Joseph Nelson, Roboflow | Cube Conversation
(gentle music) >> Hello everyone. Welcome to this CUBE conversation here in Palo Alto, California. I'm John Furrier, host of theCUBE. We got a great remote guest coming in. Joseph Nelson, co-founder and CEO of RoboFlow hot startup in AI, computer vision. Really interesting topic in this wave of AI next gen hitting. Joseph, thanks for coming on this CUBE conversation. >> Thanks for having me. >> Yeah, I love the startup tsunami that's happening here in this wave. RoboFlow, you're in the middle of it. Exciting opportunities, you guys are in the cutting edge. I think computer vision's been talked about more as just as much as the large language models and these foundational models are merging. You're in the middle of it. What's it like right now as a startup and growing in this new wave hitting? >> It's kind of funny, it's, you know, I kind of describe it like sometimes you're in a garden of gnomes. It's like we feel like we've got this giant headstart with hundreds of thousands of people building with computer vision, training their own models, but that's a fraction of what it's going to be in six months, 12 months, 24 months. So, as you described it, a wave is a good way to think about it. And the wave is still building before it gets to its full size. So it's a ton of fun. >> Yeah, I think it's one of the most exciting areas in computer science. I wish I was in my twenties again, because I would be all over this. It's the intersection, there's so many disciplines, right? It's not just tech computer science, it's computer science, it's systems, it's software, it's data. There's so much aperture of things going on around your world. So, I mean, you got to be batting all the students away kind of trying to get hired in there, probably. I can only imagine you're hiring regiment. I'll ask that later, but first talk about what the company is that you're doing. How it's positioned, what's the market you're going after, and what's the origination story? How did you guys get here? How did you just say, hey, want to do this? What was the origination story? What do you do and how did you start the company? >> Yeah, yeah. I'll give you the what we do today and then I'll shift into the origin. RoboFlow builds tools for making the world programmable. Like anything that you see should be read write access if you think about it with a programmer's mind or legible. And computer vision is a technology that enables software to be added to these real world objects that we see. And so any sort of interface, any sort of object, any sort of scene, we can interact with it, we can make it more efficient, we can make it more entertaining by adding the ability for the tools that we use and the software that we write to understand those objects. And at RoboFlow, we've empowered a little over a hundred thousand developers, including those in half the Fortune 100 so far in that mission. Whether that's Walmart understanding the retail in their stores, Cardinal Health understanding the ways that they're helping their patients, or even electric vehicle manufacturers ensuring that they're making the right stuff at the right time. As you mentioned, it's early. Like I think maybe computer vision has touched one, maybe 2% of the whole economy and it'll be like everything in a very short period of time. And so we're focused on enabling that transformation. I think it's it, as far as I think about it, I've been fortunate to start companies before, start, sell these sorts of things. This is the last company I ever wanted to start and I think it will be, should we do it right, the world's largest in riding the wave of bringing together the disparate pieces of that technology. >> What was the motivating point of the formation? Was it, you know, you guys were hanging around? Was there some catalyst? What was the moment where it all kind of came together for you? >> You know what's funny is my co-founder, Brad and I, we were making computer vision apps for making board games more fun to play. So in 2017, Apple released AR kit, augmented reality kit for building augmented reality applications. And Brad and I are both sort of like hacker persona types. We feel like we don't really understand the technology until we build something with it and so we decided that we should make an app that if you point your phone at a Sudoku puzzle, it understands the state of the board and then it kind of magically fills in that experience with all the digits in real time, which totally ruins the game of Sudoku to be clear. But it also just creates this like aha moment of like, oh wow, like the ability for our pocket devices to understand and see the world as good or better than we can is possible. And so, you know, we actually did that as I mentioned in 2017, and the app went viral. It was, you know, top of some subreddits, top of Injure, Reddit, the hacker community as well as Product Hunt really liked it. So it actually won Product Hunt AR app of the year, which was the same year that the Tesla model three won the product of the year. So we joked that we share an award with Elon our shared (indistinct) But frankly, so that was 2017. RoboFlow wasn't incorporated as a business until 2019. And so, you know, when we made Magic Sudoku, I was running a different company at the time, Brad was running a different company at the time, and we kind of just put it out there and were excited by how many people liked it. And we assumed that other curious developers would see this inevitable future of, oh wow, you know. This is much more than just a pedestrian point your phone at a board game. This is everything can be seen and understood and rewritten in a different way. Things like, you know, maybe your fridge. Knowing what ingredients you have and suggesting recipes or auto ordering for you, or we were talking about some retail use cases of automated checkout. Like anything can be seen and observed and we presume that that would kick off a Cambrian explosion of applications. It didn't. So you fast forward to 2019, we said, well we might as well be the guys to start to tackle this sort of problem. And because of our success with board games before, we returned to making more board game solving applications. So we made one that solves Boggle, you know, the four by four word game, we made one that solves chess, you point your phone at a chess board and it understands the state of the board and then can make move recommendations. And each additional board game that we added, we realized that the tooling was really immature. The process of collecting images, knowing which images are actually going to be useful for improving model performance, training those models, deploying those models. And if we really wanted to make the world programmable, developers waiting for us to make an app for their thing of interest is a lot less efficient, less impactful than taking our tool chain and releasing that externally. And so, that's what RoboFlow became. RoboFlow became the internal tools that we used to make these game changing applications readily available. And as you know, when you give developers new tools, they create new billion dollar industries, let alone all sorts of fun hobbyist projects along the way. >> I love that story. Curious, inventive, little radical. Let's break the rules, see how we can push the envelope on the board games. That's how companies get started. It's a great story. I got to ask you, okay, what happens next? Now, okay, you realize this new tooling, but this is like how companies get built. Like they solve their own problem that they had 'cause they realized there's one, but then there has to be a market for it. So you actually guys knew that this was coming around the corner. So okay, you got your hacker mentality, you did that thing, you got the award and now you're like, okay, wow. Were you guys conscious of the wave coming? Was it one of those things where you said, look, if we do this, we solve our own problem, this will be big for everybody. Did you have that moment? Was that in 2019 or was that more of like, it kind of was obvious to you guys? >> Absolutely. I mean Brad puts this pretty effectively where he describes how we lived through the initial internet revolution, but we were kind of too young to really recognize and comprehend what was happening at the time. And then mobile happened and we were working on different companies that were not in the mobile space. And computer vision feels like the wave that we've caught. Like, this is a technology and capability that rewrites how we interact with the world, how everyone will interact with the world. And so we feel we've been kind of lucky this time, right place, right time of every enterprise will have the ability to improve their operations with computer vision. And so we've been very cognizant of the fact that computer vision is one of those groundbreaking technologies that every company will have as a part of their products and services and offerings, and we can provide the tooling to accelerate that future. >> Yeah, and the developer angle, by the way, I love that because I think, you know, as we've been saying in theCUBE all the time, developer's the new defacto standard bodies because what they adopt is pure, you know, meritocracy. And they pick the best. If it's sell service and it's good and it's got open source community around it, its all in. And they'll vote. They'll vote with their code and that is clear. Now I got to ask you, as you look at the market, we were just having this conversation on theCUBE in Barcelona at recent Mobile World Congress, now called MWC, around 5G versus wifi. And the debate was specifically computer vision, like facial recognition. We were talking about how the Cleveland Browns were using facial recognition for people coming into the stadium they were using it for ships in international ports. So the question was 5G versus wifi. My question is what infrastructure or what are the areas that need to be in place to make computer vision work? If you have developers building apps, apps got to run on stuff. So how do you sort that out in your mind? What's your reaction to that? >> A lot of the times when we see applications that need to run in real time and on video, they'll actually run at the edge without internet. And so a lot of our users will actually take their models and run it in a fully offline environment. Now to act on that information, you'll often need to have internet signal at some point 'cause you'll need to know how many people were in the stadium or what shipping crates are in my port at this point in time. You'll need to relay that information somewhere else, which will require connectivity. But actually using the model and creating the insights at the edge does not require internet. I mean we have users that deploy models on underwater submarines just as much as in outer space actually. And those are not very friendly environments to internet, let alone 5g. And so what you do is you use an edge device, like an Nvidia Jetson is common, mobile devices are common. Intel has some strong edge devices, the Movidius family of chips for example. And you use that compute that runs completely offline in real time to process those signals. Now again, what you do with those signals may require connectivity and that becomes a question of the problem you're solving of how soon you need to relay that information to another place. >> So, that's an architectural issue on the infrastructure. If you're a tactical edge war fighter for instance, you might want to have highly available and maybe high availability. I mean, these are words that mean something. You got storage, but it's not at the edge in real time. But you can trickle it back and pull it down. That's management. So that's more of a business by business decision or environment, right? >> That's right, that's right. Yeah. So I mean we can talk through some specifics. So for example, the RoboFlow actually powers the broadcaster that does the tennis ball tracking at Wimbledon. That runs completely at the edge in real time in, you know, technically to track the tennis ball and point the camera, you actually don't need internet. Now they do have internet of course to do the broadcasting and relay the signal and feeds and these sorts of things. And so that's a case where you have both edge deployment of running the model and high availability act on that model. We have other instances where customers will run their models on drones and the drone will go and do a flight and it'll say, you know, this many residential homes are in this given area, or this many cargo containers are in this given shipping yard. Or maybe we saw these environmental considerations of soil erosion along this riverbank. The model in that case can run on the drone during flight without internet, but then you only need internet once the drone lands and you're going to act on that information because for example, if you're doing like a study of soil erosion, you don't need to be real time. You just need to be able to process and make use of that information once the drone finishes its flight. >> Well I can imagine a zillion use cases. I heard of a use case interview at a company that does computer vision to help people see if anyone's jumping the fence on their company. Like, they know what a body looks like climbing a fence and they can spot it. Pretty easy use case compared to probably some of the other things, but this is the horizontal use cases, its so many use cases. So how do you guys talk to the marketplace when you say, hey, we have generative AI for commuter vision. You might know language models that's completely different animal because vision's like the world, right? So you got a lot more to do. What's the difference? How do you explain that to customers? What can I build and what's their reaction? >> Because we're such a developer centric company, developers are usually creative and show you the ways that they want to take advantage of new technologies. I mean, we've had people use things for identifying conveyor belt debris, doing gas leak detection, measuring the size of fish, airplane maintenance. We even had someone that like a hobby use case where they did like a specific sushi identifier. I dunno if you know this, but there's a specific type of whitefish that if you grew up in the western hemisphere and you eat it in the eastern hemisphere, you get very sick. And so there was someone that made an app that tells you if you happen to have that fish in the sushi that you're eating. But security camera analysis, transportation flows, plant disease detection, really, you know, smarter cities. We have people that are doing curb management identifying, and a lot of these use cases, the fantastic thing about building tools for developers is they're a creative bunch and they have these ideas that if you and I sat down for 15 minutes and said, let's guess every way computer vision can be used, we would need weeks to list all the example use cases. >> We'd miss everything. >> And we'd miss. And so having the community show us the ways that they're using computer vision is impactful. Now that said, there are of course commercial industries that have discovered the value and been able to be out of the gate. And that's where we have the Fortune 100 customers, like we do. Like the retail customers in the Walmart sector, healthcare providers like Medtronic, or vehicle manufacturers like Rivian who all have very difficult either supply chain, quality assurance, in stock, out of stock, anti-theft protection considerations that require successfully making sense of the real world. >> Let me ask you a question. This is maybe a little bit in the weeds, but it's more developer focused. What are some of the developer profiles that you're seeing right now in terms of low-hanging fruit applications? And can you talk about the academic impact? Because I imagine if I was in school right now, I'd be all over it. Are you seeing Master's thesis' being worked on with some of your stuff? Is the uptake in both areas of younger pre-graduates? And then inside the workforce, What are some of the devs like? Can you share just either what their makeup is, what they work on, give a little insight into the devs you're working with. >> Leading developers that want to be on state-of-the-art technology build with RoboFlow because they know they can use the best in class open source. They know that they can get the most out of their data. They know that they can deploy extremely quickly. That's true among students as you mentioned, just as much as as industries. So we welcome students and I mean, we have research grants that will regularly support for people to publish. I mean we actually have a channel inside our internal slack where every day, more student publications that cite building with RoboFlow pop up. And so, that helps inspire some of the use cases. Now what's interesting is that the use case is relatively, you know, useful or applicable for the business or the student. In other words, if a student does a thesis on how to do, we'll say like shingle damage detection from satellite imagery and they're just doing that as a master's thesis, in fact most insurance businesses would be interested in that sort of application. So, that's kind of how we see uptick and adoption both among researchers who want to be on the cutting edge and publish, both with RoboFlow and making use of open source tools in tandem with the tool that we provide, just as much as industry. And you know, I'm a big believer in the philosophy that kind of like what the hackers are doing nights and weekends, the Fortune 500 are doing in a pretty short order period of time and we're experiencing that transition. Computer vision used to be, you know, kind of like a PhD, multi-year investment endeavor. And now with some of the tooling that we're working on in open source technologies and the compute that's available, these science fiction ideas are possible in an afternoon. And so you have this idea of maybe doing asset management or the aerial observation of your shingles or things like this. You have a few hundred images and you can de-risk whether that's possible for your business today. So there's pretty broad-based adoption among both researchers that want to be on the state of the art, as much as companies that want to reduce the time to value. >> You know, Joseph, you guys and your partner have got a great front row seat, ground floor, presented creation wave here. I'm seeing a pattern emerging from all my conversations on theCUBE with founders that are successful, like yourselves, that there's two kind of real things going on. You got the enterprises grabbing the products and retrofitting into their legacy and rebuilding their business. And then you have startups coming out of the woodwork. Young, seeing greenfield or pick a specific niche or focus and making that the signature lever to move the market. >> That's right. >> So can you share your thoughts on the startup scene, other founders out there and talk about that? And then I have a couple questions for like the enterprises, the old school, the existing legacy. Little slower, but the startups are moving fast. What are some of the things you're seeing as startups are emerging in this field? >> I think you make a great point that independent of RoboFlow, very successful, especially developer focused businesses, kind of have three customer types. You have the startups and maybe like series A, series B startups that you're building a product as fast as you can to keep up with them, and they're really moving just as fast as as you are and pulling the product out at you for things that they need. The second segment that you have might be, call it SMB but not enterprise, who are able to purchase and aren't, you know, as fast of moving, but are stable and getting value and able to get to production. And then the third type is enterprise, and that's where you have typically larger contract value sizes, slower moving in terms of adoption and feedback for your product. And I think what you see is that successful companies balance having those three customer personas because you have the small startups, small fast moving upstarts that are discerning buyers who know the market and elect to build on tooling that is best in class. And so you basically kind of pass the smell test of companies who are quite discerning in their purchases, plus are moving so quick they're pulling their product out of you. Concurrently, you have a product that's enterprise ready to service the scalability, availability, and trust of enterprise buyers. And that's ultimately where a lot of companies will see tremendous commercial success. I mean I remember seeing the Twilio IPO, Uber being like a full 20% of their revenue, right? And so there's this very common pattern where you have the ability to find some of those upstarts that you make bets on, like the next Ubers of the world, the smaller companies that continue to get developed with the product and then the enterprise whom allows you to really fund the commercial success of the business, and validate the size of the opportunity in market that's being creative. >> It's interesting, there's so many things happening there. It's like, in a way it's a new category, but it's not a new category. It becomes a new category because of the capabilities, right? So, it's really interesting, 'cause that's what you're talking about is a category, creating. >> I think developer tools. So people often talk about B to B and B to C businesses. I think developer tools are in some ways a third way. I mean ultimately they're B to B, you're selling to other businesses and that's where your revenue's coming from. However, you look kind of like a B to C company in the ways that you measure product adoption and kind of go to market. In other words, you know, we're often tracking the leading indicators of commercial success in the form of usage, adoption, retention. Really consumer app, traditionally based metrics of how to know you're building the right stuff, and that's what product led growth companies do. And then you ultimately have commercial traction in a B to B way. And I think that that actually kind of looks like a third thing, right? Like you can do these sort of funny zany marketing examples that you might see historically from consumer businesses, but yet you ultimately make your money from the enterprise who has these de-risked high value problems you can solve for them. And I selfishly think that that's the best of both worlds because I don't have to be like Evan Spiegel, guessing the next consumer trend or maybe creating the next consumer trend and catching lightning in a bottle over and over again on the consumer side. But I still get to have fun in our marketing and make sort of fun, like we're launching the world's largest game of rock paper scissors being played with computer vision, right? Like that's sort of like a fun thing you can do, but then you can concurrently have the commercial validation and customers telling you the things that they need to be built for them next to solve commercial pain points for them. So I really do think that you're right by calling this a new category and it really is the best of both worlds. >> It's a great call out, it's a great call out. In fact, I always juggle with the VC. I'm like, it's so easy. Your job is so easy to pick the winners. What are you talking about its so easy? I go, just watch what the developers jump on. And it's not about who started, it could be someone in the dorm room to the boardroom person. You don't know because that B to C, the C, it's B to D you know? You know it's developer 'cause that's a human right? That's a consumer of the tool which influences the business that never was there before. So I think this direct business model evolution, whether it's media going direct or going direct to the developers rather than going to a gatekeeper, this is the reality. >> That's right. >> Well I got to ask you while we got some time left to describe, I want to get into this topic of multi-modality, okay? And can you describe what that means in computer vision? And what's the state of the growth of that portion of this piece? >> Multi modality refers to using multiple traditionally siloed problem types, meaning text, image, video, audio. So you could treat an audio problem as only processing audio signal. That is not multimodal, but you could use the audio signal at the same time as a video feed. Now you're talking about multi modality. In computer vision, multi modality is predominantly happening with images and text. And one of the biggest releases in this space is actually two years old now, was clip, contrastive language image pre-training, which took 400 million image text pairs and basically instead of previously when you do classification, you basically map every single image to a single class, right? Like here's a bunch of images of chairs, here's a bunch of images of dogs. What clip did is used, you can think about it like, the class for an image being the Instagram caption for the image. So it's not one single thing. And by training on understanding the corpora, you basically see which words, which concepts are associated with which pixels. And this opens up the aperture for the types of problems and generalizability of models. So what does this mean? This means that you can get to value more quickly from an existing trained model, or at least validate that what you want to tackle with a computer vision, you can get there more quickly. It also opens up the, I mean. Clip has been the bedrock of some of the generative image techniques that have come to bear, just as much as some of the LLMs. And increasingly we're going to see more and more of multi modality being a theme simply because at its core, you're including more context into what you're trying to understand about the world. I mean, in its most basic sense, you could ask yourself, if I have an image, can I know more about that image with just the pixels? Or if I have the image and the sound of when that image was captured or it had someone describe what they see in that image when the image was captured, which one's going to be able to get you more signal? And so multi modality helps expand the ability for us to understand signal processing. >> Awesome. And can you just real quick, define clip for the folks that don't know what that means? >> Yeah. Clip is a model architecture, it's an acronym for contrastive language image pre-training and like, you know, model architectures that have come before it captures the almost like, models are kind of like brands. So I guess it's a brand of a model where you've done these 400 million image text pairs to match up which visual concepts are associated with which text concepts. And there have been new releases of clip, just at bigger sizes of bigger encoding's, of longer strings of texture, or larger image windows. But it's been a really exciting advancement that OpenAI released in January, 2021. >> All right, well great stuff. We got a couple minutes left. Just I want to get into more of a company-specific question around culture. All startups have, you know, some sort of cultural vibe. You know, Intel has Moore's law doubles every whatever, six months. What's your culture like at RoboFlow? I mean, if you had to describe that culture, obviously love the hacking story, you and your partner with the games going number one on Product Hunt next to Elon and Tesla and then hey, we should start a company two years later. That's kind of like a curious, inventing, building, hard charging, but laid back. That's my take. How would you describe the culture? >> I think that you're right. The culture that we have is one of shipping, making things. So every week each team shares what they did for our customers on a weekly basis. And we have such a strong emphasis on being better week over week that those sorts of things compound. So one big emphasis in our culture is getting things done, shipping, doing things for our customers. The second is we're an incredibly transparent place to work. For example, how we think about giving decisions, where we're progressing against our goals, what problems are biggest and most important for the company is all open information for those that are inside the company to know and progress against. The third thing that I'd use to describe our culture is one that thrives with autonomy. So RoboFlow has a number of individuals who have founded companies before, some of which have sold their businesses for a hundred million plus upon exit. And the way that we've been able to attract talent like that is because the problems that we're tackling are so immense, yet individuals are able to charge at it with the way that they think is best. And this is what pairs well with transparency. If you have a strong sense of what the company's goals are, how we're progressing against it, and you have this ownership mentality of what can I do to change or drive progress against that given outcome, then you create a really healthy pairing of, okay cool, here's where the company's progressing. Here's where things are going really well, here's the places that we most need to improve and work on. And if you're inside that company as someone who has a preponderance to be a self-starter and even a history of building entire functions or companies yourself, then you're going to be a place where you can really thrive. You have the inputs of the things where we need to work on to progress the company's goals. And you have the background of someone that is just necessarily a fast moving and ambitious type of individual. So I think the best way to describe it is a transparent place with autonomy and an emphasis on getting things done. >> Getting shit done as they say. Getting stuff done. Great stuff. Hey, final question. Put a plug out there for the company. What are you going to hire? What's your pipeline look like for people? What jobs are open? I'm sure you got hiring all around. Give a quick plug for the company what you're looking for. >> I appreciate you asking. Basically you're either building the product or helping customers be successful with the product. So in the building product category, we have platform engineering roles, machine learning engineering roles, and we're solving some of the hardest and most impactful problems of bringing such a groundbreaking technology to the masses. And so it's a great place to be where you can kind of be your own user as an engineer. And then if you're enabling people to be successful with the products, I mean you're working in a place where there's already such a strong community around it and you can help shape, foster, cultivate, activate, and drive commercial success in that community. So those are roles that tend themselves to being those that build the product for developer advocacy, those that are account executives that are enabling our customers to realize commercial success, and even hybrid roles like we call it field engineering, where you are a technical resource to drive success within customer accounts. And so all this is listed on roboflow.com/careers. And one thing that I actually kind of want to mention John that's kind of novel about the thing that's working at RoboFlow. So there's been a lot of discussion around remote companies and there's been a lot of discussion around in-person companies and do you need to be in the office? And one thing that we've kind of recognized is you can actually chart a third way. You can create a third way which we call satellite, which basically means people can work from where they most like to work and there's clusters of people, regular onsite's. And at RoboFlow everyone gets, for example, $2,500 a year that they can use to spend on visiting coworkers. And so what's sort of organically happened is team numbers have started to pull together these resources and rent out like, lavish Airbnbs for like a week and then everyone kind of like descends in and works together for a week and makes and creates things. And we call this lighthouses because you know, a lighthouse kind of brings ships into harbor and we have an emphasis on shipping. >> Yeah, quality people that are creative and doers and builders. You give 'em some cash and let the self-governing begin, you know? And like, creativity goes through the roof. It's a great story. I think that sums up the culture right there, Joseph. Thanks for sharing that and thanks for this great conversation. I really appreciate it and it's very inspiring. Thanks for coming on. >> Yeah, thanks for having me, John. >> Joseph Nelson, co-founder and CEO of RoboFlow. Hot company, great culture in the right place in a hot area, computer vision. This is going to explode in value. The edge is exploding. More use cases, more development, and developers are driving the change. Check out RoboFlow. This is theCUBE. I'm John Furrier, your host. Thanks for watching. (gentle music)
SUMMARY :
Welcome to this CUBE conversation You're in the middle of it. And the wave is still building the company is that you're doing. maybe 2% of the whole economy And as you know, when you it kind of was obvious to you guys? cognizant of the fact that I love that because I think, you know, And so what you do is issue on the infrastructure. and the drone will go and the marketplace when you say, in the sushi that you're eating. And so having the And can you talk about the use case is relatively, you know, and making that the signature What are some of the things you're seeing and pulling the product out at you because of the capabilities, right? in the ways that you the C, it's B to D you know? And one of the biggest releases And can you just real quick, and like, you know, I mean, if you had to like that is because the problems Give a quick plug for the place to be where you can the self-governing begin, you know? and developers are driving the change.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brad | PERSON | 0.99+ |
Joseph | PERSON | 0.99+ |
Joseph Nelson | PERSON | 0.99+ |
January, 2021 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
Medtronic | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
2019 | DATE | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
400 million | QUANTITY | 0.99+ |
Evan Spiegel | PERSON | 0.99+ |
24 months | QUANTITY | 0.99+ |
2017 | DATE | 0.99+ |
RoboFlow | ORGANIZATION | 0.99+ |
15 minutes | QUANTITY | 0.99+ |
Rivian | ORGANIZATION | 0.99+ |
12 months | QUANTITY | 0.99+ |
20% | QUANTITY | 0.99+ |
Cardinal Health | ORGANIZATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Wimbledon | EVENT | 0.99+ |
roboflow.com/careers | OTHER | 0.99+ |
first | QUANTITY | 0.99+ |
second segment | QUANTITY | 0.99+ |
each team | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
both worlds | QUANTITY | 0.99+ |
2% | QUANTITY | 0.99+ |
two years later | DATE | 0.98+ |
Mobile World Congress | EVENT | 0.98+ |
Ubers | ORGANIZATION | 0.98+ |
third way | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
a week | QUANTITY | 0.98+ |
Magic Sudoku | TITLE | 0.98+ |
second | QUANTITY | 0.98+ |
Nvidia | ORGANIZATION | 0.98+ |
Sudoku | TITLE | 0.98+ |
MWC | EVENT | 0.97+ |
today | DATE | 0.97+ |
billion dollar | QUANTITY | 0.97+ |
one single thing | QUANTITY | 0.97+ |
over a hundred thousand developers | QUANTITY | 0.97+ |
four | QUANTITY | 0.97+ |
third | QUANTITY | 0.96+ |
Elon | ORGANIZATION | 0.96+ |
third thing | QUANTITY | 0.96+ |
Tesla | ORGANIZATION | 0.96+ |
Jetson | COMMERCIAL_ITEM | 0.96+ |
Elon | PERSON | 0.96+ |
RoboFlow | TITLE | 0.96+ |
ORGANIZATION | 0.95+ | |
Twilio | ORGANIZATION | 0.95+ |
twenties | QUANTITY | 0.95+ |
Product Hunt AR | TITLE | 0.95+ |
Moore | PERSON | 0.95+ |
both researchers | QUANTITY | 0.95+ |
one thing | QUANTITY | 0.94+ |
Mobile Word Congress Preview 2023 | Mobile Word Congress 2023
(upbeat music) >> Telecommunic^ations is well north of a trillion-dollar business globally that provides critical services on which virtually everyone on the planet relies. Dramatic changes are occurring in the sector, and one of the most important dimensions of this change is the underlying infrastructure that powers global telecommunications networks. Telcos have been thawing out, if you will, their frozen infrastructure, modernizing. They're opening up. They're disaggregating their infrastructure, separating, for example, the control plane from the data plane and adopting open standards. Telco infrastructure is becoming software-defined, and leading telcos are adopting cloud-native microservices to help make developers more productive, so they can respond more quickly to market changes. They're embracing technology consumption models and selectively leveraging the cloud where it makes sense, and these changes are being driven by market forces, the root of which stem from customer demand. So from a customer's perspective, they want services, and they want them fast, meaning not only at high speeds, but also they want them now. Customers want the latest, the greatest, and they want these services to be reliable and stable with high quality of service levels, and they want them to be highly cost effective. Hello and welcome to this preview of Mobile World Congress 2023. My name is Dave Vellante and at this year's event, theCUBE has a major presence at the show, made possible by Dell Technologies, and with me, to unpack the trends in Telco and look ahead to MWC 23, Dennis Hoffman. He's the senior vice-president and general manager of Dell's telecom business and Aaron Chaisson, who is the vice-president of telecom and edge solutions marketing at Dell Technologies. Gentlemen, welcome. Thanks so much for spending some time with me. >> Thank you, Dave. >> Thanks, glad to be here. So, Dennis, let's start with you. Telcos in recent history have been slow to deliver and to monetize new services, in a large part, because their purpose-built infrastructure can been somewhat of a barrier to respondent to these market forces. In many ways, this is what makes telecoms, really, this market, so exciting. So from your perspective, where is the action in this space? >> Yeah, the action, Dave, is kind of all over the place, partly because it's an ecosystem play. You know, I think it's been, as you point out, the disaggregation trend has been going on for a while. The opportunity's been clear, but it has taken a few years to get all of the vendors and all of the components that make up a solution, as well as the operators themselves, to a point where we can start putting this stuff together and actually achieving some of the promise. >> So, Aaron, for those who might not be as familiar with Dell's a activities in this area, you know, here we are just ahead of Mobile World Congress. It's the largest event for telecoms. What should people know about Dell, and what's the key message to this industry? >> Sure, yeah, I think everybody knows that there's a lot of innovation that's been happening in the industry of late. One of the major trends that we're seeing is that shift from more of a vertically-integrated technology stack to more of a disaggregated set of solutions, and that trend has actually created a ton of innovation that's happening across the industry, well, along technology vendors and providers, the telecoms themselves, and so one of the things that Dell's really looking to do is, as Dennis talked about, is build out a really strong ecosystem of partners and vendors that we're working closely together to be able to collaborate on new technologies, new capabilities, that are solving challenges that the networks are seeing today, be able to create new solutions built on those in order to be able to bring new value to the industry and then finally, we want to help both partners as well as our CSP providers activate those changes so that they can bring new solutions to market to be able to serve their customers, and so the key areas that we're really focusing on, with our customers, is technologies to help modernize the network to be able to capitalize on the value of open architectures and bring price performance to what they're expecting and availability that they're expecting today and then also partner with the lines of business to be able to take these new capabilities, produce new solutions and then deliver new value to their customers. >> Great, thank you, Aaron. So, Dennis, I have known you for a number of years. I've watched you. You are a trend spotter, and you're a strategic thinker, and I love now the fact that you're running a business that you had to go out and analyze, and now you got got to make it happen. So how would you describe Dell's strategy in this market? >> Well, it's really two things, and I appreciate the comment. I'm not sure how much of a trend spotter I am, but I certainly enjoy, and I think I'm fascinated by what's going on in this industry right now. Our two main thrusts, Dave, are, first round, trying to catalyze that ecosystem, you know, be a force for pulling together a group of folks, vendors, that have been flying in fairly loose formation for a couple of years to deliver the kinds of solutions that move the needle forward and produce the outcomes that our network-operator customers can actually buy, and consume, and deploy, and have them be supported. The other thing is there's a couple of very key technology areas that need to be advanced here. This ends up being a much anticipated year, in telecom, because of the delivery of some open infrastructure solutions that have been being developed for years, with the Intel Sapphire Rapids program coming to market. We've of course got some purpose-built solutions on top of that for telecommunications networks, some expanded partnerships in the area of multi-cloud infrastructure, and so I would say the second main thrust is we've got to bring some intellectual property to the party. It's not just about pulling the ecosystem together, but those two things together really form the twin thrusts of our strategy. >> Okay, so as you point out, you're obviously not going to go alone in this market. It's way too broad. There's so many routes to market, partnerships, obviously, very, very important. So can you share a little bit more about the ecosystem and partners, maybe give some examples of some of the key partners that you'd be highlighting or working with, maybe at Mobile World Congress or other activities this year? >> Yeah, absolutely. You know, as Aaron touched on. I'm a visual thinker. The way I think about this thing is a very, very vertical architecture is tipping sideways. It's becoming horizontal, and all of the layers of that horizontal architecture are really where the partnerships are at. So let's start at the bottom, silicon. The silicon ecosystem is very much focused on this market and producing very specific products to enable open, high-performance telecom networks. That's both in the form of host processors as well as accelerators. One layer up, of course, is the stuff that we're known for, subsystems, compute, storage, the hardware infrastructure that forms the foundation for telco clouds. A layer above that, all of the cloud software layer, the virtualization and containerization software and all of the usual suspects there, all of whom are very good partners of ours, and we're looking to expand that pretty broadly this year, and then at the top of the layer cake, all of the network functions, all of the VNFs and CNFs that were once kind of the top of proprietary stacks that are now opening up and being delivered as well-formed containers that can run on these clouds. So, you know, we're focusing on all of those, if you will, product partnerships, and there is a services wrapper around all of it, the systems integration necessary to make these systems part of a carrier's network, which, of course, has been running for a long time and needs to be integrated with in a very specific way, and so all of that together kind of forms the ecosystem. All of those are partners, and we're really excited about being at the heart of it. >> Interesting, it's not like we've never seen this movie before, which is sort of repeating itself in telco. Aaron, you heard my little intro up front about the need to modernize infrastructure. I wonder if I could touch on, you know, another major trend which we're seeing, is the cloud, and I'm talking about, not only public, but private and hybrid cloud. The public cloud is an opportunity, but it's also a threat for telcos. You know, telecom providers are looking to the public cloud for specific use cases. You think about, like, bursting for an iPhone launch or whatever but at the same time, these cloud vendors, they're sort of competing with telcos. They're providing, you know, local zones, for example, sometimes trying to do an end run on the telco connectivity services. So telecom companies, they have to find the right balance between what they own and what they rent, and I wonder if you could add some color as to what you see in the market and what Dell, specifically, is doing to support these trends. >> Yeah, I think the most important thing is what we're seeing, as you said, is these aren't things that we haven't seen before, and I think that telecom is really going through their own set of cloud transformations, and so one of the hot topics in the industry now is what is telco cloud and what does that look like going forward? And it's going to be a, as you said, a combination of services that they offer, services that they leverage, but at the end of the day, it's going to help them modernize how they deliver telecommunication services to their customers and then provide value-added services on top of that. From a Dell perspective, you know, we're really providing the technologies to provide the underpinnings to lay a foundation on which that network can be built, whether that's best-of-breed servers that are built and designed for the telecom environments. Recently we announced our, our Infra Block program in partnering with virtualization providers to be able to provide engineered systems that dramatically simplify how our customers can deploy, manage and lifecycle-manage throughout day-two operations, an entire cloud environment, and