in a search box, and then read through 15 different possibilities, and try to figure out which one of them actually most closely resembles the question they asked? You know, I don't see that happening. Who's going to start with an absolute blank sheet of paper, and expect no help? That is not how an application will work in the next three years, and it's going to fundamentally change how people interact and spend time with opening any element on their mobile phone, or on their computer, to get something done. >> Yes. I agree with that. Like every single application, over the next five years, will be rewritten, to fit within this model. So imagine an HR application, I don't want to name companies, but imagine an HR application, and you go into application and you clicking on buttons, because you want to take two weeks of vacation, and menus, and clicking here and there, reasons and managers, versus just telling the system, "I'm taking two weeks of vacation, going to Las Vegas," book it, done. >> Yeah. >> And the system just does it for you. If you weren't completing in your input, in your description, for what you want, then the system asks you back, "Did you mean this? "Did you mean that? "Were you trying to also do this as well?" >> Yeah. >> "What was the reason?" And that will fit it for you, and just do it for you. So I think the user interface that we have with apps, is going to change to be very similar to the user interface that we have with each other. And that's why all these apps will need to evolve. >> I know we don't have a lot of time, 'cause you guys are very busy, but I want to definitely have multiple segments with you guys, on this topic, because there's so much to talk about. There's a lot of parallels going on here. I was talking again with Swami who runs all the AI database at AWS, and I asked him, I go, "This feels a lot like the original AWS. "You don't have to provision a data center." A lot of this heavy lifting on the back end, is these large language models, with these foundational models. So the bottleneck in the past, was the energy, and cost to actually do it. Now you're seeing it being stood up faster. So there's definitely going to be a tsunami of apps. I would see that clearly. What is it? We don't know yet. But also people who are going to leverage the fact that I can get started building value. So I see a startup boom coming, and I see an application tsunami of refactoring things. >> Yes. >> So the replatforming is already kind of happening. >> Yes, >> OpenAI, chatGPT, whatever. So that's going to be a developer environment. I mean if Amazon turns this into an API, or a Microsoft, what you guys are doing. >> We're turning it into API as well. That's part of what we're doing as well, yes. >> This is why this is exciting. Amr, you've lived the big data dream, and and we used to talk, if you didn't have a big data problem, if you weren't full of data, you weren't really getting it. Now people have all the data, and they got to stand this up. >> Yeah. >> So the analogy is again, the mobile, I like the mobile movement, and using mobile as an analogy, most companies were not building for a mobile environment, right? They were just building for the web, and legacy way of doing apps. And as soon as the user expectations shifted, that my expectation now, I need to be able to do my job on this small screen, on the mobile device with a touchscreen. Everybody had to invest in re-architecting, and re-implementing every single app, to fit within that model, and that model of interaction. And we are seeing the exact same thing happen now. And one of the core things we're focused on at Vectara, is how to simplify that for organizations, because a lot of them are overwhelmed by large language models, and ML. >> They don't have the staff. >> Yeah, yeah, yeah. They're understaffed, they don't have the skills. >> But they got developers, they've got DevOps, right? >> Yes. >> So they have the DevSecOps going on. >> Exactly, yes. >> So our goal is to simplify it enough for them that they can start leveraging this technology effectively, within their applications. >> Ed, you're the COO of the company, obviously a startup. You guys are growing. You got great backup, and good team. You've also done a lot of business development, and technical business development in this area. If you look at the landscape right now, and I agree the apps are coming, every company I talk to, that has that jet chatGPT of, you know, epiphany, "Oh my God, look how cool this is. "Like magic." Like okay, it's code, settle down. >> Mm hmm. >> But everyone I talk to is using it in a very horizontal way. I talk to a very senior person, very tech alpha geek, very senior person in the industry, technically. they're using it for log data, they're using it for configuration of routers. And in other areas, they're using it for, every vertical has a use case. So this is horizontally scalable from a use case standpoint. When you hear horizontally scalable, first thing I chose in my mind is cloud, right? >> Mm hmm. >> So cloud, and scalability that way. And the data is very specialized. So now you have this vertical specialization, horizontally scalable, everyone will be refactoring. What do you see, and what are you seeing from customers, that you talk to, and prospects? >> Yeah, I mean put yourself in the shoes of an application developer, who is actually trying to make their application a bit more like magic. And to have that soon-to-be, honestly, expected experience. They've got to think about things like performance, and how efficiently that they can actually execute a query, or a question. They've got to think about cost. Generative isn't cheap, like the inference of it. And so you've got to be thoughtful about how and when you take advantage of it, you can't use it as a, you know, everything looks like a nail, and I've got a hammer, and I'm going to hit everything with it, because that will be wasteful. Developers also need to think about how they're going to take advantage of, but not lose their own data. So there has to be some controls around what they feed into the large language model, if anything. Like, should they fine tune a large language model with their own data? Can they keep it logically separated, but still take advantage of the powers of a large language model? And they've also got to take advantage, and be aware of the fact that when data is generated, that it is a different class of data. It might not fully be their own. >> Yeah. >> And it may not even be fully verified. And so when the logical cycle starts, of someone making a request, the relationship between that request, and the output, those things have to be stored safely, logically, and identified as such. >> Yeah. >> And taken advantage of in an ongoing fashion. So these are mega problems, each one of them independently, that, you know, you can think of it as middleware companies need to take advantage of, and think about, to help the next wave of application development be logical, sensible, and effective. It's not just calling some raw API on the cloud, like openAI, and then just, you know, you get your answer and you're done, because that is a very brute force approach. >> Well also I will point, first of all, I agree with your statement about the apps experience, that's going to be expected, form filling. Great point. The interesting about chatGPT. >> Sorry, it's not just form filling, it's any action you would like to take. >> Yeah. >> Instead of clicking, and dragging, and dropping, and doing it on a menu, or on a touch screen, you just say it, and it's and it happens perfectly. >> Yeah. It's a different interface. And that's why I love that UIUX experiences, that's the people falling out of their chair moment with chatGPT, right? But a lot of the things with chatGPT, if you feed it right, it works great. If you feed it wrong and it goes off the rails, it goes off the rails big. >> Yes, yes. >> So the the Bing catastrophes. >> Yeah. >> And that's an example of garbage in, garbage out, classic old school kind of comp-side phrase that we all use. >> Yep. >> Yes. >> This is about data in injection, right? It reminds me the old SQL days, if you had to, if you can sling some SQL, you were a magician, you know, to get the right answer, it's pretty much there. So you got to feed the AI. >> You do, Some people call this, the early word to describe this as prompt engineering. You know, old school, you know, search, or, you know, engagement with data would be, I'm going to, I have a question or I have a query. New school is, I have, I have to issue it a prompt, because I'm trying to get, you know, an action or a reaction, from the system. And the active engineering, there are a lot of different ways you could do it, all the way from, you know, raw, just I'm going to send you whatever I'm thinking. >> Yeah. >> And you get the unintended outcomes, to more constrained, where I'm going to just use my own data, and I'm going to constrain the initial inputs, the data I already know that's first party, and I trust, to, you know, hyper constrain, where the application is actually, it's looking for certain elements to respond to. >> It's interesting Amr, this is why I love this, because one we are in the media, we're recording this video now, we'll stream it. But we got all your linguistics, we're talking. >> Yes. >> This is data. >> Yep. >> So the data quality becomes now the new intellectual property, because, if you have that prompt source data, it makes data or content, in our case, the original content, intellectual property. >> Absolutely. >> Because that's the value. And that's where you see chatGPT fall down, is because they're trying to scroll the web, and people think it's search. It's not necessarily search, it's giving you something that you wanted. It is a lot of that, I remember in Cloudera, you said, "Ask the right questions." Remember that phrase you guys had, that slogan? >> Mm hmm. And that's prompt engineering. So that's exactly, that's the reinvention of "Ask the right question," is prompt engineering is, if you don't give these models the question in the right way, and very few people know how to frame it in the right way with the right context, then you will get garbage out. Right? That is the garbage in, garbage out. But if you specify the question correctly, and you provide with it the metadata that constrain what that question is going to be acted upon or answered upon, then you'll get much better answers. And that's exactly what we solved Vectara. >> Okay. So before we get into the last couple minutes we have left, I want to make sure we get a plug in for the opportunity, and the profile of Vectara, your new company. Can you guys both share with me what you think the current situation is? So for the folks who are now having those moments of, "Ah, AI's bullshit," or, "It's not real, it's a lot of stuff," from, "Oh my god, this is magic," to, "Okay, this is the future." >> Yes. >> What would you say to that person, if you're at a cocktail party, or in the elevator say, "Calm down, this is the first inning." How do you explain the dynamics going on right now, to someone who's either in the industry, but not in the ropes? How would you explain like, what this wave's about? How would you describe it, and how would you prepare them for how to change their life around this? >> Yeah, so I'll go first and then I'll let Ed go. Efficiency, efficiency is the description. So we figured that a way to be a lot more efficient, a way where you can write a lot more emails, create way more content, create way more presentations. Developers can develop 10 times faster than they normally would. And that is very similar to what happened during the Industrial Revolution. I always like to look at examples from the past, to read what will happen now, and what will happen in the future. So during the Industrial Revolution, it was about efficiency with our hands, right? So I had to make a piece of cloth, like this piece of cloth for this shirt I'm wearing. Our ancestors, they had to spend month taking the cotton, making it into threads, taking the threads, making them into pieces of cloth, and then cutting it. And now a machine makes it just like that, right? And the ancestors now turned from the people that do the thing, to manage the machines that do the thing. And I think the same thing is going to happen now, is our efficiency will be multiplied extremely, as human beings, and we'll be able to do a lot more. And many of us will be able to do things they couldn't do before. So another great example I always like to use is the example of Google Maps, and GPS. Very few of us knew how to drive a car from one location to another, and read a map, and get there correctly. But once that efficiency of an AI, by the way, behind these things is very, very complex AI, that figures out how to do that for us. All of us now became amazing navigators that can go from any point to any point. So that's kind of how I look at the future. >> And that's a great real example of impact. Ed, your take on how you would talk to a friend, or colleague, or anyone who asks like, "How do I make sense of the current situation? "Is it real? "What's in it for me, and what do I do?" I mean every company's rethinking their business right now, around this. What would you say to them? >> You know, I usually like to show, rather than describe. And so, you know, the other day I just got access, I've been using an application for a long time, called Notion, and it's super popular. There's like 30 or 40 million users. And the new version of Notion came out, which has AI embedded within it. And it's AI that allows you primarily to create. So if you could break down the world of AI into find and create, for a minute, just kind of logically separate those two things, find is certainly going to be massively impacted in our experiences as consumers on, you know, Google and Bing, and I can't believe I just said the word Bing in the same sentence as Google, but that's what's happening now (all laughing), because it's a good example of change. >> Yes. >> But also inside the business. But on the crate side, you know, Notion is a wiki product, where you try to, you know, note down things that you are thinking about, or you want to share and memorialize. But sometimes you do need help to get it down fast. And just in the first day of using this new product, like my experience has really fundamentally changed. And I think that anybody who would, you know, anybody say for example, that is using an existing app, I would show them, open up the app. Now imagine the possibility of getting a starting point right off the bat, in five seconds of, instead of having to whole cloth draft this thing, imagine getting a starting point then you can modify and edit, or just dispose of and retry again. And that's the potential for me. I can't imagine a scenario where, in a few years from now, I'm going to be satisfied if I don't have a little bit of help, in the same way that I don't manually spell check every email that I send. I automatically spell check it. I love when I'm getting type ahead support inside of Google, or anything. Doesn't mean I always take it, or when texting. >> That's efficiency too. I mean the cloud was about developers getting stuff up quick. >> Exactly. >> All that heavy lifting is there for you, so you don't have to do it. >> Right? >> And you get to the value faster. >> Exactly. I mean, if history taught us one thing, it's, you have to always embrace efficiency, and if you don't fast enough, you will fall behind. Again, looking at the industrial revolution, the companies that embraced the industrial revolution, they became the leaders in the world, and the ones who did not, they all like. >> Well the AI thing that we got to watch out for, is watching how it goes off the rails. If it doesn't have the right prompt engineering, or data architecture, infrastructure. >> Yes. >> It's a big part. So this comes back down to your startup, real quick, I know we got a couple minutes left. Talk about the company, the motivation, and we'll do a deeper dive on on the company. But what's the motivation? What are you targeting for the market, business model? The tech, let's go. >> Actually, I would like Ed to go first. Go ahead. >> Sure, I mean, we're a developer-first, API-first platform. So the product is oriented around allowing developers who may not be superstars, in being able to either leverage, or choose, or select their own large language models for appropriate use cases. But they that want to be able to instantly add the power of large language models into their application set. We started with search, because we think it's going to be one of the first places that people try to take advantage of large language models, to help find information within an application context. And we've built our own large language models, focused on making it very efficient, and elegant, to find information more quickly. So what a developer can do is, within minutes, go up, register for an account, and get access to a set of APIs, that allow them to send data, to be converted into a format that's easy to understand for large language models, vectors. And then secondarily, they can issue queries, ask questions. And they can ask them very, the questions that can be asked, are very natural language questions. So we're talking about long form sentences, you know, drill down types of questions, and they can get answers that either come back in depending upon the form factor of the user interface, in list form, or summarized form, where summarized equals the opportunity to kind of see a condensed, singular answer. >> All right. I have a. >> Oh okay, go ahead, you go. >> I was just going to say, I'm going to be a customer for you, because I want, my dream was to have a hologram of theCUBE host, me and Dave, and have questions be generated in the metaverse. So you know. (all laughing) >> There'll be no longer any guests here. They'll all be talking to you guys. >> Give a couple bullets, I'll spit out 10 good questions. Publish a story. This brings the automation, I'm sorry to interrupt you. >> No, no. No, no, I was just going to follow on on the same. So another way to look at exactly what Ed described is, we want to offer you chatGPT for your own data, right? So imagine taking all of the recordings of all of the interviews you have done, and having all of the content of that being ingested by a system, where you can now have a conversation with your own data and say, "Oh, last time when I met Amr, "which video games did we talk about? "Which movie or book did we use as an analogy "for how we should be embracing data science, "and big data, which is moneyball," I know you use moneyball all the time. And you start having that conversation. So, now the data doesn't become a passive asset that you just have in your organization. No. It's an active participant that's sitting with you, on the table, helping you make decisions. >> One of my favorite things to do with customers, is to go to their site or application, and show them me using it. So for example, one of the customers I talked to was one of the biggest property management companies in the world, that lets people go and rent homes, and houses, and things like that. And you know, I went and I showed them me searching through reviews, looking for information, and trying different words, and trying to find out like, you know, is this place quiet? Is it comfortable? And then I put all the same data into our platform, and I showed them the world of difference you can have when you start asking that question wholeheartedly, and getting real information that doesn't have anything to do with the words you asked, but is really focused on the meaning. You know, when I asked like, "Is it quiet?" You know, answers would come back like, "The wind whispered through the trees peacefully," and you know, it's like nothing to do with quiet in the literal word sense, but in the meaning sense, everything to do with it. And that that was magical even for them, to see that. >> Well you guys are the front end of this big wave. Congratulations on the startup, Amr. I know you guys got great pedigree in big data, and you've got a great team, and congratulations. Vectara is the name of the company, check 'em out. Again, the startup boom is coming. This will be one of the major waves, generative AI is here. I think we'll look back, and it will be pointed out as a major inflection point in the industry. >> Absolutely. >> There's not a lot of hype behind that. People are are seeing it, experts are. So it's going to be fun, thanks for watching. >> Thanks John. (soft music)

Published Date : Feb 23 2023

SUMMARY :

I call it the fifth wave in the industry. It's great to be here. and the application's almost mind blowing. And in the meanwhile, and you got more horsepower,, of all the previous phases. in the same way that, you know, and all the work that's done on ethics, "bring the lead to the top." in terms of scratching the surface and it's going to fundamentally change and you go into application And the system just does it for you. is going to change to be very So the bottleneck in the past, So the replatforming is So that's going to be a That's part of what and they got to stand this up. And one of the core things don't have the skills. So our goal is to simplify it and I agree the apps are coming, I talk to a very senior And the data is very specialized. and be aware of the fact that request, and the output, some raw API on the cloud, about the apps experience, it's any action you would like to take. you just say it, and it's But a lot of the things with chatGPT, comp-side phrase that we all use. It reminds me the old all the way from, you know, raw, and I'm going to constrain But we got all your So the data quality And that's where you That is the garbage in, garbage out. So for the folks who are and how would you prepare them that do the thing, to manage the current situation? And the new version of Notion came out, But on the crate side, you I mean the cloud was about developers so you don't have to do it. and the ones who did not, they all like. If it doesn't have the So this comes back down to Actually, I would like Ed to go first. factor of the user interface, I have a. generated in the metaverse. They'll all be talking to you guys. This brings the automation, of all of the interviews you have done, one of the customers I talked to Vectara is the name of the So it's going to be fun, Thanks John.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
John MarkoffPERSON

0.99+

2013DATE

0.99+

AWSORGANIZATION

0.99+

Ed AlbanPERSON

0.99+

AmazonORGANIZATION

0.99+

30QUANTITY

0.99+

10 timesQUANTITY

0.99+

2006DATE

0.99+

John FurrierPERSON

0.99+

two weeksQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

DavePERSON

0.99+

Ed AlbanesePERSON

0.99+

JohnPERSON

0.99+

five secondsQUANTITY

0.99+

Las VegasLOCATION

0.99+

EdPERSON

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

10 good questionsQUANTITY

0.99+

SwamiPERSON

0.99+

15 different possibilitiesQUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

VectaraORGANIZATION

0.99+

Amr AwadallahPERSON

0.99+

GoogleORGANIZATION

0.99+

ClouderaORGANIZATION

0.99+

first timeQUANTITY

0.99+

bothQUANTITY

0.99+

end of 2019DATE

0.99+

yesterdayDATE

0.98+

Big DataORGANIZATION

0.98+

40 million usersQUANTITY

0.98+

two thingsQUANTITY

0.98+

two great guestsQUANTITY

0.98+

12 plus yearsQUANTITY

0.98+

oneQUANTITY

0.98+

five dollarQUANTITY

0.98+

NetscapeORGANIZATION

0.98+

five years agoDATE

0.98+

SQLTITLE

0.98+

first inningQUANTITY

0.98+

AmrPERSON

0.97+

two schoolsQUANTITY

0.97+

firstQUANTITY

0.97+

10 years agoDATE

0.97+

OneQUANTITY

0.96+

first dayQUANTITY

0.96+

threeDATE

0.96+

chatGPTTITLE

0.96+

first placesQUANTITY

0.95+

BingORGANIZATION

0.95+

NotionTITLE

0.95+

first thingQUANTITY

0.94+

theCUBEORGANIZATION

0.94+

Beyond the BuzzTITLE

0.94+

Sati NatelPERSON

0.94+

Industrial RevolutionEVENT

0.93+

one locationQUANTITY

0.93+

three years agoDATE

0.93+

single applicationQUANTITY

0.92+

one thingQUANTITY

0.91+

first platformQUANTITY

0.91+

five years oldQUANTITY

0.91+

HPE Compute Engineered for your Hybrid World-Containers to Deploy Higher Performance AI Applications


 

>> Hello, everyone. Welcome to theCUBE's coverage of "Compute Engineered for your Hybrid World," sponsored by HPE and Intel. Today we're going to discuss the new 4th Gen Intel Xeon Scalable process impact on containers and AI. I'm John Furrier, your host of theCUBE, and I'm joined by three experts to guide us along. We have Jordan Plum, Senior Director of AI and products for Intel, Bradley Sweeney, Big Data and AI Product Manager, Mainstream Compute Workloads at HPE, and Gary Wang, Containers Product Manager, Mainstream Compute Workloads at HPE. Welcome to the program gentlemen. Thanks for coming on. >> Thanks John. >> Thank you for having us. >> This segment is going to be talking about containers to deploy high performance AI applications. This is a really important area right now. We're seeing a lot more AI deployed, kind of next gen AI coming. How is HPE supporting and testing and delivering containers for AI? >> Yeah, so what we're doing from HPE's perspective is we're taking these container platforms, combining with the next generation Intel servers to fully validate the deployment of the containers. So what we're doing is we're publishing the reference architectures. We're creating these automation scripts, and also creating a monitoring and security strategy for these container platforms. So for customers to easily deploy these Kubernete clusters and to easily secure their community environments. >> Gary, give us a quick overview of the new Proliant DL 360 and 380 Gen 11 servers. >> Yeah, the load, for example, for container platforms what we're seeing mostly is the DL 360 and DL 380 for matching really well for container use cases, especially for AI. The DL 360, with the expended now the DDR five memory and the new PCI five slots really, really helps the speeds to deploy these container environments and also to grow the data that's required to store it within these container environments. So for example, like the DL 380 if you want to deploy a data fabric whether it's the Ezmeral data fabric or different vendors data fabric software you can do so with the DL 360 and DL 380 with the new Intel Xeon processors. >> How does HP help customers with Kubernetes deployments? >> Yeah, like I mentioned earlier so we do a full validation to ensure the container deployment is easy and it's fast. So we create these automation scripts and then we publish them on GitHub for customers to use and to reference. So they can take that and then they can adjust as they need to. But following the deployment guide that we provide will make the, deploy the community deployment much easier, much faster. So we also have demo videos that's also published and then for reference architecture document that's published to guide the customer step by step through the process. >> Great stuff. Thanks everyone. We'll be going to take a quick break here and come back. We're going to do a deep dive on the fourth gen Intel Xeon scalable process and the impact on AI and containers. You're watching theCUBE, the leader in tech coverage. We'll be right back. (intense music) Hey, welcome back to theCUBE's continuing coverage of "Compute Engineered for your Hybrid World" series. I'm John Furrier with the Cube, joined by Jordan Plum with Intel, Bradley Sweeney with HPE, and Gary Wang from HPE. We're going to do a drill down and do a deeper dive into the AI containers with the fourth gen Intel Xeon scalable processors we appreciate your time coming in. Jordan, great to see you. I got to ask you right out of the gate, what is the view right now in terms of Intel's approach to containers for AI? It's hot right now. AI is booming. You're seeing kind of next gen use cases. What's your approach to containers relative to AI? >> Thanks John and thanks for the question. With the fourth generation Xeon scalable processor launch we have tested and validated this platform with over 400 deep learning and machine learning models and workloads. These models and workloads are publicly available in the framework repositories and they can be downloaded by anybody. Yet customers are not only looking for model validation they're looking for model performance and performance is usually a combination of a given throughput at a target latency. And to do that in the data center all the way to the factory floor, this is not always delivered from these generic proxy models that are publicly available in the industry. >> You know, performance is critical. We're seeing more and more developers saying, "Hey, I want to go faster on a better platform, faster all the time." No one wants to run slower stuff, that's for sure. Can you talk more about the different container approaches Intel is pursuing? >> Sure. First our approach is to meet the customers where they are and help them build and deploy AI everywhere. Some customers just want to focus on deployment they have more mature use cases, and they just want to download a model that works that's high performing and run. Others are really focused more on development and innovation. They want to build and train models from scratch or at least highly customize them. Therefore we have several container approaches to accelerate the customer's time to solution and help them meet their business SLA along their AI journey. >> So what developers can just download these containers and just go? >> Yeah, so let me talk about the different kinds of containers we have. We start off with pre-trained containers. We'll have about 55 or more of these containers where the model is actually pre-trained, highly performant, some are optimized for low latency, others are optimized for throughput and the customers can just download these from Intel's website or from HPE and they can just go into production right away. >> That's great. A lot of choice. People can just get jump right in. That's awesome. Good, good choice for developers. They want more faster velocity. We know that. What else does Intel provide? Can you share some thoughts there? What you guys else provide developers? >> Yeah, so we talked about how hey some are just focused on deployment and they maybe they have more mature use cases. Other customers really want to do some more customization or optimization. So we have another class of containers called development containers and this includes not just the kind of a model itself but it's integrated with the framework and some other capabilities and techniques like model serving. So now that customers can download just not only the model but an entire AI stack and they can be sort of do some optimizations but they can also be sure that Intel has optimized that specific stack on top of the HPE servers. >> So it sounds simple to just get started using the DL model and containers. Is that it? Where, what else are customers looking for? What can you take a little bit deeper? >> Yeah, not quite. Well, while the customer customer's ability to reproduce performance on their site that HPE and Intel have measured in our own labs is fantastic. That's not actually what the customer is only trying to do. They're actually building very complex end-to-end AI pipelines, okay? And a lot of data scientists are really good at building models, really good at building algorithms but they're less experienced in building end-to-end pipelines especially 'cause the number of use cases end-to-end are kind of infinite. So we are building end-to-end pipeline containers for use cases like media analytics and sentiment analysis, anomaly detection. Therefore a customer can download these end-to-end containers, right? They can either use them as a reference, just like, see how we built them and maybe they have some changes in their own data center where they like to use different tools, but they can just see, "Okay this is what's possible with an end-to-end container on top of an HPE server." And other cases they could actually, if the overlap in the use case is pretty close, they can just take our containers and go directly into production. So this provides developers, all three types of containers that I discussed provide developers an easy starting point to get them up and running quickly and make them productive. And that's a really important point. You talked a lot about performance, John. But really when we talk to data scientists what they really want to be is productive, right? They're under pressure to change the business to transform the business and containers is a great way to get started fast >> People take product productivity, you know, seriously now with developer productivity is the hottest trend obviously they want performance. Totally nailed it. Where can customers get these containers? >> Right. Great, thank you John. Our pre-trained model containers, our developmental containers, and our end-to-end containers are available at intel.com at the developer catalog. But we'd also post these on many third party marketplaces that other people like to pull containers from. And they're frequently updated. >> Love the developer productivity angle. Great stuff. We've still got more to discuss with Jordan, Bradley, and Gary. We're going to take a short break here. You're watching theCUBE, the leader in high tech coverage. We'll be right back. (intense music) Welcome back to theCUBE's coverage of "Compute Engineered for your Hybrid World." I'm John Furrier with theCUBE and we'll be discussing and wrapping up our discussion on containers to deploy high performance AI. This is a great segment on really a lot of demand for AI and the applications involved. And we got the fourth gen Intel Xeon scalable processors with HP Gen 11 servers. Bradley, what is the top AI use case that Gen 11 HP Proliant servers are optimized for? >> Yeah, thanks John. I would have to say intelligent video analytics. It's a use case that's supplied across industries and verticals. For example, a smart hospital solution that we conducted with Nvidia and Artisight in our previous customer success we've seen 5% more hospital procedures, a 16 times return on investment using operating room coordination. With that IVA, so with the Gen 11 DL 380 that we provide using the the Intel four gen Xeon processors it can really support workloads at scale. Whether that is a smart hospital solution whether that's manufacturing at the edge security camera integration, we can do it all with Intel. >> You know what's really great about AI right now you're starting to see people starting to figure out kind of where the value is does a lot of the heavy lifting on setting things up to make humans more productive. This has been clearly now kind of going neck level. You're seeing it all in the media now and all these new tools coming out. How does HPE make it easier for customers to manage their AI workloads? I imagine there's going to be a surge in demand. How are you guys making it easier to manage their AI workloads? >> Well, I would say the biggest way we do this is through GreenLake, which is our IT as a service model. So customers deploying AI workloads can get fully-managed services to optimize not only their operations but also their spending and the cost that they're putting towards it. In addition to that we have our Gen 11 reliance servers equipped with iLO 6 technology. What this does is allows customers to securely manage their server complete environment from anywhere in the world remotely. >> Any last thoughts or message on the overall fourth gen intel Xeon based Proliant Gen 11 servers? How they will improve workload performance? >> You know, with this generation, obviously the performance is only getting ramped up as the needs and requirements for customers grow. We partner with Intel to support that. >> Jordan, gimme the last word on the container's effect on AI applications. Your thoughts as we close out. >> Yeah, great. I think it's important to remember that containers themselves don't deliver performance, right? The AI stack is a very complex set of software that's compiled together and what we're doing together is to make it easier for customers to get access to that software, to make sure it all works well together and that it can be easily installed and run on sort of a cloud native infrastructure that's hosted by HPE Proliant servers. Hence the title of this talk. How to use Containers to Deploy High Performance AI Applications. Thank you. >> Gentlemen. Thank you for your time on the Compute Engineered for your Hybrid World sponsored by HPE and Intel. Again, I love this segment for AI applications Containers to Deploy Higher Performance. This is a great topic. Thanks for your time. >> Thank you. >> Thanks John. >> Okay, I'm John. We'll be back with more coverage. See you soon. (soft music)

Published Date : Dec 27 2022

SUMMARY :

Welcome to the program gentlemen. and delivering containers for AI? and to easily secure their of the new Proliant DL 360 and also to grow the data that's required and then they can adjust as they need to. and the impact on AI and containers. And to do that in the about the different container and they just want to download a model and they can just go into A lot of choice. and they can be sort of So it sounds simple to just to use different tools, is the hottest trend to pull containers from. on containers to deploy we can do it all with Intel. for customers to manage and the cost that they're obviously the performance on the container's effect How to use Containers on the Compute Engineered We'll be back with more coverage.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jordan PlumPERSON

0.99+

GaryPERSON

0.99+

JohnPERSON

0.99+

NvidiaORGANIZATION

0.99+

Gary WangPERSON

0.99+

BradleyPERSON

0.99+

HPEORGANIZATION

0.99+

John FurrierPERSON

0.99+

16 timesQUANTITY

0.99+

5%QUANTITY

0.99+

JordanPERSON

0.99+

ArtisightORGANIZATION

0.99+

DL 360COMMERCIAL_ITEM

0.99+

IntelORGANIZATION

0.99+

three expertsQUANTITY

0.99+

DL 380COMMERCIAL_ITEM

0.99+

HPORGANIZATION

0.99+

Compute Engineered for your Hybrid WorldTITLE

0.98+

FirstQUANTITY

0.98+

Bradley SweeneyPERSON

0.98+

over 400 deep learningQUANTITY

0.97+

intelORGANIZATION

0.97+

theCUBEORGANIZATION

0.96+

Gen 11 DL 380COMMERCIAL_ITEM

0.95+

XeonCOMMERCIAL_ITEM

0.95+

TodayDATE

0.95+

fourth genQUANTITY

0.92+

GitHubORGANIZATION

0.91+

380 Gen 11COMMERCIAL_ITEM

0.9+

about 55 or moreQUANTITY

0.89+

four gen XeonCOMMERCIAL_ITEM

0.88+

Big DataORGANIZATION

0.88+

Gen 11COMMERCIAL_ITEM

0.87+

five slotsQUANTITY

0.86+

ProliantCOMMERCIAL_ITEM

0.84+

GreenLakeORGANIZATION

0.75+

Compute Engineered for your HybridTITLE

0.7+

EzmeralORGANIZATION

0.68+

Evan Kaplan, InfluxData | AWS re:invent 2022


 

>>Hey everyone. Welcome to Las Vegas. The Cube is here, live at the Venetian Expo Center for AWS Reinvent 2022. Amazing attendance. This is day one of our coverage. Lisa Martin here with Day Ante. David is great to see so many people back. We're gonna be talk, we've been having great conversations already. We have a wall to wall coverage for the next three and a half days. When we talk to companies, customers, every company has to be a data company. And one of the things I think we learned in the pandemic is that access to real time data and real time analytics, no longer a nice to have that is a differentiator and a competitive all >>About data. I mean, you know, I love the topic and it's, it's got so many dimensions and such texture, can't get enough of data. >>I know we have a great guest joining us. One of our alumni is back, Evan Kaplan, the CEO of Influx Data. Evan, thank you so much for joining us. Welcome back to the Cube. >>Thanks for having me. It's great to be here. So here >>We are, day one. I was telling you before we went live, we're nice and fresh hosts. Talk to us about what's new at Influxed since the last time we saw you at Reinvent. >>That's great. So first of all, we should acknowledge what's going on here. This is pretty exciting. Yeah, that does really feel like, I know there was a show last year, but this feels like the first post Covid shows a lot of energy, a lot of attention despite a difficult economy. In terms of, you know, you guys were commenting in the lead into Big data. I think, you know, if we were to talk about Big Data five, six years ago, what would we be talking about? We'd been talking about Hadoop, we were talking about Cloudera, we were talking about Hortonworks, we were talking about Big Data Lakes, data stores. I think what's happened is, is this this interesting dynamic of, let's call it if you will, the, the secularization of data in which it breaks into different fields, different, almost a taxonomy. You've got this set of search data, you've got this observability data, you've got graph data, you've got document data and what you're seeing in the market and now you have time series data. >>And what you're seeing in the market is this incredible capability by developers as well and mostly open source dynamic driving this, this incredible capability of developers to assemble data platforms that aren't unicellular, that aren't just built on Hado or Oracle or Postgres or MySQL, but in fact represent different data types. So for us, what we care about his time series, we care about anything that happens in time, where time can be the primary measurement, which if you think about it, is a huge proportion of real data. Cuz when you think about what drives ai, you think about what happened, what happened, what happened, what happened, what's going to happen. That's the functional thing. But what happened is always defined by a period, a measurement, a time. And so what's new for us is we've developed this new open source engine called IOx. And so it's basically a refresh of the whole database, a kilo database that uses Apache Arrow, par K and data fusion and turns it into a super powerful real time analytics platform. It was already pretty real time before, but it's increasingly now and it adds SQL capability and infinite cardinality. And so it handles bigger data sets, but importantly, not just bigger but faster, faster data. So that's primarily what we're talking about to show. >>So how does that affect where you can play in the marketplace? Is it, I mean, how does it affect your total available market? Your great question. Your, your customer opportunities. >>I think it's, it's really an interesting market in that you've got all of these different approaches to database. Whether you take data warehouses from Snowflake or, or arguably data bricks also. And you take these individual database companies like Mongo Influx, Neo Forge, elastic, and people like that. I think the commonality you see across the volume is, is many of 'em, if not all of them, are based on some sort of open source dynamic. So I think that is an in an untractable trend that will continue for on. But in terms of the broader, the broader database market, our total expand, total available tam, lots of these things are coming together in interesting ways. And so the, the, the wave that will ride that we wanna ride, because it's all big data and it's all increasingly fast data and it's all machine learning and AI is really around that measurement issue. That instrumentation the idea that if you're gonna build any sophisticated system, it starts with instrumentation and the journey is defined by instrumentation. So we view ourselves as that instrumentation tooling for understanding complex systems. And how, >>I have to follow quick follow up. Why did you say arguably data bricks? I mean open source ethos? >>Well, I was saying arguably data bricks cuz Spark, I mean it's a great company and it's based on Spark, but there's quite a gap between Spark and what Data Bricks is today. And in some ways data bricks from the outside looking in looks a lot like Snowflake to me looks a lot like a really sophisticated data warehouse with a lot of post-processing capabilities >>And, and with an open source less >>Than a >>Core database. Yeah. Right, right, right. Yeah, I totally agree. Okay, thank you for that >>Part that that was not arguably like they're, they're not a good company or >>No, no. They got great momentum and I'm just curious. Absolutely. You know, so, >>So talk a little bit about IOx and, and what it is enabling you guys to achieve from a competitive advantage perspective. The key differentiators give us that scoop. >>So if you think about, so our old storage engine was called tsm, also open sourced, right? And IOx is open sourced and the old storage engine was really built around this time series measurements, particularly metrics, lots of metrics and handling those at scale and making it super easy for developers to use. But, but our old data engine only supported either a custom graphical UI that you'd build yourself on top of it or a dashboarding tool like Grafana or Chronograph or things like that. With IOCs. Two or three interventions were important. One is we now support, we'll support things like Tableau, Microsoft, bi, and so you're taking that same data that was available for instrumentation and now you're using it for business intelligence also. So that became super important and it kind of answers your question about the expanded market expands the market. The second thing is, when you're dealing with time series data, you're dealing with this concept of cardinality, which is, and I don't know if you're familiar with it, but the idea that that it's a multiplication of measurements in a table. And so the more measurements you want over the more series you have, you have this really expanding exponential set that can choke a database off. And the way we've designed IIS to handle what we call infinite cardinality, where you don't even have to think about that design point of view. And then lastly, it's just query performance is dramatically better. And so it's pretty exciting. >>So the unlimited cardinality, basically you could identify relationships between data and different databases. Is that right? Between >>The same database but different measurements, different tables, yeah. Yeah. Right. Yeah, yeah. So you can handle, so you could say, I wanna look at the way, the way the noise levels are performed in this room according to 400 different locations on 25 different days, over seven months of the year. And that each one is a measurement. Each one adds to cardinality. And you can say, I wanna search on Tuesdays in December, what the noise level is at 2:21 PM and you get a very quick response. That kind of instrumentation is critical to smarter systems. How are >>You able to process that data at at, in a performance level that doesn't bring the database to its knees? What's the secret sauce behind that? >>It's AUM database. It's built on Parque and Apache Arrow. But it's, but to say it's nice to say without a much longer conversation, it's an architecture that's really built for pulling that kind of data. If you know the data is time series and you're looking for a time measurement, you already have the ability to optimize pretty dramatically. >>So it's, it's that purpose built aspect of it. It's the >>Purpose built aspect. You couldn't take Postgres and do the same >>Thing. Right? Because a lot of vendors say, oh yeah, we have time series now. Yeah. Right. So yeah. Yeah. Right. >>And they >>Do. Yeah. But >>It's not, it's not, the founding of the company came because Paul Dicks was working on Wall Street building time series databases on H base, on MyQ, on other platforms and realize every time we do it, we have to rewrite the code. We build a bunch of application logic to handle all these. We're talking about, we have customers that are adding hundreds of millions to billions of points a second. So you're talking about an ingest level. You know, you think about all those data points, you're talking about ingest level that just doesn't, you know, it just databases aren't designed for that. Right? And so it's not just us, our competitors also build good time series databases. And so the category is really emergent. Yeah, >>Sure. Talk about a favorite customer story they think really articulates the value of what Influx is doing, especially with IOx. >>Yeah, sure. And I love this, I love this story because you know, Tesla may not be in favor because of the latest Elon Musker aids, but, but, but so we've had about a four year relationship with Tesla where they built their power wall technology around recording that, seeing your device, seeing the stuff, seeing the charging on your car. It's all captured in influx databases that are reporting from power walls and mega power packs all over the world. And they report to a central place at, at, at Tesla's headquarters and it reports out to your phone and so you can see it. And what's really cool about this to me is I've got two Tesla cars and I've got a Tesla solar roof tiles. So I watch this date all the time. So it's a great customer story. And actually if you go on our website, you can see I did an hour interview with the engineer that designed the system cuz the system is super impressive and I just think it's really cool. Plus it's, you know, it's all the good green stuff that we really appreciate supporting sustainability, right? Yeah. >>Right, right. Talk about from a, what's in it for me as a customer, what you guys have done, the change to IOCs, what, what are some of the key features of it and the key values in it for customers like Tesla, like other industry customers as well? >>Well, so it's relatively new. It just arrived in our cloud product. So Tesla's not using it today. We have a first set of customers starting to use it. We, the, it's in open source. So it's a very popular project in the open source world. But the key issues are, are really the stuff that we've kind of covered here, which is that a broad SQL environment. So accessing all those SQL developers, the same people who code against Snowflake's data warehouse or data bricks or Postgres, can now can code that data against influx, open up the BI market. It's the cardinality, it's the performance. It's really an architecture. It's the next gen. We've been doing this for six years, it's the next generation of everything. We've seen how you make time series be super performing. And that's only relevant because more and more things are becoming real time as we develop smarter and smarter systems. The journey is pretty clear. You instrument the system, you, you let it run, you watch for anomalies, you correct those anomalies, you re instrument the system. You do that 4 billion times, you have a self-driving car, you do that 55 times, you have a better podcast that is, that is handling its audio better, right? So everything is on that journey of getting smarter and smarter. So >>You guys, you guys the big committers to IOCs, right? Yes. And how, talk about how you support the, develop the surrounding developer community, how you get that flywheel effect going >>First. I mean it's actually actually a really kind of, let's call it, it's more art than science. Yeah. First of all, you you, you come up with an architecture that really resonates for developers. And Paul Ds our founder, really is a developer's developer. And so he started talking about this in the community about an architecture that uses Apache Arrow Parque, which is, you know, the standard now becoming for file formats that uses Apache Arrow for directing queries and things like that and uses data fusion and said what this thing needs is a Columbia database that sits behind all of this stuff and integrates it. And he started talking about it two years ago and then he started publishing in IOCs that commits in the, in GitHub commits. And slowly, but over time in Hacker News and other, and other people go, oh yeah, this is fundamentally right. >>It addresses the problems that people have with things like click cows or plain databases or Coast and they go, okay, this is the right architecture at the right time. Not different than original influx, not different than what Elastic hit on, not different than what Confluent with Kafka hit on and their time is you build an audience of people who are committed to understanding this kind of stuff and they become committers and they become the core. Yeah. And you build out from it. And so super. And so we chose to have an MIT open source license. Yeah. It's not some secondary license competitors can use it and, and competitors can use it against us. Yeah. >>One of the things I know that Influx data talks about is the time to awesome, which I love that, but what does that mean? What is the time to Awesome. Yeah. For developer, >>It comes from that original story where, where Paul would have to write six months of application logic and stuff to build a time series based applications. And so Paul's notion was, and this was based on the original Mongo, which was very successful because it was very easy to use relative to most databases. So Paul developed this commitment, this idea that I quickly joined on, which was, hey, it should be relatively quickly for a developer to build something of import to solve a problem, it should be able to happen very quickly. So it's got a schemaless background so you don't have to know the schema beforehand. It does some things that make it really easy to feel powerful as a developer quickly. And if you think about that journey, if you feel powerful with a tool quickly, then you'll go deeper and deeper and deeper and pretty soon you're taking that tool with you wherever you go, it becomes the tool of choice as you go to that next job or you go to that next application. And so that's a fundamental way we think about it. To be honest with you, we haven't always delivered perfectly on that. It's generally in our dna. So we do pretty well, but I always feel like we can do better. >>So if you were to put a bumper sticker on one of your Teslas about influx data, what would it >>Say? By the way, I'm not rich. It just happened to be that we have two Teslas and we have for a while, we just committed to that. The, the, so ask the question again. Sorry. >>Bumper sticker on influx data. What would it say? How, how would I >>Understand it be time to Awesome. It would be that that phrase his time to Awesome. Right. >>Love that. >>Yeah, I'd love it. >>Excellent time to. Awesome. Evan, thank you so much for joining David, the >>Program. It's really fun. Great thing >>On Evan. Great to, you're on. Haven't Well, great to have you back talking about what you guys are doing and helping organizations like Tesla and others really transform their businesses, which is all about business transformation these days. We appreciate your insights. >>That's great. Thank >>You for our guest and Dave Ante. I'm Lisa Martin, you're watching The Cube, the leader in emerging and enterprise tech coverage. We'll be right back with our next guest.

Published Date : Nov 29 2022

SUMMARY :

And one of the things I think we learned in the pandemic is that access to real time data and real time analytics, I mean, you know, I love the topic and it's, it's got so many dimensions and such Evan, thank you so much for joining us. It's great to be here. Influxed since the last time we saw you at Reinvent. terms of, you know, you guys were commenting in the lead into Big data. And so it's basically a refresh of the whole database, a kilo database that uses So how does that affect where you can play in the marketplace? And you take these individual database companies like Mongo Influx, Why did you say arguably data bricks? And in some ways data bricks from the outside looking in looks a lot like Snowflake to me looks a lot Okay, thank you for that You know, so, So talk a little bit about IOx and, and what it is enabling you guys to achieve from a And the way we've designed IIS to handle what we call infinite cardinality, where you don't even have to So the unlimited cardinality, basically you could identify relationships between data And you can say, time measurement, you already have the ability to optimize pretty dramatically. So it's, it's that purpose built aspect of it. You couldn't take Postgres and do the same So yeah. And so the category is really emergent. especially with IOx. And I love this, I love this story because you know, what you guys have done, the change to IOCs, what, what are some of the key features of it and the key values in it for customers you have a self-driving car, you do that 55 times, you have a better podcast that And how, talk about how you support architecture that uses Apache Arrow Parque, which is, you know, the standard now becoming for file And you build out from it. One of the things I know that Influx data talks about is the time to awesome, which I love that, So it's got a schemaless background so you don't have to know the schema beforehand. It just happened to be that we have two Teslas and we have for a while, What would it say? Understand it be time to Awesome. Evan, thank you so much for joining David, the Great thing Haven't Well, great to have you back talking about what you guys are doing and helping organizations like Tesla and others really That's great. You for our guest and Dave Ante.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Lisa MartinPERSON

0.99+

Evan KaplanPERSON

0.99+

six monthsQUANTITY

0.99+

EvanPERSON

0.99+

TeslaORGANIZATION

0.99+

Influx DataORGANIZATION

0.99+

PaulPERSON

0.99+

55 timesQUANTITY

0.99+

twoQUANTITY

0.99+

2:21 PMDATE

0.99+

Las VegasLOCATION

0.99+

Dave AntePERSON

0.99+

Paul DicksPERSON

0.99+

six yearsQUANTITY

0.99+

last yearDATE

0.99+

hundreds of millionsQUANTITY

0.99+

Mongo InfluxORGANIZATION

0.99+

4 billion timesQUANTITY

0.99+

TwoQUANTITY

0.99+

DecemberDATE

0.99+

MicrosoftORGANIZATION

0.99+

InfluxedORGANIZATION

0.99+

AWSORGANIZATION

0.99+

HortonworksORGANIZATION

0.99+

InfluxORGANIZATION

0.99+

IOxTITLE

0.99+

MySQLTITLE

0.99+

threeQUANTITY

0.99+

TuesdaysDATE

0.99+

each oneQUANTITY

0.98+

400 different locationsQUANTITY

0.98+

25 different daysQUANTITY

0.98+

first setQUANTITY

0.98+

an hourQUANTITY

0.98+

FirstQUANTITY

0.98+

six years agoDATE

0.98+

The CubeTITLE

0.98+

OneQUANTITY

0.98+

Neo ForgeORGANIZATION

0.98+

second thingQUANTITY

0.98+

Each oneQUANTITY

0.98+

Paul DsPERSON

0.97+

IOxORGANIZATION

0.97+

todayDATE

0.97+

TeslasORGANIZATION

0.97+

MITORGANIZATION

0.96+

PostgresORGANIZATION

0.96+

over seven monthsQUANTITY

0.96+

oneQUANTITY

0.96+

fiveDATE

0.96+

Venetian Expo CenterLOCATION

0.95+

Big Data LakesORGANIZATION

0.95+

ClouderaORGANIZATION

0.94+

ColumbiaLOCATION

0.94+

InfluxDataORGANIZATION

0.94+

Wall StreetLOCATION

0.93+

SQLTITLE

0.92+

ElasticTITLE

0.92+

Data BricksORGANIZATION

0.92+

Hacker NewsTITLE

0.92+

two years agoDATE

0.91+

OracleORGANIZATION

0.91+

AWS Reinvent 2022EVENT

0.91+

Elon MuskerPERSON

0.9+

SnowflakeORGANIZATION

0.9+

ReinventORGANIZATION

0.89+

billions of points a secondQUANTITY

0.89+

four yearQUANTITY

0.88+

ChronographTITLE

0.88+

ConfluentTITLE

0.87+

SparkTITLE

0.86+

ApacheORGANIZATION

0.86+

SnowflakeTITLE

0.85+

GrafanaTITLE

0.85+

GitHubORGANIZATION

0.84+

Wrap with Stu Miniman | Red Hat Summit 2022


 

(bright music) >> Okay, we're back in theCUBE. We said we were signing off for the night, but during the hallway track, we ran into old friend Stu Miniman who was the Director of Market Insights at Red Hat. Stu, friend of theCUBE done the thousands of CUBE interviews. >> Dave, it's great to be here. Thanks for pulling me on, you and I hosted Red Hat Summit before. It's great to see Paul here. I was actually, I was talking to some of the Red Hatters walking around Boston. It's great to have an event here. Boston's got strong presence and I understand, I think was either first or second year, they had it over... What's the building they're tearing down right down the road here. Was that the World Trade Center? I think that's where they actually held it, the first time they were here. We hosted theCUBE >> So they moved up. >> at the Hines Convention Center. We did theCUBE for summit at the BCEC next door. And of course, with the pandemic being what it was, we're a little smaller, nice intimate event here. It's great to be able to room the hall, see a whole bunch of people and lots watching online. >> It's great, it's around the same size as those, remember those Vertica Big Data events that we used to have here. And I like that you were commenting out at the theater and the around this morning for the keynotes, that was good. And the keynotes being compressed, I think, is real value for the attendees, you know? 'Cause people come to these events, they want to see each other, you know? They want to... It's like the band getting back together. And so when you're stuck in the keynote room, it's like, "Oh, it's okay, it's time to go." >> I don't know that any of us used to sitting at home where I could just click to another tab or pause it or run for, do something for the family, or a quick bio break. It's the three-hour keynote I hope has been retired. >> But it's an interesting point though, that the virtual event really is driving the physical and this, the way Red Hat marketed this event was very much around the virtual attendee. Physical was almost an afterthought, so. >> Right, this is an invite only for in-person. So you're absolutely right. It's optimizing the things that are being streamed, the online audience is the big audience. And we just happy to be in here to clap and do some things see around what you're doing. >> Wonderful see that becoming the norm. >> I think like virtual Stu, you know this well when virtual first came in, nobody had a clue with what they were doing. It was really hard. They tried different things, they tried to take the physical and just jam it into the virtual. That didn't work, they tried doing fun things. They would bring in a famous person or a comedian. And that kind of worked, I guess, but everybody showed up for that and then left. And I think they're trying to figure it out what this hybrid thing is. I've seen it both ways. I've seen situations like this, where they're really sensitive to the virtual. I've seen others where that's the FOMO of the physical, people want physical. So, yeah, I think it depends. I mean, reinvent last year was heavy physical. >> Yeah, with 15,000 people there. >> Pretty long keynotes, you know? So maybe Amazon can get away with it, but I think most companies aren't going to be able to. So what is the market telling you? What are these insights? >> So Dave just talking about Amazon, obviously, the world I live in cloud and that discussion of cloud, the journey that customers are going on is where we're spending a lot of the discussions. So, it was great to hear in the keynote, talked about our deep partnerships with the cloud providers and what we're doing to help people with, you like to call it super cloud, some call it hybrid, or multi-cloud... >> New name. (crosstalk) Meta-Cloud, come on. >> All right, you know if Che's my executive, so it's wonderful. >> Love it. >> But we'll see, if I could put on my VR Goggles and that will help me move things. But I love like the partnership announcement with General Motors today because not every company has the needs of software driven electric vehicles all over the place. But the technology that we build for them actually has ramifications everywhere. We've working to take Kubernetes and make it smaller over time. So things that we do at the edge benefit the cloud, benefit what we do in the data center, it's that advancement of science and technology just lifts all boats. >> So what's your take on all this? The EV and software on wheels. I mean, Tesla obviously has a huge lead. It's kind of like the Amazon of vehicles, right? It's sort of inspired a whole new wave of innovation. Now you've got every automobile manufacturer kind of go and after. That is the future of vehicles is something you followed or something you have an opinion on Stu? >> Absolutely. It's driving innovation in some ways, the way the DOS drove innovation on the desktop, if you remember the 64K DOS limit, for years, that was... The software developers came up with some amazing ways to work within that 64K limit. Then when it was gone, we got bloatware, but it actually does enforce a level of discipline on you to try to figure out how to make software run better, run more efficiently. And that has upstream impacts on the enterprise products. >> Well, right. So following your analogy, you talk about the enablement to the desktop, Linux was a huge influence on allowing the individual person to write code and write software, and what's happening in the EV, it's software platform. All of these innovations that we're seeing across industries, it's how is software transforming things. We go back to the mark end reasons, software's eating the world, open source is the way that software is developed. Who's at the intersection of all those? We think we have a nice part to play in that. I loved tha- Dave, I don't know if you caught at the end of the keynote, Matt Hicks basically said, "Our mission isn't just to write enterprise software. "Our mission is based off of open source because open source unlocks innovation for the world." And that's one of the things that drew me to Red Hat, it's not just tech in good places, but allowing underrepresented, different countries to participate in what's happening with software. And we can all move that ball forward. >> Well, can we declare victory for open source because it's not just open source products, but everything that's developed today, whether proprietary or open has open source in it. >> Paul, I agree. Open source is the development model period, today. Are there some places that there's proprietary? Absolutely. But I had a discussion with Deepak Singh who's been on theCUBE many times. He said like, our default is, we start with open source code. I mean, even Amazon when you start talking about that. >> I said this, the $70 billion business on open source. >> Exactly. >> Necessarily give it back, but that say, Hey, this is... All's fair in tech and more. >> It is interesting how the managed service model has sort of rescued open source, open source companies, that were trying to do the Red Hat model. No one's ever really successfully duplicated the Red Hat model. A lot of companies were floundering and failing. And then the managed service option came along. And so now they're all cloud service providers. >> So the only thing I'd say is that there are some other peers we have in the industry that are built off open source they're doing okay. The recent example, GitLab and Hashicorp, both went public. Hashi is doing some managed services, but it's not the majority of their product. Look at a company like Mongo, they've heavily pivoted toward the managed service. It is where we see the largest growth in our area. The products that we have again with Amazon, with Microsoft, huge growth, lots of interest. It's one of the things I spend most of my time talking on. >> I think Databricks is another interesting example 'cause Cloudera was the now company and they had the sort of open core, and then they had the proprietary piece, and they've obviously didn't work. Databricks when they developed Spark out of Berkeley, everybody thought they were going to do kind of a similar model. Instead, they went for all in managed services. And it's really worked well, I think they were ahead of that curve and you're seeing it now is it's what customers want. >> Well, I mean, Dave, you cover the database market pretty heavily. How many different open source database options are there today? And that's one of the things we're solving. When you look at what is Red Hat doing in the cloud? Okay, I've got lots of databases. Well, we have something called, it's Red Hat Open Database Access, which is from a developer, I don't want to have to think about, I've got six different databases, which one, where's the repository? How does all that happen? We give that consistency, it's tied into OpenShift, so it can help abstract some of those pieces. we've got same Kafka streaming and we've got APIs. So it's frameworks and enablers to help bridge that gap between the complexity that's out there, in the cloud and for the developer tool chain. >> That's really important role you guys play though because you had this proliferation, you mentioned Mongo. So many others, Presto and Starbursts, et cetera, so many other open source options out there now. And companies, developers want to work with multiple databases within the same application. And you have a role in making that easy. >> Yeah, so and that is, if you talk about the question I get all the time is, what's next for Kubernetes? Dave, you and I did a preview for KubeCon and it's automation and simplicity that we need to be. It's not enough to just say, "Hey, we've got APIs." It's like Dave, we used to say, "We've got standards? Great." Everybody's implementation was a little bit different. So we have API Sprawl today. So it's building that ecosystem. You've been talking to a number of our partners. We are very active in the community and trying to do things that can lift up the community, help the developers, help that cloud native ecosystem, help our customers move faster. >> Yeah API's better than scripts, but they got to be managed, right? So, and that's really what you guys are doing that's different. You're not trying to own everything, right? It's sort of antithetical to how billions and trillions are made in the IT industry. >> I remember a few years ago we talked here, and you look at the size that Red Hat is. And the question is, could Red Hat have monetized more if the model was a little different? It's like, well maybe, but that's not the why. I love that they actually had Simon Sinek come in and work with Red Hat and that open, unlocks the world. Like that's the core, it's the why. When I join, they're like, here's a book of Red Hat, you can get it online and that why of what we do, so we never have to think of how do we get there. We did an acquisition in the security space a year ago, StackRox, took us a year, it's open source. Stackrox.io, it's community driven, open source project there because we could have said, "Oh, well, yeah, it's kind of open source and there's pieces that are open source, but we want it to be fully open source." You just talked to Gunnar about how he's RHEL nine, based off CentOS stream, and now developing out in the open with that model, so. >> Well, you were always a big fan of Whitehurst culture book, right? It makes a difference. >> The open organization and right, Red Hat? That culture is special. It's definitely interesting. So first of all, most companies are built with the hierarchy in mind. Had a friend of mine that when he joined Red Hat, he's like, I don't understand, it's almost like you have like lots of individual contractors, all doing their things 'cause Red Hat works on thousands of projects. But I remember talking to Rackspace years ago when OpenStack was a thing and they're like, "How do you figure out what to work on?" "Oh, well we hired great people and they work on what's important to them." And I'm like, "That doesn't sound like a business." And he is like, "Well, we struggle sometimes to that balance." Red Hat has found that balance because we work on a lot of different projects and there are people inside Red Hat that are, you know, they care more about the project than they do the business, but there's the overall view as to where we participate and where we productize because we're not creating IP because it's all an open source. So it's the monetizations, the relationships we have our customers, the ecosystems that we build. And so that is special. And I'll tell you that my line has been Red Hat on the inside is even more Red Hat. The debates and the discussions are brutal. I mean, technical people tearing things apart, questioning things and you can't be thin skinned. And the other thing is, what's great is new people. I've talked to so many people that started at Red Hat as interns and will stay for seven, eight years. And they come there and they have as much of a seat at the table, and when I talk to new people, your job, is if you don't understand something or you think we might be able to do it differently, you better speak up because we want your opinion and we'll take that, everybody takes that into consideration. It's not like, does the decision go all the way up to this executive? And it's like, no, it's done more at the team. >> The cultural contrast between that and your parent, IBM, couldn't be more dramatic. And we talked earlier with Paul Cormier about has IBM really walked the walk when it comes to leaving Red Hat alone. Naturally he said, "Yes." Well what's your perspective. >> Yeah, are there some big blue people across the street or something I heard that did this event, but look, do we interact with IBM? Of course. One of the reasons that IBM and IBM Services, both products and services should be able to help get us breadth in the marketplace. There are times that we go arm and arm into customer meetings and there are times that customers tell us, "I like Red Hat, I don't like IBM." And there's other ones that have been like, "Well, I'm a long time IBM, I'm not sure about Red Hat." And we have to be able to meet all of those customers where they are. But from my standpoint, I've got a Red Hat badge, I've got a Red Hat email, I've got Red Hat benefits. So we are fiercely independent. And you know, Paul, we've done blogs and there's lots of articles been written is, Red Hat will stay Red Hat. I didn't happen to catch Arvin I know was on CNBC today and talking at their event, but I'm sure Red Hat got mentioned, but... >> Well, he talks about Red Hat all time. >> But in his call he's talking backwards. >> It's interesting that he's not here, greeting this audience, right? It's again, almost by design, right? >> But maybe that's supposed to be... >> Hundreds of yards away. >> And one of the questions being in the cloud group is I'm not out pitching IBM Cloud, you know? If a customer comes to me and asks about, we have a deep partnership and IBM will be happy to tell you about our integrations, as opposed to, I'm happy to go into a deep discussion of what we're doing with Google, Amazon, and Microsoft. So that's how we do it. It's very different Dave, from you and I watch really closely the VMware-EMC, VMware-Dell, and how that relationship. This one is different. We are owned by IBM, but we mostly, it does IBM fund initiatives and have certain strategic things that are done, absolutely. But we maintain Red Hat. >> But there are similarities. I mean, VMware crowd didn't want to talk about EMC, but they had to, they were kind of forced to. Whereas, you're not being forced to. >> And then once Dell came in there, it was joint product development. >> I always thought a spin in. Would've been the more effective, of course, Michael Dell and Egon wouldn't have gotten their $40 billion out. But I think a spin in was more natural based on where they were going. And it would've been, I think, a more dominant position in the marketplace. They would've had more software, but again, financially it wouldn't have made as much sense, but that whole dynamic is different. I mean, but people said they were going to look at VMware as a model and it's been largely different because remember, VMware of course was a separate company, now is a fully separate company. Red Hat was integrated, we thought, okay, are they going to get blue washed? We're watching and watching, and watching, you had said, well, if the Red Hat culture isn't permeating IBM, then it's a failure. And I don't know if that's happening, but it's definitely... >> I think a long time for that. >> It's definitely been preserved. >> I mean, Dave, I know I read one article at the beginning of the year is, can Arvin make IBM, Microsoft Junior? Follow the same turnaround that Satya Nadella drove over there. IBM I think making some progress, I mean, I read and watch what you and the team are all writing about it. And I'll withhold judgment on IBM. Obviously, there's certain financial things that we'd love to see IBM succeed. We worry about our business. We do our thing and IBM shares our results and they've been solid, so. >> Microsoft had such massive cash flow that even bomber couldn't screw it up. Well, I mean, this is true, right? I mean, you think about how were relevant Microsoft was in the conversation during his tenure and yet they never got really... They maintained a position so that when the Nadella came in, they were able to reascend and now are becoming that dominant player. I mean, IBM just doesn't have that cash flow and that luxury, but I mean, if he pulls it off, he'll be the CEO of the decade. >> You mentioned partners earlier, big concern when the acquisition was first announced, was that the Dells and the HP's and the such wouldn't want to work with Red Hat anymore, you've sort of been here through that transition. Is that an issue? >> Not that I've seen, no. I mean, the hardware suppliers, the ISVs, the GSIs are all very important. It was great to see, I think you had Accenture on theCUBE today, obviously very important partner as we go to the cloud. IBM's another important partner, not only for IBM Cloud, but IBM Services, deep partnership with Azure and AWS. So those partners and from a technology standpoint, the cloud native ecosystem, we talked about, it's not just a Red Hat product. I constantly have to talk about, look, we have a lot of pieces, but your developers are going to have other tools that they're going to use and the security space. There is no such thing as a silver bullet. So I've been having some great conversations here already this week with some of our partners that are helping us to round out that whole solution, help our customers because it has to be, it's an ecosystem. And we're one of the drivers to help that move forward. >> Well, I mean, we were at Dell Tech World last week, and there's a lot of talk about DevSecOps and DevOps and Dell being more developer friendly. Obviously they got a long way to go, but you can't have that take that posture and not have a relationship with Red Hat. If all you got is Pivotal and VMware, and Tansu >> I was thrilled to hear the OpenShift mention in the keynote when they talked about what they were doing. >> How could you not, how could you have any credibility if you're just like, Oh, Pivotal, Pivotal, Pivotal, Tansu, Tansu. Tansu is doing its thing. And they smart strategy. >> VMware is also a partner of ours, but that we would hope that with VMware being independent, that does open the door for us to do more with them. >> Yeah, because you guys have had a weird relationship with them, under ownership of EMC and then Dell, right? And then the whole IBM thing. But it's just a different world now. Ecosystems are forming and reforming, and Dell's building out its own cloud and it's got to have... Look at Amazon, I wrote about this. I said, "Can you envision the day where Dell actually offers competitive products in its suite, in its service offering?" I mean, it's hard to see, they're not there yet. They're not even close. And they have this high say/do ratio, or really it's a low say/do, they say high say/do, but look at what they did with Nutanix. You look over- (chuckles) would tell if it's the Cisco relationship. So it's got to get better at that. And it will, I really do believe. That's new thinking and same thing with HPE. And, I don't know about Lenovo that not as much of an ecosystem play, but certainly Dell and HPE. >> Absolutely. Michael Dell would always love to poke at HPE and HP really went very far down the path of their own products. They went away from their services organization that used to be more like IBM, that would offer lots of different offerings and very much, it was HP Invent. Well, if we didn't invent it, you're not getting it from us. So Dell, we'll see, as you said, the ecosystems are definitely forming, converging and going in lots of different directions. >> But your position is, Hey, we're here, we're here to help. >> Yeah, we're here. We have customers, one of the best proof points I have is the solution that we have with Amazon. Amazon doesn't do the engineering work to make us a native offering if they didn't have the customer demand because Amazon's driven off of data. So they came to us, they worked with us. It's a lot of work to be able to make that happen, but you want to make it frictionless for customers so that they can adopt that. That's a long path. >> All right, so evening event, there's a customer event this evening upstairs in the lobby. Microsoft is having a little shin dig, and then serves a lot of customer dinners going on. So Stu, we'll see you out there tonight. >> All right, thanks you. >> Were watching a brewing somewhere. >> Keynotes tomorrow, a lot of good sessions and enablement, and yeah, it's great to be in person to be able to bump some people, meet some people and, Hey, I'm still a year and a half in still meeting a lot of my peers in person for the first time. >> Yeah, and that's kind of weird, isn't it? Imagine. And then we kick off tomorrow at 10:00 AM. Actually, Stephanie Chiras is coming on. There she is in the background. She's always a great guest and maybe do a little kickoff and have some fun tomorrow. So this is Dave Vellante for Stu Miniman, Paul Gillin, who's my co-host. You're watching theCUBEs coverage of Red Hat Summit 2022. We'll see you tomorrow. (bright music)

Published Date : May 11 2022

SUMMARY :

but during the hallway track, Was that the World Trade Center? at the Hines Convention Center. And I like that you were It's the three-hour keynote that the virtual event really It's optimizing the things becoming the norm. and just jam it into the virtual. aren't going to be able to. a lot of the discussions. Meta-Cloud, come on. All right, you know But the technology that we build for them It's kind of like the innovation on the desktop, And that's one of the things Well, can we declare I mean, even Amazon when you start talking the $70 billion business on open source. but that say, Hey, this is... the managed service model but it's not the majority and then they had the proprietary piece, And that's one of the And you have a role in making that easy. I get all the time is, are made in the IT industry. And the question is, Well, you were always a big fan the relationships we have our customers, And we talked earlier One of the reasons that But in his call he's talking that's supposed to be... And one of the questions I mean, VMware crowd didn't And then once Dell came in there, Would've been the more I think a long time It's definitely been at the beginning of the year is, and that luxury, the HP's and the such I mean, the hardware suppliers, the ISVs, and not have a relationship with Red Hat. the OpenShift mention in the keynote And they smart strategy. that does open the door for us and it's got to have... the ecosystems are definitely forming, But your position is, Hey, is the solution that we have with Amazon. So Stu, we'll see you out there tonight. Were watching a brewing person for the first time. There she is in the background.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
GoogleORGANIZATION

0.99+

PaulPERSON

0.99+

Dave VellantePERSON

0.99+

AmazonORGANIZATION

0.99+

IBMORGANIZATION

0.99+

Stu MinimanPERSON

0.99+

General MotorsORGANIZATION

0.99+

Paul GillinPERSON

0.99+

DavePERSON

0.99+

sevenQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

Stephanie ChirasPERSON

0.99+

HPORGANIZATION

0.99+

Matt HicksPERSON

0.99+

DellORGANIZATION

0.99+

GunnarPERSON

0.99+

Paul CormierPERSON

0.99+

Deepak SinghPERSON

0.99+

$40 billionQUANTITY

0.99+

BostonLOCATION

0.99+

DatabricksORGANIZATION

0.99+

BerkeleyLOCATION

0.99+

AWSORGANIZATION

0.99+

Satya NadellaPERSON

0.99+

HPEORGANIZATION

0.99+

$70 billionQUANTITY

0.99+

CiscoORGANIZATION

0.99+

tomorrowDATE

0.99+

Simon SinekPERSON

0.99+

StuPERSON

0.99+

last weekDATE

0.99+

HashicorpORGANIZATION

0.99+

GitLabORGANIZATION

0.99+

DellsORGANIZATION

0.99+

LenovoORGANIZATION

0.99+

TeslaORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

MongoORGANIZATION

0.99+

EMCORGANIZATION

0.99+

15,000 peopleQUANTITY

0.99+

Red HatTITLE

0.99+

Michael DellPERSON

0.99+

64KQUANTITY

0.99+

last yearDATE

0.99+

ArvinPERSON

0.99+

VMwareORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

Steven Mih, Ahana and Sachin Nayyar, Securonix | AWS Startup Showcase


 

>> Voiceover: From theCUBE's Studios in Palo Alto in Boston, connecting with thought leaders all around the world, this is theCUBE Conversation. >> Welcome back to theCUBE's coverage of the AWS Startup Showcase. Next Big Thing in AI, Security and Life Sciences featuring Ahana for the AI Trek. I'm your host, John Furrier. Today, we're joined by two great guests, Steven Mih, Ahana CEO, and Sachin Nayyar, Securonix CEO. Gentlemen, thanks for coming on theCUBE. We're talking about the Next-Gen technologies on AI, Open Data Lakes, et cetera. Thanks for coming on. >> Thanks for having us, John. >> Thanks, John. >> What a great line up here. >> Sachin: Thanks, Steven. >> Great, great stuff. Sachin, let's get in and talk about your company, Securonix. What do you guys do? Take us through, I know you've got a slide to help us through this, I want to introduce your stuff first then jump in with Steven. >> Absolutely. Thanks again, Steven. Ahana team for having us on the show. So Securonix, we started the company in 2010. We are the leader in security analytics and response capability for the cybermarket. So basically, this is a category of solutions called SIEM, Security Incident and Event Management. We are the quadrant leaders in Gartner, we now have about 500 customers today and have been plugging away since 2010. Started the company just really focused on analytics using machine learning and an advanced analytics to really find the needle in the haystack, then moved from there to needle in the needle stack using more algorithms, analysis of analysis. And then kind of, I evolved the company to run on cloud and become sort of the biggest security data lake on cloud and provide all the analytics to help companies with their insider threat, cyber threat, cloud solutions, application threats, emerging internally and externally, and then response and have a great partnership with Ahana as well as with AWS. So looking forward to this session, thank you. >> Awesome. I can't wait to hear the news on that Next-Gen SIEM leadership. Steven, Ahana, talk about what's going on with you guys, give us the update, a lot of stuff happening. >> Yeah. Great to be here and thanks for that such, and we appreciate the partnership as well with both Securonix and AWS. Ahana is the open source company based on PrestoDB, which is a project that came out of Facebook and is widely used, one of the fastest growing projects in data analytics today. And we make a managed service for Presto easily on AWS, all cloud native. And we'll be talking about that more during the show. Really excited to be here. We believe in open source. We believe in all the challenges of having data in the cloud and making it easy to use. So thanks for having us again. >> And looking forward to digging into that managed service and why that's been so successful. Looking forward to that. Let's get into the Securonix Next-Gen SIEM leadership first. Let's share the journey towards what you guys are doing here. As the Open Data Lakes on AWS has been a hot topic, the success of data in the cloud, no doubt is on everyone's mind especially with the edge coming. It's just, I mean, just incredible growth. Take us through Sachin, what do you guys got going on? >> Absolutely. Thanks, John. We are hearing about cyber threats every day. No question about it. So in the past, what was happening is companies, what we have done as enterprise is put all of our eggs in the basket of solutions that were evaluating the network data. With cloud, obviously there is no more network data. Now we have moved into focusing on EDR, right thing to do on endpoint detection. But with that, we also need security analytics across on-premise and cloud. And your other solutions like your OT, IOT, your mobile, bringing it all together into a security data lake and then running purpose built analytics on top of that, and then having a response so we can prevent some of these things from happening or detect them in real time versus innovating for hours or weeks and months, which is is obviously too late. So with some of the recent events happening around colonial and others, we all know cybersecurity is on top of everybody's mind. First and foremost, I also want to. >> Steven: (indistinct) slide one and that's all based off on top of the data lake, right? >> Sachin: Yes, absolutely. Absolutely. So before we go into on Securonix, I also want to congratulate everything going on with the new cyber initiatives with our government and just really excited to see some of the things that the government is also doing in this space to bring, to have stronger regulation and bring together the government and the private sector. From a Securonix perspective, today, we have one third of the fortune 500 companies using our technology. In addition, there are hundreds of small and medium sized companies that rely on Securonix for their cyber protection. So what we do is, again, we are running the solution on cloud, and that is very important. It is not just important for hosting, but in the space of cybersecurity, you need to have a solution, which is not, so where we can update the threat models and we can use the intelligence or the Intel that we gather from our customers, partners, and industry experts and roll it out to our customers within seconds and minutes, because the game is real time in cybersecurity. And that you can only do in cloud where you have the complete telemetry and access to these environments. When we go on-premise traditionally, what you will see is customers are even thinking about pushing the threat models through their standard Dev test life cycle management, and which is just completely defeating the purpose. So in any event, Securonix on the cloud brings together all the data, then runs purpose-built analytics on it. Helps you find very few, we are today pulling in several million events per second from our customers, and we provide just a very small handful of events and reduce the false positives so that people can focus on them. Their security command center can focus on that and then configure response actions on top of that. So we can take action for known issues and have intelligence in all the layers. So that's kind of what the Securonix is focused on. >> Steven, he just brought up, probably the most important story in technology right now. That's ransomware more than, first of all, cybersecurity in general, but ransomware, he mentioned some of the government efforts. Some are saying that the ransomware marketplace is bigger than some governments, nation state governments. There's a business model behind it. It's highly active. It's dominating the scene and it's a real threat. This is the new world we're living in, cloud creates the refactoring capabilities. We're hearing that story here with Securonix. How does Presto and Securonix work together? Because I'm connecting the dots here in real time. I think you're going to go there. So take us through because this is like the most important topic happening. >> Yeah. So as Sachin said, there's all this data that needs to go into the cloud and it's all moving to the cloud. And there's a massive amounts of data and hundreds of terabytes, petabytes of data that's moving into the data lakes and that's the S3-based data lakes, which are the easiest, cheapest, commodified place to put all this data. But in order to deliver the results that Sachin's company is driving, which is intelligence on when there's a ransomware or possibility, you need to have analytics on them. And so Presto is the open source project that is a open source SQL query engine for data lakes and other data sources. It was created by Facebook as part of the Linux foundation, something called Presto foundation. And it was built to replace the complicated Hadoop stack in order to then drive analytics at very lightning fast queries on large, large sets of data. And so Presto fits in with this Open Data Lake analytics movement, which has made Presto one of the fastest growing projects out there. >> What is an Open Data Lake? Real quick for the audience who wants to learn on what it means. Does is it means it's open source in the Linux foundation or open meaning it's open to multiple applications? What does that even mean? >> Yeah. Open Data Lake analytics means that you're, first of all, your data lake has open formats. So it is made up of say something called the ORC or Parquet. And these are formats that any engine can be used against. That's really great, instead of having locked in data types. Data lakes can have all different types of data. It can have unstructured, semi-structured data. It's not just the structured data, which is typically in your data warehouses. There's a lot more data going into the Open Data Lake. And then you can, based on what workload you're looking to get benefit from, the insights come from that, and actually slide two covers this pictorially. If you look on the left here on slide two, the Open Data Lake is where all the data is pulling. And Presto is the layer in between that and the insights which are driven by the visualization, reporting, dashboarding, BI tools or applications like in Securonix case. And so analytics are now being driven by every company for not just industries of security, but it's also for every industry out there, retail, e-commerce, you name it. There's a healthcare, financials, all are looking at driving more analytics for their SaaSified applications as well as for their own internal analysts, data scientists, and folks that are trying to be more data-driven. >> All right. Let's talk about the relationship now with where Presto fits in with Securonix because I get the open data layer. I see value in that. I get also what we're talking about the cloud and being faster with the datasets. So how does, Sachin' Securonix and Ahana fit in together? >> Yeah. Great question. So I'll tell you, we have two customers. I'll give you an example. We have two fortune 10 customers. One has moved most of their operations to the cloud and another customer which is in the process, early stage. The data, the amount of data that we are getting from the customer who's moved fully to the cloud is 20 times, 20 times more than the customer who's in the early stages of moving to the cloud. That is because the ability to add this level of telemetry in the cloud, in this case, it happens to be AWS, Office 365, Salesforce and several other rescalers across several other cloud technologies. But the level of logging that we are able to get the telemetry is unbelievable. So what it does is it allows us to analyze more, protect the customers better, protect them in real time, but there is a cost and scale factor to that. So like I said, when you are trying to pull in billions of events per day from a customer billions of events per day, what the customers are looking for is all of that data goes in, all of data gets enriched so that it makes sense to a normal analyst and all of that data is available for search, sometimes 90 days, sometimes 12 months. And then all of that data is available to be brought back into a searchable format for up to seven years. So think about the amount of data we are dealing with here and we have to provide a solution for this problem at a price that is affordable to the customer and that a medium-sized company as well as a large organization can afford. So after a lot of our analysis on this and again, Securonix is focused on cyber, bringing in the data, analyzing it, so after a lot of our analysis, we zeroed in on S3 as the core bucket where this data needs to be stored because the price point, the reliability, and all the other functions available on top of that. And with that, with S3, we've created a great partnership with AWS as well as with Snowflake that is providing this, from a data lake perspective, a bigger data lake, enterprise data lake perspective. So now for us to be able to provide customers the ability to search that data. So data comes in, we are enriching it. We are putting it in S3 in real time. Now, this is where Presto comes in. In our research, Presto came out as the best search engine to sit on top of S3. The engine is supported by companies like Facebook and Uber, and it is open source. So open source, like you asked the question. So for companies like us, we cannot depend on a very small technology company to offer mission critical capabilities because what if that company gets acquired, et cetera. In the case of open source, we are able to adopt it. We know there is a community behind it and it will be kind of available for us to use and we will be able to contribute in it for the longterm. Number two, from an open source perspective, we have a strong belief that customers own their own data. Traditionally, like Steven used the word locked in, it's a key term, customers have been locked in into proprietary formats in the past and those days are over. You should be, you own the data and you should be able to use it with us and with other systems of choice. So now you get into a data search engine like Presto, which scales independently of the storage. And then when we start looking at Presto, we came across Ahana. So for every open source system, you definitely need a sort of a for-profit company that invests in the community and then that takes the community forward. Because without a company like this, the community will die. So we are very excited about the partnership with Presto and Ahana. And Ahana provides us the ability to take Presto and cloudify it, or make the cloud operations work plus be our conduit to the Ahana community. Help us speed up certain items on the roadmap, help our team contribute to the community as well. And then you have to take a solution like Presto, you have to put it in the cloud, you have to make it scale, you have to put it on Kubernetes. Standard thing that you need to do in today's world to offer it as sort of a micro service into our architecture. So in all of those areas, that's where our partnership is with Ahana and Presto and S3 and we think, this is the search solution for the future. And with something like this, very soon, we will be able to offer our customers 12 months of data, searchable at extremely fast speeds at very reasonable price points and you will own your own data. So it has very significant business benefits for our customers with the technology partnership that we have set up here. So very excited about this. >> Sachin, it's very inspiring, a couple things there. One, decentralize on your own data, having a democratized, that piece is killer. Open source, great point. >> Absolutely. >> Company goes out of business, you don't want to lose the source code or get acquired or whatever. That's a key enabler. And then three, a fast managed service that has a commercial backing behind it. So, a great, and by the way, Snowflake wasn't around a couple of years ago. So like, so this is what we're talking about. This is the cloud scale. Steven, take us home with this point because this is what innovation looks like. Could you share why it's working? What's some of the things that people could walk away with and learn from as the new architecture for the new NextGen cloud is here, so this is a big part of and share how this works? >> That's right. As you heard from Sachin, every company is becoming data-driven and analytics are central to their business. There's more data and it needs to be analyzed at lower cost without the locked in and people want that flexibility. And so a slide three talks about what Ahana cloud for Presto does. It's the best Presto out of the box. It gives you very easy to use for your operations team. So it can be one or two people just managing this and they can get up to speed very quickly in 30 minutes, be up and running. And that jump starts their movement into an Open Data Lake analytics architecture. That architecture is going to be, it is the one that is at Facebook, Uber, Twitter, other large web scale, internet scale companies. And with the amount of data that's occurring, that's now becoming the standard architecture for everyone else in the future. And so just to wrap, we're really excited about making that easy, giving an open source solution because the open source data stack based off of data lake analytics is really happening. >> I got to ask you, you've seen many waves on the industry. Certainly, you've been through the big data waves, Steven. Sachin, you're on the cutting edge and just the cutting edge billions of signals from one client alone is pretty amazing scale and refactoring that value proposition is super important. What's different from 10 years ago when the Hadoop, you mentioned Hadoop earlier, which is RIP, obviously the cloud killed it. We all know that. Everyone kind of knows that. But like, what's different now? I mean, skeptics might say, I don't believe you, but it's just crazy. There's no way it works. S3 costs way too much. Why is this now so much more of an attractive proposition? What do you say the naysayers out there? With Steve, we'll start with you and then Sachin, I want you to like weigh in too. >> Yeah. Well, if you think about the Hadoop era and if you look at slide three, it was a very complicated system that was done mainly on-prem. And you'd have to go and set up a big data team and a rack and stack a bunch of servers and then try to put all this stuff together and candidly, the results and the outcomes of that were very hard to get unless you had the best possible teams and invested a lot of money in this. What you saw in this slide was that, that right hand side which shows the stack. Now you have a separate compute, which is based off of Intel based instances in the cloud. We run the best in that and they're part of the Presto foundation. And that's now data lakes. Now the distributed compute engines are the ones that have become very much easier. So the big difference in what I see is no longer called big data. It's just called data analytics because it's now become commodified as being easy and the bar is much, much lower, so everyone can get the benefit of this across industries, across organizations. I mean, that's good for the world, reduces the security threats, the ransomware, in the case of Securonix and Sachin here. But every company can benefit from this. >> Sachin, this is really as an example in my mind and you can comment too on if you'd believe or not, but replatform with the cloud, that's a no brainer. People do that. They did it. But the value is refactoring in the cloud. It's thinking differently with the assets you have and making sure you're using the right pieces. I mean, there's no brainer, you know it's good. If it costs more money to stand up something than to like get value out of something that's operating at scale, much easier equation. What's your thoughts on this? Go back 10 years and where we are now, what's different? I mean, replatforming, refactoring, all kinds of happening. What's your take on all this? >> Agreed, John. So we have been in business now for about 10 to 11 years. And when we started my hair was all black. Okay. >> John: You're so silly. >> Okay. So this, everything has happened here is the transition from Hadoop to cloud. Okay. This is what the result has been. So people can see it for themselves. So when we started off with deep partnerships with the Hadoop providers and again, Hadoop is the foundation, which has now become EMR and everything else that AWS and other companies have picked up. But when you start with some basic premise, first, the racking and stacking of hardware, companies having to project their entire data volume upfront, bringing the servers and have 50, 100, 500 servers sitting in their data centers. And then when there are spikes in data, or like I said, as you move to the cloud, your data volume will increase between five to 20x and projecting for that. And then think about the agility that it will take you three to six months to bring in new servers and then bring them into the architecture. So big issue. Number two big issue is that the backend of that was built for HDFS. So Hadoop in my mind was built to ingest large amounts of data in batches and then perform some spark jobs on it, some analytics. But we are talking in security about real time, high velocity, high variety data, which has to be available in real time. It wasn't built for that, to be honest. So what was happening is, again, even if you look at the Hadoop companies today as they have kind of figured, kind of define their next generation, they have moved from HDFS to now kind of a cloud based platform capability and have discarded the traditional HDFS architecture because it just wasn't scaling, wasn't searching fast enough, wasn't searching fast enough for hundreds of analysts at the same time. And then obviously, the servers, et cetera wasn't working. Then when we worked with the Hadoop companies, they were always two to three versions behind for the individual services that they had brought together. And again, when you're talking about this kind of a volume, you need to be on the cutting edge always of the technologies underneath that. So even while we were working with them, we had to support our own versions of Kafka, Solr, Zookeeper, et cetera to really bring it together and provide our customers this capability. So now when we have moved to the cloud with solutions like EMR behind us, AWS has invested in in solutions like EMR to make them scalable, to have scale and then scale out, which traditional Hadoop did not provide because they missed the cloud wave. And then on top of that, again, rather than throwing data in that traditional older HDFS format, we are now taking the same format, the parquet format that it supports, putting it in S3 and now making it available and using all the capabilities like you said, the refactoring of that is critical. That rather than on-prem having servers and redundancies with S3, we get built in redundancy. We get built in life cycle management, high degree of confidence data reliability. And then we get all this innovation from companies like, from groups like Presto, companies like Ahana sitting on double that S3. And the last item I would say is in the cloud we are now able to offer multiple, have multiple resilient options on our side. So for example, with us, we still have some premium searching going on with solutions like Solr and Elasticsearch, then you have Presto and Ahana providing majority of our searching, but we still have Athena as a backup in case something goes down in the architecture. Our queries will spin back up to Athena, AWS service on Presto and customers will still get served. So all of these options, but what it doesn't cost us anything, Athena, if we don't use it, but all of these options are not available on-prem. So in my mind, I mean, it's a whole new world we are living in. It is a world where now we have made it possible for companies to even enterprises to even think about having true security data lakes, which are useful and having real-time analytics. From my perspective, I don't even sign up today for a large enterprise that wants to build a data lake on-prem because I know that is not, that is going to be a very difficult project to make it successful. So we've come a long way and there are several details around this that we've kind of endured through the process, but very excited where we are today. >> Well, we certainly follow up with theCUBE on all your your endeavors. Quickly on Ahana, why them, why their solution? In your words, what would be the advice you'd give me if I'm like, okay, I'm looking at this, why do I want to use it, and what's your experience? >> Right. So the standard SQL query engine for data lake analytics, more and more people have more data, want to have something that's based on open source, based on open formats, gives you that flexibility, pay as you go. You only pay for what you use. And so it proved to be the best option for Securonix to create a self-service system that has all the speed and performance and scalability that they need, which is based off of the innovation from the large companies like Facebook, Uber, Twitter. They've all invested heavily. We contribute to the open source project. It's a vibrant community. We encourage people to join the community and even Securonix, we'll be having engineers that are contributing to the project as well. I think, is that right Sachin? Maybe you could share a little bit about your thoughts on being part of the community. >> Yeah. So also why we chose Ahana, like John said. The first reason is you see Steven is always smiling. Okay. >> That's for sure. >> That is very important. I mean, jokes apart, you need a great partner. You need a great partner. You need a partner with a great attitude because this is not a sprint, this is a marathon. So the Ahana founders, Steven, the whole team, they're world-class, they're world-class. The depth that the CTO has, his experience, the depth that Dipti has, who's running the cloud solution. These guys are world-class. They are very involved in the community. We evaluated them from a community perspective. They are very involved. They have the depth of really commercializing an open source solution without making it too commercial. The right balance, where the founding companies like Facebook and Uber, and hopefully Securonix in the future as we contribute more and more will have our say and they act like the right stewards in this journey and then contribute as well. So and then they have chosen the right niche rather than taking portions of the product and making it proprietary. They have put in the effort towards the cloud infrastructure of making that product available easily on the cloud. So I think it's sort of a no-brainer from our side. Once we chose Presto, Ahana was the no-brainer and just the partnership so far has been very exciting and I'm looking forward to great things together. >> Likewise Sachin, thanks so much for that. And we've only found your team, you're world-class as well, and working together and we look forward to working in the community also in the Presto foundation. So thanks for that. >> Guys, great partnership. Great insight and really, this is a great example of cloud scale, cloud value proposition as it unlocks new benefits. Open source, managed services, refactoring the opportunities to create more value. Stephen, Sachin, thank you so much for sharing your story here on open data lakes. Can open always wins in my mind. This is theCUBE we're always open and we're showcasing all the hot startups coming out of the AWS ecosystem for the AWS Startup Showcase. I'm John Furrier, your host. Thanks for watching. (bright music)

Published Date : Jun 24 2021

SUMMARY :

leaders all around the world, of the AWS Startup Showcase. to help us through this, and provide all the what's going on with you guys, in the cloud and making it easy to use. Let's get into the Securonix So in the past, what was So in any event, Securonix on the cloud Some are saying that the and that's the S3-based data in the Linux foundation or open meaning And Presto is the layer in because I get the open data layer. and all the other functions that piece is killer. and learn from as the new architecture for everyone else in the future. obviously the cloud killed it. and the bar is much, much lower, But the value is refactoring in the cloud. So we have been in business and again, Hadoop is the foundation, be the advice you'd give me system that has all the speed The first reason is you see and just the partnership so in the community also in for the AWS Startup Showcase.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
StevenPERSON

0.99+

SachinPERSON

0.99+

JohnPERSON

0.99+

StevePERSON

0.99+

SecuronixORGANIZATION

0.99+

AWSORGANIZATION

0.99+

John FurrierPERSON

0.99+

Steven MihPERSON

0.99+

50QUANTITY

0.99+

UberORGANIZATION

0.99+

2010DATE

0.99+

StephenPERSON

0.99+

Sachin NayyarPERSON

0.99+

FacebookORGANIZATION

0.99+

20 timesQUANTITY

0.99+

oneQUANTITY

0.99+

12 monthsQUANTITY

0.99+

threeQUANTITY

0.99+

TwitterORGANIZATION

0.99+

AhanaPERSON

0.99+

two customersQUANTITY

0.99+

90 daysQUANTITY

0.99+

AhanaORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

100QUANTITY

0.99+

30 minutesQUANTITY

0.99+

PrestoORGANIZATION

0.99+

hundreds of terabytesQUANTITY

0.99+

fiveQUANTITY

0.99+

FirstQUANTITY

0.99+

OneQUANTITY

0.99+

twoQUANTITY

0.99+

hundredsQUANTITY

0.99+

six monthsQUANTITY

0.99+

S3TITLE

0.99+

ZookeeperTITLE

0.99+

Matt Maccaux, HPE | HPE Discover 2021


 

(bright music) >> Data by its very nature is distributed and siloed, but most data architectures today are highly centralized. Organizations are increasingly challenged to organize and manage data, and turn that data into insights. This idea of a single monolithic platform for data, it's giving way to new thinking. Where a decentralized approach, with open cloud native principles and federated governance, will become an underpinning of digital transformations. Hi everybody. This is Dave Volante. Welcome back to HPE Discover 2021, the virtual version. You're watching theCube's continuous coverage of the event and we're here with Matt Maccaux, who's a field CTO for Ezmeral Software at HPE. We're going to talk about HPE software strategy, and Ezmeral and specifically how to take AI analytics to scale and ensure the productivity of data teams. Matt, welcome to theCube. Good to see you. >> Good to see you again, Dave. Thanks for having me today. >> You're welcome. So talk a little bit about your role as a CTO. Where do you spend your time? >> I spend about half of my time talking to customers and partners about where they are on their digital transformation journeys and where they struggle with this sort of last phase where we start talking about bringing those cloud principles and practices into the data world. How do I take those data warehouses, those data lakes, those distributed data systems, into the enterprise and deploy them in a cloud-like manner? Then the other half of my time is working with our product teams to feed that information back, so that we can continually innovate to the next generation of our software platform. >> So when I remember, I've been following HP and HPE, for a long, long time, theCube has documented, we go back to sort of when the company was breaking in two parts, and at the time a lot of people were saying, "Oh, HP is getting rid of their software business, they're getting out of software." I said, "No, no, no, hold on. They're really focusing", and the whole focus around hybrid cloud and now as a service, you've really retooling that business and sharpened your focus. So tell us more about Ezmeral, it's a cool name, but what exactly is Ezmeral software? >> I get this question all the time. So what is Ezmeral? Ezmeral is a software platform for modern data and analytics workloads, using open source software components. We came from some inorganic growth. We acquired a company called Cytec, that brought us a zero trust approach to doing security with containers. We bought BlueData who came to us with an orchestrator before Kubernetes even existed in mainstream. They were orchestrating workloads using containers for some of these more difficult workloads. Clustered applications, distributed applications like Hadoop. Then finally we acquired MapR, which gave us this scale out distributed file system and additional analytical capabilities. What we've done is we've taken those components and we've also gone out into the marketplace to see what open source projects exist to allow us to bring those cloud principles and practices to these types of workloads, so that we can take things like Hadoop, and Spark, and Presto, and deploy and orchestrate them using open source Kubernetes. Leveraging GPU's, while providing that zero trust approach to security, that's what Ezmeral is all about is taking those cloud practices and principles, but without locking you in. Again, using those open source components where they exist, and then committing and contributing back to the opensource community where those projects don't exist. >> You know, it's interesting, thank you for that history, and when I go back, I have been there since the early days of Big Data and Hadoop and so forth and MapR always had the best product, but they couldn't get it out. Back then it was like kumbaya, open source, and they had this kind of proprietary system but it worked and that's why it was the best product. So at the same time they participated in open source projects because everybody did, that's where the innovation is going. So you're making that really hard to use stuff easier to use with Kubernetes orchestration, and then obviously, I'm presuming with the open source chops, sort of leaning into the big trends that you're seeing in the marketplace. So my question is, what are those big trends that you're seeing when you speak to technology executives which is a big part of what you do? >> So the trends are, I think, are a couplefold, and it's funny about Hadoop, but I think the final nails in the coffin have been hammered in with the Hadoop space now. So that leading trend, of where organizations are going, we're seeing organizations wanting to go cloud first. But they really struggle with these data-intensive workloads. Do I have to store my data in every cloud? Am I going to pay egress in every cloud? Well, what if my data scientists are most comfortable in AWS, but my data analysts are more comfortable in Azure, how do I provide that multi-cloud experience for these data workloads? That's the number one question I get asked, and that's probably the biggest struggle for these chief data officers, chief digital officers, is how do I allow that innovation but maintaining control over my data compliance especially when we talk international standards, like GDPR, to restrict access to data, the ability to be forgotten, in these multinational organizations how do I sort of square all of those components? Then how do I do that in a way that just doesn't lock me into another appliance or software vendor stack? I want to be able to work within the confines of the ecosystem, use the tools that are out there, but allow my organization to innovate in a very structured compliant way. >> I mean, I love this conversation and you just, to me, you hit on the key word, which is organization. I want to talk about what some of the barriers are. And again, you heard my wrap up front. I really do think that we've created, not only from a technology standpoint, and yes the tooling is important, but so is the organization, and as you said an analyst might want to work in one environment, a data scientist might want to work in another environment. The data may be very distributed. You might have situations where they're supporting the line of business. The line of business is trying to build new products, and if I have to go through this monolithic centralized organization, that's a barrier for me. And so we're seeing that change, that I kind of alluded to it up front, but what do you see as the big barriers that are blocking this vision from becoming a reality? >> It very much is organization, Dave. The technology's actually no longer the inhibitor here. We have enough technology, enough choices out there that technology is no longer the issue. It's the organization's willingness to embrace some of those technologies and put just the right level of control around accessing that data. Because if you don't allow your data scientists and data analysts to innovate, they're going to do one of two things. They're either going to leave, and then you have a huge problem keeping up with your competitors, or they're going to do it anyway. And they're going to do it in a way that probably doesn't comply with the organizational standards. So the more progressive enterprises that I speak with have realized that they need to allow these various analytical users to choose the tools they want, to self provision those as they need to and get access to data in a secure and compliant way. And that means we need to bring the cloud to generally where the data is because it's a heck of a lot easier than trying to bring the data where the cloud is, while conforming to those data principles, and that's HPE's strategy. You've heard it from our CEO for years now. Everything needs to be delivered as a service. It's Ezmeral Software that enables that capability, such as self-service and secure data provisioning, et cetera. >> Again, I love this conversation because if you go back to the early days of Hadoop, that was what was profound about a Hadoop. Bring five megabytes of code to a petabyte of data, and it didn't happen. We shoved it all into a data lake and it became a data swamp. And that's okay, it's a one dot oh, you know, maybe in data as is like data warehouses, data hubs, data lakes, maybe this is now a four dot oh, but we're getting there. But open source, one thing's for sure, it continues to gain momentum, it's where the innovation is. I wonder if you could comment on your thoughts on the role that open-source software plays for large enterprises, maybe some of the hurdles that are there, whether they're legal or licensing, or just fears, how important is open source software today? >> I think the cloud native developments, following the 12 factor applications, microservices based, paved the way over the last decade to make using open source technology tools and libraries mainstream. We have to tip our hats to Red Hat, right? For allowing organizations to embrace something so core as an operating system within the enterprise. But what everyone realized is that it's support that's what has to come with that. So we can allow our data scientists to use open source libraries, packages, and notebooks, but are we going to allow those to run in production? So if the answer is no, well? Then if we can't get support, we're not going to allow that. So where HPE Ezmeral is taking the lead here is, again, embracing those open source capabilities, but, if we deploy it, we're going to support it. Or we're going to work with the organization that has the committers to support it. You call HPE, the same phone number you've been calling for years for tier one 24 by seven support, and we will support your Kubernetes, your Spark your Presto, your Hadoop ecosystem of components. We're that throat to choke and we'll provide, all the way up to break/fix support, for some of these components and packages, giving these large enterprises the confidence to move forward with open source, but knowing that they have a trusted partner in which to do so. >> And that's why we've seen such success with say, for instance, managed services in the cloud, versus throwing out all the animals in the zoo and say, okay, figure it out yourself. But then, of course, what we saw, which was kind of ironic, was people finally said, "Hey, we can do this in the cloud more easily." So that's where you're seeing a lot of data land. However, the definition of cloud or the notion of cloud is changing. No longer is it just this remote set of services, "Somewhere out there in the cloud", some data center somewhere, no, it's moving to on-prem, on-prem is creating hybrid connections. You're seeing co-location facilities very proximate to the cloud. We're talking now about the edge, the near edge, and the far edge, deeply embedded. So that whole notion of cloud is changing. But I want to ask you, there's still a big push to cloud, everybody has a cloud first mantra, how do you see HPE competing in this new landscape? >> I think collaborating is probably a better word, although you could certainly argue if we're just leasing or renting hardware, then it would be competition, but I think again... The workload is going to flow to where the data exists. So if the data's being generated at the edge and being pumped into the cloud, then cloud is prod. That's the production system. If the data is generated via on-premises systems, then that's where it's going to be executed. That's production, and so HPE's approach is very much co-exist. It's a co-exist model of, if you need to do DevTests in the cloud and bring it back on-premises, fine, or vice versa. The key here is not locking our customers and our prospective clients into any sort of proprietary stack, as we were talking about earlier, giving people the flexibility to move those workloads to where the data exists, that is going to allow us to continue to get share of wallet, mind share, continue to deploy those workloads. And yes, there's going to competition that comes along. Do you run this on a GCP or do you run it on a GreenLake on-premises? Sure, we'll have those conversations, but again, if we're using open source software as the foundation for that, then actually where you run it is less relevant. >> So there's a lot of choices out there, when it comes to containers generally and Kubernetes specifically, and you may have answered this, you get the zero trust component, you've got the orchestrator, you've got the scale-out piece, but I'm interested in hearing in your words why an enterprise would or should consider Ezmeral instead of alternatives to Kubernetes solutions? >> It's a fair question, and it comes up in almost every conversation. "Oh, we already do Kubernetes, we have a Kubernetes standard", and that's largely true in most of the enterprises I speak to. They're using one of the many on-premises distributions to their cloud distributions, and they're all fine. They're all fine for what they were built for. Ezmeral was generally built for something a little different. Yes, everybody can run microservices based applications, DevOps based workloads, but where Ezmeral is different is for those data intensive, in clustered applications. Those sorts of applications require a certain degree of network awareness, persistent storage, et cetera, which requires either a significant amount of intelligence. Either you have to write in Golang, or you have to write your own operators, or Ezmeral can be that easy button. We deploy those stateful applications, because we bring a persistent storage layer, that came from MapR. We're really good at deploying those stateful clustered applications, and, in fact, we've opened sourced that as a project, KubeDirector, that came from BlueData, and we're really good at securing these, using SPIFFE and SPIRE, to ensure that there's that zero trust approach, that came from Scytale, and we've wrapped all of that in Kubernetes. So now you can take the most difficult, gnarly complex data intensive applications in your enterprise and deploy them using open source. And if that means we have to co-exist with an existing Kubernetes distribution, that's fine. That's actually the most common scenario that I walk into is, I start asking about, "What about these other applications you haven't done yet?" The answer is usually, "We haven't gotten to them yet", or "We're thinking about it", and that's when we talk about the capabilities of Ezmeral and I usually get the response, "Oh. A, we didn't know you existed and B well, let's talk about how exactly you do that." So again, it's more of a co-exist model rather than a compete with model, Dave. >> Well, that makes sense. I mean, I think again, a lot of people, they go, "Oh yeah, Kubernetes, no big deal. It's everywhere." But you're talking about a solution, kind of taking a platform approach with capabilities. You got to protect the data. A lot of times, these microservices aren't so micro and things are happening really fast. You've got to be secure. You got to be protected. And like you said, you've got a single phone number. You know, people say one throat to choke. Somebody in the media the other day said, "No, no. Single hand to shake." It's more of a partnership. I think that's apropos for HPE, Matt, with your heritage. >> That one's better. >> So, you know, thinking about this whole, we've gone through the pre big data days and the big data was all the hot buzzword. People don't maybe necessarily use that term anymore, although the data is bigger and getting bigger, which is kind of ironic. Where do you see this whole space going? We've talked about that sort of trend toward breaking down the silos, decentralization, maybe these hyper specialized roles that we've created, maybe getting more embedded or aligned with the line of business. How do you see... It feels like the next 10 years are going to be different than the last 10 years. How do you see it, Matt? >> I completely agree. I think we are entering this next era, and I don't know if it's well-defined. I don't know if I would go out on an edge to say exactly what the trend is going to be. But as you said earlier, data lakes really turned into data swamps. We ended up with lots of them in the enterprise, and enterprises had to allow that to happen. They had to let each business unit or each group of users collect the data that they needed and IT sort of had to deal with that down the road. I think that the more progressive organizations are leading the way. They are, again, taking those lessons from cloud and application developments, microservices, and they're allowing a freedom of choice. They're allowing data to move, to where those applications are, and I think this decentralized approach is really going to be king. You're going to see traditional software packages. You're going to see open source. You're going to see a mix of those, but what I think will probably be common throughout all of that is there's going to be this sense of automation, this sense that, we can't just build an algorithm once, release it and then wish it luck. That we've got to treat these analytics, and these data systems, as living things. That there's life cycles that we have to support. Which means we need to have DevOps for our data science. We need a CI/CD for our data analytics. We need to provide engineering at scale, like we do for software engineering. That's going to require automation, and an organizational thinking process, to allow that to actually occur. I think all of those things. The sort of people, process, products. It's all three of those things that are going to have to come into play, but stealing those best ideas from cloud and application developments, I think we're going to end up with probably something new over the next decade or so. >> Again, I'm loving this conversation, so I'm going to stick with it for a sec. It's hard to predict, but some takeaways that I have, Matt, from our conversation, I wonder if you could comment? I think the future is more open source. You mentioned automation, Devs are going to be key. I think governance as code, security designed in at the point of code creation, is going to be critical. It's no longer going be a bolt on. I don't think we're going to throw away the data warehouse or the data hubs or the data lakes. I think they become a node. I like this idea, I don't know if you know Zhamak Dehghani? but she has this idea of a global data mesh where these tools, lakes, whatever, they're a node on the mesh. They're discoverable. They're shareable. They're governed in a way. I think the mistake a lot of people made early on in the big data movement is, "Oh, we got data. We have to monetize our data." As opposed to thinking about what products can I build that are based on data that then can lead to monetization? I think the other thing I would say is the business has gotten way too technical. (Dave chuckles) It's alienated a lot of the business lines. I think we're seeing that change, and I think things like Ezmeral that simplify that, are critical. So I'll give you the final thoughts, based on my rant. >> No, your rant is spot on Dave. I think we are in agreement about a lot of things. Governance is absolutely key. If you don't know where your data is, what it's used for, and can apply policies to it. It doesn't matter what technology you throw at it, you're going to end up in the same state that you're essentially in today, with lots of swamps. I did like that concept of a node or a data mesh. It kind of goes back to the similar thing with a service mesh, or a set of APIs that you can use. I think we're going to have something similar with data. The trick is always, how heavy is it? How easy is it to move about? I think there's always going to be that latency issue, maybe not within the data center, but across the WAN. Latency is still going to be key, which means we need to have really good processes to be able to move data around. As you said, govern it. Determine who has access to what, when, and under what conditions, and then allow it to be free. Allow people to bring their choice of tools, provision them how they need to, while providing that audit, compliance and control. And then again, as you need to provision data across those nodes for those use cases, do so in a well measured and governed way. I think that's sort of where things are going. But we keep using that term governance, I think that's so key, and there's nothing better than using open source software because that provides traceability, auditability and this, frankly, openness that allows you to say, "I don't like where this project's going. I want to go in a different direction." And it gives those enterprises a control over these platforms that they've never had before. >> Matt, thanks so much for the discussion. I really enjoyed it. Awesome perspectives. >> Well thank you for having me, Dave. Excellent conversation as always. Thanks for having me again. >> You're very welcome. And thank you for watching everybody. This is theCube's continuous coverage of HPE Discover 2021. Of course, the virtual version. Next year, we're going to be back live. My name is Dave Volante. Keep it right there. (upbeat music)

Published Date : Jun 22 2021

SUMMARY :

and ensure the productivity of data teams. Good to see you again, Dave. Where do you spend your time? and practices into the data world. and at the time a lot and practices to these types of workloads, and MapR always had the best product, the ability to be forgotten, and if I have to go through this the cloud to generally where it continues to gain momentum, the committers to support it. of cloud or the notion that is going to allow us in most of the enterprises I speak to. You got to be protected. and the big data was all the hot buzzword. of that is there's going to so I'm going to stick with it for a sec. and then allow it to be free. for the discussion. Well thank you for having me, Dave. Of course, the virtual version.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

Matt MaccauxPERSON

0.99+

MattPERSON

0.99+

Dave VolantePERSON

0.99+

HPORGANIZATION

0.99+

CytecORGANIZATION

0.99+

Next yearDATE

0.99+

two partsQUANTITY

0.99+

AWSORGANIZATION

0.99+

Zhamak DehghaniPERSON

0.99+

HPEORGANIZATION

0.99+

BlueDataORGANIZATION

0.99+

todayDATE

0.99+

HadoopTITLE

0.99+

12 factorQUANTITY

0.99+

each business unitQUANTITY

0.99+

GDPRTITLE

0.98+

GolangTITLE

0.98+

each groupQUANTITY

0.98+

EzmeralORGANIZATION

0.97+

threeQUANTITY

0.97+

zero trustQUANTITY

0.97+

single phone numberQUANTITY

0.96+

EzmeralPERSON

0.96+

singleQUANTITY

0.96+

oneQUANTITY

0.96+

sevenQUANTITY

0.95+

kumbayaORGANIZATION

0.95+

one thingQUANTITY

0.93+

Big DataTITLE

0.91+

two thingsQUANTITY

0.9+

theCubeORGANIZATION

0.9+

next 10 yearsDATE

0.89+

four dotQUANTITY

0.89+

first mantraQUANTITY

0.89+

last 10 yearsDATE

0.88+

Ezmeral SoftwareORGANIZATION

0.88+

one environmentQUANTITY

0.88+

MapRORGANIZATION

0.87+

ScytaleORGANIZATION

0.87+

next decadeDATE

0.86+

firstQUANTITY

0.86+

KubernetesTITLE

0.86+

SPIFFETITLE

0.84+

SPIRETITLE

0.83+

tier oneQUANTITY

0.82+

SparkTITLE

0.8+

five megabytes of codeQUANTITY

0.77+

KubeDirectorORGANIZATION

0.75+

one questionQUANTITY

0.74+

Single handQUANTITY

0.74+

yearsQUANTITY

0.73+

last decadeDATE

0.73+

2021DATE

0.73+

AzureTITLE

0.7+

Talend Drives Data Health for Business Decisions


 

>>with me are and Crystal Graham, a k a a C. She's the C R O of talent, and Chris Degnan is the C R. O of Snowflake. We have to go to market heavies on this section, folks. Welcome to the Cube. >>Thank you. >>Thanks for having us. >>That's our pleasure. And so let's let's talk about digital transformation, right? Everybody loves to talk about it. It zone overused term. I know, but what does it mean? Let's talk about the vision of the data cloud for snowflake and digital transformation. A. C. We've been hearing a lot about digital transformation over the past few years. It means a lot of things to a lot of people. What are you hearing from customers? How are they thinking about when I come, sometimes called DX and what's important to them? Maybe address some of the challenges even that they're facing >>Dave. That's a great question to our customers. Digital transformation literally means staying in business or not. Um, it's that simple. Um, the reality is most agree on the opportunity to modernize data management infrastructure that they need to do that to create the speed and efficiency and cost savings that digital transformation promises. But but now it's beyond that. What's become front and center for our customers is the need for trusted data, supported by an agile infrastructure that and allow a company to pivot operations as they need. Um, let me give you an example of that. One of our customers, a medical device company, was on their digital journey when Cove it hit. They started last year in 2019, and as the pandemic hit at the earlier part of this year, they really needed to take a closer look at their supply chain. On went through an entire supply chain optimization, having been completely disrupted in the you think about the logistics, the transportation, the location of where they needed to get parts, all those things when they were actually facing a need to increase production by about 20 times. In order to meet the demand on DSO, you can imagine what that required them to do and how reliant they were on clean, compliant, accurate data that they could use to make extremely critical decisions for their business. And in that situation, not just for their business but decisions. That would be the about saving lives, so the stakes have gotten a lot higher, and that's that's just one industry. It's it's really across all industries. So when you think about that, really, when you talk to any of our customers, digital transformation is really mean. It really means now having the confidence in data to support the business at critical times with accurate, trusted information. >>Chris, I've always said a key part of digital transformation is really putting data at the core of everything you know, Not not the manufacturing plant, that the core in the data around it, but putting data at the center. It seems like that's what Snowflake is bringing to the table. Can you comment? >>Yeah. I mean, I think if if I look across what's happening and especially a Z A. C said, you know, through co vid is customers are bringing more and more data sets. They wanna make smarter business decisions based on data making, data driven decisions. And we're seeing acceleration of of data moving to the cloud because they're just in abundance of data. And it's challenging to actually manage that data on premise and and as we see those those customers move those large data sets. Think what A C said is spot on is that customers don't just want to have their data in the cloud. But they actually want to understand what the data is, understand, who has access to that data, making sure that they're actually making smart business decisions based on that data. And I think that's where the partnership between both talent and stuff like are really tremendous, where you know we're helping our customers bring their data assets to to the cloud, really landing it and allowing them to do multiple, different types of workloads on top of this data cloud platform and snowflake. And then I think again what talent is bringing to the table is really helping the customer make sure that they trust the data that they're actually seeing. And I think that's a really important aspect of digital transformation today. >>Awesome and I want to get into the partnership. But I don't wanna leave the pandemic just yet. A c. I want to ask you how it's affected customer priorities and timelines with regard to modernizing their data operations and what I mean to that they think about the end and life cycle of going from raw data insights and how they're approaching those life cycles. Data quality is a key part of, you know, a good data quality. You're gonna I mean, obviously you want to reiterate, and you wanna move fast. But if if it's garbage out, then you got to start all over again. So what are you seeing in terms of the effect of the pandemic and the urgency of modernizing those data operations? >>Yeah, but like Chris just said it accelerated things for those companies that hadn't quite started their digital journey. Maybe it was something that they had budgeted for but hadn't quite resourced completely many of them. This is what it took to to really get them off the dying from that perspective, because there was no longer the the opportunity to wait. They needed to go and take care of this really critical component within their business. So, um, you know what? What Covic, I think, has taught companies have taught all of us is how vulnerable even the largest. Um, you know, companies on most robust enterprises could be those companies that had already begun Their digital transformation, maybe even years ago, had already started that process and we're in a better. We're in a great position in their journey. They fared a lot better and we're able to be agile. Were able Thio in a shift. Priorities were able to go after what they needed to do toe to run their businesses better and be able to do so with riel clarity and confidence. And I think that's really the second piece of it is, um or the last six months people's lives have really depended on the data people's lives that have really dependent on uncertainty. The pandemic has highlighted the importance of reliable and trustworthy information, not just the proliferation of data. And as Chris mentioned this data being available, it's really about making sure that you can use that data as an asset Ondas and that the greatest weapon we all have, really there is the information and good information to make a great business decisions. >>Of course, Chris, the other thing we've seen is the acceleration toe to the cloud, which is obviously you're born in the cloud. It's been a real tailwind. What are you seeing in that regard from your I was gonna say in the field, but from your zoom >>advantage. Yeah, well, I think you know, a C talked about supply chain, um, analytics in in her previous example. And I think one of the things that that we did is we hosted a data set. The covert data set over 19 data set within snowflakes, data marketplace. And we saw customers that were, you know, initially hesitant to move to the cloud really accelerate there. They're used to just snowflake in the cloud with this cove Cove. A data set on Ben. We had other customers that are, you know, in the retail space, for example, and use the cova data set to do supply chain analytics and and and accelerated. You know, it helped them make smarter business decisions on that. So So I'd say that you know, Cove, it has, you know, made customers that maybe we're may be hesitant to to start their journey in the cloud, move faster. And I've seen that, you know, really go at a blistering pace right now. >>You know, you just talked about, you know, value because it's all about value. But the old days of data quality in the early days of Chief Data, Officer all the focus was on risk avoidance. How do I get rid of data? How long do I have to keep it? And that has flipped dramatically. You know, sometime during the last decade, >>you can't get away too much from the need for quality data and and govern data. I think that's the first step. You can't really get to, um, you know, to trust the data without those components. And but to your point, the chief Data officers role, I would say, has changed pretty significantly. And in the round tables that I've participated in over the last, you know, several months. It's certainly a topic that they bring to the table that they'd like Thio chat with their peers about in terms of how they're navigating through the balance, that they still need toe to manage to the quality they still need to manage to the governance they still need. Thio ensure that that they're delivering that trusted information to the business. But now, on the flip side as well, they're being relied upon to bring new insights. And that's on bit's, um, really requiring them to work more cross functionally than they may have needed to in the past where that's been become a big part of their job is being that evangelist for data the evangelist. For that, those insights and being able to bring in new ideas for how the business can operate and identified, you know, not just not just operational efficiencies, but revenue opportunities, ways that they can shift. All you need to do is take a look at, for example, retail. You know, retail was heavily impacted by the pandemic this year on git shows how easily an industry could be could be just kind of thrown off its course simply by by a just a significant change like that. Andi need to be able to to adjust. And this is where, um when I've talked to some of the CEOs of the retail customers that we work with, they've had to really take a deep look at how they can leverage their the data at their fingertips to identify new in different ways in which they can respond to customer demands. So it's a it's a whole different dynamic. For sure, I it doesn't mean that that you walk away from the other and the original part of the role of the or the areas in which they were maybe more defined a few years ago when the role of the chief data officer became very popular. I do believe it's more of a balance at this point and really being able to deliver great value to the organization with the insights that they could bring >>well, is he stayed on that for a second. So you have this concept of data health, and I guess what kind of getting tad is that In the early days of Big Data Hadoop, it was just a lot of rogue efforts going on. People realize, Wow, there's no governance And what what seems like what snowflake and talent are trying to do is to make that the business doesn't have to worry about it. Build, build that in, don't bolt it on. But what's what's this notion of data health that you talk about? >>Companies can measure and do measure just about everything, every aspect of their business health. Um, except what's interesting is they don't have a great way to measure the health of their data, and this is an asset that they truly rely on. Their future depends on is that health of their data. And so if we take a little bit of a step back, maybe let's take a look at an example of a customer experiences to kind of make a little bit of a delineation between the differences of data, data, quality, data trust in what data health truly is. We work with a lot of health, a lot of hotel chains. And like all companies today, hotels collect a ton of information. There's mountains of information, private information about their customers through the loyalty clubs and all the information that they collect from there, the front desk, the systems that store their data. You can start to imagine the amount of information that a hotel chain has about an individual, and frequently that information has, you know, errors in it, such as duplicate entries, you know. Is it a Seagram, or is it in Chris Telegram? Same person, Slightly different, depending on how I might have looked or how I might have checked in at the time. And sometimes the data is also mismanaged, where because it's in so many different locations, it could be accessed by the wrong person of someone that wasn't necessarily intended to have that kind of visibility. And so these are examples of when you look at something like that. Now you're starting to get into, you know, privacy regulations and other kinds of things that could be really impactful to a business if data is in the wrong hands or the wrong data is in the wrong hands. So, you know, in a world of misinformation and mistrust, which is around us every single day, um, talent has really invented a way for businesses to verify the veracity, the accuracy of their data. And that's where data health really comes in Is being able to use a trust score to measure the data health on. That's what we have recently introduced is this concept of the trust score, something that can actually provide and measure, um, at the accuracy and the health of the data all the way down to an individual report. We believe that that that truly, you know, provides the explainable trust issue resolution, the kinds of things that companies are looking for in that next stage of overall data management. >>Thank you, Chris. Bring us home. So, one of the key aspects of what snowflake is doing is building out the ecosystem is very, very important. Really talk about how how you guys we're partnering and adding value in particular things that you're seeing customers do today within the ecosystem or with the help of the ecosystem and stuff like that they weren't able to do previously. >>Yeah. I mean, I think you know a C mentioned it. You mentioned it. You know, we spent I spent a lot of my zoom days talking Thio, chief data officers and as I'm talking to the chief data officers that they are so concerned their responsibility on making sure that the business users air getting accurate data so that they view that as data governance is one aspect of it. But the other aspect is the circumference of the data of where it sits and who has access to that data and making sure it's super secure. And I think you know, snowflake is a tremendous landing spot being a data warehouse or data cloud data platform as a service, you know, we take care of all the, you know, securing that data. And I think where talent really helps our customer base is helps them exactly What what is he talked about is making sure that you know myself as a business users someone like myself who's looking at data all the time, trying to make decisions on how many sales people I wanna hire house my forecast coming. You know, how's the how's the product working all that stuff? I need to make sure that I'm actually looking at at good data. And I think the combination of all sitting in a single repository like snowflake and then layering it on top or laying a tool like talent on top of it, where I can actually say, Yeah, that is good data. It helps me make smarter decisions faster. And ultimately, I think that's really where the ecosystem plays. An incredibly important, important role for snowflake in our customers, >>guys to great cast. I wish we had more time, but we gotta go on dso Thank you so much for sharing your perspectives. A great conversation

Published Date : Nov 19 2020

SUMMARY :

She's the C R O of talent, and Chris Degnan is the C R. O of Snowflake. It means a lot of things to a lot of people. having been completely disrupted in the you think about the logistics, of everything you know, Not not the manufacturing plant, that the core in the data around it, And it's challenging to actually manage that data on premise and and as we I want to ask you how it's affected customer priorities and timelines with regard it's really about making sure that you can use that data as an asset Ondas and that Of course, Chris, the other thing we've seen is the acceleration toe to the cloud, which is obviously you're So So I'd say that you know, Cove, it has, you know, days of data quality in the early days of Chief Data, Officer all the focus was on And in the round tables that I've participated in over the last, that the business doesn't have to worry about it. We believe that that that truly, you know, provides the explainable trust So, one of the key aspects of what snowflake is doing And I think you know, snowflake is a tremendous landing spot being a data warehouse or data cloud I wish we had more time, but we gotta go on dso Thank you so much for sharing your perspectives.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ChrisPERSON

0.99+

Chris DegnanPERSON

0.99+

Crystal GrahamPERSON

0.99+

ThioPERSON

0.99+

DavePERSON

0.99+

last yearDATE

0.99+

first stepQUANTITY

0.99+

bothQUANTITY

0.99+

OneQUANTITY

0.99+

second pieceQUANTITY

0.99+

CoveORGANIZATION

0.99+

about 20 timesQUANTITY

0.97+

todayDATE

0.97+

one industryQUANTITY

0.97+

SeagramORGANIZATION

0.97+

oneQUANTITY

0.97+

pandemicEVENT

0.97+

one aspectQUANTITY

0.97+

2019DATE

0.95+

BenPERSON

0.95+

this yearDATE

0.93+

few years agoDATE

0.93+

last decadeDATE

0.91+

single repositoryQUANTITY

0.91+

over 19 data setQUANTITY

0.9+

last six monthsDATE

0.88+

Big Data HadoopTITLE

0.83+

yearsDATE

0.82+

TalendORGANIZATION

0.81+

coveORGANIZATION

0.76+

CovicPERSON

0.73+

secondQUANTITY

0.7+

single dayQUANTITY

0.7+

SnowflakeORGANIZATION

0.69+

pastDATE

0.63+

R.PERSON

0.59+

ofDATE

0.56+

tonQUANTITY

0.49+

SnowflakeEVENT

0.48+

TelegramTITLE

0.48+

DXPERSON

0.45+

CubeORGANIZATION

0.38+

Thought.Leaders Digital 2020


 