whether they're using Red Hat, whether they're using Wind River or VMware or other virtualization layers, they can deploy the right virtualization layer at the right part of their network to support the applications they're looking to drive, and Dell is looking to solve how they simplify and manage all of that, both from a hardware as well as a management software perspective. So this is really what Dell's doing to, again, partner with the broader technology community to help make that telco cloud a reality. >> Aaron, let's stay here for a second. I'm interested in some of the use cases that you're going after with customers. You've got edge infrastructure, remote work, 5G. Where's security fit? What are the focus areas for Dell, and can we double-click on that a little bit? >> Yeah, I mean, I think there's two main areas of telecommunication industry that we're talking to. One, we've really been talking about sort of the network buyer, how do they modernize the core, the network edge, the RAN capabilities, to deliver traditional telecommunication services and modernize that as they move into 5G and beyond. I think the other side of the business is telecoms are really looking, from a line of business perspective, to figure out how do they monetize that network and be able to deliver value-added services to their enterprise customers on top of these new networks. So you were just touching on a couple of things that are really critical. You know, in the enterprise space, AI and IoT is driving a tremendous amount of innovation out there, and there's a need for being able to support and manage edge compute at scale, be able to provide connectivity, like private mobility and 4G and 5G, being able to support things like mobile workforces and client capabilities to be able to access these devices that are around all of these edge environments of the enterprises, and telecoms are seen as that, as an opportunity for them to not only provide connectivity, but how do they extend their cloud out into these enterprise environments with compute, with connectivity, with client and connectivity resources, and even also provide protection for those environments as well. So these are areas that Dell's historically very strong at, being able to provide compute, being able to provide connectivity and being able to provide data protection and client services. We are looking to work closely with lines of businesses to be able to develop solutions that they can bring to market in combination with us to be able to serve their end user customers and their enterprises. So those are really the two key areas, not only network buyer, but being able to enable the lines of business to go and capitalize on the services they're developing for their customers. >> I think that line of business aspect is key. I mean, the telcos have had to sit back and provide the plumbing. Cost per bit goes down. Data consumption going through the roof. All the way over to the top guys, you know, had the field day with the data and the customer relationships, and now it's almost like the revenge of the telcos. (chuckles) Dennis, I wonder if we could talk about the future. What can we expect in the years ahead from Dell, if you, you know, break out the binoculars a little bit? >> Yeah, I think you hit it earlier. We've seen the movie before. This has happened in the IT data center. We went from proprietary vertical solutions to horizontal open systems. We went from client server to software-defined, open-hardware, cloud-native and you know, the trend is likely to be exactly that, in the telecom industry, because that's what the operators want. They're not naive to what's happened in the IT data center. They all run very large data centers, and they're trying to get some of the scale economies, some of the agility, the cost of ownership benefits for the reasons Aaron just discussed. You know, it's clear, as you point out, this industry's been really defined by the inability to stop investing and the difficulty to monetize that investment, and I think now everybody's looking at this 5G, and, frankly, 5G plus, 6G and beyond, as the opportunity to really go get a chunk of that revenue, and enterprise edge is the target. >> And 5G is touching so many industries, and that kind of brings me here into Mobile World Congress. I mean, you look at the floor layout, it's amazing. You got industry 4.0. You've got, you know, our traditional industry and telco colliding. There's public policy. So give us a teaser to Mobile World Congress '23. What's on deck at the show for from Dell? >> Yeah, we're really excited about Mobile World Congress. This, as you know, is a massive event for the industry every year, and it's really the event that the whole industry uses to kick off this coming year. So we're going to be using this, obviously, to talk to our customers and our partners about what Dell's looking to do and what we're innovating on right now, and what we're looking to partner with them around. In the front of the house, we're going to be highlighting 13 different solutions and demonstrations to be able to show our customers what we're doing today and show them the use cases and put it into action, so they get to actually look and feel and touch and experience what it is that we're working around. Obviously, meetings are important. Everybody knows Mobile World Congress is the place to get those meetings and kick off for the year. You know, we're looking at several hundred meetings, hundreds of meetings that we're going to be looking to have across the industry with our customers and partners and the broader community, and, of course, we've also got technology that's going to be in a variety of different partner spaces as well. So you can come and see us in hall three, but we're also going to have technologies kind of spread all over the floor, and, of course, there's always theCUBE. You're going to be able to see us live all four days, all day, every day. You're going to be hearing our executives, our partners, our customers, talk about, you know, what Dell is doing to innovate in the industry and how we're looking to leverage the broader open ecosystem to be able to transform, you know, the network and what we're looking to do. So in that space, we're going to be focusing on what we're doing from an ecosystem perspective, our infrastructure focus. We'll be talking about what we're doing to support telco cloud transformation and then finally, as we talked about earlier, how are we helping the lines of business within our telecoms monetize the opportunity. So these are all different things we're really excited to be focusing on and look forward to the event next month. >> Yeah, it's going to be awesome In Barcelona at the Fira. As you say, Dell's big presence in Hall three. Orange is in there, Deutsche Telekom. Intel's in Hall three. VMware's there, Nokia, Vodafone. You got great things to see there. Check that out and of course, theCUBE, we are super excited to be collaborating with you. We got a great setup. We're in the walkway, right between halls four and five, right across from the Government of Catalonia, who are the host partners for the event. So there's going to be a ton of action there. Guys, can't wait to see you there. Really appreciate your time today. >> Great, thanks. >> All right, Mobile World Congress, theCUBE's coverage starts on February 27th, right after the keynotes. So first thing in the morning, East coast time, we'll be broadcasting, as Aaron said, all week, Monday through Thursday, on the show floor. Check that out at thecube.net. Siliconangle.com has all the written coverage, and go to dell.com, see what's happening there. Have all the action from the event. Don't miss us. This is Dave Vellante. We'll see you there. (upbeat music)
SUMMARY :
and one of the most important dimensions and to monetize new and all of the components It's the largest event for telecoms. the network to be able to and I love now the fact that of solutions that move the of some of the key partners and all of the layers about the need to and so one of the hot topics I'm interested in some of the use cases the lines of business to go and capitalize and now it's almost like the revenge as the opportunity to really What's on deck at the show for from Dell? and partners and the broader community, So there's going to be and go to dell.com, see
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Aaron | PERSON | 0.99+ |
Dennis | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Aaron Chaisson | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Dennis Hoffman | PERSON | 0.99+ |
Vodafone | ORGANIZATION | 0.99+ |
February 27th | DATE | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Orange | ORGANIZATION | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Mobile World Congress | EVENT | 0.99+ |
hundreds | QUANTITY | 0.99+ |
thecube.net | OTHER | 0.99+ |
Thursday | DATE | 0.99+ |
second | QUANTITY | 0.99+ |
Nokia | ORGANIZATION | 0.99+ |
Mobile World Congress | EVENT | 0.99+ |
13 different solutions | QUANTITY | 0.99+ |
Telcos | ORGANIZATION | 0.99+ |
next month | DATE | 0.99+ |
two key areas | QUANTITY | 0.99+ |
Monday | DATE | 0.98+ |
first round | QUANTITY | 0.98+ |
Deutsche Telekom | ORGANIZATION | 0.98+ |
two things | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Government of Catalonia | ORGANIZATION | 0.98+ |
Mobile Word Congress | EVENT | 0.97+ |
both | QUANTITY | 0.97+ |
MWC 23 | EVENT | 0.97+ |
Mobile World Congress 2023 | EVENT | 0.97+ |
Intel | ORGANIZATION | 0.97+ |
VMware | ORGANIZATION | 0.97+ |
One | QUANTITY | 0.97+ |
this year | DATE | 0.96+ |
one | QUANTITY | 0.96+ |
two main areas | QUANTITY | 0.96+ |
first | QUANTITY | 0.95+ |
both partners | QUANTITY | 0.94+ |
twin thrusts | QUANTITY | 0.94+ |
five | QUANTITY | 0.93+ |
Red Hat | TITLE | 0.93+ |
One layer | QUANTITY | 0.92+ |
telco | ORGANIZATION | 0.92+ |
Fira | LOCATION | 0.91+ |
a trillion-dollar | QUANTITY | 0.91+ |
theCUBE | ORGANIZATION | 0.9+ |
two | QUANTITY | 0.88+ |
hundred meetings | QUANTITY | 0.86+ |
Mobile World Congress '23 | EVENT | 0.83+ |
two main thrusts | QUANTITY | 0.82+ |
2023 | DATE | 0.8+ |
Breaking Analysis: ChatGPT Won't Give OpenAI First Mover Advantage
>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> OpenAI The company, and ChatGPT have taken the world by storm. Microsoft reportedly is investing an additional 10 billion dollars into the company. But in our view, while the hype around ChatGPT is justified, we don't believe OpenAI will lock up the market with its first mover advantage. Rather, we believe that success in this market will be directly proportional to the quality and quantity of data that a technology company has at its disposal, and the compute power that it could deploy to run its system. Hello and welcome to this week's Wikibon CUBE insights, powered by ETR. In this Breaking Analysis, we unpack the excitement around ChatGPT, and debate the premise that the company's early entry into the space may not confer winner take all advantage to OpenAI. And to do so, we welcome CUBE collaborator, alum, Sarbjeet Johal, (chuckles) and John Furrier, co-host of the Cube. Great to see you Sarbjeet, John. Really appreciate you guys coming to the program. >> Great to be on. >> Okay, so what is ChatGPT? Well, actually we asked ChatGPT, what is ChatGPT? So here's what it said. ChatGPT is a state-of-the-art language model developed by OpenAI that can generate human-like text. It could be fine tuned for a variety of language tasks, such as conversation, summarization, and language translation. So I asked it, give it to me in 50 words or less. How did it do? Anything to add? >> Yeah, think it did good. It's large language model, like previous models, but it started applying the transformers sort of mechanism to focus on what prompt you have given it to itself. And then also the what answer it gave you in the first, sort of, one sentence or two sentences, and then introspect on itself, like what I have already said to you. And so just work on that. So it it's self sort of focus if you will. It does, the transformers help the large language models to do that. >> So to your point, it's a large language model, and GPT stands for generative pre-trained transformer. >> And if you put the definition back up there again, if you put it back up on the screen, let's see it back up. Okay, it actually missed the large, word large. So one of the problems with ChatGPT, it's not always accurate. It's actually a large language model, and it says state of the art language model. And if you look at Google, Google has dominated AI for many times and they're well known as being the best at this. And apparently Google has their own large language model, LLM, in play and have been holding it back to release because of backlash on the accuracy. Like just in that example you showed is a great point. They got almost right, but they missed the key word. >> You know what's funny about that John, is I had previously asked it in my prompt to give me it in less than a hundred words, and it was too long, I said I was too long for Breaking Analysis, and there it went into the fact that it's a large language model. So it largely, it gave me a really different answer the, for both times. So, but it's still pretty amazing for those of you who haven't played with it yet. And one of the best examples that I saw was Ben Charrington from This Week In ML AI podcast. And I stumbled on this thanks to Brian Gracely, who was listening to one of his Cloudcasts. Basically what Ben did is he took, he prompted ChatGPT to interview ChatGPT, and he simply gave the system the prompts, and then he ran the questions and answers into this avatar builder and sped it up 2X so it didn't sound like a machine. And voila, it was amazing. So John is ChatGPT going to take over as a cube host? >> Well, I was thinking, we get the questions in advance sometimes from PR people. We should actually just plug it in ChatGPT, add it to our notes, and saying, "Is this good enough for you? Let's ask the real question." So I think, you know, I think there's a lot of heavy lifting that gets done. I think the ChatGPT is a phenomenal revolution. I think it highlights the use case. Like that example we showed earlier. It gets most of it right. So it's directionally correct and it feels like it's an answer, but it's not a hundred percent accurate. And I think that's where people are seeing value in it. Writing marketing, copy, brainstorming, guest list, gift list for somebody. Write me some lyrics to a song. Give me a thesis about healthcare policy in the United States. It'll do a bang up job, and then you got to go in and you can massage it. So we're going to do three quarters of the work. That's why plagiarism and schools are kind of freaking out. And that's why Microsoft put 10 billion in, because why wouldn't this be a feature of Word, or the OS to help it do stuff on behalf of the user. So linguistically it's a beautiful thing. You can input a string and get a good answer. It's not a search result. >> And we're going to get your take on on Microsoft and, but it kind of levels the playing- but ChatGPT writes better than I do, Sarbjeet, and I know you have some good examples too. You mentioned the Reed Hastings example. >> Yeah, I was listening to Reed Hastings fireside chat with ChatGPT, and the answers were coming as sort of voice, in the voice format. And it was amazing what, he was having very sort of philosophy kind of talk with the ChatGPT, the longer sentences, like he was going on, like, just like we are talking, he was talking for like almost two minutes and then ChatGPT was answering. It was not one sentence question, and then a lot of answers from ChatGPT and yeah, you're right. I, this is our ability. I've been thinking deep about this since yesterday, we talked about, like, we want to do this segment. The data is fed into the data model. It can be the current data as well, but I think that, like, models like ChatGPT, other companies will have those too. They can, they're democratizing the intelligence, but they're not creating intelligence yet, definitely yet I can say that. They will give you all the finite answers. Like, okay, how do you do this for loop in Java, versus, you know, C sharp, and as a programmer you can do that, in, but they can't tell you that, how to write a new algorithm or write a new search algorithm for you. They cannot create a secretive code for you to- >> Not yet. >> Have competitive advantage. >> Not yet, not yet. >> but you- >> Can Google do that today? >> No one really can. The reasoning side of the data is, we talked about at our Supercloud event, with Zhamak Dehghani who's was CEO of, now of Nextdata. This next wave of data intelligence is going to come from entrepreneurs that are probably cross discipline, computer science and some other discipline. But they're going to be new things, for example, data, metadata, and data. It's hard to do reasoning like a human being, so that needs more data to train itself. So I think the first gen of this training module for the large language model they have is a corpus of text. Lot of that's why blog posts are, but the facts are wrong and sometimes out of context, because that contextual reasoning takes time, it takes intelligence. So machines need to become intelligent, and so therefore they need to be trained. So you're going to start to see, I think, a lot of acceleration on training the data sets. And again, it's only as good as the data you can get. And again, proprietary data sets will be a huge winner. Anyone who's got a large corpus of content, proprietary content like theCUBE or SiliconANGLE as a publisher will benefit from this. Large FinTech companies, anyone with large proprietary data will probably be a big winner on this generative AI wave, because it just, it will eat that up, and turn that back into something better. So I think there's going to be a lot of interesting things to look at here. And certainly productivity's going to be off the charts for vanilla and the internet is going to get swarmed with vanilla content. So if you're in the content business, and you're an original content producer of any kind, you're going to be not vanilla, so you're going to be better. So I think there's so much at play Dave (indistinct). >> I think the playing field has been risen, so we- >> Risen and leveled? >> Yeah, and leveled to certain extent. So it's now like that few people as consumers, as consumers of AI, we will have a advantage and others cannot have that advantage. So it will be democratized. That's, I'm sure about that. But if you take the example of calculator, when the calculator came in, and a lot of people are, "Oh, people can't do math anymore because calculator is there." right? So it's a similar sort of moment, just like a calculator for the next level. But, again- >> I see it more like open source, Sarbjeet, because like if you think about what ChatGPT's doing, you do a query and it comes from somewhere the value of a post from ChatGPT is just a reuse of AI. The original content accent will be come from a human. So if I lay out a paragraph from ChatGPT, did some heavy lifting on some facts, I check the facts, save me about maybe- >> Yeah, it's productive. >> An hour writing, and then I write a killer two, three sentences of, like, sharp original thinking or critical analysis. I then took that body of work, open source content, and then laid something on top of it. >> And Sarbjeet's example is a good one, because like if the calculator kids don't do math as well anymore, the slide rule, remember we had slide rules as kids, remember we first started using Waze, you know, we were this minority and you had an advantage over other drivers. Now Waze is like, you know, social traffic, you know, navigation, everybody had, you know- >> All the back roads are crowded. >> They're car crowded. (group laughs) Exactly. All right, let's, let's move on. What about this notion that futurist Ray Amara put forth and really Amara's Law that we're showing here, it's, the law is we, you know, "We tend to overestimate the effect of technology in the short run and underestimate it in the long run." Is that the case, do you think, with ChatGPT? What do you think Sarbjeet? >> I think that's true actually. There's a lot of, >> We don't debate this. >> There's a lot of awe, like when people see the results from ChatGPT, they say what, what the heck? Like, it can do this? But then if you use it more and more and more, and I ask the set of similar question, not the same question, and it gives you like same answer. It's like reading from the same bucket of text in, the interior read (indistinct) where the ChatGPT, you will see that in some couple of segments. It's very, it sounds so boring that the ChatGPT is coming out the same two sentences every time. So it is kind of good, but it's not as good as people think it is right now. But we will have, go through this, you know, hype sort of cycle and get realistic with it. And then in the long term, I think it's a great thing in the short term, it's not something which will (indistinct) >> What's your counter point? You're saying it's not. >> I, no I think the question was, it's hyped up in the short term and not it's underestimated long term. That's what I think what he said, quote. >> Yes, yeah. That's what he said. >> Okay, I think that's wrong with this, because this is a unique, ChatGPT is a unique kind of impact and it's very generational. People have been comparing it, I have been comparing to the internet, like the web, web browser Mosaic and Netscape, right, Navigator. I mean, I clearly still remember the days seeing Navigator for the first time, wow. And there weren't not many sites you could go to, everyone typed in, you know, cars.com, you know. >> That (indistinct) wasn't that overestimated, the overhyped at the beginning and underestimated. >> No, it was, it was underestimated long run, people thought. >> But that Amara's law. >> That's what is. >> No, they said overestimated? >> Overestimated near term underestimated- overhyped near term, underestimated long term. I got, right I mean? >> Well, I, yeah okay, so I would then agree, okay then- >> We were off the charts about the internet in the early days, and it actually exceeded our expectations. >> Well there were people who were, like, poo-pooing it early on. So when the browser came out, people were like, "Oh, the web's a toy for kids." I mean, in 1995 the web was a joke, right? So '96, you had online populations growing, so you had structural changes going on around the browser, internet population. And then that replaced other things, direct mail, other business activities that were once analog then went to the web, kind of read only as you, as we always talk about. So I think that's a moment where the hype long term, the smart money, and the smart industry experts all get the long term. And in this case, there's more poo-pooing in the short term. "Ah, it's not a big deal, it's just AI." I've heard many people poo-pooing ChatGPT, and a lot of smart people saying, "No this is next gen, this is different and it's only going to get better." So I think people are estimating a big long game on this one. >> So you're saying it's bifurcated. There's those who say- >> Yes. >> Okay, all right, let's get to the heart of the premise, and possibly the debate for today's episode. Will OpenAI's early entry into the market confer sustainable competitive advantage for the company. And if you look at the history of tech, the technology industry, it's kind of littered with first mover failures. Altair, IBM, Tandy, Commodore, they and Apple even, they were really early in the PC game. They took a backseat to Dell who came in the scene years later with a better business model. Netscape, you were just talking about, was all the rage in Silicon Valley, with the first browser, drove up all the housing prices out here. AltaVista was the first search engine to really, you know, index full text. >> Owned by Dell, I mean DEC. >> Owned by Digital. >> Yeah, Digital Equipment >> Compaq bought it. And of course as an aside, Digital, they wanted to showcase their hardware, right? Their super computer stuff. And then so Friendster and MySpace, they came before Facebook. The iPhone certainly wasn't the first mobile device. So lots of failed examples, but there are some recent successes like AWS and cloud. >> You could say smartphone. So I mean. >> Well I know, and you can, we can parse this so we'll debate it. Now Twitter, you could argue, had first mover advantage. You kind of gave me that one John. Bitcoin and crypto clearly had first mover advantage, and sustaining that. Guys, will OpenAI make it to the list on the right with ChatGPT, what do you think? >> I think categorically as a company, it probably won't, but as a category, I think what they're doing will, so OpenAI as a company, they get funding, there's power dynamics involved. Microsoft put a billion dollars in early on, then they just pony it up. Now they're reporting 10 billion more. So, like, if the browsers, Microsoft had competitive advantage over Netscape, and used monopoly power, and convicted by the Department of Justice for killing Netscape with their monopoly, Netscape should have had won that battle, but Microsoft killed it. In this case, Microsoft's not killing it, they're buying into it. So I think the embrace extend Microsoft power here makes OpenAI vulnerable for that one vendor solution. So the AI as a company might not make the list, but the category of what this is, large language model AI, is probably will be on the right hand side. >> Okay, we're going to come back to the government intervention and maybe do some comparisons, but what are your thoughts on this premise here? That, it will basically set- put forth the premise that it, that ChatGPT, its early entry into the market will not confer competitive advantage to >> For OpenAI. >> To Open- Yeah, do you agree with that? >> I agree with that actually. It, because Google has been at it, and they have been holding back, as John said because of the scrutiny from the Fed, right, so- >> And privacy too. >> And the privacy and the accuracy as well. But I think Sam Altman and the company on those guys, right? They have put this in a hasty way out there, you know, because it makes mistakes, and there are a lot of questions around the, sort of, where the content is coming from. You saw that as your example, it just stole the content, and without your permission, you know? >> Yeah. So as quick this aside- >> And it codes on people's behalf and the, those codes are wrong. So there's a lot of, sort of, false information it's putting out there. So it's a very vulnerable thing to do what Sam Altman- >> So even though it'll get better, others will compete. >> So look, just side note, a term which Reid Hoffman used a little bit. Like he said, it's experimental launch, like, you know, it's- >> It's pretty damn good. >> It is clever because according to Sam- >> It's more than clever. It's good. >> It's awesome, if you haven't used it. I mean you write- you read what it writes and you go, "This thing writes so well, it writes so much better than you." >> The human emotion drives that too. I think that's a big thing. But- >> I Want to add one more- >> Make your last point. >> Last one. Okay. So, but he's still holding back. He's conducting quite a few interviews. If you want to get the gist of it, there's an interview with StrictlyVC interview from yesterday with Sam Altman. Listen to that one it's an eye opening what they want- where they want to take it. But my last one I want to make it on this point is that Satya Nadella yesterday did an interview with Wall Street Journal. I think he was doing- >> You were not impressed. >> I was not impressed because he was pushing it too much. So Sam Altman's holding back so there's less backlash. >> Got 10 billion reasons to push. >> I think he's almost- >> Microsoft just laid off 10000 people. Hey ChatGPT, find me a job. You know like. (group laughs) >> He's overselling it to an extent that I think it will backfire on Microsoft. And he's over promising a lot of stuff right now, I think. I don't know why he's very jittery about all these things. And he did the same thing during Ignite as well. So he said, "Oh, this AI will write code for you and this and that." Like you called him out- >> The hyperbole- >> During your- >> from Satya Nadella, he's got a lot of hyperbole. (group talks over each other) >> All right, Let's, go ahead. >> Well, can I weigh in on the whole- >> Yeah, sure. >> Microsoft thing on whether OpenAI, here's the take on this. I think it's more like the browser moment to me, because I could relate to that experience with ChatG, personally, emotionally, when I saw that, and I remember vividly- >> You mean that aha moment (indistinct). >> Like this is obviously the future. Anything else in the old world is dead, website's going to be everywhere. It was just instant dot connection for me. And a lot of other smart people who saw this. Lot of people by the way, didn't see it. Someone said the web's a toy. At the company I was worked for at the time, Hewlett Packard, they like, they could have been in, they had invented HTML, and so like all this stuff was, like, they just passed, the web was just being passed over. But at that time, the browser got better, more websites came on board. So the structural advantage there was online web usage was growing, online user population. So that was growing exponentially with the rise of the Netscape browser. So OpenAI could stay on the right side of your list as durable, if they leverage the category that they're creating, can get the scale. And if they can get the scale, just like Twitter, that failed so many times that they still hung around. So it was a product that was always successful, right? So I mean, it should have- >> You're right, it was terrible, we kept coming back. >> The fail whale, but it still grew. So OpenAI has that moment. They could do it if Microsoft doesn't meddle too much with too much power as a vendor. They could be the Netscape Navigator, without the anti-competitive behavior of somebody else. So to me, they have the pole position. So they have an opportunity. So if not, if they don't execute, then there's opportunity. There's not a lot of barriers to entry, vis-a-vis say the CapEx of say a cloud company like AWS. You can't replicate that, Many have tried, but I think you can replicate OpenAI. >> And we're going to talk about that. Okay, so real quick, I want to bring in some ETR data. This isn't an ETR heavy segment, only because this so new, you know, they haven't coverage yet, but they do cover AI. So basically what we're seeing here is a slide on the vertical axis's net score, which is a measure of spending momentum, and in the horizontal axis's is presence in the dataset. Think of it as, like, market presence. And in the insert right there, you can see how the dots are plotted, the two columns. And so, but the key point here that we want to make, there's a bunch of companies on the left, is he like, you know, DataRobot and C3 AI and some others, but the big whales, Google, AWS, Microsoft, are really dominant in this market. So that's really the key takeaway that, can we- >> I notice IBM is way low. >> Yeah, IBM's low, and actually bring that back up and you, but then you see Oracle who actually is injecting. So I guess that's the other point is, you're not necessarily going to go buy AI, and you know, build your own AI, you're going to, it's going to be there and, it, Salesforce is going to embed it into its platform, the SaaS companies, and you're going to purchase AI. You're not necessarily going to build it. But some companies obviously are. >> I mean to quote IBM's general manager Rob Thomas, "You can't have AI with IA." information architecture and David Flynn- >> You can't Have AI without IA >> without, you can't have AI without IA. You can't have, if you have an Information Architecture, you then can power AI. Yesterday David Flynn, with Hammersmith, was on our Supercloud. He was pointing out that the relationship of storage, where you store things, also impacts the data and stressablity, and Zhamak from Nextdata, she was pointing out that same thing. So the data problem factors into all this too, Dave. >> So you got the big cloud and internet giants, they're all poised to go after this opportunity. Microsoft is investing up to 10 billion. Google's code red, which was, you know, the headline in the New York Times. Of course Apple is there and several alternatives in the market today. Guys like Chinchilla, Bloom, and there's a company Jasper and several others, and then Lena Khan looms large and the government's around the world, EU, US, China, all taking notice before the market really is coalesced around a single player. You know, John, you mentioned Netscape, they kind of really, the US government was way late to that game. It was kind of game over. And Netscape, I remember Barksdale was like, "Eh, we're going to be selling software in the enterprise anyway." and then, pshew, the company just dissipated. So, but it looks like the US government, especially with Lena Khan, they're changing the definition of antitrust and what the cause is to go after people, and they're really much more aggressive. It's only what, two years ago that (indistinct). >> Yeah, the problem I have with the federal oversight is this, they're always like late to the game, and they're slow to catch up. So in other words, they're working on stuff that should have been solved a year and a half, two years ago around some of the social networks hiding behind some of the rules around open web back in the days, and I think- >> But they're like 15 years late to that. >> Yeah, and now they got this new thing on top of it. So like, I just worry about them getting their fingers. >> But there's only two years, you know, OpenAI. >> No, but the thing (indistinct). >> No, they're still fighting other battles. But the problem with government is that they're going to label Big Tech as like a evil thing like Pharma, it's like smoke- >> You know Lena Khan wants to kill Big Tech, there's no question. >> So I think Big Tech is getting a very seriously bad rap. And I think anything that the government does that shades darkness on tech, is politically motivated in most cases. You can almost look at everything, and my 80 20 rule is in play here. 80% of the government activity around tech is bullshit, it's politically motivated, and the 20% is probably relevant, but off the mark and not organized. >> Well market forces have always been the determining factor of success. The governments, you know, have been pretty much failed. I mean you look at IBM's antitrust, that, what did that do? The market ultimately beat them. You look at Microsoft back in the day, right? Windows 95 was peaking, the government came in. But you know, like you said, they missed the web, right, and >> so they were hanging on- >> There's nobody in government >> to Windows. >> that actually knows- >> And so, you, I think you're right. It's market forces that are going to determine this. But Sarbjeet, what do you make of Microsoft's big bet here, you weren't impressed with with Nadella. How do you think, where are they going to apply it? Is this going to be a Hail Mary for Bing, or is it going to be applied elsewhere? What do you think. >> They are saying that they will, sort of, weave this into their products, office products, productivity and also to write code as well, developer productivity as well. That's a big play for them. But coming back to your antitrust sort of comments, right? I believe the, your comment was like, oh, fed was late 10 years or 15 years earlier, but now they're two years. But things are moving very fast now as compared to they used to move. >> So two years is like 10 Years. >> Yeah, two years is like 10 years. Just want to make that point. (Dave laughs) This thing is going like wildfire. Any new tech which comes in that I think they're going against distribution channels. Lina Khan has commented time and again that the marketplace model is that she wants to have some grip on. Cloud marketplaces are a kind of monopolistic kind of way. >> I don't, I don't see this, I don't see a Chat AI. >> You told me it's not Bing, you had an interesting comment. >> No, no. First of all, this is great from Microsoft. If you're Microsoft- >> Why? >> Because Microsoft doesn't have the AI chops that Google has, right? Google is got so much core competency on how they run their search, how they run their backends, their cloud, even though they don't get a lot of cloud market share in the enterprise, they got a kick ass cloud cause they needed one. >> Totally. >> They've invented SRE. I mean Google's development and engineering chops are off the scales, right? Amazon's got some good chops, but Google's got like 10 times more chops than AWS in my opinion. Cloud's a whole different story. Microsoft gets AI, they get a playbook, they get a product they can render into, the not only Bing, productivity software, helping people write papers, PowerPoint, also don't forget the cloud AI can super help. We had this conversation on our Supercloud event, where AI's going to do a lot of the heavy lifting around understanding observability and managing service meshes, to managing microservices, to turning on and off applications, and or maybe writing code in real time. So there's a plethora of use cases for Microsoft to deploy this. combined with their R and D budgets, they can then turbocharge more research, build on it. So I think this gives them a car in the game, Google may have pole position with AI, but this puts Microsoft right in the game, and they already have a lot of stuff going on. But this just, I mean everything gets lifted up. Security, cloud, productivity suite, everything. >> What's under the hood at Google, and why aren't they talking about it? I mean they got to be freaked out about this. No? Or do they have kind of a magic bullet? >> I think they have the, they have the chops definitely. Magic bullet, I don't know where they are, as compared to the ChatGPT 3 or 4 models. Like they, but if you look at the online sort of activity and the videos put out there from Google folks, Google technology folks, that's account you should look at if you are looking there, they have put all these distinctions what ChatGPT 3 has used, they have been talking about for a while as well. So it's not like it's a secret thing that you cannot replicate. As you said earlier, like in the beginning of this segment, that anybody who has more data and the capacity to process that data, which Google has both, I think they will win this. >> Obviously living in Palo Alto where the Google founders are, and Google's headquarters next town over we have- >> We're so close to them. We have inside information on some of the thinking and that hasn't been reported by any outlet yet. And that is, is that, from what I'm hearing from my sources, is Google has it, they don't want to release it for many reasons. One is it might screw up their search monopoly, one, two, they're worried about the accuracy, 'cause Google will get sued. 'Cause a lot of people are jamming on this ChatGPT as, "Oh it does everything for me." when it's clearly not a hundred percent accurate all the time. >> So Lina Kahn is looming, and so Google's like be careful. >> Yeah so Google's just like, this is the third, could be a third rail. >> But the first thing you said is a concern. >> Well no. >> The disruptive (indistinct) >> What they will do is do a Waymo kind of thing, where they spin out a separate company. >> They're doing that. >> The discussions happening, they're going to spin out the separate company and put it over there, and saying, "This is AI, got search over there, don't touch that search, 'cause that's where all the revenue is." (chuckles) >> So, okay, so that's how they deal with the Clay Christensen dilemma. What's the business model here? I mean it's not advertising, right? Is it to charge you for a query? What, how do you make money at this? >> It's a good question, I mean my thinking is, first of all, it's cool to type stuff in and see a paper get written, or write a blog post, or gimme a marketing slogan for this or that or write some code. I think the API side of the business will be critical. And I think Howie Xu, I know you're going to reference some of his comments yesterday on Supercloud, I think this brings a whole 'nother user interface into technology consumption. I think the business model, not yet clear, but it will probably be some sort of either API and developer environment or just a straight up free consumer product, with some sort of freemium backend thing for business. >> And he was saying too, it's natural language is the way in which you're going to interact with these systems. >> I think it's APIs, it's APIs, APIs, APIs, because these people who are cooking up these models, and it takes a lot of compute power to train these and to, for inference as well. Somebody did the analysis on the how many cents a Google search costs to Google, and how many cents the ChatGPT query costs. It's, you know, 100x or something on that. You can take a look at that. >> A 100x on which side? >> You're saying two orders of magnitude more expensive for ChatGPT >> Much more, yeah. >> Than for Google. >> It's very expensive. >> So Google's got the data, they got the infrastructure and they got, you're saying they got the cost (indistinct) >> No actually it's a simple query as well, but they are trying to put together the answers, and they're going through a lot more data versus index data already, you know. >> Let me clarify, you're saying that Google's version of ChatGPT is more efficient? >> No, I'm, I'm saying Google search results. >> Ah, search results. >> What are used to today, but cheaper. >> But that, does that, is that going to confer advantage to Google's large language (indistinct)? >> It will, because there were deep science (indistinct). >> Google, I don't think Google search is doing a large language model on their search, it's keyword search. You know, what's the weather in Santa Cruz? Or how, what's the weather going to be? Or you know, how do I find this? Now they have done a smart job of doing some things with those queries, auto complete, re direct navigation. But it's, it's not entity. It's not like, "Hey, what's Dave Vellante thinking this week in Breaking Analysis?" ChatGPT might get that, because it'll get your Breaking Analysis, it'll synthesize it. There'll be some, maybe some clips. It'll be like, you know, I mean. >> Well I got to tell you, I asked ChatGPT to, like, I said, I'm going to enter a transcript of a discussion I had with Nir Zuk, the CTO of Palo Alto Networks, And I want you to write a 750 word blog. I never input the transcript. It wrote a 750 word blog. It attributed quotes to him, and it just pulled a bunch of stuff that, and said, okay, here it is. It talked about Supercloud, it defined Supercloud. >> It's made, it makes you- >> Wow, But it was a big lie. It was fraudulent, but still, blew me away. >> Again, vanilla content and non accurate content. So we are going to see a surge of misinformation on steroids, but I call it the vanilla content. Wow, that's just so boring, (indistinct). >> There's so many dangers. >> Make your point, cause we got to, almost out of time. >> Okay, so the consumption, like how do you consume this thing. As humans, we are consuming it and we are, like, getting a nicely, like, surprisingly shocked, you know, wow, that's cool. It's going to increase productivity and all that stuff, right? And on the danger side as well, the bad actors can take hold of it and create fake content and we have the fake sort of intelligence, if you go out there. So that's one thing. The second thing is, we are as humans are consuming this as language. Like we read that, we listen to it, whatever format we consume that is, but the ultimate usage of that will be when the machines can take that output from likes of ChatGPT, and do actions based on that. The robots can work, the robot can paint your house, we were talking about, right? Right now we can't do that. >> Data apps. >> So the data has to be ingested by the machines. It has to be digestible by the machines. And the machines cannot digest unorganized data right now, we will get better on the ingestion side as well. So we are getting better. >> Data, reasoning, insights, and action. >> I like that mall, paint my house. >> So, okay- >> By the way, that means drones that'll come in. Spray painting your house. >> Hey, it wasn't too long ago that robots couldn't climb stairs, as I like to point out. Okay, and of course it's no surprise the venture capitalists are lining up to eat at the trough, as I'd like to say. Let's hear, you'd referenced this earlier, John, let's hear what AI expert Howie Xu said at the Supercloud event, about what it takes to clone ChatGPT. Please, play the clip. >> So one of the VCs actually asked me the other day, right? "Hey, how much money do I need to spend, invest to get a, you know, another shot to the openAI sort of the level." You know, I did a (indistinct) >> Line up. >> A hundred million dollar is the order of magnitude that I came up with, right? You know, not a billion, not 10 million, right? So a hundred- >> Guys a hundred million dollars, that's an astoundingly low figure. What do you make of it? >> I was in an interview with, I was interviewing, I think he said hundred million or so, but in the hundreds of millions, not a billion right? >> You were trying to get him up, you were like "Hundreds of millions." >> Well I think, I- >> He's like, eh, not 10, not a billion. >> Well first of all, Howie Xu's an expert machine learning. He's at Zscaler, he's a machine learning AI guy. But he comes from VMware, he's got his technology pedigrees really off the chart. Great friend of theCUBE and kind of like a CUBE analyst for us. And he's smart. He's right. I think the barriers to entry from a dollar standpoint are lower than say the CapEx required to compete with AWS. Clearly, the CapEx spending to build all the tech for the run a cloud. >> And you don't need a huge sales force. >> And in some case apps too, it's the same thing. But I think it's not that hard. >> But am I right about that? You don't need a huge sales force either. It's, what, you know >> If the product's good, it will sell, this is a new era. The better mouse trap will win. This is the new economics in software, right? So- >> Because you look at the amount of money Lacework, and Snyk, Snowflake, Databrooks. Look at the amount of money they've raised. I mean it's like a billion dollars before they get to IPO or more. 