>> Voice Over: Data is at the heart of transformation, and the change every company needs to succeed. But it takes more than new technology. It's about teams, talent and cultural change. Empowering everyone on the front lines to make decisions, all at the speed of digital. The transformation starts with you, it's time to lead the way, it's time for thought leaders. (soft upbeat music) >> Welcome to Thought.Leaders a digital event brought to you by ThoughtSpot, my name is Dave Vellante. The purpose of this day is to bring industry leaders and experts together to really try and understand the important issues around digital transformation. We have an amazing lineup of speakers, and our goal is to provide you with some best practices that you can bring back and apply to your organization. Look, data is plentiful, but insights are not, ThoughtSpot is disrupting analytics, by using search and machine intelligence to simplify data analysis and really empower anyone with fast access to relevant data. But in the last 150 days, we've had more questions than answers. Creating an organization that puts data and insights at their core, requires not only modern technology but leadership, a mindset and a culture, that people often refer to as data-driven. What does that mean? How can we equip our teams with data and fast access to quality information that can turn insights into action? And today we're going to hear from experienced leaders who are transforming their organizations with data, insights, and creating digital first cultures. But before we introduce our speakers, I'm joined today by two of my co-hosts from ThoughtSpot. First, chief data strategy officer of the ThoughtSpot is Cindi Howson, Cindi is an analytics and BI expert with 20 plus years experience, and the author of Successful Business Intelligence: Unlock the Value of BI & Big Data. Cindi was previously the lead analyst at Gartner for the data and analytics Magic Quadrant. In early last year, she joined ThoughtSpot to help CEOs and their teams understand how best to leverage analytics and AI for digital transformation. Cindi great to see you, welcome to the show. >> Thank you Dave, nice to join you virtually. >> Now our second cohost and friend of theCUBE is ThoughtSpot CEO Sudheesh Nair Hello Sudheesh, how are you doing today? >> I'm well, good to talk to you again. >> That's great to see you, thanks so much for being here. Now Sudheesh, please share with us why this discussion is so important to your customers and of course to our audience, and what they're going to learn today. (upbeat music) >> Thanks Dave, I wish you were there to introduce me into every room that I walk into because you have such an amazing way of doing it. It makes me feel also good. Look, since we have all been you know, cooped up in our homes, I know that the vendors like us, we have amped up our sort of effort to reach out to you with, invites for events like this. So we are getting very more invites for events like this than ever before. So when we started planning for this, we had three clear goals that we wanted to accomplish. And our first one, that when you finish this and walk away, we want to make sure that you don't feel like it was a waste of time, we want to make sure that we value your time, then this is going to be used. Number two, we want to put you in touch with industry leaders and thought leaders, generally good people, that you want to hang around with long after this event is over. And number three, as we plan through this, you know we are living through these difficult times we want this event to be more of an uplifting and inspiring event too. Now, the challenge is how do you do that with the team being change agents, because teens and as much as we romanticize it, it is not one of those uplifting things that everyone wants to do or likes to do. The way I think of it, changes sort of like, if you've ever done bungee jumping, and it's like standing on the edges, waiting to make that one more step you know, all you have to do is take that one step and gravity will do the rest, but that is the hardest step today. Change requires a lot of courage, and when we are talking about data and analytics, which is already like such a hard topic not necessarily an uplifting and positive conversation most businesses, it is somewhat scary, change becomes all the more difficult. Ultimately change requires courage, courage to first of all, challenge the status quo. People sometimes are afraid to challenge the status quo because they are thinking that you know, maybe I don't have the power to make the change that the company needs, sometimes they feel like I don't have the skills, sometimes they may feel that I'm probably not the right person to do it. Or sometimes the lack of courage manifest itself as the inability to sort of break the silos that are formed within the organizations when it comes to data and insights that you talked about. You know, that are people in the company who are going to have the data because they know how to manage the data, how to inquire and extract, they know how to speak data, they have the skills to do that. But they are not the group of people who have sort of the knowledge, the experience of the business to ask the right questions off the data. So there is the silo of people with the answers, and there is a silo of people with the questions, and there is gap, this sort of silos are standing in the way of making that necessary change that we all know the business needs. And the last change to sort of bring an external force sometimes. It could be a tool, it could be a platform, it could be a person, it could be a process but sometimes no matter how big the company is or how small the company is you may need to bring some external stimuli to start the domino of the positive changes that are necessary. The group of people that we are brought in, the four people, including Cindi that you will hear from today are really good at practically telling you how to make that step, how to step off that edge, how to dress the rope, that you will be safe and you're going to have fun, you will have that exhilarating feeling of jumping for a bungee jump, all four of them are exceptional, but my owner is to introduce Michelle. And she's our first speaker, Michelle I am very happy after watching our presentation and reading your bio that there are no country vital worldwide competition for cool parents, because she will beat all of us. Because when her children were small, they were probably into Harry Potter and Disney and she was managing a business and leading change there. And then as her kids grew up and got to that age where they like football and NFL, guess what? She's the CIO of NFL, what a cool mom. I am extremely excited to see what she's going to talk about. I've seen this slides, a bunch of amazing pictures, I'm looking to see the context behind it, I'm very thrilled to make that client so far, Michelle, I'm looking forward to her talk next. Welcome Michelle, it's over to you. (soft upbeat music) >> I'm delighted to be with you all today to talk about thought leadership. And I'm so excited that you asked me to join you because today I get to be a quarterback. I always wanted to be one, and I thought this is about as close as I'm ever going to get. So I want to talk to you about quarterbacking our digital revolution using insights data, and of course as you said, leadership. First a little bit about myself, a little background as I said, I always wanted to play football, and this is something that I wanted to do since I was a child, but when I grew up, girls didn't get to play football. I'm so happy that that's changing and girls are now doing all kinds of things that they didn't get to do before. Just this past weekend on an NFL field, we had a female coach on two sidelines, and a female official on the field. I'm a lifelong fan and student of the game of football, I grew up in the South, you can tell from the accent and in the South is like a religion and you pick sides. I chose Auburn University working in the Athletic Department, so I'm testament to you can start the journey can be long it took me many, many years to make it into professional sports. I graduated in 1987 and my little brother, well, not actually not so little, he played offensive line for the Alabama Crimson Tide. And for those of you who know SEC football you know, this is a really big rivalry. And when you choose sides, your family is divided, so it's kind of fun for me to always tell the story that my dad knew his kid would make it to the NFL he just bet on the wrong one. My career has been about bringing people together for memorable moments at some of America's most iconic brands. Delivering memories and amazing experiences that delight from Universal Studios, Disney to my current position as CIO of the NFL. In this job I'm very privileged to have the opportunity to work with the team, that gets to bring America's game to millions of people around the world. Often I'm asked to talk about how to create amazing experiences for fans, guests, or customers. But today I really wanted to focus on something different and talk to you about being behind the scenes and backstage. Because behind every event every game, every awesome moment is execution, precise repeatable execution. And most of my career has been behind the scenes, doing just that, assembling teams to execute these plans, and the key way that companies operate at these exceptional levels, is making good decisions, the right decisions at the right time and based upon data, so that you can translate the data into intelligence and be a data-driven culture. Using data and intelligence is an important way that world-class companies do differentiate themselves. And it's the lifeblood of collaboration and innovation. Teams that are working on delivering these kinds of world-class experiences are often seeking out and leveraging next generation technologies and finding new ways to work. I've been fortunate to work across three decades of emerging experiences, which each required emerging technologies to execute. A little bit first about Disney, in the 90s I was at Disney, leading a project called destination Disney, which it's a data project, it was a data project, but it was CRM before CRM was even cool. And then certainly before anything like a data-driven culture was ever brought up. But way back then we were creating a digital backbone that enabled many technologies for the things that you see today, like the magic band, just these magical express. My career at Disney began in finance, but Disney was very good about rotating you around, and it was during one of these rotations that I became very passionate about data. I kind of became a pain in the butt to the IT team, asking for data more and more data. And I learned that all of that valuable data was locked up in our systems, all of our point of sales systems, our reservation systems, our operation systems, and so I became a shadow IT person in marketing, ultimately leading to moving into IT, and I haven't looked back since. In the early 2000s I was at Universal Studios Theme Park as their CIO, preparing for and launching the wizarding world of Harry Potter. Bringing one of history's most memorable characters to life required many new technologies and a lot of data. Our data and technologies were embedded into the rides and attractions. I mean, how do you really think a wand selects you at a wine shop. As today at the NFL, I am constantly challenged to do leading edge technologies using things like sensors, AI, machine learning, and all new communication strategies, and using data to drive everything from player performance, contracts to where we build new stadiums and hold events. With this year being the most challenging, yet rewarding year in my career at the NFL. In the middle of a global pandemic, the way we are executing on our season is leveraging data from contract tracing devices joined with testing data. Talk about data, actually enabling your business without it we wouldn't be having a season right now. I'm also on the board of directors of two public companies, where data and collaboration are paramount. First RingCentral, it's a cloud based unified communications platform, and collaboration with video message and phone, all in one solution in the cloud. And Quotient Technologies, whose product is actually data. The tagline at quotient is the result in knowing. I think that's really important, because not all of us are data companies, where your product is actually data. But we should operate more like your product is data. I'd also like to talk to you about four areas of things to think about, as thought leaders in your companies. First just hit on it is change, how to be a champion and a driver of change. Second, how to use data to drive performance for your company, and measure performance of your company. Third, how companies now require intense collaboration to operate, and finally, how much of this is accomplished through solid data-driven decisions. First let's hit on change. I mean, it's evident today more than ever, that we are in an environment of extreme change. I mean, we've all been at this for years and as technologists we've known it, believed it, lived it, and thankfully for the most part knock on wood we were prepared for it. But this year everyone's cheese was moved, all the people in the back rooms, IT, data architects and others, were suddenly called to the forefront. Because a global pandemic has turned out to be the thing that is driving intense change in how people work and analyze their business. On March 13th, we closed our office at the NFL in the middle of preparing for one of our biggest events, our kickoff event, the 2020 Draft. We went from planning, a large event in Las Vegas under the bright lights red carpet stage to smaller events in club facilities. And then ultimately to one where everyone coaches, GMs, prospects and even our commissioner were at home in their basements. And we only had a few weeks to figure it out. I found myself for the first time being in the live broadcast event space, talking about bungee dress jumping, this is really what it felt like. It was one in which no one felt comfortable, because it had not been done before. But leading through this, I stepped up, but it was very scary, it was certainly very risky but it ended up being Oh, so rewarding when we did it. And as a result of this, some things will change forever. Second, managing performance. I mean, data should inform how you're doing and how to get your company to perform at this level, highest level. As an example, the NFL has always measured performance obviously, and it is one of the purest examples of how performance directly impacts outcome. I mean, you can see performance on the field, you can see points being scored and stats, and you immediately know that impact, those with the best stats, usually win the games. The NFL has always recorded stats, since the beginning of time, here at the NFL a little this year as our 100 and first year and athletes ultimate success as a player has also always been greatly impacted by his stats. But what has changed for us, is both how much more we can measure, and the immediacy with which it can be measured. And I'm sure in your business, it's the same, the amount of data you must have has got to have quadrupled recently and how fast you need it and how quickly you need to analyze it, is so important. And it's very important to break the silos between the keys to the data and the use of the data. Our next generation stats platform is taking data to a next level, it's powered by Amazon Web Services, and we gathered this data real time from sensors that are on players' bodies. We gather it in real time, analyze it, display it online and on broadcast, and of course it's used to prepare week to week in addition to what is a normal coaching plan would be. We can now analyze, visualize, route patterns speed, matchups, et cetera, so much faster than ever before. We're continuing to roll out sensors too, that we'll gather more and more information about player's performance as it relates to their health and safety. The third trend is really I think it's a big part of what we're feeling today and that is intense collaboration. And just for sort of historical purposes it's important to think about for those of you that are IT professionals and developers, you know more than 10 years ago, agile practices began sweeping companies or small teams would work together rapidly in a very flexible, adaptive and innovative way, and it proved to be transformational. However today, of course, that is no longer just small teams the next big wave of change, and we've seen it through this pandemic is that it's the whole enterprise that must collaborate and be agile. If I look back on my career when I was at Disney, we owned everything 100%, we made a decision, we implemented it, we were a collaborative culture but it was much easier to push change because you own the whole decision. If there was buy in from the top down, you got the people from the bottom up to do it, and you executed. At Universal, we were a joint venture, our attractions and entertainment was licensed, our hotels were owned and managed by other third parties. So influence and collaboration and how to share across companies became very important. And now here I am at the NFL and even the bigger ecosystem. We have 32 clubs that are all separate businesses 31 different stadiums that are owned by a variety of people. We have licensees, we have sponsors, we have broadcast partners. So it seems that as my career has evolved centralized control has gotten less and less and has been replaced by intense collaboration not only within your own company, but across companies. The ability to work in a collaborative way across businesses and even other companies that has been a big key to my success in my career. I believe this whole vertical integration and big top down decision making is going by the wayside in favor of ecosystems that require cooperation, yet competition to coexist. I mean the NFL is a great example of what we call coopertition, which is cooperation and competition. When in competition with each other, but we cooperate to make the company the best it can be. And at the heart of these items really are data-driven decisions and culture. Data on its own isn't good enough, you must be able to turn it to insights, partnerships between technology teams who usually hold the keys to the raw data, and business units who have the knowledge to build the right decision models is key. If you're not already involved in this linkage, you should be, data mining isn't new for sure. The availability of data is quadrupling and it's everywhere. How do you know what to even look at? How do you know where to begin? How do you know what questions to ask? It's by using the tools that are available for visualization and analytics and knitting together strategies of the company. So it begins with first of all making sure you do understand the strategy of the company. So in closing, just to wrap up a bit, many of you joined today looking for thought leadership on how to be a change agent, a change champion, and how to lead through transformation. Some final thoughts are be brave, and drive, don't do the ride along program, it's very important to drive, driving can be high risk but it's also high reward. Embracing the uncertainty of what will happen, is how you become brave, get more and more comfortable with uncertainty be calm and let data be your map on your journey, thanks. >> Michelle, thank you so much. So you and I share a love of data, and a love of football. You said you want to be the quarterback, I'm more an old wine person. (Michelle laughing) >> Well, then I can do my job without you. >> Great, and I'm getting the feeling now you know, Sudheesh is talking about bungee jumping. My boat is when we're past this pandemic, we both take them to the Delaware Water Gap and we do the cliff jumping. >> That sounds good, I'll watch. >> You'll watch, okay, so Michelle, you have so many stakeholders when you're trying to prioritize the different voices, you have the players, you have the owners you have the league, as you mentioned to the broadcasters your, your partners here and football mamas like myself. How do you prioritize when there's so many different stakeholders that you need to satisfy? I think balancing across stakeholders starts with aligning on a mission. And if you spend a lot of time understanding where everyone's coming from, and you can find the common thread ties them all together you sort of do get them to naturally prioritize their work, and I think that's very important. So for us at the NFL, and even at Disney, it was our core values and our core purpose is so well known, and when anything challenges that we're able to sort of lay that out. But as a change agent, you have to be very empathetic, and I would say empathy is probably your strongest skill if you're a change agent. And that means listening to every single stakeholder even when they're yelling at you, even when they're telling you your technology doesn't work and you know that it's user error, or even when someone is just emotional about what's happening to them and that they're not comfortable with it. So I think being empathetic and having a mission and understanding it, is sort of how I prioritize and balance. >> Yeah, empathy, a very popular word this year. I can imagine those coaches and owners yelling. So I thank you for your metership here. So Michelle, I look forward to discussing this more with our other customers and disruptors joining us in a little bit. (soft upbeat music) >> So we're going to take a hard pivot now and go from football to Chernobyl, Chernobyl, what went wrong? 1986, as the reactors were melting down they had the data to say, this is going to be catastrophic and yet the culture said, "No, we're perfect, hide it. Don't dare tell anyone," which meant they went ahead and had celebrations in Kiev. Even though that increased the exposure the additional thousands getting cancer, and 20,000 years before the ground around there and even be inhabited again, This is how powerful and detrimental a negative culture, a culture that is unable to confront the brutal facts that hides data. This is what we have to contend with, and this is why I want you to focus on having fostering a data-driven culture. I don't want you to be a laggard, I want you to be a leader in using data to drive your digital transformation. So I'll talk about culture and technology, isn't really two sides of the same coin, real-world impacts and then some best practices you can use to disrupt and innovate your culture. Now, oftentimes I would talk about culture and I talk about technology, and recently a CDO said to me, "You know Cindi, I actually think this is two sides of the same coin. One reflects the other, what do you think?" Let me walk you through this, so let's take a laggard. What is the technology look like? Is it based on 1990s BI and reporting largely parameterized reports on-premises data warehouses, or not even that operational reports, at best one enterprise data warehouse very slow moving and collaboration is only email. What does that culture tell you? Maybe there's a lack of leadership to change, to do the hard work that Sudheesh referred to. Or is there also a culture of fear, afraid of failure, resistance to change complacency and sometimes that complacency it's not because people are lazy, it's because they've been so beaten down every time a new idea is presented. It's like, no we're measured on least cost to serve. So politics and distrust, whether it's between business and IT or individual stakeholders is the norm. So data is hoarded, let's contrast that with a leader, a data and analytics leader, what is their technology look like? Augmented analytics, search and AI-driven insights not on-premises, but in the cloud and maybe multiple clouds. And the data is not in one place, but it's in a data lake, and in a data warehouse, a logical data warehouse. The collaboration is being a newer methods whether it's Slack or teams allowing for that real time decisioning or investigating a particular data point. So what is the culture in the leaders? It's transparent and trust, there is a trust that data will not be used to punish, that there is an ability to confront the bad news. It's innovation, valuing innovation in pursuit of the company goals, whether it's the best fan experience and player safety in the NFL or best serving your customers. It's innovative and collaborative. There's none of this, oh, well, I didn't invent that, I'm not going to look at that. There's still pride of ownership, but it's collaborating to get to a better place faster. And people feel empowered to present new ideas to fail fast, and they're energized, knowing that they're using the best technology and innovating at the pace that business requires. So data is democratized and democratized, not just for power users or analysts, but really at the point of impact what we like to call the new decision makers. Or really the frontline workers. So Harvard business review partnered with us to develop this study to say, just how important is this? They've been working at BI and analytics as an industry for more than 20 years. Why is it not at the front lines? Whether it's a doctor, a nurse, a coach, a supply chain manager a warehouse manager, a financial services advisor. 87% said they would be more successful if frontline workers were empowered with data-driven insights, but they recognize they need new technology to be able to do that. It's not about learning hard tools, the sad reality only 20% of organizations are actually doing this, these are the data-driven leaders. So this is the culture and technology, how did we get here? It's because state of the art keeps changing. So the first generation BI and analytics platforms were deployed on-premises, on small datasets really just taking data out of ERP systems that were also on-premises, and state of the art was maybe getting a management report, an operational report. Over time visual based data discovery vendors, disrupted these traditional BI vendors, empowering now analysts to create visualizations with the flexibility on a desktop, sometimes larger data sometimes coming from a data warehouse, the current state of the art though, Gartner calls it augmented analytics, at ThoughtSpot, we call it search and AI-driven analytics. And this was pioneered for large scale data sets, whether it's on-premises or leveraging the cloud data warehouses, and I think this is an important point. Oftentimes you, the data and analytics leaders, will look at these two components separately, but you have to look at the BI and analytics tier in lockstep with your data architectures to really get to the granular insights, and to leverage the capabilities of AI. Now, if you've never seen ThoughtSpot I'll just show you what this looks like, instead of somebody's hard coding a report, it's typing in search keywords and very robust keywords contains rank, top, bottom getting to a visualization that then can be pinned to an existing Pinboard that might also contain insights generated by an AI engine. So it's easy enough for that new decision maker, the business user, the non analyst to create themselves. Modernizing the data and analytics portfolio is hard, because the pace of change has accelerated. You used to be able to create an investment, place a bet for maybe 10 years. A few years ago, that time horizon was five years, now it's maybe three years, and the time to maturity has also accelerated. So you have these different components the search and AI tier, the data science tier, data preparation and virtualization. But I would also say equally important is the cloud data warehouse. And pay attention to how well these analytics tools can unlock the value in these cloud data warehouses. So ThoughtSpot was the first to market with search and AI-driven insights. Competitors have followed suit, but be careful if you look at products like Power BI or SAP Analytics Cloud, they might demo well, but do they let you get to all the data without moving it in products like Snowflake, Amazon Redshift or Azure Synapse or Google BigQuery, they do not. They require you to move it into a smaller in memory engine. So it's important how well these new products inter operate. The pace of change, it's acceleration, Gartner recently predicted that by 2022, 65% of analytical queries will be generated using search or NLP or even AI, and that is roughly three times the prediction they had just a couple years ago. So let's talk about the real world impact of culture. And if you've read any of my books or used any of the maturity models out there whether the Gartner IT score that I worked on, or the data warehousing institute also has a maturity model. We talk about these five pillars to really become data-driven, as Michelle spoke about, it's focusing on the business outcomes, leveraging all the data, including new data sources. It's the talent, the people, the technology, and also the processes, and often when I would talk about the people in the talent, I would lump the culture as part of that. But in the last year, as I've traveled the world and done these digital events for thought leaders you have told me now culture is absolutely so important. And so we've pulled it out as a separate pillar, and in fact, in polls that we've done in these events, look at how much more important culture is, as a barrier to becoming data-driven. It's three times as important as any of these other pillars. That's how critical it is, and let's take an example of where you can have great data but if you don't have the right culture there's devastating impacts. And I will say, I have been a loyal customer of Wells Fargo for more than 20 years, but look at what happened in the face of negative news with data, that said, "Hey, we're not doing good cross selling, customers do not have both a checking account and a credit card and a savings account and a mortgage." They opened fake accounts, facing billions in fines, change in leadership, that even the CEO attributed to a toxic sales culture, and they're trying to fix this. But even recently there's been additional employee backlash saying that culture has not changed. Let's contrast that with some positive examples, Medtronic a worldwide company in 150 countries around the world, they may not be a household name to you, but if you have a loved one or yourself, you have a pacemaker, spinal implant, diabetes you know, this brand. And at the start of COVID when they knew their business would be slowing down, because hospitals would only be able to take care of COVID patients, they took the bold move of making their IP for ventilators publicly available, that is the power of a positive culture. Or Verizon, a major telecom organization, looking at late payments of their customers, and even though the US federal government said "Well, you can't turn them off." They said, "We'll extend that even beyond the mandated guidelines," and facing a slow down in the business because of the tough economy, he said, "You know what? We will spend the time upskilling our people giving them the time to learn more about the future of work, the skills and data and analytics," for 20,000 of their employees, rather than furloughing them. That is the power of a positive culture. So how can you transform your culture to the best in class? I'll give you three suggestions, bring in a change agent identify the relevance, or I like to call it WIIFM, and organize for collaboration. So the CDO whatever your title is, chief analytics officer chief digital officer, you are the most important change agent. And this is where you will hear, that oftentimes a change agent has to come from outside the organization. So this is where, for example in Europe, you have the CDO of Just Eat takeout food delivery organization, coming from the airline industry or in Australia, National Australian Bank, taking a CDO within the same sector from TD Bank going to NAB. So these change agents come in disrupt, it's a hard job. As one of you said to me, it often feels like Sisyphus, I make one step forward and I get knocked down again, I get pushed back. It is not for the faint of heart, but it's the most important part of your job. The other thing I'll talk about is WIIFM, what is in it for me? And this is really about understanding the motivation, the relevance that data has for everyone on the frontline as well as those analysts, as well as the executives. So if we're talking about players in the NFL they want to perform better, and they want to stay safe. That is why data matters to them. If we're talking about financial services this may be a wealth management advisor, okay, we could say commissions, but it's really helping people have their dreams come true whether it's putting their children through college, or being able to retire without having to work multiple jobs still into your 70s or 80s. For the teachers, teachers, you asked them about data, they'll say, "We don't need that, I care about the student." So if you can use data to help a student perform better that is WIIFM. And sometimes we spend so much time talking the technology, we forget what is the value we're trying to deliver with it. And we forget the impact on the people that it does require change. In fact, the Harvard Business Review Study, found that 44% said lack of change management is the biggest barrier to leveraging both new technology but also being empowered to act on those data-driven insights. The third point, organize for collaboration. This does require diversity of thought, but also bringing the technology, the data and the business people together. Now there's not a single one size fits all model for data and analytics. At one point in time, even having a BICC, a BI Competency Center was considered state of the art. Now for the biggest impact, what I recommend is that you have a federated model, centralized for economies of scale, that could be the common data, but then in bed, these evangelists, these analysts of the future, within every business unit, every functional domain, and as you see this top bar, all models are possible but the hybrid model has the most impact, the most leaders. So as we look ahead to the months ahead, to the year ahead, an exciting time, because data is helping organizations better navigate a tough economy lock in the customer loyalty, and I look forward to seeing how you foster that culture that's collaborative with empathy and bring the best of technology, leveraging the cloud, all your data. So thank you for joining us at thought leaders, and next I'm pleased to introduce our first change agent Thomas Mazzaferro, chief data officer of Western Union, and before joining Western Union, Tom made his mark at HSBC and JP Morgan Chase spearheading digital innovation in technology operations, risk compliance, and retail banking. Tom, thank you so much for joining us today. (soft upbeat music) >> Very happy to be here and looking forward to talking to all of you today. So as we look to move organizations to a data-driven capability into the future, there is a lot that needs to be done on the data side, but also how does data connect and enable, different business teams and technology teams into the future. As we look across our data ecosystems and our platforms and how we modernize that to the cloud in the future, it all needs to basically work together, right? To really be able to drive over the shift from a data standpoint, into the future. That includes being able to have the right information with the right quality of data at the right time to drive informed business decisions, to drive the business forward. As part of that, we actually have partnered with ThoughtSpot to actually bring in the technology to help us drive that, as part of that partnership, and it's how we've looked to integrated into our overall business as a whole. We've looked at how do we make sure that our business and our professional lives, right? Are enabled in the same ways as our personal lives. So for example, in your personal lives, when you want to go and find something out, what do you do? You go on to google.com or you go on to Bing, or go to Yahoo and you search for what you want, search to find an answer. ThoughtSpot for us as the same thing, but in the business world. So using ThoughtSpot and other AI capability is allowed us to actually enable our overall business teams in our company, to actually have our information at our fingertips. So rather than having to go and talk to someone or an engineer to go pull information or pull data, we actually can have the end users or the business executives, right? Search for what they need, what they want, at the exact time that action needed, to go and drive the business forward. This is truly one of those transformational things that we've put in place. On top of that, we are on the journey to modernize our larger ecosystem as a whole. That includes modernizing our underlying data warehouses, our technology or our (indistinct) environments, and as we move that we've actually picked to our cloud providers going to AWS and GCP. We've also adopted Snowflake to really drive into organize our information and our data, then drive these new solutions and capabilities forward. So big portion of us though is culture, so how do we engage with the business teams and bring the IT teams together to really drive these holistic end to end solutions and capabilities, to really support the actual business into the future. That's one of the keys here, as we look to modernize and to really enhance our organizations to become data-driven, this is the key. If you can really start to provide answers to business questions before they're even being asked, and to predict based upon different economic trends or different trends in your business, what does is be made and actually provide those answers to the business teams before they're even asking for it. That is really becoming a data-driven organization. And as part of that, it's really then enables the business to act quickly and take advantage of opportunities as they come in based upon industries, based upon markets, based upon products, solutions, or partnerships into the future. These are really some of the keys that become crucial as you move forward right into this new age, especially with COVID, with COVID now taking place across the world, right? Many of these markets, many of these digital transformations are celebrating, and are changing rapidly to accommodate and to support customers in these very difficult times. As part of that, you need to make sure you have the right underlying foundation, ecosystems and solutions to really drive those capabilities, and those solutions forward. As we go through this journey, both of my career but also each of your careers into the future, right? It also needs to evolve, right? Technology has changed so drastically in the last 10 years, and that change is only a celebrating. So as part of that, you have to make sure that you stay up to speed, up to date with new technology changes both on the platform standpoint, tools, but also what our customers want, what do our customers need, and how do we then surface them with our information, with our data, with our platform, with our products and our services, to meet those needs and to really support and service those customers into the future. This is all around becoming a more data-driven organization such as how do you use your data to support the current business lines. But how do you actually use your information your data, to actually better support your customers better support your business, better support your employees, your operations teams and so forth, and really creating that full integration in that ecosystem is really when you start to get large dividends from these investments into the future. With that being said I hope you enjoyed the segment on how to become and how to drive a data-driven organization, and looking forward to talking to you again soon, thank you. >> Tom, that was great, thanks so much. Now I'm going to have to brag on you for a second, as a change agent you've come in disrupted, and how long have you been at Western Union? >> Only nine months, I just started this year, but there'd be some great opportunities and big changes, and we have a lot more to go, but we're really driving things forward in partnership with our business teams, and our colleagues to support those customers forward. >> Tom, thank you so much that was wonderful. And now I'm excited to introduce you to Gustavo Canton, a change agent that I've had the pleasure of working with meeting in Europe, and he is a serial change agent. Most recently with Schneider Electric, but even going back to Sam's Club, Gustavo welcome. (soft upbeat music) >> So hi everyone my name is Gustavo Canton and thank you so much Cindi for the intro. As you mentioned, doing transformations is a you know, high effort, high reward situation. I have empowerment in transformation and I have led many transformations. And what I can tell you is that it's really hard to predict the future, but if you have a North Star and you know where you're going, the one thing that I want you to take away from this discussion today, is that you need to be bold to evolve. And so in today, I'm going to be talking about culture and data, and I'm going to break this down in four areas. How do we get started barriers or opportunities as I see it, the value of AI, and also how do you communicate, especially now in the workforce of today with so many different generations, you need to make sure that you are communicating in ways that are nontraditional sometimes. And so how do we get started? So I think the answer to that is, you have to start for you, yourself as a leader and stay tuned. And by that, I mean you need to understand not only what is happening in your function or your field, but you have to be very into what is happening in society, socioeconomically speaking, wellbeing, you know, the common example is a great example. And for me personally, it's an opportunity because the number one core value that I have is wellbeing. I believe that for human potential, for customers and communities to grow, wellbeing should be at the center of every decision. And as somebody mentioned, it's great to be you know, stay in tune and have the skillset and the courage. But for me personally, to be honest to have this courage is not about not being afraid. You're always afraid when you're making big changes and your swimming upstream. But what gives me the courage is the empathy part, like I think empathy is a huge component because every time I go into an organization or a function, I try to listen very attentively to the needs of the business, and what the leaders are trying to do, what I do it thinking about the mission of how do I make change for the bigger, you know workforce so the bigger good, despite the fact that this might have a perhaps implication, so my own self interest in my career, right? Because you have to have that courage sometimes to make choices, that are not well seeing politically speaking what are the right thing to do, and you have to push through it. So the bottom line for me is that, I don't think they're transforming fast enough. And the reality is I speak with a lot of leaders and we have seen stories in the past, and what they show is that if you look at the four main barriers, that are basically keeping us behind budget, inability to add, cultural issues, politics, and lack of alignment, those are the top four. But the interesting thing is that as Cindi has mentioned, this topic about culture is actually gaining more and more traction, and in 2018, there was a story from HBR and it was for about 45%. I believe today, it's about 55%, 60% of respondents say that this is the main area that we need to focus on. So again, for all those leaders and all the executives who understand, and are aware that we need to transform, commit to the transformation and set us deadline to say, "Hey, in two years, we're going to make this happen, what do we need to do to empower and enable these search engines to make it happen?" You need to make the tough choices. And so to me, when I speak about being bold is about making the right choices now. So I'll give you samples of some of the roadblocks that I went through, as I think the intro information most recently as Cindi mentioned in Schneider. There are three main areas, legacy mindset, and what that means is that we've been doing this in a specific way for a long time, and here is how we have been successful. We're working the past is not going to work now, the opportunity there is that there is a lot of leaders who have a digital mindset, and their up and coming leaders that are perhaps not yet fully developed. We need to mentor those leaders and take bets on some of these talents, including young talent. We cannot be thinking in the past and just wait for people you know, three to five years for them to develop, because the world is going to in a way that is super fast. The second area and this is specifically to implementation of AI is very interesting to me, because just example that I have with ThoughtSpot, right? We went to an implementation and a lot of the way the IT team functions, so the leaders look at technology, they look at it from the prism of the prior or success criteria for the traditional BIs, and that's not going to work. Again, your opportunity here is that you need to really find what success look like, in my case, I want the user experience of our workforce to be the same as your experience you have at home. It's a very simple concept, and so we need to think about how do we gain that user experience with this augmented analytics tools, and then work backwards to have the right talent, processes and technology to enable that. And finally, and obviously with COVID a lot of pressure in organizations and companies to do more with less, and the solution that most leaders I see are taking is to just minimize cost sometimes and cut budget. We have to do the opposite, we have to actually invest some growth areas, but do it by business question. Don't do it by function, if you actually invest in these kind of solutions, if you actually invest on developing your talent, your leadership, to see more digitally, if you actually invest on fixing your data platform is not just an incremental cost, it's actually this investment is going to offset all those hidden costs and inefficiencies that you have on your system, because people are doing a lot of work in working very hard but it's not efficiency, and it's not working in the way that you might want to work. So there is a lot of opportunity there, and you just to put it into some perspective, there have been some studies in the past about you know, how do we kind of measure the impact of data? And obviously this is going to vary by organization, maturity there's going to be a lot of factors. I've been in companies who have very clean, good data to work with, and I think with companies that we have to start basically from scratch. So it all depends on your maturity level, but in this study what I think is interesting is, they try to put a tagline or attack price to what is a cost of incomplete data. So in this case, it's about 10 times as much to complete a unit of work, when you have data that is flawed as opposed to have imperfect data. So let me put that just in perspective, just as an example, right? Imagine you are trying to do something and you have to do 100 things in a project, and each time you do something it's going to cost you a dollar. So if you have perfect data, the total cost of that project might be a $100. But now let's say you have any percent perfect data and 20% flow data, by using this assumption that flow data is 10 times as costly as perfect data, your total costs now becomes $280 as opposed to $100, this just for you to really think about as a CIO, CTO, you know CSRO, CEO, are we really paying attention and really closing the gaps that we have on our infrastructure? If we don't do that, it's hard sometimes to see the snowball effect or to measure the overall impact, but as you can tell, the price tag goes up very, very quickly. So now, if I were to say, how do I communicate this? Or how do I break through some of these challenges or some of these barriers, right? I think the key is I am in analytics, I know statistics obviously, and love modeling and you know, data and optimization theory and all that stuff, that's what I can do analytics, but now as a leader and as a change agent, I need to speak about value, and in this case, for example for Schneider, there was this tagline coffee of your energy. So the number one thing that they were asking from the analytics team was actually efficiency, which to me was very interesting. But once I understood that I understood what kind of language to use, how to connect it to the overall strategy and basically how to bring in the right leaders, because you need to, you know, focus on the leaders that you're going to make the most progress. You know, again, low effort, high value, you need to make sure you centralize all the data as you can, you need to bring in some kind of augmented analytics, you know, solution, and finally you need to make it super simple for the you know, in this case, I was working with the HR teams and other areas, so they can have access to one portal. They don't have to be confused and looking for 10 different places to find information. I think if you can actually have those four foundational pillars, obviously under the guise of having a data-driven culture, that's when you can actually make the impact. So in our case, it was about three years total transformation but it was two years for this component of augmented analytics. It took about two years to talk to, you know, IT, get leadership support, find the budgeting, you know, get everybody on board, make sure the success criteria was correct. And we call this initiative, the people analytics, I pulled up, it was actually launched in July of this year. And we were very excited and the audience was very excited to do this. In this case, we did our pilot in North America for many, many manufacturers, but one thing that is really important is as you bring along your audience on this, you know, you're going from Excel, you know in some cases or Tableau to other tools like you know, ThoughtSpot, you need to really explain them, what is the difference, and how these two can truly replace some of the spreadsheets or some of the views that you might have on these other kind of tools. Again, Tableau, I think it's a really good tool, there are other many tools that you might have in your toolkit. But in my case, personally I feel that you need to have one portal going back to seeing these points that really truly enable the end user. And I feel that this is the right solution for us, right? And I will show you some of the findings that we had in the pilot in the last two months. So this was a huge victory, and I will tell you why, because it took a lot of effort for us to get to these stations. Like I said it's been years for us to kind of lay the foundation, get the leadership and chasing culture, so people can understand why you truly need to invest what I meant analytics. And so what I'm showing here is an example of how do we use basically, you know a tool to capturing video, the qualitative findings that we had, plus the quantitative insights that we have. So in this case, our preliminary results based on our ambition for three main metrics, hours saved, user experience and adoption. So for hours saved, our ambition was to have 10 hours per week per employee save on average, user experience or ambition was 4.5 and adoption 80%. In just two months, two months and a half of the pilot we were able to achieve five hours, per week per employee savings. I used to experience for 4.3 out of five, and adoption of 60%. Really, really amazing work. But again, it takes a lot of collaboration for us to get to the stage from IT, legal, communications obviously the operations things and the users, in HR safety and other areas that might be basically stakeholders in this whole process. So just to summarize this kind of effort takes a lot of energy, you are a change agent, you need to have a courage to make these decision and understand that, I feel that in this day and age with all this disruption happening, we don't have a choice. We have to take the risk, right? And in this case, I feel a lot of satisfaction in how we were able to gain all these very souls for this organization, and that gave me the confidence to know that the work has been done, and we are now in a different stage for the organization. And so for me it safe to say, thank you for everybody who has believed obviously in our vision, everybody who has believed in, you know, the word that we were trying to do and to make the life for, you know workforce or customers that are in community better. As you can tell, there is a lot of effort, there is a lot of collaboration that is needed to do something like this. In the end, I feel very satisfied with the accomplishments of this transformation, and I just want to tell for you, if you are going right now in a moment that you feel that you have to swim upstream you know, what would mentors what people in this industry that can help you out and guide you on this kind of a transformation is not easy to do is high effort but is well worth it. And with that said, I hope you are well and it's been a pleasure talking to you, talk to you soon, take care. >> Thank you Gustavo, that was amazing. All right, let's go to the panel. (soft upbeat music) >> I think we can all agree how valuable it is to hear from practitioners, and I want to thank the panel for sharing their knowledge with the community, and one common challenge that I heard you all talk about was bringing your leadership and your teams along on the journey with you. We talk about this all the time, and it is critical to have support from the top, why? Because it directs the middle, and then it enables bottoms up innovation effects from the cultural transformation that you guys all talked about. It seems like another common theme we heard, is that you all prioritize database decision making in your organizations, and you combine two of your most valuable assets to do that, and create leverage, employees on the front lines, and of course the data. That was rightly pointed out, Tom, the pandemic has accelerated the need for really leaning into this. You know, the old saying, if it ain't broke, don't fix it, well COVID's broken everything. And it's great to hear from our experts, you know, how to move forward, so let's get right into it. So Gustavo let's start with you if I'm an aspiring change agent, and let's say I'm a budding data leader. What do I need to start doing? What habits do I need to create for long lasting success? >> I think curiosity is very important. You need to be, like I say, in tune to what is happening not only in your specific field, like I have a passion for analytics, I can do this for 50 years plus, but I think you need to understand wellbeing other areas across not only a specific business as you know, I come from, you know, Sam's Club Walmart retail, I mean energy management technology. So you have to try to push yourself and basically go out of your comfort zone. I mean, if you are staying in your comfort zone and you want to use lean continuous improvement that's just going to take you so far. What you have to do is and that's what I tried to do is I try to go into areas, businesses and transformations that make me, you know stretch and develop as a leader. That's what I'm looking to do, so I can help transform the functions organizations, and do these change management and decisions mindset as required for these kinds of efforts. >> Thank you for that is inspiring and Cindi, you love data, and the data is pretty clear that diversity is a good business, but I wonder if you can add your perspectives to this conversation. >> Yeah, so Michelle has a new fan here because she has found her voice, I'm still working on finding mine. And it's interesting because I was raised by my dad, a single dad, so he did teach me how to work in a predominantly male environment. But why I think diversity matters more now than ever before, and this is by gender, by race, by age, by just different ways of working and thinking is because as we automate things with AI, if we do not have diverse teams looking at the data and the models, and how they're applied, we risk having bias at scale. So this is why I think I don't care what type of minority, you are finding your voice, having a seat at the table and just believing in the impact of your work has never been more important. And as Michelle said more possible >> Great perspectives thank you, Tom, I want to go to you. I mean, I feel like everybody in our businesses in some way, shape or form become a COVID expert but what's been the impact of the pandemic on your organization's digital transformation plans? >> We've seen a massive growth actually you know, in a digital business over the last 12 months really, even in celebration, right? Once COVID hit, we really saw that in the 200 countries and territories that we operate in today and service our customers and today, that there's been a huge need, right? To send money, to support family, to support friends and loved ones across the world. And as part of that, you know, we are very honored to support those customers that we across all the centers today. But as part of that celebration, we need to make sure that we had the right architecture and the right platforms to basically scale, right? To basically support and provide the right kind of security for our customers going forward. So as part of that, we did do some pivots and we did celebrate some of our plans on digital to help support that overall growth coming in, and to support our customers going forward. Because there were these times during this pandemic, right? This is the most important time, and we need to support those that we love and those that we care about. And in doing that, it's one of those ways is actually by sending money to them, support them financially. And that's where really are part of that our services come into play that, you know, I really support those families. So it was really a great opportunity for us to really support and really bring some of our products to this level, and supporting our business going forward. >> Awesome, thank you. Now I want to come back to Gustavo, Tom, I'd love for you to chime in too. Did you guys ever think like you were pushing the envelope too much and doing things with data or the technology that was just maybe too bold, maybe you felt like at some point it was failing, or you pushing your people too hard, can you share that experience and how you got through it? >> Yeah, the way I look at it is, you know, again, whenever I go to an organization I ask the question, Hey, how fast you would like to conform?" And, you know, based on the agreements on the leadership and the vision that we want to take place, I take decisions and I collaborate in a specific way. Now, in the case of COVID, for example, right? It forces us to remove silos and collaborate in a faster way, so to me it was an opportunity to actually integrate with other areas and drive decisions faster. But make no mistake about it, when you are doing a transformation, you are obviously trying to do things faster than sometimes people are comfortable doing and you need to be okay with that. Sometimes you need to be okay with tension, or you need to be okay, you know debating points or making repetitive business cases onto people connect with the decision because you understand, and you are seeing that, hey, the CEO is making a one, two year, you know, efficiency goal, the only way for us to really do more with less is for us to continue this path. We cannot just stay with the status quo, we need to find a way to accelerate transformation... >> How about you Tom, we were talking earlier was Sudheesh had said about that bungee jumping moment, what can you share? >> Yeah you know, I think you hit upon it. Right now, the pace of change will be the slowest pace that you see for the rest of your career. So as part of that, right? That's what I tell my team is that you need to feel comfortable being uncomfortable. I mean, that we have to be able to basically scale, right? Expand and support that the ever changing needs the marketplace and industry and our customers today and that pace of change that's happening, right? And what customers are asking for, and the competition the marketplace, it's only going to accelerate. So as part of that, you know, as we look at what how you're operating today in your current business model, right? Things are only going to get faster. So you have to plan into align, to drive the actual transformation, so that you can scale even faster into the future. So as part of that, so we're putting in place here, right? Is how do we create that underlying framework and foundation that allows the organization to basically continue to scale and evolve into the future? >> We're definitely out of our comfort zones, but we're getting comfortable with it. So, Cindi, last question, you've worked with hundreds of organizations, and I got to believe that you know, some of the advice you gave when you were at Gartner, which is pre COVID, maybe sometimes clients didn't always act on it. You know, they're not on my watch for whatever variety of reasons, but it's being forced on them now, but knowing what you know now that you know, we're all in this isolation economy how would you say that advice has changed, has it changed? What's your number one action and recommendation today? >> Yeah well, first off, Tom just freaked me out. What do you mean this is the slowest ever? Even six months ago, I was saying the pace of change in data and analytics is frenetic. So, but I think you're right, Tom, the business and the technology together is forcing this change. Now, Dave, to answer your question, I would say the one bit of advice, maybe I was a little more, very aware of the power in politics and how to bring people along in a way that they are comfortable, and now I think it's, you know what? You can't get comfortable. In fact, we know that the organizations that were already in the cloud, have been able to respond and pivot faster. So if you really want to survive as Tom and Gustavo said, get used to being uncomfortable, the power and politics are going to happen. Break the rules, get used to that and be bold. Do not be afraid to tell somebody they're wrong and they're not moving fast enough. I do think you have to do that with empathy as Michelle said, and Gustavo, I think that's one of the key words today besides the bungee jumping. So I want to know where's Sudheesh going to go on bungee jumping? (all chuckling) >> That's fantastic discussion really. Thanks again to all the panelists and the guests, it was really a pleasure speaking with you today. Really virtually all of the leaders that I've spoken to in theCUBE program recently, they tell me that the pandemic is accelerating so many things, whether it's new ways to work, we heard about new security models and obviously the need for cloud. I mean, all of these things are driving true enterprise wide digital transformation, not just as I said before lip service. And sometimes we minimize the importance and the challenge of building culture and in making this transformation possible. But when it's done right, the right culture is going to deliver tremendous results. Yeah, what does that mean getting it right? Everybody's trying to get it right. My biggest takeaway today, is it means making data part of the DNA of your organization. And that means making it accessible to the people in your organization that are empowered to make decisions that can drive you revenue, cut costs, speed, access to critical care, whatever the mission is of your organization. Data can create insights and informed decisions that drive value. Okay, let's bring back Sudheesh and wrap things up. Sudheesh please bring us home. >> Thank you, thank you Dave, thank you theCUBE team, and thanks goes to all of our customers and partners who joined us, and thanks to all of you for spending the time with us. I want to do three quick things and then close it off. The first thing is I want to summarize the key takeaways that I had from all four of our distinguished speakers. First, Michelle, I was simply put it, she said it really well, that is be brave and drive. Don't go for a drive along, that is such an important point. Often times, you know that I think that you have to do to make the positive change that you want to see happen. But you wait for someone else to do it, why not you? Why don't you be the one making that change happen? That's the thing that I picked up from Michelle's talk. Cindi talked about finding the importance of finding your voice, taking that chair, whether it's available or not and making sure that your ideas, your voices are heard and if it requires some force then apply that force, make sure your ideas are good. Gustavo talked about the importance of building consensus, not going at things all alone sometimes building the importance of building the courtroom. And that is critical because if you want the changes to last, you want to make sure that the organization is fully behind it. Tom instead of a single take away, what I was inspired by is the fact that a company that is 170 years old, 170 years old, 200 companies and 200 countries they're operating in, and they were able to make the change that is necessary through this difficult time. So in a matter of months, if they could do it, anyone could. The second thing I want to do is to leave you with a takeaway that is I would like you to go to thoughtspot.com/nfl because our team has made an app for NFL on Snowflake. I think you will find this interesting now that you are inspired and excited because of Michelle's talk. And the last thing is, please go to thoughtspot.com/beyond, our global user conferences happening in this December, we would love to have you join us. It's again, virtual, you can join from anywhere, we are expecting anywhere from five to 10,000 people, and we would love to have you join and see what we would have been up to since the last year. We have a lot of amazing things in store for you, our customers, our partners, our collaborators, they will be coming and sharing, you'll be sharing things that you have been working to release something that will come out next year. And also some of the crazy ideas for engineers I've been cooking up. All of those things will be available for you at ThoughtSpot Beyond, thank you, thank you so much.

Published Date : Oct 10 2020

SUMMARY :

and the change every to you by ThoughtSpot, to join you virtually. and of course to our audience, and insights that you talked about. and talk to you about being So you and I share a love of Great, and I'm getting the feeling now and you can find the common So I thank you for your metership here. and the time to maturity or go to Yahoo and you and how long have you and we have a lot more to go, a change agent that I've had the pleasure in the past about you know, All right, let's go to the panel. and of course the data. that's just going to take you so far. and the data is pretty and the models, and how they're applied, in our businesses in some way, and the right platforms and how you got through it? and the vision that we want to that you see for the rest of your career. to believe that you know, and how to bring people along in a way the right culture is going to the changes to last, you want to make sure

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

TomPERSON

0.99+

SudheeshPERSON

0.99+

GustavoPERSON

0.99+

MichellePERSON

0.99+

VerizonORGANIZATION

0.99+

DavePERSON

0.99+

October 19DATE

0.99+

HSBCORGANIZATION

0.99+

1987DATE

0.99+

January 2017DATE

0.99+

CindiPERSON

0.99+

MedtronicORGANIZATION

0.99+

EuropeLOCATION

0.99+

Thomas MazzaferroPERSON

0.99+

October 18DATE

0.99+

2.5 billionQUANTITY

0.99+

Wells FargoORGANIZATION

0.99+

Dave VolantePERSON

0.99+

DisneyORGANIZATION

0.99+

2018DATE

0.99+

TD BankORGANIZATION

0.99+

threeQUANTITY

0.99+

five hoursQUANTITY

0.99+

80%QUANTITY

0.99+

10 hoursQUANTITY

0.99+

March 13thDATE

0.99+

ThoughtSpotORGANIZATION

0.99+

GartnerORGANIZATION

0.99+

two sidesQUANTITY

0.99+

20%QUANTITY

0.99+

$280QUANTITY

0.99+

IBMORGANIZATION

0.99+

10 timesQUANTITY

0.99+

Las VegasLOCATION

0.99+

$100QUANTITY

0.99+

Schneider ElectricORGANIZATION

0.99+

July 19DATE

0.99+

EMCORGANIZATION

0.99+

Alabama Crimson TideORGANIZATION

0.99+

60%QUANTITY

0.99+

fiveQUANTITY

0.99+

1986DATE

0.99+

Western UnionORGANIZATION

0.99+

12-monthQUANTITY

0.99+

48.1%QUANTITY

0.99+

JP Morgan ChaseORGANIZATION

0.99+

Amazon Web ServicesORGANIZATION

0.99+

KievLOCATION

0.99+

DellORGANIZATION

0.99+

53 percentQUANTITY

0.99+

20,000QUANTITY

0.99+

Thought.Leaders Digital 2020 | Japan


 