'Cause they need promotion, they need go to market. You don't need (indistinct) >> OpenAI's been working on this for multiple five years plus it's, hasn't, wasn't born yesterday. Took a lot of years to get going. And Sam is depositioning all the success, because he's trying to manage expectations, To your point Sarbjeet, earlier. It's like, yeah, he's trying to "Whoa, whoa, settle down everybody, (Dave laughs) it's not that great." because he doesn't want to fall into that, you know, hero and then get taken down, so. >> It may take a 100 million or 150 or 200 million to train the model. But to, for the inference to, yeah to for the inference machine, It will take a lot more, I believe. >> Give it, so imagine, >> Because- >> Go ahead, sorry. >> Go ahead. But because it consumes a lot more compute cycles and it's certain level of storage and everything, right, which they already have. So I think to compute is different. To frame the model is a different cost. But to run the business is different, because I think 100 million can go into just fighting the Fed. >> Well there's a flywheel too. >> Oh that's (indistinct) >> (indistinct) >> We are running the business, right? >> It's an interesting number, but it's also kind of, like, context to it. So here, a hundred million spend it, you get there, but you got to factor in the fact that the ways companies win these days is critical mass scale, hitting a flywheel. If they can keep that flywheel of the value that they got going on and get better, you can almost imagine a marketplace where, hey, we have proprietary data, we're SiliconANGLE in theCUBE. We have proprietary content, CUBE videos, transcripts. Well wouldn't it be great if someone in a marketplace could sell a module for us, right? We buy that, Amazon's thing and things like that. So if they can get a marketplace going where you can apply to data sets that may be proprietary, you can start to see this become bigger. And so I think the key barriers to entry is going to be success. I'll give you an example, Reddit. Reddit is successful and it's hard to copy, not because of the software. >> They built the moat. >> Because you can, buy Reddit open source software and try To compete. >> They built the moat with their community. >> Their community, their scale, their user expectation. Twitter, we referenced earlier, that thing should have gone under the first two years, but there was such a great emotional product. People would tolerate the fail whale. And then, you know, well that was a whole 'nother thing. >> Then a plane landed in (John laughs) the Hudson and it was over. >> I think verticals, a lot of verticals will build applications using these models like for lawyers, for doctors, for scientists, for content creators, for- >> So you'll have many hundreds of millions of dollars investments that are going to be seeping out. If, all right, we got to wrap, if you had to put odds on it that that OpenAI is going to be the leader, maybe not a winner take all leader, but like you look at like Amazon and cloud, they're not winner take all, these aren't necessarily winner take all markets. It's not necessarily a zero sum game, but let's call it winner take most. What odds would you give that open AI 10 years from now will be in that position. >> If I'm 0 to 10 kind of thing? >> Yeah, it's like horse race, 3 to 1, 2 to 1, even money, 10 to 1, 50 to 1. >> Maybe 2 to 1, >> 2 to 1, that's pretty low odds. That's basically saying they're the favorite, they're the front runner. Would you agree with that? >> I'd say 4 to 1. >> Yeah, I was going to say I'm like a 5 to 1, 7 to 1 type of person, 'cause I'm a skeptic with, you know, there's so much competition, but- >> I think they're definitely the leader. I mean you got to say, I mean. >> Oh there's no question. There's no question about it. >> The question is can they execute? >> They're not Friendster, is what you're saying. >> They're not Friendster and they're more like Twitter and Reddit where they have momentum. If they can execute on the product side, and if they don't stumble on that, they will continue to have the lead. >> If they say stay neutral, as Sam is, has been saying, that, hey, Microsoft is one of our partners, if you look at their company model, how they have structured the company, then they're going to pay back to the investors, like Microsoft is the biggest one, up to certain, like by certain number of years, they're going to pay back from all the money they make, and after that, they're going to give the money back to the public, to the, I don't know who they give it to, like non-profit or something. (indistinct) >> Okay, the odds are dropping. (group talks over each other) That's a good point though >> Actually they might have done that to fend off the criticism of this. But it's really interesting to see the model they have adopted. >> The wildcard in all this, My last word on this is that, if there's a developer shift in how developers and data can come together again, we have conferences around the future of data, Supercloud and meshs versus, you know, how the data world, coding with data, how that evolves will also dictate, 'cause a wild card could be a shift in the landscape around how developers are using either machine learning or AI like techniques to code into their apps, so. >> That's fantastic insight. I can't thank you enough for your time, on the heels of Supercloud 2, really appreciate it. All right, thanks to John and Sarbjeet for the outstanding conversation today. Special thanks to the Palo Alto studio team. My goodness, Anderson, this great backdrop. You guys got it all out here, I'm jealous. And Noah, really appreciate it, Chuck, Andrew Frick and Cameron, Andrew Frick switching, Cameron on the video lake, great job. And Alex Myerson, he's on production, manages the podcast for us, Ken Schiffman as well. Kristen Martin and Cheryl Knight help get the word out on social media and our newsletters. Rob Hof is our editor-in-chief over at SiliconANGLE, does some great editing, thanks to all. Remember, all these episodes are available as podcasts. All you got to do is search Breaking Analysis podcast, wherever you listen. Publish each week on wikibon.com and siliconangle.com. Want to get in touch, email me directly, david.vellante@siliconangle.com or DM me at dvellante, or comment on our LinkedIn post. And by all means, check out etr.ai. They got really great survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, We'll see you next time on Breaking Analysis. (electronic music)
SUMMARY :
bringing you data-driven and ChatGPT have taken the world by storm. So I asked it, give it to the large language models to do that. So to your point, it's So one of the problems with ChatGPT, and he simply gave the system the prompts, or the OS to help it do but it kind of levels the playing- and the answers were coming as the data you can get. Yeah, and leveled to certain extent. I check the facts, save me about maybe- and then I write a killer because like if the it's, the law is we, you know, I think that's true and I ask the set of similar question, What's your counter point? and not it's underestimated long term. That's what he said. for the first time, wow. the overhyped at the No, it was, it was I got, right I mean? the internet in the early days, and it's only going to get better." So you're saying it's bifurcated. and possibly the debate the first mobile device. So I mean. on the right with ChatGPT, and convicted by the Department of Justice the scrutiny from the Fed, right, so- And the privacy and thing to do what Sam Altman- So even though it'll get like, you know, it's- It's more than clever. I mean you write- I think that's a big thing. I think he was doing- I was not impressed because You know like. And he did the same thing he's got a lot of hyperbole. the browser moment to me, So OpenAI could stay on the right side You're right, it was terrible, They could be the Netscape Navigator, and in the horizontal axis's So I guess that's the other point is, I mean to quote IBM's So the data problem factors and the government's around the world, and they're slow to catch up. Yeah, and now they got years, you know, OpenAI. But the problem with government to kill Big Tech, and the 20% is probably relevant, back in the day, right? are they going to apply it? and also to write code as well, that the marketplace I don't, I don't see you had an interesting comment. No, no. First of all, the AI chops that Google has, right? are off the scales, right? I mean they got to be and the capacity to process that data, on some of the thinking So Lina Kahn is looming, and this is the third, could be a third rail. But the first thing What they will do out the separate company Is it to charge you for a query? it's cool to type stuff in natural language is the way and how many cents the and they're going through Google search results. It will, because there were It'll be like, you know, I mean. I never input the transcript. Wow, But it was a big lie. but I call it the vanilla content. Make your point, cause we And on the danger side as well, So the data By the way, that means at the Supercloud event, So one of the VCs actually What do you make of it? you were like "Hundreds of millions." not 10, not a billion. Clearly, the CapEx spending to build all But I think it's not that hard. It's, what, you know This is the new economics Look at the amount of And Sam is depositioning all the success, or 150 or 200 million to train the model. So I think to compute is different. not because of the software. Because you can, buy They built the moat And then, you know, well that the Hudson and it was over. that are going to be seeping out. Yeah, it's like horse race, 3 to 1, 2 to 1, that's pretty low odds. I mean you got to say, I mean. Oh there's no question. is what you're saying. and if they don't stumble on that, the money back to the public, to the, Okay, the odds are dropping. the model they have adopted. Supercloud and meshs versus, you know, on the heels of Supercloud
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Sarbjeet | PERSON | 0.99+ |
Brian Gracely | PERSON | 0.99+ |
Lina Khan | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Reid Hoffman | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Lena Khan | PERSON | 0.99+ |
Sam Altman | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Rob Thomas | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
David Flynn | PERSON | 0.99+ |
Sam | PERSON | 0.99+ |
Noah | PERSON | 0.99+ |
Ray Amara | PERSON | 0.99+ |
10 billion | QUANTITY | 0.99+ |
150 | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Chuck | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Howie Xu | PERSON | 0.99+ |
Anderson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Hewlett Packard | ORGANIZATION | 0.99+ |
Santa Cruz | LOCATION | 0.99+ |
1995 | DATE | 0.99+ |
Lina Kahn | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
50 words | QUANTITY | 0.99+ |
Hundreds of millions | QUANTITY | 0.99+ |
Compaq | ORGANIZATION | 0.99+ |
10 | QUANTITY | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
two sentences | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
hundreds of millions | QUANTITY | 0.99+ |
Satya Nadella | PERSON | 0.99+ |
Cameron | PERSON | 0.99+ |
100 million | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
one sentence | QUANTITY | 0.99+ |
10 million | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Clay Christensen | PERSON | 0.99+ |
Sarbjeet Johal | PERSON | 0.99+ |
Netscape | ORGANIZATION | 0.99+ |
Ali Ghodsi, Databricks | Cube Conversation Partner Exclusive
(outro music) >> Hey, I'm John Furrier, here with an exclusive interview with Ali Ghodsi, who's the CEO of Databricks. Ali, great to see you. Preview for reinvent. We're going to launch this story, exclusive Databricks material on the notes, after the keynotes prior to the keynotes and after the keynotes that reinvent. So great to see you. You know, you've been a partner of AWS for a very, very long time. I think five years ago, I think I first interviewed you, you were one of the first to publicly declare that this was a place to build a company on and not just post an application, but refactor capabilities to create, essentially a platform in the cloud, on the cloud. Not just an ISV; Independent Software Vendor, kind of an old term, we're talking about real platform like capability to change the game. Can you talk about your experience as an AWS partner? >> Yeah, look, so we started in 2013. I swiped my personal credit card on AWS and some of my co-founders did the same. And we started building. And we were excited because we just thought this is a much better way to launch a company because you can just much faster get time to market and launch your thing and you can get the end users much quicker access to the thing you're building. So we didn't really talk to anyone at AWS, we just swiped a credit card. And eventually they told us, "Hey, do you want to buy extra support?" "You're asking a lot of advanced questions from us." "Maybe you want to buy our advanced support." And we said, no, no, no, no. We're very advanced ourselves, we know what we're doing. We're not going to buy any advanced support. So, you know, we just built this, you know, startup from nothing on AWS without even talking to anyone there. So at some point, I think around 2017, they suddenly saw this company with maybe a hundred million ARR pop up on their radar and it's driving massive amounts of compute, massive amounts of data. And it took a little bit in the beginning just us to get to know each other because as I said, it's like we were not on their radar and we weren't really looking, we were just doing our thing. And then over the years the partnership has deepened and deepened and deepened and then with, you know, Andy (indistinct) really leaning into the partnership, he mentioned us at Reinvent. And then we sort of figured out a way to really integrate the two service, the Databricks platform with AWS . And today it's an amazing partnership. You know, we directly connected with the general managers for the services. We're connected at the CEO level, you know, the sellers get compensated for pushing Databricks, we're, we have multiple offerings on their marketplace. We have a native offering on AWS. You know, we're prominently always sort of marketed and you know, we're aligned also vision wise in what we're trying to do. So yeah, we've come a very, very long way. >> Do you consider yourself a SaaS app or an ISV or do you see yourself more of a platform company because you have customers. How would you categorize your category as a company? >> Well, it's a data platform, right? And actually the, the strategy of the Databricks is take what's otherwise five, six services in the industry or five, six different startups, but do them as part of one data platform that's integrated. So in one word, the strategy of data bricks is "unification." We call it the data lake house. But really the idea behind the data lake house is that of unification, or in more words it's, "The whole is greater than the sum of its parts." So you could actually go and buy five, six services out there or actually use five, six services from the cloud vendors, stitch it together and it kind of resembles Databricks. Our power is in doing those integrated, together in a way in which it's really, really easy and simple to use for end users. So yeah, we're a data platform. I wouldn't, you know, ISV that's a old term, you know, Independent Software Vendor. You know, I think, you know, we have actually a whole slew of ISVs on top of Databricks, that integrate with our platform. And you know, in our marketplace as well as in our partner connect, we host those ISVs that then, you know, work on top of the data that we have in the Databricks, data lake house. >> You know, I think one of the things your journey has been great to document and watch from the beginning. I got to give you guys credit over there and props, congratulations. But I think you're the poster child as a company to what we see enterprises doing now. So go back in time when you guys swiped a credit card, you didn't need attending technical support because you guys had brains, you were refactoring, rethinking. It wasn't just banging out software, you had, you were doing some complex things. It wasn't like it was just write some software hosted on server. It was really a lot more. And as a result your business worth billions of dollars. I think 38 billion or something like that, big numbers, big numbers of great revenue growth as well, billions in revenue. You have customers, you have an ecosystem, you have data applications on top of Databricks. So in a way you're a cloud on top of the cloud. So is there a cloud on top of the cloud? So you have ISVs, Amazon has ISVs. Can you take us through what this means and at this point in history, because this seems to be an advanced version of benefits of platforming and refactoring, leveraging say AWS. >> Yeah, so look, when we started, there was really only one game in town. It was AWS. So it was one cloud. And the strategy of the company then was, well Amazon had this beautiful set of services that they're building bottom up, they have storage, compute, networking, and then they have databases and so on. But it's a lot of services. So let us not directly compete with AWS and try to take out one of their services. Let's not do that because frankly we can't. We were not of that size. They had the scale, they had the size and they were the only cloud vendor in town. So our strategy instead was, let's do something else. Let's not compete directly with say, a particular service they're building, let's take a different strategy. What if we had a unified holistic data platform, where it's just one integrated service end to end. So think of it as Microsoft office, which contains PowerPoint, and Word, and Excel and even Access, if you want to use it. What if we build that and AWS has this really amazing knack for releasing things, you know services, lots of them, every reinvent. And they're sort of a DevOps person's dream and you can stitch these together and you know you have to be technical. How do we elevate that and make it simpler and integrate it? That was our original strategy and it resonated with a segment of the market. And the reason it worked with AWS so that we wouldn't butt heads with AWS was because we weren't a direct replacement for this service or for that service, we were taking a different approach. And AWS, because credit goes to them, they're so customer obsessed, they would actually do what's right for the customer. So if the customer said we want this unified thing, their sellers would actually say, okay, so then you should use Databricks. So they truly are customer obsessed in that way. And I really mean it, John. Things have changed over the years. They're not the only cloud anymore. You know, Azure is real, GCP is real, there's also Alibaba. And now over 70% of our customers are on more than one cloud. So now what we hear from them is, not only want, do we want a simplified, unified thing, but we want it also to work across the clouds. Because those of them that are seriously considering multiple clouds, they don't want to use a service on cloud one and then use a similar service on cloud two. But it's a little bit different. And now they have to do twice the work to make it work. You know, John, it's hard enough as it is, like it's this data stuff and analytics. It's not a walk in the park, you know. You hire an administrator in the back office that clicks a button and its just, now you're a data driven digital transformed company. It's hard. If you now have to do it again on the second cloud with different set of services and then again on a third cloud with a different set of services. That's very, very costly. So the strategy then has changed that, how do we take that unified simple approach and make it also the same and standardize across the clouds, but then also integrate it as far down as we can on each of the clouds. So that you're not giving up any of the benefits that the particular cloud has. >> Yeah, I think one of the things that we see, and I want get your reaction to this, is this rise of the super cloud as we call it. I think you were involved in the Sky paper that I saw your position paper came out after we had introduced Super Cloud, which is great. Congratulations to the Berkeley team, wearing the hat here. But you guys are, I think a driver of this because you're creating the need for these things. You're saying, okay, we went on one cloud with AWS and you didn't hide that. And now you're publicly saying there's other clouds too, increased ham for your business. And customers have multiple clouds in their infrastructure for the best of breed that they have. Okay, get that. But there's still a challenge around the innovation, growth that's still around the corner. We still have a supply chain problem, we still have skill gaps. You know, you guys are unique at Databricks as other these big examples of super clouds that are developing. Enterprises don't have the Databricks kind of talent. They need, they need turnkey solutions. So Adam and the team at Amazon are promoting, you know, more solution oriented approaches higher up on the stack. You're starting to see kind of like, I won't say templates, but you know, almost like application specific headless like, low code, no code capability to accelerate clients who are wanting to write code for the modern error. Right, so this kind of, and then now you, as you guys pointed out with these common services, you're pushing the envelope. So you're saying, hey, I need to compete, I don't want to go to my customers and have them to have a staff or this cloud and this cloud and this cloud because they don't have the staff. Or if they do, they're very unique. So what's your reaction? Because this kind is the, it kind of shows your leadership as a partner of AWS and the clouds, but also highlights I think what's coming. But you share your reaction. >> Yeah, look, it's, first of all, you know, I wish I could take credit for this but I can't because it's really the customers that have decided to go on multiple clouds. You know, it's not Databricks that you know, push this or some other vendor, you know, that, Snowflake or someone who pushed this and now enterprises listened to us and they picked two clouds. That's not how it happened. The enterprises picked two clouds or three clouds themselves and we can get into why, but they did that. So this largely just happened in the market. We as data platforms responded to what they're then saying, which is they're saying, "I don't want to redo this again on the other cloud." So I think the writing is on the wall. I think it's super obvious what's going to happen next. They will say, "Any service I'm using, it better work exactly the same on all the clouds." You know, that's what's going to happen. So in the next five years, every enterprise will say, "I'm going to use the service, but you better make sure that this service works equally well on all of the clouds." And obviously the multicloud vendors like us, are there to do that. But I actually think that what you're going to see happening is that you're going to see the cloud vendors changing the existing services that they have to make them work on the other clouds. That's what's goin to happen, I think. >> Yeah, and I think I would add that, first of all, I agree with you. I think that's going to be a forcing function. Because I think you're driving it. You guys are in a way, one, are just an actor in the driving this because you're on the front end of this and there are others and there will be people following. But I think to me, I'm a cloud vendor, I got to differentiate. Adam, If I'm Adam Saleski, I got to say, "Hey, I got to differentiate." So I don't wan to get stuck in the middle, so to speak. Am I just going to innovate on the hardware AKA infrastructure or am I going to innovate at the higher level services? So what we're talking about here is the tail of two clouds within Amazon, for instance. So do I innovate on the silicon and get low level into the physics and squeeze performance out of the hardware and infrastructure? Or do I focus on ease of use at the top of the stack for the developers? So again, there's a channel of two clouds here. So I got to ask you, how do they differentiate? Number one and number two, I never heard a developer ever say, "I want to run my app or workload on the slower cloud." So I mean, you know, back when we had PCs you wanted to go, "I want the fastest processor." So again, you can have common level services, but where is that performance differentiation with the cloud? What do the clouds do in your opinion? >> Yeah, look, I think it's pretty clear. I think that it's, this is, you know, no surprise. Probably 70% or so of the revenue is in the lower infrastructure layers, compute, storage, networking. And they have to win that. They have to be competitive there. As you said, you can say, oh you know, I guess my CPUs are slower than the other cloud, but who cares? I have amazing other services which only work on my cloud by the way, right? That's not going to be a winning recipe. So I think all three are laser focused on, we going to have specialized hardware and the nuts and bolts of the infrastructure, we can do it better than the other clouds for sure. And you can see lots of innovation happening there, right? The Graviton chips, you know, we see huge price performance benefits in those chips. I mean it's real, right? It's basically a 20, 30% free lunch. You know, why wouldn't you, why wouldn't you go for it there? There's no downside. You know, there's no, "got you" or no catch. But we see Azure doing the same thing now, they're also building their own chips and we know that Google builds specialized machine learning chips, TPU, Tenor Processing Units. So their legs are focused on that. I don't think they can give up that or focused on higher levels if they had to pick bets. And I think actually in the next few years, most of us have to make more, we have to be more deliberate and calculated in the picks we do. I think in the last five years, most of us have said, "We'll do all of it." You know. >> Well you made a good bet with Spark, you know, the duke was pretty obvious trend that was, everyone was shut on that bandwagon and you guys picked a big bet with Spark. Look what happened with you guys? So again, I love this betting kind of concept because as the world matures, growth slows down and shifts and that next wave of value coming in, AKA customers, they're going to integrate with a new ecosystem. A new kind of partner network for AWS and the other clouds. But with aws they're going to need to nurture the next Databricks. They're going to need to still provide that SaaS, ISV like experience for, you know, a basic software hosting or some application. But I go to get your thoughts on this idea of multiple clouds because if I'm a developer, the old days was, old days, within our decade, full stack developer- >> It was two years ago, yeah (John laughing) >> This is a decade ago, full stack and then the cloud came in, you kind had the half stack and then you would do some things. It seems like the clouds are trying to say, we want to be the full stack or not. Or is it still going to be, you know, I'm an application like a PC and a Mac, I'm going to write the same application for both hardware. I mean what's your take on this? Are they trying to do full stack and you see them more like- >> Absolutely. I mean look, of course they're going, they have, I mean they have over 300, I think Amazon has over 300 services, right? That's not just compute, storage, networking, it's the whole stack, right? But my key point is, I think they have to nail the core infrastructure storage compute networking because the three clouds that are there competing, they're formidable companies with formidable balance sheets and it doesn't look like any of them is going to throw in the towel and say, we give up. So I think it's going to intensify. And given that they have a 70% revenue on that infrastructure layer, I think they, if they have to pick their bets, I think they'll focus it on that infrastructure layer. I think the layer above where they're also placing bets, they're doing that, the full stack, right? But there I think the demand will be, can you make that work on the other clouds? And therein lies an innovator's dilemma because if I make it work on the other clouds, then I'm foregoing that 70% revenue of the infrastructure. I'm not getting it. The other cloud vendor is going to get it. So should I do that or not? Second, is the other cloud vendor going to be welcoming of me making my service work on their cloud if I am a competing cloud, right? And what kind of terms of service are I giving me? And am I going to really invest in doing that? And I think right now we, you know, most, the vast, vast, vast majority of the services only work on the one cloud that you know, it's built on. It doesn't work on others, but this will shift. >> Yeah, I think the innovators dilemma is also very good point. And also add, it's an integrators dilemma too because now you talk about integration across services. So I believe that the super cloud movement's going to happen before Sky. And I think what explained by that, what you guys did and what other companies are doing by representing advanced, I call platform engineering, refactoring an existing market really fast, time to value and CAPEX is, I mean capital, market cap is going to be really fast. I think there's going to be an opportunity for those to emerge that's going to set the table for global multicloud ultimately in the future. So I think you're going to start to see the same pattern of what you guys did get in, leverage the hell out of it, use it, not in the way just to host, but to refactor and take down territory of markets. So number one, and then ultimately you get into, okay, I want to run some SLA across services, then there's a little bit more complication. I think that's where you guys put that beautiful paper out on Sky Computing. Okay, that makes sense. Now if you go to today's market, okay, I'm betting on Amazon because they're the best, this is the best cloud win scenario, not the most robust cloud. So if I'm a developer, I want the best. How do you look at their bet when it comes to data? Because now they've got machine learning, Swami's got a big keynote on Wednesday, I'm expecting to see a lot of AI and machine learning. I'm expecting to hear an end to end data story. This is what you do, so as a major partner, how do you view the moves Amazon's making and the bets they're making with data and machine learning and AI? >> First I want to lift off my hat to AWS for being customer obsessed. So I know that if a customer wants Databricks, I know that AWS and their sellers will actually help us get that customer deploy Databricks. Now which of the services is the customer going to pick? Are they going to pick ours or the end to end, what Swami is going to present on stage? Right? So that's the question we're getting. But I wanted to start with by just saying, their customer obsessed. So I think they're going to do the right thing for the customer and I see the evidence of it again and again and again. So kudos to them. They're amazing at this actually. Ultimately our bet is, customers want this to be simple, integrated, okay? So yes there are hundreds of services that together give you the end to end experience and they're very customizable that AWS gives you. But if you want just something simply integrated that also works across the clouds, then I think there's a special place for Databricks. And I think the lake house approach that we have, which is an integrated, completely integrated, we integrate data lakes with data warehouses, integrate workflows with machine learning, with real time processing, all these in one platform. I think there's going to be tailwinds because I think the most important thing that's going to happen in the next few years is that every customer is going to now be obsessed, given the recession and the environment we're in. How do I cut my costs? How do I cut my costs? And we learn this from the customers they're adopting the lake house because they're thinking, instead of using five vendors or three vendors, I can simplify it down to one with you and I can cut my cost. So I think that's going to be one of the main drivers of why people bet on the lake house because it helps them lower their TCO; Total Cost of Ownership. And it's as simple as that. Like I have three things right now. If I can get the same job done of those three with one, I'd rather do that. And by the way, if it's three or four across two clouds and I can just use one and it just works across two clouds, I'm going to do that. Because my boss is telling me I need to cut my budget. >> (indistinct) (John laughing) >> Yeah, and I'd rather not to do layoffs and they're asking me to do more. How can I get smaller budgets, not lay people off and do more? I have to cut, I have to optimize. What's happened in the last five, six years is there's been a huge sprawl of services and startups, you know, you know most of them, all these startups, all of them, all the activity, all the VC investments, well those companies sold their software, right? Even if a startup didn't make it big, you know, they still sold their software to some vendors. So the ecosystem is now full of lots and lots and lots and lots of different software. And right now people are looking, how do I consolidate, how do I simplify, how do I cut my costs? >> And you guys have a great solution. You're also an arms dealer and a innovator. So I have to ask this question, because you're a professor of the industry as well as at Berkeley, you've seen a lot of the historical innovations. If you look at the moment we're in right now with the recession, okay we had COVID, okay, it changed how people work, you know, people working at home, provisioning VLAN, all that (indistinct) infrastructure, okay, yeah, technology and cloud health. But we're in a recession. This is the first recession where the Amazon and the other cloud, mainly Amazon Web Services is a major economic puzzle in the piece. So they were never around before, even 2008, they were too small. They're now a major economic enabler, player, they're serving startups, enterprises, they have super clouds like you guys. They're a force and the people, their customers are cutting back but also they can also get faster. So agility is now an equation in the economic recovery. And I want to get your thoughts because you just brought that up. Customers can actually use the cloud and Databricks to actually get out of the recovery because no one's going to say, stop making profit or make more profit. So yeah, cut costs, be more efficient, but agility's also like, let's drive more revenue. So in this digital transformation, if you take this to conclusion, every company transforms, their company is the app. So their revenue is tied directly to their technology deployment. What's your reaction and comment to that because this is a new historical moment where cloud and scale and data, actually could be configured in a way to actually change the nature of a business in such a short time. And with the recession looming, no one's got time to wait. >> Yeah, absolutely. Look, the secular tailwind in the market is that of, you know, 10 years ago it was software is eating the world, now it's AI's going to eat all of software software. So more and more we're going to have, wherever you have software, which is everywhere now because it's eaten the world, it's going to be eaten up by AI and data. You know, AI doesn't exist without data so they're synonymous. You can't do machine learning if you don't have data. So yeah, you're going to see that everywhere and that automation will help people simplify things and cut down the costs and automate more things. And in the cloud you can also do that by changing your CAPEX to OPEX. So instead of I invest, you know, 10 million into a data center that I buy, I'm going to have headcount to manage the software. Why don't we change this to OPEX? And then they are going to optimize it. They want to lower the TCO because okay, it's in the cloud. but I do want the costs to be much lower that what they were in the previous years. Last five years, nobody cared. Who cares? You know what it costs. You know, there's a new brave world out there. Now there's like, no, it has to be efficient. So I think they're going to optimize it. And I think this lake house approach, which is an integration of the lakes and the warehouse, allows you to rationalize the two and simplify them. It allows you to basically rationalize away the data warehouse. So I think much faster we're going to see the, why do I need the data warehouse? If I can get the same thing done with the lake house for fraction of the cost, that's what's going to happen. I think there's going to be focus on that simplification. But I agree with you. Ultimately everyone knows, everybody's a software company. Every company out there is a software company and in the next 10 years, all of them are also going to be AI companies. So that is going to continue. >> (indistinct), dev's going to stop. And right sizing right now is a key economic forcing function. Final question for you and I really appreciate you taking the time. This year Reinvent, what's the bumper sticker in your mind around what's the most important industry dynamic, power dynamic, ecosystem dynamic that people should pay attention to as we move from the brave new world of okay, I see cloud, cloud operations. I need to really make it structurally change my business. How do I, what's the most important story? What's the bumper sticker in your mind for Reinvent? >> Bumper sticker? lake house 24. (John laughing) >> That's data (indistinct) bumper sticker. What's the- >> (indistinct) in the market. No, no, no, no. You know, it's, AWS talks about, you know, all of their services becoming a lake house because they want the center of the gravity to be S3, their lake. And they want all the services to directly work on that, so that's a lake house. We're Bumper see Microsoft with Synapse, modern, you know the modern intelligent data platform. Same thing there. We're going to see the same thing, we already seeing it on GCP with Big Lake and so on. So I actually think it's the how do I reduce my costs and the lake house integrates those two. So that's one of the main ways you can rationalize and simplify. You get in the lake house, which is the name itself is a (indistinct) of two things, right? Lake house, "lake" gives you the AI, "house" give you the database data warehouse. So you get your AI and you get your data warehousing in one place at the lower cost. So for me, the bumper sticker is lake house, you know, 24. >> All right. Awesome Ali, well thanks for the exclusive interview. Appreciate it and get to see you. Congratulations on your success and I know you guys are going to be fine. >> Awesome. Thank you John. It's always a pleasure. >> Always great to chat with you again. >> Likewise. >> You guys are a great team. We're big fans of what you guys have done. We think you're an example of what we call "super cloud." Which is getting the hype up and again your paper speaks to some of the innovation, which I agree with by the way. I think that that approach of not forcing standards is really smart. And I think that's absolutely correct, that having the market still innovate is going to be key. standards with- >> Yeah, I love it. We're big fans too, you know, you're doing awesome work. We'd love to continue the partnership. >> So, great, great Ali, thanks. >> Take care (outro music)
SUMMARY :
after the keynotes prior to the keynotes and you know, we're because you have customers. I wouldn't, you know, I got to give you guys credit over there So if the customer said we So Adam and the team at So in the next five years, But I think to me, I'm a cloud vendor, and calculated in the picks we do. But I go to get your thoughts on this idea Or is it still going to be, you know, And I think right now we, you know, So I believe that the super cloud I can simplify it down to one with you and startups, you know, and the other cloud, And in the cloud you can also do that I need to really make it lake house 24. That's data (indistinct) of the gravity to be S3, and I know you guys are going to be fine. It's always a pleasure. We're big fans of what you guys have done. We're big fans too, you know,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amazon | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
2013 | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
Alibaba | ORGANIZATION | 0.99+ |
2008 | DATE | 0.99+ |
five vendors | QUANTITY | 0.99+ |
Adam Saleski | PERSON | 0.99+ |
five | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
Ali | PERSON | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
three vendors | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
Wednesday | DATE | 0.99+ |
Excel | TITLE | 0.99+ |
38 billion | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Word | TITLE | 0.99+ |
three | QUANTITY | 0.99+ |
two clouds | QUANTITY | 0.99+ |
Andy | PERSON | 0.99+ |
three clouds | QUANTITY | 0.99+ |
10 million | QUANTITY | 0.99+ |
PowerPoint | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
twice | QUANTITY | 0.99+ |
Second | QUANTITY | 0.99+ |
over 300 services | QUANTITY | 0.99+ |
one game | QUANTITY | 0.99+ |
second cloud | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Sky | ORGANIZATION | 0.99+ |
one word | QUANTITY | 0.99+ |
OPEX | ORGANIZATION | 0.99+ |
two things | QUANTITY | 0.98+ |
two years ago | DATE | 0.98+ |
Access | TITLE | 0.98+ |
over 300 | QUANTITY | 0.98+ |
six years | QUANTITY | 0.98+ |
over 70% | QUANTITY | 0.98+ |
five years ago | DATE | 0.98+ |
Ali Ghosdi, Databricks | AWS Partner Exclusive