(speaks in foreign language) >> Narrator: Data is at the heart of transformation and the change every company needs to succeed, but it takes more than new technology. It's about teams, talent, and cultural change. Empowering everyone on the front lines to make decisions, all at the speed of digital. The transformation starts with you. It's time to lead the way, it's time for thought leaders. >> Welcome to Thought Leaders, a digital event brought to you by ThoughtSpot. My name is Dave Vellante. The purpose of this day is to bring industry leaders and experts together to really try and understand the important issues around digital transformation. We have an amazing lineup of speakers and our goal is to provide you with some best practices that you can bring back and apply to your organization. Look, data is plentiful, but insights are not. ThoughtSpot is disrupting analytics by using search and machine intelligence to simplify data analysis, and really empower anyone with fast access to relevant data. But in the last 150 days, we've had more questions than answers. Creating an organization that puts data and insights at their core, requires not only modern technology, but leadership, a mindset and a culture that people often refer to as data-driven. What does that mean? How can we equip our teams with data and fast access to quality information that can turn insights into action. And today, we're going to hear from experienced leaders, who are transforming their organizations with data, insights and creating digital-first cultures. But before we introduce our speakers, I'm joined today by two of my co-hosts from ThoughtSpot. First, Chief Data Strategy Officer for ThoughtSpot is Cindi Hausen. Cindi is an analytics and BI expert with 20 plus years experience and the author of Successful Business Intelligence Unlock The Value of BI and Big Data. Cindi was previously the lead analyst at Gartner for the data and analytics magic quadrant. And early last year, she joined ThoughtSpot to help CDOs and their teams understand how best to leverage analytics and AI for digital transformation. Cindi, great to see you, welcome to the show. >> Thank you, Dave. Nice to join you virtually. >> Now our second cohost and friend of theCUBE is ThoughtSpot CEO Sudheesh Nair. Hello Sudheesh, how are you doing today? >> I am well Dave, it's good to talk to you again. >> It's great to see you. Thanks so much for being here. Now Sudheesh, please share with us why this discussion is so important to your customers and of course, to our audience and what they're going to learn today? (gentle music) >> Thanks, Dave, I wish you were there to introduce me into every room that I walk into because you have such an amazing way of doing it. It makes me feel also good. Look, since we have all been cooped up in our homes, I know that the vendors like us, we have amped up our, you know, sort of effort to reach out to you with invites for events like this. So we are getting way more invites for events like this than ever before. So when we started planning for this, we had three clear goals that we wanted to accomplish. And our first one that when you finish this and walk away, we want to make sure that you don't feel like it was a waste of time. We want to make sure that we value your time, and this is going to be useful. Number two, we want to put you in touch with industry leaders and thought leaders, and generally good people that you want to hang around with long after this event is over. And number three, as we plan through this, you know, we are living through these difficult times, we want an event to be, this event to be more of an uplifting and inspiring event too. Now, the challenge is, how do you do that with the team being change agents? Because change and as much as we romanticize it, it is not one of those uplifting things that everyone wants to do or likes to do. The way I think of it, change is sort of like, if you've ever done bungee jumping. You know, it's like standing on the edges, waiting to make that one more step. You know, all you have to do is take that one step and gravity will do the rest, but that is the hardest step to take. Change requires a lot of courage and when we are talking about data and analytics, which is already like such a hard topic, not necessarily an uplifting and positive conversation, in most businesses it is somewhat scary. Change becomes all the more difficult. Ultimately change requires courage. Courage to to, first of all, challenge the status quo. People sometimes are afraid to challenge the status quo because they are thinking that, "You know, maybe I don't have the power to make the change that the company needs. Sometimes I feel like I don't have the skills." Sometimes they may feel that, I'm probably not the right person to do it. Or sometimes the lack of courage manifest itself as the inability to sort of break the silos that are formed within the organizations, when it comes to data and insights that you talked about. You know, there are people in the company, who are going to hog the data because they know how to manage the data, how to inquire and extract. They know how to speak data, they have the skills to do that, but they are not the group of people who have sort of the knowledge, the experience of the business to ask the right questions off the data. So there is this silo of people with the answers and there is a silo of people with the questions, and there is gap. These sort of silos are standing in the way of making that necessary change that we all I know the business needs, and the last change to sort of bring an external force sometimes. It could be a tool, it could be a platform, it could be a person, it could be a process, but sometimes no matter how big the company is or how small the company is. You may need to bring some external stimuli to start that domino of the positive changes that are necessary. The group of people that we have brought in, the four people, including Cindi, that you will hear from today are really good at practically telling you how to make that step, how to step off that edge, how to trust the rope that you will be safe and you're going to have fun. You will have that exhilarating feeling of jumping for a bungee jump. All four of them are exceptional, but my honor is to introduce Michelle and she's our first speaker. Michelle, I am very happy after watching her presentation and reading her bio, that there are no country vital worldwide competition for cool patents, because she will beat all of us because when her children were small, you know, they were probably into Harry Potter and Disney and she was managing a business and leading change there. And then as her kids grew up and got to that age, where they like football and NFL, guess what? She's the CIO of NFL. What a cool mom. I am extremely excited to see what she's going to talk about. I've seen the slides with a bunch of amazing pictures, I'm looking to see the context behind it. I'm very thrilled to make the acquaintance of Michelle. I'm looking forward to her talk next. Welcome Michelle. It's over to you. (gentle music) >> I'm delighted to be with you all today to talk about thought leadership. And I'm so excited that you asked me to join you because today I get to be a quarterback. I always wanted to be one. This is about as close as I'm ever going to get. So, I want to talk to you about quarterbacking our digital revolution using insights, data and of course, as you said, leadership. First, a little bit about myself, a little background. As I said, I always wanted to play football and this is something that I wanted to do since I was a child but when I grew up, girls didn't get to play football. I'm so happy that that's changing and girls are now doing all kinds of things that they didn't get to do before. Just this past weekend on an NFL field, we had a female coach on two sidelines and a female official on the field. I'm a lifelong fan and student of the game of football. I grew up in the South. You can tell from the accent and in the South football is like a religion and you pick sides. I chose Auburn University working in the athletic department, so I'm testament. Till you can start, a journey can be long. It took me many, many years to make it into professional sports. I graduated in 1987 and my little brother, well not actually not so little, he played offensive line for the Alabama Crimson Tide. And for those of you who know SEC football, you know this is a really big rivalry, and when you choose sides your family is divided. So it's kind of fun for me to always tell the story that my dad knew his kid would make it to the NFL, he just bet on the wrong one. My career has been about bringing people together for memorable moments at some of America's most iconic brands, delivering memories and amazing experiences that delight. From Universal Studios, Disney, to my current position as CIO of the NFL. In this job, I'm very privileged to have the opportunity to work with a team that gets to bring America's game to millions of people around the world. Often, I'm asked to talk about how to create amazing experiences for fans, guests or customers. But today, I really wanted to focus on something different and talk to you about being behind the scenes and backstage. Because behind every event, every game, every awesome moment, is execution. Precise, repeatable execution and most of my career has been behind the scenes doing just that. Assembling teams to execute these plans and the key way that companies operate at these exceptional levels is making good decisions, the right decisions, at the right time and based upon data. So that you can translate the data into intelligence and be a data-driven culture. Using data and intelligence is an important way that world-class companies do differentiate themselves, and it's the lifeblood of collaboration and innovation. Teams that are working on delivering these kind of world class experiences are often seeking out and leveraging next generation technologies and finding new ways to work. I've been fortunate to work across three decades of emerging experiences, which each required emerging technologies to execute. A little bit first about Disney. In '90s I was at Disney leading a project called Destination Disney, which it's a data project. It was a data project, but it was CRM before CRM was even cool and then certainly before anything like a data-driven culture was ever brought up. But way back then we were creating a digital backbone that enabled many technologies for the things that you see today. Like the MagicBand, Disney's Magical Express. My career at Disney began in finance, but Disney was very good about rotating you around. And it was during one of these rotations that I became very passionate about data. I kind of became a pain in the butt to the IT team asking for data, more and more data. And I learned that all of that valuable data was locked up in our systems. All of our point of sales systems, our reservation systems, our operation systems. And so I became a shadow IT person in marketing, ultimately, leading to moving into IT and I haven't looked back since. In the early 2000s, I was at Universal Studio's theme park as their CIO preparing for and launching the Wizarding World of Harry Potter. Bringing one of history's most memorable characters to life required many new technologies and a lot of data. Our data and technologies were embedded into the rides and attractions. I mean, how do you really think a wand selects you at a wand shop. As today at the NFL, I am constantly challenged to do leading edge technologies, using things like sensors, AI, machine learning and all new communication strategies, and using data to drive everything, from player performance, contracts, to where we build new stadiums and hold events. With this year being the most challenging, yet rewarding year in my career at the NFL. In the middle of a global pandemic, the way we are executing on our season is leveraging data from contact tracing devices joined with testing data. Talk about data actually enabling your business. Without it we wouldn't be having a season right now. I'm also on the board of directors of two public companies, where data and collaboration are paramount. First, RingCentral, it's a cloud based unified communications platform and collaboration with video message and phone, all-in-one solution in the cloud and Quotient Technologies, whose product is actually data. The tagline at Quotient is The Result in Knowing. I think that's really important because not all of us are data companies, where your product is actually data, but we should operate more like your product is data. I'd also like to talk to you about four areas of things to think about as thought leaders in your companies. First, just hit on it, is change. how to be a champion and a driver of change. Second, how to use data to drive performance for your company and measure performance of your company. Third, how companies now require intense collaboration to operate and finally, how much of this is accomplished through solid data-driven decisions. First, let's hit on change. I mean, it's evident today more than ever, that we are in an environment of extreme change. I mean, we've all been at this for years and as technologists we've known it, believed it, lived it. And thankfully, for the most part, knock on wood, we were prepared for it. But this year everyone's cheese was moved. All the people in the back rooms, IT, data architects and others were suddenly called to the forefront because a global pandemic has turned out to be the thing that is driving intense change in how people work and analyze their business. On March 13th, we closed our office at the NFL in the middle of preparing for one of our biggest events, our kickoff event, The 2020 Draft. We went from planning a large event in Las Vegas under the bright lights, red carpet stage, to smaller events in club facilities. And then ultimately, to one where everyone coaches, GMs, prospects and even our commissioner were at home in their basements and we only had a few weeks to figure it out. I found myself for the first time, being in the live broadcast event space. Talking about bungee jumping, this is really what it felt like. It was one in which no one felt comfortable because it had not been done before. But leading through this, I stepped up, but it was very scary, it was certainly very risky, but it ended up being also rewarding when we did it. And as a result of this, some things will change forever. Second, managing performance. I mean, data should inform how you're doing and how to get your company to perform at its level, highest level. As an example, the NFL has always measured performance, obviously, and it is one of the purest examples of how performance directly impacts outcome. I mean, you can see performance on the field, you can see points being scored and stats, and you immediately know that impact. Those with the best stats usually win the games. The NFL has always recorded stats. Since the beginning of time here at the NFL a little... This year is our 101st year and athlete's ultimate success as a player has also always been greatly impacted by his stats. But what has changed for us is both how much more we can measure and the immediacy with which it can be measured and I'm sure in your business it's the same. The amount of data you must have has got to have quadrupled recently. And how fast do you need it and how quickly you need to analyze it is so important. And it's very important to break the silos between the keys to the data and the use of the data. Our next generation stats platform is taking data to the next level. It's powered by Amazon Web Services and we gather this data, real-time from sensors that are on players' bodies. We gather it in real time, analyze it, display it online and on broadcast. And of course, it's used to prepare week to week in addition to what is a normal coaching plan would be. We can now analyze, visualize, route patterns, speed, match-ups, et cetera, so much faster than ever before. We're continuing to roll out sensors too, that will gather more and more information about a player's performance as it relates to their health and safety. The third trend is really, I think it's a big part of what we're feeling today and that is intense collaboration. And just for sort of historical purposes, it's important to think about, for those of you that are IT professionals and developers, you know, more than 10 years ago agile practices began sweeping companies. Where small teams would work together rapidly in a very flexible, adaptive and innovative way and it proved to be transformational. However today, of course that is no longer just small teams, the next big wave of change and we've seen it through this pandemic, is that it's the whole enterprise that must collaborate and be agile. If I look back on my career, when I was at Disney, we owned everything 100%. We made a decision, we implemented it. We were a collaborative culture but it was much easier to push change because you own the whole decision. If there was buy-in from the top down, you got the people from the bottom up to do it and you executed. At Universal, we were a joint venture. Our attractions and entertainment was licensed. Our hotels were owned and managed by other third parties, so influence and collaboration, and how to share across companies became very important. And now here I am at the NFL an even the bigger ecosystem. We have 32 clubs that are all separate businesses, 31 different stadiums that are owned by a variety of people. We have licensees, we have sponsors, we have broadcast partners. So it seems that as my career has evolved, centralized control has gotten less and less and has been replaced by intense collaboration, not only within your own company but across companies. The ability to work in a collaborative way across businesses and even other companies, that has been a big key to my success in my career. I believe this whole vertical integration and big top-down decision-making is going by the wayside in favor of ecosystems that require cooperation, yet competition to co-exist. I mean, the NFL is a great example of what we call co-oppetition, which is cooperation and competition. We're in competition with each other, but we cooperate to make the company the best it can be. And at the heart of these items really are data-driven decisions and culture. Data on its own isn't good enough. You must be able to turn it to insights. Partnerships between technology teams who usually hold the keys to the raw data and business units, who have the knowledge to build the right decision models is key. If you're not already involved in this linkage, you should be, data mining isn't new for sure. The availability of data is quadrupling and it's everywhere. How do you know what to even look at? How do you know where to begin? How do you know what questions to ask? It's by using the tools that are available for visualization and analytics and knitting together strategies of the company. So it begins with, first of all, making sure you do understand the strategy of the company. So in closing, just to wrap up a bit, many of you joined today, looking for thought leadership on how to be a change agent, a change champion, and how to lead through transformation. Some final thoughts are be brave and drive. Don't do the ride along program, it's very important to drive. Driving can be high risk, but it's also high reward. Embracing the uncertainty of what will happen is how you become brave. Get more and more comfortable with uncertainty, be calm and let data be your map on your journey. Thanks. >> Michelle, thank you so much. So you and I share a love of data and a love of football. You said you want to be the quarterback. I'm more an a line person. >> Well, then I can't do my job without you. >> Great and I'm getting the feeling now, you know, Sudheesh is talking about bungee jumping. My vote is when we're past this pandemic, we both take him to the Delaware Water Gap and we do the cliff jumping. >> Oh that sounds good, I'll watch your watch. >> Yeah, you'll watch, okay. So Michelle, you have so many stakeholders, when you're trying to prioritize the different voices you have the players, you have the owners, you have the league, as you mentioned, the broadcasters, your partners here and football mamas like myself. How do you prioritize when there are so many different stakeholders that you need to satisfy? >> I think balancing across stakeholders starts with aligning on a mission and if you spend a lot of time understanding where everyone's coming from, and you can find the common thread that ties them all together. You sort of do get them to naturally prioritize their work and I think that's very important. So for us at the NFL and even at Disney, it was our core values and our core purpose is so well known and when anything challenges that, we're able to sort of lay that out. But as a change agent, you have to be very empathetic, and I would say empathy is probably your strongest skill if you're a change agent and that means listening to every single stakeholder. Even when they're yelling at you, even when they're telling you your technology doesn't work and you know that it's user error, or even when someone is just emotional about what's happening to them and that they're not comfortable with it. So I think being empathetic, and having a mission, and understanding it is sort of how I prioritize and balance. >> Yeah, empathy, a very popular word this year. I can imagine those coaches and owners yelling, so thank you for your leadership here. So Michelle, I look forward to discussing this more with our other customers and disruptors joining us in a little bit. >> (gentle music) So we're going to take a hard pivot now and go from football to Chernobyl. Chernobyl, what went wrong? 1986, as the reactors were melting down, they had the data to say, "This is going to be catastrophic," and yet the culture said, "No, we're perfect, hide it. Don't dare tell anyone." Which meant they went ahead and had celebrations in Kiev. Even though that increased the exposure, additional thousands getting cancer and 20,000 years before the ground around there can even be inhabited again. This is how powerful and detrimental a negative culture, a culture that is unable to confront the brutal facts that hides data. This is what we have to contend with and this is why I want you to focus on having, fostering a data-driven culture. I don't want you to be a laggard. I want you to be a leader in using data to drive your digital transformation. So I'll talk about culture and technology, is it really two sides of the same coin? Real-world impacts and then some best practices you can use to disrupt and innovate your culture. Now, oftentimes I would talk about culture and I talk about technology. And recently a CDO said to me, "You know, Cindi, I actually think this is two sides of the same coin, one reflects the other." What do you think? Let me walk you through this. So let's take a laggard. What does the technology look like? Is it based on 1990s BI and reporting, largely parametrized reports, on-premises data warehouses, or not even that operational reports. At best one enterprise data warehouse, very slow moving and collaboration is only email. What does that culture tell you? Maybe there's a lack of leadership to change, to do the hard work that Sudheesh referred to, or is there also a culture of fear, afraid of failure, resistance to change, complacency. And sometimes that complacency, it's not because people are lazy. It's because they've been so beaten down every time a new idea is presented. It's like, "No, we're measured on least to serve." So politics and distrust, whether it's between business and IT or individual stakeholders is the norm, so data is hoarded. Let's contrast that with the leader, a data and analytics leader, what does their technology look like? Augmented analytics, search and AI driven insights, not on-premises but in the cloud and maybe multiple clouds. And the data is not in one place but it's in a data lake and in a data warehouse, a logical data warehouse. The collaboration is via newer methods, whether it's Slack or Teams, allowing for that real-time decisioning or investigating a particular data point. So what is the culture in the leaders? It's transparent and trust. There is a trust that data will not be used to punish, that there is an ability to confront the bad news. It's innovation, valuing innovation in pursuit of the company goals. Whether it's the best fan experience and player safety in the NFL or best serving your customers, it's innovative and collaborative. There's none of this, "Oh, well, I didn't invent that. I'm not going to look at that." There's still pride of ownership, but it's collaborating to get to a better place faster. And people feel empowered to present new ideas, to fail fast and they're energized knowing that they're using the best technology and innovating at the pace that business requires. So data is democratized and democratized, not just for power users or analysts, but really at the point of impact, what we like to call the new decision-makers or really the frontline workers. So Harvard Business Review partnered with us to develop this study to say, "Just how important is this? We've been working at BI and analytics as an industry for more than 20 years, why is it not at the front lines? Whether it's a doctor, a nurse, a coach, a supply chain manager, a warehouse manager, a financial services advisor." 87% said they would be more successful if frontline workers were empowered with data-driven insights, but they recognize they need new technology to be able to do that. It's not about learning hard tools. The sad reality only 20% of organizations are actually doing this. These are the data-driven leaders. So this is the culture and technology, how did we get here? It's because state-of-the-art keeps changing. So the first generation BI and analytics platforms were deployed on-premises, on small datasets, really just taking data out of ERP systems that were also on-premises and state-of-the-art was maybe getting a management report, an operational report. Over time, visual based data discovery vendors disrupted these traditional BI vendors, empowering now analysts to create visualizations with the flexibility on a desktop, sometimes larger data, sometimes coming from a data warehouse. The current state-of-the-art though, Gartner calls it augmented analytics. At ThoughtSpot, we call it search and AI driven analytics, and this was pioneered for large scale data sets, whether it's on-premises or leveraging the cloud data warehouses. And I think this is an important point, oftentimes you, the data and analytics leaders, will look at these two components separately. But you have to look at the BI and analytics tier in lock-step with your data architectures to really get to the granular insights and to leverage the capabilities of AI. Now, if you've never seen ThoughtSpot, I'll just show you what this looks like. Instead of somebody hard coding a report, it's typing in search keywords and very robust keywords contains rank, top, bottom, getting to a visual visualization that then can be pinned to an existing pin board that might also contain insights generated by an AI engine. So it's easy enough for that new decision maker, the business user, the non-analyst to create themselves. Modernizing the data and analytics portfolio is hard because the pace of change has accelerated. You used to be able to create an investment, place a bet for maybe 10 years. A few years ago, that time horizon was five years. Now, it's maybe three years and the time to maturity has also accelerated. So you have these different components, the search and AI tier, the data science tier, data preparation and virtualization but I would also say, equally important is the cloud data warehouse. And pay attention to how well these analytics tools can unlock the value in these cloud data warehouses. So ThoughtSpot was the first to market with search and AI driven insights. Competitors have followed suit, but be careful, if you look at products like Power BI or SAP analytics cloud, they might demo well, but do they let you get to all the data without moving it in products like Snowflake, Amazon Redshift, or Azure Synapse, or Google BigQuery, they do not. They require you to move it into a smaller in-memory engine. So it's important how well these new products inter-operate. The pace of change, its acceleration, Gartner recently predicted that by 2022, 65% of analytical queries will be generated using search or NLP or even AI and that is roughly three times the prediction they had just a couple of years ago. So let's talk about the real world impact of culture and if you've read any of my books or used any of the maturity models out there, whether the Gartner IT Score that I worked on or the Data Warehousing Institute also has a maturity model. We talk about these five pillars to really become data-driven. As Michelle spoke about, it's focusing on the business outcomes, leveraging all the data, including new data sources, it's the talent, the people, the technology and also the processes. And often when I would talk about the people in the talent, I would lump the culture as part of that. But in the last year, as I've traveled the world and done these digital events for thought leaders. You have told me now culture is absolutely so important, and so we've pulled it out as a separate pillar. And in fact, in polls that we've done in these events, look at how much more important culture is as a barrier to becoming data-driven. It's three times as important as any of these other pillars. That's how critical it is. And let's take an example of where you can have great data, but if you don't have the right culture, there's devastating impacts. And I will say I have been a loyal customer of Wells Fargo for more than 20 years, but look at what happened in the face of negative news with data. It said, "Hey, we're not doing good cross-selling, customers do not have both a checking account and a credit card and a savings account and a mortgage." They opened fake accounts facing billions in fines, change in leadership that even the CEO attributed to a toxic sales culture and they're trying to fix this, but even recently there's been additional employee backlash saying the culture has not changed. Let's contrast that with some positive examples. Medtronic, a worldwide company in 150 countries around the world. They may not be a household name to you, but if you have a loved one or yourself, you have a pacemaker, spinal implant, diabetes, you know this brand. And at the start of COVID when they knew their business would be slowing down, because hospitals would only be able to take care of COVID patients. They took the bold move of making their IP for ventilators publicly available. That is the power of a positive culture. Or Verizon, a major telecom organization looking at late payments of their customers and even though the U.S. Federal Government said, "Well, you can't turn them off." They said, "We'll extend that even beyond the mandated guidelines," and facing a slow down in the business because of the tough economy, They said, "You know what? We will spend the time upskilling our people, giving them the time to learn more about the future of work, the skills and data and analytics for 20,000 of their employees rather than furloughing them. That is the power of a positive culture. So how can you transform your culture to the best in class? I'll give you three suggestions. Bring in a change agent, identify the relevance or I like to call it WIIFM and organize for collaboration. So the CDO, whatever your title is, Chief Analytics Officer, Chief Digital Officer, you are the most important change agent. And this is where you will hear that oftentimes a change agent has to come from outside the organization. So this is where, for example, in Europe you have the CDO of Just Eat, a takeout food delivery organization coming from the airline industry or in Australia, National Australian Bank taking a CDO within the same sector from TD Bank going to NAB. So these change agents come in, disrupt. It's a hard job. As one of you said to me, it often feels like. I make one step forward and I get knocked down again, I get pushed back. It is not for the faint of heart, but it's the most important part of your job. The other thing I'll talk about is WIIFM What's In It For Me? And this is really about understanding the motivation, the relevance that data has for everyone on the frontline, as well as those analysts, as well as the executives. So, if we're talking about players in the NFL, they want to perform better and they want to stay safe. That is why data matters to them. If we're talking about financial services, this may be a wealth management advisor. Okay, we could say commissions, but it's really helping people have their dreams come true, whether it's putting their children through college or being able to retire without having to work multiple jobs still into your 70s or 80s. For the teachers, teachers you ask them about data. They'll say, "We don't need that, I care about the student." So if you can use data to help a student perform better, that is WIIFM and sometimes we spend so much time talking the technology, we forget, what is the value we're trying to deliver with this? And we forget the impact on the people that it does require change. In fact, the Harvard Business Review study found that 44% said lack of change management is the biggest barrier to leveraging both new technology, but also being empowered to act on those data-driven insights. The third point, organize for collaboration. This does require diversity of thought, but also bringing the technology, the data and the business people together. Now there's not a single one size fits all model for data and analytics. At one point in time, even having a BICC, a BI competency center was considered state of the art. Now for the biggest impact, what I recommend is that you have a federated model centralized for economies of scale. That could be the common data, but then embed these evangelists, these analysts of the future within every business unit, every functional domain. And as you see this top bar, all models are possible, but the hybrid model has the most impact, the most leaders. So as we look ahead to the months ahead, to the year ahead, an exciting time because data is helping organizations better navigate a tough economy, lock in the customer loyalty and I look forward to seeing how you foster that culture that's collaborative with empathy and bring the best of technology, leveraging the cloud, all your data. So thank you for joining us at Thought Leaders. And next, I'm pleased to introduce our first change agent, Tom Mazzaferro Chief Data Officer of Western Union and before joining Western Union, Tom made his Mark at HSBC and JP Morgan Chase spearheading digital innovation in technology, operations, risk compliance and retail banking. Tom, thank you so much for joining us today. (gentle music) >> Very happy to be here and looking forward to talking to all of you today. So as we look to move organizations to a data-driven capability into the future, there is a lot that needs to be done on the data side, but also how does data connect and enable different business teams and the technology teams into the future? As we look across our data ecosystems and our platforms, and how we modernize that to the cloud in the future, it all needs to basically work together, right? To really be able to drive an organization from a data standpoint, into the future. That includes being able to have the right information with the right quality of data, at the right time to drive informed business decisions, to drive the business forward. As part of that, we actually have partnered with ThoughtSpot to actually bring in the technology to help us drive that. As part of that partnership and it's how we've looked to integrate it into our overall business as a whole. We've looked at, how do we make sure that our business and our professional lives, right? Are enabled in the same ways as our personal lives. So for example, in your personal lives, when you want to go and find something out, what do you do? You go onto google.com or you go onto Bing or you go onto Yahoo and you search for what you want, search to find an answer. ThoughtSpot for us is the same thing, but in the business world. So using ThoughtSpot and other AI capability is it's allowed us to actually enable our overall business teams in our company to actually have our information at our fingertips. So rather than having to go and talk to someone, or an engineer to go pull information or pull data. We actually can have the end users or the business executives, right. Search for what they need, what they want, at the exact time that they actually need it, to go and drive the business forward. This is truly one of those transformational things that we've put in place. On top of that, we are on a journey to modernize our larger ecosystem as a whole. That includes modernizing our underlying data warehouses, our technology, our... The local environments and as we move that, we've actually picked two of our cloud providers going to AWS and to GCP. We've also adopted Snowflake to really drive and to organize our information and our data, then drive these new solutions and capabilities forward. So a big portion of it though is culture. So how do we engage with the business teams and bring the IT teams together, to really help to drive these holistic end-to-end solutions and capabilities, to really support the actual business into the future. That's one of the keys here, as we look to modernize and to really enhance our organizations to become data-driven. This is the key. If you can really start to provide answers to business questions before they're even being asked and to predict based upon different economic trends or different trends in your business, what decisions need to be made and actually provide those answers to the business teams before they're even asking for it. That is really becoming a data-driven organization and as part of that, it really then enables the business to act quickly and take advantage of opportunities as they come in based upon industries, based upon markets, based upon products, solutions or partnerships into the future. These are really some of the keys that become crucial as you move forward, right, into this new age, Especially with COVID. With COVID now taking place across the world, right? Many of these markets, many of these digital transformations are celebrating and are changing rapidly to accommodate and to support customers in these very difficult times. As part of that, you need to make sure you have the right underlying foundation, ecosystems and solutions to really drive those capabilities and those solutions forward. As we go through this journey, both in my career but also each of your careers into the future, right? It also needs to evolve, right? Technology has changed so drastically in the last 10 years, and that change is only accelerating. So as part of that, you have to make sure that you stay up to speed, up to date with new technology changes, both on the platform standpoint, tools, but also what do our customers want, what do our customers need and how do we then service them with our information, with our data, with our platform, and with our products and our services to meet those needs and to really support and service those customers into the future. This is all around becoming a more data-driven organization, such as how do you use your data to support your current business lines, but how do you actually use your information and your data to actually better support your customers, better support your business, better support your employees, your operations teams and so forth. And really creating that full integration in that ecosystem is really when you start to get large dividends from these investments into the future. With that being said, I hope you enjoyed the segment on how to become and how to drive a data-driven organization, and looking forward to talking to you again soon. Thank you. >> Tom, that was great. Thanks so much and now going to have to drag on you for a second. As a change agent you've come in, disrupted and how long have you been at Western Union? >> Only nine months, so just started this year, but there have been some great opportunities to integrate changes and we have a lot more to go, but we're really driving things forward in partnership with our business teams and our colleagues to support those customers going forward. >> Tom, thank you so much. That was wonderful. And now, I'm excited to introduce you to Gustavo Canton, a change agent that I've had the pleasure of working with meeting in Europe and he is a serial change agent. Most recently with Schneider Electric but even going back to Sam's Clubs. Gustavo, welcome. (gentle music) >> So, hey everyone, my name is Gustavo Canton and thank you so much, Cindi, for the intro. As you mentioned, doing transformations is, you know, a high reward situation. I have been part of many transformations and I have led many transformations. And, what I can tell you is that it's really hard to predict the future, but if you have a North Star and you know where you're going, the one thing that I want you to take away from this discussion today is that you need to be bold to evolve. And so, in today, I'm going to be talking about culture and data, and I'm going to break this down in four areas. How do we get started, barriers or opportunities as I see it, the value of AI and also, how you communicate. Especially now in the workforce of today with so many different generations, you need to make sure that you are communicating in ways that are non-traditional sometimes. And so, how do we get started? So, I think the answer to that is you have to start for you yourself as a leader and stay tuned. And by that, I mean, you need to understand, not only what is happening in your function or your field, but you have to be very in tune what is happening in society socioeconomically speaking, wellbeing. You know, the common example is a great example and for me personally, it's an opportunity because the number one core value that I have is wellbeing. I believe that for human potential for customers and communities to grow, wellbeing should be at the center of every decision. And as somebody mentioned, it's great to be, you know, stay in tune and have the skillset and the courage. But for me personally, to be honest, to have this courage is not about not being afraid. You're always afraid when you're making big changes and you're swimming upstream, but what gives me the courage is the empathy part. Like I think empathy is a huge component because every time I go into an organization or a function, I try to listen very attentively to the needs of the business and what the leaders are trying to do. But I do it thinking about the mission of, how do I make change for the bigger workforce or the bigger good despite the fact that this might have perhaps implication for my own self interest in my career. Right? Because you have to have that courage sometimes to make choices that are not well seen, politically speaking, but are the right thing to do and you have to push through it. So the bottom line for me is that, I don't think we're they're transforming fast enough. And the reality is, I speak with a lot of leaders and we have seen stories in the past and what they show is that, if you look at the four main barriers that are basically keeping us behind budget, inability to act, cultural issues, politics and lack of alignment, those are the top four. But the interesting thing is that as Cindi has mentioned, these topic about culture is actually gaining more and more traction. And in 2018, there was a story from HBR and it was about 45%. I believe today, it's about 55%, 60% of respondents say that this is the main area that we need to focus on. So again, for all those leaders and all the executives who understand and are aware that we need to transform, commit to the transformation and set a deadline to say, "Hey, in two years we're going to make this happen. What do we need to do, to empower and enable these change agents to make it happen? You need to make the tough choices. And so to me, when I speak about being bold is about making the right choices now. So, I'll give you examples of some of the roadblocks that I went through as I've been doing transformations, most recently, as Cindi mentioned in Schneider. There are three main areas, legacy mindset and what that means is that, we've been doing this in a specific way for a long time and here is how we have been successful. What worked in the past is not going to work now. The opportunity there is that there is a lot of leaders, who have a digital mindset and they're up and coming leaders that are perhaps not yet fully developed. We need to mentor those leaders and take bets on some of these talents, including young talent. We cannot be thinking in the past and just wait for people, you know, three to five years for them to develop because the world is going in a way that is super-fast. The second area and this is specifically to implementation of AI. It's very interesting to me because just the example that I have with ThoughtSpot, right? We went on implementation and a lot of the way the IT team functions or the leaders look at technology, they look at it from the prism of the prior or success criteria for the traditional BIs, and that's not going to work. Again, the opportunity here is that you need to redefine what success look like. In my case, I want the user experience of our workforce to be the same user experience you have at home. It's a very simple concept and so we need to think about, how do we gain that user experience with these augmented analytics tools and then work backwards to have the right talent, processes, and technology to enable that. And finally and obviously with COVID, a lot of pressure in organizations and companies to do more with less. And the solution that most leaders I see are taking is to just minimize costs sometimes and cut budget. We have to do the opposite. We have to actually invest on growth areas, but do it by business question. Don't do it by function. If you actually invest in these kind of solutions, if you actually invest on developing your talent and your leadership to see more digitally, if you actually invest on fixing your data platform, it's not just an incremental cost. It's actually this investment is going to offset all those hidden costs and inefficiencies that you have on your system, because people are doing a lot of work and working very hard but it's not efficient and it's not working in the way that you might want to work. So there is a lot of opportunity there and just to put in terms of perspective, there have been some studies in the past about, you know, how do we kind of measure the impact of data? And obviously, this is going to vary by organization maturity, there's going to be a lot of factors. I've been in companies who have very clean, good data to work with and I've been with companies that we have to start basically from scratch. So it all depends on your maturity level. But in this study, what I think is interesting is they try to put a tagline or a tag price to what is the cost of incomplete data. So in this case, it's about 10 times as much to complete a unit of work when you have data that is flawed as opposed to having perfect data. So let me put that just in perspective, just as an example, right? Imagine you are trying to do something and you have to do 100 things in a project, and each time you do something, it's going to cost you a dollar. So if you have perfect data, the total cost of that project might be $100. But now let's say you have 80% perfect data and 20% flawed data. By using this assumption that flawed data is 10 times as costly as perfect data, your total costs now becomes $280 as opposed to $100. This just for you to really think about as a CIO, CTO, you know CHRO, CEO, "Are we really paying attention and really closing the gaps that we have on our data infrastructure?" If we don't do that, it's hard sometimes to see the snowball effect or to measure the overall impact, but as you can tell, the price tag goes up very, very quickly. So now, if I were to say, how do I communicate this or how do I break through some of these challenges or some of these barriers, right? I think the key is, I am in analytics, I know statistics obviously and love modeling, and, you know, data and optimization theory, and all that stuff. That's what I came to analytics, but now as a leader and as a change agent, I need to speak about value and in this case, for example, for Schneider. There was this tagline, make the most of your energy. So the number one thing that they were asking from the analytics team was actually efficiency, which to me was very interesting. But once I understood that, I understood what kind of language to use, how to connect it to the overall strategy and basically, how to bring in the right leaders because you need to, you know, focus on the leaders that you're going to make the most progress, you know. Again, low effort, high value. You need to make sure you centralize all the data as you can, you need to bring in some kind of augmented analytics, you know, solution. And finally, you need to make it super-simple for the, you know, in this case, I was working with the HR teams and other areas, so they can have access to one portal. They don't have to be confused and looking for 10 different places to find information. I think if you can actually have those four foundational pillars, obviously under the guise of having a data-driven culture, that's when you can actually make the impact. So in our case, it was about three years total transformation, but it was two years for this component of augmented analytics. It took about two years to talk to, you know, IT, get leadership support, find the budgeting, you know, get everybody on board, make sure the success criteria was correct. And we call this initiative, the people analytics portal. It was actually launched in July of this year and we were very excited and the audience was very excited to do this. In this case, we did our pilot in North America for many, many, many factors but one thing that is really important is as you bring along your audience on this, you know. You're going from Excel, you know, in some cases or Tableu to other tools like, you know, ThoughtSpot. You need to really explain them what is the difference and how this tool can truly replace some of the spreadsheets or some of the views that you might have on these other kinds of tools. Again, Tableau, I think it's a really good tool. There are other many tools that you might have in your toolkit but in my case, personally, I feel that you need to have one portal. Going back to Cindi's points, that really truly enable the end user. And I feel that this is the right solution for us, right? And I will show you some of the findings that we had in the pilot in the last two months. So this was a huge victory and I will tell you why, because it took a lot of effort for us to get to this stage and like I said, it's been years for us to kind of lay the foundation, get the leadership, initiating culture so people can understand, why you truly need to invest on augmented analytics. And so, what I'm showing here is an example of how do we use basically, you know, a tool to capturing video, the qualitative findings that we had, plus the quantitative insights that we have. So in this case, our preliminary results based on our ambition for three main metrics. Hours saved, user experience and adoption. So for hours saved, our ambition was to have 10 hours per week for employee to save on average. User experience, our ambition was 4.5 and adoption 80%. In just two months, two months and a half of the pilot, we were able to achieve five hours per week per employee savings, a user experience for 4.3 out of five and adoption of 60%. Really, really amazing work. But again, it takes a lot of collaboration for us to get to the stage from IT, legal, communications, obviously the operations things and the users. In HR safety and other areas that might be basically stakeholders in this whole process. So just to summarize, this kind of effort takes a lot of energy. You are a change agent, you need to have courage to make this decision and understand that, I feel that in this day and age with all this disruption happening, we don't have a choice. We have to take the risk, right? And in this case, I feel a lot of satisfaction in how we were able to gain all these great resource for this organization and that give me the confident to know that the work has been done and we are now in a different stage for the organization. And so for me, it's just to say, thank you for everybody who has belief, obviously in our vision, everybody who has belief in, you know, the work that we were trying to do and to make the life of our, you know, workforce or customers and community better. As you can tell, there is a lot of effort, there is a lot of collaboration that is needed to do something like this. In the end, I feel very satisfied with the accomplishments of this transformation and I just want to tell for you, if you are going right now in a moment that you feel that you have to swim upstream, you know, work with mentors, work with people in the industry that can help you out and guide you on this kind of transformation. It's not easy to do, it's high effort, but it's well worth it. And with that said, I hope you are well and it's been a pleasure talking to you. Talk to you soon. Take care. >> Thank you, Gustavo. That was amazing. All right, let's go to the panel. (light music) Now I think we can all agree how valuable it is to hear from practitioners and I want to thank the panel for sharing their knowledge with the community. Now one common challenge that I heard you all talk about was bringing your leadership and your teams along on the journey with you. We talk about this all the time and it is critical to have support from the top. Why? Because it directs the middle and then it enables bottoms up innovation effects from the cultural transformation that you guys all talked about. It seems like another common theme we heard is that you all prioritize database decision making in your organizations. And you combine two of your most valuable assets to do that and create leverage, employees on the front lines, and of course the data. Now as as you rightly pointed out, Tom, the pandemic has accelerated the need for really leaning into this. You know, the old saying, if it ain't broke, don't fix it, well COVID has broken everything and it's great to hear from our experts, you know, how to move forward, so let's get right into it. So Gustavo, let's start with you. If I'm an aspiring change agent and let's say I'm a budding data leader, what do I need to start doing? What habits do I need to create for long-lasting success? >> I think curiosity is very important. You need to be, like I said, in tune to what is happening, not only in your specific field, like I have a passion for analytics, I've been doing it for 50 years plus, but I think you need to understand wellbeing of the areas across not only a specific business. As you know, I come from, you know, Sam's Club, Walmart retail. I've been in energy management, technology. So you have to try to push yourself and basically go out of your comfort zone. I mean, if you are staying in your comfort zone and you want to just continuous improvement, that's just going to take you so far. What you have to do is, and that's what I try to do, is I try to go into areas, businesses and transformations, that make me, you know, stretch and develop as a leader. That's what I'm looking to do, so I can help transform the functions, organizations, and do the change management, the essential mindset that's required for this kind of effort. >> Well, thank you for that. That is inspiring and Cindi you love data and the data is pretty clear that diversity is a good business, but I wonder if you can, you know, add your perspectives to this conversation? >> Yeah, so Michelle has a new fan here because she has found her voice. I'm still working on finding mine and it's interesting because I was raised by my dad, a single dad, so he did teach me how to work in a predominantly male environment, but why I think diversity matters more now than ever before and this is by gender, by race, by age, by just different ways of working and thinking, is because as we automate things with AI, if we do not have diverse teams looking at the data, and the models, and how they're applied, we risk having bias at scale. So this is why I think I don't care what type of minority you are, finding your voice, having a seat at the table and just believing in the impact of your work has never been more important and as Michelle said, more possible. >> Great perspectives, thank you. Tom, I want to go to you. So, I mean, I feel like everybody in our businesses is in some way, shape, or form become a COVID expert, but what's been the impact of the pandemic on your organization's digital transformation plans? >> We've seen a massive growth, actually, in our digital business over the last 12 months really, even acceleration, right, once COVID hit. We really saw that in the 200 countries and territories that we operate in today and service our customers in today, that there's been a huge need, right, to send money to support family, to support friends, and to support loved ones across the world. And as part of that we are very honored to be able to support those customers that, across all the centers today, but as part of the acceleration, we need to make sure that we have the right architecture and the right platforms to basically scale, right? To basically support and provide the right kind of security for our customers going forward. So as part of that, we did do some pivots and we did accelerate some of our plans on digital to help support that overall growth coming in and to support our customers going forward, because during these times, during this pandemic, right, this is the most important time and we need to support those that we love and those that we care about. And doing that some of those ways is actually by sending money to them, support them financially. And that's where really our products and our services come into play that, you know, and really support those families. So, it was really a great opportunity for us to really support and really bring some of our products to the next level and supporting our business going forward. >> Awesome, thank you. Now, I want to come back to Gustavo. Tom, I'd love for you to chime in too. Did you guys ever think like you were pushing the envelope too much in doing things with data or the technology that it was just maybe too bold, maybe you felt like at some point it was failing, or you're pushing your people too hard? Can you share that experience and how you got through it? >> Yeah, the way I look at it is, you know, again, whenever I go to an organization, I ask the question, "Hey, how fast you would like to conform?" And, you know, based on the agreements on the leadership and the vision that we want to take place, I take decisions and I collaborate in a specific way. Now, in the case of COVID, for example, right, it forces us to remove silos and collaborate in a faster way. So to me, it was an opportunity to actually integrate with other areas and drive decisions faster, but make no mistake about it, when you are doing a transformation, you are obviously trying to do things faster than sometimes people are comfortable doing, and you need to be okay with that. Sometimes you need to be okay with tension or you need to be okay, you know, debating points or making repetitive business cases until people connect with the decision because you understand and you are seeing that, "Hey, the CEO is making a one, two year, you know, efficiency goal. The only way for us to really do more with less is for us to continue this path. We can not just stay with the status quo, we need to find a way to accelerate the transformation." That's the way I see it. >> How about Utah, we were talking earlier with Sudheesh and Cindi about that bungee jumping moment. What can you share? >> Yeah, you know, I think you hit upon it. Right now, the pace of change will be the slowest pace that you see for the rest of your career. So as part of that, right, this is what I tell my team, is that you need to be, you need to feel comfortable being uncomfortable. Meaning that we have to be able to basically scale, right? Expand and support the ever changing needs in the marketplace and industry and our customers today, and that pace of change that's happening, right? And what customers are asking for and the competition in the marketplace, it's only going to accelerate. So as part of that, you know, as you look at how you're operating today in your current business model, right? Things are only going to get faster. So you have to plan and to align and to drive the actual transformation, so that you can scale even faster into the future. So it's part of that, that's what we're putting in place here, right? It's how do we create that underlying framework and foundation that allows the organization to basically continue to scale and evolve into the future? >> Yeah, we're definitely out of our comfort zones, but we're getting comfortable with it. So Cindi, last question, you've worked with hundreds of organizations and I got to believe that, you know, some of the advice you gave when you were at Gartner, which was pre-COVID, maybe sometimes clients didn't always act on it. You know, not my watch or for whatever, variety of reasons, but it's being forced on them now. But knowing what you know now that, you know, we're all in this isolation economy, how would you say that advice has changed? Has it changed? What's your number one action and recommendation today? >> Yeah, well first off, Tom, just freaked me out. What do you mean, this is the slowest ever? Even six months ago I was saying the pace of change in data and analytics is frenetic. So, but I think you're right, Tom, the business and the technology together is forcing this change. Now, Dave, to answer your question, I would say the one bit of advice, maybe I was a little more very aware of the power in politics and how to bring people along in a way that they are comfortable and now I think it's, you know what, you can't get comfortable. In fact, we know that the organizations that were already in the cloud have been able to respond and pivot faster. So, if you really want to survive, as Tom and Gustavo said, get used to being uncomfortable. The power and politics are going to happen, break the rules, get used to that and be bold. Do not be afraid to tell somebody they're wrong and they're not moving fast enough. I do think you have to do that with empathy, as Michelle said and Gustavo, I think that's one of the key words today besides the bungee jumping. So I want to know where Sudheesh is going to go bungee jumping. (all chuckling) >> Guys, fantastic discussion, really. Thanks again to all the panelists and the guests, it was really a pleasure speaking with you today. Really, virtually all of the leaders that I've spoken to in theCUBE program recently, they tell me that the pandemic is accelerating so many things. Whether it's new ways to work, we heard about new security models and obviously the need for cloud. I mean, all of these things are driving true enterprise-wide digital transformation, not just as I said before, lip service. You know, sometimes we minimize the importance and the challenge of building culture and in making this transformation possible. But when it's done right, the right culture is going to deliver tournament results. You know, what does that mean? Getting it right. Everybody's trying to get it right. My biggest takeaway today is it means making data part of the DNA of your organization. And that means making it accessible to the people in your organization that are empowered to make decisions, decisions that can drive new revenue, cut costs, speed access to critical care, whatever the mission is of your organization, data can create insights and informed decisions that drive value. Okay, let's bring back Sudheesh and wrap things up. Sudheesh, please bring us home. >> Thank you, thank you, Dave. Thank you, theCUBE team, and thanks goes to all of our customers and partners who joined us, and thanks to all of you for spending the time with us. I want to do three quick things and then close it off. The first thing is I want to summarize the key takeaways that I heard from all four of our distinguished speakers. First, Michelle, I will simply put it, she said it really well. That is be brave and drive, don't go for a drive alone. That is such an important point. Often times, you know the right thing that you have to do to make the positive change that you want to see happen, but you wait for someone else to do it, not just, why not you? Why don't you be the one making that change happen? That's the thing that I picked up from Michelle's talk. Cindi talked about finding, the importance of finding your voice. Taking that chair, whether it's available or not, and making sure that your ideas, your voice is heard and if it requires some force, then apply that force. Make sure your ideas are heard. Gustavo talked about the importance of building consensus, not going at things all alone sometimes. The importance of building the quorum, and that is critical because if you want the changes to last, you want to make sure that the organization is fully behind it. Tom, instead of a single takeaway, what I was inspired by is the fact that a company that is 170 years old, 170 years old, 200 companies and 200 countries they're operating in and they were able to make the change that is necessary through this difficult time in a matter of months. If they could do it, anyone could. The second thing I want to do is to leave you with a takeaway, that is I would like you to go to ThoughtSpot.com/nfl because our team has made an app for NFL on Snowflake. I think you will find this interesting now that you are inspired and excited because of Michelle's talk. And the last thing is, please go to ThoughtSpot.com/beyond. Our global user conference is happening in this December. We would love to have you join us, it's, again, virtual, you can join from anywhere. We are expecting anywhere from five to 10,000 people and we would love to have you join and see what we've been up to since last year. We have a lot of amazing things in store for you, our customers, our partners, our collaborators, they will be coming and sharing. We'll be sharing things that we have been working to release, something that will come out next year. And also some of the crazy ideas our engineers have been cooking up. All of those things will be available for you at ThoughtSpot Beyond. Thank you, thank you so much.

Published Date : Oct 10 2020

SUMMARY :

and the change every to you by ThoughtSpot. Nice to join you virtually. Hello Sudheesh, how are you doing today? good to talk to you again. is so important to your and the last change to sort of and talk to you about being So you and I share a love of do my job without you. Great and I'm getting the feeling now, Oh that sounds good, stakeholders that you need to satisfy? and you can find the common so thank you for your leadership here. and the time to maturity at the right time to drive to drag on you for a second. to support those customers going forward. but even going back to Sam's Clubs. in the way that you might want to work. and of course the data. that's just going to take you so far. but I wonder if you can, you know, and the models, and how they're applied, everybody in our businesses and to support loved and how you got through it? and the vision that we want to take place, What can you share? and to drive the actual transformation, to believe that, you know, I do think you have to the right culture is going to and thanks to all of you for

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TomPERSON

0.99+

Dave VellantePERSON

0.99+

SudheeshPERSON

0.99+

MichellePERSON

0.99+

CindiPERSON

0.99+

VerizonORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

DavePERSON

0.99+

AustraliaLOCATION

0.99+

TD BankORGANIZATION

0.99+

EuropeLOCATION

0.99+

1987DATE

0.99+

$100QUANTITY

0.99+

Tom MazzaferroPERSON

0.99+

GustavoPERSON

0.99+

MedtronicORGANIZATION

0.99+

Cindi HausenPERSON

0.99+

$280QUANTITY

0.99+

DisneyORGANIZATION

0.99+

Universal StudiosORGANIZATION

0.99+

2018DATE

0.99+

GartnerORGANIZATION

0.99+

Wells FargoORGANIZATION

0.99+

fiveQUANTITY

0.99+

HSBCORGANIZATION

0.99+

10 timesQUANTITY

0.99+

two sidesQUANTITY

0.99+

Las VegasLOCATION

0.99+

twoQUANTITY

0.99+

Sudheesh NairPERSON

0.99+

4.3QUANTITY

0.99+

20 plus yearsQUANTITY

0.99+

last yearDATE

0.99+

KievLOCATION

0.99+

ThoughtSpotORGANIZATION

0.99+

Schneider ElectricORGANIZATION

0.99+

two sidelinesQUANTITY

0.99+

60%QUANTITY

0.99+

101st yearQUANTITY

0.99+

March 13thDATE

0.99+

80%QUANTITY

0.99+

Alabama Crimson TideORGANIZATION

0.99+

threeQUANTITY

0.99+

20%QUANTITY

0.99+

ExcelTITLE

0.99+

4.5QUANTITY

0.99+

JP Morgan ChaseORGANIZATION

0.99+

Sam's ClubORGANIZATION

0.99+

1990sDATE

0.99+

20,000QUANTITY

0.99+

32 clubsQUANTITY

0.99+

North AmericaLOCATION

0.99+

50 yearsQUANTITY

0.99+

ThoughtSpot Keynote v6


 

>> Data is at the heart of transformation and the change every company needs to succeed, but it takes more than new technology. It's about teams, talent and cultural change. Empowering everyone on the front lines to make decisions all at the speed of digital. The transformation starts with you. It's time to lead the way it's time for Thought leaders. >> Welcome to "Thought Leaders" a digital event brought to you by ThoughtSpot. My name is Dave Vellante. The purpose of this day is to bring industry leaders and experts together to really try and understand the important issues around digital transformation. We have an amazing lineup of speakers and our goal is to provide you with some best practices that you can bring back and apply to your organization. Look, data is plentiful, but insights are not. ThoughtSpot is disrupting analytics by using search and machine intelligence to simplify data analysis and really empower anyone with fast access to relevant data. But in the last 150 days, we've had more questions than answers. Creating an organization that puts data and insights at their core requires not only modern technology, but leadership, a mindset and a culture that people often refer to as data-driven. What does that mean? How can we equip our teams with data and fast access to quality information that can turn insights into action. And today we're going to hear from experienced leaders who are transforming their organizations with data, insights and creating digital first cultures. But before we introduce our speakers, I'm joined today by two of my co-hosts from ThoughtSpot first chief data strategy officer at the ThoughtSpot is Cindi Howson. Cindi is an analytics and BI expert with 20 plus years experience and the author of "Successful Business Intelligence "Unlock the Value of BI & Big Data." Cindi was previously the lead analyst at Gartner for the data and analytics magic quadrant. And early last year, she joined ThoughtSpot to help CDOs and their teams understand how best to leverage analytics and AI for digital transformation. Cindi, great to see you welcome to the show. >> Thank you, Dave. Nice to join you virtually. >> Now our second cohost and friend of the cube is ThoughtSpot CEO Sudheesh Nair Hello, Sudheesh how are you doing today? >> I'm well Dave, it's good to talk to you again. >> It's great to see you thanks so much for being here. Now Sudheesh please share with us why this discussion is so important to your customers and of course, to our audience and what they're going to learn today. (upbeat music) >> Thanks, Dave. I wish you were there to introduce me into every room and that I walk into because you have such an amazing way of doing it. Makes me feel all so good. Look, since we have all been cooped up in our homes, I know that the vendors like us, we have amped up our sort of effort to reach out to you with invites for events like this. So we are getting very more invites for events like this than ever before. So when we started planning for this, we had three clear goals that we wanted to accomplish. And our first one that when you finish this and walk away, we want to make sure that you don't feel like it was a waste of time. We want to make sure that we value your time and this is going to be useful. Number two, we want to put you in touch with industry leaders and thought leaders, generally good people that you want to hang around with long after this event is over. And number three, as we plan through this, we are living through these difficult times. We want an event to be this event, to be more of an uplifting and inspiring event too. Now, the challenge is how do you do that with the team being change agents because change and as much as we romanticize it, it is not one of those uplifting things that everyone wants to do, or like to do. The way I think of it sort of like a, if you've ever done bungee jumping and it's like standing on the edges waiting to make that one more step, all you have to do is take that one step and gravity will do the rest, but that is the hardest step to take. Change requires a lot of courage. And when we are talking about data and analytics, which is already like such a hard topic, not necessarily an uplifting and positive conversation in most businesses, it is somewhat scary. Change becomes all the more difficult. Ultimately change requires courage. Courage to first of all challenge the status quo. People sometimes are afraid to challenge the status quo because they are thinking that maybe I don't have the power to make the change that the company needs. Sometimes they feel like I don't have the skills. Sometimes they may feel that I'm probably not the right person do it. Or sometimes the lack of courage manifest itself as the inability to sort of break the silos that are formed within the organizations, when it comes to data and insights that you talked about. There are people in the company who are going to hog the data because they know how to manage the data, how to inquire and extract. They know how to speak data. They have the skills to do that. But they are not the group of people who have sort of the knowledge, the experience of the business to ask the right questions off the data. So there is the silo of people with the answers, and there is a silo of people with the questions. And there is gap. This sort of silos are standing in the way of making that necessary change that we all know the business needs. And the last change to sort of bring an external force sometimes. It could be a tool. It could be a platform, it could be a person, it could be a process, but sometimes no matter how big the company is or how small the company is, you may need to bring some external stimuli to start the domino of the positive changes that are necessary. The group of people that we are brought in, the four people, including Cindi, that you will hear from today are really good at practically telling you how to make that step, how to step off that edge, how to dress the rope, that you will be safe and you're going to have fun. You will have that exhilarating feeling of jumping, for a bungee jump. All four of them are exceptional, but my honor is to introduce Michelle and she's our first speaker. Michelle, I am very happy after watching her presentation and reading our bio, that there are no country vital worldwide competition for cool patterns, because she will beat all of us because when her children were small, they were probably into Harry Potter and Disney. She was managing a business and leading change there. And then as her kids grew up and got to that age where they like football and NFL, guess what? She's the CIO of NFL. What a cool mom? I am extremely excited to see what she's going to talk about. I've seen the slides, tons of amazing pictures. I'm looking to see the context behind it. I'm very thrilled to make the acquaintance of Michelle and looking forward to her talk next. Welcome Michelle, it's over to you. (upbeat music) >> I'm delighted to be with you all today to talk about thought leadership. And I'm so excited that you asked me to join you because today I get to be a quarterback. I always wanted to be one. And I thought this is about as close as I'm ever going to get. So I want to talk to you about quarterbacking, our digital revolution using insights data. And of course, as you said, leadership, first a little bit about myself, a little background, as I said, I always wanted to play football. And this is something that I wanted to do since I was a child. But when I grew up, girls didn't get to play football. I'm so happy that that's changing and girls are now doing all kinds of things that they didn't get to do before. Just this past weekend on an NFL field, we had a female coach on two sidelines and a female official on the field. I'm a lifelong fan and student of the game of football. I grew up in the South. You can tell from the accent. And in the South football is like a religion and you pick sides. I chose Auburn university working in the athletic department. So I'm Testament to you can start the journey can be long. It took me many, many years to make it into professional sports. I graduated in 1987 and my little brother, well, not actually not so little. He played offensive line for the Alabama Crimson Tide. And for those of you who know SCC football, you know this is a really big rivalry. And when you choose sides, your family is divided. So it's kind of fun for me to always tell the story that my dad knew his kid would make it to the NFL. He just bet on the wrong one. My career has been about bringing people together for memorable moments at some of America's most iconic brands, delivering memories and amazing experiences that delight from Universal Studios, Disney to my current position as CIO of the NFL. In this job I'm very privileged to have the opportunity to work with the team that gets to bring America's game to millions of people around the world. Often I'm asked to talk about how to create amazing experiences for fans, guests, or customers. But today I really wanted to focus on something different and talk to you about being behind the scenes and backstage because behind every event, every game, every awesome moment is execution, precise, repeatable execution. And most of my career has been behind the scenes doing just that assembling teams to execute these plans. And the key way that companies operate at these exceptional levels is making good decisions, the right decisions at the right time and based upon data so that you can translate the data into intelligence and be a data-driven culture. Using data and intelligence is an important way that world-class companies do differentiate themselves. And it's the lifeblood of collaboration and innovation. Teams that are working on delivering these kinds of world casts experiences are often seeking out and leveraging next-generation technologies and finding new ways to work. I've been fortunate to work across three decades of emerging experiences, which each required emerging technologies to execute a little bit first about Disney in the 90s, I was at Disney leading a project called destination Disney, which it's a data project. It was a data project, but it was CRM before CRM was even cool. And then certainly before anything like a data-driven culture was ever brought up, but way back then we were creating a digital backbone that enabled many technologies for the things that you see today, like the magic band, Disney's magical express. My career at Disney began in finance, but Disney was very good about rotating you around. And it was during one of these rotations that I became very passionate about data. I kind of became a pain in the butt to the IT team asking for data more and more data. And I learned that all of that valuable data was locked up in our systems. All of our point of sales systems, our reservation systems, our operation systems. And so I became a shadow IT person in marketing, ultimately leading to moving into IT. And I haven't looked back since. In the early two thousands, I was at universal studios theme park as their CIO preparing for and launching "The Wizarding World of Harry Potter" bringing one of history's most memorable characters to life required many new technologies and a lot of data. Our data and technologies were embedded into the rides and attractions. I mean, how do you really think a wan selects you at a wan shop. As today at the NFL? I am constantly challenged to do leading edge technologies, using things like sensors, AI, machine learning, and all new communication strategies and using data to drive everything from player performance, contracts, to where we build new stadiums and hold events with this year being the most challenging yet rewarding year in my career at the NFL. In the middle of a global pandemic, the way we are executing on our season is leveraging data from contract tracing devices joined with testing data, talk about data, actually enabling your business without it w wouldn't be having a season right now. I'm also on the board of directors of two public companies where data and collaboration are paramount. First RingCentral, it's a cloud based unified communications platform and collaboration with video message and phone all in one solution in the cloud and Quotient technologies whose product is actually data. The tagline at Quotient is the result in knowing I think that's really important because not all of us are data companies where your product is actually data, but we should operate more like your product is data. I'd also like to talk to you about four areas of things to think about as thought leaders in your companies. First just hit on it is change how to be a champion and a driver of change. Second, how do you use data to drive performance for your company and measure performance of your company? Third, how companies now require intense collaboration to operate. And finally, how much of this is accomplished through solid data driven decisions. First let's hit on change. I mean, it's evident today more than ever, that we are in an environment of extreme change. I mean, we've all been at this for years and as technologists we've known it, believed it, lived it and thankfully for the most part, knock on what we were prepared for it. But this year everyone's cheese was moved. All the people in the back rooms, IT, data architects and others were suddenly called to the forefront because a global pandemic has turned out to be the thing that is driving intense change in how people work and analyze their business. On March 13th, we closed our office at the NFL in the middle of preparing for one of our biggest events, our kickoff event, the 2020 draft. We went from planning a large event in Las Vegas under the bright lights, red carpet stage to smaller events in club facilities. And then ultimately to one where everyone coaches GM's prospects and even our commissioner were at home in their basements. And we only had a few weeks to figure it out. I found myself for the first time being in the live broadcast event space, talking about bungee jumping. This is really what it felt like. It was one in which no one felt comfortable because it had not been done before. But leading through this, I stepped up, but it was very scary. It was certainly very risky, but it ended up being all so rewarding when we did it. And as a result of this, some things will change forever. Second, managing performance. I mean, data should inform how you're doing and how to get your company to perform at it's level. Highest level. As an example, the NFL has always measured performance, obviously, and it is one of the purest examples of how performance directly impacts outcome. I mean, you can see performance on the field. You can see points being scored in stats, and you immediately know that impact those with the best stats usually when the games. The NFL has always recorded stats since the beginning of time here at the NFL a little this year is our 101 year and athletes ultimate success as a player has also always been greatly impacted by his stats. But what has changed for us is both how much more we can measure and the immediacy with which it can be measured. And I'm sure in your business it's the same. The amount of data you must have has got to have quadrupled and how fast you need it and how quickly you need to analyze it is so important. And it's very important to break the silos between the keys, to the data and the use of the data. Our next generation stats platform is taking data to a next level. It's powered by Amazon web services. And we gathered this data real-time from sensors that are on players' bodies. We gather it in real time, analyze it, display it online and on broadcast. And of course it's used to prepare week to week in addition to what is a normal coaching plan would be. We can now analyze, visualize route patterns, speed match-ups, et cetera. So much faster than ever before. We're continuing to roll out sensors too that will gather more and more information about a player's performance as it relates to their health and safety. The third trend is really, I think it's a big part of what we're feeling today and that is intense collaboration. And just for sort of historical purposes, it's important to think about for those of you that are IT professionals and developers, more than 10 years ago, agile practices began sweeping companies where small teams would work together rapidly in a very flexible, adaptive, and innovative way. And it proved to be transformational. However, today, of course, that is no longer just small teams, the next big wave of change. And we've seen it through this pandemic is that it's the whole enterprise that must collaborate and be agile. If I look back on my career, when I was at Disney, we owned everything 100%. We made a decision, we implemented it. We were a collaborative culture, but it was much easier to push change because you own the whole decision. If there was buy-in from the top down, you've got the people from the bottom up to do it and you executed. At Universal we were a joint venture. Our attractions and entertainment was licensed. Our hotels were owned and managed by other third parties. So influence and collaboration and how to share across companies became very important. And now here I am at the NFL and even the bigger ecosystem, we have 32 clubs that are all separate businesses. 31 different stadiums that are owned by a variety of people. We have licensees, we have sponsors, we have broadcast partners. So it seems that as my career has evolved, centralized control has gotten less and less and has been replaced by intense collaboration, not only within your own company, but across companies. The ability to work in a collaborative way across businesses and even other companies that has been a big key to my success in my career. I believe this whole vertical integration and big top-down decision-making is going by the wayside in favor of ecosystems that require cooperation yet competition to co-exist. I mean, the NFL is a great example of what we call co-op petition, which is cooperation and competition. We're in competition with each other, but we cooperate to make the company the best it can be. And at the heart of these items really are data driven decisions and culture. Data on its own isn't good enough. You must be able to turn it to insights. Partnerships between technology teams who usually hold the keys to the raw data and business units who have the knowledge to build the right decision models is key. If you're not already involved in this linkage, you should be. Data mining isn't new for sure. The availability of data is quadrupling and it's everywhere. How do you know what to even look at? How do you know where to begin? How do you know what questions to ask it's by using the tools that are available for visualization and analytics and knitting together strategies of the company. So it begins with first of all, making sure you do understand the strategy of the company. So in closing, just to wrap up a bit, many of you joined today, looking for thought leadership on how to be a change agent, a change champion, and how to lead through transformation. Some final thoughts are be brave and drive. Don't do the ride along program. It's very important to drive. Driving can be high risk, but it's also high reward. Embracing the uncertainty of what will happen is how you become brave. Get more and more comfortable with uncertainty, be calm and let data be your map on your journey. Thanks. >> Michelle, tank you so much. So you and I share a love of data and a love of football. You said you want to be the quarterback. I'm more an old line person. (Michelle and Cindi laughing) >> Well, then I can do my job without you. >> Great. And I'm getting the feeling now, Sudheesh is talking about bungee jumping. My vote is when we're past this pandemic, we both take them to the Delaware water gap and we do the cliff jumping. >> That sounds good, I'll watch. >> Yeah, you'll watch, okay. So Michelle, you have so many stakeholders when you're trying to prioritize the different voices. You have the players, you have the owners, you have the league, as you mentioned, the broadcasters, your partners here and football mamas like myself. How do you prioritize when there's so many different stakeholders that you need to satisfy? >> I think balancing across stakeholders starts with, aligning on a mission. And if you spend a lot of time understanding where everyone's coming from, and you can find the common thread that ties them all together, you sort of do get them to naturally prioritize their work. And I think that's very important. So for us, at the NFL and even at Disney, it was our core values and our core purpose, is so well known and when anything challenges that we're able to sort of lay that out. But as a change agent, you have to be very empathetic. And I would say empathy is probably your strongest skill if you're a change agent. And that means listening to every single stakeholder, even when they're yelling at you, even when they're telling you your technology doesn't work and you know that it's user error, or even when someone is just emotional about what's happening to them and that they're not comfortable with it. So I think being empathetic and having a mission and understanding it is sort of how I prioritize and balance. >> Yeah, empathy, a very popular word this year. I can imagine those coaches and owners yelling. So, thank you for your leadership here. So Michelle, I look forward to discussing this more with our other customers and disruptors joining us in a little bit. (upbeat music) So we're going to take a hard pivot now and go from football to Chernobyl. Chernobyl what went wrong? 1986, as the reactors were melting down, they had the data to say, this is going to be catastrophic. And yet the culture said, "no, we're perfect, hide it. "Don't dare tell anyone." Which meant they went ahead and had celebrations in Kiev. Even though that increased the exposure, the additional thousands getting cancer and 20,000 years before the ground around there can even be inhabited again, this is how powerful and detrimental a negative culture, a culture that is unable to confront the brutal facts that hides data. This is what we have to contend with. And this is why I want you to focus on having, fostering a data-driven culture. I don't want you to be a laggard. I want you to be a leader in using data to drive your digital transformation. So I'll talk about culture and technology. Is it really two sides of the same coin, real-world impacts and then some best practices you can use to and innovate your culture. Now, oftentimes I would talk about culture and I talk about technology. And recently a CDO said to me, "Cindi, I actually think this is two sides "of the same coin. "One reflects the other." What do you think? Let me walk you through this. So let's take a laggard. What does the technology look like? Is it based on 1990s BI and reporting largely parametrized reports, on premises data, warehouses, or not even that operational reports at best one enterprise data warehouse, very slow moving and collaboration is only email. What does that culture tell you? Maybe there's a lack of leadership to change, to do the hard work that Sudheesh referred to, or is there also a culture of fear, afraid of failure, resistance to change complacency. And sometimes that complacency it's not because people are lazy. It's because they've been so beaten down every time a new idea is presented. It's like, no we're measured on least cost to serve. So politics and distrust, whether it's between business and IT or individual stakeholders is the norm. So data is hoarded. Let's contrast that with a leader, a data and analytics leader, what is their technology look like? Augmented analytics search and AI driven insights, not on premises, but in the cloud and maybe multiple clouds. And the data is not in one place, but it's in a data Lake and in a data warehouse, a logical data warehouse. The collaboration is being a newer methods, whether it's Slack or teams allowing for that real time decisioning or investigating a particular data point. So what is the culture in the leaders? It's transparent and trust. There is a trust that data will not be used to punish that there is an ability to confront the bad news. It's innovation, valuing innovation in pursuit of the company goals, whether it's the best fan experience and player safety in the NFL or best serving your customers. It's innovative and collaborative. There's none of this. Oh, well, I didn't invent that. I'm not going to look at that. There's still pride of ownership, but it's collaborating to get to a better place faster. And people feel empowered to present new ideas to fail fast, and they're energized knowing that they're using the best technology and innovating at the pace that business requires. So data is democratized. And democratized, not just for power users or analysts, but really at the point of impact what we like to call the new decision-makers or really the frontline workers. So Harvard business review partnered with us to develop this study to say, just how important is this? We've been working at BI and analytics as an industry for more than 20 years. Why is it not at the front lines? Whether it's a doctor, a nurse, a coach, a supply chain manager, a warehouse manager, a financial services advisor. Everyone said that if our 87% said, they would be more successful if frontline workers were empowered with data driven insights, but they recognize they need new technology to be able to do that. It's not about learning hard tools. The sad reality, only 20% of organizations are actually doing this. These are the data-driven leaders. So this is the culture in technology. How did we get here? It's because state-of-the-art keeps changing. So the first-generation BI and analytics platforms were deployed on premises on small datasets, really just taking data out of ERP systems that were also on premises. And state-of-the-art was maybe getting a management report, an operational report. Over time visual-based data discovery vendors disrupted these traditional BI vendors, empowering now analysts to create visualizations with the flexibility on a desktop, sometimes larger data, sometimes coming from a data warehouse. The current state of the art though, Gartner calls it augmented analytics at ThoughtSpot, we call it search and AI driven analytics. And this was pioneered for large scale datasets, whether it's on premises or leveraging the cloud data warehouses. And I think this is an important point. Oftentimes you, the data and analytics leaders will look at these two components separately, but you have to look at the BI and analytics tier in lockstep with your data architectures to really get to the granular insights and to leverage the capabilities of AI. Now, if you've never seen ThoughtSpot, I'll just show you what this looks like. Instead of somebody hard coding, a report it's typing in search keywords and very robust keywords contains rank top bottom, getting to a visual visualization that then can be pinned to an existing Pin board that might also contain insights generated by an AI engine. So it's easy enough for that new decision maker, the business user, the non analyst to create themselves. Modernizing the data and analytics portfolio is hard because the pace of change has accelerated. You use to be able to create an investment place a bet for maybe 10 years, a few years ago, that time horizon was five years, now it's maybe three years and the time to maturity has also accelerated. So you have these different components, the search and AI tier, the data science tier, data preparation and virtualization. But I would also say equally important is the cloud data warehouse and pay attention to how well these analytics tools can unlock the value in these cloud data warehouses. So ThoughtSpot was the first to market with search and AI driven insights. Competitors have followed suit, but be careful if you look at products like power BI or SAP analytics cloud, they might demo well, but do they let you get to all the data without moving it in products like Snowflake, Amazon Redshift, or Azure synapse or Google big query, they do not. They require you to move it into a smaller in memory engine. So it's important how well these new products inter operate. the pace of change, its acceleration Gartner recently predicted that by 2022, 65% of analytical queries will be generated using search or NLP or even AI. And that is roughly three times the prediction they had just a couple years ago. So let's talk about the real world impact of culture. And if you read any of my books or used any of the maturity models out there, whether the Gartner IT score that I worked on, or the data warehousing Institute also has the money surety model. We talk about these five pillars to really become data-driven. As Michelle, I spoke about it's focusing on the business outcomes, leveraging all the data, including new data sources, it's the talent, the people, the technology, and also the processes. And often when I would talk about the people and the talent, I would lump the culture as part of that. But in the last year, as I've traveled the world and done these digital events for Thought leaders, you have told me now culture is absolutely so important. And so we've pulled it out as a separate pillar. And in fact, in polls that we've done in these events, look at how much more important culture is as a barrier to becoming data-driven it's three times as important as any of these other pillars. That's how critical it is. And let's take an example of where you can have great data, but if you don't have the right culture, there's devastating impacts. And I will say, I have been a loyal customer of Wells Fargo for more than 20 years. But look at what happened in the face of negative news with data, it said, "hey, we're not doing good cross selling, "customers do not have both a checking account "and a credit card and a savings account and a mortgage." They opened fake accounts facing billions in fines, change in leadership that even the CEO attributed to a toxic sales culture, and they're trying to fix this. But even recently there's been additional employee backlash saying the culture has not changed. Let's contrast that with some positive examples, Medtronic, a worldwide company in 150 countries around the world. They may not be a household name to you, but if you have a loved one or yourself, you have a pacemaker, spinal implant diabetes, you know this brand. And at the start of COVID when they knew their business would be slowing down, because hospitals would only be able to take care of COVID patients. They took the bold move of making their IP for ventilators publicly available. That is the power of a positive culture. Or Verizon, a major telecom organization looking at late payments of their customers. And even though the U.S federal government said, "well, you can't turn them off. They said, "we'll extend that even beyond "the mandated guidelines." And facing a slow down in the business because of the tough economy, they said, you know what? "We will spend the time up skilling our people, "giving them the time to learn more "about the future of work, the skills and data "and analytics," for 20,000 of their employees, rather than furloughing them. That is the power of a positive culture. So how can you transform your culture to the best in class? I'll give you three suggestions, bring in a change agent, identify the relevance, or I like to call it WIFM and organize for collaboration. So the CDO, whatever your title is, chief analytics officer, chief digital officer, you are the most important change agent. And this is where you will hear that oftentimes a change agent has to come from outside the organization. So this is where, for example, in Europe, you have the CDO of Just Eat a takeout food delivery organization coming from the airline industry or in Australia, National Australian bank, taking a CDO within the same sector from TD bank going to NAB. So these change agents come in disrupt. It's a hard job. As one of you said to me, it often feels like Sisyphus. I make one step forward and I get knocked down again. I get pushed back. It is not for the faint of heart, but it's the most important part of your job. The other thing I'll talk about is WIFM. What is in it for me? And this is really about understanding the motivation, the relevance that data has for everyone on the frontline, as well as those analysts, as well as the executives. So if we're talking about players in the NFL, they want to perform better and they want to stay safe. That is why data matters to them. If we're talking about financial services, this may be a wealth management advisor. Okay we could say commissions, but it's really helping people have their dreams come true, whether it's putting their children through college or being able to retire without having to work multiple jobs still into your 70s or 80s for the teachers, teachers, you ask them about data. They'll say we don't, we don't need that. I care about the student. So if you can use data to help a student perform better, that is WIFM. And sometimes we spend so much time talking the technology, we forget what is the value we're trying to deliver with it. And we forget the impact on the people that it does require change. In fact, the Harvard business review study found that 44% said lack of change management is the biggest barrier to leveraging both new technology, but also being empowered to act on those data-driven insights. The third point organize for collaboration. This does require diversity of thought, but also bringing the technology, the data and the business people together. Now there's not a single one size fits all model for data and analytics. At one point in time, even having a BICC, a BI competency center was considered state-of-the-art. Now for the biggest impact what I recommend is that you have a federated model centralized for economies of scale. That could be the common data, but then in bed, these evangelists, these analysts of the future within every business unit, every functional domain. And as you see this top bar, all models are possible, but the hybrid model has the most impact, the most leaders. So as we look ahead to the months ahead, to the year ahead an exciting time, because data is helping organizations better navigate a tough economy, lock in the customer loyalty. And I look forward to seeing how you foster that culture that's collaborative with empathy and bring the best of technology, leveraging the cloud, all your data. So thank you for joining us at Thought Leaders. And next I'm pleased to introduce our first change agent, Tom Mazzaferro chief data officer of Western union. And before joining Western union, Tom made his Mark at HSBC and JPMorgan Chase spearheading digital innovation in technology, operations, risk compliance, and retail banking. Tom, thank you so much for joining us today. (upbeat music) >> Very happy to be here and looking forward to talking to all of you today. So as we look to move organizations to a data-driven, capability into the future, there is a lot that needs to be done on the data side, but also how does data connect and enable different business teams and technology teams into the future. As you look across, our data ecosystems and our platforms and how we modernize that to the cloud in the future, it all needs to basically work together, right? To really be able to drive and over the shift from a data standpoint, into the future, that includes being able to have the right information with the right quality of data, at the right time to drive informed business decisions, to drive the business forward. As part of that, we actually have partnered with ThoughtSpot, to actually bring in the technology to help us drive that as part of that partnership. And it's how we've looked to integrate it into our overall business as a whole we've looked at how do we make sure that our business and our professional lives right, are enabled in the same ways as our personal lives. So for example, in your personal lives, when you want to go and find something out, what do you do? You go onto google.com or you go on to Bing we go onto Yahoo and you search for what you want search to find and answer. ThoughtSpot for us as the same thing, but in the business world. So using ThoughtSpot and other AI capability it's allowed us to actually, enable our overall business teams in our company to actually have our information at our fingertips. So rather than having to go and talk to someone or an engineer to go pull information or pull data, we actually can have the end-users or the business executives, right. Search for what they need, what they want at the exact time that action need it to go and drive the business forward. This is truly one of those transformational things that we've put in place. On top of that, we are on the journey to modernize our larger ecosystem as a whole. That includes modernizing our underlying data warehouses, our technology, or our Eloqua environments. And as we move that, we've actually picked two of our cloud providers going to AWS and GCP. We've also adopted Snowflake to really drive and to organize our information and our data then drive these new solutions and capabilities forward. So they portion of us though is culture. So how do we engage with the business teams and bring the IT teams together to really drive these holistic end to end solutions and capabilities to really support the actual business into the future? That's one of the keys here, as we look to modernize and to really enhance our organizations to become data-driven, this is the key. If you can really start to provide answers to business questions before they're even being asked and to predict based upon different economic trends or different trends in your business, what does this is maybe be made and actually provide those answers to the business teams before they're even asking for it, that is really becoming a data-driven organization. And as part of that, it's really then enables the business to act quickly and take advantage of opportunities as they come in based upon, industries based upon markets, based upon products, solutions, or partnerships into the future. These are really some of the keys that become crucial as you move forward, right, into this new age, especially with COVID. With COVID now taking place across the world, right? Many of these markets, many of these digital transformations are accelerating and are changing rapidly to accommodate and to support customers in these very difficult times, as part of that, you need to make sure you have the right underlying foundation ecosystems and solutions to really drive those capabilities and those solutions forward. As we go through this journey, both of my career, but also each of your careers into the future, right? It also needs to evolve, right? Technology has changed so drastically in the last 10 years, and that change is only accelerating. So as part of that, you have to make sure that you stay up to speed, up to date with new technology changes both on the platform standpoint tools, but also what do our customers want? What do our customers need and how do we then service them with our information, with our data, with our platform and with our products and our services to meet those needs and to really support and service those customers into the future. This is all around becoming a more data organization such as how do you use your data to support the current business lines, but how do you actually use your information, your data to actually put a better support your customers, better support your business, better support your employees, your operations teams, and so forth, and really creating that full integration in that ecosystem is really when you start to get large dividends from this investments into the future. But that being said, hope you enjoy the segment on how to become and how to drive it data driven organization. And, looking forward to talking to you again soon. Thank you. >> Tom that was great thanks so much. Now I'm going to have to brag on you for a second as a change agent you've come in disrupted and how long have you been at Western union? >> Only nine months, so just started this year, but, doing some great opportunities and great changes. And we have a lot more to go, but, we're really driving things forward in partnership with our business teams and our colleagues to support those customers going forward. >> Tom, thank you so much. That was wonderful. And now I'm excited to introduce you to Gustavo Canton, a change agent that I've had the pleasure of working with meeting in Europe, and he is a serial change agent, most recently with Schneider electric, but even going back to Sam's clubs, Gustavo welcome. (upbeat music) >> So, hey everyone, my name is Gustavo Canton and thank you so much, Cindi, for the intro, as you mentioned, doing transformations is high effort, high reward situation. I have empowered many transformations and I have led many transformations. And what I can tell you is that it's really hard to predict the future, but if you have a North star and where you're going, the one thing that I want you to take away from this discussion today is that you need to be bold to evolve. And so in today, I'm going to be talking about culture and data, and I'm going to break this down in four areas. How do we get started barriers or opportunities as I see it, the value of AI, and also, how do you communicate, especially now in the workforce of today with so many different generations, you need to make sure that you are communicating in ways that are non-traditional sometimes. And so how do we get started? So I think the answer to that is you have to start for you yourself as a leader and stay tuned. And by that, I mean, you need to understand not only what is happening in your function or your field, but you have to be varying into what is happening in society, socioeconomically speaking wellbeing. The common example is a great example. And for me personally, it's an opportunity because the one core value that I have is well-being, I believe that for human potential, for customers and communities to grow wellbeing should be at the center of every decision. And as somebody mentioned is great to be, stay in tune and have the skillset and the courage. But for me personally, to be honest, to have this courage is not about not being afraid. You're always afraid when you're making big changes when you're swimming upstream, but what gives me the courage is the empathy part. Like I think empathy is a huge component because every time I go into an organization or a function, I try to listen very attentively to the needs of the business and what the leaders are trying to do. What I do it thinking about the mission of how do I make change for the bigger, workforce? for the bigger good. Despite this fact that this might have a perhaps implication on my own self-interest in my career, right? Because you have to have that courage sometimes to make choices that I know we'll see in politically speaking, what are the right thing to do? And you have to push through it. And you have to push through it. So the bottom line for me is that I don't think they're transforming fast enough. And the reality is I speak with a lot of leaders and we have seen stories in the past. And what they show is that if you look at the four main barriers that are basically keeping us behind budget, inability to act cultural issues, politics, and lack of alignment, those are the top four. But the interesting thing is that as Cindi has mentioned, these topics culture is actually gaining, gaining more and more traction. And in 2018, there was a story from HBR and it was about 45%. I believe today it's about 55%, 60% of respondents say that this is the main area that we need to focus on. So again, for all those leaders and all the executives who understand and are aware that we need to transform, commit to the transformation and set a state, deadline to say, "hey, in two years, we're going to make this happen. "What do we need to do to empower and enable "this change engines to make it happen?" You need to make the tough choices. And so to me, when I speak about being bold is about making the right choices now. So I'll give you samples of some of the roadblocks that I went through as I think transformation most recently, as Cindi mentioned in Schneider. There are three main areas, legacy mindset. And what that means is that we've been doing this in a specific way for a long time and here is how we have been successful what was working the past is not going to work now. The opportunity there is that there is a lot of leaders who have a digital mindset and there're up and coming leaders that are not yet fully developed. We need to mentor those leaders and take bets on some of these talent, including young talent. We cannot be thinking in the past and just wait for people, three to five years for them to develop because the world is going to in a way that is super fast. The second area, and this is specifically to implementation of AI is very interesting to me because just example that I have with ThoughtSpot, right, we went to implementation and a lot of the way is the IT team function of the leaders look at technology, they look at it from the prism of the prior all success criteria for the traditional Bi's. And that's not going to work. Again the opportunity here is that you need to really find what successful look like. In my case, I want the user experience of our workforce to be the same as user experience you have at home is a very simple concept. And so we need to think about how do we gain the user experience with this augmented analytics tools and then work backwards to have the right talent processes and technology to enable that. And finally, with COVID a lot of pressuring organizations, and companies to do more with less. And the solution that most leaders I see are taking is to just minimize costs, sometimes in cut budget, we have to do the opposite. We have to actually invest some growth areas, but do it by business question. Don't do it by function. If you actually invest in these kind of solutions, if you actually invest on developing your talent, your leadership to see more digitally, if you actually invest on fixing your data platform, it's not just an incremental cost. It's actually this investment is going to offset all those hidden costs and inefficiencies that you have on your system, because people are doing a lot of work and working very hard, but it's not efficiency, and it's not working in the way that you might want to work. So there is a lot of opportunity there. And you just to put into some perspective, there have studies in the past about, how do we kind of measure the impact of data. And obviously this is going to vary by your organization maturity, is going to, there's going to be a lot of factors. I've been in companies who have very clean, good data to work with. And I think with companies that we have to start basically from scratch. So it all depends on your maturity level, but in this study, what I think is interesting is they try to put attack line or attack price to what is the cost of incomplete data. So in this case, it's about 10 times as much to complete a unit of work when you have data that is flawed as opposed to have perfect data. So let me put that just in perspective, just as an example, right? Imagine you are trying to do something and you have to do 100 things in a project, and each time you do something, it's going to cost you a dollar. So if you have perfect data, the total cost of that project might be $100. But now let's say you have any percent perfect data and 20% flawed data by using this assumption that flawed data is 10 times as costly as perfect data. Your total costs now becomes $280 as opposed to $100. This is just for you to really think about as a CIO CTO, CHRO CEO, are we really paying attention and really closing the gaps that we have on our data infrastructure. If we don't do that, it's hard sometimes to see the snowball effect or to measure the overall impact. But as you can tell the price that goes up very, very quickly. So now, if I were to say, how do I communicate this? Or how do I break through some of these challenges or some of these various, right. I think the key is I am in analytics. I know statistics obviously, and love modeling and data and optimization theory and all that stuff. That's what I came to analytics. But now as a leader and as a change agent, I need to speak about value. And in this case, for example, for Schneider, there was this tagline called free up your energy. So the number one thing that they were asking from the analytics team was actually efficiency, which to me was very interesting. But once I understood that I understood what kind of language to use, how to connect it to the overall strategy and basically how to bring in the, the right leaders, because you need to focus on the leaders that you're going to make the most progress. Again, low effort, high value. You need to make sure you centralize all the data as you can. You need to bring in some kind of augmented analytics solution. And finally you need to make it super simple for the, in this case, I was working with the HR teams in other areas, so they can have access to one portal. They don't have to be confused in looking for 10 different places to find information. I think if you can actually have those four foundational pillars, obviously under the guise of having a data-driven culture, that's when you can actually make the impact. So in our case, it was about three years total transformation, but it was two years for this component of augmented analytics. It took about two years to talk to IT get leadership support, find the budgeting, get everybody on board, make sure the safe criteria was correct. And we call this initiative, the people analytics portal, it was actually launched in July of this year. And we were very excited and the audience was very excited to do this. In this case, we did our pilot in North America for many, many manufacturers. But one thing that is really important is as you bring along your audience on this, you're going from Excel, in some cases or Tableau to other tools like, ThoughtSpot, you need to really explain them what is the difference and how these tools can truly replace, some of the spreadsheets or some of the views that you might have on these other kind of tools. Again, Tableau, I think it's a really good tool. There are other many tools that you might have in your toolkit. But in my case, personally, I feel that you need to have one portal going back to Cindi's point. I really truly enable the end user. And I feel that this is the right solution for us, right? And I will show you some of the findings that we had in the pilot in the last two months. So this was a huge victory, and I will tell you why, because it took a lot of effort for us to get to the station. Like I said, it's been years for us to kind of lay the foundation, get the leadership, and shaping culture so people can understand why you truly need to invest on (indistinct) analytics. And so what I'm showing here is an example of how do we use basically, a tool to capture in video the qualitative findings that we had, plus the quantitative insights that we have. So in this case, our preliminary results based on our ambition for three main metrics, hours saved user experience and adoption. So for hours saved or a mission was to have 10 hours per week per employee save on average user experience, or ambition was 4.5. And adoption, 80%. In just two months, two months and a half of the pilot, we were able to achieve five hours per week per employee savings. Our user experience for 4.3 out of five and adoption of 60%. Really, really amazing work. But again, it takes a lot of collaboration for us to get to the stage from IT, legal, communications, obviously the operations teams and the users in HR safety and other areas that might be, basically stakeholders in this whole process. So just to summarize this kind of effort takes a lot of energy. You are a change agent. You need to have a courage to make the decision and understand that I feel that in this day and age, with all this disruption happening, we don't have a choice. We have to take the risk, right? And in this case, I feel a lot of satisfaction in how we were able to gain all these very source for this organization. And that gave me the confidence to know that the work has been done and we are now in a different stage for the organization. And so for me, it to say, thank you for everybody who has believed, obviously in our vision, everybody who has believe in the word that we were trying to do and to make the life of four workforce or customers or in community better. As you can tell, there is a lot of effort. There is a lot of collaboration that is needed to do something like this. In the end, I feel very satisfied. With the accomplishments of this transformation, and I just want to tell for you, if you are going right now in a moment that you feel that you have to swim upstream what would mentors, what would people in this industry that can help you out and guide you on this kind of a transformation is not easy to do is high effort, but is well worth it. And with that said, I hope you are well, and it's been a pleasure talking to you. Talk to you soon, take care. >> Thank you, Gustavo, that was amazing. All right, let's go to the panel. (air whooshing) >> Okay, now we're going to go into the panel and bring Cindi, Michelle, Tom, and Gustavo back and have an open discussion. And I think we can all agree how valuable it is to hear from practitioners. And I want to thank the panel for sharing their knowledge with the community. And one common challenge that I heard you all talk about was bringing your leadership and your teams along on the journey with you. We talk about this all the time, and it is critical to have support from the top. Why? Because it directs the middle and then it enables bottoms up innovation effects from the cultural transformation that you guys all talked about. It seems like another common theme we heard is that you all prioritize database decision-making in your organizations and you combine two of your most valuable assets to do that and create leverage, employees on the front lines. And of course the data. And as you rightly pointed out, Tom, the pandemic has accelerated the need for really leaning into this. The old saying, if it ain't broke don't fix it. Well COVID is broken everything. And it's great to hear from our experts, how to move forward. So let's get right into it. So Gustavo, let's start with you if I'm an aspiring change agent and let's say I'm a budding data leader. What do I need to start doing? What habits do I need to create for long lasting success? >> I think curiosity is very important. You need to be, like I say, in tune to what is happening, not only in your specific field, like I have a passion for analytics, I can do this for 50 years plus, but I think you need to understand wellbeing other areas across not only a specific business, as you know I come from, Sam's club Walmart, retail, I mean energy management technology. So you have to try to push yourself and basically go out of your comfort zone. I mean, if you are staying in your comfort zone and you want to use lean continuous improvement, that's just going to take you so far. What you have to do is, and that's what I try to do is I try to go into areas, businesses, and transformation that make me stretch and develop as a leader. That's what I'm looking to do so I can help transform the functions organizations and do the change management, change of mindset required for these kinds of efforts. >> Michelle, you're at the intersection of tech and sports and what a great combination, but they're both typically male oriented fields. I mean, we've talked a little bit about how that's changing, but two questions. Tell us how you found your voice and talk about why diversity matters so much more than ever now. >> No, I found my voice really as a young girl, and I think I had such amazing support from men in my life. And I think the support and sponsorship as well as sort of mentorship along the way, I've had amazing male mentors who have helped me understand that my voice is just as important as anyone else's. I mean, I have often heard, and I think it's been written about that a woman has to believe they'll 100% master topic before they'll talk about it where a man can feel much less mastery and go on and on. So I was that way as well. And I learned just by watching and being open, to have my voice. And honestly at times demand a seat at the table, which can be very uncomfortable. And you really do need those types of, support networks within an organization. And diversity of course is important and it has always been. But I think if anything, we're seeing in this country right now is that diversity among all types of categories is front and center. And we're realizing that we don't all think alike. We've always known this, but we're now talking about things that we never really talked about before. And we can't let this moment go unchecked and on, and not change how we operate. So having diverse voices within your company and in the field of tech and sports, I am often the first and only I'm was the first, CIO at the NFL, the first female senior executive. It was fun to be the first, but it's also, very challenging. And my responsibility is to just make sure that, I don't leave anyone behind and make sure that I leave it good for the next generation. >> Well, thank you for that. That is inspiring. And Cindi, you love data and the data's pretty clear that diversity is a good business, but I wonder if you can add your perspectives to this conversation? >> Yeah, so Michelle has a new fan here because she has found her voice. I'm still working on finding mine. And it's interesting because I was raised by my dad, a single dad. So he did teach me how to work in a predominantly male environment, but why I think diversity matters more now than ever before. And this is by gender, by race, by age, by just different ways of working in thinking is because as we automate things with AI, if we do not have diverse teams looking at the data and the models and how they're applied, we risk having bias at scale. So this is why I think I don't care what type of minority you are finding your voice, having a seat at the table and just believing in the impact of your work has never been more important. And as Michelle said more possible. >> Great perspectives, thank you. Tom I want to go to you. I mean, I feel like everybody in our businesses in some way, shape or form become a COVID expert, but what's been the impact of the pandemic on your organization's digital transformation plans? >> We've seen a massive growth actually in a digital business over the last, 12 months, really, even in celebration, right? Once COVID hit, we really saw that in the 200 countries and territories that we operate in today and service our customers, today, that there's been a huge need, right? To send money, to support family, to support, friends and support loved ones across the world. And as part of that we are very, honored to get to support those customers that we, across all the centers today. But as part of that acceleration we need to make sure that we had the right architecture and the right platforms to basically scale, right, to basically support and provide the right kind of security for our customers going forward. So as part of that, we did do some pivots and we did accelerate some of our plans on digital to help support that overall growth coming in and to support our customers going forward, because there were these times during this pandemic, right? This is the most important time. And we need to support those that we love and those that we care about and doing that it's one of those ways is actually by sending money to them, support them financially. And that's where, really our part of that our services come into play that we really support those families. So it was really a great opportunity for us to really support and really bring some of our products to this level and supporting our business going forward. >> Awesome, thank you. Now I want to come back to Gustavo, Tom I'd love for you to chime in too. Did you guys ever think like you were, you were pushing the envelope too much in doing things with data or the technology that was just maybe too bold, maybe you felt like at some point it was failing or you're pushing your people too hard. Can you share that experience and how you got through it? >> Yeah, the way I look at it is, again, whenever I go to an organization, I ask the question, hey, how fast you would like transform. And, based on the agreements from the leadership and the vision that we want to take place, I take decisions. And I collaborate in a specific way now, in the case of COVID, for example, right. It forces us to remove silos and collaborate in a faster way. So to me, it was an opportunity to actually integrate with other areas and drive decisions faster, but make no mistake about it. When you are doing a transformation, you are obviously trying to do things faster than sometimes people are comfortable doing, and you need to be okay with that. Sometimes you need to be okay with tension, or you need to be okay debating points or making repetitive business cases until people connect with the decision because you understand, and you are seeing that, "hey, the CEO is making a one two year, efficiency goal. "The only way for us to really do more with less "is for us to continue this path. "We cannot just stay with the status quo. "We need to find a way to accelerate the transformation." That's the way I see it. >> How about you Tom, we were talking earlier with Sudheesh and Cindi, about that bungee jumping moment. What could you share? >> Yeah, I think you hit upon it, right now, the pace of change with the slowest pace that you see for the rest of your career. So as part of that, right, that's what I tell my team is that you need to be, you need to feel comfortable being uncomfortable. I mean, that we have to be able to basically scale, right, expand and support that the ever-changing needs in the marketplace and industry our customers today, and that pace of change that's happening, right. And what customers are asking for and the competition in the marketplace, it's only going to accelerate. So as part of that, as you look at what, how you're operating today in your current business model, right. Things are only going to get faster. So you have to plan into a line into drive the agile transformation so that you can scale even faster in the future. So as part of that, that's what we're putting in place here, right, is how do we create that underlying framework and foundation that allows the organization to basically continue to scale and evolve into the future? >> Yeah, we're definitely out of our comfort zones, but we're getting comfortable with it. So, Cindi, last question, you've worked with hundreds of organizations, and I got to believe that, some of the advice you gave when you were at Gartner, which is pre COVID, maybe sometimes clients didn't always act on it. They're not on my watch for whatever variety of reasons, but it's being forced on them now. But knowing what you know now that we're all in this isolation economy, how would you say that advice has changed? Has it changed? What's your number one action and recommendation today? >> Yeah, well, first off, Tom just freaked me out. What do you mean? This is the slowest ever even six months ago I was saying the pace of change in data and analytics is frenetic. So, but I think you're right, Tom, the business and the technology together is forcing this change. Now, Dave, to answer your question, I would say the one bit of advice, maybe I was a little more, very aware of the power and politics and how to bring people along in a way that they are comfortable. And now I think it's, you know what you can't get comfortable. In fact, we know that the organizations that were already in the cloud have been able to respond and pivot faster. So if you really want to survive as Tom and Gustavo said, get used to being uncomfortable, the power and politics are going to happen. Break the rules, get used to that and be bold. Do not be afraid to tell somebody they're wrong and they're not moving fast enough. I do think you have to do that with empathy, as Michelle said, and Gustavo, I think that's one of the key words today besides the bungee jumping. So I want to know where's the dish going to go bungee jumping. >> Guys fantastic discussion, really. Thanks again to all the panelists and the guests. It was really a pleasure speaking with you today. Really virtually all of the leaders that I've spoken to in the Cube program. Recently, they tell me that the pandemic is accelerating so many things, whether it's new ways to work, we heard about new security models and obviously the need for cloud. I mean, all of these things are driving true enterprise wide digital transformation, not just, as I said before, lip service. Sometimes we minimize the importance and the challenge of building culture and in making this transformation possible. But when it's done, right, the right culture is going to deliver tremendous results. Yeah, what does that mean getting it right? Everybody's trying to get it right. My biggest takeaway today is it means making data part of the DNA of your organization. And that means making it accessible to the people in your organization that are empowered to make decisions, decisions that can drive new revenue, cut costs, speed access to critical care, whatever the mission is of your organization. Data can create insights and informed decisions that drive value. Okay. Let's bring back Sudheesh and wrap things up. Sudheesh, please bring us home. >> Thank you. Thank you, Dave. Thank you, the Cube team, and thank goes to all of our customers and partners who joined us and thanks to all of you for spending the time with us. I want to do three quick things and then close it off. The first thing is I want to summarize the key takeaways that I had from all four of our distinguished speakers. First, Michelle, I will simply put it. She said it really well. That is be brave and drive. Don't go for a drive along. That is such an important point. Oftentimes, you know that I think that you have to do to make the positive change that you want to see happen but you wait for someone else to do it, not just, why not you? Why don't you be the one making that change happen? That's the thing that I've picked up from Michelle's talk. Cindi talked about finding the importance of finding your voice. Taking that chair, whether it's available or not, and making sure that your ideas, your voices are heard, and if it requires some force, then apply that force. Make sure your ideas are heard. Gustavo talked about the importance of building consensus, not going at things all alone sometimes building the importance of building the quorum. And that is critical because if you want the changes to last, you want to make sure that the organization is fully behind it. Tom, instead of a single takeaway, what I was inspired by is the fact that a company that is 170 years old, 170 years old, 200 companies and 200 countries they're operating in. And they were able to make the change that is necessary through this difficult time. So in a matter of months, if they could do it, anyone could. The second thing I want to do is to leave you with a takeaway that is I would like you to go to topspot.com/nfl because our team has made an app for NFL on Snowflake. I think you will find this interesting now that you are inspired and excited because of Michelle's talk. And the last thing is please go to thoughtspot.com/beyond our global user conference is happening in this December. We would love to have you join us. It's again, virtual, you can join from anywhere. We are expecting anywhere from five to 10,000 people, and we would love to have you join and see what we've been up to since last year. We have a lot of amazing things in store for you, our customers, our partners, our collaborators, they will be coming and sharing. We'll be sharing things that we've have been working to release something that will come out next year. And also some of the crazy ideas our engineers have been cooking up. All of those things will be available for you at the Thought Spot Beyond. Thank you. Thank you so much.

Published Date : Oct 8 2020

SUMMARY :

and the change every Cindi, great to see you Nice to join you virtually. it's good to talk to you again. and of course, to our audience but that is the hardest step to take. and talk to you about being So you and I share a love of And I'm getting the feeling now, that you need to satisfy? And that means listening to and the time to maturity the business to act quickly and how long have you to support those customers going forward. And now I'm excited to are the right thing to do? All right, let's go to the panel. and it is critical to that's just going to take you so far. Tell us how you found your voice and in the field of tech and sports, and the data's pretty clear and the models and how they're applied, everybody in our businesses and the right platforms and how you got through it? and the vision that we want to take place, How about you Tom, is that you need to be, some of the advice you gave and how to bring people along the right culture is going to is to leave you with a takeaway

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TomPERSON

0.99+

MichellePERSON

0.99+

Dave VellantePERSON

0.99+

VerizonORGANIZATION

0.99+

GustavoPERSON

0.99+

CindiPERSON

0.99+

SudheeshPERSON

0.99+

1987DATE

0.99+

EuropeLOCATION

0.99+

DavePERSON

0.99+

Tom MazzaferroPERSON

0.99+

DisneyORGANIZATION

0.99+

JPMorgan ChaseORGANIZATION

0.99+

MedtronicORGANIZATION

0.99+

AustraliaLOCATION

0.99+

$100QUANTITY

0.99+

HSBCORGANIZATION

0.99+

Wells FargoORGANIZATION

0.99+

20,000QUANTITY

0.99+

$280QUANTITY

0.99+

Las VegasLOCATION

0.99+

March 13thDATE

0.99+

50 yearsQUANTITY

0.99+

2018DATE

0.99+

ThoughtSpotORGANIZATION

0.99+

10 timesQUANTITY

0.99+

AmazonORGANIZATION

0.99+

twoQUANTITY

0.99+

two sidesQUANTITY

0.99+

60%QUANTITY

0.99+

80%QUANTITY

0.99+

Alabama Crimson TideORGANIZATION

0.99+

1986DATE

0.99+

20 plus yearsQUANTITY

0.99+

20%QUANTITY

0.99+

Universal StudiosORGANIZATION

0.99+

KievLOCATION

0.99+

Cindi HowsonPERSON

0.99+

10 yearsQUANTITY

0.99+

ExcelTITLE

0.99+

4.5QUANTITY

0.99+

101 yearQUANTITY

0.99+

fiveQUANTITY

0.99+

4.3QUANTITY

0.99+

Reliance Jio: OpenStack for Mobile Telecom Services


 

>>Hi, everyone. My name is my uncle. My uncle Poor I worked with Geo reminds you in India. We call ourselves Geo Platforms. Now on. We've been recently in the news. You've raised a lot off funding from one of the largest, most of the largest tech companies in the world. And I'm here to talk about Geos Cloud Journey, Onda Mantis Partnership. I've titled it the story often, Underdog becoming the largest telecom company in India within four years, which is really special. And we're, of course, held by the cloud. So quick disclaimer. Right. The content shared here is only for informational purposes. Um, it's only for this event. And if you want to share it outside, especially on social media platforms, we need permission from Geo Platforms limited. Okay, quick intro about myself. I am a VP of engineering a geo. I lead the Cloud Services and Platforms team with NGO Andi. I mean the geo since the beginning, since it started, and I've seen our cloud footprint grow from a handful of their models to now eight large application data centers across three regions in India. And we'll talk about how we went here. All right, Let's give you an introduction on Geo, right? Giorgio is on how we became the largest telecom campaign, India within four years from 0 to 400 million subscribers. And I think there are There are a lot of events that defined Geo and that will give you an understanding off. How do you things and what you did to overcome massive problems in India. So the slide that I want to talkto is this one and, uh, I The headline I've given is, It's the Geo is the fastest growing tech company in the world, which is not a new understatement. It's eggs, actually, quite literally true, because very few companies in the world have grown from zero to 400 million subscribers within four years paying subscribers. And I consider Geo Geos growth in three phases, which I have shown on top. The first phase we'll talk about is how geo grew in the smartphone market in India, right? And what we did to, um to really disrupt the telecom space in India in that market. Then we'll talk about the feature phone phase in India and how Geo grew there in the future for market in India. and then we'll talk about what we're doing now, which we call the Geo Platforms phase. Right. So Geo is a default four g lt. Network. Right. So there's no to geo three g networks that Joe has, Um it's a state of the art four g lt voiceover lt Network and because it was designed fresh right without any two D and three G um, legacy technologies, there were also a lot of challenges Lawn geo when we were starting up. One of the main challenges waas that all the smart phones being sold in India NGOs launching right in 2000 and 16. They did not have the voice or lt chip set embedded in the smartphone because the chips it's far costlier to embed in smartphones and India is a very price and central market. So none of the manufacturers were embedding the four g will teach upset in the smartphones. But geos are on Lee a volte in network, right for the all the network. So we faced a massive problem where we said, Look there no smartphones that can support geo. So how will we grow Geo? So in order to solve that problem, we launched our own brand of smartphones called the Life um, smartphones. And those phones were really high value devices. So there were $50 and for $50 you get you You At that time, you got a four g B storage space. A nice big display for inch display. Dual cameras, Andi. Most importantly, they had volte chip sets embedded in them. Right? And that got us our initial customers the initial for the launch customers when we launched. But more importantly, what that enabled other oh, EMS. What that forced the audience to do is that they also had to launch similar smartphones competing smartphones with voltage upset embedded in the same price range. Right. So within a few months, 3 to 4 months, um, all the other way EMS, all the other smartphone manufacturers, the Samsung's the Micromax is Micromax in India, they all had volte smartphones out in the market, right? And I think that was one key step We took off, launching our own brand of smartphone life that helped us to overcome this problem that no smartphone had. We'll teach upsets in India and then in order. So when when we were launching there were about 13 telecom companies in India. It was a very crowded space on demand. In order to gain a foothold in that market, we really made a few decisions. Ah, phew. Key product announcement that really disrupted this entire industry. Right? So, um, Geo is a default for GLT network itself. All I p network Internet protocol in everything. All data. It's an all data network and everything from voice to data to Internet traffic. Everything goes over this. I'll goes over Internet protocol, and the cost to carry voice on our smartphone network is very low, right? The bandwidth voice consumes is very low in the entire Lt band. Right? So what we did Waas In order to gain a foothold in the market, we made voice completely free, right? He said you will not pay anything for boys and across India, we will not charge any roaming charges across India. Right? So we made voice free completely and we offer the lowest data rates in the world. We could do that because we had the largest capacity or to carry data in India off all the other telecom operators. And these data rates were unheard off in the world, right? So when we launched, we offered a $2 per month or $3 per month plan with unlimited data, you could consume 10 gigabytes of data all day if you wanted to, and some of our subscriber day. Right? So that's the first phase off the overgrowth and smartphones and that really disorders. We hit 100 million subscribers in 170 days, which was very, very fast. And then after the smartphone faith, we found that India still has 500 million feature phones. And in order to grow in that market, we launched our own phone, the geo phone, and we made it free. Right? So if you take if you took a geo subscription and you carried you stayed with us for three years, we would make this phone tree for your refund. The initial deposit that you paid for this phone and this phone had also had quite a few innovations tailored for the Indian market. It had all of our digital services for free, which I will talk about soon. And for example, you could plug in. You could use a cable right on RCR HDMI cable plug into the geo phone and you could watch TV on your big screen TV from the geophones. You didn't need a separate cable subscription toe watch TV, right? So that really helped us grow. And Geo Phone is now the largest selling feature phone in India on it. 100 million feature phones in India now. So now now we're in what I call the geo platforms phase. We're growing of a geo fiber fiber to the home fiber toe the office, um, space. And we've also launched our new commerce initiatives over e commerce initiatives and were steadily building platforms that other companies can leverage other companies can use in the Jeon o'clock. Right? So this is how a small startup not a small start, but a start of nonetheless least 400 million subscribers within four years the fastest growing tech company in the world. Next, Geo also helped a systemic change in India, and this is massive. A lot of startups are building on this India stack, as people call it, and I consider this India stack has made up off three things, and the acronym I use is jam. Trinity, right. So, um, in India, systemic change happened recently because the Indian government made bank accounts free for all one billion Indians. There were no service charges to store money in bank accounts. This is called the Jonathan. The J. GenDyn Bank accounts. The J out off the jam, then India is one of the few countries in the world toe have a digital biometric identity, which can be used to verify anyone online, which is huge. So you can simply go online and say, I am my ankle poor on duh. I verify that this is indeed me who's doing this transaction. This is the A in the jam and the last M stands for Mobil's, which which were held by Geo Mobile Internet in a plus. It is also it is. It also stands for something called the U. P I. The United Unified Payments Interface. This was launched by the Indian government, where you can carry digital transactions for free. You can transfer money from one person to the to another, essentially for free for no fee, right so I can transfer one group, even Indian rupee to my friend without paying any charges. That is huge, right? So you have a country now, which, with a with a billion people who are bank accounts, money in the bank, who you can verify online, right and who can pay online without any problems through their mobile connections held by G right. So suddenly our market, our Internet market, exploded from a few million users to now 506 106 100 million mobile Internet users. So that that I think, was a massive such a systemic change that happened in India. There are some really large hail, um, numbers for this India stack, right? In one month. There were 1.6 billion nuclear transactions in the last month, which is phenomenal. So next What is the impact of geo in India before you started, we were 155th in the world in terms off mobile in terms of broadband data consumption. Right. But after geo, India went from one 55th to the first in the world in terms of broadband data, largely consumed on mobile devices were a mobile first country, right? We have a habit off skipping technology generation, so we skip fixed line broadband and basically consuming Internet on our mobile phones. On average, Geo subscribers consumed 12 gigabytes of data per month, which is one of the highest rates in the world. So Geo has a huge role to play in making India the number one country in terms off broad banded consumption and geo responsible for quite a few industry first in the telecom space and in fact, in the India space, I would say so before Geo. To get a SIM card, you had to fill a form off the physical paper form. It used to go toe Ah, local distributor. And that local distributor is to check the farm that you feel incorrectly for your SIM card and then that used to go to the head office and everything took about 48 hours or so, um, to get your SIM card. And sometimes there were problems there also with a hard biometric authentication. We enable something, uh, India enable something called E K Y C Elektronik. Know your customer? We took a fingerprint scan at our point of Sale Reliance Digital stores, and within 15 minutes we could verify within a few minutes. Within a few seconds we could verify that person is indeed my hunk, right, buying the same car, Elektronik Lee on we activated the SIM card in 15 minutes. That was a massive deal for our growth. Initially right toe onboard 100 million customers. Within our and 70 days. We couldn't have done it without be K. I see that was a massive deal for us and that is huge for any company starting a business or start up in India. We also made voice free, no roaming charges and the lowest data rates in the world. Plus, we gave a full suite of cloud services for free toe all geo customers. For example, we give goTV essentially for free. We give GOTV it'll law for free, which people, when we have a launching, told us that no one would see no one would use because the Indians like watching TV in the living rooms, um, with the family on a big screen television. But when we actually launched, they found that GOTV is one off our most used app. It's like 70,000,080 million monthly active users, and now we've basically been changing culture in India where culture is on demand. You can watch TV on the goal and you can pause it and you can resume whenever you have some free time. So really changed culture in India, India on we help people liver, digital life online. Right, So that was massive. So >>I'm now I'd like to talk about our cloud >>journey on board Animal Minorities Partnership. We've been partners that since 2014 since the beginning. So Geo has been using open stack since 2014 when we started with 14 note luster. I'll be one production environment One right? And that was I call it the first wave off our cloud where we're just understanding open stack, understanding the capabilities, understanding what it could do. Now we're in our second wave. Where were about 4000 bare metal servers in our open stack cloud multiple regions, Um, on that around 100,000 CPU cores, right. So it's a which is one of the bigger clouds in the world, I would say on almost all teams, with Ngor leveraging the cloud and soon I think we're going to hit about 10,000 Bama tools in our cloud, which is massive and just to give you a scale off our network, our in French, our data center footprint. Our network introduction is about 30 network data centers that carry just network traffic across there are there across India and we're about eight application data centers across three regions. Data Center is like a five story building filled with servers. So we're talking really significant scale in India. And we had to do this because when we were launching, there are the government regulation and try it. They've gotten regulatory authority of India, mandates that any telecom company they have to store customer data inside India and none of the other cloud providers were big enough to host our clothes. Right. So we we made all this intellectual for ourselves, and we're still growing next. I love to show you how we grown with together with Moran says we started in 2014 with the fuel deployment pipelines, right? And then we went on to the NK deployment. Pipelines are cloud started growing. We started understanding the clouds and we picked up M C p, which has really been a game changer for us in automation, right on DNA. Now we are in the latest release, ofem CPM CPI $2019 to on open stack queens, which on we've just upgraded all of our clouds or the last few months. Couple of months, 2 to 3 months. So we've done about nine production clouds and there are about 50 internal, um, teams consuming cloud. We call as our tenants, right. We have open stack clouds and we have communities clusters running on top of open stack. There are several production grade will close that run on this cloud. The Geo phone, for example, runs on our cloud private cloud Geo Cloud, which is a backup service like Google Drive and collaboration service. It runs out of a cloud. Geo adds G o g S t, which is a tax filing system for small and medium enterprises, our retail post service. There are all these production services running on our private clouds. We're also empaneled with the government off India to provide cloud services to the government to any State Department that needs cloud services. So we were empaneled by Maiti right in their ego initiative. And our clouds are also Easter. 20,000 certified 20,000 Colin one certified for software processes on 27,001 and said 27,017 slash 18 certified for security processes. Our clouds are also P our data centers Alsop a 942 be certified. So significant effort and investment have gone toe These data centers next. So this is where I think we've really valued the partnership with Morantes. Morantes has has trained us on using the concepts of get offs and in fries cold, right, an automated deployments and the tool change that come with the M C P Morantes product. Right? So, um, one of the key things that has happened from a couple of years ago to today is that the deployment time to deploy a new 100 north production cloud has decreased for us from about 55 days to do it in 2015 to now, we're down to about five days to deploy a cloud after the bear metals a racked and stacked. And the network is also the physical network is also configured, right? So after that, our automated pipelines can deploy 100 0 clock in five days flight, which is a massive deal for someone for a company that there's adding bear metals to their infrastructure so fast, right? It helps us utilize our investment, our assets really well. By the time it takes to deploy a cloud control plane for us is about 19 hours. It takes us two hours to deploy a compu track and it takes us three hours to deploy a storage rack. Right? And we really leverage the re class model off M C. P. We've configured re class model to suit almost every type of cloud that we have, right, and we've kept it fairly generous. It can be, um, Taylor to deploy any type of cloud, any type of story, nor any type of compute north. Andi. It just helps us automate our deployments by putting every configuration everything that we have in to get into using infra introduction at school, right plus M. C. P also comes with pipelines that help us run automated tests, automated validation pipelines on our cloud. We also have tempest pipelines running every few hours every three hours. If I recall correctly which run integration test on our clouds to make sure the clouds are running properly right, that that is also automated. The re class model and the pipelines helpers automate day to operations and changes as well. There are very few seventh now, compared toa a few years ago. It very rare. It's actually the exception and that may be because off mainly some user letter as opposed to a cloud problem. We also have contributed auto healing, Prometheus and Manager, and we integrate parameters and manager with our even driven automation framework. Currently, we're using Stack Storm, but you could use anyone or any event driven automation framework out there so that it indicates really well. So it helps us step away from constantly monitoring our cloud control control planes and clothes. So this has been very fruitful for us and it has actually apps killed our engineers also to use these best in class practices like get off like in France cord. So just to give you a flavor on what stacks our internal teams are running on these clouds, Um, we have a multi data center open stack cloud, and on >>top of that, >>teams use automation tools like terra form to create the environments. They also create their own Cuba these clusters and you'll see you'll see in the next slide also that we have our own community that the service platform that we built on top of open stack to give developers development teams NGO um, easy to create an easy to destroy Cuban. It is environment and sometimes leverage the Murano application catalog to deploy using heats templates to deploy their own stacks. Geo is largely a micro services driven, Um um company. So all of our applications are micro services, multiple micro services talking to each other, and the leverage develops. Two sets, like danceable Prometheus, Stack stone from for Otto Healing and driven, not commission. Big Data's tax are already there Kafka, Patches, Park Cassandra and other other tools as well. We're also now using service meshes. Almost everything now uses service mesh, sometimes use link. Erred sometimes are experimenting. This is Theo. So So this is where we are and we have multiple clients with NGO, so our products and services are available on Android IOS, our own Geo phone, Windows Macs, Web, Mobile Web based off them. So any client you can use our services and there's no lock in. It's always often with geo, so our sources have to be really good to compete in the open Internet. And last but not least, I think I love toe talk to you about our container journey. So a couple of years ago, almost every team started experimenting with containers and communities and they were demand for as a platform team. They were demanding community that the service from us a manage service. Right? So we built for us, it was much more comfortable, much more easier toe build on top of open stack with cloud FBI s as opposed to doing this on bare metal. So we built a fully managed community that a service which was, ah, self service portal, where you could click a button and get a community cluster deployed in your own tenant on Do the >>things that we did are quite interesting. We also handle some geo specific use cases. So we have because it was a >>manage service. We deployed the city notes in our own management tenant, right? We didn't give access to the customer to the city. Notes. We deployed the master control plane notes in the tenant's tenant and our customers tenant, but we didn't give them access to the Masters. We didn't give them the ssh key the workers that the our customers had full access to. And because people in Genova learning and experimenting, we gave them full admin rights to communities customers as well. So that way that really helped on board communities with NGO. And now we have, like 15 different teams running multiple communities clusters on top, off our open stack clouds. We even handle the fact that there are non profiting. I people separate non profiting I peoples and separate production 49 p pools NGO. So you could create these clusters in whatever environment that non prod environment with more open access or a prod environment with more limited access. So we had to handle these geo specific cases as well in this communities as a service. So on the whole, I think open stack because of the isolation it provides. I think it made a lot of sense for us to do communities our service on top off open stack. We even did it on bare metal, but that not many people use the Cuban, indeed a service environmental, because it is just so much easier to work with. Cloud FBI STO provision much of machines and covering these clusters. That's it from me. I think I've said a mouthful, and now I love for you toe. I'd love to have your questions. If you want to reach out to me. My email is mine dot capulet r l dot com. I'm also you can also message me on Twitter at my uncouple. So thank you. And it was a pleasure talking to you, Andre. Let let me hear your questions.

Published Date : Sep 14 2020

SUMMARY :

So in order to solve that problem, we launched our own brand of smartphones called the So just to give you a flavor on what stacks our internal It is environment and sometimes leverage the Murano application catalog to deploy So we have because it was a So on the whole, I think open stack because of the isolation

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
2015DATE

0.99+

IndiaLOCATION

0.99+

2014DATE

0.99+

two hoursQUANTITY

0.99+

$50QUANTITY

0.99+

3QUANTITY

0.99+

12 gigabytesQUANTITY

0.99+

three yearsQUANTITY

0.99+

MorantesORGANIZATION

0.99+

70,000,080 millionQUANTITY

0.99+

AndrePERSON

0.99+

three hoursQUANTITY

0.99+

SamsungORGANIZATION

0.99+

2000DATE

0.99+

70 daysQUANTITY

0.99+

GenovaLOCATION

0.99+

five daysQUANTITY

0.99+

2QUANTITY

0.99+

zeroQUANTITY

0.99+

0QUANTITY

0.99+

170 daysQUANTITY

0.99+

100 million subscribersQUANTITY

0.99+

Onda Mantis PartnershipORGANIZATION

0.99+

first phaseQUANTITY

0.99+

100 millionQUANTITY

0.99+

15 minutesQUANTITY

0.99+

10 gigabytesQUANTITY

0.99+

firstQUANTITY

0.99+

16DATE

0.99+

four yearsQUANTITY

0.99+

4 monthsQUANTITY

0.99+

one personQUANTITY

0.99+

49 pQUANTITY

0.99+

100 million customersQUANTITY

0.99+

todayDATE

0.99+

one billionQUANTITY

0.99+

Two setsQUANTITY

0.99+

155thQUANTITY

0.99+

oneQUANTITY

0.99+

one key stepQUANTITY

0.99+

last monthDATE

0.99+

first countryQUANTITY

0.98+

3 monthsQUANTITY

0.98+

around 100,000 CPU coresQUANTITY

0.98+

JoePERSON

0.98+

100QUANTITY

0.98+

27,001QUANTITY

0.98+

OneQUANTITY

0.98+

15 different teamsQUANTITY

0.98+

Android IOSTITLE

0.98+

one monthQUANTITY

0.98+

FranceLOCATION

0.98+

506 106 100 millionQUANTITY

0.98+

GeoORGANIZATION

0.98+

Elektronik LeeORGANIZATION

0.98+

FBIORGANIZATION

0.98+

one groupQUANTITY

0.98+

1.6 billion nuclear transactionsQUANTITY

0.98+

AndiPERSON

0.97+

Geo Mobile InternetORGANIZATION

0.97+

five storyQUANTITY

0.97+

PrometheusTITLE

0.97+

Bill Schmarzo, Hitachi Vantara | CUBE Conversation, August 2020


 

>> Announcer: From theCUBE studios in Palo Alto, in Boston, connecting with thought leaders all around the world. This is a CUBE conversation. >> Hey, welcome back, you're ready. Jeff Frick here with theCUBE. We are still getting through the year of 2020. It's still the year of COVID and there's no end in sight I think until we get to a vaccine. That said, we're really excited to have one of our favorite guests. We haven't had him on for a while. I haven't talked to him for a long time. He used to I think have the record for the most CUBE appearances of probably any CUBE alumni. We're excited to have him joining us from his house in Palo Alto. Bill Schmarzo, you know him as the Dean of Big Data, he's got more titles. He's the chief innovation officer at Hitachi Vantara. He's also, we used to call him the Dean of Big Data, kind of for fun. Well, Bill goes out and writes a bunch of books. And now he teaches at the University of San Francisco, School of Management as an executive fellow. He's an honorary professor at NUI Galway. I think he's just, he likes to go that side of the pond and a many time author now, go check him out. His author profile on Amazon, the "Big Data MBA," "The Art of Thinking Like A Data Scientist" and another Big Data, kind of a workbook. Bill, great to see you. >> Thanks, Jeff, you know, I miss my time on theCUBE. These conversations have always been great. We've always kind of poked around the edges of things. A lot of our conversations have always been I thought, very leading edge and the title Dean of Big Data is courtesy of theCUBE. You guys were the first ones to give me that name out of one of the very first Strata Conferences where you dubbed me the Dean of Big Data, because I taught a class there called the Big Data MBA and look what's happened since then. >> I love it. >> It's all on you guys. >> I love it, and we've outlasted Strata, Strata doesn't exist as a conference anymore. So, you know, part of that I think is because Big Data is now everywhere, right? It's not the standalone thing. But there's a topic, and I'm holding in my hands a paper that you worked on with a colleague, Dr. Sidaoui, talking about what is the value of data? What is the economic value of data? And this is a topic that's been thrown around quite a bit. I think you list a total of 28 reference sources in this document. So it's a well researched piece of material, but it's a really challenging problem. So before we kind of get into the details, you know, from your position, having done this for a long time, and I don't know what you're doing today, you used to travel every single week to go out and visit customers and actually do implementations and really help people think these through. When you think about the value, the economic value, how did you start to kind of frame that to make sense and make it kind of a manageable problem to attack? >> So, Jeff, the research project was eyeopening for me. And one of the advantages of being a professor is, you have access to all these very smart, very motivated, very free research sources. And one of the problems that I've wrestled with as long as I've been in this industry is, how do you figure out what is data worth? And so what I did is I took these research students and I stick them on this problem. I said, "I want you to do some research. Let me understand what is the value of data?" I've seen all these different papers and analysts and consulting firms talk about it, but nobody's really got this thing clicked. And so we launched this research project at USF, professor Mouwafac Sidaoui and I together, and we were bumping along the same old path that everyone else got, which was inched on, how do we get data on our balance sheet? That was always the motivation, because as a company we're worth so much more because our data is so valuable, and how do I get it on the balance sheet? So we're headed down that path and trying to figure out how do you get it on the balance sheet? And then one of my research students, she comes up to me and she says, "Professor Schmarzo," she goes, "Data is kind of an unusual asset." I said, "Well, what do you mean?" She goes, "Well, you think about data as an asset. It never depletes, it never wears out. And the same dataset can be used across an unlimited number of use cases at a marginal cost equal to zero." And when she said that, it's like, "Holy crap." The light bulb went off. It's like, "Wait a second. I've been thinking about this entirely wrong for the last 30 some years of my life in this space. I've had the wrong frame. I keep thinking about this as an act, as an accounting conversation. An accounting determines valuation based on what somebody is willing to pay for." So if you go back to Adam Smith, 1776, "Wealth of Nations," he talks about valuation techniques. And one of the valuation techniques he talks about is valuation and exchange. That is the value of an asset is what someone's willing to pay you for it. So the value of this bottle of water is what someone's willing to pay you for it. So everybody fixates on this asset, valuation in exchange methodology. That's how you put it on balance sheet. That's how you run depreciation schedules, that dictates everything. But Adam Smith also talked about in that book, another valuation methodology, which is valuation in use, which is an economics conversation, not an accounting conversation. And when I realized that my frame was wrong, yeah, I had the right book. I had Adam Smith, I had "Wealth of Nations." I had all that good stuff, but I hadn't read the whole book. I had missed this whole concept about the economic value, where value is determined by not how much someone's willing to pay you for it, but the value you can drive by using it. So, Jeff, when that person made that comment, the entire research project, and I got to tell you, my entire life did a total 180, right? Just total of 180 degree change of how I was thinking about data as an asset. >> Right, well, Bill, it's funny though, that's kind of captured, I always think of kind of finance versus accounting, right? And then you're right on accounting. And we learn a lot of things in accounting. Basically we learn more that we don't know, but it's really hard to put it in an accounting framework, because as you said, it's not like a regular asset. You can use it a lot of times, you can use it across lots of use cases, it doesn't degradate over time. In fact, it used to be a liability. 'cause you had to buy all this hardware and software to maintain it. But if you look at the finance side, if you look at the pure play internet companies like Google, like Facebook, like Amazon, and you look at their valuation, right? We used to have this thing, we still have this thing called Goodwill, which was kind of this capture between what the market established the value of the company to be. But wasn't reflected when you summed up all the assets on the balance sheet and you had this leftover thing, you could just plug in goodwill. And I would hypothesize that for these big giant tech companies, the market has baked in the value of the data, has kind of put in that present value on that for a long period of time over multiple projects. And we see it captured probably in goodwill, versus being kind of called out as an individual balance sheet item. >> So I don't think it's, I don't know accounting. I'm not an accountant, thank God, right? And I know that goodwill is one of those things if I remember from my MBA program is something that when you buy a company and you look at the value you paid versus what it was worth, it stuck into this category called goodwill, because no one knew how to figure it out. So the company at book value was a billion dollars, but you paid five billion for it. Well, you're not an idiot, so that four billion extra you paid must be in goodwill and they'd stick it in goodwill. And I think there's actually a way that goodwill gets depreciated as well. So it could be that, but I'm totally away from the accounting framework. I think that's distracting, trying to work within the gap rules is more of an inhibitor. And we talk about the Googles of the world and the Facebooks of the world and the Netflix of the world and the Amazons and companies that are great at monetizing data. Well, they're great at monetizing it because they're not selling it, they're using it. Google is using their data to dominate search, right? Netflix is using it to be the leader in on-demand videos. And it's how they use all the data, how they use the insights about their customers, their products, and their operations to really drive new sources of value. So to me, it's this, when you start thinking about from an economics perspective, for example, why is the same car that I buy and an Uber driver buys, why is that car more valuable to an Uber driver than it is to me? Well, the bottom line is, Uber drivers are going to use that car to generate value, right? That $40,000, that car they bought is worth a lot more, because they're going to use that to generate value. For me it sits in the driveway and the birds poop on it. So, right, so it's this value in use concept. And when organizations can make that, by the way, most organizations really struggle with this. They struggle with this value in use concept. They want to, when you talk to them about data monetization and say, "Well, I'm thinking about the chief data officer, try not to trying to sell data, knocking on doors, shaking their tin cup, saying, 'Buy my data.'" No, no one wants your data. Your data is more valuable for how you use it to drive your operations then it's a sell to somebody else. >> Right, right. Well, on of the other things that's really important from an economics concept is scarcity, right? And a whole lot of economics is driven around scarcity. And how do you price for scarcity so that the market evens out and the price matches up to the supply? What's interesting about the data concept is, there is no scarcity anymore. And you know, you've outlined and everyone has giant numbers going up into the right, in terms of the quantity of the data and how much data there is and is going to be. But what you point out very eloquently in this paper is the scarcity is around the resources to actually do the work on the data to get the value out of the data. And I think there's just this interesting step function between just raw data, which has really no value in and of itself, right? Until you start to apply some concepts to it, you start to analyze it. And most importantly, that you have some context by which you're doing all this analysis to then drive that value. And I thought it was really an interesting part of this paper, which is get beyond the arguing that we're kind of discussing here and get into some specifics where you can measure value around a specific business objective. And not only that, but then now the investment of the resources on top of the data to be able to extract the value to then drive your business process for it. So it's a really different way to think about scarcity, not on the data per se, but on the ability to do something with it. >> You're spot on, Jeff, because organizations don't fail because of a lack of use cases. They fail because they have too many. So how do you prioritize? Now that scarcity is not an issue on the data side, but it is this issue on the people resources side, you don't have unlimited data scientists, right? So how do you prioritize and focus on those opportunities that are most important? I'll tell you, that's not a data science conversation, that's a business conversation, right? And figuring out how you align organizations to identify and focus on those use cases that are most important. Like in the paper we go through several different use cases using Chipotle as an example. The reason why I picked Chipotle is because, well, I like Chipotle. So I could go there and I could write it off as research. But there's a, think about the number of use cases where a company like Chipotle or any other company can leverage your data to drive their key business initiatives and their key operational use cases. It's almost unbounded, which by the way, is a huge challenge. In fact, I think part of the problem we see with a lot of organizations is because they do such a poor job of prioritizing and focusing, they try to solve the entire problem with one big fell swoop, right? It's slightly the old ERP big bang projects. Well, I'm just going to spend $20 million to buy this analytic capability from company X and I'm going to install it and then magic is going to happen. And then magic is going to happen, right? And then magic is going to happen, right? And magic never happens. We get crickets instead, because the biggest challenge isn't around how do I leverage the data, it's about where do I start? What problems do I go after? And how do I make sure the organization is bought in to basically use case by use case, build out your data and analytics architecture and capabilities. >> Yeah, and you start backwards from really specific business objectives in the use cases that you outline here, right? I want to increase my average ticket by X. I want to increase my frequency of visits by X. I want to increase the amount of items per order from X to 1.2 X, or 1.3 X. So from there you get a nice kind of big revenue hit that you can plan around and then work backwards into the amount of effort that it takes and then you can come up, "Is this a good investment or not?" So it's a really different way to get back to the value of the data. And more importantly, the analytics and the work to actually call out the information. >> The technologies, the data and analytic technologies available to us. The very composable nature of these allow us to take this use case by use case approach. I can build out my data lake one use case at a time. I don't need to stuff 25 data sources into my data lake and hope there's someone more valuable. I can use the first use case to say, "Oh, I need these three data sources to solve that use case. I'm going to put those three data sources in the data lake. I'm going to go through the entire curation process of making sure the data has been transformed and cleansed and aligned and enriched and met of, all the other governance, all that kind of stuff this goes on. But I'm going to do that use case by use case, 'cause a use case can tell me which data sources are most important for that given situation. And I can build up my data lake and I can build up my analytics then one use case at a time. And there is a huge impact then, huge impact when I build out use case by use case. That does not happen. Let me throw something that's not really covered in the paper, but it is very much covered in my new book that I'm working on, which is, in knowledge-based industries, the economies of learning are more powerful than the economies of scale. Now think about that for a second. >> Say that again, say that again. >> Yeah, the economies of learning are more powerful than the economies of scale. And what that means is what I learned on the first use case that I build out, I can apply that learning to the second use case, to the third use case, to the fourth use case. So when I put my data into my data lake for my first use case, and the paper covers this, well, once it's in my data lake, the cost of reusing that data in a second, third and fourth use cases is basically, you know marginal cost is zero. So I get this ability to learn about what data sets are most important and to reapply that across the organization. So this learning concept, I learn use case by use case, I don't have to do a big economies of scale approach and start with 25 datasets of which only three or four might be useful. But I'm incurring the overhead for all those other non-important data sets because I didn't take the time to go through and figure out what are my most important use cases and what data do I need to support those use cases. >> I mean, should people even think of the data per se or should they really readjust their thinking around the application of the data? Because the data in and of itself means nothing, right? 55, is that fast or slow? Is that old or young? Well, it depends on a whole lot of things. Am I walking or am I in a brand new Corvette? So it just, it's funny to me that the data in and of itself really doesn't have any value and doesn't really provide any direction into a decision or a higher order, predictive analytics until you start to manipulate the data. So is it even the wrong discussion? Is data the right discussion? Or should we really be talking about the capabilities to do stuff within and really get people focused on that? >> So Jeff, there's so many points to hit on there. So the application of data is what's the value, and the queue of you guys used to be famous for saying, "Separating noise from the signal." >> Signal from the noise. Signal from a noise, right. Well, how do you know in your dataset what's signal and what's noise? Well, the use case will tell you. If you don't know the use case and you have no way of figuring out what's important. One of the things I use, I still rail against, and it happens still. Somebody will walk up my data science team and say, "Here's some data, tell me what's interesting in it." Well, how do you separate signal from noise if I don't know the use case? So I think you're spot on, Jeff. The way to think about this is, don't become data-driven, become value-driven and value is driven from the use case or the application or the use of the data to solve that particular use case. So organizations that get fixated on being data-driven, I hate the term data-driven. It's like as if there's some sort of frigging magic from having data. No, data has no value. It's how you use it to derive customer product and operational insights that drive value,. >> Right, so there's an interesting step function, and we talk about it all the time. You're out in the weeds, working with Chipotle lately, and increase their average ticket by 1.2 X. We talk more here, kind of conceptually. And one of the great kind of conceptual holy grails within a data-driven economy is kind of working up this step function. And you've talked about it here. It's from descriptive, to diagnostic, to predictive. And then the Holy grail prescriptive, we're way ahead of the curve. This comes into tons of stuff around unscheduled maintenance. And you know, there's a lot of specific applications, but do you think we spend too much time kind of shooting for the fourth order of greatness impact, instead of kind of focusing on the small wins? >> Well, you certainly have to build your way there. I don't think you can get to prescriptive without doing predictive, and you can't do predictive without doing descriptive and such. But let me throw a really one at you, Jeff, I think there's even one beyond prescriptive. One we're talking more and more about, autonomous, a ton of analytics, right? And one of the things that paper talked about that didn't click with me at the time was this idea of orphaned analytics. You and I kind of talked about this before the call here. And one thing we noticed in the research was that a lot of these very mature organizations who had advanced from the retrospective analytics of BI to the descriptive, to the predicted, to the prescriptive, they were building one off analytics to solve a problem and getting value from it, but never reusing this analytics over and over again. They were done one off and then they were thrown away and these organizations were so good at data science and analytics, that it was easier for them to just build from scratch than to try to dig around and try to find something that was never actually ever built to be reused. And so I have this whole idea of orphaned analytics, right? It didn't really occur to me. It didn't make any sense into me until I read this quote from Elon Musk, and Elon Musk made this statement. He says, " I believe that when you buy a Tesla, you're buying an asset that appreciates in value, not depreciates through usage." I was thinking, "Wait a second, what does that mean?" He didn't actually say it, "Through usage." He said, "He believes you're buying an asset that appreciates not depreciates in value." And of course the first response I had was, "Oh, it's like a 1964 and a half Mustang. It's rare, so everybody is going to want these things. So buy one, stick it in your garage. And 20 years later, you're bringing it out and it's worth more money." No, no, there's 600,000 of these things roaming around the streets, they're not rare. What he meant is that he is building an autonomous asset. That the more that it's used, the more valuable it's getting, the more reliable, the more efficient, the more predictive, the more safe this asset's getting. So there is this level beyond prescriptive where we can think about, "How do we leverage artificial intelligence, reinforcement, learning, deep learning, to build these assets that the more that they are used, the smarter they get." That's beyond prescriptive. That's an environment where these things are learning. In many cases, they're learning with minimal or no human intervention. That's the real aha moment. That's what I miss with orphaned analytics and why it's important to build analytics that can be reused over and over again. Because every time you use these analytics in a different use case, they get smarter, they get more valuable, they get more predictive. To me that's the aha moment that blew my mind. I realized I had missed that in the paper entirely. And it took me basically two years later to realize, dough, I missed the most important part of the paper. >> Right, well, it's an interesting take really on why the valuation I would argue is reflected in Tesla, which is a function of the data. And there's a phenomenal video if you've never seen it, where they have autonomous vehicle day, it might be a year or so old. And he's got his number one engineer from, I think the Microprocessor Group, The Computer Vision Group, as well as the autonomous driving group. And there's a couple of really great concepts I want to follow up on what you said. One is that they have this thing called The Fleet. To your point, there's hundreds of thousands of these things, if they haven't hit a million, that are calling home reporting home every day as to exactly how everyone took the Northbound 101 on-ramp off of University Avenue. How fast did they go? What line did they take? What G-forces did they take? And every one of those cars feeds into the system, so that when they do the autonomous update, not only are they using all their regular things that they would use to map out that 101 Northbound entry, but they've got all the data from all the cars that have been doing it. And you know, when that other car, the autonomous car couple years ago hit the pedestrian, I think in Phoenix, which is not good, sad, killed a person, dark tough situation. But you know, we are doing an autonomous vehicle show and the guy who made a really interesting point, right? That when something like that happens, typically if I was in a car wreck or you're in a car wreck, hopefully not, I learned the person that we hit learns and maybe a couple of witnesses learn, maybe the inspector. >> But nobody else learns. >> But nobody else learns. But now with the autonomy, every single person can learn from every single experience with every vehicle contributing data within that fleet. To your point, it's just an order of magnitude, different way to think about things. >> Think about a 1% improvement compounded 365 times, equals I think 38 X improvement. The power of 1% improvements over these 600,000 plus cars that are learning. By the way, even when the autonomous FSD, the full self-driving mode module isn't turned on, even when it's not turned on, it runs in shadow mode. So it's learning from the human drivers, the human overlords, it's constantly learning. And by the way, not only they're collecting all this data, I did a little research, I pulled out some of their job search ads and they've built a giant simulator, right? And they're there basically every night, simulating billions and billions of more driven miles because of the simulator. They are building, he's going to have a simulator, not only for driving, but think about all the data he's capturing as these cars are riding down the road. By the way, they don't use Lidar, they use video, right? So he's driving by malls. He knows how many cars are in the mall. He's driving down roads, he knows how old the cars are and which ones should be replaced. I mean, he has this, he's sitting on this incredible wealth of data. If anybody could simulate what's going on in the world and figure out how to get out of this COVID problem, it's probably Elon Musk and the data he's captured, be courtesy of all those cars. >> Yeah, yeah, it's really interesting, and we're seeing it now. There's a new autonomous drone out, the Skydio, and they just announced their commercial product. And again, it completely changes the way you think about how you use that tool, because you've just eliminated the complexity of driving. I don't want to drive that, I want to tell it what to do. And so you're saying, this whole application of air force and companies around things like measuring piles of coal and measuring these huge assets that are volume metric measured, that these things can go and map out and farming, et cetera, et cetera. So the autonomy piece, that's really insightful. I want to shift gears a little bit, Bill, and talk about, you had some theories in here about thinking of data as an asset, data as a currency, data as monetization. I mean, how should people think of it? 'Cause I don't think currency is very good. It's really not kind of an exchange of value that we're doing this kind of classic asset. I think the data as oil is horrible, right? To your point, it doesn't get burned up once and can't be used again. It can be used over and over and over. It's basically like feedstock for all kinds of stuff, but the feedstock never goes away. So again, or is it that even the right way to think about, do we really need to shift our conversation and get past the idea of data and get much more into the idea of information and actionable information and useful information that, oh, by the way, happens to be powered by data under the covers? >> Yeah, good question, Jeff. Data is an asset in the same way that a human is an asset. But just having humans in your company doesn't drive value, it's how you use those humans. And so it's really again the application of the data around the use cases. So I still think data is an asset, but I don't want to, I'm not fixated on, put it on my balance sheet. That nice talk about put it on a balance sheet, I immediately put the blinders on. It inhibits what I can do. I want to think about this as an asset that I can use to drive value, value to my customers. So I'm trying to learn more about my customer's tendencies and propensities and interests and passions, and try to learn the same thing about my car's behaviors and tendencies and my operations have tendencies. And so I do think data is an asset, but it's a latent asset in the sense that it has potential value, but it actually has no value per se, inputting it into a balance sheet. So I think it's an asset. I worry about the accounting concept medially hijacking what we can do with it. To me the value of data becomes and how it interacts with, maybe with other assets. So maybe data itself is not so much an asset as it's fuel for driving the value of assets. So, you know, it fuels my use cases. It fuels my ability to retain and get more out of my customers. It fuels ability to predict what my products are going to break down and even have products who self-monitor, self-diagnosis and self-heal. So, data is an asset, but it's only a latent asset in the sense that it sits there and it doesn't have any value until you actually put something to it and shock it into action. >> So let's shift gears a little bit and start talking about the data and talk about the human factors. 'Cause you said, one of the challenges is people trying to bite off more than they can chew. And we have the role of chief data officer now. And to your point, maybe that mucks things up more than it helps. But in all the customer cases that you've worked on, is there a consistent kind of pattern of behavior, personality, types of projects that enables some people to grab those resources to apply to their data to have successful projects, because to your point there's too much data and there's too many projects and you talk a lot about prioritization. But there's a lot of assumptions in the prioritization model that you can, that you know a whole lot of things, especially if you're comparing project A over in group A with project B, with group B and the two may not really know the economics across that. But from an individual person who sees the potential, what advice do you give them? What kind of characteristics do you see, either in the type of the project, the type of the boss, the type of the individual that really lends itself to a higher probability of a successful outcome? >> So first off you need to find somebody who has a vision for how they want to use the data, and not just collect it. But how they're going to try to change the fortunes of the organization. So it always takes a visionary, may not be the CEO, might be somebody who's a head of marketing or the head of logistics, or it could be a CIO, it could be a chief data officer as well. But you've got to find somebody who says, "We have this latent asset we could be doing more with, and we have a series of organizational problem challenges against which I could apply this asset. And I need to be the matchmaker that brings these together." Now the tool that I think is the most powerful tool in marrying the latent capabilities of data with all the revenue generating opportunities in the application side, because there's a countless number, the most important tool that I found doing that is design thinking. Now, the reason why I think design thinking is so important, because one of the things that design thinking does a great job is it gives everybody a voice in the process of identifying, validating, valuing, and prioritizing use cases you're going to go after. Let me say that again. The challenge organizations have is identifying, validating, valuing, and prioritizing the use cases they want to go after. Design thinking is a marvelous tool for driving organizational alignment around where we're going to start and what's going to be next and why we're going to start there and how we're going to bring everybody together. Big data and data science projects don't die because of technology failure. Most of them die because of passive aggressive behaviors in the organization that you didn't bring everybody into the process. Everybody's voice didn't get a chance to be heard. And that one person who's voice didn't get a chance to get heard, they're going to get you. They may own a certain piece of data. They may own something, but they're just waiting and lay, they're just laying there waiting for their chance to come up and snag it. So what you got to do is you got to proactively bring these people together. We call this, this is part of our value engineering process. We have a value engineering process around envisioning where we bring all these people together. We help them to understand how data in itself is a latent asset, but how it can be used from an economics perspective, drive all those value. We get them all fired up on how these can solve any one of these use cases. But you got to start with one, and you've got to embrace this idea that I can build out my data and analytic capabilities, one use case at a time. And the first use case I go after and solve, makes my second one easier, makes my third one easier, right? It has this ability that when you start going use case by use case two really magical things happen. Number one, your marginal cost flatten. That is because you're building out your data lake one use case at a time, and you're bringing all the important data lake, that data lake one use case at a time. At some point in time, you've got most of the important data you need, and the ability that you don't need to add another data source. You got what you need, so your marginal costs start to flatten. And by the way, if you build your analytics as composable, reusable, continuous learning analytic assets, not as orphaned analytics, pretty soon you have all the analytics you need as well. So your marginal cost flatten, but effect number two is that you've, because you've have the data and the analytics, I can accelerate time to value, and I can de-risked projects as I go use case by use case. And so then the biggest challenge becomes not in the data and the analytics, it's getting the all the business stakeholders to agree on, here's a roadmap we're going to go after. This one's first, and this one is going first because it helps to drive the value of the second and third one. And then this one drives this, and you create a whole roadmap of rippling through of how the data and analytics are driving this value to across all these use cases at a marginal cost approaching zero. >> So should we have chief design thinking officers instead of chief data officers that really actually move the data process along? I mean, I first heard about design thinking years ago, actually interviewing Dan Gordon from Gordon Biersch, and they were, he had just hired a couple of Stanford grads, I think is where they pioneered it, and they were doing some work about introducing, I think it was a a new apple-based alcoholic beverage, apple cider, and they talked a lot about it. And it's pretty interesting, but I mean, are you seeing design thinking proliferate into the organizations that you work with? Either formally as design thinking or as some derivation of it that pulls some of those attributes that you highlighted that are so key to success? >> So I think we're seeing the birth of this new role that's marrying capabilities of design thinking with the capabilities of data and analytics. And they're calling this dude or dudette the chief innovation officer. Surprise. >> Title for someone we know. >> And I got to tell a little story. So I have a very experienced design thinker on my team. All of our data science projects have a design thinker on them. Every one of our data science projects has a design thinker, because the nature of how you build and successfully execute a data science project, models almost exactly how design thinking works. I've written several papers on it, and it's a marvelous way. Design thinking and data science are different sides of the same coin. But my respect for data science or for design thinking took a major shot in the arm, major boost when my design thinking person on my team, whose name is John Morley introduced me to a senior data scientist at Google. And I was bottom coffee. I said, "No," this is back in, before I even joined Hitachi Vantara, and I said, "So tell me the secret to Google's data science success? You guys are marvelous, you're doing things that no one else was even contemplating, and what's your key to success?" And he giggles and laughs and he goes, "Design thinking." I go, "What the hell is that? Design thinking, I've never even heard of the stupid thing before." He goes, "I'd make a deal with you, Friday afternoon let's pop over to Stanford's B school and I'll teach you about design thinking." So I went with him on a Friday to the d.school, Design School over at Stanford and I was blown away, not just in how design thinking was used to ideate and bring and to explore. But I was blown away about how powerful that concept is when you marry it with data science. What is data science in its simplest sense? Data science is about identifying the variables and metrics that might be better predictors of performance. It's that might phrase that's the real key. And who are the people who have the best insights into what values or metrics or KPIs you might want to test? It ain't the data scientists, it's the subject matter experts on the business side. And when you use design thinking to bring this subject matter experts with the data scientists together, all kinds of magic stuff happens. It's unbelievable how well it works. And all of our projects leverage design thinking. Our whole value engineering process is built around marrying design thinking with data science, around this prioritization, around these concepts of, all ideas are worthy of consideration and all voices need to be heard. And the idea how you embrace ambiguity and diversity of perspectives to drive innovation, it's marvelous. But I feel like I'm a lone voice out in the wilderness, crying out, "Yeah, Tesla gets it, Google gets it, Apple gets it, Facebook gets it." But you know, most other organizations in the world, they don't think like that. They think design thinking is this Wufoo thing. Oh yeah, you're going to bring people together and sing Kumbaya. It's like, "No, I'm not singing Kumbaya. I'm picking their brains because they're going to help make their data science team much more effective and knowing what problems we're going to go after and how I'm going to measure success and progress. >> Maybe that's the next Dean for the next 10 years, the Dean of design thinking instead of data science, and who knew they're one and the same? Well, Bill, that's a super insightful, I mean, it's so, is validated and supported by the trends that we see all over the place, just in terms of democratization, right? Democratization of the tools, more people having access to data, more opinions, more perspective, more people that have the ability to manipulate the data and basically experiment, does drive better business outcomes. And it's so consistent. >> If I could add one thing, Jeff, I think that what's really powerful about design thinking is when I think about what's happening with artificial intelligence or AI, there's all these conversations about, "Oh, AI is going to wipe out all these jobs. Is going to take all these jobs away." And what we're actually finding is that if we think about machine learning, driven by AI and human empowerment, driven by design thinking, we're seeing the opportunity to exploit these economies of learning at the front lines where every customer engagement, every operational execution is an opportunity to gather not only more data, but to gather more learnings, to empower the humans at the front lines of the organization to constantly be seeking, to try different things, to explore and to learn from each of these engagements. I think it's, AI to me is incredibly powerful. And I think about it as a source of driving more learning, a continuous learning and continuously adapting an organization where it's not just the machines that are doing this, but it's the humans who've been empowered to do that. And my chapter nine in my new book, Jeff, is all about team empowerment, because nothing you do with AI is going to matter of squat if you don't have empowered teams who know how to take and leverage that continuous learning opportunity at the front lines of customer and operational engagement. >> Bill, I couldn't set a better, I think we'll leave it there. That's a great close, when is the next book coming out? >> So today I do my second to last final review. Then it goes back to the editor and he does a review and we start looking at formatting. So I think we're probably four to six weeks out. >> Okay, well, thank you so much, congratulations on all the success. I just love how the Dean is really the Dean now, teaching all over the world, sharing the knowledge and attacking some of these big problems. And like all great economics problems, often the answer is not economics at all. It's completely really twist the lens and don't think of it in that, all that construct. >> Exactly. >> All right, Bill. Thanks again and have a great week. >> Thanks, Jeff. >> All right. He's Bill Schmarzo, I'm Jeff Frick. You're watching theCUBE. Thanks for watching, we'll see you next time. (gentle music)

Published Date : Aug 3 2020

SUMMARY :

leaders all around the world. And now he teaches at the of the very first Strata Conferences into the details, you know, and how do I get it on the balance sheet? of the data, has kind of put at the value you paid but on the ability to And how do I make sure the analytics and the work of making sure the data has the time to go through that the data in and of itself and the queue of you is driven from the use case And one of the great kind And of course the first and the guy who made a really But now with the autonomy, and the data he's captured, and get past the idea of of the data around the use cases. and the two may not really and the ability that you don't need into the organizations that you work with? the birth of this new role And the idea how you embrace ambiguity people that have the ability of the organization to is the next book coming out? Then it goes back to the I just love how the Dean Thanks again and have a great week. we'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JeffPERSON