(outro music) >> Hey, I'm John Furrier, here with an exclusive interview with Ali Ghodsi, who's the CEO of Databricks. Ali, great to see you. Preview for reinvent. We're going to launch this story, exclusive Databricks material on the notes, after the keynotes prior to the keynotes and after the keynotes that reinvent. So great to see you. You know, you've been a partner of AWS for a very, very long time. I think five years ago, I think I first interviewed you, you were one of the first to publicly declare that this was a place to build a company on and not just post an application, but refactor capabilities to create, essentially a platform in the cloud, on the cloud. Not just an ISV; Independent Software Vendor, kind of an old term, we're talking about real platform like capability to change the game. Can you talk about your experience as an AWS partner? >> Yeah, look, so we started in 2013. I swiped my personal credit card on AWS and some of my co-founders did the same. And we started building. And we were excited because we just thought this is a much better way to launch a company because you can just much faster get time to market and launch your thing and you can get the end users much quicker access to the thing you're building. So we didn't really talk to anyone at AWS, we just swiped a credit card. And eventually they told us, "Hey, do you want to buy extra support?" "You're asking a lot of advanced questions from us." "Maybe you want to buy our advanced support." And we said, no, no, no, no. We're very advanced ourselves, we know what we're doing. We're not going to buy any advanced support. So, you know, we just built this, you know, startup from nothing on AWS without even talking to anyone there. So at some point, I think around 2017, they suddenly saw this company with maybe a hundred million ARR pop up on their radar and it's driving massive amounts of compute, massive amounts of data. And it took a little bit in the beginning just us to get to know each other because as I said, it's like we were not on their radar and we weren't really looking, we were just doing our thing. And then over the years the partnership has deepened and deepened and deepened and then with, you know, Andy (indistinct) really leaning into the partnership, he mentioned us at Reinvent. And then we sort of figured out a way to really integrate the two service, the Databricks platform with AWS . And today it's an amazing partnership. You know, we directly connected with the general managers for the services. We're connected at the CEO level, you know, the sellers get compensated for pushing Databricks, we're, we have multiple offerings on their marketplace. We have a native offering on AWS. You know, we're prominently always sort of marketed and you know, we're aligned also vision wise in what we're trying to do. So yeah, we've come a very, very long way. >> Do you consider yourself a SaaS app or an ISV or do you see yourself more of a platform company because you have customers. How would you categorize your category as a company? >> Well, it's a data platform, right? And actually the, the strategy of the Databricks is take what's otherwise five, six services in the industry or five, six different startups, but do them as part of one data platform that's integrated. So in one word, the strategy of data bricks is "unification." We call it the data lake house. But really the idea behind the data lake house is that of unification, or in more words it's, "The whole is greater than the sum of its parts." So you could actually go and buy five, six services out there or actually use five, six services from the cloud vendors, stitch it together and it kind of resembles Databricks. Our power is in doing those integrated, together in a way in which it's really, really easy and simple to use for end users. So yeah, we're a data platform. I wouldn't, you know, ISV that's a old term, you know, Independent Software Vendor. You know, I think, you know, we have actually a whole slew of ISVs on top of Databricks, that integrate with our platform. And you know, in our marketplace as well as in our partner connect, we host those ISVs that then, you know, work on top of the data that we have in the Databricks, data lake house. >> You know, I think one of the things your journey has been great to document and watch from the beginning. I got to give you guys credit over there and props, congratulations. But I think you're the poster child as a company to what we see enterprises doing now. So go back in time when you guys swiped a credit card, you didn't need attending technical support because you guys had brains, you were refactoring, rethinking. It wasn't just banging out software, you had, you were doing some complex things. It wasn't like it was just write some software hosted on server. It was really a lot more. And as a result your business worth billions of dollars. I think 38 billion or something like that, big numbers, big numbers of great revenue growth as well, billions in revenue. You have customers, you have an ecosystem, you have data applications on top of Databricks. So in a way you're a cloud on top of the cloud. So is there a cloud on top of the cloud? So you have ISVs, Amazon has ISVs. Can you take us through what this means and at this point in history, because this seems to be an advanced version of benefits of platforming and refactoring, leveraging say AWS. >> Yeah, so look, when we started, there was really only one game in town. It was AWS. So it was one cloud. And the strategy of the company then was, well Amazon had this beautiful set of services that they're building bottom up, they have storage, compute, networking, and then they have databases and so on. But it's a lot of services. So let us not directly compete with AWS and try to take out one of their services. Let's not do that because frankly we can't. We were not of that size. They had the scale, they had the size and they were the only cloud vendor in town. So our strategy instead was, let's do something else. Let's not compete directly with say, a particular service they're building, let's take a different strategy. What if we had a unified holistic data platform, where it's just one integrated service end to end. So think of it as Microsoft office, which contains PowerPoint, and Word, and Excel and even Access, if you want to use it. What if we build that and AWS has this really amazing knack for releasing things, you know services, lots of them, every reinvent. And they're sort of a DevOps person's dream and you can stitch these together and you know you have to be technical. How do we elevate that and make it simpler and integrate it? That was our original strategy and it resonated with a segment of the market. And the reason it worked with AWS so that we wouldn't butt heads with AWS was because we weren't a direct replacement for this service or for that service, we were taking a different approach. And AWS, because credit goes to them, they're so customer obsessed, they would actually do what's right for the customer. So if the customer said we want this unified thing, their sellers would actually say, okay, so then you should use Databricks. So they truly are customer obsessed in that way. And I really mean it, John. Things have changed over the years. They're not the only cloud anymore. You know, Azure is real, GCP is real, there's also Alibaba. And now over 70% of our customers are on more than one cloud. So now what we hear from them is, not only want, do we want a simplified, unified thing, but we want it also to work across the clouds. Because those of them that are seriously considering multiple clouds, they don't want to use a service on cloud one and then use a similar service on cloud two. But it's a little bit different. And now they have to do twice the work to make it work. You know, John, it's hard enough as it is, like it's this data stuff and analytics. It's not a walk in the park, you know. You hire an administrator in the back office that clicks a button and its just, now you're a data driven digital transformed company. It's hard. If you now have to do it again on the second cloud with different set of services and then again on a third cloud with a different set of services. That's very, very costly. So the strategy then has changed that, how do we take that unified simple approach and make it also the same and standardize across the clouds, but then also integrate it as far down as we can on each of the clouds. So that you're not giving up any of the benefits that the particular cloud has. >> Yeah, I think one of the things that we see, and I want get your reaction to this, is this rise of the super cloud as we call it. I think you were involved in the Sky paper that I saw your position paper came out after we had introduced Super Cloud, which is great. Congratulations to the Berkeley team, wearing the hat here. But you guys are, I think a driver of this because you're creating the need for these things. You're saying, okay, we went on one cloud with AWS and you didn't hide that. And now you're publicly saying there's other clouds too, increased ham for your business. And customers have multiple clouds in their infrastructure for the best of breed that they have. Okay, get that. But there's still a challenge around the innovation, growth that's still around the corner. We still have a supply chain problem, we still have skill gaps. You know, you guys are unique at Databricks as other these big examples of super clouds that are developing. Enterprises don't have the Databricks kind of talent. They need, they need turnkey solutions. So Adam and the team at Amazon are promoting, you know, more solution oriented approaches higher up on the stack. You're starting to see kind of like, I won't say templates, but you know, almost like application specific headless like, low code, no code capability to accelerate clients who are wanting to write code for the modern error. Right, so this kind of, and then now you, as you guys pointed out with these common services, you're pushing the envelope. So you're saying, hey, I need to compete, I don't want to go to my customers and have them to have a staff or this cloud and this cloud and this cloud because they don't have the staff. Or if they do, they're very unique. So what's your reaction? Because this kind is the, it kind of shows your leadership as a partner of AWS and the clouds, but also highlights I think what's coming. But you share your reaction. >> Yeah, look, it's, first of all, you know, I wish I could take credit for this but I can't because it's really the customers that have decided to go on multiple clouds. You know, it's not Databricks that you know, push this or some other vendor, you know, that, Snowflake or someone who pushed this and now enterprises listened to us and they picked two clouds. That's not how it happened. The enterprises picked two clouds or three clouds themselves and we can get into why, but they did that. So this largely just happened in the market. We as data platforms responded to what they're then saying, which is they're saying, "I don't want to redo this again on the other cloud." So I think the writing is on the wall. I think it's super obvious what's going to happen next. They will say, "Any service I'm using, it better work exactly the same on all the clouds." You know, that's what's going to happen. So in the next five years, every enterprise will say, "I'm going to use the service, but you better make sure that this service works equally well on all of the clouds." And obviously the multicloud vendors like us, are there to do that. But I actually think that what you're going to see happening is that you're going to see the cloud vendors changing the existing services that they have to make them work on the other clouds. That's what's goin to happen, I think. >> Yeah, and I think I would add that, first of all, I agree with you. I think that's going to be a forcing function. Because I think you're driving it. You guys are in a way, one, are just an actor in the driving this because you're on the front end of this and there are others and there will be people following. But I think to me, I'm a cloud vendor, I got to differentiate. Adam, If I'm Adam Saleski, I got to say, "Hey, I got to differentiate." So I don't wan to get stuck in the middle, so to speak. Am I just going to innovate on the hardware AKA infrastructure or am I going to innovate at the higher level services? So what we're talking about here is the tail of two clouds within Amazon, for instance. So do I innovate on the silicon and get low level into the physics and squeeze performance out of the hardware and infrastructure? Or do I focus on ease of use at the top of the stack for the developers? So again, there's a channel of two clouds here. So I got to ask you, how do they differentiate? Number one and number two, I never heard a developer ever say, "I want to run my app or workload on the slower cloud." So I mean, you know, back when we had PCs you wanted to go, "I want the fastest processor." So again, you can have common level services, but where is that performance differentiation with the cloud? What do the clouds do in your opinion? >> Yeah, look, I think it's pretty clear. I think that it's, this is, you know, no surprise. Probably 70% or so of the revenue is in the lower infrastructure layers, compute, storage, networking. And they have to win that. They have to be competitive there. As you said, you can say, oh you know, I guess my CPUs are slower than the other cloud, but who cares? I have amazing other services which only work on my cloud by the way, right? That's not going to be a winning recipe. So I think all three are laser focused on, we going to have specialized hardware and the nuts and bolts of the infrastructure, we can do it better than the other clouds for sure. And you can see lots of innovation happening there, right? The Graviton chips, you know, we see huge price performance benefits in those chips. I mean it's real, right? It's basically a 20, 30% free lunch. You know, why wouldn't you, why wouldn't you go for it there? There's no downside. You know, there's no, "got you" or no catch. But we see Azure doing the same thing now, they're also building their own chips and we know that Google builds specialized machine learning chips, TPU, Tenor Processing Units. So their legs are focused on that. I don't think they can give up that or focused on higher levels if they had to pick bets. And I think actually in the next few years, most of us have to make more, we have to be more deliberate and calculated in the picks we do. I think in the last five years, most of us have said, "We'll do all of it." You know. >> Well you made a good bet with Spark, you know, the duke was pretty obvious trend that was, everyone was shut on that bandwagon and you guys picked a big bet with Spark. Look what happened with you guys? So again, I love this betting kind of concept because as the world matures, growth slows down and shifts and that next wave of value coming in, AKA customers, they're going to integrate with a new ecosystem. A new kind of partner network for AWS and the other clouds. But with aws they're going to need to nurture the next Databricks. They're going to need to still provide that SaaS, ISV like experience for, you know, a basic software hosting or some application. But I go to get your thoughts on this idea of multiple clouds because if I'm a developer, the old days was, old days, within our decade, full stack developer- >> It was two years ago, yeah (John laughing) >> This is a decade ago, full stack and then the cloud came in, you kind had the half stack and then you would do some things. It seems like the clouds are trying to say, we want to be the full stack or not. Or is it still going to be, you know, I'm an application like a PC and a Mac, I'm going to write the same application for both hardware. I mean what's your take on this? Are they trying to do full stack and you see them more like- >> Absolutely. I mean look, of course they're going, they have, I mean they have over 300, I think Amazon has over 300 services, right? That's not just compute, storage, networking, it's the whole stack, right? But my key point is, I think they have to nail the core infrastructure storage compute networking because the three clouds that are there competing, they're formidable companies with formidable balance sheets and it doesn't look like any of them is going to throw in the towel and say, we give up. So I think it's going to intensify. And given that they have a 70% revenue on that infrastructure layer, I think they, if they have to pick their bets, I think they'll focus it on that infrastructure layer. I think the layer above where they're also placing bets, they're doing that, the full stack, right? But there I think the demand will be, can you make that work on the other clouds? And therein lies an innovator's dilemma because if I make it work on the other clouds, then I'm foregoing that 70% revenue of the infrastructure. I'm not getting it. The other cloud vendor is going to get it. So should I do that or not? Second, is the other cloud vendor going to be welcoming of me making my service work on their cloud if I am a competing cloud, right? And what kind of terms of service are I giving me? And am I going to really invest in doing that? And I think right now we, you know, most, the vast, vast, vast majority of the services only work on the one cloud that you know, it's built on. It doesn't work on others, but this will shift. >> Yeah, I think the innovators dilemma is also very good point. And also add, it's an integrators dilemma too because now you talk about integration across services. So I believe that the super cloud movement's going to happen before Sky. And I think what explained by that, what you guys did and what other companies are doing by representing advanced, I call platform engineering, refactoring an existing market really fast, time to value and CAPEX is, I mean capital, market cap is going to be really fast. I think there's going to be an opportunity for those to emerge that's going to set the table for global multicloud ultimately in the future. So I think you're going to start to see the same pattern of what you guys did get in, leverage the hell out of it, use it, not in the way just to host, but to refactor and take down territory of markets. So number one, and then ultimately you get into, okay, I want to run some SLA across services, then there's a little bit more complication. I think that's where you guys put that beautiful paper out on Sky Computing. Okay, that makes sense. Now if you go to today's market, okay, I'm betting on Amazon because they're the best, this is the best cloud win scenario, not the most robust cloud. So if I'm a developer, I want the best. How do you look at their bet when it comes to data? Because now they've got machine learning, Swami's got a big keynote on Wednesday, I'm expecting to see a lot of AI and machine learning. I'm expecting to hear an end to end data story. This is what you do, so as a major partner, how do you view the moves Amazon's making and the bets they're making with data and machine learning and AI? >> First I want to lift off my hat to AWS for being customer obsessed. So I know that if a customer wants Databricks, I know that AWS and their sellers will actually help us get that customer deploy Databricks. Now which of the services is the customer going to pick? Are they going to pick ours or the end to end, what Swami is going to present on stage? Right? So that's the question we're getting. But I wanted to start with by just saying, their customer obsessed. So I think they're going to do the right thing for the customer and I see the evidence of it again and again and again. So kudos to them. They're amazing at this actually. Ultimately our bet is, customers want this to be simple, integrated, okay? So yes there are hundreds of services that together give you the end to end experience and they're very customizable that AWS gives you. But if you want just something simply integrated that also works across the clouds, then I think there's a special place for Databricks. And I think the lake house approach that we have, which is an integrated, completely integrated, we integrate data lakes with data warehouses, integrate workflows with machine learning, with real time processing, all these in one platform. I think there's going to be tailwinds because I think the most important thing that's going to happen in the next few years is that every customer is going to now be obsessed, given the recession and the environment we're in. How do I cut my costs? How do I cut my costs? And we learn this from the customers they're adopting the lake house because they're thinking, instead of using five vendors or three vendors, I can simplify it down to one with you and I can cut my cost. So I think that's going to be one of the main drivers of why people bet on the lake house because it helps them lower their TCO; Total Cost of Ownership. And it's as simple as that. Like I have three things right now. If I can get the same job done of those three with one, I'd rather do that. And by the way, if it's three or four across two clouds and I can just use one and it just works across two clouds, I'm going to do that. Because my boss is telling me I need to cut my budget. >> (indistinct) (John laughing) >> Yeah, and I'd rather not to do layoffs and they're asking me to do more. How can I get smaller budgets, not lay people off and do more? I have to cut, I have to optimize. What's happened in the last five, six years is there's been a huge sprawl of services and startups, you know, you know most of them, all these startups, all of them, all the activity, all the VC investments, well those companies sold their software, right? Even if a startup didn't make it big, you know, they still sold their software to some vendors. So the ecosystem is now full of lots and lots and lots and lots of different software. And right now people are looking, how do I consolidate, how do I simplify, how do I cut my costs? >> And you guys have a great solution. You're also an arms dealer and a innovator. So I have to ask this question, because you're a professor of the industry as well as at Berkeley, you've seen a lot of the historical innovations. If you look at the moment we're in right now with the recession, okay we had COVID, okay, it changed how people work, you know, people working at home, provisioning VLAN, all that (indistinct) infrastructure, okay, yeah, technology and cloud health. But we're in a recession. This is the first recession where the Amazon and the other cloud, mainly Amazon Web Services is a major economic puzzle in the piece. So they were never around before, even 2008, they were too small. They're now a major economic enabler, player, they're serving startups, enterprises, they have super clouds like you guys. They're a force and the people, their customers are cutting back but also they can also get faster. So agility is now an equation in the economic recovery. And I want to get your thoughts because you just brought that up. Customers can actually use the cloud and Databricks to actually get out of the recovery because no one's going to say, stop making profit or make more profit. So yeah, cut costs, be more efficient, but agility's also like, let's drive more revenue. So in this digital transformation, if you take this to conclusion, every company transforms, their company is the app. So their revenue is tied directly to their technology deployment. What's your reaction and comment to that because this is a new historical moment where cloud and scale and data, actually could be configured in a way to actually change the nature of a business in such a short time. And with the recession looming, no one's got time to wait. >> Yeah, absolutely. Look, the secular tailwind in the market is that of, you know, 10 years ago it was software is eating the world, now it's AI's going to eat all of software software. So more and more we're going to have, wherever you have software, which is everywhere now because it's eaten the world, it's going to be eaten up by AI and data. You know, AI doesn't exist without data so they're synonymous. You can't do machine learning if you don't have data. So yeah, you're going to see that everywhere and that automation will help people simplify things and cut down the costs and automate more things. And in the cloud you can also do that by changing your CAPEX to OPEX. So instead of I invest, you know, 10 million into a data center that I buy, I'm going to have headcount to manage the software. Why don't we change this to OPEX? And then they are going to optimize it. They want to lower the TCO because okay, it's in the cloud. but I do want the costs to be much lower that what they were in the previous years. Last five years, nobody cared. Who cares? You know what it costs. You know, there's a new brave world out there. Now there's like, no, it has to be efficient. So I think they're going to optimize it. And I think this lake house approach, which is an integration of the lakes and the warehouse, allows you to rationalize the two and simplify them. It allows you to basically rationalize away the data warehouse. So I think much faster we're going to see the, why do I need the data warehouse? If I can get the same thing done with the lake house for fraction of the cost, that's what's going to happen. I think there's going to be focus on that simplification. But I agree with you. Ultimately everyone knows, everybody's a software company. Every company out there is a software company and in the next 10 years, all of them are also going to be AI companies. So that is going to continue. >> (indistinct), dev's going to stop. And right sizing right now is a key economic forcing function. Final question for you and I really appreciate you taking the time. This year Reinvent, what's the bumper sticker in your mind around what's the most important industry dynamic, power dynamic, ecosystem dynamic that people should pay attention to as we move from the brave new world of okay, I see cloud, cloud operations. I need to really make it structurally change my business. How do I, what's the most important story? What's the bumper sticker in your mind for Reinvent? >> Bumper sticker? lake house 24. (John laughing) >> That's data (indistinct) bumper sticker. What's the- >> (indistinct) in the market. No, no, no, no. You know, it's, AWS talks about, you know, all of their services becoming a lake house because they want the center of the gravity to be S3, their lake. And they want all the services to directly work on that, so that's a lake house. We're Bumper see Microsoft with Synapse, modern, you know the modern intelligent data platform. Same thing there. We're going to see the same thing, we already seeing it on GCP with Big Lake and so on. So I actually think it's the how do I reduce my costs and the lake house integrates those two. So that's one of the main ways you can rationalize and simplify. You get in the lake house, which is the name itself is a (indistinct) of two things, right? Lake house, "lake" gives you the AI, "house" give you the database data warehouse. So you get your AI and you get your data warehousing in one place at the lower cost. So for me, the bumper sticker is lake house, you know, 24. >> All right. Awesome Ali, well thanks for the exclusive interview. Appreciate it and get to see you. Congratulations on your success and I know you guys are going to be fine. >> Awesome. Thank you John. It's always a pleasure. >> Always great to chat with you again. >> Likewise. >> You guys are a great team. We're big fans of what you guys have done. We think you're an example of what we call "super cloud." Which is getting the hype up and again your paper speaks to some of the innovation, which I agree with by the way. I think that that approach of not forcing standards is really smart. And I think that's absolutely correct, that having the market still innovate is going to be key. standards with- >> Yeah, I love it. We're big fans too, you know, you're doing awesome work. We'd love to continue the partnership. >> So, great, great Ali, thanks. >> Take care (outro music)
SUMMARY :
after the keynotes prior to the keynotes and you know, we're because you have customers. I wouldn't, you know, I got to give you guys credit over there So if the customer said we So Adam and the team at So in the next five years, But I think to me, I'm a cloud vendor, and calculated in the picks we do. But I go to get your thoughts on this idea Or is it still going to be, you know, And I think right now we, you know, So I believe that the super cloud I can simplify it down to one with you and startups, you know, and the other cloud, And in the cloud you can also do that I need to really make it lake house 24. That's data (indistinct) of the gravity to be S3, and I know you guys are going to be fine. It's always a pleasure. We're big fans of what you guys have done. We're big fans too, you know,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
2013 | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
Alibaba | ORGANIZATION | 0.99+ |
2008 | DATE | 0.99+ |
Ali Ghosdi | PERSON | 0.99+ |
five vendors | QUANTITY | 0.99+ |
Adam Saleski | PERSON | 0.99+ |
five | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
Ali | PERSON | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
three vendors | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
Wednesday | DATE | 0.99+ |
Excel | TITLE | 0.99+ |
38 billion | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Word | TITLE | 0.99+ |
three | QUANTITY | 0.99+ |
two clouds | QUANTITY | 0.99+ |
Andy | PERSON | 0.99+ |
three clouds | QUANTITY | 0.99+ |
10 million | QUANTITY | 0.99+ |
PowerPoint | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
twice | QUANTITY | 0.99+ |
Second | QUANTITY | 0.99+ |
over 300 services | QUANTITY | 0.99+ |
one game | QUANTITY | 0.99+ |
second cloud | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Sky | ORGANIZATION | 0.99+ |
one word | QUANTITY | 0.99+ |
OPEX | ORGANIZATION | 0.99+ |
two things | QUANTITY | 0.98+ |
two years ago | DATE | 0.98+ |
Access | TITLE | 0.98+ |
over 300 | QUANTITY | 0.98+ |
six years | QUANTITY | 0.98+ |
over 70% | QUANTITY | 0.98+ |
five years ago | DATE | 0.98+ |
Ken Durazzo, Dell Technologies and Matt Keesan, IonQ | Super Computing 2022
>>How do y'all and welcome back to the cube where we're live from Dallas at a Supercomputing 2022. My name is Savannah Peterson. Joined with L AED today, as well as some very exciting guests talking about one of my favorite and most complex topics out there, talking about quantum a bit today. Please welcome Ken and Matthew. Thank you so much for reading here. Matthew. Everyone's gonna be able to see your shirt. What's going on with hybrid quantum? I have >>To ask. Wait, what is hybrid quantum? Yeah, let's not pretend that. >>Let's not >>Pretend that everybody knows, Everyone already knows what quantum computing is if we goes straight to highway. Yeah. Okay. So with the brief tour detour took qu regular quantum computing. Yeah, >>No, no. Yeah. Let's start with quantum start before. >>So you know, like regular computers made of transistors gives us ones and zeros, right? Binary, like you were talking about just like half of the Cheerios, right? The joke, it turns out there's some problems that even if we could build a computer as big as the whole universe, which would be pretty expensive, >>That might not be a bad thing, but >>Yeah. Yeah. Good for Dell Got mill. >>Yeah. >>Yeah. We wouldn't be able to solve them cuz they scale exponentially. And it turns out some of those problems have efficient solutions in quantum computing where we take any two state quantum system, which I'll explain in a sec and turn it into what we call a quantum bit or qubit. And those qubits can actually solve some problems that are just infeasible on even these world's largest computers by offering exponential advantage. And it turns out that today's quantum computers are a little too small and a little too noisy to do that alone. So by pairing a quantum computer with a classical computer, hence the partnership between IQ and Dell, you allow each kind of compute to do what it's best at and thereby get answers you can't get with either one alone. >>Okay. So the concept of introducing hybridity, I love that word bridge. I dunno if I made it up, but it's it for it. Let's about it. Abri, ding ding. So does this include simulating the quantum world within the, what was the opposite? The classical quantum world? Classical. Classical, classical computer. Yeah. So does it include the concept of simulating quantum in classical compute? >>Absolutely. >>Okay. How, how, how do, how do you do that? >>So there's simulators and emulators that effectively are programmed in exactly the same way that a physical quantum machine is through circuits translated into chasm or quantum assembly language. And those are the exact same ways that you would program either a physical q p or a simulated >>Q p. So, so access to quantum computing today is scarce, right? I mean it's, it's, it's, it's limited. So having the ability to have the world at large or a greater segment of society be able to access this through simulation is probably a good idea. >>Fair. It's absolutely a wonderful one. And so I often talk to customers and I tell them about the journey, which is hands on keyboard, learning, experimentation, building proof of concepts, and then finally productization. And you could do much of that first two steps anyway very robustly with simulation. >>It's much like classical computing where if you imagine back in the fifties, if, if the cube was at some conference in 1955, you know, we wouldn't have possibly been able to predict what we'd be doing with computing 70 years later, right? Yeah. That teenagers be making apps on their phones that changed the world, right? And so by democratizing access this way, suddenly we can open up all sorts of new use cases. We sort of like to joke, there's only a couple hundred people in the world who really know how to program quantum computers today. And so how are we gonna make thousands, tens of thousands, millions of quantum programmers? The answer is access and simulators are an amazingly accessible way for everyone to start playing around with the >>Fields. Very powerful tool. >>Wow. Yeah. I'm just thinking about how many, there's, are there really only hundreds of people who can program quantum computing? >>I kind of generally throw it out there and I say, you know, if you looked at a matrix of a thousand operations with hundreds of qubits, there's probably, I don't know, 2000 people worldwide that could program that type of a circuit. I mean it's a fairly complex circuit at that point and >>I, I mean it's pretty phenomenal When you think about how early we are in adoption and, and the rollout of this technology as a whole, can you see quite a bit as, as you look across your customer portfolio, what are some of the other trends you're seeing? >>Well, non quantum related trends or just any type you give us >>Both. >>Yeah. So >>We're a thought leader. This is >>Your moment. Yeah, so we do quite a bit. We see quite a bit actually. There's a lot of work happening at the edge as you're probably well aware of. And we see a lot of autonomous mobile robots. I actually lead the, the research office. So I get to see all the cool stuff that's really kind of emerging before it really regrets >>What's coming next. >>Let's see, Oh, I can't tell you what's coming next, but we see edge applications. Yes, we see a lot of, of AI applications and artificial intelligence is morphing dramatically through the number of frameworks and through the, the types and places you would place ai, even places I, I personally never thought we would go like manufacturing environments. Some places that were traditionally not very early adopters. We're seeing AI move very quickly in some of those areas. One of the areas that I'm really excited about is digital twins and the ability to eventually do, let's come up on acceleration with quantum technologies on, on things like computational fluid dynamics. And I think it's gonna be a wonderful, wonderful area for us moving forward. >>So, So I can hear the people screaming at the screen right now. Wait a minute, You said it was hybrid, you're only talking the front half. That's, that's cat. What about the back half? That's dog. What about the quantum part of it? So I, on Q and, and I apologize. Ion Q >>Ion >>Q, Yeah Ion Q cuz you never know. You never never know. Yeah. Where does the actual quantum come in? >>That's a great >>Question. So you guys have one of these things. >>Yeah, we've built, we currently have the world's best quantum computer by, by sub measures I drop there. Yeah, no big deal. Give me some snaps for that. Yeah, Ken knows how to pick em. Yeah, so right. Our, our approach, which is actually based on technology that's 50 years old, so it's quite, quite has a long history. The way we build atomic clocks is the basis for trapped eye quantum computing. And in fact the first quantum logic gate ever made in 1995 was at NIST where they modified their atomic clock experiment to do quantum gates. And that launched really the hardware experimentalist quantum Peter Revolution. And that was by Chris Monroe, our co-founder. So you know that history has flown directly into us. So to simplify, we start with an ion trap. Imagine a gold block with a bunch of electrodes that allow you to make precisely shaped electromagnetic fields, sort of like a rotating saddle. >>Then take a source of atoms. Now obviously we're all sources of atoms. We have a highly purified source of metal atium. We heat it up, we get a nice hot plume of atoms, we ionize those atoms with an ionizing later laser. Now they're hot and heavy and charged. So we can trap them in one of these fields. And now our electromagnetic field that's spitting rapidly holds the, the ions like balls in a bowl if you can imagine them. And they line up in a nice straight line and we hold them in place with these fields and with cooling laser beams. And up to now, that's how an atomic clock works. Trap an item and shine it with a laser beam. Count the oscillations, that's your clock. Now if you got 32 of those and you can manipulate their energy states, in our case we use the hyper fine energy states of the atom. >>But you can basically think of your high school chemistry where you have like an unexcited electron, an excited electron. Take your unexcited state as a zero, your excited state as a one. And it turns out with commercially available lasers, you can drive anywhere between a zero, a one or a super position of zero and one. And so that is our quantum bit, the hyper fine energy state of the atrium atom. And we just line up a bunch of them and through there access the magical powers of supervision entanglement, as we were talking about before, they don't really make sense to us here in the regular world, but >>They do exist. But what you just described is one cubit. That's right. And the way that you do it isn't exactly the same way that others who are doing quantum computing do it. That's right. Is that okay? >>And there's a lot of advantages to the trapped iron approach. So for example, you can also build a super conducting qubit where you, where you basically cool a chip to 47 mil kelvin and coerce millions of atoms to work together as a single system. The problem is that's not naturally quantum. So it's inherently noisy and it wants to deco here does not want to be a quantum bit. Whereas an atom is very happy to be by itself a qubit because we don't have to do anything to it. It's naturally quantum, if that makes sense. And so atomic qubits, like we use feature a few things. One the longest coherence times in the industry, meaning you can run very deep circuits, the most accurate operations, very low noise operations. And we don't have any wires. Our atoms are connected by laser light. That means you can connect any pair. So with some other technologies, the qubits are connected by wires. That means you can only run operations between physically connected qubits. It's like programming. If you could only use, for example, bits that are adjacent with an i untrapped approach, you can connect any pair so that all to all connectivity means your compilation is much more efficient and you can do much wider and deeper circuits. >>So what's the, what is the closest thing to a practical application that we've been able to achieve at this point? Question. And when I say practical, it doesn't have to be super practical. I mean, what is the, what is the sort of demonstration, the least esoteric demonstration of this at this point? >>To tie into what Ken was saying earlier, I think there's at least two areas that are very exciting. One is chemistry. Chemistry. So for example, you know, we have water in our cup and we understand water pretty well, but there's lots of molecules that in order to study them, we actually have to make them in a lab and do lots of experiments. And to give you a sense of the order of magnitude, if you wanted to understand the ground state of the caffeine molecule, which we all know and has 200 electrons, you would need to build a computer bigger than the moon. So, which is, you know, again, would be good profit for Dell, but probably not gonna happen time soon. That's >>Kind of fun to think about though. Yeah, that's a great analogy. That >>Was, yeah. And in fact it'd be like 10 moons of compute. Okay. So build 10 moons of >>Computer. I >>Love the sci-fi issue. Exactly. And now you can calculate caffeine, it's crazy or it just fits in a quantum computer the size of this table. And so we're using hybrid quantum computing now to start proving out these algorithms not for molecules as complex as caffeine or what we want in the future. Like biologics, you know, new cancer medications, new materials and so forth. But we are able to show, for example, the ground state of smaller molecules and prove a path to where, you know, decision maker could see in a few years from now, Oh, we'll be able to actually simulate not molecules we already understand, but molecules we've never been able to study a prayer, if that makes sense. And then, >>Yeah, I think there's a key point underneath that, and I think goes back to the question that you asked earlier about the why hybrid applications inherently run on the classical infrastructure and algorithms are accelerated through qs, the quantum processing units. >>And so are you sort of time sharing in the sense that this environment that you set up starts with classical, with simulation and then you get to a point where you say, okay, we're ready, you pick up the bat phone and you say I wanna, >>I would say it's more like a partnership, really. Yeah, >>Yeah. And I think, I think it's kind of the, the way I normally describe it is, you know, we've taken a look at it it from a really kind of a software development life cycle type of perspective where again, if you follow that learn experiment, pro proof of concept, and then finally productize, we, we can cover and allow for a developer to start prototyping and proofing on simulators and when they're ready all they do is flip a switch and a manifest and they can automatically engage a qu a real quantum physical quantum system. And so we've made it super simple and very accessible in a democratizing access for developers. >>Yeah. Makes such big difference. Go ahead. >>A good analogy is to like GPUs, right? Where it's not really like, you know, you send it away, but rather the GPU accelerates certain operations. The q p. Yeah, because quantum mechanics, it turns out the universe runs on linear algebra. So one way to think about the q p is the most efficient way of doing linear algebra that exists. So lots of problems that can be expressed in that form. Combinatorial optimization problems in general, certain kinds of machine learning, et cetera, get an exponential speed up by running a section of the algorithm on the quantum computer. But of course you wouldn't like port Microsoft Word. Yeah, exactly. You know, you're not gonna do that in your product. It would be a waste of your quantum computer. >>Not just that you wanna know exactly how much money is in your bank account, not probabilistically how much might be ballpark. Yeah. Realm 10, moon ballpark, right? >>10 moon ballpark. Be using that for the rest of the show. Yeah. Oh, I love that. Ken, tell me a little bit about how you identify companies and like I n Q and and end up working with Matthew. What, what's that like, >>What's it like or how do you >>Find it's the process? Like, so, you know, let's say I've got the the >>We're not going there though. Yeah. We're not >>Personal relationship. >>Well, >>You can answer these questions however you want, you know. No, but, but what does that look like for Dell? How do you, how do you curate and figure out who you're gonna bring into this partnership nest? >>Yeah, you know, I, I think it was a, it's, it was a, a very long drawn out learning opportunity. We started actually our working quantum back in 2016. So we've been at it for a long time. And only >>In quantum would we say six years is a long time. I love >>That. Exactly. >>By the way, that was like, we've been doing this for age for a >>Long time. Yeah. Very long time before >>You were born. Yes. >>Feels like it actually, believe it or not. But, so we've been at it for a long time and you know, we went down some very specific learning paths. We took a lot of different time to, to learn about different types of qubits available, different companies, what their approaches were, et cetera. Yeah. And, and we ended up meeting up with, with I N Q and, and we also have other partners as well, like ibm, but I N q you know, we, there is a nice symbiotic relationship. We're actually doing some really cool technologies that are even much, much further ahead than the, you know, strict classical does this, quantum does that where there's significant amount of interplay between the simulation systems and between the real physical QS. And so it's, it's turning out to be a great relationship. They're, they're very easy to work with and, and a lot of fun too, as you could probably tell. Yeah. >>Clearly. So before we wrap, I've got it. Okay. Okay. So get it. Let's get, let's get, yeah, let's get deep. Let's get deep for a second or a little deeper than we've been. So our current, our current understanding of all this, of the universe, it's pretty limited. It's down to the point where we effectively have it assigned to witchcraft. It's all dark energy and dark matter. Right. What does that mean exactly? Nobody knows. But if you're in the quantum computing space and you're living this every day, do you believe that it represents the key to us understanding things that currently we just can't understand classical models, including classical computing, our brains as they're constructed aren't capable of understanding the real real that's out there. Yeah. If you're in the quantum computing space, do you possess that level of hubris? Do you think that you are gonna deliver the answers? >>I'm just like, I think the more you're in the space, the more mysterious and amazing it all seems. There's a, but there is a great quote by Richard Feinman that sort of kicked off the quantum exploration. So he gave a lecture in 1981, so, you know, long before any of this began, truly ages ago, right? Yeah. And in this lecture he said, you know, kind of wild at that time, right? We had to build these giant supercomputers to simulate just a couple atoms interacting, right? And it's kind of crazy that you need all this compute to simulate what nature does with just a handful >>Particles. Yeah. >>Really small. So, and, and famously he said, you know, nature just isn't classical. Damn it. And so you need to build a computer that works with nature to understand nature. I think, you know, the, the quantum revolution has only just begun. There's so many new things to learn, and I'm sure the quantum computers of 40 years from now are not gonna look like the, you know, the computers of today, just as the classical computers of 40 years ago look quite different to us now, >>And we're a bunch of apes. But you think we'll get there? >>I, yeah, I, I mean, I, I have, I think we have, I feel incredibly optimistic that this tool, quantum computing as a tool represents a sea change in what's possible for humans to compute. >>Yeah. I think it's that possibility. You know, I, when I tell people right now in the quantum era, we're in the inac stage of the quantum era, and so we have a long way to go, but the potential is absolutely enormous. In fact, incomprehensibly enormous, I >>Was just gonna say, I don't even think we could grasp >>In the, from the inac is they had no idea of computers inside of your hand, right? Yeah. >>They're calculating, you know, trajectories, right? Yeah. If you told them, like, we'd all be video chatting, you >>Know, >>Like, and kids would be doing synchronized dances, you know, you'd be like, What? >>I love that. Well, well, on that note, Ken Matthew, really great to have you both, everyone now will be pondering the scale and scope of the universe with their 10 moon computer, 10 moons. That's right. And, and you've given me my, my new favorite bumper sticker since we've been on a, on a roll here, David and I, which is just naturally quantum. Yeah, that's, that's, that's, that's one of my new favorite phrases from the show. Thank you both for being here. David, thank you for hanging out and thank all of you for tuning in to our cube footage live here in Dallas. We are at Supercomputing. This is our last show for the day, but we look forward to seeing you tomorrow morning. My name's Savannah Peterson. Y'all have a lovely night.
SUMMARY :
Thank you so much for reading here. Yeah, let's not pretend that. So with the brief tour detour took qu regular quantum computing. hence the partnership between IQ and Dell, you allow each kind of compute to do what it's So does it include the concept of simulating quantum in you would program either a physical q p or a simulated So having the ability to have the And you could do much of that first if, if the cube was at some conference in 1955, you know, we wouldn't have possibly been Very powerful tool. I kind of generally throw it out there and I say, you know, if you looked at a matrix of a thousand operations with We're a thought leader. And we see a lot of the types and places you would place ai, even places I, What about the quantum part of it? Q, Yeah Ion Q cuz you never know. So you guys have one of these things. So you know that history has flown directly into Now if you got 32 of those and you can manipulate their And it turns out with commercially available lasers, you can drive anywhere between a zero, And the way that you do it isn't for example, bits that are adjacent with an i untrapped approach, you can connect any pair so that all And when I say practical, it doesn't have to be super practical. And to give you a sense of the order of magnitude, Kind of fun to think about though. And in fact it'd be like 10 moons of compute. I And now you can calculate caffeine, it's crazy or it just fits in a quantum computer the size of Yeah, I think there's a key point underneath that, and I think goes back to the question that you asked earlier about the why hybrid Yeah, of a software development life cycle type of perspective where again, if you follow that learn experiment, Where it's not really like, you know, Not just that you wanna know exactly how much money is in your bank account, not probabilistically how tell me a little bit about how you identify companies and like I n Q and and end Yeah. You can answer these questions however you want, you know. Yeah, you know, I, I think it was a, it's, it was a, a very long drawn out learning opportunity. In quantum would we say six years is a long time. You were born. But, so we've been at it for a long time and you know, do you believe that it represents the key to us understanding And it's kind of crazy that you need all this compute to simulate what nature does Yeah. And so you need to build a computer that works with nature to understand nature. But you think we'll get there? I, yeah, I, I mean, I, I have, I think we have, I feel incredibly optimistic that this to go, but the potential is absolutely enormous. Yeah. They're calculating, you know, trajectories, right? but we look forward to seeing you tomorrow morning.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Ken | PERSON | 0.99+ |
Chris Monroe | PERSON | 0.99+ |
Matthew | PERSON | 0.99+ |
David | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
Ken Durazzo | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Matt Keesan | PERSON | 0.99+ |
1995 | DATE | 0.99+ |
10 moons | QUANTITY | 0.99+ |
Ken Matthew | PERSON | 0.99+ |
Richard Feinman | PERSON | 0.99+ |
Dallas | LOCATION | 0.99+ |
1981 | DATE | 0.99+ |
32 | QUANTITY | 0.99+ |
six years | QUANTITY | 0.99+ |
tomorrow morning | DATE | 0.99+ |
200 electrons | QUANTITY | 0.99+ |
1955 | DATE | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
10 moon | QUANTITY | 0.99+ |
one cubit | QUANTITY | 0.99+ |
hundreds of qubits | QUANTITY | 0.99+ |
Both | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
millions of atoms | QUANTITY | 0.99+ |
two state | QUANTITY | 0.99+ |
zero | QUANTITY | 0.99+ |
2000 people | QUANTITY | 0.99+ |
tens of thousands | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
L AED | ORGANIZATION | 0.98+ |
One | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
IQ | ORGANIZATION | 0.98+ |
70 years later | DATE | 0.98+ |
first two steps | QUANTITY | 0.98+ |
Dell Technologies | ORGANIZATION | 0.98+ |
zeros | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
47 mil kelvin | QUANTITY | 0.96+ |
40 years | QUANTITY | 0.95+ |
each kind | QUANTITY | 0.94+ |
40 years ago | DATE | 0.93+ |
50 years old | QUANTITY | 0.93+ |
Supercomputing | ORGANIZATION | 0.92+ |
single system | QUANTITY | 0.92+ |
millions of quantum programmers | QUANTITY | 0.91+ |
NIST | ORGANIZATION | 0.9+ |
Abri | PERSON | 0.89+ |
2022 | DATE | 0.87+ |
ages ago | DATE | 0.86+ |
hundreds of people | QUANTITY | 0.86+ |
couple hundred people | QUANTITY | 0.84+ |
thousand operations | QUANTITY | 0.84+ |
couple atoms | QUANTITY | 0.77+ |
a second | QUANTITY | 0.77+ |
Supercomputing 2022 | EVENT | 0.74+ |
ones | QUANTITY | 0.72+ |
IonQ | PERSON | 0.71+ |
mill | ORGANIZATION | 0.71+ |
two areas | QUANTITY | 0.71+ |
one way | QUANTITY | 0.7+ |
Word | TITLE | 0.69+ |
fields | QUANTITY | 0.67+ |
front | QUANTITY | 0.66+ |
Microsoft | ORGANIZATION | 0.65+ |
Super | EVENT | 0.58+ |
years | DATE | 0.52+ |
moon | LOCATION | 0.5+ |
The Truth About MySQL HeatWave
>>When Oracle acquired my SQL via the Sun acquisition, nobody really thought the company would put much effort into the platform preferring to focus all the wood behind its leading Oracle database, Arrow pun intended. But two years ago, Oracle surprised many folks by announcing my SQL Heatwave a new database as a service with a massively parallel hybrid Columbia in Mary Mary architecture that brings together transactional and analytic data in a single platform. Welcome to our latest database, power panel on the cube. My name is Dave Ante, and today we're gonna discuss Oracle's MySQL Heat Wave with a who's who of cloud database industry analysts. Holgar Mueller is with Constellation Research. Mark Stammer is the Dragon Slayer and Wikibon contributor. And Ron Westfall is with Fu Chim Research. Gentlemen, welcome back to the Cube. Always a pleasure to have you on. Thanks for having us. Great to be here. >>So we've had a number of of deep dive interviews on the Cube with Nip and Aggarwal. You guys know him? He's a senior vice president of MySQL, Heatwave Development at Oracle. I think you just saw him at Oracle Cloud World and he's come on to describe this is gonna, I'll call it a shock and awe feature additions to to heatwave. You know, the company's clearly putting r and d into the platform and I think at at cloud world we saw like the fifth major release since 2020 when they first announced MySQL heat wave. So just listing a few, they, they got, they taken, brought in analytics machine learning, they got autopilot for machine learning, which is automation onto the basic o l TP functionality of the database. And it's been interesting to watch Oracle's converge database strategy. We've contrasted that amongst ourselves. Love to get your thoughts on Amazon's get the right tool for the right job approach. >>Are they gonna have to change that? You know, Amazon's got the specialized databases, it's just, you know, the both companies are doing well. It just shows there are a lot of ways to, to skin a cat cuz you see some traction in the market in, in both approaches. So today we're gonna focus on the latest heat wave announcements and we're gonna talk about multi-cloud with a native MySQL heat wave implementation, which is available on aws MySQL heat wave for Azure via the Oracle Microsoft interconnect. This kind of cool hybrid action that they got going. Sometimes we call it super cloud. And then we're gonna dive into my SQL Heatwave Lake house, which allows users to process and query data across MyQ databases as heatwave databases, as well as object stores. So, and then we've got, heatwave has been announced on AWS and, and, and Azure, they're available now and Lake House I believe is in beta and I think it's coming out the second half of next year. So again, all of our guests are fresh off of Oracle Cloud world in Las Vegas. So they got the latest scoop. Guys, I'm done talking. Let's get into it. Mark, maybe you could start us off, what's your opinion of my SQL Heatwaves competitive position? When you think about what AWS is doing, you know, Google is, you know, we heard Google Cloud next recently, we heard about all their data innovations. You got, obviously Azure's got a big portfolio, snowflakes doing well in the market. What's your take? >>Well, first let's look at it from the point of view that AWS is the market leader in cloud and cloud services. They own somewhere between 30 to 50% depending on who you read of the market. And then you have Azure as number two and after that it falls off. There's gcp, Google Cloud platform, which is further way down the list and then Oracle and IBM and Alibaba. So when you look at AWS and you and Azure saying, hey, these are the market leaders in the cloud, then you start looking at it and saying, if I am going to provide a service that competes with the service they have, if I can make it available in their cloud, it means that I can be more competitive. And if I'm compelling and compelling means at least twice the performance or functionality or both at half the price, I should be able to gain market share. >>And that's what Oracle's done. They've taken a superior product in my SQL heat wave, which is faster, lower cost does more for a lot less at the end of the day and they make it available to the users of those clouds. You avoid this little thing called egress fees, you avoid the issue of having to migrate from one cloud to another and suddenly you have a very compelling offer. So I look at what Oracle's doing with MyQ and it feels like, I'm gonna use a word term, a flanking maneuver to their competition. They're offering a better service on their platforms. >>All right, so thank you for that. Holger, we've seen this sort of cadence, I sort of referenced it up front a little bit and they sat on MySQL for a decade, then all of a sudden we see this rush of announcements. Why did it take so long? And and more importantly is Oracle, are they developing the right features that cloud database customers are looking for in your view? >>Yeah, great question, but first of all, in your interview you said it's the edit analytics, right? Analytics is kind of like a marketing buzzword. Reports can be analytics, right? The interesting thing, which they did, the first thing they, they, they crossed the chasm between OTP and all up, right? In the same database, right? So major engineering feed very much what customers want and it's all about creating Bellevue for customers, which, which I think is the part why they go into the multi-cloud and why they add these capabilities. And they certainly with the AI capabilities, it's kind of like getting it into an autonomous field, self-driving field now with the lake cost capabilities and meeting customers where they are, like Mark has talked about the e risk costs in the cloud. So that that's a significant advantage, creating value for customers and that's what at the end of the day matters. >>And I believe strongly that long term it's gonna be ones who create better value for customers who will get more of their money From that perspective, why then take them so long? I think it's a great question. I think largely he mentioned the gentleman Nial, it's largely to who leads a product. I used to build products too, so maybe I'm a little fooling myself here, but that made the difference in my view, right? So since he's been charged, he's been building things faster than the rest of the competition, than my SQL space, which in hindsight we thought was a hot and smoking innovation phase. It kind of like was a little self complacent when it comes to the traditional borders of where, where people think, where things are separated between OTP and ola or as an example of adjacent support, right? Structured documents, whereas unstructured documents or databases and all of that has been collapsed and brought together for building a more powerful database for customers. >>So I mean it's certainly, you know, when, when Oracle talks about the competitors, you know, the competitors are in the, I always say they're, if the Oracle talks about you and knows you're doing well, so they talk a lot about aws, talk a little bit about Snowflake, you know, sort of Google, they have partnerships with Azure, but, but in, so I'm presuming that the response in MySQL heatwave was really in, in response to what they were seeing from those big competitors. But then you had Maria DB coming out, you know, the day that that Oracle acquired Sun and, and launching and going after the MySQL base. So it's, I'm, I'm interested and we'll talk about this later and what you guys think AWS and Google and Azure and Snowflake and how they're gonna respond. But, but before I do that, Ron, I want to ask you, you, you, you can get, you know, pretty technical and you've probably seen the benchmarks. >>I know you have Oracle makes a big deal out of it, publishes its benchmarks, makes some transparent on on GI GitHub. Larry Ellison talked about this in his keynote at Cloud World. What are the benchmarks show in general? I mean, when you, when you're new to the market, you gotta have a story like Mark was saying, you gotta be two x you know, the performance at half the cost or you better be or you're not gonna get any market share. So, and, and you know, oftentimes companies don't publish market benchmarks when they're leading. They do it when they, they need to gain share. So what do you make of the benchmarks? Have their, any results that were surprising to you? Have, you know, they been challenged by the competitors. Is it just a bunch of kind of desperate bench marketing to make some noise in the market or you know, are they real? What's your view? >>Well, from my perspective, I think they have the validity. And to your point, I believe that when it comes to competitor responses, that has not really happened. Nobody has like pulled down the information that's on GitHub and said, Oh, here are our price performance results. And they counter oracles. In fact, I think part of the reason why that hasn't happened is that there's the risk if Oracle's coming out and saying, Hey, we can deliver 17 times better query performance using our capabilities versus say, Snowflake when it comes to, you know, the Lakehouse platform and Snowflake turns around and says it's actually only 15 times better during performance, that's not exactly an effective maneuver. And so I think this is really to oracle's credit and I think it's refreshing because these differentiators are significant. We're not talking, you know, like 1.2% differences. We're talking 17 fold differences, we're talking six fold differences depending on, you know, where the spotlight is being shined and so forth. >>And so I think this is actually something that is actually too good to believe initially at first blush. If I'm a cloud database decision maker, I really have to prioritize this. I really would know, pay a lot more attention to this. And that's why I posed the question to Oracle and others like, okay, if these differentiators are so significant, why isn't the needle moving a bit more? And it's for, you know, some of the usual reasons. One is really deep discounting coming from, you know, the other players that's really kind of, you know, marketing 1 0 1, this is something you need to do when there's a real competitive threat to keep, you know, a customer in your own customer base. Plus there is the usual fear and uncertainty about moving from one platform to another. But I think, you know, the traction, the momentum is, is shifting an Oracle's favor. I think we saw that in the Q1 efforts, for example, where Oracle cloud grew 44% and that it generated, you know, 4.8 billion and revenue if I recall correctly. And so, so all these are demonstrating that's Oracle is making, I think many of the right moves, publishing these figures for anybody to look at from their own perspective is something that is, I think, good for the market and I think it's just gonna continue to pay dividends for Oracle down the horizon as you know, competition intens plots. So if I were in, >>Dave, can I, Dave, can I interject something and, and what Ron just said there? Yeah, please go ahead. A couple things here, one discounting, which is a common practice when you have a real threat, as Ron pointed out, isn't going to help much in this situation simply because you can't discount to the point where you improve your performance and the performance is a huge differentiator. You may be able to get your price down, but the problem that most of them have is they don't have an integrated product service. They don't have an integrated O L T P O L A P M L N data lake. Even if you cut out two of them, they don't have any of them integrated. They have multiple services that are required separate integration and that can't be overcome with discounting. And the, they, you have to pay for each one of these. And oh, by the way, as you grow, the discounts go away. So that's a, it's a minor important detail. >>So, so that's a TCO question mark, right? And I know you look at this a lot, if I had that kind of price performance advantage, I would be pounding tco, especially if I need two separate databases to do the job. That one can do, that's gonna be, the TCO numbers are gonna be off the chart or maybe down the chart, which you want. Have you looked at this and how does it compare with, you know, the big cloud guys, for example, >>I've looked at it in depth, in fact, I'm working on another TCO on this arena, but you can find it on Wiki bod in which I compared TCO for MySEQ Heat wave versus Aurora plus Redshift plus ML plus Blue. I've compared it against gcps services, Azure services, Snowflake with other services. And there's just no comparison. The, the TCO differences are huge. More importantly, thefor, the, the TCO per performance is huge. We're talking in some cases multiple orders of magnitude, but at least an order of magnitude difference. So discounting isn't gonna help you much at the end of the day, it's only going to lower your cost a little, but it doesn't improve the automation, it doesn't improve the performance, it doesn't improve the time to insight, it doesn't improve all those things that you want out of a database or multiple databases because you >>Can't discount yourself to a higher value proposition. >>So what about, I wonder ho if you could chime in on the developer angle. You, you followed that, that market. How do these innovations from heatwave, I think you used the term developer velocity. I've heard you used that before. Yeah, I mean, look, Oracle owns Java, okay, so it, it's, you know, most popular, you know, programming language in the world, blah, blah blah. But it does it have the, the minds and hearts of, of developers and does, where does heatwave fit into that equation? >>I think heatwave is gaining quickly mindshare on the developer side, right? It's not the traditional no sequel database which grew up, there's a traditional mistrust of oracles to developers to what was happening to open source when gets acquired. Like in the case of Oracle versus Java and where my sql, right? And, but we know it's not a good competitive strategy to, to bank on Oracle screwing up because it hasn't worked not on Java known my sequel, right? And for developers, it's, once you get to know a technology product and you can do more, it becomes kind of like a Swiss army knife and you can build more use case, you can build more powerful applications. That's super, super important because you don't have to get certified in multiple databases. You, you are fast at getting things done, you achieve fire, develop velocity, and the managers are happy because they don't have to license more things, send you to more trainings, have more risk of something not being delivered, right? >>So it's really the, we see the suite where this best of breed play happening here, which in general was happening before already with Oracle's flagship database. Whereas those Amazon as an example, right? And now the interesting thing is every step away Oracle was always a one database company that can be only one and they're now generally talking about heat web and that two database company with different market spaces, but same value proposition of integrating more things very, very quickly to have a universal database that I call, they call the converge database for all the needs of an enterprise to run certain application use cases. And that's what's attractive to developers. >>It's, it's ironic isn't it? I mean I, you know, the rumor was the TK Thomas Curian left Oracle cuz he wanted to put Oracle database on other clouds and other places. And maybe that was the rift. Maybe there was, I'm sure there was other things, but, but Oracle clearly is now trying to expand its Tam Ron with, with heatwave into aws, into Azure. How do you think Oracle's gonna do, you were at a cloud world, what was the sentiment from customers and the independent analyst? Is this just Oracle trying to screw with the competition, create a little diversion? Or is this, you know, serious business for Oracle? What do you think? >>No, I think it has lakes. I think it's definitely, again, attriting to Oracle's overall ability to differentiate not only my SQL heat wave, but its overall portfolio. And I think the fact that they do have the alliance with the Azure in place, that this is definitely demonstrating their commitment to meeting the multi-cloud needs of its customers as well as what we pointed to in terms of the fact that they're now offering, you know, MySQL capabilities within AWS natively and that it can now perform AWS's own offering. And I think this is all demonstrating that Oracle is, you know, not letting up, they're not resting on its laurels. That's clearly we are living in a multi-cloud world, so why not just make it more easy for customers to be able to use cloud databases according to their own specific, specific needs. And I think, you know, to holder's point, I think that definitely lines with being able to bring on more application developers to leverage these capabilities. >>I think one important announcement that's related to all this was the JSON relational duality capabilities where now it's a lot easier for application developers to use a language that they're very familiar with a JS O and not have to worry about going into relational databases to store their J S O N application coding. So this is, I think an example of the innovation that's enhancing the overall Oracle portfolio and certainly all the work with machine learning is definitely paying dividends as well. And as a result, I see Oracle continue to make these inroads that we pointed to. But I agree with Mark, you know, the short term discounting is just a stall tag. This is not denying the fact that Oracle is being able to not only deliver price performance differentiators that are dramatic, but also meeting a wide range of needs for customers out there that aren't just limited device performance consideration. >>Being able to support multi-cloud according to customer needs. Being able to reach out to the application developer community and address a very specific challenge that has plagued them for many years now. So bring it all together. Yeah, I see this as just enabling Oracles who ring true with customers. That the customers that were there were basically all of them, even though not all of them are going to be saying the same things, they're all basically saying positive feedback. And likewise, I think the analyst community is seeing this. It's always refreshing to be able to talk to customers directly and at Oracle cloud there was a litany of them and so this is just a difference maker as well as being able to talk to strategic partners. The nvidia, I think partnerships also testament to Oracle's ongoing ability to, you know, make the ecosystem more user friendly for the customers out there. >>Yeah, it's interesting when you get these all in one tools, you know, the Swiss Army knife, you expect that it's not able to be best of breed. That's the kind of surprising thing that I'm hearing about, about heatwave. I want to, I want to talk about Lake House because when I think of Lake House, I think data bricks, and to my knowledge data bricks hasn't been in the sites of Oracle yet. Maybe they're next, but, but Oracle claims that MySQL, heatwave, Lakehouse is a breakthrough in terms of capacity and performance. Mark, what are your thoughts on that? Can you double click on, on Lakehouse Oracle's claims for things like query performance and data loading? What does it mean for the market? Is Oracle really leading in, in the lake house competitive landscape? What are your thoughts? >>Well, but name in the game is what are the problems you're solving for the customer? More importantly, are those problems urgent or important? If they're urgent, customers wanna solve 'em. Now if they're important, they might get around to them. So you look at what they're doing with Lake House or previous to that machine learning or previous to that automation or previous to that O L A with O ltp and they're merging all this capability together. If you look at Snowflake or data bricks, they're tacking one problem. You look at MyQ heat wave, they're tacking multiple problems. So when you say, yeah, their queries are much better against the lake house in combination with other analytics in combination with O ltp and the fact that there are no ETLs. So you're getting all this done in real time. So it's, it's doing the query cross, cross everything in real time. >>You're solving multiple user and developer problems, you're increasing their ability to get insight faster, you're having shorter response times. So yeah, they really are solving urgent problems for customers. And by putting it where the customer lives, this is the brilliance of actually being multicloud. And I know I'm backing up here a second, but by making it work in AWS and Azure where people already live, where they already have applications, what they're saying is, we're bringing it to you. You don't have to come to us to get these, these benefits, this value overall, I think it's a brilliant strategy. I give Nip and Argo wallet a huge, huge kudos for what he's doing there. So yes, what they're doing with the lake house is going to put notice on data bricks and Snowflake and everyone else for that matter. Well >>Those are guys that whole ago you, you and I have talked about this. Those are, those are the guys that are doing sort of the best of breed. You know, they're really focused and they, you know, tend to do well at least out of the gate. Now you got Oracle's converged philosophy, obviously with Oracle database. We've seen that now it's kicking in gear with, with heatwave, you know, this whole thing of sweets versus best of breed. I mean the long term, you know, customers tend to migrate towards suite, but the new shiny toy tends to get the growth. How do you think this is gonna play out in cloud database? >>Well, it's the forever never ending story, right? And in software right suite, whereas best of breed and so far in the long run suites have always won, right? So, and sometimes they struggle again because the inherent problem of sweets is you build something larger, it has more complexity and that means your cycles to get everything working together to integrate the test that roll it out, certify whatever it is, takes you longer, right? And that's not the case. It's a fascinating part of what the effort around my SQL heat wave is that the team is out executing the previous best of breed data, bringing us something together. Now if they can maintain that pace, that's something to to, to be seen. But it, the strategy, like what Mark was saying, bring the software to the data is of course interesting and unique and totally an Oracle issue in the past, right? >>Yeah. But it had to be in your database on oci. And but at, that's an interesting part. The interesting thing on the Lake health side is, right, there's three key benefits of a lakehouse. The first one is better reporting analytics, bring more rich information together, like make the, the, the case for silicon angle, right? We want to see engagements for this video, we want to know what's happening. That's a mixed transactional video media use case, right? Typical Lakehouse use case. The next one is to build more rich applications, transactional applications which have video and these elements in there, which are the engaging one. And the third one, and that's where I'm a little critical and concerned, is it's really the base platform for artificial intelligence, right? To run deep learning to run things automatically because they have all the data in one place can create in one way. >>And that's where Oracle, I know that Ron talked about Invidia for a moment, but that's where Oracle doesn't have the strongest best story. Nonetheless, the two other main use cases of the lake house are very strong, very well only concern is four 50 terabyte sounds long. It's an arbitrary limitation. Yeah, sounds as big. So for the start, and it's the first word, they can make that bigger. You don't want your lake house to be limited and the terabyte sizes or any even petabyte size because you want to have the certainty. I can put everything in there that I think it might be relevant without knowing what questions to ask and query those questions. >>Yeah. And you know, in the early days of no schema on right, it just became a mess. But now technology has evolved to allow us to actually get more value out of that data. Data lake. Data swamp is, you know, not much more, more, more, more logical. But, and I want to get in, in a moment, I want to come back to how you think the competitors are gonna respond. Are they gonna have to sort of do a more of a converged approach? AWS in particular? But before I do, Ron, I want to ask you a question about autopilot because I heard Larry Ellison's keynote and he was talking about how, you know, most security issues are human errors with autonomy and autonomous database and things like autopilot. We take care of that. It's like autonomous vehicles, they're gonna be safer. And I went, well maybe, maybe someday. So Oracle really tries to emphasize this, that every time you see an announcement from Oracle, they talk about new, you know, autonomous capabilities. It, how legit is it? Do people care? What about, you know, what's new for heatwave Lakehouse? How much of a differentiator, Ron, do you really think autopilot is in this cloud database space? >>Yeah, I think it will definitely enhance the overall proposition. I don't think people are gonna buy, you know, lake house exclusively cause of autopilot capabilities, but when they look at the overall picture, I think it will be an added capability bonus to Oracle's benefit. And yeah, I think it's kind of one of these age old questions, how much do you automate and what is the bounce to strike? And I think we all understand with the automatic car, autonomous car analogy that there are limitations to being able to use that. However, I think it's a tool that basically every organization out there needs to at least have or at least evaluate because it goes to the point of it helps with ease of use, it helps make automation more balanced in terms of, you know, being able to test, all right, let's automate this process and see if it works well, then we can go on and switch on on autopilot for other processes. >>And then, you know, that allows, for example, the specialists to spend more time on business use cases versus, you know, manual maintenance of, of the cloud database and so forth. So I think that actually is a, a legitimate value proposition. I think it's just gonna be a case by case basis. Some organizations are gonna be more aggressive with putting automation throughout their processes throughout their organization. Others are gonna be more cautious. But it's gonna be, again, something that will help the overall Oracle proposition. And something that I think will be used with caution by many organizations, but other organizations are gonna like, hey, great, this is something that is really answering a real problem. And that is just easing the use of these databases, but also being able to better handle the automation capabilities and benefits that come with it without having, you know, a major screwup happened and the process of transitioning to more automated capabilities. >>Now, I didn't attend cloud world, it's just too many red eyes, you know, recently, so I passed. But one of the things I like to do at those events is talk to customers, you know, in the spirit of the truth, you know, they, you know, you'd have the hallway, you know, track and to talk to customers and they say, Hey, you know, here's the good, the bad and the ugly. So did you guys, did you talk to any customers my SQL Heatwave customers at, at cloud world? And and what did you learn? I don't know, Mark, did you, did you have any luck and, and having some, some private conversations? >>Yeah, I had quite a few private conversations. The one thing before I get to that, I want disagree with one point Ron made, I do believe there are customers out there buying the heat wave service, the MySEQ heat wave server service because of autopilot. Because autopilot is really revolutionary in many ways in the sense for the MySEQ developer in that it, it auto provisions, it auto parallel loads, IT auto data places it auto shape predictions. It can tell you what machine learning models are going to tell you, gonna give you your best results. And, and candidly, I've yet to meet a DBA who didn't wanna give up pedantic tasks that are pain in the kahoo, which they'd rather not do and if it's long as it was done right for them. So yes, I do think people are buying it because of autopilot and that's based on some of the conversations I had with customers at Oracle Cloud World. >>In fact, it was like, yeah, that's great, yeah, we get fantastic performance, but this really makes my life easier and I've yet to meet a DBA who didn't want to make their life easier. And it does. So yeah, I've talked to a few of them. They were excited. I asked them if they ran into any bugs, were there any difficulties in moving to it? And the answer was no. In both cases, it's interesting to note, my sequel is the most popular database on the planet. Well, some will argue that it's neck and neck with SQL Server, but if you add in Mariah DB and ProCon db, which are forks of MySQL, then yeah, by far and away it's the most popular. And as a result of that, everybody for the most part has typically a my sequel database somewhere in their organization. So this is a brilliant situation for anybody going after MyQ, but especially for heat wave. And the customers I talk to love it. I didn't find anybody complaining about it. And >>What about the migration? We talked about TCO earlier. Did your t does your TCO analysis include the migration cost or do you kind of conveniently leave that out or what? >>Well, when you look at migration costs, there are different kinds of migration costs. By the way, the worst job in the data center is the data migration manager. Forget it, no other job is as bad as that one. You get no attaboys for doing it. Right? And then when you screw up, oh boy. So in real terms, anything that can limit data migration is a good thing. And when you look at Data Lake, that limits data migration. So if you're already a MySEQ user, this is a pure MySQL as far as you're concerned. It's just a, a simple transition from one to the other. You may wanna make sure nothing broke and every you, all your tables are correct and your schema's, okay, but it's all the same. So it's a simple migration. So it's pretty much a non-event, right? When you migrate data from an O LTP to an O L A P, that's an ETL and that's gonna take time. >>But you don't have to do that with my SQL heat wave. So that's gone when you start talking about machine learning, again, you may have an etl, you may not, depending on the circumstances, but again, with my SQL heat wave, you don't, and you don't have duplicate storage, you don't have to copy it from one storage container to another to be able to be used in a different database, which by the way, ultimately adds much more cost than just the other service. So yeah, I looked at the migration and again, the users I talked to said it was a non-event. It was literally moving from one physical machine to another. If they had a new version of MySEQ running on something else and just wanted to migrate it over or just hook it up or just connect it to the data, it worked just fine. >>Okay, so every day it sounds like you guys feel, and we've certainly heard this, my colleague David Foyer, the semi-retired David Foyer was always very high on heatwave. So I think you knows got some real legitimacy here coming from a standing start, but I wanna talk about the competition, how they're likely to respond. I mean, if your AWS and you got heatwave is now in your cloud, so there's some good aspects of that. The database guys might not like that, but the infrastructure guys probably love it. Hey, more ways to sell, you know, EC two and graviton, but you're gonna, the database guys in AWS are gonna respond. They're gonna say, Hey, we got Redshift, we got aqua. What's your thoughts on, on not only how that's gonna resonate with customers, but I'm interested in what you guys think will a, I never say never about aws, you know, and are they gonna try to build, in your view a converged Oola and o LTP database? You know, Snowflake is taking an ecosystem approach. They've added in transactional capabilities to the portfolio so they're not standing still. What do you guys see in the competitive landscape in that regard going forward? Maybe Holger, you could start us off and anybody else who wants to can chime in, >>Happy to, you mentioned Snowflake last, we'll start there. I think Snowflake is imitating that strategy, right? That building out original data warehouse and the clouds tasking project to really proposition to have other data available there because AI is relevant for everybody. Ultimately people keep data in the cloud for ultimately running ai. So you see the same suite kind of like level strategy, it's gonna be a little harder because of the original positioning. How much would people know that you're doing other stuff? And I just, as a former developer manager of developers, I just don't see the speed at the moment happening at Snowflake to become really competitive to Oracle. On the flip side, putting my Oracle hat on for a moment back to you, Mark and Iran, right? What could Oracle still add? Because the, the big big things, right? The traditional chasms in the database world, they have built everything, right? >>So I, I really scratched my hat and gave Nipon a hard time at Cloud world say like, what could you be building? Destiny was very conservative. Let's get the Lakehouse thing done, it's gonna spring next year, right? And the AWS is really hard because AWS value proposition is these small innovation teams, right? That they build two pizza teams, which can be fit by two pizzas, not large teams, right? And you need suites to large teams to build these suites with lots of functionalities to make sure they work together. They're consistent, they have the same UX on the administration side, they can consume the same way, they have the same API registry, can't even stop going where the synergy comes to play over suite. So, so it's gonna be really, really hard for them to change that. But AWS super pragmatic. They're always by themselves that they'll listen to customers if they learn from customers suite as a proposition. I would not be surprised if AWS trying to bring things closer together, being morely together. >>Yeah. Well how about, can we talk about multicloud if, if, again, Oracle is very on on Oracle as you said before, but let's look forward, you know, half a year or a year. What do you think about Oracle's moves in, in multicloud in terms of what kind of penetration they're gonna have in the marketplace? You saw a lot of presentations at at cloud world, you know, we've looked pretty closely at the, the Microsoft Azure deal. I think that's really interesting. I've, I've called it a little bit of early days of a super cloud. What impact do you think this is gonna have on, on the marketplace? But, but both. And think about it within Oracle's customer base, I have no doubt they'll do great there. But what about beyond its existing install base? What do you guys think? >>Ryan, do you wanna jump on that? Go ahead. Go ahead Ryan. No, no, no, >>That's an excellent point. I think it aligns with what we've been talking about in terms of Lakehouse. I think Lake House will enable Oracle to pull more customers, more bicycle customers onto the Oracle platforms. And I think we're seeing all the signs pointing toward Oracle being able to make more inroads into the overall market. And that includes garnishing customers from the leaders in, in other words, because they are, you know, coming in as a innovator, a an alternative to, you know, the AWS proposition, the Google cloud proposition that they have less to lose and there's a result they can really drive the multi-cloud messaging to resonate with not only their existing customers, but also to be able to, to that question, Dave's posing actually garnish customers onto their platform. And, and that includes naturally my sequel but also OCI and so forth. So that's how I'm seeing this playing out. I think, you know, again, Oracle's reporting is indicating that, and I think what we saw, Oracle Cloud world is definitely validating the idea that Oracle can make more waves in the overall market in this regard. >>You know, I, I've floated this idea of Super cloud, it's kind of tongue in cheek, but, but there, I think there is some merit to it in terms of building on top of hyperscale infrastructure and abstracting some of the, that complexity. And one of the things that I'm most interested in is industry clouds and an Oracle acquisition of Cerner. I was struck by Larry Ellison's keynote, it was like, I don't know, an hour and a half and an hour and 15 minutes was focused on healthcare transformation. Well, >>So vertical, >>Right? And so, yeah, so you got Oracle's, you know, got some industry chops and you, and then you think about what they're building with, with not only oci, but then you got, you know, MyQ, you can now run in dedicated regions. You got ADB on on Exadata cloud to customer, you can put that OnPrem in in your data center and you look at what the other hyperscalers are, are doing. I I say other hyperscalers, I've always said Oracle's not really a hyperscaler, but they got a cloud so they're in the game. But you can't get, you know, big query OnPrem, you look at outposts, it's very limited in terms of, you know, the database support and again, that that will will evolve. But now you got Oracle's got, they announced Alloy, we can white label their cloud. So I'm interested in what you guys think about these moves, especially the industry cloud. We see, you know, Walmart is doing sort of their own cloud. You got Goldman Sachs doing a cloud. Do you, you guys, what do you think about that and what role does Oracle play? Any thoughts? >>Yeah, let me lemme jump on that for a moment. Now, especially with the MyQ, by making that available in multiple clouds, what they're doing is this follows the philosophy they've had the past with doing cloud, a customer taking the application and the data and putting it where the customer lives. If it's on premise, it's on premise. If it's in the cloud, it's in the cloud. By making the mice equal heat wave, essentially a plug compatible with any other mice equal as far as your, your database is concern and then giving you that integration with O L A P and ML and Data Lake and everything else, then what you've got is a compelling offering. You're making it easier for the customer to use. So I look the difference between MyQ and the Oracle database, MyQ is going to capture market more market share for them. >>You're not gonna find a lot of new users for the Oracle debate database. Yeah, there are always gonna be new users, don't get me wrong, but it's not gonna be a huge growth. Whereas my SQL heatwave is probably gonna be a major growth engine for Oracle going forward. Not just in their own cloud, but in AWS and in Azure and on premise over time that eventually it'll get there. It's not there now, but it will, they're doing the right thing on that basis. They're taking the services and when you talk about multicloud and making them available where the customer wants them, not forcing them to go where you want them, if that makes sense. And as far as where they're going in the future, I think they're gonna take a page outta what they've done with the Oracle database. They'll add things like JSON and XML and time series and spatial over time they'll make it a, a complete converged database like they did with the Oracle database. The difference being Oracle database will scale bigger and will have more transactions and be somewhat faster. And my SQL will be, for anyone who's not on the Oracle database, they're, they're not stupid, that's for sure. >>They've done Jason already. Right. But I give you that they could add graph and time series, right. Since eat with, Right, Right. Yeah, that's something absolutely right. That's, that's >>A sort of a logical move, right? >>Right. But that's, that's some kid ourselves, right? I mean has worked in Oracle's favor, right? 10 x 20 x, the amount of r and d, which is in the MyQ space, has been poured at trying to snatch workloads away from Oracle by starting with IBM 30 years ago, 20 years ago, Microsoft and, and, and, and didn't work, right? Database applications are extremely sticky when they run, you don't want to touch SIM and grow them, right? So that doesn't mean that heat phase is not an attractive offering, but it will be net new things, right? And what works in my SQL heat wave heat phases favor a little bit is it's not the massive enterprise applications which have like we the nails like, like you might be only running 30% or Oracle, but the connections and the interfaces into that is, is like 70, 80% of your enterprise. >>You take it out and it's like the spaghetti ball where you say, ah, no I really don't, don't want to do all that. Right? You don't, don't have that massive part with the equals heat phase sequel kind of like database which are more smaller tactical in comparison, but still I, I don't see them taking so much share. They will be growing because of a attractive value proposition quickly on the, the multi-cloud, right? I think it's not really multi-cloud. If you give people the chance to run your offering on different clouds, right? You can run it there. The multi-cloud advantages when the Uber offering comes out, which allows you to do things across those installations, right? I can migrate data, I can create data across something like Google has done with B query Omni, I can run predictive models or even make iron models in different place and distribute them, right? And Oracle is paving the road for that, but being available on these clouds. But the multi-cloud capability of database which knows I'm running on different clouds that is still yet to be built there. >>Yeah. And >>That the problem with >>That, that's the super cloud concept that I flowed and I I've always said kinda snowflake with a single global instance is sort of, you know, headed in that direction and maybe has a league. What's the issue with that mark? >>Yeah, the problem with the, with that version, the multi-cloud is clouds to charge egress fees. As long as they charge egress fees to move data between clouds, it's gonna make it very difficult to do a real multi-cloud implementation. Even Snowflake, which runs multi-cloud, has to pass out on the egress fees of their customer when data moves between clouds. And that's really expensive. I mean there, there is one customer I talked to who is beta testing for them, the MySQL heatwave and aws. The only reason they didn't want to do that until it was running on AWS is the egress fees were so great to move it to OCI that they couldn't afford it. Yeah. Egress fees are the big issue but, >>But Mark the, the point might be you might wanna root query and only get the results set back, right was much more tinier, which been the answer before for low latency between the class A problem, which we sometimes still have but mostly don't have. Right? And I think in general this with fees coming down based on the Oracle general E with fee move and it's very hard to justify those, right? But, but it's, it's not about moving data as a multi-cloud high value use case. It's about doing intelligent things with that data, right? Putting into other places, replicating it, what I'm saying the same thing what you said before, running remote queries on that, analyzing it, running AI on it, running AI models on that. That's the interesting thing. Cross administered in the same way. Taking things out, making sure compliance happens. Making sure when Ron says I don't want to be American anymore, I want to be in the European cloud that is gets migrated, right? So tho those are the interesting value use case which are really, really hard for enterprise to program hand by hand by developers and they would love to have out of the box and that's yet the innovation to come to, we have to come to see. But the first step to get there is that your software runs in multiple clouds and that's what Oracle's doing so well with my SQL >>Guys. Amazing. >>Go ahead. Yeah. >>Yeah. >>For example, >>Amazing amount of data knowledge and, and brain power in this market. Guys, I really want to thank you for coming on to the cube. Ron Holger. Mark, always a pleasure to have you on. Really appreciate your time. >>Well all the last names we're very happy for Romanic last and moderator. Thanks Dave for moderating us. All right, >>We'll see. We'll see you guys around. Safe travels to all and thank you for watching this power panel, The Truth About My SQL Heat Wave on the cube. Your leader in enterprise and emerging tech coverage.