0.99+

Bill SchmarzoPERSON

0.99+

Jeff FrickPERSON

0.99+

SidaouiPERSON

0.99+

AmazonORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

FacebookORGANIZATION

0.99+

John MorleyPERSON

0.99+

AppleORGANIZATION

0.99+

NetflixORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

AmazonsORGANIZATION

0.99+

five billionQUANTITY

0.99+

1%QUANTITY

0.99+

$20 millionQUANTITY

0.99+

$40,000QUANTITY

0.99+

August 2020DATE

0.99+

365 timesQUANTITY

0.99+

Adam SmithPERSON

0.99+

PhoenixLOCATION

0.99+

UberORGANIZATION

0.99+

secondQUANTITY

0.99+

NUI GalwayORGANIZATION

0.99+

fourQUANTITY

0.99+

thirdQUANTITY

0.99+

SchmarzoPERSON

0.99+

billionsQUANTITY

0.99+

ChipotleORGANIZATION

0.99+

Friday afternoonDATE

0.99+

The Art of Thinking Like A Data ScientistTITLE

0.99+

University AvenueLOCATION

0.99+

Hitachi VantaraORGANIZATION

0.99+

oneQUANTITY

0.99+

threeQUANTITY

0.99+

28 reference sourcesQUANTITY

0.99+

Elon MuskPERSON

0.99+

BillPERSON

0.99+

BostonLOCATION

0.99+

180QUANTITY

0.99+

The Computer Vision GroupORGANIZATION

0.99+

four billionQUANTITY

0.99+

first use caseQUANTITY

0.99+

Dan GordonPERSON

0.99+

TeslaORGANIZATION

0.99+

firstQUANTITY

0.99+

1776DATE

0.99+

zeroQUANTITY

0.99+

third use caseQUANTITY

0.99+

180 degreeQUANTITY

0.99+

Elon MuskPERSON

0.99+

38 XQUANTITY

0.99+

2020DATE

0.99+

twoQUANTITY

0.99+

todayDATE

0.99+

hundreds of thousandsQUANTITY

0.99+

Microprocessor GroupORGANIZATION

0.99+

25 data sourcesQUANTITY

0.99+

six weeksQUANTITY

0.99+

USFORGANIZATION

0.99+

fourth use caseQUANTITY

0.99+

Breaking Analysis: Living Digital: New Rules for Technology Events


 

from the cube studios in Palo Alto in Boston connecting with thought leaders all around the world this is a cube conversation you know for years marketers marketers have been pushing for more digital especially with their big conferences I heard forward-thinking CMO say the war will be won in digital but the sales teams love the belly-to-belly interaction so every year once or even sometimes more often big corporations have hosted gatherings of thousands or even tens of thousands of attendees these events were like rock concerts they had DJs in the hallway thumping music giant screens beautiful pitches highly produced videos thing a technical breakouts Food lines private dinners etc all come on it culminating in a customer appreciation event with a big-name band physical events are expensive but they generate tons of leads for the host companies and their partner ecosystems well then BOOM coronavirus hits and the marketing teams got what they wished for right overnight virtual events became a mandate if you don't have a solution you were in big trouble because your leads from these large events just dried up hello everyone this is Dave Allen day and welcome to this week's cube insights powered by ETR ETR is entering its quiet period and I won't be able to share any new data for a couple of weeks so rather than look back at the April survey in this breaking analysis we thought we'd take a pause and really talk about the virtual event landscape and just a few of the things that we've learned in the past 120 days now this isn't meant to be an exhaustive list but we do want to call out a few important items that we see is critical in this new digital world in the isolation economy every company scrambled they took one of three paths first companies either postpone their events to buy some time think like Dell technology world Google cloud next cube convey my MIT CBO event etc or to some companies flat-out canceled their events for the year until next year like snowflake and uipath forth number three they scrambled to deploy a virtual event and they went forward IBM think did this HPE discover Susac on AWS summits docker convey Monde a peggle world Vertica big data conference octane sa P sapphire and hundreds of others pushed forward so when this braking analysis I want to share some data from the cube what we've learned not only in the last hundred and twenty days but in ten years of doing events mostly physical and we want to share the new rules of events and event marketing and beyond so let's get right into it everyone knows events events have gone virtual and there are tons of people who could give you advice on approving your digital events including us and and I will in this segment but the first thing that everyone found out is they're going to attract far more people online with a free virtual event than they do with a paid physical event so removing time timing in the expensive travel dramatically increases the participation Tam the total available market here's a tweet from docker CEO Scott Johnson he says that he's looking forward to welcoming 50,000 people to his event this is based on registration data somewhere around 30,000 people logged into the live event so docker got 60% of the pre event registrants to actually log in which is outstanding but there's a lot more to this story I'll share some other stats that are worth mentioning by the way I got permission from docker to to share these numbers not surprising because the event was it was a huge success for such a small company in the end they got nearly 83,000 registrations and they continue to come in weeks after the event which was held in late May now marketers generally will cite 2 to 3 minutes as a respect-- respectable time on site for a web property docker logged in users averaged almost four and a half minutes on site that's the average the bell curve sauce superfans like this guy who was binge watching so this brings me to rule number one it's actually really easy to get people to sign up for free online events but it's not so easy to keep them there now I could talk all day about what docker did right and I'm gonna bring some examples in during this except this segment but the one thing docker did was they did a call for papers or a call for sessions and that's a lot of work but if you look at the docket on speaker list the content is all community driven not all but mostly community driven talker had to break some eggs and reject some folks but it also had a sponsor track so it gave folks another avenue to participate so big success for docker they definitely did it right which brings us to new rule number two attention is precious you got to create high-quality content and realize that you have much less time with participants than if they were in person now unfortunately the doctor docker example is a bit of an outlier it hasn't always been this pretty remember that scene in the social network the movie when a duardo pulled the funding on the servers just to get marks attention remember how Jesse Eisenberg the actor who played Zuckerberg reacted everybody else we don't crash ever if the server's are down for even a day our entire reputation is irreversibly destroyed the whole point well some of the big tech companies crashed their servers and they say there's no such thing as bad press but look at look what happened to s AP and s AP apologized publicly and its CEO told people that they made a mistake in outsourcing their event platform so this brings us to new rule number three don't crash now I come back to Dhaka Khan for a second here's a tweet from a developer who shared the network traffic profile of his network before and during docker con you can see no glitches I mean I don't mean to pick on sa P they they owned the problem and look s AP had a huge attention attendance at its digital event more than 200,000 people and over a million views so Wow you'll kill me with that problem but it underscores the importance of scaling and s AP you have to say was not alone there have been lots of fails from much smaller events here's an example that was really frustrating you try to log in at 7:59 but the event doesn't start until 8:00 sharp really come on back in 60 seconds and in another example there was a slide failure I mean many of these virtual events are glorified webinars so if you're going to rely on slide where make sure the slides will render its scale you maybe embed them into the video you know but at least this company had a back-up plan here's another example and I've redacted the email because I'm not here to throw anyone under the bus well you know kind of but but no reason to name names you know who they are but in this case an old legacy webinar platform failed and they had to move to WebEx and again at least there was a back-up plan so you know it's been tough in a lot of these cases here's a tweet from Jason Reed it kind of summed sums it up now what does he mean by vendors are not getting the job done not enough creativity well not only were platforms failing they weren't performing adequately but the virtual experience is leaving many users unenthused they're they're just one alt-tab away from something better if the virtual event fails to engage them so new rule number four is virtual events that look like webinars actually our webinar webinars I mean in fairness you know the industry had to pivot with no notice but this is why I always tell people start with the outcome that you want and work backwards that'll inform you as to the content strategy the new roles you need to assign and make no mistakes there are new rules you know there's no site inspection virtual and then you got to figure out what you want to use your experience to be there's a whole lot to figure out and this next next one is a bit of a throwaway because yeah it's so obvious and everyone talks about it but I want to bring it up because it's important because I'm amazed at how many virtual event speakers really haven't thought through their setup you can look good you know or at least less bad get those things called books and raise up the laptop figure out some better audio your better yet get a good kit send it to their home with a nice camera and a solid mic maybe you know a clearer IFB comms for the ear spend some money to look good just as you might go and buy a nice outfit even if you're a developer put on a clean t-shirt so rule number five don't cheap out on production value get your guests a good set up and coach them up it doesn't have to be over the top no just a bit thought out okay one of the biggest mistakes I've seen is event organisers they become enamored with a platform and the features of that platform that really don't support their objectives kind of feature creep or they have so many competing objectives and masters that they're serving that they lose sight of the user experience and then the event becomes a buffet of unused features rather than a buffet of engaging content now many have told me that Dave these virtual events are too long there's too much content now I don't necessarily agree I really think if you have something to say you should say it as long as you do it right and you keep people engaged so I want to talk a little bit about a to of the meteor events that we attended one was octane twenty20 hosted by octo the identity management security player and then IBM think 2020 they called it the the think digital event experience and they both had multi day events with lots of content they both organized sessions by topic and made it pretty easy to find stuff and all assessing sessions had a reasonably consistent look and feel to them which kind of helped the production value IBM had content organized and categorized which made things easy to find and they both had good search and with IBM you could go directly from the list of topics right into the videos which I really liked very easy and intuitive and as you can see here in this octane video they had a nice and very ambitious agenda that was really quite well organized and things were pretty easy to find as you can see with this crisp filtering on the left hand side and in really nice search but one of the things that has been frustrating with most of the events that I've watched is you can't get to the sessions directly from the agenda you got to go back out for some linear path and find the content and it's somewhat confusing so I want to come back to the docker count example because I think there were two things that I found interesting and useful with docker con you know this got George nailed it when he said this is how you display a virtual conference what's relevant about this picture is you have multiple simultaneous sessions running live and concurrently and you can pop in and out of them you can easily see the sessions and this tile and there's a red line this linear clock that's running in real time to show you where you are in the event agenda versus in a time of day so I felt like with docker that as a user user you're really connected to the event you come to the site and there's a hero video very easy to find the content and in fact you can't miss it it's not a sales pitch to get to the content and then I really liked what what George change was talking about in terms of the agenda and the tile layout you can see they ran simultaneous sessions and at one point up to seven at once and they gave their sponsors a track on the agenda which is very easy to navigate but what I really like as well is when you click on a tile it takes you directly to the session video and you can see the chat which docker preserved in the PO event mode and you have this easy-to-follow agenda and again you can go directly to the session video and in the chat from the agenda so many paths to find the content I mean something so simple is navigating directly from the agenda to the session most events haven't done that they make you back out and then what I call this linear manner and then go forward and find the sessions that you want and then dive in now maybe they're trying to simulate walking to a session in a Las Vegas Convention Center because it takes about that long to figure out where most of these events in these sessions live so rule number six is make it easy to discover and consume content sounds so simple why is it not happening in most events okay I'm running out of time so I want to encapsulate a number of items in one idea that we talk about all the time at the cube I ran a little survey of the day and someone asked does it really make sense to cram educational content product content partner content customer content rally content and leadership content into the constrain confines of an arbitrary one or two-day window I thought that was an interesting comment now it doesn't necessarily mean shorten up the virtual event which a lot of people think should happen people complain that these things are too long well let me leave you with this it's actually not just about events what do I mean by that well you know how everyone says that all companies are software companies or every company is a SAS company well guess what we believe that every company is a media company in 2004 at the low point of its reputation Microsoft launched channel 9 it was named after the United Airlines channel 9 that lets you listen in to the pilots and their unfiltered conversations kind of cool Microsoft understood that having an authentic voice with which to communicate to developers and serve its community was a smart thing to do and that is the key point channel 9 is about community it's not about audience metrics or lead generation both important things but Microsoft they launched this site understanding the leverage it gets out of its community of developers and instead of treating them like leads they created a site to help developers learn so rule number seven is get your best media mojo on one of the biggest failures I see with physical events and it's clearly carrying over to digital is the failure to optimize the post-event opportunity and experience so just like physical events when the event is over I see companies and their employees they're so burnt out after a virtual event because they feel like they've just given birth and what do they do now after the event they take some time off they got to recharge and when they come back they're swamped and so they're on to the next project it might be another event it might be a webinar series or some regional summits or whatever now it's interesting it feels like all tech companies talk about these days is breaking down silos but most of these parent and child events are disconnected silos sure maybe the data around the events is consolidated into a marketing cloud maybe so that you can nurture leads okay that's fine but what about the community kovat has given us a great opportunity to reimagine how we serve communities and one thing I'm certain about is that physical events they're going to come back at some point in some form but when they do there's gonna be a stronger digital component attached to them hybrids will emerge and some will serve communities better than others and in our opinion the ones that do the best job in digital and serving their communities are gonna win the marketing Wars so ask yourself how are you serving your community are you serving the best way that you can is a lead conversion your number one metric that's okay there's nothing wrong with that but how are your content consumption metrics looking what are you measuring what does your Arc of content look like what's your content and an organic media strategy what does your media stack look like media stack you ask what do you mean Dave well you nailed physical and then you were forced to do virtual overnight eventually there's going to be a hybrid that emerges so there's physical at the bottom and then there's a virtual layer and then you get this hybrid layer at some point on top of that at the very top of the stack you got apps social media you got corporate content you got TV like channel 9 you have video library's website you have tools for agile media you got media production and distribution tooling remember customers will be entering from any one of these layers of that stack and they'll be looking to you for guidance inspiration learning vision product knowledge how to's etc and you'd be delivering that primarily through content so your media stack should be designed to serve your community events software yeah sure but it's much more than that we believe that this stack will emerge not as a monolithic beast but rather as a set of scalable cloud services and api's think of paths for media that you can skin yes of course but also one that you can control add value to integrate with other platforms and fit your business as your community demands and remember new roles are emerging as a result of this pandemic and the pivot to digital the things are different really mostly from from most physical events is that it's very important to think about these roles and one of the important roles is this designer or UX developer that can actually do some coding and API integration think of it as a DevOps for digital organizations that's emerging organizations like yours will want self-service and sometimes out-of-the-box functionality and features for sure no question but we believe that as a media producer you will want to customize your media experience for your community and this work will require new skills that you haven't really prioritized in the past what what do you think what's your vision as to how this will all play out and unfold do you buy that all companies must become media companies or at least media savvy not in the sense of Corp comms but really as an organic media producer tweet me at devonté or email me at David Galante at Silicon angle comm or comment on my LinkedIn post who would react next week with some data from et our survey sphere thanks for watching this wiki bond cube insights powered by ETR this is Dave Volante we'll see you next time [Music]

Published Date : Jul 8 2020

**Summary and Sentiment Analysis are not been shown because of improper transcript**

ENTITIES

EntityCategoryConfidence
Dave VolantePERSON

0.99+

Jason ReedPERSON

0.99+

2004DATE

0.99+

60%QUANTITY

0.99+

United AirlinesORGANIZATION

0.99+

Jesse EisenbergPERSON

0.99+

2QUANTITY

0.99+

ten yearsQUANTITY

0.99+

Palo AltoLOCATION

0.99+

ZuckerbergPERSON

0.99+

IBMORGANIZATION

0.99+

Scott JohnsonPERSON

0.99+

GeorgePERSON

0.99+

Dhaka KhanLOCATION

0.99+

50,000 peopleQUANTITY

0.99+

David GalantePERSON

0.99+

DavePERSON

0.99+

next weekDATE

0.99+

AprilDATE

0.99+

60 secondsQUANTITY

0.99+

more than 200,000 peopleQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

late MayDATE

0.99+

3 minutesQUANTITY

0.99+

two thingsQUANTITY

0.99+

next yearDATE

0.99+

Las Vegas Convention CenterLOCATION

0.99+

BostonLOCATION

0.99+

tons of peopleQUANTITY

0.98+

hundredsQUANTITY

0.98+

over a million viewsQUANTITY

0.98+

first thingQUANTITY

0.98+

nearly 83,000 registrationsQUANTITY

0.98+

one ideaQUANTITY

0.98+

bothQUANTITY

0.97+

two-dayQUANTITY

0.97+

octane twenty20EVENT

0.97+

tons of leadsQUANTITY

0.97+

almost four and a half minutesQUANTITY

0.97+

APORGANIZATION

0.97+

DellORGANIZATION

0.96+

oneQUANTITY

0.96+

SASORGANIZATION

0.95+

around 30,000 peopleQUANTITY

0.94+

dockerORGANIZATION

0.93+

channel 9ORGANIZATION

0.93+

this weekDATE

0.93+

thousandsQUANTITY

0.91+

one pointQUANTITY

0.9+

CEOPERSON

0.9+

devontéPERSON

0.89+

first companiesQUANTITY

0.88+

a dayQUANTITY

0.88+

pandemicEVENT

0.88+

kovatORGANIZATION

0.87+

8:00DATE

0.87+

WebExTITLE

0.86+

number threeQUANTITY

0.86+

rule number threeOTHER

0.84+

MIT CBOEVENT

0.83+

LinkedInORGANIZATION

0.82+

tens of thousands of attendeesQUANTITY

0.82+

one thingQUANTITY

0.82+

agileTITLE

0.81+

sixOTHER

0.8+

every yearQUANTITY

0.8+

7:59DATE

0.79+

oneOTHER

0.78+

Dave AllenPERSON

0.78+

multi dayQUANTITY

0.75+

rule numberQUANTITY

0.75+

couple of weeksQUANTITY

0.74+

dockerTITLE

0.73+

ETRORGANIZATION

0.73+

rule number fourQUANTITY

0.73+

a lot of workQUANTITY

0.71+

rule number sevenQUANTITY

0.71+

up to sevenQUANTITY

0.7+

Tracey Newell, Informatica | CUBE Conversation, May 2020


 

>> Narrator: From theCUBE studios in Palo Alto and Boston, connecting with thought leaders all around the world, this is a CUBE Conversation. >> Everyone, welcome to the special CUBE Conversation here in the Palo Alto studios of theCUBE. We have our quarantine crew and we are here getting all the stories and all the top news, information from experts and thought leaders in the industry. And we're here for a special interview as part of Informatica's digital, virtual event happening. We have Tracey Newell who's the president of Informatica, a CUBE alumni. Great to have you on remotely. Normally you're here in person, but we're in person. Thanks for coming on. >> (laughs) It's great to be here, John. We're virtually together. Happy to spend time together. >> Yeah, and we were in a really tough crisis situation with COVID-19, had a lot of discussions around strategies of how to manage it, get through it, and grow beyond it. But business needs to go on, and this has been the theme. You got to kind of stabilize your base, move forward. But a lot of people are looking at either retrenching and rethinking with coming out of this on the other side. You guys have a digital, virtual event happening where you still got to get the word out. You are the president of Informatica. You guys have a value proposition that is core to the future. It's data and it's been something that we've talked about for years on theCUBE around data's value. And now, this is now apparent to everybody in this COVID crisis. You're talking to customers all the time. What are they thinking? It's not just an industry inside baseball, kind of inside the ropes conversation. This is now mainstream. What are you hearing from your customers? >> Yeah, so it's certainly been interesting times. Digital transformation, has been a CEO on boardroom discussion now for several years and customers have known for a while that the key to having a real strong transformation is data. They've got to have high-quality data to make the right decisions. And what I've been hearing from clients, I've spent a lot of time over the last six to eight weeks while we are in the midst of this situation, talking to customers that are thriving, that are retailers quickly trying to stand up e-commerce sites because their customers are trying to reach them virtually, and they're just not equipped for that. And so data's key when it comes to e-commerce, of course. And yet, there's other customers that know that they do have to re-imagine, they have to re-plan, they have to re-organize coming out of this situation. And even though some of these clients have been hit pretty hard economically, they're all saying data is the most important thing to make sure that they make the right decisions and the right calls. So literally, CDO for a Fortune 100 manufacturer said data is more important today than it was 60 days ago 'cause we've got to make the right decisions. >> It's interesting, we were joking on theCUBE just last week around the term virtualization, which was kind of VMware invented, and that enabled Amazon to be a cloud, right? So without virtualization, all of that value wouldn't have been realized and that whole wave. But now when you think about virtual living, which we're all kind of doing, this interview here is an illustration of that, the virtualization of life and companies is now happening. So when we come out of this, it's going to be a hybrid world (laughs). People are going to not ignore what just happened, they're going to see the benefits. E-commerce, to your point, has grown in the past eight weeks faster than it has grown in the past 10 years. I just saw a stat come out. So now we believe that the world is going to be accelerated on this digital side quickly, not just the talking point. But as we go physical and hybrid, this is going to be a double-down situation. So what are the challenges in that? Because obviously, it's a complex world digital, it's not easy, you don't just video stream. And it's community, it's data (laughs). What are the challenges? What are the core challenges that customers have to solve to execute through this new reality? >> Yeah, so many customers are, as I said, rethinking and re-planning. There's a large oil and energy company where the CIO said, "I want to be data center free over the last few years." And we're talking about, "Why is that?" And this move to cloud is simply accelerating given the current situation that people are in, and why is that? Well, we're certain they're trying to improve analytics. They're trying to innovate, and they're doing an outstanding job. And yet at the same time, every time they can sunset one of those legacy applications that's sitting on premise, they can save millions and millions if not tens or hundreds of millions of dollars as they start to exit the data center. So we see a huge move to cloud. It's complex because they have to make sure, again, a large insurance company said, "We're sunsetting our cloud data warehouse, our data lake, "and by the way, we're using that to close our books "every quarter, so we can't get this wrong." And so from our standpoint, we built most of the on-premise data warehouse and data lakes. We're pretty good at this stuff. And we're very focused on helping our clients here. >> It's interesting, you're going to see a lot of core thinking around what's important going forward and doubling down around it. I just did an interview for a developer audience and I asked, "What's the reality "that you think comes out of this?" And the answer was microservices and cloud native and automation is here to stay. It's definitely been validated. There's really no debate there. You guys have had this intelligent and automation fabric product in the environment out there, is one of the value propositions of Informatica. How does that fit into all this? And can you give some examples of customers and/or prospects that take advantage of this and how it relates to being positioned to help going forward? >> Great question. So we believe that automation and AI is critical for clients to have a data-driven strategy because data is everywhere, it's fragmented. But you can't solve this by sheer muscle. You got to have AI and machine learning underlying everything that you're doing around your data strategy. So our strategy has been simple for a long time. If you buy one-for-one family category Informatica, we believe that you should choose the best-of-breed. And Gartner thinks that we're best-of-breed in all categories that we play in. But if you have a second or third product, you should get the benefits of AI and machine learning. Examples would include the American Medical Association. They're clearly such an important client to serve these days. They're using our data quality, our data integration, and our master data management tools to ensure that they have privacy but also accurate data at the same time. >> It's interesting the at scale problem that we're seeing and the current environment we were just talking about earlier is exposes the value of data because we're lurking at home. This is an edge on the network (laughs). There's still data being processed, you need security. So the complexity now doesn't change the need for governance and compliance. All these things are still available. So it seems that the game is still the same, but yet now more complexity's been surfaced from this. What's your thoughts on this? You've been talking to customers pre-COVID, pre-pandemic. And now you're going to be doing during and post. There's more complexity but the game doesn't change. You still got to do all these things. >> The importance of making sure you have a holistic data strategy is more important now than ever before. Again, when I talk to clients, some as we've mentioned with e-commerce, they're saying, "I've got to have a 360 degree view "of my customers, my partners, my suppliers." CFOs want a 360 degree view of their supply chain so they can do better vendor management than ever before. And yet, at the same time as we mentioned, they're trying to modernize their data as they move to cloud and improve analytics. And of course, you can't accomplish either one of those objectives if you don't have a strong governance strategy. So this concept of an intelligent data platform is really resonating with clients. I had a large GSI in our briefing center back when we were doing that a few months ago, and they said, "You know, gosh, "we would need 20 companies to do what you do." And that you've got to have a platform play, and it's all got to be backed through AI and machine learning to make sure you're making the best decisions. >> You know, platform business is not for the faint of heart. And I've looked at, and we've built platforms certainly on theCUBE on a small scale. But the difference between a tool and a platform are two different things. Platforms enable change and create value. You create more value than you deliver for the partner that's building on top of that, seems to be the tenet of platforms. Whether it's cybersecurity or data, this has just been a ton of tools, right (laughs)? So you got a tool for this, you got a tool for that. So this has been one of those things, again, we've talked with them and you guys were on theCUBE many years about in this big data world. As you move to a platform, what are some of the analytic challenges that the customers need to be thinking about to solve? Because you're starting to see the bifurcation of a nice-to-have versus core. The analytics 360, you mentioned business 360. Hey, who doesn't want a 360 degree view of their business? But is it a nice-to-have or is it critical? So these are the kind of conversations I would love to get your thoughts on, Tracey. Nice-to-haves versus critical, and what are the key problems to solve for analytics? >> Yeah, so when you think about analytics, really, frankly, any decision that clients are making right now, you got to make sure that this is truly the most important. That it's got a business case behind it, and it's the most important place to be spending your dollars these days. What I'm seeing with clients, just last week, a large airline, you can imagine, they invested heavily in data governance and data privacy because they know that it's important to have an analytical and clear view to who are their customers, and how do they make sure they protect the privacy of the customers while they build on their loyalty program? We just, last week, saw a large auto manufacturer, again, investing heavily in this area of data governance and privacy. One of my favorite stories came from a CDO who's in oil and energy. Again, another industry making tough choices right now. And they said, "I want my data "to be like pouring myself a glass of water." And I looked at him, I said, "What does that mean?" And she goes, "Well, if you go pour yourself a glass of water, you don't curate the water, "test the water, and prep the water." And of course, that's what all these expensive data scientists are doing. They're spending all their time trying to understand the data. And so CFOs are getting tired of two reports showing up on their desk to answer one question and the reports say something else. Which one do you believe? You've got to have a trusted and really strong analytical approach to making the decisions that clients are going to be forced to make coming out of this situation and the data's integrity has never been more important. >> I love the water example because it's really a lot of flow. You've got fast flowing data. You've got real relevance, maybe slow data but it's relevant. You've got clean data, you've got dirty data. I mean, thinking about the old database days, cleansing data, it's a term. Data wrangling, totally makes sense. This is the outcome that they want. They just want to have the applications sides dealing with the data as fast as possible, most relevant. So it is like water. But to make that happen, you got to have the processing (laughs) behind the curtain. This is the hard part. Can you just illustrate some thinking around how you guys help do that? Because, okay, you've got a platform. But if you're making the water clean and flowing on tap if you will, what goes on to make that happen? Take me through the pitch there, what do you guys do? >> Yeah, so we think every enterprise in the future is going to want to invest in a data marketplace. And so what we announced in December as part of our governance solution, which again, is tied into the entire intelligent data platform on all that we do, for us to helping customers to modernize their products with master data management. We're heavily invested in cloud native solutions with all the major hyper-scalers. And then combined with our governance solutions, we've announced a data marketplace where the very business friendly application that the data scientists can use. They don't have to be data engineers or data wranglers. And yet, it's also a place where people can go to have a clean and trusted view. It's all backed by machine learning and AI so that data scientists can see, you know, where did this data pull from? Based upon, you know, you asked this question, then you might also want to look over here to get a different answer to your question. Understand, what's been certified, who certified the solution? All those questions. We always say you can ask the internet anything. How come you can't ask your own company anything and trust the information? And that's what we've announced with our governance solutions, then the clean enterprise data marketplace. >> I love data value. Both have been close to my heart from day one. Maybe back when theCUBE started in 2010 when Hadoop hit the scene, we saw the value of data. I always felt it was going to be part of the applications. And now more than ever, these kinds of things like trust, real time, and being programmable. I mean, when I start thinking about automation, you're really talking about programmability, right? So you got to have the efficiencies. I think you guys have got a really interesting value proposition there. Great stuff. >> Yeah, well, your example on Hadoop and Big Data, we're seeing a repeat in history again. When everyone built the on-premise data warehouses and data lake, they used Informatica to automate and to build at scale. And then we did it again when people moved to Big Data and they started investing in Hadoop and Cloudera and Hortonworks, now Cloudera, of course. We helped to accelerate that automation, and that's exactly what we're doing again in cloud. So most CIOs are trying to again sunset legacy applications, and the faster you can speed data ingestion at scale, but also understand data quality and data integrity at the same time so that you don't move your on-premise data, data swamp into the cloud, that's expensive. We can really help to look at this holistically and solve these problems for customers faster. >> Well, Tracey, it's great to see you. I wish we could be there in person, but there's no personal event. You've got a virtual digital event happening. It's going to be ongoing which is digital. So it's 365 days a year more ongoing. Take a minute to talk to your customers that are out there since we have you on camera. Let's automate the value proposition. What's the update on Informatica? What's the pitch to your customers and prospects? What's new with Informatica? Why Informatica? Your core value proposition and why they should work with you. >> Yeah, so we've been serving our customers for 25 years. And the reason why we have such loyalty, This is John Furrier here inside theCUBE studios we serve 85 of the Fortune 100, over half the global 2000. for an update with Informatica's digital conference. The reason why customers come back and speak on our behalf Take a look at it, check it out online. and literally thousands of customers speak on our behalf, Join the community. Be part of those thousands of customers that they have, it's humbling, is because we have the best and check it out, give them feedback. Again, we're remote, we're virtual. It's a virtual CUBE. intelligent data platform in the market. I'm John Furrier, thanks for watching. And we also understand our customers aren't buying software. (soft music) They're buying a business outcome. And we have more people in customer success to enable customers to be successful in all of these journeys we've talked about today. And so I'd like to encourage everyone to attend CLAIREview, which is our new conference series, kicks off on May 20th. CLAIRE is our AI engine, is a Netflix-like experience where you can learn more about all the areas where we can help you in the items we've discussed today. So for clients that are looking to save money by sunsetting legacy apps, we can help accelerate your move to the cloud, improve analytics while you also build a data governance strategy and culture into your environment. So really excited about it, John. I mean, it will be an ongoing series so that based on what you learn and what you like, we'll recommend future sessions for you to help you be successful coming out of this current situation. >> Tracey, thanks for that great insight.

Published Date : Jun 2 2020

SUMMARY :

leaders all around the world, Great to have you on remotely. (laughs) It's great to be here, John. And now, this is now apparent to everybody that the key to having a real this is going to be a And this move to cloud and automation is here to stay. You got to have AI and machine So it seems that the to do what you do." that the customers need to and it's the most important place But to make that happen, you is going to want to invest Both have been close to and the faster you can speed What's the pitch to your about all the areas where we can help you

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Tracey NewellPERSON

0.99+

American Medical AssociationORGANIZATION

0.99+

TraceyPERSON

0.99+

JohnPERSON

0.99+

DecemberDATE

0.99+

InformaticaORGANIZATION

0.99+

May 20thDATE

0.99+

2010DATE

0.99+

May 2020DATE

0.99+

tensQUANTITY

0.99+

20 companiesQUANTITY

0.99+

John FurrierPERSON

0.99+

AmazonORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

25 yearsQUANTITY

0.99+

millionsQUANTITY

0.99+

BostonLOCATION

0.99+

85QUANTITY

0.99+

two reportsQUANTITY

0.99+

360 degreeQUANTITY

0.99+

last weekDATE

0.99+

one questionQUANTITY

0.99+

360 degreeQUANTITY

0.99+

GartnerORGANIZATION

0.99+

HadoopORGANIZATION

0.99+

ClouderaORGANIZATION

0.99+

HortonworksORGANIZATION

0.99+

CUBEORGANIZATION

0.99+

OneQUANTITY

0.99+

BothQUANTITY

0.99+

hundreds of millions of dollarsQUANTITY

0.98+

NetflixORGANIZATION

0.98+

oneQUANTITY

0.97+

COVID-19OTHER

0.97+

60 days agoDATE

0.97+

third productQUANTITY

0.97+

secondQUANTITY

0.96+

todayDATE

0.96+

thousands of customersQUANTITY

0.96+

HadoopTITLE

0.94+

two different thingsQUANTITY

0.92+

theCUBEORGANIZATION

0.91+

CUBE ConversationEVENT

0.91+

day oneQUANTITY

0.87+

365 days a yearQUANTITY

0.87+

few months agoDATE

0.86+

pandemicEVENT

0.85+

eight weeksQUANTITY

0.85+

2000DATE

0.8+

Big DataORGANIZATION

0.8+

over halfQUANTITY

0.79+

past 10 yearsDATE

0.78+

a glass of waterQUANTITY

0.76+

past eight weeksDATE

0.76+

thousands of customersQUANTITY

0.74+

VMwareORGANIZATION

0.7+

CLAIREviewTITLE

0.65+

CLAIREPERSON

0.63+

COVIDOTHER

0.62+

doubleQUANTITY

0.62+

lot of peopleQUANTITY

0.56+

last sixDATE

0.55+

yearsQUANTITY

0.48+

COVIDEVENT

0.46+

yearsDATE

0.45+

360OTHER

0.43+

Günther Tschabuschnig, ZAMG | SUSECON Digital '20


 

>> Narrator: From around the globe, it's theCUBE with coverage of SUSECON Digital, brought to you by SUSE. >> Welcome back, I'm Stu Miniman. And this is theCUBE's coverage of SUSECON Digital '20. Really excited we get to talk to the SUSE executives, their partners and their customers. In this segment, we have one of the customers, he's in the keynote and really excited to talk to him, Günther Tschabushnig and he is the CIO of ZAMG. If you're not familiar with them, they are the Central Institute for meteorology and geodynamics, the oldest weather service in the world, based out of Austria. Günther, thank you so much for joining us. Great to see you. >> Thank you for being here, thank you. >> All right, so obviously weather something we are very interested on theCUBE. We talk how important data is. And data, is it for central to what your service is doing, providing data, the organizations, they can do lots with it. Give us a little bit, we probably don't have time to go through the 150 plus, years history of the organization, but tell us a little bit about what your organization does, and especially your role as CIO. What's involved with that? >> Oh, let me hook you in. One thing you said, we have the oldest, weather service in the world. I always tell people, we are doing big data analytics between until 1851. And actually that's true. We have actually two big data centers based in Austria. We are operating about 20 petabytes of data, 100,000 data sets per minute. What is very, very interesting for tech guys. We have one small data center additional on over 3000 meters above sea level on the observatory. It's in the middle of the glacier. Can't imagine how cool that is. When you go up, into the glacier and yeah, you have a lot of sensors, a lot of measurements and a lot of data collecting, configurations. Actually, we are also using a lot of super-computers. We do simulating, we do a lot of AI. We did big data analytics and the most important thing, we do a lot of cooperation with the people that are out there. >> Yeah, in 1851, wasn't exactly super-computers. You're gathering data from a lot of sources. Help us understand a little bit. What are some of the, asks that the business have for you? What are the kind of challenges? In 2020, that might be a little bit different than they were years ago. >> Weather comes from, but different source, actually in 1851, it was more for the King, for their wars. Nowadays it's much more peaceful, thank, God. It's more for sporting, it's more for producing things. It's a lot for logistics, but it's actually for all the human people are out there, and therefore we have to use a lot of data, a lot of processes and a lot of different customer journeys. Our most important thing is customer first. So we try to produce, our full costs, our, integrated processes, especially for the customers. Justin, quick example is, the Olympic winter games. The ZMAG is doing the forecast for the last two, winter games, because we are doing now casting and we're very good at now casting that means the forecast between the next five minutes to 15 minutes, with, what's it call a breath of 100, 150 meters, which is very, very important for, some kind of events. But we do other forecast as well. The only thing we cannot forecast but we also to, earthquakes, that means naturally earthquakes on the one side, on the other side, artificial earthquakes, which are produced through, normally bombs or nuclear bombs. And, we are working with the CTBTO, the UN organization together to analyze and to measure is illegally, nuclear tests. To make the world a little bit a better place. >> Yeah, so Günther it's interesting you mentioned in the early days it was, weather for the king. One of the things we look about in data, especially in the public sector is what data, where do you collected from? How much hearing is there? Can you talk a little bit about, how it goes kind of beyond your borders and is there, I guess, how do you work with other organizations there any of data that shared any of the models? How does that work together in your organization? >> The most important thing is the link data to link our data to other organizations and to collect other data from other organizations. It's not forecast anymore. It's forecast, integrating into processes, especially in the business processes. Weather doesn't stop at the borders. That's a good thing. So we had a lot of collaboration with our neighbors. We found a weather services from our neighbors. That's one thing. I have them, the big picture. For, our models for our simulations. But what we also do is a lot of crowd data. Because the more data we get, the more data we can assimilate into our model. The better, the higher is the resolution of our forecast, so we do a lot of integration of this crowd source weather, that could be on the one hand, a simple app that could be a weather station, in our, in your home. But that could also be a photograph. What did you do with your smartphone? Well, we do artificial intelligence algorithms. To get out the information about clouds, about damages, what we integrate again in our models, in our simulations. And give you the better forecast as a response. We have a big, cooperation, for example, with, the Austrian fire department. They get the best forecasts we can ever do. A specialist forecast for the emergencies. When does, a fire in the woods, for example, they need a special soil moisture for example, then wind directions. Do we need wind strengths? They can use this on their smartphone. They can, use the smart watch. They do pictures after emergency, send it back to us. We analyze it and do a live modeling through our super-computers. To have a better forecast on this place. >> Excellent, now you talked about a bit about communities, leveraging, a lot of different technologies, I guess that's a good way for us to help connect the dots to us talking here to at SUSECON. Obviously, open-source, the communities, the piece of what we or hearing at the show. Talk to us a little bit about SUSE , what technologies are using them, what's the role of open-source, is that, the piece of how you look at technology. >> Nothing is more boring than they get weather from yesterday. So what we need is a really fast development of our forecasts, to our customers. And SUSE helps us, there. We have special services, especially on our ship of computers. Well, we use the special SUSE ranking system. We use SUSE, on our storage systems on our software defined storage system. To have a, we can develop man, to our customers, to our cooperation partners. And, the last big thing is we use SUSE containering, that forms, and on AI platforms. So the new SUSE AI platform, we tried to do forecasts for avalanches, for snow avalanches and that's a really, really big effort at the moment, because there are people dying every year in Austria and in the Alps, because of avalanches. And maybe we can save some of them, because we do have good forecast together with SUSE. >> Excellent, you talk about moving to containerization, gives a little insight. You are a government agency. How easy it is for you to take advantage of new technologies? Any guidance you can give as to things that you've through that might be able to help? >> Innovation and new technologies, but kind of moving on the edge, because on the one hand we have 24/7, the whole year long, we have to be high availability. We have a very stable, on the other hand, we want to have new technologies, new innovations. So it's really, really working on the edge. We use two groups, two separate data centers. On one hand, we do the all the stable thing. The high availability things on the other things. On the other data center, on other group, they are doing the true new things. They do containerization, they do blockchain and they do artificial intelligent moves. And the thing is they are working together. They are connected, that means tell it this way. We have a very, very experienced, head of our one group, our stable 24/7 group, and very, very young high potential or not innovation group. To be honest, first two weeks they hated each other, because one guy wanted to have the innovation and going forward and forward and forward, and the other one said, "No stop, we have to be stable. "That's the most important thing." After four weeks with a lot of maintenance for sure, and with a lot of guidance, they started to love each other because they can learn from each other. And that's the main point. We learned about all of these things. Now we can combine, stable with technology, with new technology, with cool, new things, which can be proved in the one side and integrate that in the stable side, a little later. >> That's an excellent story to learn from, learning so important, great to hear that the more traditional, reliable group and the new innovation group work together. Of course we can't let you go talking about weather without touching on climate. So, anybody that's watched the space with his global pandemic has some interesting, I guess you'd say, positive side effects, there are parts of the world where pollution's cleaned up, major impacts, on climate that, I'd expect you have some interesting data on. What can you share, when it comes to climate change? Any advice, you'd give for business leaders, that are looking to help contribute in a positive way. >> Okay, sure actually, a data center, we are also data hub for the ESA, the European Space Agency for their sentinel data. This data is very interesting, because it hasn't direct shows and direct impact how the climate is changing. The most important thing I can tell you as a CIO, it is changing. That's the most important thing. What we are looking for is how can we combine data, to stop this climate change. How can we show other leaders, politicians, etc. How to stop it, how can we work against it, and how they can be cooperate, work against. The thing is if we only show us the weather service, our climate data, that's nice to have. You see what a curve that's going to be warmer and warmer and the parameters are changing, but that's not the goal. The goal is, how can we work together? How can we link data together? To stop pollution, to stop several kind of attributes. To stop climate change. We started to do some collaborations with big companies. One of these is SUSE. One of these is Hewlett Packard, to work together. To combine resources, to combine a compute power, to combine storage, to combine knowledge, especially data to stop climate change. >> Excellent, so Günther final question is, anything you've been seeing strange, being a CIO, a question we always have, something we heard in the keynote is the changing role of the CIO. You talked a bit about AI, talked about, you live with actual cloud, and super-computers. So what in 2020 is kind of different about the role of CIO? >> What I really learned is IT, it's the supporting accompany or the supporting department anymore. IT is, the strategic partner of each domain we have, we had all our scientists and they always told us, "We had a scientist and we need IT." From several years now, they started to work together with the IT, with Artificial Intelligence, with big data analytics, with several platforms, both integrations, how to, solve problems. So the CIO especially, is not the IT leader anymore, it's more the management part of the management board. So that means, the integration of the CIO in the whole company is much, much more then it was several years ago. Meg Whitman, I met years ago and we had a good talk, told me there is no company anymore without IT. That's not correct. There's no company anymore that is IT. Even every culture is IT, everything is IT. It's no support anymore, it's linking anymore. >> Excellent, yeah Günther, such an important point to talk about if a company, is going to thrive in the modern era. Data is such a critical piece of that gives you as a CIO, a seat at the table to work closely with them, because if the business needs to be driven by data, the CIO's role of connecting IT in the business, so important. Thank you so much for sharing your stories. Pleasure to talk with you. >> Thank you, it was a pleasure. >> All right, and we'll be back with more coverage from SUSECON Digital '20. I'm Stu Miniman and thank you for watching theCUBE. (upbeat music)

Published Date : May 20 2020

SUMMARY :

the globe, it's theCUBE Günther Tschabushnig and he is the CIO of ZAMG. the 150 plus, years history of the organization, It's in the middle of the glacier. that the business have for you? The ZMAG is doing the forecast for the last two, One of the things we look about in data, the more data we can is that, the piece of how and in the Alps, because of avalanches. moving to containerization, because on the one hand we have 24/7, and the new innovation and the parameters are changing, is the changing role of the CIO. So that means, the integration of the CIO a seat at the table to you for watching theCUBE.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
European Space AgencyORGANIZATION

0.99+

AustriaLOCATION

0.99+

Meg WhitmanPERSON

0.99+

Günther TschabuschnigPERSON

0.99+

ESAORGANIZATION

0.99+

GüntherPERSON

0.99+

Günther TschabushnigPERSON

0.99+

Stu MinimanPERSON

0.99+

2020DATE

0.99+

Hewlett PackardORGANIZATION

0.99+

1851DATE

0.99+

JustinPERSON

0.99+

UNORGANIZATION

0.99+

ZAMGORGANIZATION

0.99+

SUSEORGANIZATION

0.99+

ZMAGORGANIZATION

0.99+

SUSETITLE

0.99+

OneQUANTITY

0.99+

AlpsLOCATION

0.99+

two groupsQUANTITY

0.99+

Central Institute for meteorology and geodynamicsORGANIZATION

0.99+

CTBTOORGANIZATION

0.99+

yesterdayDATE

0.99+

bothQUANTITY

0.99+

15 minutesQUANTITY

0.98+

over 3000 metersQUANTITY

0.98+

each domainQUANTITY

0.98+

two separate data centersQUANTITY

0.98+

one groupQUANTITY

0.97+

SUSECON DigitalORGANIZATION

0.97+

several years agoDATE

0.96+

about 20 petabytesQUANTITY

0.96+

one thingQUANTITY

0.95+

100, 150 metersQUANTITY

0.95+

SUSECONORGANIZATION

0.94+

one guyQUANTITY

0.93+

150 plusQUANTITY

0.93+

first two weeksQUANTITY

0.93+

oneQUANTITY

0.92+

firstQUANTITY

0.91+

one small data centerQUANTITY

0.9+

every yearQUANTITY

0.9+

theCUBEORGANIZATION

0.9+

years agoDATE

0.9+

two big data centersQUANTITY

0.87+

one sideQUANTITY

0.83+

one of the customersQUANTITY

0.82+

100,000 data sets per minuteQUANTITY

0.82+

Olympic winter gamesEVENT

0.82+

yearsDATE

0.81+

pandemicEVENT

0.74+

'20DATE

0.72+

one handQUANTITY

0.71+

five minutesQUANTITY

0.71+

twoQUANTITY

0.62+

four weeksQUANTITY

0.6+

AustrianOTHER

0.59+

GodPERSON

0.59+

dataQUANTITY

0.54+

computersQUANTITY

0.52+

nextQUANTITY

0.48+

'20TITLE

0.42+

EDITS REQUIRED DO NOT PUBLISH Tracey Newell, Informatica | CUBE Conversation, May 2020


 

>> Narrator: From theCUBE studios in Palo Alto and Boston, connecting with thought leaders all around the world, this is a CUBE Conversation. >> Everyone, welcome to the special CUBE Conversation here in the Palo Alto studios of theCUBE. We have our quarantine crew and we are here getting all the stories and all the top news, information from experts and thought leaders in the industry. And we're here for a special interview as part of Informatica's digital, virtual event happening. We have Tracey Newell who's the president of Informatica, a CUBE alumni. Great to have you on remotely. Normally you're here in person, but we're in person. Thanks for coming on. >> (laughs) It's great to be here, John. We're virtually together. Happy to spend time together. >> Yeah, and we were in a really tough crisis situation with COVID-19, had a lot of discussions around strategies of how to manage it, get through it, and grow beyond it. But business needs to go on, and this has been the theme. You got to kind of stabilize your base, move forward. But a lot of people are looking at either retrenching and rethinking with coming out of this on the other side. You guys have a digital, virtual event happening where you still got to get the word out. You are the president of Informatica. You guys have a value proposition that is core to the future. It's data and it's been something that we've talked about for years on theCUBE around data's value. And now, this is now apparent to everybody in this COVID crisis. You're talking to customers all the time. What are they thinking? It's not just an industry inside baseball, kind of inside the ropes conversation. This is now mainstream. What are you hearing from your customers? >> Yeah, so it's certainly been interesting times. Digital transformation, has been a CEO on boardroom discussion now for several years and customers have known for a while that the key to having a real strong transformation is data. They've got to have high-quality data to make the right decisions. And what I've been hearing from clients, I've spent a lot of time over the last six to eight weeks while we are in the midst of this situation, talking to customers that are thriving, that are retailers quickly trying to stand up e-commerce sites because their customers are trying to reach them virtually, and they're just not equipped for that. And so data's key when it comes to e-commerce, of course. And yet, there's other customers that know that they do have to re-imagine, they have to re-plan, they have to re-organize coming out of this situation. And even though some of these clients have been hit pretty hard economically, they're all saying data is the most important thing to make sure that they make the right decisions and the right calls. So literally, CDO for a Fortune 100 manufacturer said data is more important today than it was 60 days ago 'cause we've got to make the right decisions. >> It's interesting, we were joking on theCUBE just last week around the term virtualization, which was kind of VMware invented, and that enabled Amazon to be a cloud, right? So without virtualization, all of that value wouldn't have been realized and that whole wave. But now when you think about virtual living, which we're all kind of doing, this interview here is an illustration of that, the virtualization of life and companies is now happening. So when we come out of this, it's going to be a hybrid world (laughs). People are going to not ignore what just happened, they're going to see the benefits. E-commerce, to your point, has grown in the past eight weeks faster than it has grown in the past 10 years. I just saw a stat come out. So now we believe that the world is going to be accelerated on this digital side quickly, not just the talking point. But as we go physical and hybrid, this is going to be a double-down situation. So what are the challenges in that? Because obviously, it's a complex world digital, it's not easy, you don't just video stream. And it's community, it's data (laughs). What are the challenges? What are the core challenges that customers have to solve to execute through this new reality? >> Yeah, so many customers are, as I said, rethinking and re-planning. There's a large oil and energy company where the CIO said, "I want to be data center free over the last few years." And we're talking about, "Why is that?" And this move to cloud is simply accelerating given the current situation that people are in, and why is that? Well, we're certain they're trying to improve analytics. They're trying to innovate, and they're doing an outstanding job. And yet at the same time, every time they can sunset one of those legacy applications that's sitting on premise, they can save millions and millions if not tens or hundreds of millions of dollars as they start to exit the data center. So we see a huge move to cloud. It's complex because they have to make sure, again, a large insurance company said, "We're sunsetting our cloud data warehouse, our data lake, "and by the way, we're using that to close our books "every quarter, so we can't get this wrong." And so from our standpoint, we built most of the on-premise data warehouse and data lakes. We're pretty good at this stuff. And we're very focused on helping our clients here. >> It's interesting, you're going to see a lot of core thinking around what's important going forward and doubling down around it. I just did an interview for a developer audience and I asked, "What's the reality "that you think comes out of this?" And the answer was microservices and cloud native and automation is here to stay. It's definitely been validated. There's really no debate there. You guys have had this intelligent and automation fabric product in the environment out there, is one of the value propositions of Informatica. How does that fit into all this? And can you give some examples of customers and/or prospects that take advantage of this and how it relates to being positioned to help going forward? >> Great question. So we believe that automation and AI is critical for clients to have a data-driven strategy because data is everywhere, it's fragmented. But you can't solve this by sheer muscle. You got to have AI and machine learning underlying everything that you're doing around your data strategy. So our strategy has been simple for a long time. If you buy one-for-one family category Informatica, we believe that you should choose the best-of-breed. And Gartner thinks that we're best-of-breed in all categories that we play in. But if you have a second or third product, you should get the benefits of AI and machine learning. Examples would include the American Medical Association. They're clearly such an important client to serve these days. They're using our data quality, our data integration, and our master data management tools to ensure that they have privacy but also accurate data at the same time. >> It's interesting the at scale problem that we're seeing and the current environment we were just talking about earlier is exposes the value of data because we're lurking at home. This is an edge on the network (laughs). There's still data being processed, you need security. So the complexity now doesn't change the need for governance and compliance. All these things are still available. So it seems that the game is still the same, but yet now more complexity's been surfaced from this. What's your thoughts on this? You've been talking to customers pre-COVID, pre-pandemic. And now you're going to be doing during and post. There's more complexity but the game doesn't change. You still got to do all these things. >> The importance of making sure you have a holistic data strategy is more important now than ever before. Again, when I talk to clients, some as we've mentioned with e-commerce, they're saying, "I've got to have a 360 degree view "of my customers, my partners, my suppliers." CFOs want a 360 degree view of their supply chain so they can do better vendor management than ever before. And yet, at the same time as we mentioned, they're trying to modernize their data as they move to cloud and improve analytics. And of course, you can't accomplish either one of those objectives if you don't have a strong governance strategy. So this concept of an intelligent data platform is really resonating with clients. I had a large GSI in our briefing center back when we were doing that a few months ago, and they said, "You know, gosh, "we would need 20 companies to do what you do." And that you've got to have a platform play, and it's all got to be backed through AI and machine learning to make sure you're making the best decisions. >> You know, platform business is not for the faint of heart. And I've looked at, and we've built platforms certainly on theCUBE on a small scale. But the difference between a tool and a platform are two different things. Platforms enable change and create value. You create more value than you deliver for the partner that's building on top of that, seems to be the tenet of platforms. Whether it's cybersecurity or data, this has just been a ton of tools, right (laughs)? So you got a tool for this, you got a tool for that. So this has been one of those things, again, we've talked with them and you guys were on theCUBE many years about in this big data world. As you move to a platform, what are some of the analytic challenges that the customers need to be thinking about to solve? Because you're starting to see the bifurcation of a nice-to-have versus core. The analytics 360, you mentioned business 360. Hey, who doesn't want a 360 degree view of their business? But is it a nice-to-have or is it critical? So these are the kind of conversations I would love to get your thoughts on, Tracey. Nice-to-haves versus critical, and what are the key problems to solve for analytics? >> Yeah, so when you think about analytics, really, frankly, any decision that clients are making right now, you got to make sure that this is truly the most important. That it's got a business case behind it, and it's the most important place to be spending your dollars these days. What I'm seeing with clients, just last week, a large airline, you can imagine, they invested heavily in data governance and data privacy because they know that it's important to have an analytical and clear view to who are their customers, and how do they make sure they protect the privacy of the customers while they build on their loyalty program? We just, last week, saw a large auto manufacturer, again, investing heavily in this area of data governance and privacy. One of my favorite stories came from a CDO who's in oil and energy. Again, another industry making tough choices right now. And they said, "I want my data "to be like pouring myself a glass of water." And I looked at him, I said, "What does that mean?" And she goes, "Well, if you go pour yourself a glass of water, you don't curate the water, "test the water, and prep the water." And of course, that's what all these expensive data scientists are doing. They're spending all their time trying to understand the data. And so CFOs are getting tired of two reports showing up on their desk to answer one question and the reports say something else. Which one do you believe? You've got to have a trusted and really strong analytical approach to making the decisions that clients are going to be forced to make coming out of this situation and the data's integrity has never been more important. >> I love the water example because it's really a lot of flow. You've got fast flowing data. You've got real relevance, maybe slow data but it's relevant. You've got clean data, you've got dirty data. I mean, thinking about the old database days, cleansing data, it's a term. Data wrangling, totally makes sense. This is the outcome that they want. They just want to have the applications sides dealing with the data as fast as possible, most relevant. So it is like water. But to make that happen, you got to have the processing (laughs) behind the curtain. This is the hard part. Can you just illustrate some thinking around how you guys help do that? Because, okay, you've got a platform. But if you're making the water clean and flowing on tap if you will, what goes on to make that happen? Take me through the pitch there, what do you guys do? >> Yeah, so we think every enterprise in the future is going to want to invest in a data marketplace. And so what we announced in December as part of our governance solution, which again, is tied into the entire intelligent data platform on all that we do, for us to helping customers to modernize their products with master data management. We're heavily invested in cloud native solutions with all the major hyper-scalers. And then combined with our governance solutions, we've announced a data marketplace where the very business friendly application that the data scientists can use. They don't have to be data engineers or data wranglers. And yet, it's also a place where people can go to have a clean and trusted view. It's all backed by machine learning and AI so that data scientists can see, you know, where did this data pull from? Based upon, you know, you asked this question, then you might also want to look over here to get a different answer to your question. Understand, what's been certified, who certified the solution? All those questions. We always say you can ask the internet anything. How come you can't ask your own company anything and trust the information? And that's what we've announced with our governance solutions, then the clean enterprise data marketplace. >> I love data value. Both have been close to my heart from day one. Maybe back when theCUBE started in 2010 when Hadoop hit the scene, we saw the value of data. I always felt it was going to be part of the applications. And now more than ever, these kinds of things like trust, real time, and being programmable. I mean, when I start thinking about automation, you're really talking about programmability, right? So you got to have the efficiencies. I think you guys have got a really interesting value proposition there. Great stuff. >> Yeah, well, your example on Hadoop and Big Data, we're seeing a repeat in history again. When everyone built the on-premise data warehouses and data lake, they used Informatica to automate and to build at scale. And then we did it again when people moved to Big Data and they started investing in Hadoop and Cloudera and Hortonworks, now Cloudera, of course. We helped to accelerate that automation, and that's exactly what we're doing again in cloud. So most CIOs are trying to gain some legacy applications, and the faster you can speed data ingestion at scale, but also understand data quality and data integrity at the same time so that you don't move your on-premise data, data swamp into the cloud, that's expensive. We can really help to look at this holistically and solve these problems for customers faster. >> Well, Tracey, it's great to see you. I wish we could be there in person, but there's no personal event. You've got a virtual digital event happening. It's going to be ongoing which is digital. So it's 365 days a year more ongoing. Take a minute to talk to your customers that are out there since we have you on camera. Let's automate the value proposition. What's the update on Informatica? What's the pitch to your customers and prospects? What's new with Informatica? Why Informatica? Your core value proposition and why they should work with you. >> Yeah, so we've been serving our customers for 25 years. And the reason why we have such loyalty, we serve 85 of the Fortune 100, over half the global 2000. The reason why customers come back and speak on our behalf and literally thousands of customers speak on our behalf, it's humbling, is because we have the best intelligent data platform in the market. And we also understand our customers aren't buying software. They're buying a business outcome. And we have more people in customer success to enable customers to be successful in all of these journeys we've talked about today. And so I'd like to encourage everyone to attend CLAIREview, which is our new conference series, kicks off on May 20th. CLAIRE is our AI engine, is a Netflix-like experience where you can learn more about all the areas where we can help you in the items we've discussed today. So for clients that are looking to save money by sunsetting legacy apps, we can help accelerate your move to the cloud, improve analytics while you also build a data governance strategy and culture into your environment. So really excited about it, John. I mean, it will be an ongoing series so that based on what you learn and what you like, we'll recommend future sessions for you to help you be successful coming out of this current situation. >> Tracey, thanks for that great insight. One final personal question I want to ask you. I've been following you guys for a long time, and we've had you on theCUBE many times. You've been a seasoned veteran in the industry. You've seen cycles of innovation. You've seen the ups and downs over the years. You've been on boards, you've been a leader, a senior leader. What do you talk about with your friends and peers when you look at this current inflection point? As there's the candid conversations are happening, it's really an opportunity, but also there are serious challenges. As a leader, how should leaders be thinking about getting through this? What's your personal view? You've seen many cycles. You've see many waves. This wave coming is going to be big. This change is certainly going to create an uptick, we believe, exponentially a step function transformation. What's your view? What are some of the conversations that you're having with your friends, peers around what to do? >> Yeah, so I think in any situation like the one that we're in, it's important first and foremost to take care of the employees, take care of the customers, take care of the short term needs. That's critical. And yet at the same time in parallel, to be thinking longer term because there is an opportunity when you go through a situation like this to regroup and to think about, what will be the key markets that come back the fastest? What will be your differentiation, your company's differentiation so that you come out of this when the market does start to rebound and really thriving. So it's always this constant balance of how you deal with the short-term and the realities that we're in because people are making some tough decisions. And yet at the same time, make sure that you're very clear on your long-term strategy so that you can come out of this swinging. >> Great advice. That's a masterclass right there. Thank you for sharing that. Of course, check out Informatica's CLAIREview event. Of course, the digital events are always online. Check them out. Tracey, thanks for your time and thanks for that insight and update, appreciate it. >> Yeah, great to be here, John. Look forward to seeing you in person soon. >> Okay, take care. This is John Furrier here inside theCUBE studios for an update with Informatica's digital conference. Take a look at it, check it out online. Join the community. Be part of those thousands of customers that they have, and check it out, give them feedback. Again, we're remote, we're virtual. It's a virtual CUBE. I'm John Furrier, thanks for watching. (soft music)

Published Date : May 19 2020

SUMMARY :

leaders all around the world, Great to have you on remotely. (laughs) It's great to be here, John. And now, this is now apparent to everybody that the key to having a real this is going to be a And this move to cloud and automation is here to stay. You got to have AI and machine So it seems that the to do what you do." that the customers need to and it's the most important place But to make that happen, you is going to want to invest Both have been close to and the faster you can speed What's the pitch to your about all the areas where we can help you and we've had you on theCUBE many times. and to think about, what Of course, the digital Look forward to seeing you in person soon. of customers that they have,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TraceyPERSON

0.99+

Tracey NewellPERSON

0.99+

American Medical AssociationORGANIZATION

0.99+

JohnPERSON

0.99+

DecemberDATE

0.99+

InformaticaORGANIZATION

0.99+

2010DATE

0.99+

May 20thDATE

0.99+

tensQUANTITY

0.99+

20 companiesQUANTITY

0.99+

AmazonORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

John FurrierPERSON

0.99+

millionsQUANTITY

0.99+

May 2020DATE

0.99+

BostonLOCATION

0.99+

25 yearsQUANTITY

0.99+

two reportsQUANTITY

0.99+

360 degreeQUANTITY

0.99+

last weekDATE

0.99+

one questionQUANTITY

0.99+

360 degreeQUANTITY

0.99+

GartnerORGANIZATION

0.99+

HadoopORGANIZATION

0.99+

ClouderaORGANIZATION

0.99+

HortonworksORGANIZATION

0.99+

85QUANTITY

0.99+

CUBEORGANIZATION

0.99+

OneQUANTITY

0.99+

BothQUANTITY

0.99+

NetflixORGANIZATION

0.98+

hundreds of millions of dollarsQUANTITY

0.98+

thousands of customersQUANTITY

0.98+

oneQUANTITY

0.97+

COVID-19OTHER

0.97+

60 days agoDATE

0.97+

third productQUANTITY

0.97+

todayDATE

0.97+

firstQUANTITY

0.96+

secondQUANTITY

0.96+

HadoopTITLE

0.94+

two different thingsQUANTITY

0.92+

theCUBEORGANIZATION

0.91+

CUBE ConversationEVENT

0.91+

365 days a yearQUANTITY

0.88+

day oneQUANTITY

0.87+

thousands of customersQUANTITY

0.87+

few months agoDATE

0.86+

pandemicEVENT

0.85+

eight weeksQUANTITY

0.85+

over halfQUANTITY

0.85+

Big DataORGANIZATION

0.8+

past 10 yearsDATE

0.78+

a glass of waterQUANTITY

0.76+

past eight weeksDATE

0.76+

CLAIREPERSON

0.74+

One finalQUANTITY

0.73+

VMwareORGANIZATION

0.7+

waveEVENT

0.64+

COVIDOTHER

0.62+

doubleQUANTITY

0.62+

2000DATE

0.6+

CLAIREviewTITLE

0.6+

lot of peopleQUANTITY

0.56+

last sixDATE

0.55+

Rich Gaston, Micro Focus | Virtual Vertica BDC 2020


 