SUMMARY :
Always a pleasure to have you on. I think you just saw him at Oracle Cloud World and he's come on to describe this is doing, you know, Google is, you know, we heard Google Cloud next recently, They own somewhere between 30 to 50% depending on who you read migrate from one cloud to another and suddenly you have a very compelling offer. All right, so thank you for that. And they certainly with the AI capabilities, And I believe strongly that long term it's gonna be ones who create better value for So I mean it's certainly, you know, when, when Oracle talks about the competitors, So what do you make of the benchmarks? say, Snowflake when it comes to, you know, the Lakehouse platform and threat to keep, you know, a customer in your own customer base. And oh, by the way, as you grow, And I know you look at this a lot, to insight, it doesn't improve all those things that you want out of a database or multiple databases So what about, I wonder ho if you could chime in on the developer angle. they don't have to license more things, send you to more trainings, have more risk of something not being delivered, all the needs of an enterprise to run certain application use cases. I mean I, you know, the rumor was the TK Thomas Curian left Oracle And I think, you know, to holder's point, I think that definitely lines But I agree with Mark, you know, the short term discounting is just a stall tag. testament to Oracle's ongoing ability to, you know, make the ecosystem Yeah, it's interesting when you get these all in one tools, you know, the Swiss Army knife, you expect that it's not able So when you say, yeah, their queries are much better against the lake house in You don't have to come to us to get these, these benefits, I mean the long term, you know, customers tend to migrate towards suite, but the new shiny bring the software to the data is of course interesting and unique and totally an Oracle issue in And the third one, lake house to be limited and the terabyte sizes or any even petabyte size because you want keynote and he was talking about how, you know, most security issues are human I don't think people are gonna buy, you know, lake house exclusively cause of And then, you know, that allows, for example, the specialists to And and what did you learn? The one thing before I get to that, I want disagree with And the customers I talk to love it. the migration cost or do you kind of conveniently leave that out or what? And when you look at Data Lake, that limits data migration. So that's gone when you start talking about So I think you knows got some real legitimacy here coming from a standing start, So you see the same And you need suites to large teams to build these suites with lots of functionalities You saw a lot of presentations at at cloud world, you know, we've looked pretty closely at Ryan, do you wanna jump on that? I think, you know, again, Oracle's reporting I think there is some merit to it in terms of building on top of hyperscale infrastructure and to customer, you can put that OnPrem in in your data center and you look at what the So I look the difference between MyQ and the Oracle database, MyQ is going to capture market They're taking the services and when you talk about multicloud and But I give you that they could add graph and time series, right. like, like you might be only running 30% or Oracle, but the connections and the interfaces into You take it out and it's like the spaghetti ball where you say, ah, no I really don't, global instance is sort of, you know, headed in that direction and maybe has a league. Yeah, the problem with the, with that version, the multi-cloud is clouds And I think in general this with fees coming down based on the Oracle general E with fee move Yeah. Guys, I really want to thank you for coming on to the cube. Well all the last names we're very happy for Romanic last and moderator. We'll see you guys around.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Mark | PERSON | 0.99+ |
Ron Holger | PERSON | 0.99+ |
Ron | PERSON | 0.99+ |
Mark Stammer | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Ron Westfall | PERSON | 0.99+ |
Ryan | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Larry Ellison | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Holgar Mueller | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Constellation Research | ORGANIZATION | 0.99+ |
Goldman Sachs | ORGANIZATION | 0.99+ |
17 times | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
David Foyer | PERSON | 0.99+ |
44% | QUANTITY | 0.99+ |
1.2% | QUANTITY | 0.99+ |
4.8 billion | QUANTITY | 0.99+ |
Jason | PERSON | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Fu Chim Research | ORGANIZATION | 0.99+ |
Dave Ante | PERSON | 0.99+ |
Accelerating Business Transformation with VMware Cloud on AWS 10 31
>>Hi everyone. Welcome to the Cube special presentation here in Palo Alto, California. I'm John Foer, host of the Cube. We've got two great guests, one for calling in from Germany, our videoing in from Germany, one from Maryland. We've got VMware and aws. This is the customer successes with VMware cloud on AWS showcase, accelerating business transformation here in the showcase with Samir Candu Worldwide. VMware strategic alliance solution, architect leader with AWS Samir. Great to have you and Daniel Re Myer, principal architect global AWS synergy at VMware. Guys, you guys are, are working together. You're the key players in the re relationship as it rolls out and continues to grow. So welcome to the cube. >>Thank you. Greatly appreciate it. >>Great to have you guys both on, As you know, we've been covering this since 2016 when Pat Geling, then CEO and then then CEO AWS at Andy Chasy did this. It kind of got people by surprise, but it really kind of cleaned out the positioning in the enterprise for the success. OFM workloads in the cloud. VMware's had great success with it since, and you guys have the great partnerships. So this has been like a really strategic, successful partnership. Where are we right now? You know, years later we got this whole inflection point coming. You're starting to see, you know, this idea of higher level services, more performance are coming in at the infrastructure side. More automation, more serverless, I mean, and a, I mean it's just getting better and better every year in the cloud. Kinda a whole nother level. Where are we, Samir? Let's start with you on, on the relationship. >>Yeah, totally. So I mean, there's several things to keep in mind, right? So in 2016, right, that's when the partnership between AWS and VMware was announced, and then less than a year later, that's when we officially launched VMware cloud on aws. Years later, we've been driving innovation, working with our customers, jointly engineering this between AWS and VMware day in, day out. As far as advancing VMware cloud on aws. You know, even if you look at the innovation that takes place with a solution, things have modernized, things have changed, there's been advancements, you know, whether it's security focus, whether it's platform focus, whether it's networking focus, there's been modifications along the way, even storage, right? More recently, one of the things to keep in mind is we're looking to deliver value to our customers together. These are our joint customers. So there's hundreds of VMware and AWS engineers working together on this solution. >>And then factor in even our sales teams, right? We have VMware and AWS sales teams interacting with each other on a constant daily basis. We're working together with our customers at the end of the day too. Then we're looking to even offer and develop jointly engineered solutions specific to VMware cloud on aws, and even with VMware's, other platforms as well. Then the other thing comes down to is where we have dedicated teams around this at both AWS and VMware. So even from solutions architects, even to our sales specialists, even to our account teams, even to specific engineering teams within the organizations, they all come together to drive this innovation forward with VMware cloud on AWS and the jointly engineered solution partnership as well. And then I think one of the key things to keep in mind comes down to we have nearly 600 channel partners that have achieved VMware cloud on AWS service competency. So think about it from the standpoint there's 300 certified or validated technology solutions, they're now available to our customers. So that's even innovation right off the top as well. >>Great stuff. Daniel, I wanna get to you in a second. Upon this principal architect position you have in your title, you're the global a synergy person. Synergy means bringing things together, making it work. Take us through the architecture, because we heard a lot of folks at VMware explore this year, formerly world, talking about how the, the workloads on it has been completely transforming into cloud and hybrid, right? This is where the action is. Where are you? Is your customers taking advantage of that new shift? You got AI ops, you got it. Ops changing a lot, you got a lot more automation edges right around the corner. This is like a complete transformation from where we were just five years ago. What's your thoughts on the >>Relationship? So at at, at first, I would like to emphasize that our collaboration is not just that we have dedicated teams to help our customers get the most and the best benefits out of VMware cloud on aws. We are also enabling US mutually. So AWS learns from us about the VMware technology, where VMware people learn about the AWS technology. We are also enabling our channel partners and we are working together on customer projects. So we have regular assembled globally and also virtually on Slack and the usual suspect tools working together and listening to customers, that's, that's very important. Asking our customers where are their needs? And we are driving the solution into the direction that our customers get the, the best benefits out of VMware cloud on aws. And over the time we, we really have involved the solution. As Samia mentioned, we just added additional storage solutions to VMware cloud on aws. We now have three different instance types that cover a broad range of, of workload. So for example, we just added the I four I host, which is ideally for workloads that require a lot of CPU power, such as you mentioned it, AI workloads. >>Yeah. So I wanna guess just specifically on the customer journey and their transformation. You know, we've been reporting on Silicon angle in the queue in the past couple weeks in a big way that the OPS teams are now the new devs, right? I mean that sounds OP a little bit weird, but operation IT operations is now part of the, a lot more data ops, security writing code composing, you know, with open source, a lot of great things are changing. Can you share specifically what customers are looking for when you say, as you guys come in and assess their needs, what are they doing? What are some of the things that they're doing with VMware on AWS specifically that's a little bit different? Can you share some of and highlights there? >>That, that's a great point because originally VMware and AWS came from very different directions when it comes to speaking people at customers. So for example, aws very developer focused, whereas VMware has a very great footprint in the IT ops area. And usually these are very different, very different teams, groups, different cultures, but it's, it's getting together. However, we always try to address the customers, right? There are customers that want to build up a new application from the scratch and build resiliency, availability, recoverability, scalability into the application. But there are still a lot of customers that say, well we don't have all of the skills to redevelop everything to refactor an application to make it highly available. So we want to have all of that as a service, recoverability as a service, scalability as a service. We want to have this from the infrastructure. That was one of the unique selling points for VMware on premise and now we are bringing this into the cloud. >>Samir, talk about your perspective. I wanna get your thoughts, and not to take a tangent, but we had covered the AWS remar of, actually it was Amazon res machine learning automation, robotics and space. It was really kinda the confluence of industrial IOT software physical. And so when you look at like the IT operations piece becoming more software, you're seeing things about automation, but the skill gap is huge. So you're seeing low code, no code automation, you know, Hey Alexa, deploy a Kubernetes cluster. Yeah, I mean, I mean that's coming, right? So we're seeing this kind of operating automation meets higher level services meets workloads. Can you unpack that and share your opinion on, on what you see there from an Amazon perspective and how it relates to this? >>Yeah, totally. Right. And you know, look at it from the point of view where we said this is a jointly engineered solution, but it's not migrating to one option or the other option, right? It's more or less together. So even with VMware cloud on aws, yes it is utilizing AWS infrastructure, but your environment is connected to that AWS VPC in your AWS account. So if you wanna leverage any of the native AWS services, so any of the 200 plus AWS services, you have that option to do so. So that's gonna give you that power to do certain things, such as, for example, like how you mentioned with iot, even with utilizing Alexa or if there's any other service that you wanna utilize, that's the joining point between both of the offerings. Right off the top though, with digital transformation, right? You, you have to think about where it's not just about the technology, right? There's also where you want to drive growth in the underlying technology. Even in your business leaders are looking to reinvent their business. They're looking to take different steps as far as pursuing a new strategy. Maybe it's a process, maybe it's with the people, the culture, like how you said before, where people are coming in from a different background, right? They may not be used to the cloud, they may not be used to AWS services, but now you have that capability to mesh them together. Okay. Then also, Oh, >>Go ahead, finish >>Your thought. No, no, I was gonna say, what it also comes down to is you need to think about the operating model too, where it is a shift, right? Especially for that VS four admin that's used to their on-premises at environment. Now with VMware cloud on aws, you have that ability to leverage a cloud, but the investment that you made and certain things as far as automation, even with monitoring, even with logging, yeah. You still have that methodology where you can utilize that in VMware cloud on AWS two. >>Danielle, I wanna get your thoughts on this because at at explore and, and, and after the event, now as we prep for Cuban and reinvent coming up the big AWS show, I had a couple conversations with a lot of the VMware customers and operators and it's like hundreds of thousands of, of, of, of users and millions of people talking about and and peaked on VM we're interested in v VMware. The common thread was one's one, one person said, I'm trying to figure out where I'm gonna put my career in the next 10 to 15 years. And they've been very comfortable with VMware in the past, very loyal, and they're kind of talking about, I'm gonna be the next cloud, but there's no like role yet architects, is it Solution architect sre. So you're starting to see the psychology of the operators who now are gonna try to make these career decisions, like how, what am I gonna work on? And it's, and that was kind of fuzzy, but I wanna get your thoughts. How would you talk to that persona about the future of VMware on, say, cloud for instance? What should they be thinking about? What's the opportunity and what's gonna happen? >>So digital transformation definitely is a huge change for many organizations and leaders are perfectly aware of what that means. And that also means in, in to to some extent, concerns with your existing employees. Concerns about do I have to relearn everything? Do I have to acquire new skills? And, and trainings is everything worthless I learned over the last 15 years of my career? And the, the answer is to make digital transformation a success. We need not just to talk about technology, but also about process people and culture. And this is where VMware really can help because if you are applying VMware cloud on a, on AWS to your infrastructure, to your existing on-premise infrastructure, you do not need to change many things. You can use the same tools and skills, you can manage your virtual machines as you did in your on-premise environment. You can use the same managing and monitoring tools. If you have written, and many customers did this, if you have developed hundreds of, of scripts that automate tasks and if you know how to troubleshoot things, then you can use all of that in VMware cloud on aws. And that gives not just leaders, but but also the architects at customers, the operators at customers, the confidence in, in such a complex project, >>The consistency, very key point, gives them the confidence to go and, and then now that once they're confident they can start committing themselves to new things. Samir, you're reacting to this because you know, on your side you've got higher level services, you got more performance at the hardware level. I mean, lot improvement. So, okay, nothing's changed. I can still run my job now I got goodness on the other side. What's the upside? What's in it for the, for the, for the customer there? >>Yeah, so I think what it comes down to is they've already been so used to or entrenched with that VMware admin mentality, right? But now extending that to the cloud, that's where now you have that bridge between VMware cloud on AWS to bridge that VMware knowledge with that AWS knowledge. So I will look at it from the point of view where now one has that capability and that ability to just learn about the cloud, but if they're comfortable with certain aspects, no one's saying you have to change anything. You can still leverage that, right? But now if you wanna utilize any other AWS service in conjunction with that VM that resides maybe on premises or even in VMware cloud on aws, you have that option to do so. So think about it where you have that ability to be someone who's curious and wants to learn. And then if you wanna expand on the skills, you certainly have that capability to do so. >>Great stuff. I love, love that. Now that we're peeking behind the curtain here, I'd love to have you guys explain, cuz people wanna know what's goes on in behind the scenes. How does innovation get happen? How does it happen with the relationship? Can you take us through a day in the life of kind of what goes on to make innovation happen with the joint partnership? You guys just have a zoom meeting, Do you guys fly out, you write go do you ship thing? I mean I'm making it up, but you get the idea, what's the, what's, how does it work? What's going on behind the scenes? >>So we hope to get more frequently together in person, but of course we had some difficulties over the last two to three years. So we are very used to zoom conferences and and Slack meetings. You always have to have the time difference in mind if we are working globally together. But what we try, for example, we have reg regular assembled now also in person geo based. So for emia, for the Americas, for aj. And we are bringing up interesting customer situations, architectural bits and pieces together. We are discussing it always to share and to contribute to our community. >>What's interesting, you know, as, as events are coming back to here, before you get, you weigh in, I'll comment, as the cube's been going back out to events, we are hearing comments like what, what pandemic we were more productive in the pandemic. I mean, developers know how to work remotely and they've been on all the tools there, but then they get in person, they're happy to see people, but there's no one's, no one's really missed the beat. I mean it seems to be very productive, you know, workflow, not a lot of disruption. More if anything, productivity gains. >>Agreed, right? I think one of the key things to keep in mind is, you know, even if you look at AWS's and even Amazon's leadership principles, right? Customer obsession, that's key. VMware is carrying that forward as well. Where we are working with our customers, like how Daniel said met earlier, right? We might have meetings at different time zones, maybe it's in person, maybe it's virtual, but together we're working to listen to our customers. You know, we're taking and capturing that feedback to drive innovation and VMware cloud on AWS as well. But one of the key things to keep in mind is yes, there have been, there has been the pandemic, we might have been disconnected to a certain extent, but together through technology we've been able to still communicate work with our customers. Even with VMware in between, with AWS and whatnot. We had that flexibility to innovate and continue that innovation. So even if you look at it from the point of view, right? VMware cloud on AWS outposts, that was something that customers have been asking for. We've been been able to leverage the feedback and then continue to drive innovation even around VMware cloud on AWS outposts. So even with the on premises environment, if you're looking to handle maybe data sovereignty or compliance needs, maybe you have low latency requirements, that's where certain advancements come into play, right? So the key thing is always to maintain that communication track. >>And our last segment we did here on the, on this showcase, we listed the accomplishments and they were pretty significant. I mean go, you got the global rollouts of the relationship. It's just really been interesting and, and people can reference that. We won't get into it here, but I will ask you guys to comment on, as you guys continue to evolve the relationship, what's in it for the customer? What can they expect next? Cuz again, I think right now we're in at a, an inflection point more than ever. What can people expect from the relationship and what's coming up with reinvent? Can you share a little bit of kind of what's coming down the pike? >>So one of the most important things we have announced this year, and we will continue to evolve into that direction, is independent scale of storage. That absolutely was one of the most important items customer asked us for over the last years. Whenever, whenever you are requiring additional storage to host your virtual machines, you usually in VMware cloud on aws, you have to add additional notes. Now we have three different note types with different ratios of compute, storage and memory. But if you only require additional storage, you always have to get also additional compute and memory and you have to pay. And now with two solutions which offer choice for the customers, like FS six one, NetApp onap, and VMware cloud Flex Storage, you now have two cost effective opportunities to add storage to your virtual machines. And that offers opportunities for other instance types maybe that don't have local storage. We are also very, very keen looking forward to announcements, exciting announcements at the upcoming events. >>Samir, what's your, what's your reaction take on the, on what's coming down on your side? >>Yeah, I think one of the key things to keep in mind is, you know, we're looking to help our customers be agile and even scale with their needs, right? So with VMware cloud on aws, that's one of the key things that comes to mind, right? There are gonna be announcements, innovations and whatnot with outcoming events. But together we're able to leverage that to advance VMware cloud on AWS to Daniel's point storage, for example, even with host offerings. And then even with decoupling storage from compute and memory, right now you have the flexibility where you can do all of that. So to look at it from the standpoint where now with 21 regions where we have VMware cloud on AWS available as well, where customers can utilize that as needed when needed, right? So it comes down to, you know, transformation will be there. Yes, there's gonna be maybe where workloads have to be adapted where they're utilizing certain AWS services, but you have that flexibility and option to do so. And I think with the continuing events that's gonna give us the options to even advance our own services together. >>Well you guys are in the middle of it, you're in the trenches, you're making things happen, you've got a team of people working together. My final question is really more of a kind of a current situation, kind of future evolutionary thing that you haven't seen this before. I wanna get both of your reaction to it. And we've been bringing this up in, in the open conversations on the cube is in the old days it was going back this generation, you had ecosystems, you had VMware had an ecosystem they did best, had an ecosystem. You know, we have a product, you have a product, biz dev deals happen, people sign relationships and they do business together and they, they sell to each other's products or do some stuff. Now it's more about architecture cuz we're now in a distributed large scale environment where the role of ecosystems are intertwining. >>And this, you guys are in the middle of two big ecosystems. You mentioned channel partners, you both have a lot of partners on both sides. They come together. So you have this now almost a three dimensional or multidimensional ecosystem, you know, interplay. What's your thoughts on this? And, and, and because it's about the architecture, integration is a value, not so much. Innovation is only, you gotta do innovation, but when you do innovation, you gotta integrate it, you gotta connect it. So what is, how do you guys see this as a, as an architectural thing, start to see more technical business deals? >>So we are, we are removing dependencies from individual ecosystems and from individual vendors. So a customer no longer has to decide for one vendor and then it is a very expensive and high effort project to move away from that vendor, which ties customers even, even closer to specific vendors. We are removing these obstacles. So with VMware cloud on aws moving to the cloud, firstly it's, it's not a dead end. If you decide at one point in time because of latency requirements or maybe it's some compliance requirements, you need to move back into on-premise. You can do this if you decide you want to stay with some of your services on premise and just run a couple of dedicated services in the cloud, you can do this and you can mana manage it through a single pane of glass. That's quite important. So cloud is no longer a dead and it's no longer a binary decision, whether it's on premise or the cloud. It it is the cloud. And the second thing is you can choose the best of both works, right? If you are migrating virtual machines that have been running in your on-premise environment to VMware cloud on aws, by the way, in a very, very fast cost effective and safe way, then you can enrich later on enrich these virtual machines with services that are offered by aws. More than 200 different services ranging from object based storage, load balancing and so on. So it's an endless, endless possibility. >>We, we call that super cloud in, in a, in a way that we be generically defining it where everyone's innovating, but yet there's some common services. But the differentiation comes from innovation where the lock in is the value, not some spec, right? Samir, this is gonna where cloud is right now, you guys are, are not commodity. Amazon's completely differentiating, but there's some commodity things. Having got storage, you got compute, but then you got now advances in all areas. But partners innovate with you on their terms. Absolutely. And everybody wins. >>Yeah. And a hundred percent agree with you. I think one of the key things, you know, as Daniel mentioned before, is where it it, it's a cross education where there might be someone who's more proficient on the cloud side with aws, maybe more proficient with the viewers technology, but then for partners, right? They bridge that gap as well where they come in and they might have a specific niche or expertise where their background, where they can help our customers go through that transformation. So then that comes down to, hey, maybe I don't know how to connect to the cloud. Maybe I don't know what the networking constructs are. Maybe I can leverage that partner. That's one aspect to go about it. Now maybe you migrated that workload to VMware cloud on aws. Maybe you wanna leverage any of the native AWS services or even just off the top 200 plus AWS services, right? But it comes down to that skill, right? So again, solutions architecture at the back of, back of the day, end of the day, what it comes down to is being able to utilize the best of both worlds. That's what we're giving our customers at the end of the >>Day. I mean, I just think it's, it's a, it's a refactoring and innovation opportunity at all levels. I think now more than ever, you can take advantage of each other's ecosystems and partners and technologies and change how things get done with keeping the consistency. I mean, Daniel, you nailed that, right? I mean, you don't have to do anything. You still run the fear, the way you working on it and now do new things. This is kind of a cultural shift. >>Yeah, absolutely. And if, if you look, not every, not every customer, not every organization has the resources to refactor and re-platform everything. And we gave, we give them a very simple and easy way to move workloads to the cloud. Simply run them and at the same time they can free up resources to develop new innovations and, and grow their business. >>Awesome. Samir, thank you for coming on. Danielle, thank you for coming to Germany, Octoberfest, I know it's evening over there, your weekend's here. And thank you for spending the time. Samir final give you the final word, AWS reinvents coming up. Preparing. We're gonna have an exclusive with Adam, but Fry, we do a curtain raise, a dual preview. What's coming down on your side with the relationship and what can we expect to hear about what you got going on at reinvent this year? The big show? >>Yeah, so I think, you know, Daniel hit upon some of the key points, but what I will say is we do have, for example, specific sessions, both that VMware's driving and then also that AWS is driving. We do have even where we have what I call a chalk talks. So I would say, and then even with workshops, right? So even with the customers, the attendees who are there, whatnot, if they're looking for to sit and listen to a session, yes that's there. But if they wanna be hands on, that is also there too. So personally for me as an IT background, you know, been in CIS admin world and whatnot, being hands on, that's one of the key things that I personally am looking forward. But I think that's one of the key ways just to learn and get familiar with the technology. Yeah, >>Reinvents an amazing show for the in person. You guys nail it every year. We'll have three sets this year at the cube. It's becoming popular. We more and more content. You guys got live streams going on, a lot of content, a lot of media, so thanks, thanks for sharing that. Samir Daniel, thank you for coming on on this part of the showcase episode of really the customer successes with VMware Cloud Ons, really accelerating business transformation withs and VMware. I'm John Fur with the cube, thanks for watching. Hello everyone. Welcome to this cube showcase, accelerating business transformation with VMware cloud on it's a solution innovation conversation with two great guests, Fred and VP of commercial services at aws and NA Ryan Bard, who's the VP and general manager of cloud solutions at VMware. Gentlemen, thanks for joining me on this showcase. >>Great to be here. >>Hey, thanks for having us on. It's a great topic. You know, we, we've been covering this VMware cloud on abus since, since the launch going back and it's been amazing to watch the evolution from people saying, Oh, it's the worst thing I've ever seen. It's what's this mean? And depress work were, we're kind of not really on board with kind of the vision, but as it played out as you guys had announced together, it did work out great for VMware. It did work out great for a D and it continues two years later and I want just get an update from you guys on where you guys see this has been going. I'll see multiple years. Where is the evolution of the solution as we are right now coming off VMware explorer just recently and going in to reinvent, which is only a couple weeks away, feels like tomorrow. But you know, as we prepare a lot going on, where are we with the evolution of the solution? >>I mean, first thing I wanna say is, you know, PBO 2016 was a someon moment and the history of it, right? When Pat Gelsinger and Andy Jessey came together to announce this and I think John, you were there at the time I was there, it was a great, great moment. We launched the solution in 2017, the year after that at VM Word back when we called it Word, I think we have gone from strength to strength. One of the things that has really mattered to us is we have learned froms also in the processes, this notion of working backwards. So we really, really focused on customer feedback as we build a service offering now five years old, pretty remarkable journey. You know, in the first years we tried to get across all the regions, you know, that was a big focus because there was so much demand for it. >>In the second year we started going really on enterprise grade features. We invented this pretty awesome feature called Stretch clusters, where you could stretch a vSphere cluster using VSA and NSX across two AZs in the same region. Pretty phenomenal four nine s availability that applications start started to get with that particular feature. And we kept moving forward all kinds of integration with AWS direct connect transit gateways with our own advanced networking capabilities. You know, along the way, disaster recovery, we punched out two, two new services just focused on that. And then more recently we launched our outposts partnership. We were up on stage at Reinvent, again with Pat Andy announcing AWS outposts and the VMware flavor of that VMware cloud and AWS outposts. I think it's been significant growth in our federal sector as well with our federal and high certification more recently. So all in all, we are super excited. We're five years old. The customer momentum is really, really strong and we are scaling the service massively across all geos and industries. >>That's great, great update. And I think one of the things that you mentioned was how the advantages you guys got from that relationship. And, and this has kind of been the theme for AWS since I can remember from day one. Fred, you guys do the heavy lifting as as, as you always say for the customers here, VMware comes on board, takes advantage of the AWS and kind of just doesn't miss a beat, continues to move their workloads that everyone's using, you know, vSphere and these are, these are big workloads on aws. What's the AWS perspective on this? How do you see it? >>Yeah, it's pretty fascinating to watch how fast customers can actually transform and move when you take the, the skill set that they're familiar with and the advanced capabilities that they've been using on Preem and then overlay it on top of the AWS infrastructure that's, that's evolving quickly and, and building out new hardware and new instances we'll talk about. But that combined experience between both of us on a jointly engineered solution to bring the best security and the best features that really matter for those workloads drive a lot of efficiency and speed for the, for the customer. So it's been well received and the partnership is stronger than ever from an engineering standpoint, from a business standpoint. And obviously it's been very interesting to look at just how we stay day one in terms of looking at new features and work and, and responding to what customers want. So pretty, pretty excited about just seeing the transformation and the speed that which customers can move to bmc. Yeah, >>That's what great value publish. We've been talking about that in context too. Anyone building on top of the cloud, they can have their own supercloud as we call it. If you take advantage of all the CapEx and and investment Amazon's made and AWS has made and, and and continues to make in performance IAS and pass all great stuff. I have to ask you guys both as you guys see this going to the next level, what are some of the differentiations you see around the service compared to other options on the market? What makes it different? What's the combination? You mentioned jointly engineered, what are some of the key differentiators of the service compared to others? >>Yeah, I think one of the key things Fred talked about is this jointly engineered notion right from day one. We were the earlier doctors of AWS Nitro platform, right? The reinvention of E two back five years ago. And so we have been, you know, having a very, very strong engineering partnership at that level. I think from a VMware customer standpoint, you get the full software defined data center or compute storage networking on EC two, bare metal across all regions. You can scale that elastically up and down. It's pretty phenomenal just having that consistency globally, right on aws EC two global regions. Now the other thing that's a real differentiator for us that customers tell us about is this whole notion of a managed service, right? And this was somewhat new to VMware, but we took away the pain of this undifferentiated heavy lifting where customers had to provision rack, stack hardware, configure the software on top, and then upgrade the software and the security batches on top. >>So we took, took away all of that pain as customers transitioned to VMware cloud and aws. In fact, my favorite story from last year when we were all going through the lock for j debacle industry was just going through that, right? Favorite proof point from customers was before they put even race this issue to us, we sent them a notification saying we already patched all of your systems, no action from you. The customers were super thrilled. I mean these are large banks, many other customers around the world, super thrilled they had to take no action, but a pretty incredible industry challenge that we were all facing. >>Nora, that's a great, so that's a great point. You know, the whole managed service piece brings up the security, you kind of teasing at it, but you know, there's always vulnerabilities that emerge when you are doing complex logic. And as you grow your solutions, there's more bits. You know, Fred, we were commenting before we came on camera, there's more bits than ever before and, and at at the physics layer too, as well as the software. So you never know when there's gonna be a zero day vulnerability out there. Just, it happens. We saw one with fornet this week, this came outta the woodwork. But moving fast on those patches, it's huge. This brings up the whole support angle. I wanted to ask you about how you guys are doing that as well, because to me we see the value when we, when we talk to customers on the cube about this, you know, it was a real, real easy understanding of how, what the cloud means to them with VMware now with the aws. But the question that comes up that we wanna get more clarity on is how do you guys handle support together? >>Well, what's interesting about this is that it's, it's done mutually. We have dedicated support teams on both sides that work together pretty seamlessly to make sure that whether there's a issue at any layer, including all the way up into the app layer, as you think about some of the other workloads like sap, we'll go end to end and make sure that we support the customer regardless of where the particular issue might be for them. And on top of that, we look at where, where we're improving reliability in, in as a first order of, of principle between both companies. So from an availability and reliability standpoint, it's, it's top of mind and no matter where the particular item might land, we're gonna go help the customer resolve. That works really well >>On the VMware side. What's been the feedback there? What's the, what are some of the updates? >>Yeah, I think, look, I mean, VMware owns and operates the service, but we have a phenomenal backend relationship with aws. Customers call VMware for the service for any issues and, and then we have a awesome relationship with AWS on the backend for support issues or any hardware issues. The BASKE management that we jointly do, right? All of the hard problems that customers don't have to worry about. I think on the front end, we also have a really good group of solution architects across the companies that help to really explain the solution. Do complex things like cloud migration, which is much, much easier with VMware cloud aws, you know, we are presenting that easy button to the public cloud in many ways. And so we have a whole technical audience across the two companies that are working with customers every single day. >>You know, you had mentioned, I've got a list here, some of the innovations the, you mentioned the stretch clustering, you know, getting the GOs working, Advanced network, disaster recovery, you know, fed, Fed ramp, public sector certifications, outposts, all good. You guys are checking the boxes every year. You got a good, good accomplishments list there on the VMware AWS side here in this relationship. The question that I'm interested in is what's next? What recent innovations are you doing? Are you making investments in what's on the lists this year? What items will be next year? How do you see the, the new things, the list of accomplishments, people wanna know what's next. They don't wanna see stagnant growth here, they wanna see more action, you know, as as cloud kind of continues to scale and modern applications cloud native, you're seeing more and more containers, more and more, you know, more CF C I C D pipe pipelining with with modern apps, put more pressure on the system. What's new, what's the new innovations? >>Absolutely. And I think as a five yearold service offering innovation is top of mind for us every single day. So just to call out a few recent innovations that we announced in San Francisco at VMware Explorer. First of all, our new platform i four I dot metal, it's isolate based, it's pretty awesome. It's the latest and greatest, all the speeds and feeds that we would expect from VMware and aws. At this point in our relationship. We announced two different storage options. This notion of working from customer feedback, allowing customers even more price reductions, really take off that storage and park it externally, right? And you know, separate that from compute. So two different storage offerings there. One is with AWS Fsx, with NetApp on tap, which brings in our NetApp partnership as well into the equation and really get that NetApp based, really excited about this offering as well. >>And the second storage offering for VMware cloud Flex Storage, VMware's own managed storage offering. Beyond that, we have done a lot of other innovations as well. I really wanted to talk about VMware cloud Flex Compute, where previously customers could only scale by hosts and a host is 36 to 48 cores, give or take. But with VMware cloud Flex Compute, we are now allowing this notion of a resource defined compute model where customers can just get exactly the V C P memory and storage that maps to the applications, however small they might be. So this notion of granularity is really a big innovation that that we are launching in the market this year. And then last but not least, talk about ransomware. Of course it's a hot topic in industry. We are seeing many, many customers ask for this. We are happy to announce a new ransomware recovery with our VMware cloud DR solution. >>A lot of innovation there and the way we are able to do machine learning and make sure the workloads that are covered from snapshots and backups are actually safe to use. So there's a lot of differentiation on that front as well. A lot of networking innovations with Project Knot star for ability to have layer flow through layer seven, you know, new SaaS services in that area as well. Keep in mind that the service already supports managed Kubernetes for containers. It's built in to the same clusters that have virtual machines. And so this notion of a single service with a great TCO for VMs and containers and sort of at the heart of our office, >>The networking side certainly is a hot area to keep innovating on. Every year it's the same, same conversation, get better, faster networking, more, more options there. The flex computes. Interesting. If you don't mind me getting a quick clarification, could you explain the Drew screen resource defined versus hardware defined? Because this is kind of what we had saw at Explore coming out, that notion of resource defined versus hardware defined. What's the, what does that mean? >>Yeah, I mean I think we have been super successful in this hardware defined notion. We we're scaling by the hardware unit that we present as software defined data centers, right? And so that's been super successful. But we, you know, customers wanted more, especially customers in different parts of the world wanted to start even smaller and grow even more incrementally, right? Lower their costs even more. And so this is the part where resource defined starts to be very, very interesting as a way to think about, you know, here's my bag of resources exactly based on what the customers request for fiber machines, five containers, its size exactly for that. And then as utilization grows, we elastically behind the scenes, we're able to grow it through policies. So that's a whole different dimension. It's a whole different service offering that adds value and customers are comfortable. They can go from one to the other, they can go back to that post based model if they so choose to. And there's a jump off point across these two different economic models. >>It's kind of cloud of flexibility right there. I like the name Fred. Let's get into some of the examples of customers, if you don't mind. Let's get into some of the ex, we have some time. I wanna unpack a little bit of what's going on with the customer deployments. One of the things we've heard again on the cube is from customers is they like the clarity of the relationship, they love the cloud positioning of it. And then what happens is they lift and shift the workloads and it's like, feels great. It's just like we're running VMware on AWS and then they would start consuming higher level services, kind of that adoption next level happens and because it it's in the cloud, so, So can you guys take us through some recent examples of customer wins or deployments where they're using VMware cloud on AWS on getting started, and then how do they progress once they're there? How does it evolve? Can you just walk us through a couple of use cases? >>Sure. There's a, well there's a couple. One, it's pretty interesting that, you know, like you said, as there's more and more bits you need better and better hardware and networking. And we're super excited about the I four and the capabilities there in terms of doubling and or tripling what we're doing around a lower variability on latency and just improving all the speeds. But what customers are doing with it, like the college in New Jersey, they're accelerating their deployment on a, on onboarding over like 7,400 students over a six to eight month period. And they've really realized a ton of savings. But what's interesting is where and how they can actually grow onto additional native services too. So connectivity to any other services is available as they start to move and migrate into this. The, the options there obviously are tied to all the innovation that we have across any services, whether it's containerized and with what they're doing with Tanu or with any other container and or services within aws. >>So there's, there's some pretty interesting scenarios where that data and or the processing, which is moved quickly with full compliance, whether it's in like healthcare or regulatory business is, is allowed to then consume and use things, for example, with tech extract or any other really cool service that has, you know, monthly and quarterly innovations. So there's things that you just can't, could not do before that are coming out and saving customers money and building innovative applications on top of their, their current app base in, in a rapid fashion. So pretty excited about it. There's a lot of examples. I think I probably don't have time to go into too, too many here. Yeah. But that's actually the best part is listening to customers and seeing how many net new services and new applications are they actually building on top of this platform. >>Nora, what's your perspective from the VMware sy? So, you know, you guys have now a lot of headroom to offer customers with Amazon's, you know, higher level services and or whatever's homegrown where's being rolled out? Cuz you now have a lot of hybrid too, so, so what's your, what's your take on what, what's happening in with customers? >>I mean, it's been phenomenal, the, the customer adoption of this and you know, banks and many other highly sensitive verticals are running production grade applications, tier one applications on the service over the last five years. And so, you know, I have a couple of really good examples. S and p Global is one of my favorite examples. Large bank, they merge with IHS market, big sort of conglomeration. Now both customers were using VMware cloud and AWS in different ways. And with the, with the use case, one of their use cases was how do I just respond to these global opportunities without having to invest in physical data centers? And then how do I migrate and consolidate all my data centers across the global, which there were many. And so one specific example for this company was how they migrated thousand 1000 workloads to VMware cloud AWS in just six weeks. Pretty phenomenal. If you think about everything that goes into a cloud migration process, people process technology and the beauty of the technology going from VMware point A to VMware point B, the the lowest cost, lowest risk approach to adopting VMware, VMware cloud, and aws. So that's, you know, one of my favorite examples. There are many other examples across other verticals that we continue to see. The good thing is we are seeing rapid expansion across the globe that constantly entering new markets with the limited number of regions and progressing our roadmap there. >>Yeah, it's great to see, I mean the data center migrations go from months, many, many months to weeks. It's interesting to see some of those success stories. So congratulations. One >>Of other, one of the other interesting fascinating benefits is the sustainability improvement in terms of being green. So the efficiency gains that we have both in current generation and new generation processors and everything that we're doing to make sure that when a customer can be elastic, they're also saving power, which is really critical in a lot of regions worldwide at this point in time. They're, they're seeing those benefits. If you're running really inefficiently in your own data center, that is just a, not a great use of power. So the actual calculators and the benefits to these workloads is, are pretty phenomenal just in being more green, which I like. We just all need to do our part there. And, and this is a big part of it here. >>It's a huge, it's a huge point about the sustainability. Fred, I'm glad you called that out. The other one I would say is supply chain issues. Another one you see that constrains, I can't buy hardware. And the third one is really obvious, but no one really talks about it. It's security, right? I mean, I remember interviewing Stephen Schmidt with that AWS and many years ago, this is like 2013, and you know, at that time people were saying the cloud's not secure. And he's like, listen, it's more secure in the cloud on premise. And if you look at the security breaches, it's all about the on-premise data center vulnerabilities, not so much hardware. So there's a lot you gotta to stay current on, on the isolation there is is hard. So I think, I think the security and supply chain, Fred is, is another one. Do you agree? >>I I absolutely agree. It's, it's hard to manage supply chain nowadays. We put a lot of effort into that and I think we have a great ability to forecast and make sure that we can lean in and, and have the resources that are available and run them, run them more efficiently. Yeah, and then like you said on the security point, security is job one. It is, it is the only P one. And if you think of how we build our infrastructure from Nitro all the way up and how we respond and work with our partners and our customers, there's nothing more important. >>And naron your point earlier about the managed service patching and being on top of things, it's really gonna get better. All right, final question. I really wanna thank you for your time on this showcase. It's really been a great conversation. Fred, you had made a comment earlier. I wanna kind of end with kind of a curve ball and put you eyes on the spot. We're talking about a modern, a new modern shift. It's another, we're seeing another inflection point, we've been documenting it, it's almost like cloud hitting another inflection point with application and open source growth significantly at the app layer. Continue to put a lot of pressure and, and innovation in the infrastructure side. So the question is for you guys each to answer is what's the same and what's different in today's market? So it's kind of like we want more of the same here, but also things have changed radically and better here. What are the, what's, what's changed for the better and where, what's still the same kind of thing hanging around that people are focused on? Can you share your perspective? >>I'll, I'll, I'll, I'll tackle it. You know, businesses are complex and they're often unique that that's the same. What's changed is how fast you can innovate. The ability to combine manage services and new innovative services and build new applications is so much faster today. Leveraging world class hardware that you don't have to worry about that's elastic. You, you could not do that even five, 10 years ago to the degree you can today, especially with innovation. So innovation is accelerating at a, at a rate that most people can't even comprehend and understand the, the set of services that are available to them. It's really fascinating to see what a one pizza team of of engineers can go actually develop in a week. It is phenomenal. So super excited about this space and it's only gonna continue to accelerate that. That's my take. All right. >>You got a lot of platform to compete on with, got a lot to build on then you're Ryan, your side, What's your, what's your answer to that question? >>I think we are seeing a lot of innovation with new applications that customers are constant. I think what we see is this whole notion of how do you go from desktop to production to the secure supply chain and how can we truly, you know, build on the agility that developers desire and build all the security and the pipelines to energize that motor production quickly and efficiently. I think we, we are seeing, you know, we are at the very start of that sort of of journey. Of course we have invested in Kubernetes the means to an end, but there's so much more beyond that's happening in industry. And I think we're at the very, very beginning of this transformations, enterprise transformation that many of our customers are going through and we are inherently part of it. >>Yeah. Well gentlemen, I really appreciate that we're seeing the same thing. It's more the same here on, you know, solving these complexities with distractions. Whether it's, you know, higher level services with large scale infrastructure at, at your fingertips. Infrastructures, code, infrastructure to be provisioned, serverless, all the good stuff happen in Fred with AWS on your side. And we're seeing customers resonate with this idea of being an operator, again, being a cloud operator and developer. So the developer ops is kind of, DevOps is kind of changing too. So all for the better. Thank you for spending the time and we're seeing again, that traction with the VMware customer base and of us getting, getting along great together. So thanks for sharing your perspectives, >>I appreciate it. Thank you so >>Much. Okay, thank you John. Okay, this is the Cube and AWS VMware showcase, accelerating business transformation. VMware cloud on aws, jointly engineered solution, bringing innovation to the VMware customer base, going to the cloud and beyond. I'm John Fur, your host. Thanks for watching. Hello everyone. Welcome to the special cube presentation of accelerating business transformation on vmc on aws. I'm John Furrier, host of the Cube. We have dawan director of global sales and go to market for VMware cloud on adb. This is a great showcase and should be a lot of fun. Ashish, thanks for coming on. >>Hi John. Thank you so much. >>So VMware cloud on AWS has been well documented as this big success for VMware and aws. As customers move their workloads into the cloud, IT operations of VMware customers has signaling a lot of change. This is changing the landscape globally is on cloud migration and beyond. What's your take on this? Can you open this up with the most important story around VMC on aws? >>Yes, John. The most important thing for our customers today is the how they can safely and swiftly move their ID infrastructure and applications through cloud. Now, VMware cloud AWS is a service that allows all vSphere based workloads to move to cloud safely, swiftly and reliably. Banks can move their core, core banking platforms, insurance companies move their core insurance platforms, telcos move their goss, bss, PLA platforms, government organizations are moving their citizen engagement platforms using VMC on aws because this is one platform that allows you to move it, move their VMware based platforms very fast. Migrations can happen in a matter of days instead of months. Extremely securely. It's a VMware manage service. It's very secure and highly reliably. It gets the, the reliability of the underlyings infrastructure along with it. So win-win from our customers perspective. >>You know, we reported on this big news in 2016 with Andy Chas, the, and Pat Geling at the time, a lot of people said it was a bad deal. It turned out to be a great deal because not only could VMware customers actually have a cloud migrate to the cloud, do it safely, which was their number one concern. They didn't want to have disruption to their operations, but also position themselves for what's beyond just shifting to the cloud. So I have to ask you, since you got the finger on the pulse here, what are we seeing in the market when it comes to migrating and modern modernizing in the cloud? Because that's the next step. They go to the cloud, you guys have done that, doing it, then they go, I gotta modernize, which means kind of upgrading or refactoring. What's your take on that? >>Yeah, absolutely. Look, the first step is to help our customers assess their infrastructure and licensing and entire ID operations. Once we've done the assessment, we then create their migration plans. A lot of our customers are at that inflection point. They're, they're looking at their real estate, ex data center, real estate. They're looking at their contracts with colocation vendors. They really want to exit their data centers, right? And VMware cloud and AWS is a perfect solution for customers who wanna exit their data centers, migrate these applications onto the AWS platform using VMC on aws, get rid of additional real estate overheads, power overheads, be socially and environmentally conscious by doing that as well, right? So that's the migration story, but to your point, it doesn't end there, right? Modernization is a critical aspect of the entire customer journey as as well customers, once they've migrated their ID applications and infrastructure on cloud get access to all the modernization services that AWS has. They can correct easily to our data lake services, to our AIML services, to custom databases, right? They can decide which applications they want to keep and which applications they want to refactor. They want to take decisions on containerization, make decisions on service computing once they've come to the cloud. But the most important thing is to take that first step. You know, exit data centers, come to AWS using vmc or aws, and then a whole host of modernization options available to them. >>Yeah, I gotta say, we had this right on this, on this story, because you just pointed out a big thing, which was first order of business is to make sure to leverage the on-prem investments that those customers made and then migrate to the cloud where they can maintain their applications, their data, their infrastructure operations that they're used to, and then be in position to start getting modern. So I have to ask you, how are you guys specifically, or how is VMware cloud on s addressing these needs of the customers? Because what happens next is something that needs to happen faster. And sometimes the skills might not be there because if they're running old school, IT ops now they gotta come in and jump in. They're gonna use a data cloud, they're gonna want to use all kinds of machine learning, and there's a lot of great goodness going on above the stack there. So as you move with the higher level services, you know, it's a no brainer, obviously, but they're not, it's not yesterday's higher level services in the cloud. So how are, how is this being addressed? >>Absolutely. I think you hit up on a very important point, and that is skills, right? When our customers are operating, some of the most critical applications I just mentioned, core banking, core insurance, et cetera, they're most of the core applications that our customers have across industries, like even, even large scale ERP systems, they're actually sitting on VMware's vSphere platform right now. When the customer wants to migrate these to cloud, one of the key bottlenecks they face is skill sets. They have the trained manpower for these core applications, but for these high level services, they may not, right? So the first order of business is to help them ease this migration pain as much as possible by not wanting them to, to upscale immediately. And we VMware cloud and AWS exactly does that. I mean, you don't have to do anything. You don't have to create new skill set for doing this, right? Their existing skill sets suffice, but at the same time, it gives them that, that leeway to build that skills roadmap for their team. DNS is invested in that, right? Yes. We want to help them build those skills in the high level services, be it aml, be it, be it i t be it data lake and analytics. We want to invest in them, and we help our customers through that. So that ultimately the ultimate goal of making them drop data is, is, is a front and center. >>I wanna get into some of the use cases and success stories, but I want to just reiterate, hit back your point on the skill thing. Because if you look at what you guys have done at aws, you've essentially, and Andy Chassey used to talk about this all the time when I would interview him, and now last year Adam was saying the same thing. You guys do all the heavy lifting, but if you're a VMware customer user or operator, you are used to things. You don't have to be relearn to be a cloud architect. Now you're already in the game. So this is like almost like a instant path to cloud skills for the VMware. There's hundreds of thousands of, of VMware architects and operators that now instantly become cloud architects, literally overnight. Can you respond to that? Do you agree with that? And then give an example. >>Yes, absolutely. You know, if you have skills on the VMware platform, you know, know, migrating to AWS using via by cloud and AWS is absolutely possible. You don't have to really change the skills. The operations are exactly the same. The management systems are exactly the same. So you don't really have to change anything but the advantages that you get access to all the other AWS services. So you are instantly able to integrate with other AWS services and you become a cloud architect immediately, right? You are able to solve some of the critical problems that your underlying IT infrastructure has immediately using this. And I think that's a great value proposition for our customers to use this service. >>And just one more point, I want just get into something that's really kind of inside baseball or nuanced VMC or VMware cloud on AWS means something. Could you take a minute to explain what on AWS means? Just because you're like hosting and using Amazon as a, as a work workload? Being on AWS means something specific in your world, being VMC on AWS mean? >>Yes. This is a great question, by the way, You know, on AWS means that, you know, VMware's vse platform is, is a, is an iconic enterprise virtualization software, you know, a disproportionately high market share across industries. So when we wanted to create a cloud product along with them, obviously our aim was for them, for the, for this platform to have the goodness of the AWS underlying infrastructure, right? And, and therefore, when we created this VMware cloud solution, it it literally use the AWS platform under the eighth, right? And that's why it's called a VMs VMware cloud on AWS using, using the, the, the wide portfolio of our regions across the world and the strength of the underlying infrastructure, the reliability and, and, and sustainability that it offers. And therefore this product is called VMC on aws. >>It's a distinction I think is worth noting, and it does reflect engineering and some levels of integration that go well beyond just having a SaaS app and, and basically platform as a service or past services. So I just wanna make sure that now super cloud, we'll talk about that a little bit in another interview, but I gotta get one more question in before we get into the use cases and customer success stories is in, in most of the VM world, VMware world, in that IT world, it used to, when you heard migration, people would go, Oh my God, that's gonna take months. And when I hear about moving stuff around and doing cloud native, the first reaction people might have is complexity. So two questions for you before we move on to the next talk. Track complexity. How are you addressing the complexity issue and how long these migrations take? Is it easy? Is it it hard? I mean, you know, the knee jerk reaction is month, You're very used to that. If they're dealing with Oracle or other old school vendors, like, they're, like the old guard would be like, takes a year to move stuff around. So can you comment on complexity and speed? >>Yeah. So the first, first thing is complexity. And you know, what makes what makes anything complex is if you're, if you're required to acquire new skill sets or you've gotta, if you're required to manage something differently, and as far as VMware cloud and AWS on both these aspects, you don't have to do anything, right? You don't have to acquire new skill sets. Your existing idea operation skill sets on, on VMware's platforms are absolutely fine and you don't have to manage it any differently like, than what you're managing your, your ID infrastructure today. So in both these aspects, it's exactly the same and therefore it is absolutely not complex as far as, as far as, as far as we cloud and AWS is concerned. And the other thing is speed. This is where the huge differentiation is. You have seen that, you know, large banks and large telcos have now moved their workloads, you know, literally in days instead of months. >>Because because of VMware cloud and aws, a lot of time customers come to us with specific deadlines because they want to exit their data centers on a particular date. And what happens, VMware cloud and AWS is called upon to do that migration, right? So speed is absolutely critical. The reason is also exactly the same because you are using the exactly the same platform, the same management systems, people are available to you, you're able to migrate quickly, right? I would just reference recently we got an award from President Zelensky of Ukraine for, you know, migrating their entire ID digital infrastructure and, and that that happened because they were using VMware cloud database and happened very swiftly. >>That's been a great example. I mean, that's one political, but the economic advantage of getting outta the data center could be national security. You mentioned Ukraine, I mean Oscar see bombing and death over there. So clearly that's a critical crown jewel for their running their operations, which is, you know, you know, world mission critical. So great stuff. I love the speed thing. I think that's a huge one. Let's get into some of the use cases. One of them is, the first one I wanted to talk about was we just hit on data, data center migration. It could be financial reasons on a downturn or our, or market growth. People can make money by shifting to the cloud, either saving money or making money. You win on both sides. It's a, it's a, it's almost a recession proof, if you will. Cloud is so use case for number one data center migration. Take us through what that looks like. Give an example of a success. Take us through a day, day in the life of a data center migration in, in a couple minutes. >>Yeah. You know, I can give you an example of a, of a, of a large bank who decided to migrate, you know, their, all their data centers outside their existing infrastructure. And they had, they had a set timeline, right? They had a set timeline to migrate the, the, they were coming up on a renewal and they wanted to make sure that this set timeline is met. We did a, a complete assessment of their infrastructure. We did a complete assessment of their IT applications, more than 80% of their IT applications, underlying v vSphere platform. And we, we thought that the right solution for them in the timeline that they wanted, right, is VMware cloud ands. And obviously it was a large bank, it wanted to do it safely and securely. It wanted to have it completely managed, and therefore VMware cloud and aws, you know, ticked all the boxes as far as that is concerned. >>I'll be happy to report that the large bank has moved to most of their applications on AWS exiting three of their data centers, and they'll be exiting 12 more very soon. So that's a great example of, of, of the large bank exiting data centers. There's another Corolla to that. Not only did they manage to manage to exit their data centers and of course use and be more agile, but they also met their sustainability goals. Their board of directors had given them goals to be carbon neutral by 2025. They found out that 35% of all their carbon foot footprint was in their data centers. And if they moved their, their ID infrastructure to cloud, they would severely reduce the, the carbon footprint, which is 35% down to 17 to 18%. Right? And that meant their, their, their, their sustainability targets and their commitment to the go to being carbon neutral as well. >>And that they, and they shift that to you guys. Would you guys take that burden? A heavy lifting there and you guys have a sustainability story, which is a whole nother showcase in and of itself. We >>Can Exactly. And, and cause of the scale of our, of our operations, we are able to, we are able to work on that really well as >>Well. All right. So love the data migration. I think that's got real proof points. You got, I can save money, I can, I can then move and position my applications into the cloud for that reason and other reasons as a lot of other reasons to do that. But now it gets into what you mentioned earlier was, okay, data migration, clearly a use case and you laid out some successes. I'm sure there's a zillion others. But then the next step comes, now you got cloud architects becoming minted every, and you got managed services and higher level services. What happens next? Can you give us an example of the use case of the modernization around the NextGen workloads, NextGen applications? We're starting to see, you know, things like data clouds, not data warehouses. We're not gonna data clouds, it's gonna be all kinds of clouds. These NextGen apps are pure digital transformation in action. Take us through a use case of how you guys make that happen with a success story. >>Yes, absolutely. And this is, this is an amazing success story and the customer here is s and p global ratings. As you know, s and p global ratings is, is the world leader as far as global ratings, global credit ratings is concerned. And for them, you know, the last couple of years have been tough as far as hardware procurement is concerned, right? The pandemic has really upended the, the supply chain. And it was taking a lot of time to procure hardware, you know, configure it in time, make sure that that's reliable and then, you know, distribute it in the wide variety of, of, of offices and locations that they have. And they came to us. We, we did, again, a, a, a alar, a fairly large comprehensive assessment of their ID infrastructure and their licensing contracts. And we also found out that VMware cloud and AWS is the right solution for them. >>So we worked there, migrated all their applications, and as soon as we migrated all their applications, they got, they got access to, you know, our high level services be our analytics services, our machine learning services, our, our, our, our artificial intelligence services that have been critical for them, for their growth. And, and that really is helping them, you know, get towards their next level of modern applications. Right Now, obviously going forward, they will have, they will have the choice to, you know, really think about which applications they want to, you know, refactor or which applications they want to go ahead with. That is really a choice in front of them. And, but you know, the, we VMware cloud and AWS really gave them the opportunity to first migrate and then, you know, move towards modernization with speed. >>You know, the speed of a startup is always the kind of the Silicon Valley story where you're, you know, people can make massive changes in 18 months, whether that's a pivot or a new product. You see that in startup world. Now, in the enterprise, you can see the same thing. I noticed behind you on your whiteboard, you got a slogan that says, are you thinking big? I know Amazon likes to think big, but also you work back from the customers and, and I think this modern application thing's a big deal because I think the mindset has always been constrained because back before they moved to the cloud, most IT, and, and, and on-premise data center shops, it's slow. You gotta get the hardware, you gotta configure it, you gotta, you gotta stand it up, make sure all the software is validated on it, and loading a database and loading oss, I mean, mean, yeah, it got easier and with scripting and whatnot, but when you move to the cloud, you have more scale, which means more speed, which means it opens up their capability to think differently and build product. What are you seeing there? Can you share your opinion on that epiphany of, wow, things are going fast, I got more time to actually think about maybe doing a cloud native app or transforming this or that. What's your, what's your reaction to that? Can you share your opinion? >>Well, ultimately we, we want our customers to utilize, you know, most of our modern services, you know, applications should be microservices based. When desired, they should use serverless applic. So list technology, they should not have monolithic, you know, relational database contracts. They should use custom databases, they should use containers when needed, right? So ultimately, we want our customers to use these modern technologies to make sure that their IT infrastructure, their licensing, their, their entire IT spend is completely native to cloud technologies. They work with the speed of a startup, but it's important for them to, to, to get to the first step, right? So that's why we create this journey for our customers, where you help them migrate, give them time to build the skills, they'll help them mo modernize, take our partners along with their, along with us to, to make sure that they can address the need for our customers. That's, that's what our customers need today, and that's what we are working backwards from. >>Yeah, and I think that opens up some big ideas. I'll just say that the, you know, we're joking, I was joking the other night with someone here in, in Palo Alto around serverless, and I said, you know, soon you're gonna hear words like architectural list. And that's a criticism on one hand, but you might say, Hey, you know, if you don't really need an architecture, you know, storage lists, I mean, at the end of the day, infrastructure is code means developers can do all the it in the coding cycles and then make the operations cloud based. And I think this is kind of where I see the dots connecting. Final thought here, take us through what you're thinking around how this new world is evolving. I mean, architecturals kind of a joke, but the point is, you know, you have to some sort of architecture, but you don't have to overthink it. >>Totally. No, that's a great thought, by the way. I know it's a joke, but it's a great thought because at the end of the day, you know, what do the customers really want? They want outcomes, right? Why did service technology come? It was because there was an outcome that they needed. They didn't want to get stuck with, you know, the, the, the real estate of, of a, of a server. They wanted to use compute when they needed to, right? Similarly, what you're talking about is, you know, outcome based, you know, desire of our customers and, and, and that's exactly where the word is going to, Right? Cloud really enforces that, right? We are actually, you know, working backwards from a customer's outcome and using, using our area the breadth and depth of our services to, to deliver those outcomes, right? And, and most of our services are in that path, right? When we use VMware cloud and aws, the outcome is a, to migrate then to modernize, but doesn't stop there, use our native services, you know, get the business outcomes using this. So I think that's, that's exactly what we are going through >>Actually, should actually, you're the director of global sales and go to market for VMware cloud on Aus. I wanna thank you for coming on, but I'll give you the final minute. Give a plug, explain what is the VMware cloud on Aus, Why is it great? Why should people engage with you and, and the team, and what ultimately is this path look like for them going forward? >>Yeah. At the end of the day, we want our customers to have the best paths to the cloud, right? The, the best path to the cloud is making sure that they migrate safely, reliably, and securely as well as with speed, right? And then, you know, use that cloud platform to, to utilize AWS's native services to make sure that they modernize their IT infrastructure and applications, right? We want, ultimately that our customers, customers, customer get the best out of, you know, utilizing the, that whole application experience is enhanced tremendously by using our services. And I think that's, that's exactly what we are working towards VMware cloud AWS is, is helping our customers in that journey towards migrating, modernizing, whether they wanna exit a data center or whether they wanna modernize their applications. It's a essential first step that we wanna help our customers with >>One director of global sales and go to market with VMware cloud on neighbors. He's with aws sharing his thoughts on accelerating business transformation on aws. This is a showcase. We're talking about the future path. We're talking about use cases with success stories from customers as she's thank you for spending time today on this showcase. >>Thank you, John. I appreciate it. >>Okay. This is the cube, special coverage, special presentation of the AWS Showcase. I'm John Furrier, thanks for watching.
SUMMARY :
Great to have you and Daniel Re Myer, principal architect global AWS synergy Greatly appreciate it. You're starting to see, you know, this idea of higher level services, More recently, one of the things to keep in mind is we're looking to deliver value Then the other thing comes down to is where we Daniel, I wanna get to you in a second. lot of CPU power, such as you mentioned it, AI workloads. composing, you know, with open source, a lot of great things are changing. So we want to have all of that as a service, on what you see there from an Amazon perspective and how it relates to this? And you know, look at it from the point of view where we said this to leverage a cloud, but the investment that you made and certain things as far How would you talk to that persona about the future And that also means in, in to to some extent, concerns with your I can still run my job now I got goodness on the other side. on the skills, you certainly have that capability to do so. Now that we're peeking behind the curtain here, I'd love to have you guys explain, You always have to have the time difference in mind if we are working globally together. I mean it seems to be very productive, you know, I think one of the key things to keep in mind is, you know, even if you look at AWS's guys to comment on, as you guys continue to evolve the relationship, what's in it for So one of the most important things we have announced this year, Yeah, I think one of the key things to keep in mind is, you know, we're looking to help our customers You know, we have a product, you have a product, biz dev deals happen, people sign relationships and they do business And this, you guys are in the middle of two big ecosystems. You can do this if you decide you want to stay with some of your services But partners innovate with you on their terms. I think one of the key things, you know, as Daniel mentioned before, You still run the fear, the way you working on it and And if, if you look, not every, And thank you for spending the time. So personally for me as an IT background, you know, been in CIS admin world and whatnot, thank you for coming on on this part of the showcase episode of really the customer successes with VMware we're kind of not really on board with kind of the vision, but as it played out as you guys had announced together, across all the regions, you know, that was a big focus because there was so much demand for We invented this pretty awesome feature called Stretch clusters, where you could stretch a And I think one of the things that you mentioned was how the advantages you guys got from that and move when you take the, the skill set that they're familiar with and the advanced capabilities that I have to ask you guys both as you guys see this going to the next level, you know, having a very, very strong engineering partnership at that level. put even race this issue to us, we sent them a notification saying we And as you grow your solutions, there's more bits. the app layer, as you think about some of the other workloads like sap, we'll go end to What's been the feedback there? which is much, much easier with VMware cloud aws, you know, they wanna see more action, you know, as as cloud kind of continues to And you know, separate that from compute. And the second storage offering for VMware cloud Flex Storage, VMware's own managed storage you know, new SaaS services in that area as well. If you don't mind me getting a quick clarification, could you explain the Drew screen resource defined versus But we, you know, because it it's in the cloud, so, So can you guys take us through some recent examples of customer The, the options there obviously are tied to all the innovation that we So there's things that you just can't, could not do before I mean, it's been phenomenal, the, the customer adoption of this and you know, Yeah, it's great to see, I mean the data center migrations go from months, many, So the actual calculators and the benefits So there's a lot you gotta to stay current on, Yeah, and then like you said on the security point, security is job one. So the question is for you guys each to Leveraging world class hardware that you don't have to worry production to the secure supply chain and how can we truly, you know, Whether it's, you know, higher level services with large scale Thank you so I'm John Furrier, host of the Cube. Can you open this up with the most important story around VMC on aws? platform that allows you to move it, move their VMware based platforms very fast. They go to the cloud, you guys have done that, So that's the migration story, but to your point, it doesn't end there, So as you move with the higher level services, So the first order of business is to help them ease Because if you look at what you guys have done at aws, the advantages that you get access to all the other AWS services. Could you take a minute to explain what on AWS on AWS means that, you know, VMware's vse platform is, I mean, you know, the knee jerk reaction is month, And you know, what makes what the same because you are using the exactly the same platform, the same management systems, which is, you know, you know, world mission critical. decided to migrate, you know, their, So that's a great example of, of, of the large bank exiting data And that they, and they shift that to you guys. And, and cause of the scale of our, of our operations, we are able to, We're starting to see, you know, things like data clouds, And for them, you know, the last couple of years have been tough as far as hardware procurement is concerned, And, and that really is helping them, you know, get towards their next level You gotta get the hardware, you gotta configure it, you gotta, you gotta stand it up, most of our modern services, you know, applications should be microservices based. I mean, architecturals kind of a joke, but the point is, you know, the end of the day, you know, what do the customers really want? I wanna thank you for coming on, but I'll give you the final minute. customers, customer get the best out of, you know, utilizing the, One director of global sales and go to market with VMware cloud on neighbors. I'm John Furrier, thanks for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Samir | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Maryland | LOCATION | 0.99+ |
Pat Geling | PERSON | 0.99+ |
John Foer | PERSON | 0.99+ |
Andy Chassey | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
Daniel | PERSON | 0.99+ |
Andy Jessey | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
Daniel Re Myer | PERSON | 0.99+ |
Germany | LOCATION | 0.99+ |
Fred | PERSON | 0.99+ |
Samir Daniel | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Stephen Schmidt | PERSON | 0.99+ |
Danielle | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Samia | PERSON | 0.99+ |
two companies | QUANTITY | 0.99+ |
2025 | DATE | 0.99+ |
Andy Chas | PERSON | 0.99+ |
John Fur | PERSON | 0.99+ |
San Francisco | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
36 | QUANTITY | 0.99+ |
Pat Gelsinger | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
two questions | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Nora | PERSON | 0.99+ |
Madhura Maskasky & Sirish Raghuram | KubeCon + CloudNativeCon NA 2022
(upbeat synth intro music) >> Hey everyone and welcome to Detroit, Michigan. theCUBE is live at KubeCon CloudNativeCon, North America 2022. Lisa Martin here with John Furrier. John, this event, the keynote that we got out of a little while ago was, standing room only. The Solutions hall is packed. There's so much buzz. The community is continuing to mature. They're continuing to contribute. One of the big topics is Cloud Native at Scale. >> Yeah, I mean, this is a revolution happening. The developers are coming on board. They will be running companies. Developers, structurally, will be transforming companies with just, they got to get powered somewhere. And, I think, the Cloud Native at Scale speaks to getting everything under the covers, scaling up to support developers. In this next segment, we have two Kube alumnis. We're going to talk about Cloud Native at Scale. Some of the things that need to be there in a unified architecture, should be great. >> All right, it's going to be fantastic. Let's go under the covers here, as John mentioned, two alumni with us, Madhura Maskasky joins us, co-founder of Platform9. Sirish Raghuram, also co-founder of Platform9 joins us. Welcome back to theCUBE. Great to have you guys here at KubeCon on the floor in Detroit. >> Thank you for having us. >> Thank you for having us. >> Excited to be here >> So, talk to us. You guys have some news, Madhura, give us the sneak peak. What's going on? >> Definitely, we are very excited. So, we have John, not too long ago we spoke about our very new open source project called Arlon. And, we were talking about the launch of Arlon in terms of its first release and etcetera. And, just fresh hot of the press, we, Platform9 had its 5.6 release which is its most recent release of our product. And there's a number of key interesting announcements that we'd like to share as part of that. I think, the prominent one is, Platform9 added support for EKS Kubernetes cluster management. And, so, this is part of our vision of being able to add value, no matter where you run your Kubernetes clusters, because, Kubernetes or cluster management, is increasingly becoming commodity. And, so, I think the companies that succeed are going to add value on top, and are going to add value in a way that helps end users, developers, DevOps solve problems that they encounter as they start running these environments, with a lot of scale and a lot of diversity. So, towards that, key features in the 5.6 six release. First, is the very first package release of the product online, which is the open source project that we've kicked off to do cluster and application, entire cluster management at scale. And, then there's few other very interesting capabilities coming out of that. >> I want to just highlight something and then get your thoughts on this next, this release 5.6. First of all, 5.6, it's been around for a while, five reps, but, now, more than ever, you mentioned the application in Ops. You're seeing WebAssembly trends, you're seeing developers getting more and more advanced capability. It's going to accelerate their ability to write code and compose applications. So, you're seeing a application tsunami coming. So, the pressure is okay, they're going to need infrastructure to run all that stuff. And, so, you're seeing more clusters being spun up, more intelligence trying to automate. So you got the automation, so you got the dynamic, the power dynamic of developers and then under the covers. What does 5.6 do to push the mission forward for developers? How would you guys summarize that for people watching? what's in it for them right now? >> So it's, I think going back to what you just said, right, the breadth of applications that people are developing on top of something like Kubernetes and Cloud Native, is always growing. So, it's not just a number of clusters, but also the fact that different applications and different development groups need these clusters to be composed differently. So, a certain version of the application may require some set of build components, add-ons, and operators, and extensions. Whereas, a different application may require something entirely different. And, now, you take this in an enterprise context, right. Like, we had a major media company that worked with us. They have more than 10,000 pods being used by thousands of developers. And, you now think about the breadth of applications, the hundreds of different applications being built. how do you consistently build, and compose, and manage, a large number of communities clusters with a a large variety of extensions that these companies are trying to manage? That's really what I think 5.6 is bringing to the table. >> Scott Johnston just was on here early as the CEO of Docker. He said there's more applications being pushed now than in the history of application development combined. There's more and more apps coming, more and more pressure on the system. >> And, that's where, if you go, there's this famous landscape chart of the CNCF ecosystem technologies. And, the problem that people here have is, how do they put it all together? How do they make sense of it? And, what 5.6 and Arlon and what Platform9 is doing is, it's helping you declaratively capture blueprints of these clusters, using templates, and be able to manage a small number of blueprints that helps you make order out of the chaos of these hundreds of different projects, that are all very interesting and powerful. >> So Project Arlon really helping developers produce the configuration and the deployment complexities of Kubernetes at scale. >> That's exactly right. >> Talk about the, the impact on the business side. Ease of use, what's the benefits for 5.6? What's does it turn into for a benefit standpoint? >> Yeah, I think the biggest benefit, right, is being able to do Cloud Native at Scale faster, and while still keeping a very lean Ops team that is able to spend, let's say 70 plus percent of their time, caring for your actual business bread and butter applications, and not for the infrastructure that serves it, right. If you take the analogy of a restaurant, you don't want to spend 70% of your time in building the appliances or setting up your stoves etcetera. You want to spend 90 plus percent of your time cooking your own meal, because, that is your core key ingredient. But, what happens today in most enterprises is, because, of the level of automation, the level of hands-on available tooling, being there or not being there, majority of the ops time, I would say 50, 70% plus, gets spent in making that kitchen set up and ready, right. And, that is exactly what we are looking to solve, online. >> What would a customer look like, or prospect environment look like that would be really ready for platform9? What, is it more apps being pushed, big push on application development, or is it the toil of like really inefficient infrastructure, or gaps in skills of people? What does an environment look like? So, someone needs to look at their environment and say, okay, maybe I should call platform9. What's it look like? >> So, we generally see customers fall into two ends of the barbell, I would say. One, is the advanced communities users that are running, I would say, typically, 30 or more clusters already. These are the people that already know containers. They know, they've container wise... >> Savvy teams. >> They're savvy teams, a lot of them are out here. And for them, the problem is, how do I manage the complexity at scale? Because, now, the problem is how do I scale us? So, that's one end of the barbell. The other end of the barbell, is, how do we help make Kubernetes accessible to companies that, as what I would call the mainstream enterprise. We're in Detroit in Motown, right, And, we're outside of the echo chamber of the Silicon Valley. Here's the biggest truth, right. For all the progress that we made as a community, less than 20% of applications in the enterprise today are running on Kubernetes. So, what does it take? I would say it's probably less than 10%, okay. And, what does it take, to grow that in order of magnitude? That's the other kind of customer that we really serve, is, because, we have technologies like Kube Word, which helps them take their existing applications and start adopting Kubernetes as a directional roadmap, but, while using the existing applications that they have, without refactoring it. So, I would say those are the two ends of the barbell. The early adopters that are looking for an easier way to adopt Kubernetes as an architectural pattern. And, the advanced savvy users, for whom the problem is, how do they operationally solve the complexity of managing at scale. >> And, what