(upbeat music) >> Announcer: It's theCUBE covering the virtual Vertica Big Data Conference 2020 brought to you by Vertica. >> Welcome back to the Vertica Virtual Big Data Conference, BDC 2020. You know, it was supposed to be a physical event in Boston at the Encore. Vertica pivoted to a digital event, and we're pleased that The Cube could participate because we've participated in every BDC since the inception. Rich Gaston this year is the global solutions architect for security risk and governance at Micro Focus. Rich, thanks for coming on, good to see you. >> Hey, thank you very much for having me. >> So you got a chewy title, man. You got a lot of stuff, a lot of hairy things in there. But maybe you can talk about your role as an architect in those spaces. >> Sure, absolutely. We handle a lot of different requests from the global 2000 type of organization that will try to move various business processes, various application systems, databases, into new realms. Whether they're looking at opening up new business opportunities, whether they're looking at sharing data with partners securely, they might be migrating it to cloud applications, and doing migration into a Hybrid IT architecture. So we will take those large organizations and their existing installed base of technical platforms and data, users, and try to chart a course to the future, using Micro Focus technologies, but also partnering with other third parties out there in the ecosystem. So we have large, solid relationships with the big cloud vendors, with also a lot of the big database spenders. Vertica's our in-house solution for big data and analytics, and we are one of the first integrated data security solutions with Vertica. We've had great success out in the customer base with Vertica as organizations have tried to add another layer of security around their data. So what we will try to emphasize is an enterprise wide data security approach, where you're taking a look at data as it flows throughout the enterprise from its inception, where it's created, where it's ingested, all the way through the utilization of that data. And then to the other uses where we might be doing shared analytics with third parties. How do we do that in a secure way that maintains regulatory compliance, and that also keeps our company safe against data breach. >> A lot has changed since the early days of big data, certainly since the inception of Vertica. You know, it used to be big data, everyone was rushing to figure it out. You had a lot of skunkworks going on, and it was just like, figure out data. And then as organizations began to figure it out, they realized, wow, who's governing this stuff? A lot of shadow IT was going on, and then the CIO was called to sort of reign that back in. As well, you know, with all kinds of whatever, fake news, the hacking of elections, and so forth, the sense of heightened security has gone up dramatically. So I wonder if you can talk about the changes that have occurred in the last several years, and how you guys are responding. >> You know, it's a great question, and it's been an amazing journey because I was walking down the street here in my hometown of San Francisco at Christmastime years ago and I got a call from my bank, and they said, we want to inform you your card has been breached by Target, a hack at Target Corporation and they got your card, and they also got your pin. And so you're going to need to get a new card, we're going to cancel this. Do you need some cash? I said, yeah, it's Christmastime so I need to do some shopping. And so they worked with me to make sure that I could get that cash, and then get the new card and the new pin. And being a professional in the inside of the industry, I really questioned, how did they get the pin? Tell me more about this. And they said, well, we don't know the details, but you know, I'm sure you'll find out. And in fact, we did find out a lot about that breach and what it did to Target. The impact that $250 million immediate impact, CIO gone, CEO gone. This was a big one in the industry, and it really woke a lot of people up to the different types of threats on the data that we're facing with our largest organizations. Not just financial data; medical data, personal data of all kinds. Flash forward to the Cambridge Analytica scandal that occurred where Facebook is handing off data, they're making a partnership agreement --think they can trust, and then that is misused. And who's going to end up paying the cost of that? Well, it's going to be Facebook at a tune of about five billion on that, plus some other finds that'll come along, and other costs that they're facing. So what we've seen over the course of the past several years has been an evolution from data breach making the headlines, and how do my customers come to us and say, help us neutralize the threat of this breach. Help us mitigate this risk, and manage this risk. What do we need to be doing, what are the best practices in the industry? Clearly what we're doing on the perimeter security, the application security and the platform security is not enough. We continue to have breaches, and we are the experts at that answer. The follow on fascinating piece has been the regulators jumping in now. First in Europe, but now we see California enacting a law just this year. They came into a place that is very stringent, and has a lot of deep protections that are really far-reaching around personal data of consumers. Look at jurisdictions like Australia, where fiduciary responsibility now goes to the Board of Directors. That's getting attention. For a regulated entity in Australia, if you're on the Board of Directors, you better have a plan for data security. And if there is a breach, you need to follow protocols, or you personally will be liable. And that is a sea change that we're seeing out in the industry. So we're getting a lot of attention on both, how do we neutralize the risk of breach, but also how can we use software tools to maintain and support our regulatory compliance efforts as we work with, say, the largest money center bank out of New York. I've watched their audit year after year, and it's gotten more and more stringent, more and more specific, tell me more about this aspect of data security, tell me more about encryption, tell me more about money management. The auditors are getting better. And we're supporting our customers in that journey to provide better security for the data, to provide a better operational environment for them to be able to roll new services out with confidence that they're not going to get breached. With that confidence, they're not going to have a regulatory compliance fine or a nightmare in the press. And these are the major drivers that help us with Vertica sell together into large organizations to say, let's add some defense in depth to your data. And that's really a key concept in the security field, this concept of defense in depth. We apply that to the data itself by changing the actual data element of Rich Gaston, I will change that name into Ciphertext, and that then yields a whole bunch of benefits throughout the organization as we deal with the lifecycle of that data. >> Okay, so a couple things I want to mention there. So first of all, totally board level topic, every board of directors should really have cyber and security as part of its agenda, and it does for the reasons that you mentioned. The other is, GDPR got it all started. I guess it was May 2018 that the penalties went into effect, and that just created a whole Domino effect. You mentioned California enacting its own laws, which, you know, in some cases are even more stringent. And you're seeing this all over the world. So I think one of the questions I have is, how do you approach all this variability? It seems to me, you can't just take a narrow approach. You have to have an end to end perspective on governance and risk and security, and the like. So are you able to do that? And if so, how so? >> Absolutely, I think one of the key areas in big data in particular, has been the concern that we have a schema, we have database tables, we have CALMS, and we have data, but we're not exactly sure what's in there. We have application developers that have been given sandbox space in our clusters, and what are they putting in there? So can we discover that data? We have those tools within Micro Focus to discover sensitive data within in your data stores, but we can also protect that data, and then we'll track it. And what we really find is that when you protect, let's say, five billion rows of a customer database, we can now know what is being done with that data on a very fine grain and granular basis, to say that this business process has a justified need to see the data in the clear, we're going to give them that authorization, they can decrypt the data. Secure data, my product, knows about that and tracks that, and can report on that and say at this date and time, Rich Gaston did the following thing to be able to pull data in the clear. And that could be then used to support the regulatory compliance responses and then audit to say, who really has access to this, and what really is that data? Then in GDPR, we're getting down into much more fine grained decisions around who can get access to the data, and who cannot. And organizations are scrambling. One of the funny conversations that I had a couple years ago as GDPR came into place was, it seemed a couple of customers were taking these sort of brute force approach of, we're going to move our analytics and all of our data to Europe, to European data centers because we believe that if we do this in the U.S., we're going to violate their law. But if we do it all in Europe, we'll be okay. And that simply was a short-term way of thinking about it. You really can't be moving your data around the globe to try to satisfy a particular jurisdiction. You have to apply the controls and the policies and put the software layers in place to make sure that anywhere that someone wants to get that data, that we have the ability to look at that transaction and say it is or is not authorized, and that we have a rock solid way of approaching that for audit and for compliance and risk management. And once you do that, then you really open up the organization to go back and use those tools the way they were meant to be used. We can use Vertica for AI, we can use Vertica for machine learning, and for all kinds of really cool use cases that are being done with IOT, with other kinds of cases that we're seeing that require data being managed at scale, but with security. And that's the challenge, I think, in the current era, is how do we do this in an elegant way? How do we do it in a way that's future proof when CCPA comes in? How can I lay this on as another layer of audit responsibility and control around my data so that I can satisfy those regulators as well as the folks over in Europe and Singapore and China and Turkey and Australia. It goes on and on. Each jurisdiction out there is now requiring audit. And like I mentioned, the audits are getting tougher. And if you read the news, the GDPR example I think is classic. They told us in 2016, it's coming. They told us in 2018, it's here. They're telling us in 2020, we're serious about this, and here's the finds, and you better be aware that we're coming to audit you. And when we audit you, we're going to be asking some tough questions. If you can't answer those in a timely manner, then you're going to be facing some serious consequences, and I think that's what's getting attention. >> Yeah, so the whole big data thing started with Hadoop, and Hadoop is open, it's distributed, and it just created a real governance challenge. I want to talk about your solutions in this space. Can you tell us more about Micro Focus voltage? I want to understand what it is, and then get into sort of how it works, and then I really want to understand how it's applied to Vertica. >> Yeah, absolutely, that's a great question. First of all, we were the originators of format preserving encryption, we developed some of the core basic research out of Stanford University that then became the company of Voltage; that build-a-brand name that we apply even though we're part of Micro Focus. So the lineage still goes back to Dr. Benet down at Stanford, one of my buddies there, and he's still at it doing amazing work in cryptography and keeping moving the industry forward, and the science forward of cryptography. It's a very deep science, and we all want to have it peer-reviewed, we all want to be attacked, we all want it to be proved secure, that we're not selling something to a major money center bank that is potentially risky because it's obscure and we're private. So we have an open standard. For six years, we worked with the Department of Commerce to get our standard approved by NIST; The National Institute of Science and Technology. They initially said, well, AES256 is going to be fine. And we said, well, it's fine for certain use cases, but for your database, you don't want to change your schema, you don't want to have this increase in storage costs. What we want is format preserving encryption. And what that does is turns my name, Rich, into a four-letter ciphertext. It can be reversed. The mathematics of that are fascinating, and really deep and amazing. But we really make that very simple for the end customer because we produce APIs. So these application programming interfaces can be accessed by applications in C or Java, C sharp, other languages. But they can also be accessed in Microservice Manor via rest and web service APIs. And that's the core of our technical platform. We have an appliance-based approach, so we take a secure data appliance, we'll put it on Prim, we'll make 50 of them if you're a big company like Verizon and you need to have these co-located around the globe, no problem; we can scale to the largest enterprise needs. But our typical customer will install several appliances and get going with a couple of environments like QA and Prod to be able to start getting encryption going inside their organization. Once the appliances are set up and installed, it takes just a couple of days of work for a typical technical staff to get done. Then you're up and running to be able to plug in the clients. Now what are the clients? Vertica's a huge one. Vertica's one of our most powerful client endpoints because you're able to now take that API, put it inside Vertica, it's all open on the internet. We can go and look at Vertica.com/secure data. You get all of our documentation on it. You understand how to use it very quickly. The APIs are super simple; they require three parameter inputs. It's a really basic approach to being able to protect and access data. And then it gets very deep from there because you have data like credit card numbers. Very different from a street address and we want to take a different approach to that. We have data like birthdate, and we want to be able to do analytics on dates. We have deep approaches on managing analytics on protected data like Date without having to put it in the clear. So we've maintained a lead in the industry in terms of being an innovator of the FF1 standard, what we call FF1 is format preserving encryption. We license that to others in the industry, per our NIST agreement. So we're the owner, we're the operator of it, and others use our technology. And we're the original founders of that, and so we continue to sort of lead the industry by adding additional capabilities on top of FF1 that really differentiate us from our competitors. Then you look at our API presence. We can definitely run as a dup, but we also run in open systems. We run on main frame, we run on mobile. So anywhere in the enterprise or one in the cloud, anywhere you want to be able to put secure data, and be able to access the protect data, we're going to be there and be able to support you there. >> Okay so, let's say I've talked to a lot of customers this week, and let's say I'm running in Eon mode. And I got some workload running in AWS, I've got some on Prim. I'm going to take an appliance or multiple appliances, I'm going to put it on Prim, but that will also secure my cloud workloads as part of a sort of shared responsibility model, for example? Or how does that work? >> No, that's absolutely correct. We're really flexible that we can run on Prim or in the cloud as far as our crypto engine, the key management is really hard stuff. Cryptography is really hard stuff, and we take care of all that, so we've all baked that in, and we can run that for you as a service either in the cloud or on Prim on your small Vms. So really the lightweight footprint for me running my infrastructure. When I look at the organization like you just described, it's a classic example of where we fit because we will be able to protect that data. Let's say you're ingesting it from a third party, or from an operational system, you have a website that collects customer data. Someone has now registered as a new customer, and they're going to do E-commerce with you. We'll take that data, and we'll protect it right at the point of capture. And we can now flow that through the organization and decrypt it at will on any platform that you have that you need us to be able to operate on. So let's say you wanted to pick that customer data from the operational transaction system, let's throw it into Eon, let's throw it into the cloud, let's do analytics there on that data, and we may need some decryption. We can place secure data wherever you want to be able to service that use case. In most cases, what you're doing is a simple, tiny little atomic efetch across a protected tunnel, your typical TLS pipe tunnel. And once that key is then cashed within our client, we maintain all that technology for you. You don't have to know about key management or dashing. We're good at that; that's our job. And then you'll be able to make those API calls to access or protect the data, and apply the authorization authentication controls that you need to be able to service your security requirements. So you might have third parties having access to your Vertica clusters. That is a special need, and we can have that ability to say employees can get X, and the third party can get Y, and that's a really interesting use case we're seeing for shared analytics in the internet now. >> Yeah for sure, so you can set the policy how we want. You know, I have to ask you, in a perfect world, I would encrypt everything. But part of the reason why people don't is because of performance concerns. Can you talk about, and you touched upon it I think recently with your sort of atomic access, but can you talk about, and I know it's Vertica, it's Ferrari, etc, but anything that slows it down, I'm going to be a concern. Are customers concerned about that? What are the performance implications of running encryption on Vertica? >> Great question there as well, and what we see is that we want to be able to apply scale where it's needed. And so if you look at ingest platforms that we find, Vertica is commonly connected up to something like Kafka. Maybe streamsets, maybe NiFi, there are a variety of different technologies that can route that data, pipe that data into Vertica at scale. Secured data is architected to go along with that architecture at the node or at the executor or at the lowest level operator level. And what I mean by that is that we don't have a bottleneck that everything has to go through one process or one box or one channel to be able to operate. We don't put an interceptor in between your data and coming and going. That's not our approach because those approaches are fragile and they're slow. So we typically want to focus on integrating our APIs natively within those pipeline processes that come into Vertica within the Vertica ingestion process itself, you can simply apply our protection when you do the copy command in Vertica. So really basic simple use case that everybody is typically familiar with in Vertica land; be able to copy the data and put it into Vertica, and you simply say protect as part of the data. So my first name is coming in as part of this ingestion. I'll simply put the protect keyword in the Syntax right in SQL; it's nothing other than just an extension SQL. Very very simple, the developer, easy to read, easy to write. And then you're going to provide the parameters that you need to say, oh the name is protected with this kind of a format. To differentiate it between a credit card number and an alphanumeric stream, for example. So once you do that, you then have the ability to decrypt. Now, on decrypt, let's look at a couple different use cases. First within Vertica, we might be doing select statements within Vertica, we might be doing all kinds of jobs within Vertica that just operate at the SQL layer. Again, just insert the word "access" into the Vertica select string and provide us with the data that you want to access, that's our word for decryption, that's our lingo. And we will then, at the Vertica level, harness the power of its CPU, its RAM, its horsepower at the node to be able to operate on that operator, the decryption request, if you will. So that gives us the speed and the ability to scale out. So if you start with two nodes of Vertica, we're going to operate at X number of hundreds of thousands of transactions a second, depending on what you're doing. Long strings are a little bit more intensive in terms of performance, but short strings like social security number are our sweet spot. So we operate very very high speed on that, and you won't notice the overhead with Vertica, perse, at the node level. When you scale Vertica up and you have 50 nodes, and you have large clusters of Vertica resources, then we scale with you. And we're not a bottleneck and at any particular point. Everybody's operating independently, but they're all copies of each other, all doing the same operation. Fetch a key, do the work, go to sleep. >> Yeah, you know, I think this is, a lot of the customers have said to us this week that one of the reasons why they like Vertica is it's very mature, it's been around, it's got a lot of functionality, and of course, you know, look, security, I understand is it's kind of table sticks, but it's also can be a differentiator. You know, big enterprises that you sell to, they're asking for security assessments, SOC 2 reports, penetration testing, and I think I'm hearing, with the partnership here, you're sort of passing those with flying colors. Are you able to make security a differentiator, or is it just sort of everybody's kind of got to have good security? What are your thoughts on that? >> Well, there's good security, and then there's great security. And what I found with one of my money center bank customers here in San Francisco was based here, was the concern around the insider access, when they had a large data store. And the concern that a DBA, a database administrator who has privilege to everything, could potentially exfil data out of the organization, and in one fell swoop, create havoc for them because of the amount of data that was present in that data store, and the sensitivity of that data in the data store. So when you put voltage encryption on top of Vertica, what you're doing now is that you're putting a layer in place that would prevent that kind of a breach. So you're looking at insider threats, you're looking at external threats, you're looking at also being able to pass your audit with flying colors. The audits are getting tougher. And when they say, tell me about your encryption, tell me about your authentication scheme, show me the access control list that says that this person can or cannot get access to something. They're asking tougher questions. That's where secure data can come in and give you that quick answer of it's encrypted at rest. It's encrypted and protected while it's in use, and we can show you exactly who's had access to that data because it's tracked via a different layer, a different appliance. And I would even draw the analogy, many of our customers use a device called a hardware security module, an HSM. Now, these are fairly expensive devices that are invented for military applications and adopted by banks. And now they're really spreading out, and people say, do I need an HSM? Well, with secure data, we certainly protect your crypto very very well. We have very very solid engineering. I'll stand on that any day of the week, but your auditor is going to want to ask a checkbox question. Do you have HSM? Yes or no. Because the auditor understands, it's another layer of protection. And it provides me another tamper evident layer of protection around your key management and your crypto. And we, as professionals in the industry, nod and say, that is worth it. That's an expensive option that you're going to add on, but your auditor's going to want it. If you're in financial services, you're dealing with PCI data, you're going to enjoy the checkbox that says, yes, I have HSMs and not get into some arcane conversation around, well no, but it's good enough. That's kind of the argument then conversation we get into when folks want to say, Vertica has great security, Vertica's fantastic on security. Why would I want secure data as well? It's another layer of protection, and it's defense in depth for you data. When you believe in that, when you take security really seriously, and you're really paranoid, like a person like myself, then you're going to invest in those kinds of solutions that get you best in-class results. >> So I'm hearing a data-centric approach to security. Security experts will tell you, you got to layer it. I often say, we live in a new world. The green used to just build a moat around the queen, but the queen, she's leaving her castle in this world of distributed data. Rich, incredibly knowlegable guest, and really appreciate you being on the front lines and sharing with us your knowledge about this important topic. So thanks for coming on theCUBE. >> Hey, thank you very much. >> You're welcome, and thanks for watching everybody. This is Dave Vellante for theCUBE, we're covering wall-to-wall coverage of the Virtual Vertica BDC, Big Data Conference. Remotely, digitally, thanks for watching. Keep it right there. We'll be right back right after this short break. (intense music)

Published Date : Mar 31 2020

SUMMARY :

Vertica Big Data Conference 2020 brought to you by Vertica. and we're pleased that The Cube could participate But maybe you can talk about your role And then to the other uses where we might be doing and how you guys are responding. and they said, we want to inform you your card and it does for the reasons that you mentioned. and put the software layers in place to make sure Yeah, so the whole big data thing started with Hadoop, So the lineage still goes back to Dr. Benet but that will also secure my cloud workloads as part of a and we can run that for you as a service but can you talk about, at the node to be able to operate on that operator, a lot of the customers have said to us this week and we can show you exactly who's had access to that data and really appreciate you being on the front lines of the Virtual Vertica BDC, Big Data Conference.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AustraliaLOCATION

0.99+

EuropeLOCATION

0.99+

TargetORGANIZATION

0.99+

VerizonORGANIZATION

0.99+

VerticaORGANIZATION

0.99+

FacebookORGANIZATION

0.99+

Dave VellantePERSON

0.99+

May 2018DATE

0.99+

NISTORGANIZATION

0.99+

2016DATE

0.99+

BostonLOCATION

0.99+

2018DATE

0.99+

San FranciscoLOCATION

0.99+

New YorkLOCATION

0.99+

Target CorporationORGANIZATION

0.99+

$250 millionQUANTITY

0.99+

50QUANTITY

0.99+

Rich GastonPERSON

0.99+

SingaporeLOCATION

0.99+

TurkeyLOCATION

0.99+

FerrariORGANIZATION

0.99+

six yearsQUANTITY

0.99+

2020DATE

0.99+

one boxQUANTITY

0.99+

ChinaLOCATION

0.99+

CTITLE

0.99+

Stanford UniversityORGANIZATION

0.99+

JavaTITLE

0.99+

FirstQUANTITY

0.99+

oneQUANTITY

0.99+

AWSORGANIZATION

0.99+

U.S.LOCATION

0.99+

this weekDATE

0.99+

National Institute of Science and TechnologyORGANIZATION

0.99+

Each jurisdictionQUANTITY

0.99+

bothQUANTITY

0.99+

VerticaTITLE

0.99+

RichPERSON

0.99+

this yearDATE

0.98+

Vertica Virtual Big Data ConferenceEVENT

0.98+

one channelQUANTITY

0.98+

one processQUANTITY

0.98+

GDPRTITLE

0.98+

SQLTITLE

0.98+

five billion rowsQUANTITY

0.98+

about five billionQUANTITY

0.97+

OneQUANTITY

0.97+

C sharpTITLE

0.97+

BenetPERSON

0.97+

firstQUANTITY

0.96+

four-letterQUANTITY

0.96+

Vertica Big Data Conference 2020EVENT

0.95+

HadoopTITLE

0.94+

KafkaTITLE

0.94+

Micro FocusORGANIZATION

0.94+

Colin Mahony, Vertica at Micro Focus | Virtual Vertica BDC 2020


 

>>It's the queue covering the virtual vertical Big Data Conference 2020. Brought to you by vertical. >>Hello, everybody. Welcome to the new Normal. You're watching the Cube, and it's remote coverage of the vertical big data event on digital or gone Virtual. My name is Dave Volante, and I'm here with Colin Mahoney, who's a senior vice president at Micro Focus and the GM of Vertical Colin. Well, strange times, but the show goes on. Great to see you again. >>Good to see you too, Dave. Yeah, strange times indeed. Obviously, Safety first of everyone that we made >>a >>decision to go Virtual. I think it was absolutely the right all made it in advance of how things have transpired, but we're making the best of it and appreciate your time here, going virtual with us. >>Well, Joe and we're super excited to be here. As you know, the Cube has been at every single BDC since its inception. It's a great event. You just you just presented the key note to your to your audience, You know, it was remote. You didn't have that that live vibe. And you have a lot of fans in the vertical community But could you feel the love? >>Yeah, you know, it's >>it's hard to >>feel the love virtually, but I'll tell you what. The silver lining in all this is the reach that we have for this event now is much broader than it would have been a Z you know, you know, we brought this event back. It's been a few years since we've done it. We're super excited to do it, obviously, you know, in Boston, where it was supposed to be on location, but there wouldn't have been as many people that could participate. So the silver lining in all of this is that I think there's there's a lot of love out there we're getting, too. I have a lot of participants who otherwise would not have been able to participate in this. Both live as well. It's a lot of these assets that we're gonna have available. So, um, you know, it's out there. We've got an amazing customers and of practitioners with vertical. We've got so many have been with us for a long time. We've of course, have a lot of new customers as well that we're welcoming, so it's exciting. >>Well, it's been a while. Since you've had the BDC event, a lot of transpired. You're now part of micro focus, but I know you and I know the vertical team you guys have have not stopped. You've kept the innovation going. We've been following the announcements, but but bridge the gap between the last time. You know, we had coverage of this event and where we are today. A lot has changed. >>Oh, yeah, a lot. A lot has changed. I mean, you know, it's it's the software industry, right? So nothing stays the same. We constantly have Teoh keep going. Probably the only thing that stays the same is the name Vertical. Um and, uh, you know, you're not spending 10 which is just a phenomenal released for us. So, you know, overall, the the organization continues to grow. The dedication and commitment to this great form of vertical continues every single release we do as you know, and this hasn't changed. It's always about performance and scale and adding a whole bunch of new capabilities on that front. But it's also about are our main road map and direction that we're going towards. And I think one of the things have been great about it is that we've stayed true that from day one we haven't tried to deviate too much and get into things that are barred to outside your box. But we've really done, I think, a great job of extending vertical into places where people need a lot of help. And with vertical 10 we know we're going to talk more about that. But we've done a lot of that. It's super exciting for our customers, and all of this, of course, is driven by our customers. But back to the big data conference. You know, everybody has been saying this for years. It was one of the best conferences we've been to just so really it's. It's developers giving tech talks, its customers giving talks. And we have more customers that wanted to give talks than we had slots to fill this year at the event, which is another benefit, a little bit of going virtually accommodate a little bit more about obviously still a tight schedule. But it really was an opportunity for our community to come together and talk about not just America, but how to deal with data, you know, we know the volumes are slowing down. We know the complexity isn't slowing down. The things that people want to do with AI and machine learning are moving forward in a rapid pace as well. There's a lot talk about and share, and that's really huge part of what we try to do with it. >>Well, let's get into some of that. Um, your customers are making bets. Micro focus is actually making a bet on one vertical. I wanna get your perspective on one of the waves that you're riding and where are you placing your bets? >>Yeah, No, it's great. So, you know, I think that one of the waves that we've been writing for a long time, obviously Vertical started out as a sequel platform for analytics as a sequel, database engine, relational engine. But we always knew that was just sort of takes that we wanted to do. People were going to trust us to put enormous amounts of data in our platform and what we owe everyone else's lots of analytics to take advantage of that data in the lots of tools and capabilities to shape that data to get into the right format. The operational reporting but also in this day and age for machine learning and from some pretty advanced regressions and other techniques of things. So a huge part of vertical 10 is just doubling down on that commitment to what we call in database machine learning and ai. Um, And to do that, you know, we know that we're not going to come up with the world's best algorithms. Nor is that our focus to do. Our advantage is we have this massively parallel platform to ingest store, manage and analyze the data. So we made some announcements about incorporating PM ML models into the product. We continue to deepen our python integration. Building off of a new open source project we started with uber has been a great customer and partner on This is one of our great talks here at the event. So you know, we're continuing to do that, and it turns out that when it comes to anything analytics machine learning, certainly so much of what you have to do is actually prepare the big shape the data get the data in the right format, apply the model, fit the model test a model operationalized model and is a great platform to do that. So that's a huge bet that were, um, continuing to ride on, taking advantage of and then some of the other things that we've just been seeing. You continue. I'll take object. Storage is an example on, I think Hadoop and what would you point through ultimately was a huge part of this, but there's just a massive disruption going on in the world around object storage. You know, we've made several bets on S three early we created America Yang mode, which separates computing story. And so for us that separation is not just about being able to take care of your take advantage of cloud economics as we do, or the economics of object storage. It's also about being able to truly isolate workloads and start to set the sort of platform to be able to do very autonomous things in the databases in the database could actually start self analysing without impacting many operational workloads, and so that continues with our partnership with pure storage. On premise, we just announced that we're supporting beyond Google Cloud now. In addition to Amazon, we supported on we've got a CFS now being supported by are you on mode. So we continue to ride on that mega trend as well. Just the clouds in general. Whether it's a public cloud, it's a private cloud on premise. Giving our customers the flexibility and choice to run wherever it makes sense for them is something that we are very committed to. From a flexibility standpoint. There's a lot of lock in products out there. There's a lot of cloud only products now more than ever. We're hearing our customers that they want that flexibility to be able to run anywhere. They want the ease of use and simplicity of native cloud experiences, which we're giving them as well. >>I want to stay in that architectural component for a minute. Talk about separating compute from storage is not just about economics. I mean apart Is that you, you know, green, really scale compute separate from storage as opposed to in chunks. It's more efficient, but you're saying there's other advantages to operational and workload. Specificity. Um, what is unique about vertical In this regard, however, many others separate compute from storage? What's different about vertical? >>Yeah, I think you know, there's a lot of differences about how we do it. It's one thing if you're a cloud native company, you do it and you have a shared catalog. That's key value store that all of your customers are using and are on the same one. Frankly, it's probably more of a security concern than anything. But it's another thing. When you give that capability to each customer on their own, they're fully protected. They're not sharing it with any other customers. And that's something that we hear a lot of insights from our customers. They want to be able to separate compute and storage. But they want to be able to do this in their own environment so that they know that in their data catalog there's no one else is. You share in that catalog, there's no single point of failure. So, um, that's one huge advantage that we have. And frankly, I think it just comes from being a company that's operating on premise and, uh, up in the cloud. I think another huge advantages for us is we don't know what object storage platform is gonna win, nor do we necessarily have. We designed the young vote so that it's an sdk. We started with us three, but it could be anything. It's DFS. That's three. Who knows what what object storage formats were going to be there and then finally, beyond just the object storage. We're really one of the only database companies that actually allows our customers to natively operate on data in very different formats, like parquet and or if you're familiar with those in the Hadoop community. So we not only embrace this kind of object storage disruption, but we really embrace the different data formats. And what that means is our customers that have data pipelines that you know, fully automated, putting this information in different places. They don't have to completely reload everything to take advantage of the Arctic analytics. We can go where the data is connected into it, and we offer them a lot of different ways to take advantage of those analytics. So there are a couple of unique differences with verdict, and again, I think are really advance. You know, in many ways, by not being a cloud native platform is that we're very good at operating in different environments with different formats that changing formats over time. And I don't think a lot of the other companies out there that I think many, particularly many of the SAS companies were scrambling. They even have challenges moving from saying Amazon environment to a Microsoft azure environment with their office because they've got so much unique Band Aid. Excuse me in the background. Just holding the system up that is native to any of those. >>Good. I'm gonna summarize. I'm hearing from you your Ferrari of databases that we've always known. Your your object store agnostic? Um, it's any. It's the cloud experience that you can bring on Prem to virtually any cloud. All the popular clouds hybrid. You know, aws, azure, now Google or on Prem and in a variety of different data formats. And that is, I think, you know, you need the combination of those I think is unique in the marketplace. Um, before we get into the news, I want to ask you about data silos and data silos. You mentioned H DFs where you and I met back in the early days of big data. You know, in some respects, you know, Hadoop help break down the silos with distributing the date and leave it in place, and in other respects, they created Data Lakes, which became silos. And so we have. Yet all these other sales people are trying to get to, Ah, digital transformation meeting, putting data at their core virtually obviously, and leave it in place. What's your thoughts on that in terms of data being a silo buster Buster, How does verdict of way there? >>Yeah, so And you're absolutely right, I think if even if you look at his due for all the new data that gets into the do. In many ways, it's created yet another large island of data that many organizations are struggling with because it's separate from their core traditional data warehouse. It's separate from some of the operational systems that they have, and so there might be a lot of data in there, but they're still struggling with How do I break it out of that large silo and or combine it again? I think some some of the things that verdict it doesn't part of the announcement just attend his migration tools to make it really easy. If you do want to move it from one platform to another inter vertical, but you don't have to move it, you can actually take advantage of a lot of the data where it resides with vertical, especially in the Hadoop brown with our external table storage with our building or compartment natively. So we're very pragmatic about how our customers go about this. Very few customers, Many of them tried it with Hadoop and realize that didn't work. But very few customers want a wholesale. Just say we're going to throw everything out. We're gonna get rid of our data warehouse. We're gonna hit the pause button and we're going to go from there. Just it's not possible to do that. So we've spent a lot of time investing in the product, really work with them to go where the data is and then seamlessly migrate. And when it makes sense to migrate, you mentioned the performance of America. Um, and you talked about it is the variety. It definitely is. And one other thing that we're really proud of this is that it actually is not a gas guzzler. Easy either One of the things that we're seeing, a lot of the other cloud databases pound for pound you get on the 10th the hardware vertical running up there. You get over 10 x performance. We're seeing that a lot, so it's Ah, it's not just about the performance, but it's about the efficiency as well. And I think that efficiency is really important when it comes to silos. Because there's there's just only so much horsepower out there. And it's easier for companies to play tricks and lots of servers environment when they start up for so many organizations and cloud and frankly, looking at the bills they're getting from these cloud workloads that are running. They really conscious of that. >>Yeah. The big, big energy companies love the gas guzzlers. A lot of a lot of cloud. Cute. But let's get into the news. Uh, 10 dot io you shared with your the audience in your keynote. One of the one of the highlights of data. What do we need to know? >>Yeah, so, you know, again doubling down on these mega trends, I'll start with Machine Learning and ai. We've done a lot of work to integrate so that you can take native PM ml models, bring them into vertical, run them massively parallel and help shape you know your data and prepare it. Do all the work that we know is required true machine learning. And for all the hype that there is around it, this is really you know, people want to do a lot of unsupervised machine learning, whether it's for healthcare fraud, detection, financial services. So we've doubled down on that. We now also support things like Tensorflow and, you know, as I mentioned, we're not going to come up with the best algorithms. Our job is really to ensure that those algorithms that people coming up with could be incorporated, that we can run them against massive data sets super efficiently. So that's that's number one number two on object storage. We continue to support Mawr object storage platforms for ya mode in the cloud we're expanding to Google G CPI, Google's cloud beyond just Amazon on premise or in the cloud. Now we're also supporting HD fs with beyond. Of course, we continue to have a great relationship with our partners, your storage on premise. Well, what we continue to invest in the eon mode, especially. I'm not gonna go through all the different things here, but it's not just sort of Hey, you support this and then you move on. There's so many different things that we learn about AP I calls and how to save our customers money and tricks on performance and things on the third areas. We definitely continue to build on that flexibility of deployment, which is related to young vote with. Some are described, but it's also about simplicity. It's also about some of the migration tools that we've announced to make it easy to go from one platform to another. We have a great road map on these abuse on security, on performance and scale. I mean, for us. Those are the things that we're working on every single release. We probably don't talk about them as much as we need to, but obviously they're critically important. And so we constantly look at every component in this product, you know, Version 10 is. It is a huge release for any product, especially an analytic database platform. And so there's We're just constantly revisiting you know, some of the code base and figuring out how we can do it in new and better ways. And that's a big part of 10 as well. >>I'm glad you brought up the machine Intelligence, the machine Learning and AI piece because we would agree that it is really one of the things we've noticed is that you know the new innovation cocktail. It's not being driven by Moore's law anymore. It's really a combination of you. You've collected all this data over the last 10 years through Hadoop and other data stores, object stores, etcetera. And now you're applying machine intelligence to that. And then you've got the cloud for scale. And of course, we talked about you bringing the cloud experience, whether it's on Prem or hybrid etcetera. The reason why I think this is important I wanted to get your take on this is because you do see a lot of emerging analytic databases. Cloud Native. Yes, they do suck up, you know, a lot of compute. Yeah, but they also had a lot of value. And I really wanted to understand how you guys play in that new trend, that sort of cloud database, high performance, bringing in machine learning and AI and ML tools and then driving, you know, turning data into insights and from what I'm hearing is you played directly in that and your differentiation is a lot of the things that we talk about including the ability to do that on from and in the cloud and across clouds. >>Yeah, I mean, I think that's a great point. We were a great cloud database. We run very well upon three major clouds, and you could argue some of the other plants as well in other parts of the world. Um, if you talk to our customers and we have hundreds of customers who are running vertical in the cloud, the experience is very good. I think it would always be better. We've invested a lot in taking advantage of the native cloud ecosystem, so that provisioning and managing vertical is seamless when you're in that environment will continue to do that. But vertical excuse me as a cloud platform is phenomenal. And, um, you know, there's a There's a lot of confusion out there, you know? I think there's a lot of marketing dollars spent that won't name many of the companies here. You know who they are, You know, the cloud Native Data Warehouse and it's true, you know their their software as a service. But if you talk to a lot of our customers, they're getting very good and very similar. experiences with Bernie comic. We stopped short of saying where software is a service because ultimately our customers have that control of flexibility there. They're putting verdict on whichever cloud they want to run it on, managing it. Stay tuned on that. I think you'll you'll hear from or more from us about, you know, that going going even further. But, um, you know, we do really well in the cloud, and I think he on so much of yang. And, you know, this has really been a sort of 2.5 years and never for us. But so much of eon is was designed around. The cloud was designed around Cloud Data Lakes s three, separation of compute and storage on. And if you look at the work that we're doing around container ization and a lot of these other elements, it just takes that to the next level. And, um, there's a lot of great work, so I think we're gonna get continue to get better at cloud. But I would argue that we're already and have been for some time very good at being a cloud analytic data platform. >>Well, since you open the door I got to ask you. So it's e. I hear you from a performance and architectural perspective, but you're also alluding two. I think something else. I don't know what you can share with us. You said stay tuned on that. But I think you're talking about Optionality, maybe different consumption models. That am I getting that right and you share >>your difficult in that right? And actually, I'm glad you wrote something. I think a huge part of Cloud is also has nothing to do with the technology. I think it's how you and seeing the product. Some companies want to rent the product and they want to rent it for a certain period of time. And so we allow our customers to do that. We have incredibly flexible models of how you provision and purchase our product, and I think that helps a lot. You know, I am opening the door Ah, a little bit. But look, we have customers that ask us that we're in offer them or, you know, we can offer them platforms, brawl in. We've had customers come to us and say please take over systems, um, and offer something as a distribution as I said, though I think one thing that we've been really good at is focusing on on what is our core and where we really offer offer value. But I can tell you that, um, we introduced something called the Verdict Advisor Tool this year. One of the things that the Advisor Tool does is it collects information from our customer environments on premise or the cloud, and we run through our own machine learning. We analyze the customer's environment and we make some recommendations automatically. And a lot of our customers have said to us, You know, it's funny. We've tried managed service, tried SAS off, and you guys blow them away in terms of your ability to help us, like automatically managed the verdict, environment and the system. Why don't you guys just take this product and converted into a SAS offering, so I won't go much further than that? But you can imagine that there's a lot of innovation and a lot of thoughts going into how we can do that. But there's no reason that we have to wait and do that today and being able to offer our customers on premise customers that same sort of experience from a managed capability is something that we spend a lot of time thinking about as well. So again, just back to the automation that ease of use, the going above and beyond. Its really excited to have an analytic platform because we can do so much automation off ourselves. And just like we're doing with Perfect Advisor Tool, we're leveraging our own Kool Aid or Champagne Dawn. However you want to say Teoh, in fact, tune up and solve, um, some optimization for our customers automatically, and I think you're going to see that continue. And I think that could work really well in a bunch of different wallets. >>Welcome. Just on a personal note, I've always enjoyed our conversations. I've learned a lot from you over the years. I'm bummed that we can't hang out in Boston, but hopefully soon, uh, this will blow over. I loved last summer when we got together. We had the verdict throwback. We had Stone Breaker, Palmer, Lynch and Mahoney. We did a great series, and that was a lot of fun. So it's really it's a pleasure. And thanks so much. Stay safe out there and, uh, we'll talk to you soon. >>Yeah, you too did stay safe. I really appreciate it up. Unity and, you know, this is what it's all about. It's Ah, it's a lot of fun. I know we're going to see each other in person soon, and it's the people in the community that really make this happen. So looking forward to that, but I really appreciate it. >>Alright. And thank you, everybody for watching. This is the Cube coverage of the verdict. Big data conference gone, virtual going digital. I'm Dave Volante. We'll be right back right after this short break. >>Yeah.

Published Date : Mar 31 2020

SUMMARY :

Brought to you by vertical. Great to see you again. Good to see you too, Dave. I think it was absolutely the right all made it in advance of And you have a lot of fans in the vertical community But could you feel the love? to do it, obviously, you know, in Boston, where it was supposed to be on location, micro focus, but I know you and I know the vertical team you guys have have not stopped. I mean, you know, it's it's the software industry, on one of the waves that you're riding and where are you placing your Um, And to do that, you know, we know that we're not going to come up with the world's best algorithms. I mean apart Is that you, you know, green, really scale Yeah, I think you know, there's a lot of differences about how we do it. It's the cloud experience that you can bring on Prem to virtually any cloud. to another inter vertical, but you don't have to move it, you can actually take advantage of a lot of the data One of the one of the highlights of data. And so we constantly look at every component in this product, you know, And of course, we talked about you bringing the cloud experience, whether it's on Prem or hybrid etcetera. And if you look at the work that we're doing around container ization I don't know what you can share with us. I think it's how you and seeing the product. I've learned a lot from you over the years. Unity and, you know, this is what it's all about. This is the Cube coverage of the verdict.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Colin MahoneyPERSON

0.99+

Dave VolantePERSON

0.99+

DavePERSON

0.99+

BostonLOCATION

0.99+

JoePERSON

0.99+

Colin MahonyPERSON

0.99+

AmazonORGANIZATION

0.99+

uberORGANIZATION

0.99+

threeQUANTITY

0.99+

GoogleORGANIZATION

0.99+

pythonTITLE

0.99+

hundredsQUANTITY

0.99+

FerrariORGANIZATION

0.99+

10QUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

oneQUANTITY

0.99+

2.5 yearsQUANTITY

0.99+

twoQUANTITY

0.99+

Kool AidORGANIZATION

0.99+

Vertical ColinORGANIZATION

0.99+

10thQUANTITY

0.99+

BothQUANTITY

0.99+

Micro FocusORGANIZATION

0.98+

each customerQUANTITY

0.98+

MoorePERSON

0.98+

AmericaLOCATION

0.98+

this yearDATE

0.98+

one platformQUANTITY

0.97+

todayDATE

0.96+

OneQUANTITY

0.96+

10TITLE

0.96+

VerticaORGANIZATION

0.96+

last summerDATE

0.95+

third areasQUANTITY

0.94+

one thingQUANTITY

0.93+

VerticalORGANIZATION

0.92+

this yearDATE

0.92+

single pointQUANTITY

0.92+

Big Data Conference 2020EVENT

0.92+

ArcticORGANIZATION

0.91+

HadoopORGANIZATION

0.89+

three major cloudsQUANTITY

0.88+

H DFsORGANIZATION

0.86+

Cloud Data LakesTITLE

0.86+

Stone BreakerORGANIZATION

0.86+

one huge advantageQUANTITY

0.86+

HadoopTITLE

0.85+

BDCEVENT

0.83+

day oneQUANTITY

0.83+

Version 10TITLE

0.83+

CubeCOMMERCIAL_ITEM

0.82+

Google CloudTITLE

0.82+

BDC 2020EVENT

0.81+

thingQUANTITY

0.79+

BerniePERSON

0.79+

firstQUANTITY

0.79+

over 10 xQUANTITY

0.78+

PremORGANIZATION

0.78+

one verticalQUANTITY

0.77+

Virtual VerticaORGANIZATION

0.77+

VerdictORGANIZATION

0.75+

SASORGANIZATION

0.75+

Champagne DawnORGANIZATION

0.73+

every single releaseQUANTITY

0.72+

PerfectTITLE

0.71+

yearsQUANTITY

0.7+

last 10 yearsDATE

0.69+

PalmerORGANIZATION

0.67+

TensorflowTITLE

0.65+

single releaseQUANTITY

0.65+

a minuteQUANTITY

0.64+

Advisor ToolTITLE

0.63+

customersQUANTITY

0.62+

Ben White, Domo | Virtual Vertica BDC 2020


 

>> Announcer: It's theCUBE covering the Virtual Vertica Big Data Conference 2020, brought to you by Vertica. >> Hi, everybody. Welcome to this digital coverage of the Vertica Big Data Conference. You're watching theCUBE and my name is Dave Volante. It's my pleasure to invite in Ben White, who's the Senior Database Engineer at Domo. Ben, great to see you, man. Thanks for coming on. >> Great to be here and here. >> You know, as I said, you know, earlier when we were off-camera, I really was hoping I could meet you face-to-face in Boston this year, but hey, I'll take it, and, you know, our community really wants to hear from experts like yourself. But let's start with Domo as the company. Share with us what Domo does and what your role is there. >> Well, if I can go straight to the official what Domo does is we provide, we process data at BI scale, we-we-we provide BI leverage at cloud scale in record time. And so what that means is, you know, we are a business-operating system where we provide a number of analytical abilities to companies of all sizes. But we do that at cloud scale and so I think that differentiates us quite a bit. >> So a lot of your work, if I understand it, and just in terms of understanding what Domo does, there's a lot of pressure in terms of being real-time. It's not, like, you sometimes don't know what's coming at you, so it's ad-hoc. I wonder if you could sort of talk about that, confirm that, maybe add a little color to it. >> Yeah, absolutely, absolutely. That's probably the biggest challenge it is to being, to operating Domo is that it is an ad hoc environment. And certainly what that means, is that you've got analysts and executives that are able to submit their own queries with out very... With very few limitations. So from an engineering standpoint, that challenge in that of course is that you don't have this predictable dashboard to plan for, when it comes to performance planning. So it definitely presents some challenges for us that we've done some pretty unique things, I think, to address those. >> So it sounds like your background fits well with that. I understand your people have called you a database whisperer and an envelope pusher. What does that mean to a DBA in this day and age? >> The whisperer part is probably a lost art, in the sense that it's not really sustainable, right? The idea that, you know, whatever it is I'm able to do with the database, it has to be repeatable. And so that's really where analytics comes in, right? That's where pushing the envelope comes in. And in a lot of ways that's where Vertica comes in with this open architecture. And so as a person who has a reputation for saying, "I understand this is what our limitations should be, but I think we can do more." Having a platform like Vertica, with such an open architecture, kind of lets you push those limits quite a bit. >> I mean I've always felt like, you know, Vertica, when I first saw the stone breaker architecture and talked to some of the early founders, I always felt like it was the Ferrari of databases, certainly at the time. And it sounds like you guys use it in that regard. But talk a little bit more about how you use Vertica, why, you know, why MPP, why Vertica? You know, why-why can't you do this with RDBMS? Educate us, a little bit, on, sort of, the basics. >> For us it was, part of what I mentioned when we started, when we talked about the very nature of the Domo platform, where there's an incredible amount of resiliency required. And so Vertica, the MPP platform, of course, allows us to build individual database clusters that can perform best for the workload that might be assigned to them. So the open, the expandable, the... The-the ability to grow Vertica, right, as your base grows, those are all important factors, when you're choosing early on, right? Without a real idea of how growth would be or what it will look like. If you were kind of, throwing up something to the dark, you look at the Vertica platform and you can see, well, as I grow, I can, kind of, build with this, right? I can do some unique things with the platform in terms of this open architecture that will allow me to not have to make all my decisions today, right? (mutters) >> So, you're using Vertica, I know, at least in part, you're working with AWS as well, can you describe sort of your environment? Do you give anything on-prem, is everything in cloud? What's your set up look like? >> Sure, we have a hybrid cloud environment where we have a significant presence in public files in our own private cloud. And so, yeah, having said that, we certainly have a really an extensive presence, I would say, in AWS. So, they're definitely the partner of our when it comes to providing the databases and the server power that we need to operate on. >> From a standpoint of engineering and architecting a database, what were some of the challenges that you faced when you had to create that hybrid architecture? What did you face and how did you overcome that? >> Well, you know, some of the... There were some things we faced in terms of, one, it made it easy that Vertica and AWS have their own... They play well together, we'll say that. And so, Vertica was designed to work on AWS. So that part of it took care of it's self. Now our own private cloud and being able to connect that to our public cloud has been a part of our own engineering abilities. And again, I don't want to make little, make light of it, it certainly not impossible. And so we... Some of the challenges that pertain to the database really were in the early days, that you mentioned, when we talked a little bit earlier about Vertica's most recent eon mode. And I'm sure you'll get to that. But when I think of early challenges, some of the early challenges were the architecture of enterprise mode. When I talk about all of these, this idea that we can have unique databases or database clusters of different sizes, or this elasticity, because really, if you know the enterprise architecture, that's not necessarily the enterprise architecture. So we had to do some unique things, I think, to overcome that, right, early. To get around the rigidness of enterprise. >> Yeah, I mean, I hear you. Right? Enterprise is complex and you like when things are hardened and fossilized but, in your ad hoc environment, that's not what you needed. So talk more about eon mode. What is eon mode for you and how do you apply it? What are some of the challenges and opportunities there, that you've found? >> So, the opportunities were certainly in this elastic architecture and the ability to separate in the storage, immediately meant that for some of the unique data paths that we wanted to take, right? We could do that fairly quickly. Certainly we could expand databases, right, quickly. More importantly, now you can reduce. Because previously, in the past, right, when I mentioned the enterprise architecture, the idea of growing a database in itself has it's pain. As far as the time it takes to (mumbles) the data, and that. Then think about taking that database back down and (telephone interference). All of a sudden, with eon, right, we had this elasticity, where you could, kind of, start to think about auto scaling, where you can go up and down and maybe you could save some money or maybe you could improve performance or maybe you could meet demand, At a time where customers need it most, in a real way, right? So it's definitely a game changer in that regard. >> I always love to talk to the customers because I get to, you know, I hear from the vendor, what they say, and then I like to, sort of, validate it. So, you know, Vertica talks a lot about separating compute and storage, and they're not the only one, from an architectural standpoint who do that. But Vertica stresses it. They're the only one that does that with a hybrid architecture. They can do it on-prem, they can do it in the cloud. From your experience, well first of all, is that true? You may or may not know, but is that advantageous to you, and if so, why? >> Well, first of all, it's certainly true. Earlier in some of the original beta testing for the on-prem eon modes that we... I was able to participate in it and be aware of it. So it certainly a realty, they, it's actually supported on Pure storage with FlashBlade and it's quite impressive. You know, for who, who will that be for, tough one. It's probably Vertica's question that they're probably still answering, but I think, obviously, some enterprise users that probably have some hybrid cloud, right? They have some architecture, they have some hardware, that they themselves, want to make use of. We certainly would probably fit into one of their, you know, their market segments. That they would say that we might be the ones to look at on-prem eon mode. Again, the beauty of it is, the elasticity, right? The idea that you could have this... So a lot of times... So I want to go back real quick to separating compute. >> Sure. Great. >> You know, we start by separating it. And I like to think of it, maybe more of, like, the up link. Because in a true way, it's not necessarily separated because ultimately, you're bringing the compute and the storage back together. But to be able to decouple it quickly, replace nodes, bring in nodes, that certainly fits, I think, what we were trying to do in building this kind of ecosystem that could respond to unknown of a customer query or of a customer demand. >> I see, thank you for that clarification because you're right, it's really not separating, it's decoupling. And that's important because you can scale them independently, but you still need compute and you still need storage to run your work load. But from a cost standpoint, you don't have to buy it in chunks. You can buy in granular segments for whatever your workload requires. Is that, is that the correct understanding? >> Yeah, and to, the ability to able to reuse compute. So in the scenario of AWS or even in the scenario of your on-prem solution, you've got this data that's safe and secure in (mumbles) computer storage, but the compute that you have, you can reuse that, right? You could have a scenario that you have some query that needs more analytic, more-more fire power, more memory, more what have you that you have. And so you can kind of move between, and that's important, right? That's maybe more important than can I grow them separately. Can I, can I borrow it. Can I borrow that compute you're using for my (cuts out) and give it back? And you can do that, when you're so easily able to decouple the compute and put it where you want, right? And likewise, if you have a down period where customers aren't using it, you'd like to be able to not use that, if you no longer require it, you're not going to get it back. 'Cause it-it opened the door to a lot of those things that allowed performance and process department to meet up. >> I wonder if I can ask you a question, you mentioned Pure a couple of times, are you using Pure FlashBlade on-prem, is that correct? >> That is the solution that is supported, that is supported by Vertica for the on-prem. (cuts out) So at this point, we have been discussing with them about some our own POCs for that. Before, again, we're back to the idea of how do we see ourselves using it? And so we certainly discuss the feasibility of bringing it in and giving it the (mumbles). But that's not something we're... Heavily on right now. >> And what is Domo for Domo? Tell us about that. >> Well it really started as this idea, even in the company, where we say, we should be using Domo in our everyday business. From the sales folk to the marketing folk, right. Everybody is going to use Domo, it's a business platform. For us in engineering team, it was kind of like, well if we use Domo, say for instance, to be better at the database engineers, now we've pointed Domo at itself, right? Vertica's running Domo in the background to some degree and then we turn around and say, "Hey Domo, how can we better at running you?" So it became this kind of cool thing we'd play with. We're now able to put some, some methods together where we can actually do that, right. Where we can monitor using our platform, that's really good at processing large amounts of data and spitting out useful analytics, right. We take those analytics down, make recommendation changes at the-- For now, you've got Domo for Domo happening and it allows us to sit at home and work. Now, even when we have to, even before we had to. >> Well, you know, look. Look at us here. Right? We couldn't meet in Boston physically, we're now meeting remote. You're on a hot spot because you've got some weather in your satellite internet in Atlanta and we're having a great conversation. So-so, we're here with Ben White, who's a senior database engineer at Domo. I want to ask you about some of the envelope pushing that you've done around autonomous. You hear that word thrown around a lot. Means a lot of things to a lot of different people. How do you look at autonomous? And how does it fit with eon and some of the other things you're doing? >> You know, I... Autonomous and the idea idea of autonomy is something that I don't even know if that I have already, ready to define. And so, even in my discussion, I often mention it as a road to it. Because exactly where it is, it's hard to pin down, because there's always this idea of how much trust do you give, right, to the system or how much, how much is truly autonomous? How much already is being intervened by us, the engineers. So I do hedge on using that. But on this road towards autonomy, when we look at, what we're, how we're using Domo. And even what that really means for Vertica, because in a lot of my examples and a lot of the things that we've engineered at Domo, were designed to maybe overcome something that I thought was a limitation thing. And so many times as we've done that, Vertica has kind of met us. Like right after we've kind of engineered our architecture stuff, that we thought that could help on our side, Vertica has a release that kind of addresses it. So, the autonomy idea and the idea that we could analyze metadata, make recommendations, and then execute those recommendations without innervation, is that road to autonomy. Once the database is properly able to do that, you could see in our ad hoc environment how that would be pretty useful, where with literally millions of queries every hour, trying to figure out what's the best, you know, profile. >> You know for- >> (overlapping) probably do a better job in that, than we could. >> For years I felt like IT folks sometimes were really, did not want that automation, they wanted the knobs to turn. But I wonder if you can comment. I feel as though the level of complexity now, with cloud, with on-prem, with, you know, hybrid, multicloud, the scale, the speed, the real time, it just gets, the pace is just too much for humans. And so, it's almost like the industry is going to have to capitulate to the machine. And then, really trust the machine. But I'm still sensing, from you, a little bit of hesitation there, but light at the end of the tunnel. I wonder if you can comment? >> Sure. I think the light at the end of the tunnel is even in the recent months and recent... We've really begin to incorporate more machine learning and artificial intelligence into the model, right. And back to what we're saying. So I do feel that we're getting closer to finding conditions that we don't know about. Because right now our system is kind of a rule, rules based system, where we've said, "Well these are the things we should be looking for, these are the things that we think are a problem." To mature to the point where the database is recognizing anomalies and taking on pattern (mutters). These are problems you didn't know happen. And that's kind of the next step, right. Identifying the things you didn't know. And that's the path we're on now. And it's probably more exciting even than, kind of, nailing down all the things you think you know. We figure out what we don't know yet. >> So I want to close with, I know you're a prominent member of the, a respected member of the Vertica Customer Advisory Board, and you know, without divulging anything confidential, what are the kinds of things that you want Vertica to do going forward? >> Oh, I think, some of the in dated base for autonomy. The ability to take some of the recommendations that we know can derive from the metadata that already exists in the platform and start to execute some of the recommendations. And another thing we've talked about, and I've been pretty open about talking to it, talking about it, is the, a new version of the database designer, I think, is something that I'm sure they're working on. Lightweight, something that can give us that database design without the overhead. Those are two things, I think, as they nail or basically the database designer, as they respect that, they'll really have all the components in play to do in based autonomy. And I think that's, to some degree, where they're heading. >> Nice. Well Ben, listen, I really appreciate you coming on. You're a thought leader, you're very open, open minded, Vertica is, you know, a really open community. I mean, they've always been quite transparent in terms of where they're going. It's just awesome to have guys like you on theCUBE to-to share with our community. So thank you so much and hopefully we can meet face-to-face shortly. >> Absolutely. Well you stay safe in Boston, one of my favorite towns and so no doubt, when the doors get back open, I'll be coming down. Or coming up as it were. >> Take care. All right, and thank you for watching everybody. Dave Volante with theCUBE, we're here covering the Virtual Vertica Big Data Conference. (electronic music)

Published Date : Mar 31 2020

SUMMARY :

brought to you by Vertica. of the Vertica Big Data Conference. I really was hoping I could meet you face-to-face And so what that means is, you know, I wonder if you could sort of talk about that, confirm that, is that you don't have this predictable dashboard What does that mean to a DBA in this day and age? The idea that, you know, And it sounds like you guys use it in that regard. that can perform best for the workload that we need to operate on. Some of the challenges that pertain to the database and you like when things are hardened and fossilized and the ability to separate in the storage, but is that advantageous to you, and if so, why? The idea that you could have this... And I like to think of it, maybe more of, like, the up link. And that's important because you can scale them the compute and put it where you want, right? that is supported by Vertica for the on-prem. And what is Domo for Domo? From the sales folk to the marketing folk, right. I want to ask you about some of the envelope pushing and a lot of the things that we've engineered at Domo, than we could. But I wonder if you can comment. nailing down all the things you think you know. And I think that's, to some degree, where they're heading. It's just awesome to have guys like you on theCUBE Well you stay safe in Boston, All right, and thank you for watching everybody.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AWSORGANIZATION

0.99+

Dave VolantePERSON

0.99+

Ben WhitePERSON

0.99+

BostonLOCATION

0.99+

VerticaORGANIZATION

0.99+

AtlantaLOCATION

0.99+

FerrariORGANIZATION

0.99+

DomoORGANIZATION

0.99+

Vertica Customer Advisory BoardORGANIZATION

0.99+

BenPERSON

0.99+

two thingsQUANTITY

0.98+

this yearDATE

0.98+

VerticaTITLE

0.98+

theCUBEORGANIZATION

0.97+

Vertica Big Data ConferenceEVENT

0.97+

DomoTITLE

0.97+

DomoPERSON

0.96+

Virtual Vertica Big Data ConferenceEVENT

0.96+

Virtual Vertica Big Data Conference 2020EVENT

0.96+

firstQUANTITY

0.95+

eonTITLE

0.92+

oneQUANTITY

0.87+

todayDATE

0.87+

millions of queriesQUANTITY

0.84+

FlashBladeTITLE

0.82+

Virtual VerticaEVENT

0.75+

coupleQUANTITY

0.7+

Pure FlashBladeCOMMERCIAL_ITEM

0.58+

BDC 2020EVENT

0.56+

MPPTITLE

0.55+

timesQUANTITY

0.51+

RDBMSTITLE

0.48+

Joy King, Vertica | Virtual Vertica BDC 2020


 

>>Yeah, it's the queue covering the virtual vertical Big Data Conference 2020 Brought to You by vertical. >>Welcome back, everybody. My name is Dave Vellante, and you're watching the Cube's coverage of the verdict of Virtual Big Data conference. The Cube has been at every BTC, and it's our pleasure in these difficult times to be covering BBC as a virtual event. This digital program really excited to have Joy King joining us. Joy is the vice president of product and go to market strategy in particular. And if that weren't enough, he also runs marketing and education curve for him. So, Joe, you're a multi tool players. You've got the technical side and the marketing gene, So welcome to the Cube. You're always a great guest. Love to have you on. >>Thank you so much, David. The pleasure, it really is. >>So I want to get in. You know, we'll have some time. We've been talking about the conference and the virtual event, but I really want to dig in to the product stuff. It's a big day for you guys. You announced 10.0. But before we get into the announcements, step back a little bit you know, you guys are riding the waves. I've said to ah, number of our guests that that brick has always been good. It riding the wave not only the initial MPP, but you you embraced, embraced HD fs. You embrace data science and analytics and in the cloud. So one of the trends that you see the big waves that you're writing >>Well, you're absolutely right, Dave. I mean, what what I think is most interesting and important is because verdict is, at its core a true engineering culture founded by, well, a pretty famous guy, right, Dr Stone Breaker, who embedded that very technical vertical engineering culture. It means that we don't pretend to know everything that's coming, but we are committed to embracing the tech. An ology trends, the innovations, things like that. We don't pretend to know it all. We just do it all. So right now, I think I see three big imminent trends that we are addressing. And matters had we have been for a while, but that are particularly relevant right now. The first is a combination of, I guess, a disappointment in what Hadoop was able to deliver. I always feel a little guilty because she's a very reasonably capable elephant. She was designed to be HD fs highly distributed file store, but she cant be an entire zoo, so there's a lot of disappointment in the market, but a lot of data. In HD FM, you combine that with some of the well, not some the explosion of cloud object storage. You're talking about even more data, but even more data silos. So data growth and and data silos is Trend one. Then what I would say Trend, too, is the cloud Reality Cloud brings so many events. There are so many opportunities that public cloud computing delivers. But I think we've learned enough now to know that there's also some reality. The cloud providers themselves. Dave. Don't talk about it well, because not, is it more agile? Can you do things without having to manage your own data center? Of course you can. That the reality is it's a little more pricey than we expected. There are some security and privacy concerns. There's some workloads that can go to the cloud, so hybrid and also multi cloud deployments are the next trend that are mandatory. And then maybe the one that is the most exciting in terms of changing the world we could use. A little change right now is operationalize in machine learning. There's so much potential in the technology, but it's somehow has been stuck for the most part in science projects and data science lab, and the time is now to operationalize it. Those are the three big trends that vertical is focusing on right now. >>That's great. I wonder if I could ask you a couple questions about that. I mean, I like you have a soft spot in my heart for the and the thing about the Hadoop that that was, I think, profound was it got people thinking about, you know, bringing compute to the data and leaving data in place, and it really got people thinking about data driven cultures. It didn't solve all the problems, but it collected a lot of data that we can now take your third trend and apply machine intelligence on top of that data. And then the cloud is really the ability to scale, and it gives you that agility and that it's not really that cloud experience. It's not not just the cloud itself, it's bringing the cloud experience to wherever the data lives. And I think that's what I'm hearing from you. Those are the three big super powers of innovation today. >>That's exactly right. So, you know, I have to say I think we all know that Data Analytics machine learning none of that delivers real value unless the volume of data is there to be able to truly predict and influence the future. So the last 7 to 10 years has been correctly about collecting the data, getting the data into a common location, and H DFS was well designed for that. But we live in a capitalist world, and some companies stepped in and tried to make HD Fs and the broader Hadoop ecosystem be the single solution to big data. It's not true. So now that the key is, how do we take advantage of all of that data? And now that's exactly what verdict is focusing on. So as you know, we began our journey with vertical back in the day in 2007 with our first release, and we saw the growth of the dupe. So we announced many years ago verdict a sequel on that. The idea to be able to deploy vertical on Hadoop nodes and query the data in Hadoop. We wanted to help. Now with Verdict A 10. We are also introducing vertical in eon mode, and we can talk more about that. But Verdict and Ian Mode for HDs, This is a way to apply it and see sequel database management platform to H DFS infrastructure and data in each DFS file storage. And that is a great way to leverage the investment that so many companies have made in HD Fs. And I think it's fair to the elephant to treat >>her well. Okay, let's get into the hard news and auto. Um, she's got, but you got a mature stack, but one of the highlights of append auto. And then we can drill into some of the technologies >>Absolutely so in well in 2018 vertical announced vertical in Deon mode is the separation of compute from storage. Now this is a great example of vertical embracing innovation. Vertical was designed for on premises, data centers and bare metal servers, tightly coupled storage de l three eighties from Hewlett Packard Enterprises, Dell, etcetera. But we saw that cloud computing was changing fundamentally data center architectures, and it made sense to separate compute from storage. So you add compute when you need compute. You add storage when you need storage. That's exactly what the cloud's introduced, but it was only available on the club. So first thing we did was architect vertical and EON mode, which is not a new product. Eight. This is really important. It's a deployment option. And in 2018 our customers had the opportunity to deploy their vertical licenses in EON mode on AWS in September of 2019. We then broke an important record. We brought cloud architecture down to earth and we announced vertical in eon mode so vertical with communal or shared storage, leveraging pure storage flash blade that gave us all the advantages of separating compute from storage. All of the workload, isolation, the scale up scale down the ability to manage clusters. And we did that with on Premise Data Center. And now, with vertical 10 we are announcing verdict in eon mode on HD fs and vertically on mode on Google Cloud. So what we've got here, in summary, is vertical Andy on mode, multi cloud and multiple on premise data that storage, and that gives us the opportunity to help our customers both with the hybrid and multi cloud strategies they have and unifying their data silos. But America 10 goes farther. >>Well, let me stop you there, because I just wanna I want to mention So we talked to Joe Gonzalez and past Mutual, who essentially, he was brought in. And one of this task was the lead into eon mode. Why? Because I'm asking. You still had three separate data silos and they wanted to bring those together. They're investing heavily in technology. Joe is an expert, though that really put data at their core and beyond Mode was a key part of that because they're using S three and s o. So that was Ah, very important step for those guys carry on. What else do we need to know about? >>So one of the reasons, for example, that Mass Mutual is so excited about John Mode is because of the operational advantages. You think about exactly what Joe told you about multiple clusters serving must multiple use cases and maybe multiple divisions. And look, let's be clear. Marketing doesn't always get along with finance and finance doesn't necessarily get along with up, and I t is often caught the middle. Erica and Dion mode allows workload, isolation, meaning allocating the compute resource is that different use cases need without allowing them to interfere with other use cases and allowing everybody to access the data. So it's a great way to bring the corporate world together but still protect them from each other. And that's one of the things that Mass Mutual is going to benefit from, as well, so many of >>our other customers I also want to mention. So when I saw you, ah, last last year at the Pure Storage Accelerate conference just today we are the only company that separates you from storage that that runs on Prem and in the cloud. And I was like I had to think about it. I've researched. I still can't find anybody anybody else who doesn't know. I want to mention you beat actually a number of the cloud players with that capability. So good job and I think is a differentiator, assuming that you're giving me that cloud experience and the licensing and the pricing capability. So I want to talk about that a little >>bit. Well, you're absolutely right. So let's be clear. There is no question that the public cloud public clouds introduced the separation of compute storage and these advantages that they do not have the ability or the interest to replicate that on premise for vertical. We were born to be software only. We make no money on underlying infrastructure. We don't charge as a package for the hardware underneath, so we are totally motivated to be independent of that and also to continuously optimize the software to be as efficient as possible. And we do the exact same thing to your question about life. Cloud providers charge for note indignance. That's how they charge for their underlying infrastructure. Well, in some cases, if you're being, if you're talking about a use case where you have a whole lot of data, but you don't necessarily have a lot of compute for that workload, it may make sense to pay her note. Then it's unlimited data. But what if you have a huge compute need on a relatively small data set that's not so good? Vertical offers per node and four terabyte for our customers, depending on their use case, we also offer perpetual licenses for customers who want capital. But we also offer subscription for companies that they Nope, I have to have opt in. And while this can certainly cause some complexity for our field organization, we know that it's all about choice, that everybody in today's world wants it personalized just for me. And that's exactly what we're doing with our pricing in life. >>So just to clarify, you're saying I can pay by the drink if I want to. You're not going to force me necessarily into a term or Aiken choose to have, you know, more predictable pricing. Is that, Is that correct? >>Well, so it's partially correct. The first verdict, a subscription licensing is a fixed amount for the period of the subscription. We do that so many of our customers cannot, and I'm one of them, by the way, cannot tell finance what the budgets forecast is going to be for the quarter after I spent you say what it's gonna be before, So our subscription facing is a fixed amount for a period of time. However, we do respect the fact that some companies do want usage based pricing. So on AWS, you can use verdict up by the hour and you pay by the hour. We are about to launch the very same thing on Google Cloud. So for us, it's about what do you need? And we make it happen natively directly with us or through AWS and Google Cloud. >>So I want to send so the the fixed isn't some floor. And then if you want a surge above that, you can allow usage pricing. If you're on the cloud, correct. >>Well, you actually license your cluster vertical by the hour on AWS and you run your cluster there. Or you can buy a license from vertical or a fixed capacity or a fixed number of nodes and deploy it on the cloud. And then, if you want to add more nodes or add more capacity, you can. It's not usage based for the license that you bring to the cloud. But if you purchase through the cloud provider, it is usage. >>Yeah, okay. And you guys are in the marketplace. Is that right? So, again, if I want up X, I can do that. I can choose to do that. >>That's awesome. Next usage through the AWS marketplace or yeah, directly from vertical >>because every small business who then goes to a salesforce management system knows this. Okay, great. I can pay by the month. Well, yeah, Well, not really. Here's our three year term in it, right? And it's very frustrating. >>Well, and even in the public cloud you can pay for by the hour by the minute or whatever, but it becomes pretty obvious that you're better off if you have reserved instance types or committed amounts in that by vertical offers subscription. That says, Hey, you want to have 100 terabytes for the next year? Here's what it will cost you. We do interval billing. You want to do monthly orderly bi annual will do that. But we won't charge you for usage that you didn't even know you were using until after you get the bill. And frankly, that's something my finance team does not like. >>Yeah, I think you know, I know this is kind of a wonky discussion, but so many people gloss over the licensing and the pricing, and I think my take away here is Optionality. You know, pricing your way of That's great. Thank you for that clarification. Okay, so you got Google Cloud? I want to talk about storage. Optionality. If I found him up, I got history. I got I'm presuming Google now of you you're pure >>is an s three compatible storage yet So your story >>Google object store >>like Google object store Amazon s three object store HD fs pure storage flash blade, which is an object store on prim. And we are continuing on this theft because ultimately we know that our customers need the option of having next generation data center architecture, which is sort of shared or communal storage. So all the data is in one place. Workloads can be managed independently on that data, and that's exactly what we're doing. But what we already have in two public clouds and to on premise deployment options today. And as you said, I did challenge you back when we saw each other at the conference. Today, vertical is the only analytic data warehouse platform that offers that option on premise and in multiple public clouds. >>Okay, let's talk about the ah, go back through the innovation cocktail. I'll call it So it's It's the data applying machine intelligence to that data. And we've talked about scaling at Cloud and some of the other advantages of Let's Talk About the Machine Intelligence, the machine learning piece of it. What's your story there? Give us any updates on your embracing of tooling and and the like. >>Well, quite a few years ago, we began building some in database native in database machine learning algorithms into vertical, and the reason we did that was we knew that the architecture of MPP Columbia execution would dramatically improve performance. We also knew that a lot of people speak sequel, but at the time, not so many people spoke R or even Python. And so what if we could give act us to machine learning in the database via sequel and deliver that kind of performance? So that's the journey we started out. And then we realized that actually, machine learning is a lot more as everybody knows and just algorithms. So we then built in the full end to end machine learning functions from data preparation to model training, model scoring and evaluation all the way through to fold the point and all of this again sequel accessible. You speak sequel. You speak to the data and the other advantage of this approach was we realized that accuracy was compromised if you down sample. If you moved a portion of the data from a database to a specialty machine learning platform, you you were challenged by accuracy and also what the industry is calling replica ability. And that means if a model makes a decision like, let's say, credit scoring and that decision isn't anyway challenged, well, you have to be able to replicate it to prove that you made the decision correctly. And there was a bit of, ah, you know, blow up in the media not too long ago about a credit scoring decision that appeared to be gender bias. But unfortunately, because the model could not be replicated, there was no way to this Prove that, and that was not a good thing. So all of this is built in a vertical, and with vertical 10. We've taken the next step, just like with with Hadoop. We know that innovation happens within vertical, but also outside of vertical. We saw that data scientists really love their preferred language. Like python, they love their tools and platforms like tensor flow with vertical 10. We now integrate even more with python, which we have for a while, but we also integrate with tensorflow integration and PM ML. What does that mean? It means that if you build and train a model external to vertical, using the machine learning platform that you like, you can import that model into a vertical and run it on the full end to end process. But run it on all the data. No more accuracy challenges MPP Kilometer execution. So it's blazing fast. And if somebody wants to know why a model made a decision, you can replicate that model, and you can explain why those are very powerful. And it's also another cultural unification. Dave. It unifies the business analyst community who speak sequel with the data scientist community who love their tools like Tensorflow and Python. >>Well, I think joy. That's important because so much of machine intelligence and ai there's a black box problem. You can't replicate the model. Then you do run into a potential gender bias. In the example that you're talking about there in their many you know, let's say an individual is very wealthy. He goes for a mortgage and his wife goes for some credit she gets rejected. He gets accepted this to say it's the same household, but the bias in the model that may be gender bias that could be race bias. And so being able to replicate that in and open up and make the the machine intelligence transparent is very, very important, >>It really is. And that replica ability as well as accuracy. It's critical because if you're down sampling and you're running models on different sets of data, things can get confusing. And yet you don't really have a choice. Because if you're talking about petabytes of data and you need to export that data to a machine learning platform and then try to put it back and get the next at the next day, you're looking at way too much time doing it in the database or training the model and then importing it into the database for production. That's what vertical allows, and our customers are. So it right they reopens. Of course, you know, they are the ones that are sort of the Trailblazers they've always been, and ah, this is the next step. In blazing the ML >>thrill joint customers want analytics. They want functional analytics full function. Analytics. What are they pushing you for now? What are you delivering? What's your thought on that? >>Well, I would say the number one thing that our customers are demanding right now is deployment. Flexibility. What? What the what the CEO or the CFO mandated six months ago? Now shout Whatever that thou shalt is is different. And they would, I tell them is it is impossible. No, what you're going to be commanded to do or what options you might have in the future. The key is not having to choose, and they are very, very committed to that. We have a large telco customer who is multi cloud as their commit. Why multi cloud? Well, because they see innovation available in different public clouds. They want to take advantage of all of them. They also, admittedly, the that there's the risk of lock it right. Like any vendor, they don't want that either, so they want multi cloud. We have other customers who say we have some workloads that make sense for the cloud and some that we absolutely cannot in the cloud. But we want a unified analytics strategy, so they are adamant in focusing on deployment flexibility. That's what I'd say is 1st 2nd I would say that the interest in operationalize in machine learning but not necessarily forcing the analytics team to hammer the data science team about which tools or the best tools. That's the probably number two. And then I'd say Number three. And it's because when you look at companies like Uber or the Trade Desk or A T and T or Cerner performance at scale, when they say milliseconds, they think that flow. When they say petabytes, they're like, Yeah, that was yesterday. So performance at scale good enough for vertical is never good enough. And it's why we're constantly building at the core the next generation execution engine, database designer, optimization engine, all that stuff >>I wanna also ask you. When I first started following vertical, we covered the cube covering the BBC. One of things I noticed was in talking to customers and people in the community is that you have a community edition, uh, free addition, and it's not neutered ais that have you maintain that that ethos, you know, through the transitions into into micro focus. And can you talk about that a little bit >>absolutely vertical community edition is vertical. It's all of the verdict of functionality geospatial time series, pattern matching, machine learning, all of the verdict, vertical neon mode, vertical and enterprise mode. All vertical is the community edition. The only limitation is one terabyte of data and three notes, and it's free now. If you want commercial support, where you can file a support ticket and and things like that, you do have to buy the life. But it's free, and we people say, Well, free for how long? Like our field? I've asked that and I say forever and what he said, What do you mean forever? Because we want people to use vertical for use cases that are small. They want to learn that they want to try, and we see no reason to limit that. And what we look for is when they're ready to grow when they need the next set of data that goes beyond a terabyte or they need more compute than three notes, then we're here for them, and it also brings up an important thing that I should remind you or tell you about Davis. You haven't heard it, and that's about the Vertical Academy Academy that vertical dot com well, what is that? That is, well, self paced on demand as well as vertical essential certification. Training and certification means you have seven days with your hands on a vertical cluster hosted in the cloud to go through all the certification. And guess what? All of that is free. Why why would you give it for free? Because for us empowering the market, giving the market the expert East, the learning they need to take advantage of vertical, just like with Community Edition is fundamental to our mission because we see the advantage that vertical can bring. And we want to make it possible for every company all around the world that take advantage >>of it. I love that ethos of vertical. I mean, obviously great product. But it's not just the product. It's the business practices and really progressive progressive pricing and embracing of all these trends and not running away from the waves but really leaning in joy. Thanks so much. Great interview really appreciate it. And, ah, I wished we could have been faced face in Boston, but I think it's prudent thing to do, >>I promise you, Dave we will, because the verdict of BTC and 2021 is already booked. So I will see you there. >>Haas enjoyed King. Thanks so much for coming on the Cube. And thank you for watching. Remember, the Cube is running this program in conjunction with the virtual vertical BDC goto vertical dot com slash BBC 2020 for all the coverage and keep it right there. This is Dave Vellante with the Cube. We'll be right back. >>Yeah, >>yeah, yeah.

Published Date : Mar 31 2020

SUMMARY :

Yeah, it's the queue covering the virtual vertical Big Data Conference Love to have you on. Thank you so much, David. So one of the trends that you see the big waves that you're writing Those are the three big trends that vertical is focusing on right now. it's bringing the cloud experience to wherever the data lives. So now that the key is, how do we take advantage of all of that data? And then we can drill into some of the technologies had the opportunity to deploy their vertical licenses in EON mode on Well, let me stop you there, because I just wanna I want to mention So we talked to Joe Gonzalez and past Mutual, And that's one of the things that Mass Mutual is going to benefit from, I want to mention you beat actually a number of the cloud players with that capability. for the hardware underneath, so we are totally motivated to be independent of that So just to clarify, you're saying I can pay by the drink if I want to. So for us, it's about what do you need? And then if you want a surge above that, for the license that you bring to the cloud. And you guys are in the marketplace. directly from vertical I can pay by the month. Well, and even in the public cloud you can pay for by the hour by the minute or whatever, and the pricing, and I think my take away here is Optionality. And as you said, I'll call it So it's It's the data applying machine intelligence to that data. So that's the journey we started And so being able to replicate that in and open up and make the the and get the next at the next day, you're looking at way too much time doing it in the What are they pushing you for now? commanded to do or what options you might have in the future. And can you talk about that a little bit the market, giving the market the expert East, the learning they need to take advantage of vertical, But it's not just the product. So I will see you there. And thank you for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Dave VellantePERSON

0.99+

September of 2019DATE

0.99+

Joe GonzalezPERSON

0.99+

DavePERSON

0.99+

2007DATE

0.99+

DellORGANIZATION

0.99+

Joy KingPERSON

0.99+

JoePERSON

0.99+

JoyPERSON

0.99+

UberORGANIZATION

0.99+

2018DATE

0.99+

BostonLOCATION

0.99+

Vertical Academy AcademyORGANIZATION

0.99+

AWSORGANIZATION

0.99+

seven daysQUANTITY

0.99+

one terabyteQUANTITY

0.99+

pythonTITLE

0.99+

three notesQUANTITY

0.99+

TodayDATE

0.99+

Hewlett Packard EnterprisesORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

BBCORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

100 terabytesQUANTITY

0.99+

Ian ModePERSON

0.99+

six months agoDATE

0.99+

PythonTITLE

0.99+

first releaseQUANTITY

0.99+

1st 2ndQUANTITY

0.99+

three yearQUANTITY

0.99+

Mass MutualORGANIZATION

0.99+

EightQUANTITY

0.99+

next yearDATE

0.99+

Stone BreakerPERSON

0.99+

firstQUANTITY

0.99+

oneQUANTITY

0.98+

America 10TITLE

0.98+

KingPERSON

0.98+

todayDATE

0.98+

four terabyteQUANTITY

0.97+

John ModePERSON

0.97+

HaasPERSON

0.97+

yesterdayDATE

0.97+

first verdictQUANTITY

0.96+

one placeQUANTITY

0.96+

s threeCOMMERCIAL_ITEM

0.96+

singleQUANTITY

0.95+

first thingQUANTITY

0.95+

OneQUANTITY

0.95+

bothQUANTITY

0.95+

TensorflowTITLE

0.95+

HadoopTITLE

0.95+

third trendQUANTITY

0.94+

MPP ColumbiaORGANIZATION

0.94+

HadoopPERSON

0.94+

last last yearDATE

0.92+

three big trendsQUANTITY

0.92+

vertical 10TITLE

0.92+

two public cloudsQUANTITY

0.92+

Pure Storage Accelerate conferenceEVENT

0.91+

AndyPERSON

0.9+

few years agoDATE

0.9+

next dayDATE

0.9+

MutualORGANIZATION

0.9+

ModePERSON

0.89+

telcoORGANIZATION

0.89+

three bigQUANTITY

0.88+

eonTITLE

0.88+

VerdictPERSON

0.88+

three separate dataQUANTITY

0.88+

CubeCOMMERCIAL_ITEM

0.87+

petabytesQUANTITY

0.87+

Google CloudTITLE

0.86+

Larry Lancaster, Zebrium | Virtual Vertica BDC 2020


 

>> Announcer: It's theCUBE! Covering the Virtual Vertica Big Data Conference 2020 brought to you by Vertica. >> Hi, everybody. Welcome back. You're watching theCUBE's coverage of the Vertica Virtual Big Data Conference. It was, of course, going to be in Boston at the Encore Hotel. Win big with big data with the new casino but obviously Coronavirus has changed all that. Our hearts go out and we are empathy to those people who are struggling. We are going to continue our wall-to-wall coverage of this conference and we're here with Larry Lancaster who's the founder and CTO of Zebrium. Larry, welcome to theCUBE. Thanks for coming on. >> Hi, thanks for having me. >> You're welcome. So first question, why did you start Zebrium? >> You know, I've been dealing with machine data a long time. So for those of you who don't know what that is, if you can imagine servers or whatever goes on in a data center or in a SAS shop. There's data coming out of those servers, out of those applications and basically, you can build a lot of cool stuff on that. So there's a lot of metrics that come out and there's a lot of log files that come. And so, I've built this... Basically spent my career building that sort of thing. So tools on top of that or products on top of that. The problem is that since at least log files are completely unstructured, it's always doing the same thing over and over again, which is going in and understanding the data and extracting the data and all that stuff. It's very time consuming. If you've done it like five times you don't want to do it again. So really, my idea was at this point with machine learning where it's at there's got to be a better way. So Zebrium was founded on the notion that we can just do all that automatically. We can take a pile of machine data, we can turn it into a database, and we can build stuff on top of that. And so the company is really all about bringing that value to the market. >> That's cool. I want to get in to that, just better understand who you're disrupting and understand that opportunity better. But before I do, tell us a little bit about your background. You got kind of an interesting background. Lot of tech jobs. Give us some color there. >> Yeah, so I started in the Valley I guess 20 years ago and when my son was born I left grad school. I was in grad school over at Berkeley, Biophysics. And I realized I needed to go get a job so I ended up starting in software and I've been there ever since. I mean, I spent a lot of time at, I guess I cut my teeth at Nedap, which was a storage company. And then I co-founded a business called Glassbeam, which was kind of an ETL database company. And then after that I ended up at Nimble Storage. Another company, EMC, ended up buying the Glassbeam so I went over there and then after Nimble though, which where I build the InfoSight platform. That's where I kind of, after that I was able to step back and take a year and a half and just go into my basement, actually, this is my kind of workspace here, and come up with the technology and actually build it so that I could go raise money and get a team together to build Zebrium. So that's really my career in a nutshell. >> And you've got Hello Kitty over your right shoulder, which is kind of cool >> That's right. >> And then up to the left you got your monitor, right? >> Well, I had it. It's over here, yeah. >> But it was great! Pull it out, pull it out, let me see it. So, okay, so you got that. So what do you do? You just sit there and code all night or what? >> Yeah, that's right. So Hello Kitty's over here. I have a daughter and she setup my workspace here on this side with Hello Kitty and so on. And over on this side, I've got my recliner where I basically lay it all the way back and then I pivot this thing down over my face and put my keyboard on my lap and I can just sit there for like 20 hours. It's great. Completely comfortable. >> That's cool. All right, better put that monitor back or our guys will yell at me. But so, obviously, we're talking to somebody with serious coding chops and I'll also add that the Nimble InfoSight, I think it was one of the best pick ups that HP, HPE, has had in a while. And the thing that interested me about that, Larry, is the ability that the company was able to take that InfoSight and poured it very quickly across its product lines. So that says to me it was a modern, architecture, I'm sure API, microservices, and all those cool buzz words, but the proof is in their ability to bring that IP to other parts of the portfolio. So, well done. >> Yeah, well thanks. Appreciate that. I mean, they've got a fantastic team there. And the other thing that helps is when you have the notion that you don't just build on top of the data, you extract the data, you structure it, you put that in a database, we used Vertica there for that, and then you build on top of that. Taking the time to build that layer is what lets you build a scalable platform. >> Yeah, so, why Vertica? I mean, Vertica's been around for awhile. You remember you had the you had the old RDBMS, Oracles, Db2s, SQL Server, and then the database was kind of a boring market. And then, all of a sudden, you had all of these MPP companies came out, a spade of them. They all got acquired, including Vertica. And they've all sort of disappeared and morphed into different brands and Micro Focus has preserved the Vertica brand. But it seems like Vertica has been able to survive the transitions. Why Vertica? What was it about that platform that was unique and interested you? >> Well, I mean, so they're the first fund to build, what I would call a real column store that's kind of market capable, right? So there was the C-Store project at Berkeley, which Stonebreaker was involved in. And then that became sort of the seed from which Vertica was spawned. So you had this idea of, let's lay things out in a columnar way. And when I say columnar, I don't just mean that the data for every column is in a different set of files. What I mean by that is it takes full advantage of things like run length and coding, and L file and coding, and block--impression, and so you end up with these massive orders of magnitude savings in terms of the data that's being pulled off of storage as well as as it's moving through the pipeline internally in Vertica's query processing. So why am I saying all this? Because it's fundamentally, it was a fundamentally disruptive technology. I think column stores are ubiquitous now in analytics. And I think you could name maybe a couple of projects which are mostly open source who do something like Vertica does but name me another one that's actually capable of serving an enterprise as a relational database. I still think Vertica is unique in being that one. >> Well, it's interesting because you're a startup. And so a lot of startups would say, okay, we're going with a born-in-the-cloud database. Now Vertica touts that, well look, we've embraced cloud. You know, we have, we run in the cloud, we run on PRAM, all different optionality. And you hear a lot of vendors say that, but a lot of times they're just taking their stack and stuffing it into the cloud. But, so why didn't you go with a cloud-native database and is Vertica able to, I mean, obviously, that's why you chose it, but I'm interested from a technologist standpoint as to why you, again, made that choice given all these other choices around there. >> Right, I mean, again, I'm not, so... As I explained a column store, which I think is the appropriate definition, I'm not aware of another cloud-native-- >> Hm, okay. >> I'm aware of other cloud-native transactional databases, I'm not aware of one that has the analytics form it and I've tried some of them. So it was not like I didn't look. What I was actually impressed with and I think what let me move forward using Vertica in our stack is the fact that Eon really is built from the ground up to be cloud-native. And so we've been using Eon almost ever since we started the work that we're doing. So I've been really happy with the performance and with reliability of Eon. >> It's interesting. I've been saying for years that Vertica's a diamond in the rough and it's previous owner didn't know what to do with it because it got distracted and now Micro Focus seems to really see the value and is obviously putting some investments in there. >> Yeah >> Tell me more about your business. Who are you disrupting? Are you kind of disrupting the do-it-yourself? Or is there sort of a big whale out there that you're going to go after? Add some color to that. >> Yeah, so our broader market is monitoring software, that's kind of the high-level category. So you have a lot of people in that market right now. Some of them are entrenched in large players, like Datadog would be a great example. Some of them are smaller upstarts. It's a pretty, it's a pretty saturated market. But what's happened over the last, I'd say two years, is that there's been sort of a push towards what's called observability in terms of at least how some of the products are architected, like Honeycomb, and how some of them are messaged. Most of them are messaged these days. And what that really means is there's been sort of an understanding that's developed that that MTTR is really what people need to focus on to keep their customers happy. If you're a SAS company, MTTR is going to be your bread and butter. And it's still measured in hours and days. And the biggest reason for that is because of what's called unknown unknowns. Because of complexity. Now a days, things are, applications are ten times as complex as they used to be. And what you end up with is a situation where if something is new, if it's a known issue with a known symptom and a known root cause, then you can setup a automation for it. But the ones that really cost a lot of time in terms of service disruption are unknown unknowns. And now you got to go dig into this massive mass of data. So observability is about making tools to help you do that, but it's still going to take you hours. And so our contention is, you need to automate the eyeball. The bottleneck is now the eyeball. And so you have to get away from this notion of a person's going to be able to do it infinitely more efficient and recognize that you need automated help. When you get an alert agent, it shouldn't be that, "Hey, something weird's happening. Now go dig in." It should be, "Here's a root cause and a symptom." And that should be proposed to you by a system that actually does the observing. That actually does the watching. And that's what Zebrium does. >> Yeah, that's awesome. I mean, you're right. The last thing you want is just another alert and it say, "Go figure something out because there's a problem." So how does it work, Larry? In terms of what you built there. Can you take us inside the covers? >> Yeah, sure. So there's really, right now there's two kinds of data that we're ingesting. There's metrics and there's log files. Metrics, there's actually sort of a framework that's really popular in DevOp circles especially but it's becoming popular everywhere, which is called Prometheus. And it's a way of exporting metrics so that scrapers can collect them. And so if you go look at a typical stack, you'll find that most of the open source components and many of the closed source components are going to have exporters that export all their stacks to Prometheus. So by supporting that stack we can bring in all of those metrics. And then there's also the log files. And so you've got host log files in a containerized environment, you've got container logs, and you've got application-specific logs, perhaps living on a host mount. And you want to pull all those back and you want to be able to associate this log that I've collected here is associated with the same container on the same host that this metric is associated with. But now what? So once you've got that, you've got a pile of unstructured logs. So what we do is we take a look at those logs and we say, let's structure those into tables, right? So where I used to have a log message, if I look in my log file and I see it says something like, X happened five times, right? Well, that event types going to occur again and it'll say, X happened six times or X happened three times. So if I see that as a human being, I can say, "Oh clearly, that's the same thing." And what's interesting here is the times that X, that X happened, and that this number read... I may want to know when the numbers happened as a time series, the values of that column. And so you can imagine it as a table. So now I have table for that event type and every time it happens, I get a row. And then I have a column with that number in it. And so now I can do any kind of analytics I want almost instantly across my... If I have all my event types structured that way, every thing changes. You can do real anomaly detection and incident detection on top of that data. So that's really how we go about doing it. How we go about being able to do autonomous monitoring in a way that's effective. >> How do you handle doing that for, like the Spoke app? Do you have to, does somebody have to build a connector to those apps? How do you handle that? >> Yeah, that's a really good question. So you're right. So if I go and install a typical log manager, there'll be connectors for different apps and usually what that means is pulling in the stuff on the left, if you were to be looking at that log line, and it will be things like a time stamp, or a severity, or a function name, or various other things. And so the connector will know how to pull those apart and then the stuff to the right will be considered the message and that'll get indexed for search. And so our approach is we actually go in with machine learning and we structure that whole thing. So there's a table. And it's going to have a column called severity, and timestamp, and function name. And then it's going to have columns that correspond to the parameters that are in that event. And it'll have a name associated with the constant parts of that event. And so you end up with a situation where you've structured all of it automatically so we don't need collectors. It'll work just as well on your home-grown app that has no collectors or no parsers to find or anything. It'll work immediately just as well as it would work on anything else. And that's important, because you can't be asking people for connectors to their own applications. It just, it becomes now they've go to stop what they're doing and go write code for you, for your platform and they have to maintain it. It's just untenable. So you can be up and running with our service in three minutes. It'll just be monitoring those for you. >> That's awesome! I mean, that is really a breakthrough innovation. So, nice. Love to see that hittin' the market. Who do you sell to? Both types of companies and what role within the company? >> Well, definitely there's two main sort of pushes that we've seen, or I should say pulls. One is from DevOps folks, SRE folks. So these are people who are tasked with monitoring an environment, basically. And then you've got people who are in engineering and they have a staging environment. And what they actually find valuable is... Because when we find an incident in a staging environment, yeah, half the time it's because they're tearing everything up and it's not release ready, whatever's in stage. That's fine, they know that. But the other half the time it's new bugs, it's issues and they're finding issues. So it's kind of diverged. You have engineering users and they don't have titles like QA, they're Dev engineers or Dev managers that are really interested. And then you've got DevOps and SRE people there (mumbles). >> And how do I consume your product? Is the SAS... I sign up and you say within three minutes I'm up and running. I'm paying by the drink. >> Well, (laughs) right. So there's a couple ways. So, right. So the easiest way is if you use Kubernetes. So Kubernetes is what's called a container orchestrator. So these days, you know Docker and containers and all that, so now there's container orchestrators have become, I wouldn't say ubiquitous but they're very popular now. So it's kind of on that inflection curve. I'm not exactly sure the penetration but I'm going to say 30-40% probably of shops that were interested are using container orchestrators. So if you're using Kubernetes, basically you can install our Kubernetes chart, which basically means copying and pasting a URL and so on into your little admin panel there. And then it'll just start collecting all the logs and metrics and then you just login on the website. And the way you do that is just go to our website and it'll show you how to sign up for the service and you'll get your little API key and link to the chart and you're off and running. You don't have to do anything else. You can add rules, you can add stuff, but you don't have to. You shouldn't have to, right? You should never have to do any more work. >> That's great. So it's a SAS capability and I just pay for... How do you price it? >> Oh, right. So it's priced on volume, data volume. I don't want to go too much into it because I'm not the pricing guy. But what I'll say is that it's, as far as I know it's as cheap or cheaper than any other log manager or metrics product. It's in that same neighborhood as the very low priced ones. Because right now, we're not trying to optimize for take. We're trying to make a healthy margin and get the value of autonomous monitoring out there. Right now, that's our priority. >> And it's running in the cloud, is that right? AWB West-- >> Yeah, that right. Oh, I should've also pointed out that you can have a free account if it's less than some number of gigabytes a day we're not going to charge. Yeah, so we run in AWS. We have a multi-tenant instance in AWS. And we have a Vertica Eon cluster behind that. And it's been working out really well. >> And on your freemium, you have used the Vertica Community Edition? Because they don't charge you for that, right? So is that how you do it or... >> No, no. We're, no, no. So, I don't want to go into that because I'm not the bizdev guy. But what I'll say is that if you're doing something that winds up being OEM-ish, you can work out the particulars with Vertica. It's not like you're going to just go pay retail and they won't let you distinguish between tests, and prod, and paid, and all that. They'll work with you. Just call 'em up. >> Yeah, and that's why I brought it up because Vertica, they have a community edition, which is not neutered. It runs Eon, it's just there's limits on clusters and storage >> There's limits. >> But it's still fully functional though. >> So to your point, we want it multi-tenant. So it's big just because it's multi-tenant. We have hundred of users on that (audio cuts out). >> And then, what's your partnership with Vertica like? Can we close on that and just describe that a little bit? >> What's it like. I mean, it's pleasant. >> Yeah, I mean (mumbles). >> You know what, so the important thing... Here's what's important. What's important is that I don't have to worry about that layer of our stack. When it comes to being able to get the performance I need, being able to get the economy of scale that I need, being able to get the absolute scale that I need, I've not been disappointed ever with Vertica. And frankly, being able to have acid guarantees and everything else, like a normal mature database that can join lots of tables and still be fast, that's also necessary at scale. And so I feel like it was definitely the right choice to start with. >> Yeah, it's interesting. I remember in the early days of big data a lot of people said, "Who's going to need these acid properties and all this complexity of databases." And of course, acid properties and SQL became the killer features and functions of these databases. >> Who didn't see that one coming, right? >> Yeah, right. And then, so you guys have done a big seed round. You've raised a little over $6 million dollars and you got the product market fit down. You're ready to rock, right? >> Yeah, that's right. So we're doing a launch probably, well, when this airs it'll probably be the day before this airs. Basically, yeah. We've got people... Like literally in the last, I'd say, six to eight weeks, It's just been this sort of pique of interest. All of a sudden, everyone kind of gets what we're doing, realizes they need it, and we've got a solution that seems to meet expectations. So it's like... It's been an amazing... Let me just say this, it's been an amazing start to the year. I mean, at the same time, it's been really difficult for us but more difficult for some other people that haven't been able to go to work over the last couple of weeks and so on. But it's been a good start to the year, at least for our business. So... >> Well, Larry, congratulations on getting the company off the ground and thank you so much for coming on theCUBE and being part of the Virtual Vertica Big Data Conference. >> Thank you very much. >> All right, and thank you everybody for watching. This is Dave Vellante for theCUBE. Keep it right there. We're covering wall-to-wall Virtual Vertica BDC. You're watching theCUBE. (upbeat music)

Published Date : Mar 31 2020

SUMMARY :

brought to you by Vertica. and we're here with Larry Lancaster why did you start Zebrium? and basically, you can build a lot of cool stuff on that. and understand that opportunity better. and actually build it so that I could go raise money It's over here, yeah. So what do you do? and then I pivot this thing down over my face and I'll also add that the Nimble InfoSight, And the other thing that helps is when you have the notion and Micro Focus has preserved the Vertica brand. and so you end up with these massive orders And you hear a lot of vendors say that, I'm not aware of another cloud-native-- I'm not aware of one that has the analytics form it and now Micro Focus seems to really see the value Are you kind of disrupting the do-it-yourself? And that should be proposed to you In terms of what you built there. And so you can imagine it as a table. And so you end up with a situation I mean, that is really a breakthrough innovation. and it's not release ready, I sign up and you say within three minutes And the way you do that So it's a SAS capability and I just pay for... and get the value of autonomous monitoring out there. that you can have a free account So is that how you do it or... and they won't let you distinguish between Yeah, and that's why I brought it up because Vertica, But it's still So to your point, I mean, it's pleasant. What's important is that I don't have to worry I remember in the early days of big data and you got the product market fit down. that haven't been able to go to work and thank you so much for coming on theCUBE All right, and thank you everybody for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Larry LancasterPERSON

0.99+

Dave VellantePERSON

0.99+

LarryPERSON

0.99+

BostonLOCATION

0.99+

five timesQUANTITY

0.99+

three timesQUANTITY

0.99+

six timesQUANTITY

0.99+

EMCORGANIZATION

0.99+

sixQUANTITY

0.99+

ZebriumORGANIZATION

0.99+

20 hoursQUANTITY

0.99+

GlassbeamORGANIZATION

0.99+

NedapORGANIZATION

0.99+

VerticaORGANIZATION

0.99+

NimbleORGANIZATION

0.99+

Nimble StorageORGANIZATION

0.99+

HPORGANIZATION

0.99+

HPEORGANIZATION

0.99+

AWSORGANIZATION

0.99+

a year and a halfQUANTITY

0.99+

Micro FocusORGANIZATION

0.99+

ten timesQUANTITY

0.99+

two kindsQUANTITY

0.99+

two yearsQUANTITY

0.99+

three minutesQUANTITY

0.99+

first questionQUANTITY

0.99+

eight weeksQUANTITY

0.98+

StonebreakerORGANIZATION

0.98+

PrometheusTITLE

0.98+

30-40%QUANTITY

0.98+

EonORGANIZATION

0.98+

hundred of usersQUANTITY

0.98+

OneQUANTITY

0.98+

Vertica Virtual Big Data ConferenceEVENT

0.98+

KubernetesTITLE

0.97+

first fundQUANTITY

0.97+

Virtual Vertica Big Data Conference 2020EVENT

0.97+

AWB WestORGANIZATION

0.97+

Virtual Vertica Big Data ConferenceEVENT

0.97+

HoneycombORGANIZATION

0.96+

SASORGANIZATION

0.96+

20 years agoDATE

0.96+

Both typesQUANTITY

0.95+

theCUBEORGANIZATION

0.95+

DatadogORGANIZATION

0.95+

two mainQUANTITY

0.94+

over $6 million dollarsQUANTITY

0.93+

Hello KittyORGANIZATION

0.93+

SQLTITLE

0.93+

ZebriumPERSON

0.91+

SpokeTITLE

0.89+

Encore HotelLOCATION

0.88+

InfoSightORGANIZATION

0.88+

CoronavirusOTHER

0.88+

oneQUANTITY

0.86+

lessQUANTITY

0.85+

OraclesORGANIZATION

0.85+

2020DATE

0.85+

CTOPERSON

0.84+

VerticaTITLE

0.82+

Nimble InfoSightORGANIZATION

0.81+

Ron Cormier, The Trade Desk | Virtual Vertica BDC 2020


 

>> David: It's the cube covering the virtual Vertica Big Data conference 2020 brought to you by Vertica. Hello, buddy, welcome to this special digital presentation of the cube. We're tracking the Vertica virtual Big Data conferences, the cubes. I think fifth year doing the BDC. We've been to every big data conference that they've held and really excited to be helping with the digital component here in these interesting times. Ron Cormier is here, Principal database engineer at the Trade Desk. Ron, great to see you. Thanks for coming on. >> Hi, David, my pleasure, good to see you as well. >> So we're talking a little bit about your background you got, you're basically a Vertica and database guru, but tell us about your role at Trade Desk and then I want to get into a little bit about what Trade Desk does. >> Sure, so I'm a principal database engineer at the Trade Desk. The Trade Desk was one of my customers when I was working with Hp, at HP, as a member of the Vertica team, and I joined the Trade Desk in early 2016. And since then, I've been working on building out their Vertica capabilities and expanding the data warehouse footprint and as ever growing database technology, data volume environment. >> And the Trade Desk is an ad tech firm and you are specializing in real time ad serving and pricing. And I guess real time you know, people talk about real time a lot we define real time as before you lose the customer. Maybe you can talk a little bit about you know, the Trade Desk in the business and maybe how you define real time. >> Totally, so to give everybody kind of a frame of reference. Anytime you pull up your phone or your laptop and you go to a website or you use some app and you see an ad what's happening behind the scenes is an auction is taking place. And people are bidding on the privilege to show you an ad. And across the open Internet, this happens seven to 13 million times per second. And so the ads, the whole auction dynamic and the display of the ad needs to happen really fast. So that's about as real time as it gets outside of high frequency trading, as far as I'm aware. So we put the Trade Desk participates in those auctions, we bid on behalf of our customers, which are ad agencies, and the agencies represent brands so the agencies are the madman companies of the world and they have brands that under their guidance, and so they give us budget to spend, to place the ads and to display them and once the ads get displayed, so we bid on the hundreds of thousands of auctions per second. Once we make those bids, anytime we do make a bid some data flows into our data platform, which is powered by Vertica. And, so we're getting hundreds of thousands of events per second. We have other events that flow into Vertica as well. And we clean them up, we aggregate them, and then we run reports on the data. And we run about 40,000 reports per day on behalf of our customers. The reports aren't as real time as I was talking about earlier, they're more batch oriented. Our customers like to see big chunks of time, like a whole day or a whole week or a whole month on a single report. So we wait for that time period to complete and then we run the reports on the results. >> So you you have one of the largest commercial infrastructures, in the Big Data sphere. Paint a picture for us. I understand you got a couple of like 320 node clusters we're talking about petabytes of data. But describe what your environment looks like. >> Sure, so like I said, we've been very good customers for a while. And we started out with with a bunch of enterprise clusters. So the Enterprise Mode is the traditional Vertica deployment where the compute and the storage is tightly coupled all raid arrays on the servers. And we had four of those and we're doing okay, but our volumes are ever increasing, we wanted to store more data. And we wanted to run more reports in a shorter period of time, was to keep pushing. And so we had these four clusters and then we started talking with Vertica about Eon mode, and that's Vertica separation of compute and storage where you get the compute and the storage can be scaled independently, we can add storage without adding compute or vice versa or we can add both, like. So that was something that we were very interested in for a couple reasons. One, our enterprise clusters, we're running out of disk, like when adding disk is expensive. In Enterprise Mode, it's kind of a pain, you got to add, compute at the same time, so you kind of end up in an unbalanced place. So beyond mode that problem gets a lot better. We can add disk, infinite disk because it's backed by S3. And we can add compute really easy to scale, the number of things that we run in parallel concurrency, just add a sub cluster. So they are two US East and US west of Amazon, so reasonably diverse. And and the real benefit is that they can, we can stop nodes when we don't need them. Our workload is fairly lumpy, I call it. Like we, after the day completes, we do the ingest, we do the aggregation for ingesting and aggregating all day, but the final hour, so it needs to be completed. And then once that's done, then the number of reports that we need to run spikes up, it goes really high. And we run those reports, we spin up a bunch of extra compute on the fly, run those reports and then spin them down. And we don't have to pay for that, for the rest of the day. So Eon has been a nice Boone for us for both those reasons. >> I'd love to explore you on little bit more. I mean, it's relatively new, I think 2018 Vertica announced Eon mode, so it's only been out there a couple years. So I'm curious for the folks that haven't moved the Eon mode, can you which presumably they want to for the same reasons that you mentioned why by the stories and chunks when you're on Storage if you don't have to, what were some of the challenges that you had to, that you faced in going to Eon mode? What kind of things did you have to prepare for? Were there any out of scope expectations? Can you share that experience with us? >> Sure, so we were an early adopter. We participated in the beta program. I mean, we, I think it's fair to say we actually drove the requirements and a lot of ways because we approached Vertica early on. So the challenges were what you'd expect any early adopter to be going through. The sort of getting things working as expected. I mean, there's a number of cases, which I could touch upon, like, we found an efficiency in the way that it accesses the data on S3 and it was accessing the data too frequently, which ended up was just expensive. So our S3 bill went up pretty significantly for a couple of months. So that was a challenge, but we worked through that another was that we recently made huge strides in with Vertica was the ability to stop and start nodes and not have to start them very quickly. And when they start to not interfere with any running queries, so when we create, when we want to spin up a bunch to compute, there was a point in time when it would break certain queries that were already running. So that that was a challenge. But again, the very good team has been quite responsive to solving these issues and now that's behind us. In terms of those who need to get started, there's or looking to get started. there's a number of things to think about. Off the top of my head there's sort of new configuration items that you'll want to think about, like how instance type. So certainly the Amazon has a variety of instances and its important to consider one of Vertica's architectural advantages in these areas Vertica has this caching layer on the instances themselves. And what that does is if we can keep the data in cache, what we've found is that the performance is basically the same performance of Enterprise Mode. So having a good size cast when needed, can be a little worrying. So we went with the I three instance types, which have a lot of local NVME storage that we can, so we can cache data and get good performance. That's one thing to think about. The number of nodes, the instance type, certainly the number of shards is a sort of technical item that needs to be considered. It's how the data gets, its distributed. It's sort of a layer on top of the segmentation that some Vertica engineers will be familiar with. And probably I mean, the, one of the big things that one needs to consider is how to get data in the database. So if you have an existing database, there's no sort of nice tool yet to suck all the data into an Eon database. And so I think they're working on that. But we're at the point we got there. We had to, we exported all our data out of enterprise cluster as cache dumped it out to S3 and then we had the Eon cluster to suck that data. >> So awesome advice. Thank you for sharing that with the community. So but at the end of the day, so it sounds like you had some learning to do some tweaking to do and obviously how to get the data in. At the end of the day, was it worth it? What was the business impact? >> Yeah, it definitely was worth it for us. I mean, so right now, we have four times the data in our Eon cluster that we have in our enterprise clusters. We still run some enterprise clusters. We started with four at the peak. Now we're down to two. So we have the two young clusters. So it's been, I think our business would say it's been a huge win, like we're doing things that we really never could have done before, like for accessing the data on enterprise would have been really difficult. It would have required non trivial engineering to do things like daisy chaining clusters together, and then how to aggregate data across clusters, which would, again, non trivial. So we have all the data we want, we can continue to grow data, where running reports on seasonality. So our customers can compare their campaigns last year versus this year, which is something we just haven't been able to do in the past. We've expanded that. So we grew the data vertically, we've expanded the data horizontally as well. So we were adding columns to our aggregates. We are, in reaching the data much more than we have in the past. So while we still have enterprise kicking around, I'd say our clusters are doing the majority of the heavy lifting. >> And the cloud was part of the enablement, here, particularly with scale, is that right? And are you running certain... >> Definitely. >> And you are running on prem as well, or are you in a hybrid mode? Or is it all AWS? >> Great question, so yeah. When I've been speaking about enterprise, I've been referring to on prem. So we have a physical machines in data centers. So yeah, we are running a hybrid now and I mean, and so it's really hard to get like an apples to apples direct comparison of enterprise on prem versus Eon in the cloud. One thing that I touched upon in my presentation is it would require, if I try to get apples to apples, And I think about how I would run the entire workload on enterprise or on Eon, I had to run the entire thing, we want both, I tried to think about how many cores, we would need CPU cores to do that. And basically, it would be about the same number of cores, I think, for enterprise on prime versus Eon in the cloud. However, Eon nodes only need to be running half the course only need to be running about six hours out of the day. So the other the other 18 hours I can shut them down and not be paying for them, mostly. >> Interesting, okay, and so, I got to ask you, I mean, notwithstanding the fact that you've got a lot invested in Vertica, and get a lot of experience there. A lot of you know, emerging cloud databases. Did you look, I mean, you know, a lot about database, not just Vertica, your database guru in many areas, you know, traditional RDBMS, as well as MPP new cloud databases. What is it about Vertica that works for you in this specific sweet spot that you've chosen? What's really the difference there? >> Yeah, so I think the key differences is the maturity. There are a number, I am familiar with another, a number of other database platforms in the cloud and otherwise, column stores specifically, that don't have the maturity that we're used to and we need at our scale. So being able to specify alternate projections, so different sort orders on my data is huge. And, there's other platforms where we don't have that capability. And so the, Vertica is, of course, the original column store and they've had time to build up a lead in terms of their maturity and features and I think that other other column stores cloud, otherwise are playing a little bit of catch up in that regard. Of course, Vertica is playing catch up on the cloud side. But if I had to pick whether I wanted to write a column store, first graph from scratch, or use a defined file system, like a cloud file system from scratch, I'd probably think it would be easier to write the cloud file system. The column store is where the real smarts are. >> Interesting, let's talk a little bit about some of the challenges you have in reporting. You have a very dynamic nature of reporting, like I said, your clients want to they want to a time series, they just don't want to snap snapshot of a slice. But at the same time, your reporting is probably pretty lumpy, a very dynamic, you know, demand curve. So first of all, is that accurate? Can you describe that sort of dynamic, dynamism and how are you handling that? >> Yep, that's exactly right. It is lumpy. And that's the exact word that I use. So like, at the end of the UTC day, when UTC midnight rolls around, that's we do the final ingest the final aggregate and then the queue for the number of reports that need to run spikes. So the majority of those 40,000 reports that we run per day are run in the four to six hours after that spikes up. And so that's when we need to have all the compute come online. And that's what helps us answer all those queries as fast as possible. And that's a big reason why Eon is advantage for us because the rest of the day we kind of don't necessarily need all that compute and we can shut it down and not pay for it. >> So Ron, I wonder if you could share with us just sort of the wrap here, where you want to take this you're obviously very close to Vertica. Are you driving them in a heart and Eon mode, you mentioned before you'd like, you'd have the ability to load data into Eon mode would have been nice for you, I guess that you're kind of over that hump. But what are the kinds of things, If Column Mahoney is here in the room, what are you telling him that you want the team, the engineering team at Vertica to work on that would make your life better? >> I think the things that need the most attention sort of near term is just the smoothing out some of the edges in terms of making it a little bit more seamless in terms of the cloud aspects to it. So our goal is to be able to start instances and have them join the cluster in less than five minutes. We're not quite there yet. If you look at some of the other cloud database platforms, they're beating that handle it so I know the team is working on that. Some of the other things are the control. Like I mentioned, while we like control in the column store, we also want control on the cloud side of things in terms of being able to dedicate cluster, some clusters specific. We can pin workloads against a specific sub cluster and take advantage of the cast that's over there. We can say, okay, this resource pool. I mean, the sub cluster is a new concept, relatively new concept for Vertica. So being able to have control of many things at sub cluster level, resource pools, configuration parameters, and so on. >> Yeah, so I mean, I personally have always been impressed with Vertica. And their ability to sort of ride the wave adopt new trends. I mean, they do have a robust stack. It's been, you know, been 10 plus years around. They certainly embraced to do, the embracing machine learning, we've been talking about the cloud. So I actually have a lot of confidence to them, especially when you compare it to other sort of mid last decade MPP column stores that came out, you know, Vertica is one of the few remaining certainly as an independent brand. So I think that speaks the team there and the engineering culture. But give your final word. Just final thoughts on your role the company Vertica wherever you want to take it. >> Yeah, no, I mean, we're really appreciative and we value the partners that we have and so I think it's been a win win, like our volumes are, like I know that we have some data that got pulled into their test suite. So I think it's been a win win for both sides and it'll be a win for other Vertica customers and prospects, knowing that they're working with some of the highest volume, velocity variety data that (mumbles) >> Well, Ron, thanks for coming on. I wish we could have met face to face at the the Encore in Boston. I think next year we'll be able to do that. But I appreciate that technology allows us to have these remote conversations. Stay safe, all the best to you and your family. And thanks again. >> My pleasure, David, good speaking with you. >> And thank you for watching everybody, we're covering this is the Cubes coverage of the Vertica virtual Big Data conference. I'm Dave volante. We'll be right back right after this short break. (soft music)

Published Date : Mar 31 2020

SUMMARY :

brought to you by Vertica. So we're talking a little bit about your background and I joined the Trade Desk in early 2016. And the Trade Desk is an ad tech firm And people are bidding on the privilege to show you an ad. So you you have one of the largest And and the real benefit is that they can, for the same reasons that you mentioned why by dumped it out to S3 and then we had the Eon cluster So but at the end of the day, So we have all the data we want, And the cloud was part of the enablement, here, half the course only need to be running I mean, notwithstanding the fact that you've got that don't have the maturity about some of the challenges you have in reporting. because the rest of the day we kind of So Ron, I wonder if you could share with us in terms of the cloud aspects to it. the company Vertica wherever you want to take it. and we value the partners that we have Stay safe, all the best to you and your family. of the Vertica virtual Big Data conference.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
RonPERSON

0.99+

DavidPERSON

0.99+

VerticaORGANIZATION

0.99+

Ron CormierPERSON

0.99+

HPORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

last yearDATE

0.99+

AWSORGANIZATION

0.99+

40,000 reportsQUANTITY

0.99+

BostonLOCATION

0.99+

18 hoursQUANTITY

0.99+

fifth yearQUANTITY

0.99+

USLOCATION

0.99+

Dave volantePERSON

0.99+

next yearDATE

0.99+

sevenQUANTITY

0.99+

bothQUANTITY

0.99+

OneQUANTITY

0.99+

2018DATE

0.99+

less than five minutesQUANTITY

0.99+

this yearDATE

0.99+

10 plus yearsQUANTITY

0.99+

oneQUANTITY

0.99+

fourQUANTITY

0.99+

early 2016DATE

0.98+

applesORGANIZATION

0.98+

two young clustersQUANTITY

0.98+

twoQUANTITY

0.98+

both sidesQUANTITY

0.98+

about six hoursQUANTITY

0.98+

CubesORGANIZATION

0.98+

six hoursQUANTITY

0.98+

US EastLOCATION

0.98+

HpORGANIZATION

0.98+

EonORGANIZATION

0.96+

S3TITLE

0.95+

13 million times per secondQUANTITY

0.94+

halfQUANTITY

0.94+

primeCOMMERCIAL_ITEM

0.94+

four timesQUANTITY

0.92+

hundreds of thousands of auctionsQUANTITY

0.92+

mid last decadeDATE

0.89+

one thingQUANTITY

0.88+

One thingQUANTITY

0.87+

single reportQUANTITY

0.85+

couple reasonsQUANTITY

0.84+

four clustersQUANTITY

0.83+

first graphQUANTITY

0.81+

VerticaTITLE

0.81+

hundreds of thousands of events per secondQUANTITY

0.8+

about 40,000 reports per dayQUANTITY

0.78+

Vertica Big Data conference 2020EVENT

0.77+

320 nodeQUANTITY

0.74+

a whole weekQUANTITY

0.72+

Vertica virtual Big DataEVENT

0.7+

Joe Gonzalez, MassMutual | Virtual Vertica BDC 2020


 

(bright music) >> Announcer: It's theCUBE. Covering the Virtual Vertica Big Data Conference 2020, brought to you by Vertica. Hello everybody, welcome back to theCUBE's coverage of the Vertica Big Data Conference, the Virtual BDC. My name is Dave Volante, and you're watching theCUBE. And we're here with Joe Gonzalez, who is a Vertica DBA, at MassMutual Financial. Joe, thanks so much for coming on theCUBE I'm sorry that we can't be face to face in Boston, but at least we're being responsible. So thank you for coming on. >> (laughs) Thank you for having me. It's nice to be here. >> Yeah, so let's set it up. We'll talk about, you know, a little bit about MassMutual. Everybody knows it's a big financial firm, but what's your role there and kind of your mission? >> So my role is Vertica DBA. I was hired January of last year to come on and manage their Vertica cluster. They've been on Vertica for probably about a year and a half before that started out on on-prem cluster and then move to AWS Enterprise in the cloud, and brought me on just as they were considering transitioning over to Vertica's EON mode. And they didn't really have anybody dedicated to Vertica, nobody who really knew and understood the product. And I've been working with Vertica for about probably six, seven years, at that point. I was looking for something new and landed a really good opportunity here with a great company. >> Yeah, you have a lot of experience in Vertica. You had a role as a market research, so you're a data guy, right? I mean that's really what you've been doing your entire career. >> I am, I've worked with Pitney Bowes, in the postage industry, I worked with healthcare auditing, after seven years in market research. And then I've been with MassMutual for a little over a year now, yeah, quite a lot. >> So tell us a little bit about kind of what your objectives are at MassMutual, what you're kind of doing with the platform, what application just supporting, paint a picture for us if you would. >> Certainly, so my role is, MassMutual just decided to make Vertica its enterprise data warehouse. So they've really bought into Vertica. And we're moving all of our data there probably about to good 80, 90% of MassMutual's data is going to be on the Vertica platform, in EON mode. So, and we have a wide usage of that data across corporation. Right now we're about 50 terabytes and growing quickly. And a wide variety of users. So there's a lot of ETLs coming in overnight, loading a lot of data, transforming a lot of data. And a lot of reporting tools are using it. So currently, Tableau MicroStrategy. We have Alteryx using it, and we also have API's running against it throughout the day, 24/7 with people coming in, especially now these days with the, you know, some financial uncertainty going on. A lot of people coming and checking their 401k's, checking their insurance and status and what not. So we have to handle a lot of concurrent traffic on top of the normal big query. So it's a quite diverse cluster. And I'm glad they're really investing in using Vertica as their overall solution for this. >> Yeah, I mean, these days your 401k like this, right? (laughing) Afraid to look. So I wonder, Joe if you could share with our audience. I mean, for those who might not be as familiar with the history of just Vertica, and specifically, about MPP, you've had historically you have, you know, traditional RDBMS, whether it's Db2 or Oracle, and then you had a spate of companies that came out with this notion of MPP Vertica is the one that, I think it's probably one of the few if only brands that they've survived, but what did that bring to the industry and why is that important for people to understand, just in terms of whatever it is, scale, performance, cost. Can you explain that? >> To me, it actually brought scale at good cost. And that's why I've been a big proponent of Vertica ever since I started using it. There's a number, like you said of different platforms where you can load big data and store and house big data. But the purpose of having that big data is not just for it to sit there, but to be used, and used in a variety of ways. And that's from, you know, something small, like the first installation I was on was about 10 terabytes. And, you know, I work with the data warehouses up to 100 terabytes, and, you know, there's Vertica installations with, you know, hundreds of petabytes on them. You want to be able to use that data, so you need a platform that's going to be able to access that data and get it to the clients, get it to the customers as quickly as possible, and not paying an arm and a leg for the privilege to do so. And Vertica allows companies to do that, not only get their data to clients and you know, in company users quickly, but save money while doing so. >> So, but so, why couldn't I just use a traditional RDBMS? Why not just throw it all into Oracle? >> One, cost, Oracle is very expensive while Vertica's a lot more affordable than that. But the column-score structure of Vertica allows for a lot more optimized queries. Some of the queries that you can run in Vertica in 2, 3, 4 seconds, will take minutes and sometimes hours in an RDBMS, like Oracle, like SQL Server. They have the capability to store that amount of data, no question, but the usability really lacks when you start querying tables that are 180 billion column, 180 billion rows rather of tables in Vertica that are over 1000 columns. Those will take hours to run on a traditional RDBMS and then running them in Vertica, I get my queries back in a sec. >> You know what's interesting to me, Joe and I wonder if you could comment, it seems that Vertica has done a good job of embracing, you know, riding the waves, whether it was HDFS and the big data in our early part of the big data era, the machine learning, machine intelligence. Whether it's, you know, TensorFlow and other data science tools, it seems like Vertica somehow in the cloud is the other one, right? A lot of times cloud is super disruptive, particularly to companies that started on-prem, it seems like Vertica somehow has been able to adopt and embrace some of these trends. Why, from your standpoint, first of all, from your standpoint, as a customer, is that true? And why do you think that is? Is it architectural? Is it true mindset engineering? I wonder if you could comment on that. >> It's absolutely true, I've started out again, on an on-prem Vertica data warehouse, and we kind of, you know, rolled kind of along with them, you know, more and more people have been using data, they want to make it accessible to people on the web now. And you know, having that, the option to provide that data from an on-prem solution, from AWS is key, and now Vertica is offering even a hybrid solution, if you want to keep some of your data behind a firewall, on-prem, and put some in the cloud as well. So data at Vertica has absolutely evolved along with the industry in ways that no other company really has that I've seen. And I think the reason for it and the reason I've stayed with Vertica, and specifically have remained at Vertica DBA for the last seven years, is because of the way Vertica stays in touch with it's persons. I've been working with the same people for the seven, eight years, I've been using Vertica, they're family. I'm part of their family, and you know, I'm good friends with some of these people. And they really are in tune not only with the customer but what they're doing. They really sit down with you and have those conversations about, you know, what are your needs? How can we make Vertica better? And they listen to their clients. You know, just having access to the data engineers who develop Vertica to be arranged on a phone call or whatnot, I've never had that with any other company. Vertica makes that available to their customers when they need it. So the personal touch is a huge for them. >> That's good, it's always good to get the confirmation from the practitioners, just not hear from the vendor. I want to ask you about the EON transition. You mentioned that MassMutual brought you in to help with that. What were some of the challenges that you faced? And how did you get over them? And what did, what is, why EON? You know, what was the goal, the outcome and some of the challenges maybe that you had to overcome? >> Right. So MassMutual had an interesting setup when I first came in. They had three different Vertica clusters to accommodate three different portions of their business. The data scientists who use the data quite extensively in very large queries, very intense queries, their work with their predictive analytics and whatnot. It was a separate one for the API's, which needed, you know, sub-second query response times. And the enterprise solution, they weren't always able to get the performance they needed, because the fast queries were being overrun by the larger queries that needed more resources. And then they had a third for starting to develop this enterprise data platform and started, you know, looking into their future. The first challenge was, first of all, bringing all those three together, and back into a single cluster, and allowing our users to have both of the heavy queries and the API queries running at the same time, on the same platform without having to completely separate them out onto different clusters. EON really helps with that because it allows to store that data in the S3 communal storage, have the main cluster set up to run the heavy queries. And then you can set up sub clusters that still point to that S3 data, but separates out the compute so that the API's really have their own resources to run and not be interfered with by the other process. >> Okay, so that, I'm hearing a couple of things. One is you're sort of busting down data silos. So you're able to have a much more coherent view of your data, which I would imagine is critical, certainly. Companies like MassMutual, have been around for 100 years, and so you've got all kinds of data dispersed. So to the extent that you can break down those silos, that's important, but also being able to I guess have granular increments of compute and storage is what I'm hearing. What does that do for you? It make that more efficient? Well, they are other business benefits? Maybe you could elucidate. >> Well, one cost is again, a huge benefit, the cost of running three different clusters in even AWS, in the enterprise solution was a little costly, you know, you had to have your dedicated servers here and there. So you're paying for like, you know, 12, 15 different servers, for example. Whereas we bring them all back into EON, I can run everything on a six-node production cluster. And you know, when things are busy, I can spin up the three-node top cluster for the API's, only paid for when I need them, and then bring them back into the main cluster when things are slowed down a bit, and they can get that performance that they need. So that saves a ton on resource costs, you know, you're not paying for the storage, you're paying for one S3 bucket, you're only paying for the nodes, these are two instances, that are up and running when you need them., and that is huge. And again, like you said, it gives us the ability to silo our data without having to completely separate our data into different storage areas. Which is a big benefit, it gives us the ability to query everything from one single cluster without having to synchronize it to, you know, three different ones. So this one going to have there's, this one going to have there's, but everyone's still looking at the same data and replicate that in QA and Devs so that people can do it outside of production and do some testing as well. >> So EON, obviously a very important innovation. And of course, Vertica touts the difference between others who separate huge storage, and you know, they're not the only one that does that, but they are really I think the only one that does it for on-prem, and virtually across clouds. So my question is, and I think you're doing a breakout session on the Virtual BDC. We're going to be in Boston, now we're doing it online. If I'm in the audience, I'm imagining I'm a junior DBA at an organization that maybe doesn't have a Joe. I haven't been an expert for seven years. How hard is it for me to get, what do I need to do to get up to speed on EON? It sounds great, I want it. I'm going to save my company money, but I'm nervous 'cause I've only been at Vertica DBA for, you know, a year, and I'm sort of, you know, not as experienced as you. What are the things that I should be thinking about? Do I need to bring in? Do I need to hire somebody? Do I need to bring in a consultant? Can I learn it myself? What would you advise? >> It's definitely easy enough that if you have at least a little bit of work experience, you can learn it yourself, okay? 'Cause the concepts are still there. There's some you know, little bits of nuances where you do need to be aware of certain changes between the Enterprise and EON edition. But I would also say consult with your Vertica Account Manager, consult with your, you know, let them bring in the right people from Vertica to help you get up to speed and if you need to, there are also resources available as far as consultants go, that will help you get up to speed very quickly. And we did work together with Vertica and with one of their partners, Clarity, in helping us to understand EON better, set it up the right way, you know, how do we take our, the number of shards for our data warehouse? You know, they helped us evaluate all that and pick the right number of shards, the right number of nodes to get set up and going. And, you know, helped us figure out the best ways to get our data over from the Enterprise Edition into EON very quickly and very efficient. So different with yourself. >> I wanted to ask you about organizational, you know, issues because, you know, the guys like you practitioners always tell me, "Look, the tech, technology comes and goes, that's kind of the easy part, we're good at that. It's the people it's the processes, the skill sets." What does your, you know, team regime look like? And do you have any sort of ideal team makeup or, you know, ideal advice, is it two piece of teams? Is it what kind of skills? What kind of interaction and communications to senior leadership? I wonder if you could just give us some color on that. >> One of the things that makes me extremely proud to be working for MassMutual right now, is that they do what a lot of companies have not been doing and that is investing in IT. They have put a lot of thought, a lot of money, and a lot of support into setting up their enterprise data platform and putting Vertica at the center. And not only did they put the money into getting the software that they needed, like Vertica, you know, MicroStrategy, and all the other tools that we were using to use that, they put the money in the people. Our managers are extremely supportive of us. We hired about 40 to 45 different people within a four-month time frame, data engineers, data analysts, data modelers, a nice mix of people across who can help shape your data and bring the data in and help the users use the data properly, and allow me as the database administrator to make sure that they're doing what they're doing most efficiently and focus on my job. So you have to have that diversity among the different data skills in order to make your team successful. >> That's awesome. Kind of a side question, and it's really not Vertica's wheelhouse, but I'm curious, you know, in the early days of the big data, you know, movement, a lot of the data scientists would complain, and they still do that, "80% of my time is spent wrangling data." The tools for the data engineer, the data scientists, the database, you know, experts, they're all different. And is that changing? And to what degree is that changing? Kind of what ending are we in and just in terms of a more facile environment for all those roles? >> Again, I think it depends on company to company, you know, what resources they make available to the data scientists. And the data scientists, we have a lot of them at MassMutual. And they're very much into doing a lot of machine learning, model training, predictive analytics. And they are, you know, used to doing it outside of Vertica too, you know, pulling that data out into Python and Scalars Bar, and tools like that. And they're also now just getting into using Vertica's in-database analytics and machine learning, which is a skill that, you know, definitely nobody else out there has. So being able to have one somebody who understands Vertica like myself, and being able to train other people to use Vertica the way that is most efficient for them is key. But also just having people who understand not only the tools that you're using, but how to model data, how to architect your tables, your schemas, the interaction between your tables and schemas and whatnot, you need to have that diversity in order to make this work. And our data scientists have benefited immensely from the struct that MassMutual put in place by our data management delivery team. >> That's great, I think I saw, somewhere in your background, that you've trained about 100 people in Vertica. Did I get that right? >> Yes, I've, since I started here, I've gone to our Boston location, our Springfield location, and our New York City location and trained, probably about this point, about 120, 140 of our Vertica users. And I'm trying to do, you know, a couple of follow-up sessions per year. >> So adoption, obviously, is a big goal of yours. Getting people to adopt the platform, but then more importantly, I guess, deliver business value and outcomes. >> Absolutely. >> Yeah, I wanted to ask you about encryption. You know, in the perfect world, everything would be encrypted, but there are trade offs. Are you using encryption? What are you doing in that regard? >> We are actually just getting into that now due to the New York and the CCPA regulations that are now in place. We do have a lot of Person Identifiable Information in our data store that does require encryption. So we are going through a month's long process that started in December, I think, it's actually a bit earlier than that, to start identifying all the columns, not only in our Vertica database, but in, you know, the other databases that we do use, you know, we have Postgres database, SQL Server, Teradata for the time being, until that moves into Vertica. And identify where that data sits, what downstream applications, pull that data from the data sources and store it locally as well, and starts encrypting that data. And because of the tight relationship between Voltage and Vertica, we settled on Voltages as the major platform to start doing that encryption. So we're going to be implementing that in Vertica probably within the next month or two, and roll it out to all the teams that have data that requires encryption. We're going to start rolling it out to the downstream application owners to make sure that they are encrypting the data as they get it pulled over. And we're also using another product for several other applications that don't mesh well as well with both. >> Voltage being micro, focuses encryption solution, correct? >> Right, yes. >> Yes, of course, like a focus for the audience's is the, it owns Vertica and if Vertica is a separate brand. So I want to ask you kind of close on what success looks like. You've been at this for a number of years, coming into MassMutual which was great to hear. I've had some past experience with MassMutual, it's an awesome company, I've been to the Springfield facility and in Boston as well, and I have great respect for them, and they've really always been a leader. So it's great to hear that they're investing in technology as a differentiator. What does success look like for you? Let's say you're at MassMutual for a few years, you're looking back, what success look like? Go. >> A good question. It's changing every day just, you know, with more and more, you know, applications coming onboard, more and more data being pulled in, more uses being found for the data that we have. I think success for me is making sure that Vertica, first of all, is always up made, is always running at its most optimal to keep our users happy. I think when I started, you know, we had a lot of processes that were running, you know, six, seven hours, some of them were taking, you know, almost a day long, because they were so complicated, we've got those running in under an hour now, some of them running in a matter of minutes. I want to keep that optimization going for all of our processes. Like I said, there's a lot of users using this data. And it's been hard over the first year of me being here to get to all of them. And thankfully, you know, I'm getting a bit of help now, I have a couple of system DBAs, and I'm training up to help out with these optimizations, you know, fixing queries, fixing projections to make sure that queries do run as quickly as possible. So getting that to its optimal stage is one. Two, getting our data encrypted and protected so that even if for whatever reasons, somehow somebody breaks into our data, they're not going to be able to get anything at all, because our data is 100% protected. And I think more companies need to be focusing on that as well. And third, I want to see our data science teams using more and more of Vertica's in-database predictive analytics, in-database machine learning products, and really helping make their jobs more efficient by doing so. >> Joe, you're awesome guest I mean, we always like I said, love having the practitioners on and getting the straight, skinny and pros. You're welcome back anytime, and as I say, I wish we could have met in Boston, maybe next year at the BDC. But it's great to have you online, and thanks for coming on theCUBE. >> And thank you for having me and hopefully we'll meet next year. >> Yeah, I hope so. And thank you everybody for watching that. Remember theCUBE is running concurrent with the Vertica Virtual BDC, it's vertica.com/bdc2020. If you want to check out all the keynotes, and all the breakout sessions, I'm Dave Volante for theCUBE. We'll be going. More interviews, for people right there. Thanks for watching. (bright music)

Published Date : Mar 31 2020

SUMMARY :

Big Data Conference 2020, brought to you by Vertica. (laughs) Thank you for having me. We'll talk about, you know, cluster and then move to AWS Enterprise in the cloud, Yeah, you have a lot of experience in Vertica. in the postage industry, I worked with healthcare auditing, paint a picture for us if you would. with the, you know, some financial uncertainty going on. and then you had a spate of companies that came out their data to clients and you know, Some of the queries that you can run in Vertica a good job of embracing, you know, riding the waves, And you know, having that, the option to provide and some of the challenges maybe that you had to overcome? It was a separate one for the API's, which needed, you know, So to the extent that you can break down those silos, So that saves a ton on resource costs, you know, and I'm sort of, you know, not as experienced as you. to help you get up to speed and if you need to, because, you know, the guys like you practitioners the database administrator to make sure that they're doing of the big data, you know, movement, Again, I think it depends on company to company, you know, Did I get that right? And I'm trying to do, you know, a couple of follow-up Getting people to adopt the platform, but then more What are you doing in that regard? the other databases that we do use, you know, So I want to ask you kind of close on what success looks like. And thankfully, you know, I'm getting a bit of help now, But it's great to have you online, And thank you for having me And thank you everybody for watching that.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Joe GonzalezPERSON

0.99+

VerticaORGANIZATION

0.99+

Dave VolantePERSON

0.99+

MassMutualORGANIZATION

0.99+

BostonLOCATION

0.99+

DecemberDATE

0.99+

100%QUANTITY

0.99+

JoePERSON

0.99+

sixQUANTITY

0.99+

New York CityLOCATION

0.99+

seven yearsQUANTITY

0.99+

12QUANTITY

0.99+

80%QUANTITY

0.99+

sevenQUANTITY

0.99+

AWSORGANIZATION

0.99+

four-monthQUANTITY

0.99+

vertica.com/bdc2020OTHER

0.99+

SpringfieldLOCATION

0.99+

2QUANTITY

0.99+

next yearDATE

0.99+

two instancesQUANTITY

0.99+

seven hoursQUANTITY

0.99+

bothQUANTITY

0.99+

OracleORGANIZATION

0.99+

Scalars BarTITLE

0.99+

PythonTITLE

0.99+

180 billion rowsQUANTITY

0.99+

TwoQUANTITY

0.99+

thirdQUANTITY

0.99+

15 different serversQUANTITY

0.99+

two pieceQUANTITY

0.98+

OneQUANTITY

0.98+

180 billion columnQUANTITY

0.98+

over 1000 columnsQUANTITY

0.98+

eight yearsQUANTITY

0.98+

VoltageORGANIZATION

0.98+

threeQUANTITY

0.98+

hundreds of petabytesQUANTITY

0.98+

firstQUANTITY

0.98+

six-nodeQUANTITY

0.98+

oneQUANTITY

0.98+

one single clusterQUANTITY

0.98+

Vertica Big Data ConferenceEVENT

0.98+

MassMutual FinancialORGANIZATION

0.98+

4 secondsQUANTITY

0.98+

EONORGANIZATION

0.98+

New YorkLOCATION

0.97+

about 10 terabytesQUANTITY

0.97+

first challengeQUANTITY

0.97+

next monthDATE

0.97+