is your differentiation message to both of those different user groups, as you talked about in terms of the number of users of Kubernetes so far? The community groundswell is tremendous, but, there's a lot of opportunity there. You talked about some of the barriers. What's your differentiation? What do you come in saying, this is why Platform9 is the right one for you, in the both of these groups. >> And it's actually a very simple message. We are the simplest and easiest way for a new user that is adopting Kubernetes as an architectural pattern, to get started with existing applications that they have, on the infrastructure that they have. Number one. And, for the savvy teams, our technology helps you operate with greater scale, with constrained operations teams. Especially, with the economy being the way it is, people are not going to get a lot more budget to go hire a lot more people, right. So, that all of them are being asked to do more with less. And, our team, our technology, and our teams, help you do more with less. >> I was talking with Phil Estes last night from AWS. He's here, he is one of their engineer open source advocates. He's always on the ground pumping up AWS. They've had great success, Amazon Web Services, with their EKS. A lot of people adopting clusters on the cloud and on-premises. But Amazon's doing well. You guys have, I think, a relationship with AWS. What's that, If I'm an Amazon customer, how do I get involved with Platform9? What's the hook? Where's the value? What's the product look like? >> Yeah, so, and it kind of goes back towards the point we spoke about, which is, Kubernetes is going to increasingly get commoditized. So, customers are going to find the right home whether it's hyperscalers, EKS, AKS, GKE, or their own infrastructure, to run Kubernetes. And, so, where we want to be at, is, with a project like Arlon, Sirish spoke about the barbell strategy, on one end there is these advanced Kubernetes users, majority of them are running Kubernetes on AKS, right? Because, that was the easiest platform that they found to get started with. So, now, they have a challenge of running these 50 to 100 clusters across various regions of Amazon, across their DevTest, their staging, their production. And, that results in a level of chaos that these DevOps or platform... >> So you come in and solve that. >> That is where we come in and we solve that. And it, you know, Amazon or EKS, doesn't give you tooling to solve that, right. It makes it very easy for you to create those number of clusters. >> Well, even in one hyperscale, let's say AWS, you got regions and locations... >> Exactly >> ...that's kind of a super cloud problem, we're seeing, opportunity problem, and opportunity is that, on Amazon, availability zones is one thing, but, now, also, you got regions. >> That is absolutely right. You're on point John. And the way we solve it, is by using infrastructure as a code, by using GitOps principles, right? Where you define it once, you define it in a yaml file, you define exactly how for your DevTest environment you want your entire infrastructure to look like, including EKS. And then you stamp it out. >> So let me, here's an analogy, I'll throw out this. You guys are like, someone learns how to drive a car, Kubernetes clusters, that's got a couple clusters. Then once they know how to drive a car, you give 'em the sports car. You allow them to stay on Amazon and all of a sudden go completely distributed, Edge, Global. >> I would say that a lot of people that we meet, we feel like they're figuring out how to build a car with the kit tools that they have. And we give them a car that's ready to go and doesn't require them to be trying to... ... they can focus on driving the car, rather than trying to build the car. >> You don't want people to stop, once they get the progressions, they hit that level up on Kubernetes, you guys give them the ability to go much bigger and stronger. >> That's right. >> To accelerate that applications. >> Building a car gets old for people at a certain point in time, and they really want to focus on is driving it and enjoying it. >> And we got four right behind us, so, we'll get them involved. So that's... >> But, you're not reinventing the wheel. >> We're not at all, because, what we are building is two very, very differentiated solutions, right. One, is, we're the simplest and easiest way to build and run Cloud Native private clouds. And, this is where the operational complexity of trying to do it yourself. You really have to be a car builder, to be able to do this with our Platform9. This is what we do uniquely that nobody else does well. And, the other end is, we help you operate at scale, in the hyperscalers, right. Those are the two problems that I feel, whether you're on-prem, or in the cloud, these are the two problems people face. How do you run a private cloud more easily, more efficiently? And, how do you govern at scale, especially in the public clouds? >> I want to get to two more points before we run out of time. Arlon and Argo CD as a service. We previously mentioned up coming into KubeCon, but, here, you guys couldn't be more relevant, 'cause Intuit was on stage on the keynote, getting an award for their work. You know, Argo, it comes from Intuit. That ArgoCon was in Mountain View. You guys were involved in that. You guys were at the center of all this super cloud action, if you will, or open source. How does Arlon fit into the Argo extension? What is Argo CD as a service? Who's going to take that one? I want to get that out there, because, Arlon has been talked about a lot. What's the update? >> I can talk about it. So, one of the things that Arlon uses behind the scenes, is it uses Argo CD, open source Argo CD as a service, as its key component to do the continuous deployment portion of its entire, the infrastructure management story, right. So, we have been very strongly partnering with Argo CD. We, really know and respect the Intuit team a lot. We, as part of this effort, in 5.6 release, we've also put out Argo CD as a service, in its GA version, right. Because, the power of running Arlon along with Argo CD as a service, in our mind, is enabling you to run on one end, your infrastructure as a scale, through GitOps, and infrastructure as a code practices. And on the other end, your entire application fleet, at scale, right. And, just marrying the two, really gives you the ability to perform that automation that we spoke about. >> But, and avoid the problem of sprawl when you have distributed teams, you have now things being bolted on, more apps coming out. So, this is really solves that problem, mainly. >> That is exactly right. And if you think of it, the way those problems are solved today, is, kind of in disconnected fashion, which is on one end you have your CI/CD tools, like Argo CD is an excellent one. There's some other choices, which are managed by a separate team to automate your application delivery. But, that team, is disconnected from the team that does the infrastructure management. And the infrastructure management is typically done through a bunch of Terraform scripts, or a bunch of ad hoc homegrown scripts, which are very difficult to manage. >> So, Arlon changes sure, as they change the complexity and also the sprawl. But, that's also how companies can die. They're growing fast, they're adding more capability. That's what trouble starts, right? >> I think in two ways, right. Like one is, as Madhura said, I think one of the common long-standing problems we've had, is, how do infrastructure and application teams communicate and work together, right. And, you've seen Argo's really get adopted by the application teams, but, it's now something that we are making accessible for the infrastructure teams to also bring the best practices of how application teams are managing applications. You can now use that to manage infrastructure, right. And, what that's going to do is, help you ultimately reduce waste, reduce inefficiency, and improve the developer experience. Because, that's what it's all about, ultimately. >> And, I know that you just released 5.6 today, congratulations on that. Any customer feedback yet? Any, any customers that you've been able to talk to, or have early access? >> Yeah, one of our large customers is a large SaaS retail company that is B2C SaaS. And, their feedback has been that this, basically, helps them bring exactly what I said in terms of bring some of the best practices that they wanted to adopt in the application space, down to the infrastructure management teams, right. And, we are also hearing a lot of customers, that I would say, large scale public cloud users, saying, they're really struggling with the complexity of how to tame the complexity of navigating that landscape and making it consumable for organizations that have thousands of developers or more. And that's been the feedback, is that this is the first open source standard mechanism that allows them to kind of reuse something, as opposed to everybody feels like they've had to build ad hoc solutions to solve this problem so far. >> Having a unified infrastructure is great. My final question, for me, before I end up, for Lisa to ask her last question is, if you had to explain Platform9, why you're relevant and cool today, what would you say? >> If I take that? I would say that the reason why Platform9, the reason why we exist, is, putting together a cloud, a hybrid cloud strategy for an enterprise today, historically, has required a lot of DIY, a lot of building your own car. Before you can drive a car, or you can enjoy the car, you really learn to build and operate the car. And that's great for maybe a 100 tech companies of the world, but, for the next 10,000 or 50,000 enterprises, they want to be able to consume a car. And that's why Platform9 exists, is, we are the only company that makes this delightfully simple and easy for companies that have a hybrid cloud strategy. >> Why you cool and relevant? How would you say it? >> Yeah, I think as Kubernetes becomes mainstream, as containers have become mainstream, I think automation at scale with ease, is going to be the key. And that's exactly what we help solve. Automation at scale and with ease. >> With ease and that differentiation. Guys, thank you so much for joining me. Last question, I guess, Madhura, for you, is, where can Devs go to learn more about 5.6 and get their hands on it? >> Absolutely. Go to platform9.com. There is info about 5.6 release, there's a press release, there's a link to it right on the website. And, if they want to learn about Arlon, it's an open source GitHub project. Go to GitHub and find out more about it. >> Excellent guys, thanks again for sharing what you're doing to really deliver Cloud Native at Scale in a differentiated way that adds ostensible value to your customers. John, and I, appreciate your insights and your time. >> Thank you for having us. >> Thanks so much >> Our pleasure. For our guests and John Furrier, I'm Lisa Martin. You're watching theCUBE Live from Detroit, Michigan at KubeCon CloudNativeCon 2022. Stick around, John and I will be back with our next guest. Just a minute. (light synth outro music)
SUMMARY :
One of the big topics is Some of the things that need to be there Great to have you guys here at KubeCon So, talk to us. And, just fresh hot of the press, So, the pressure is okay, they're to what you just said, right, as the CEO of Docker. of the CNCF ecosystem technologies. produce the configuration and impact on the business side. because, of the level of automation, or is it the toil of One, is the advanced communities users of the Silicon Valley. in the both of these groups. And, for the savvy teams, He's always on the ground pumping up AWS. that they found to get started with. And it, you know, Amazon or you got regions and locations... but, now, also, you got regions. And the way we solve it, Then once they know how to drive a car, of people that we meet, to go much bigger and stronger. and they really want to focus on And we got four right behind us, And, the other end is, What's the update? And on the other end, your But, and avoid the problem of sprawl that does the infrastructure management. and also the sprawl. for the infrastructure teams to also bring And, I know that you of bring some of the best practices today, what would you say? of the world, ease, is going to be the key. to learn more about 5.6 there's a link to it right on the website. to your customers. be back with our next guest.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Madhura Maskasky | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
John | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Sirish Raghuram | PERSON | 0.99+ |
Madhura | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Detroit | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Scott Johnston | PERSON | 0.99+ |
30 | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
Sirish | PERSON | 0.99+ |
50 | QUANTITY | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Platform9 | ORGANIZATION | 0.99+ |
two problems | QUANTITY | 0.99+ |
Phil Estes | PERSON | 0.99+ |
100 tech companies | QUANTITY | 0.99+ |
less than 20% | QUANTITY | 0.99+ |
less than 10% | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
Detroit, Michigan | LOCATION | 0.99+ |
First | QUANTITY | 0.99+ |
KubeCon | EVENT | 0.99+ |
both | QUANTITY | 0.99+ |
Motown | LOCATION | 0.99+ |
first release | QUANTITY | 0.99+ |
more than 10,000 pods | QUANTITY | 0.99+ |
Docker | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
two alumni | QUANTITY | 0.99+ |
two ways | QUANTITY | 0.99+ |
Arlon | ORGANIZATION | 0.99+ |
5.6 | QUANTITY | 0.98+ |
Mountain View | LOCATION | 0.98+ |
One | QUANTITY | 0.98+ |
two more points | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
EKS | ORGANIZATION | 0.98+ |
last night | DATE | 0.98+ |
Cloud Native | TITLE | 0.98+ |
70 plus percent | QUANTITY | 0.97+ |
one end | QUANTITY | 0.97+ |
four | QUANTITY | 0.97+ |
90 plus percent | QUANTITY | 0.97+ |
DevTest | TITLE | 0.97+ |
Argo | ORGANIZATION | 0.97+ |
50,000 enterprises | QUANTITY | 0.96+ |
Kube | ORGANIZATION | 0.96+ |
two ends | QUANTITY | 0.96+ |
Intuit | ORGANIZATION | 0.96+ |
five reps | QUANTITY | 0.96+ |
today | DATE | 0.96+ |
Kubernetes | TITLE | 0.95+ |
GitOps | TITLE | 0.95+ |
Cloud Native | TITLE | 0.95+ |
platform9.com | OTHER | 0.95+ |
hundreds of different applications | QUANTITY | 0.95+ |
Christian Pedersen, IFS & Sioned Edwards, Aston Martin F1 Team | IFS Unleashed 2022
>>Hey everyone. Welcome back to Miami. Lisa Martin here live with the Cube at IFS Unleashed 2022. We're so excited to be here. We just had a great conversation with Ifss, CEO of Darren Rouse. Now we've got another exciting conversation. F1 is here. You know how much I love f1. Christian Peterson joins us as well, the Chief Product Officer at ifs, and Sean Edwards IT business partner at Aston Martin. F1. Guys, it's great to have you on the program. Thank you for having >>Us. Thank you >>Very much. We were talking about F one. We probably could have an entire conversation just on that, but Christian, I wanna talk with you. It's been three years since the Cube has covered ifs obviously for obvious reasons during that time. So much momentum has happened. IFS cloud was launched about 18 months ago. Give our audience an o, a flavor of IFS, cloud and some of the milestones that you've hit in such a short time period. >>Yeah, I mean IFS cloud is really transformational in many ways. It's transformational for first and foremost for our customers in what enables them to do, but also transformational for us from a technology perspective, how we work and how we do everything. And at the end of the day, it has really surfaced, served around the the, the fact of what we need to do for our customers. And what we saw our customers often do back then, or any company, was they were out looking for EAP solutions or FSM Solutions or EAM Solutions or what have you. And then they were trying to stitch it all together and we, we said like, Hang on a second, these these traditional software s, those are some that I'm guilty. You know, there's some that we actually invented over the years together with analysts. So we invented EER P and we invented CRM and EAM and all these different things. >>But at the end of the day, customers really want a solution to what they are, they are what they're dealing with. And so in these conversations it became very clear that and very repeated conclusions from the conversations that customers wanted something that could manage and help them optimize the use of their assets. Regardless of what industry you're in, assets is such a key component. Either you are using your assets or you're producing assets. Second thing is really get the best use of of your people, your teams and your crew. How do you get the right people on the right job at the same time? How do you assemble the right crew with the right set of skills in the crew? Get them to the right people at the same time. So, and then the final thing is of course customers, you know all the things that you need to do to get customers to answer these ultimate questions, Will you buy from this company again? And they should say yes. That's the ultimate results of moments of service. So that's how we bring it all together and that's what we have been fast at work at. That's what IFS cloud is all about. >>And you, you talked about IFS cloud, being able to to help customers, orchestrate assets, people, customers, Aston Martin being one of those customers. Shawn, you came from ifs so you have kind of the backstory but just give the audience a little bit of, of flavor of your role at Aston Martin and then let's dig into the smart factory. >>Sure. So I previously worked at IFS as a manufacturing consultant. So my bread and butter is production planning in the ERP sector. So we, I Aston Martin didn't have an ERP system pre IFS or a legacy system that wasn't working for them and the team couldn't rely upon it. So what we did was bring IFS in. I was the consultant there and as IFS always preached customer first, well customer first did come and I jumped to support the team. So we've implemented a fully RP solution to manage the production control and the material traceability all the way through from design until delivery to track. And we've mo most recently implemented a warehouse solution at Trackside as well. So we are now tracking our parts going out with the garage. So that's a really exciting time for RFS. In terms of the smart factory, it's not built yet. >>We're we're supposed to move next year. So that's really exciting cause we're quadrupling our footprint. So going from quite a small factory spread out across the North Hampton Share countryside, we're going into one place quadruple in our footprint. And what we're gonna start looking at is using the technology we're implementing there. So enabling 5G to springboard our IFFs implementations going forward with the likes of Internet of things to connect our 15 brand new CMC machines, but also things like R F I D. So that comes with its own challenges on a Formula One car, but it's all about speed of data capture, single point of truth. And IFFs provides that >>And well, Formula One, the first word that comes to mind is speed. >>Absolutely. Second >>Word is crazy. >>We, we are very unique in terms of most customers Christian deals with, they're about speed but also about profit and efficiency. That doesn't matter to us. It is all about time. Time is our currency and if we go quicker in designing and manufacturing, which ifs supports ultimately the cargo quicker. So speed is everything. >>And and if we, if we think of of people, customers and assets at Asset Martin F one, I can't, I can't imagine the quantity of assets that you're building every race weekend and refactoring. >>Absolutely. So a Formula one car that drives out of the garage is made up of 13,000 car parts, most of which, 50% of which we've made in house. So we have to track that all the way through from the smallest metallic component all the way up to the most complex assembly. So orchestrating that and having a single point of truth for people to look at and track is what IFFs has provided us. >>Christian, elaborate on that a little bit in terms of, I mean, what you're facilitating, F1 is such a great example of of speed we talked about, but the fact that you're setting up the car every, every other weekend maybe sometimes back to back weeks, so many massive changes going on. You mentioned 50% of those 13,000 parts you manufacture. Absolutely. Talk about IFS as being a catalyst for that. >>I mean the, it's, it's fascinating with Formula One, but because as a technology geek like me, it's really just any other business on steroids. I mean we talk, we talk about this absolutely high tech, super high tech manufacturing, but even, even before that, the design that goes in with CFDs and how you optimize for different things and loose simulation software for these things goes into manufacturing, goes into wind tunnels and then goes on track. But guess what, when it's on track, it's an asset. It's an asset that streams from how many sensors are on the car, >>I think it's over 10,000 >>Sensors, over 10,000 sensors that streams maybe at 50 hertz or 50 readings. So every lap you just get this mountain of data, which is really iot. So I always say like F one if one did IOT before anybody invented the term. >>Absolutely. >>Yep. You know, F1 did machine learning and AI before anybody thought about it in terms of pattern recognition and things like that with the data. So that's why it's fascinating to work with an organization like that. It's the, it's the sophistication around the technologies and then the pace what they do. It's not that what they do is actually so different. >>It is, it absolutely isn't. We just have to do it really quickly. Really >>Quickly. Right. And the same thing when you talk about parts. I mean I was fascinated of a conversation with, with one of your designers that says that, you know, sometimes we are, we are designing a part and this, the car is now ready for production but the previous version of that part has not even been deployed on the car yet. So that's how quick the innovation comes through and it's, it's, it's fascinating and that's why we like the challenge that Esther Martin gives us because if we can, if we can address that, there's a lot of businesses we can make happy with that as far, >>So Sha I talk a little bit about this is, so we're coming up, there's what four races left in the 2022 season, but this is your busy time because that new car, the 23 car needs to be debuted in what February? So just a few months time? >>Absolutely. So it's a bit cancer intuitive. So our busiest time is now we're ramping up into it. So we co, we go into something called car build which is from December to December to February, which is our end point and there's no move in that point. The car has gotta go around that track in February. So we have got to make those 13,000 components. We've gotta design 'em, we've gotta make 'em and then we've gotta get 'em to the car in February for our moment of service. They said it on stage. Our moment of service as a manufacturing company is that car going around the track and we have to do it 24 times next year and we've gotta start. Well otherwise we're not gonna keep up. >>I'm just gonna ask you what a, what a moment, what's a moment of service in f1 and you're saying basically getting that >>Functional car >>On the track quickly, as quickly as possible and being able to have the technology underpinning that's really abstracting the complexity. >>Absolutely. So I would say our customer ultimately is the driver and the fans they, they need to have a fast car so they can sport it and they ultimately drive it around the track and go get first place and be competitive. So that is our moment of service to our drivers is to deliver that car 24 times next year. >>I imagine they might be a little demanding >>They are and I think it's gonna be exciting with Alonzo coming in, could the driver if we've gotta manage that change and he'll have new things that he wants to try out on a car. So adds another level of complexity to that. >>Well how influential are the drivers in terms some of the, the manufacturing? Like did they, are they give me kind of a a sense of how Alon Fernando Alanzo your team and ifs maybe collaborate, maybe not directly but >>So Alonzo will come in and suggest that he wants cars to work a certain way so he will feed back to the team in terms of we need this car, we need this car part to do this and this car part to do that. So then we're in a cycle when he first gets into the car in that February, we've then gotta turnaround car parts based off his suggestions. So we need to do that again really quickly and that's where IFS feeds in. So we have to have the release and then the manufacturer of the component completely integrated and that's what we achieve with IFFs and >>It needs to be really seamless. >>Absolutely. If, if we don't get it right, that car doesn't go out track so there's no moving deadline. >>Right. That's the probably one of the industries where deadlines do not move. Absolutely. We're so used to things happening in tech where things shift and change and reorgs, but this is one where the dates are set in their firm. >>Absolutely. And we have to do anything we can do to get that car on the track. So yeah, it's just a move. >>Christian, talk about the partnership a little bit from your standpoint in terms of how influential has Aston Martin F1 been in IFS cloud and its first 18 months. I was looking at some stats that you've already gotten 400,000 plus users in just a short time period. How influential are your customers in the direction and even the the next launch 22 R too? >>I mean our customers do everything plain and simple. That's that's what it is. And we have, we have a partnership, I think about every single customer as a partner of ours and we are partnering in taking technology to the next level in terms of, of the outputs and the benefits it can create for our customers. That's what it's all, all about. And I, I always think about these, these three elements I think I mentioned in our state as well. I think the partnership we have is a partnership around innovation. Innovation doesn't not only come from IFS or the technology partner, it comes from discussions, requirements, opportunities, what if like all these things. So innovation comes from everywhere. There's technology driven innovation, there's customer driven innovation, but that's part of the partnership. The second part of the partnership is inspiration. So with innovation you inspire. So when you innovate on something new that inspires new innovation and new thinking and that's again the second part of the partnership. And then the third part is really iterate and execute, right? Because it's great that we can now innovate and we can agree on what we need to do, but now we need to put it into products, put it in technology and put it into actual use. That's when the benefits comes and that's when we can start bringing the bell. >>And I think it's really intrinsically linked. I mean if you look at progress with Formula One teams and their innovation, it's all underpinned by our technology partners and that's why it's so important. The likes of Christian pushes the product and improves it and innovates it because then we can realize the benefits and ultimately save time and go faster. So it's really important that our, our partners and certainly inform one, push the boundaries and find that technology. >>And I think one of the things that we also find very, very important is that we actually understand our customers and can talk the language. So I think that was one of the key things in our engagement, Martin from the beginning is that we had a set of people that really understand Formula One felt it on their bodies and can have the conversation. So when the Formula One teams they say something, then we actually understand what we're talking about. So for instance, when we talk about, you know, track side inventory, well it's not that different from what a field service technician have in his van when he goes service. The only difference is when you see something happening on track, you'll see the parts manager go out to the pit lane with a tablet and say like, oh we need this, we need that, we need this and we need that. And then we'll go back and pick it and put it on the car and the car is service and maintain and off go. Absolutely. >>Yeah that speed always impresses me. >>It's unbelievable. >>Shannon, last question for you. From a smart factory perspective, you said you're moving in next year. What are some of the things that you are excited about that you think are really gonna be transformative but IFS is doing? >>So I think what I'm really excited about once we get in is using the technology they've already put in terms of 5G networks to sort of springboard that into a further IFS implementation. Maybe IFFs cloud in terms of we always struggle to keep the system up to date with, with what's physically happening so that the less data entry and the more automatic sort of data capture, the better it is for the formula on team cuz we improve our our single point of truth. So I'm really excited to look at the internet of things and sort of integrate our CNC machines to sort of feed that information back into ifs. But also the RFID technology I think is gonna be a game changer when we go into the new factory. So really >>Excited. Excellent. Well well done this year. We look forward to seeing Alonso join the team in 23. Fingers >>Crossed. >>Okay. Fingers crossed. Christian, Jeanette, it's been a pleasure to have you on the program. Thank you so much for sharing your insights and how ifs asked Martin are working together, how you really synergistically working together. We appreciate your time. >>Thank you very much for having us. Our >>Thanks for having us. And go Aston >>Woo go Aston, you already here first Lisa Martin, no relation to Aston Martin, but well, I wanna thank Christian Peterson and Shannon Edwards for joining me, talking about IFS and Aston Martin team and what they're doing at Speed and Scale. Stick around my next guest joins me in a minute. >>Thank you.
SUMMARY :
F1. Guys, it's great to have you on the program. a flavor of IFS, cloud and some of the milestones that you've hit in such a short time period. So we invented EER P and we invented But at the end of the day, customers really want a solution to what they are, you came from ifs so you have kind of the backstory but just give the audience a little bit of, So we are now tracking our parts going out with the garage. So going from quite a small factory spread out across the North Hampton Share Absolutely. So speed is everything. Asset Martin F one, I can't, I can't imagine the quantity of assets that you're building So we have to track that all the way through from the Christian, elaborate on that a little bit in terms of, I mean, what you're facilitating, high tech, super high tech manufacturing, but even, even before that, the design that goes in with So I always say like F one if one did IOT before anybody invented the term. So that's why it's fascinating to work with an organization We just have to do it really quickly. And the same thing when you talk about parts. the track and we have to do it 24 times next year and we've gotta start. that's really abstracting the complexity. So that is our moment of service to our drivers is So adds another level of complexity So we have to have the release and then the manufacturer of the component completely If, if we don't get it right, that car doesn't go out track so there's no moving That's the probably one of the industries where deadlines do not move. And we have to do anything we can do to get that car on the track. Christian, talk about the partnership a little bit from your standpoint in terms of how influential has So with innovation you inspire. The likes of Christian pushes the product and improves it and innovates it because then we can realize the benefits Martin from the beginning is that we had a set of people that really understand Formula One What are some of the things that you are excited about that you think are really gonna be transformative but IFS is doing? So I think what I'm really excited about once we get in is using the technology they've We look forward to seeing Alonso join the team in Christian, Jeanette, it's been a pleasure to have you on the program. Thank you very much for having us. And go Aston and what they're doing at Speed and Scale.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Martin | PERSON | 0.99+ |
Jeanette | PERSON | 0.99+ |
Christian | PERSON | 0.99+ |
Aston Martin | ORGANIZATION | 0.99+ |
50% | QUANTITY | 0.99+ |
February | DATE | 0.99+ |
Shannon | PERSON | 0.99+ |
Aston | ORGANIZATION | 0.99+ |
Miami | LOCATION | 0.99+ |
Christian Pedersen | PERSON | 0.99+ |
50 readings | QUANTITY | 0.99+ |
Shawn | PERSON | 0.99+ |
Christian Peterson | PERSON | 0.99+ |
Alonzo | PERSON | 0.99+ |
13,000 components | QUANTITY | 0.99+ |
third part | QUANTITY | 0.99+ |
13,000 parts | QUANTITY | 0.99+ |
three elements | QUANTITY | 0.99+ |
IFS | ORGANIZATION | 0.99+ |
second part | QUANTITY | 0.99+ |
Shannon Edwards | PERSON | 0.99+ |
next year | DATE | 0.99+ |
Sean Edwards | PERSON | 0.99+ |
24 times | QUANTITY | 0.99+ |
50 hertz | QUANTITY | 0.99+ |
Esther Martin | PERSON | 0.99+ |
f1 | ORGANIZATION | 0.99+ |
Second | QUANTITY | 0.99+ |
23 car | QUANTITY | 0.99+ |
400,000 plus users | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
December | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
F1 | ORGANIZATION | 0.98+ |
over 10,000 sensors | QUANTITY | 0.98+ |
first word | QUANTITY | 0.98+ |
Formula One | ORGANIZATION | 0.98+ |
Trackside | ORGANIZATION | 0.98+ |
first | QUANTITY | 0.97+ |
over 10,000 | QUANTITY | 0.97+ |
first 18 months | QUANTITY | 0.97+ |
15 brand | QUANTITY | 0.96+ |
Alon Fernando Alanzo | PERSON | 0.96+ |
this year | DATE | 0.95+ |
one place | QUANTITY | 0.95+ |
IFFs | ORGANIZATION | 0.95+ |
Alonso | PERSON | 0.94+ |
single point | QUANTITY | 0.94+ |
ifs | ORGANIZATION | 0.94+ |
Sioned Edwards | PERSON | 0.92+ |
13,000 car parts | QUANTITY | 0.92+ |
Cube | ORGANIZATION | 0.91+ |
F1 | COMMERCIAL_ITEM | 0.9+ |
four races | QUANTITY | 0.9+ |
One | EVENT | 0.9+ |
first place | QUANTITY | 0.9+ |
Darren Rouse | ORGANIZATION | 0.89+ |
Formula | ORGANIZATION | 0.89+ |
North Hampton | LOCATION | 0.88+ |
IFS | TITLE | 0.88+ |
David Flynn Supercloud Audio
>> From every ISV to solve the problems. You want there to be tools in place that you can use, either open source tools or whatever it is that help you build it. And slowly over time, that building will become easier and easier. So my question to you was, where do you see you playing? Do you see yourself playing to ISVs as a set of tools, which will make their life a lot easier and provide that work? >> Absolutely. >> If they don't have, so they don't have to do it. Or you're providing this for the end users? Or both? >> So it's a progression. If you go to the ISVs first, you're doomed to starved before you have time for that other option. >> Yeah. >> Right? So it's a question of phase, the phasing of it. And also if you go directly to end users, you can demonstrate the power of it and get the attention of the ISVs. I believe that the ISVs, especially those with the biggest footprints and the most, you know, coveted estates, they have already made massive investments at trying to solve decentralization of their software stack. And I believe that they have used it as a hook to try to move to a software as a service model and rope people into leasing their infrastructure. So if you look at the clouds that have been propped up by Autodesk or by Adobe, or you name the company, they are building proprietary makeshift solutions for decentralizing or hybrid clouding. Or maybe they're not even doing that at all and all they're is saying hey, if you want to get location agnosticness, then what you should just, is just move into our cloud. >> Right. >> And then they try to solve on the background how to decentralize it between different regions so they can have decent offerings in each region. But those who are more advanced have already made larger investments and will be more averse to, you know, throwing that stuff away, all of their makeshift machinery away, and using a platform that gives them high performance parallel, low level file system access, while at the same time having metadata-driven, you know, policy-based, intent-based orchestration to manage the diffusion of data across a decentralized infrastructure. They are not going to be as open because they've made such an investment and they're going to look at how do they monetize it. So what we have found with like the movie studios who are using us already, many of the app they're using, many of those software offerings, the ISVs have their own cloud that offers that software for the cloud. But what we got when I asked about this, 'cause I was dealt specifically into this question because I'm very interested to know how we're going to make that leap from end user upstream into the ISVs where I believe we need to, and they said, look, we cannot use these software ISV-specific SAS clouds for two reasons. Number one is we lose control of the data. We're giving it to them. That's security and other issues. And here you're talking about we're doing work for Disney, we're doing work for Netflix, and they're not going to let us put our data on those software clouds, on those SAS clouds. Secondly, in any reasonable pipeline, the data is shared by many different applications. We need to be agnostic as to the application. 'Cause the inputs to one application, you know, the output for one application provides the input to the next, and it's not necessarily from the same vendor. So they need to have a data platform that lets them, you know, go from one software stack, and you know, to run it on another. Because they might do the rendering with this and yet, they do the editing with that, and you know, et cetera, et cetera. So I think the further you go up the stack in the structured data and dedicated applications for specific functions in specific verticals, the further up the stack you go, the harder it is to justify a SAS offering where you're basically telling the end users you need to park all your data with us and then you can run your application in our cloud and get this. That ultimately is a dead end path versus having the data be open and available to many applications across this supercloud layer. >> Okay, so-- >> Is that making any sense? >> Yes, so if I could just ask a clarifying question. So, if I had to take Snowflake as an example, I think they're doing exactly what you're saying is a dead end, put everything into our proprietary system and then we'll figure out how to distribute it. >> Yeah. >> And and I think if you're familiar with Zhamak Dehghaniis' data mesh concept. Are you? >> A little bit, yeah. >> But in her model, Snowflake, a Snowflake warehouse is just a node on the mesh and that mesh is-- >> That's right. >> Ultimately the supercloud and you're an enabler of that is what I'm hearing. >> That's right. What they're doing up at the structured level and what they're talking about at the structured level we're doing at the underlying, unstructured level, which by the way has implications for how you implement those distributed database things. In other words, implementing a Snowflake on top of Hammerspace would have made building stuff like in the first place easier. It would allow you to easily shift and run the database engine anywhere. You still have to solve how to shard and distribute at the transaction layer above, so I'm not saying we're a substitute for what you need to do at the app layer. By the way, there is another example of that and that's Microsoft Office, right? It's one thing to share that, to have a file share where you can share all the docs. It's something else to have Word and PowerPoint, Excel know how to allow people to be simultaneously editing the same doc. That's always going to happen in the app layer. But not all applications need that level of, you know, in-app decentralization. You know, many of them, many workflows are pipelined, especially the ones that are very data intensive where you're doing drug discovery or you're doing rendering, or you're doing machine learning training. These things are human in the loop with large stages of processing across tens of thousands of cores. And I think that kind of data processing pipeline is what we're focusing on first. Not so much the Microsoft Office or the Snowflake, you know, parking a relational database because that takes a lot of application layer stuff and that's what they're good at. >> Right. >> But I think... >> Go ahead, sorry. >> Later entrance in these markets will find Hammerspace as a way to accelerate their work so they can focus more narrowly on just the stuff that's app-specific, higher level sharing in the app. >> Yes, Snowflake founders-- >> I think it might be worth mentioning also, just keep this confidential guys, but one of our customers is Blue Origin. And one of the things that we have found is kind of the point of what you're talking about with our customers. They're needing to build this and since it's not commercially available or they don't know where to look for it to be commercially available, they're all building themselves. So this layer is needed. And Blue is just one of the examples of quite a few we're now talking to. And like manufacturing, HPC, research where they're out trying to solve this problem with their own scripting tools and things like that. And I just, I don't know if there's anything you want to add, David, but you know, but there's definitely a demand here and customers are trying to figure out how to solve it beyond what Hammerspace is doing. Like the need is so great that they're just putting developers on trying to do it themselves. >> Well, and you know, Snowflake founders, they didn't have a Hammerspace to lean on. But, one of the things that's interesting about supercloud is we feel as though industry clouds will emerge, that as part of company's digital transformations, they will, you know, every company's a software company, they'll begin to build their own clouds and they will be able to use a Hammerspace to do that. >> A super pass layer. >> Yes. It's really, I don't know if David's speaking, I don't want to speak over him, but we can't hear you. May be going through a bad... >> Well, a regional, regional talks that make that possible. And so they're doing these render farms and editing farms, and it's a cloud-specific to the types of workflows in the median entertainment world. Or clouds specifically to workflows in the chip design world or in the drug and bio and life sciences exploration world. There are large organizations that are kind of a blend of end users, like the Broad, which has their own kind of cloud where they're asking collaborators to come in and work with them. So it starts to even blur who's an end user versus an ISV. >> Yes. >> Right? When you start talking about the massive data is the main gravity is to having lots of people participate. >> Yep, and that's where the value is. And that's where the value is. And this is a megatrend that we see. And so it's really important for us to get to the point of what is and what is not a supercloud and, you know, that's where we're trying to evolve. >> Let's talk about this for a second 'cause I want to, I want to challenge you on something and it's something that I got challenged on and it has led me to thinking differently than I did at first, which Molly can attest to. Okay? So, we have been looking for a way to talk about the concept of cloud of utility computing, run anything anywhere that isn't addressed in today's realization of cloud. 'Cause today's cloud is not run anything anywhere, it's quite the opposite. You park your data in AWS and that's where you run stuff. And you pretty much have to. Same with with Azure. They're using data gravity to keep you captive there, just like the old infrastructure guys did. But now it's even worse because it's coupled back with the software to some degree, as well. And you have to use their storage, networking, and compute. It's not, I mean it fell back to the mainframe era. Anyhow, so I love the concept of supercloud. By the way, I was going to suggest that a better term might be hyper cloud since hyper speaks to the multidimensionality of it and the ability to be in a, you know, be in a different dimension, a different plane of existence kind of thing like hyperspace. But super and hyper are somewhat synonyms. I mean, you have hyper cars and you have super cars and blah, blah, blah. I happen to like hyper maybe also because it ties into the whole Hammerspace notion of a hyper-dimensional, you know, reality, having your data centers connected by a wormhole that is Hammerspace. But regardless, what I got challenged on is calling it something different at all versus simply saying, this is what cloud has always meant to be. This is the true cloud, this is real cloud, this is cloud. And I think back to what happened, you'll remember, at Fusion IO we talked about IO memory and we did that because people had a conceptualization of what an SSD was. And an SSD back then was low capacity, low endurance, made to go military, aerospace where things needed to be rugged but was completely useless in the data center. And we needed people to imagine this thing as being able to displace entire SAND, with the kind of capacity density, performance density, endurance. And so we talked IO memory, we could have said enterprise SSD, and that's what the industry now refers to for that concept. What will people be saying five and 10 years from now? Will they simply say, well this is cloud as it was always meant to be where you are truly able to run anything anywhere and have not only the same APIs, but you're same data available with high performance access, all forms of access, block file and object everywhere. So yeah. And I wonder, and this is just me throwing it out there, I wonder if, well, there's trade offs, right? Giving it a new moniker, supercloud, versus simply talking about how cloud is always intended to be and what it was meant to be, you know, the real cloud or true cloud, there are trade-offs. By putting a name on it and branding it, that lets people talk about it and understand they're talking about something different. But it also is that an affront to people who thought that that's what they already had. >> What's different, what's new? Yes, and so we've given a lot of thought to this. >> Right, it's like you. >> And it's because we've been asked that why does the industry need a new term, and we've tried to address some of that. But some of the inside baseball that we haven't shared is, you remember the Web 2.0, back then? >> Yep. >> Web 2.0 was the same thing. And I remember Tim Burners Lee saying, "Why do we need Web 2.0? "This is what the Web was always supposed to be." But the truth is-- >> I know, that was another perfect-- >> But the truth is it wasn't, number one. Number two, everybody hated the Web 2.0 term. John Furrier was actually in the middle of it all. And then it created this groundswell. So one of the things we wrote about is that supercloud is an evocative term that catalyzes debate and conversation, which is what we like, of course. And maybe that's self-serving. But yeah, HyperCloud, Metacloud, super, meaning, it's funny because super came from Latin supra, above, it was never the superlative. But the superlative was a convenient byproduct that caused a lot of friction and flack, which again, in the media business is like a perfect storm brewing. >> The bad thing to have to, and I think you do need to shake people out of their, the complacency of the limitations that they're used to. And I'll tell you what, the fact that you even have the terms hybrid cloud, multi-cloud, private cloud, edge computing, those are all just referring to the different boundaries that isolate the silo that is the current limited cloud. >> Right. >> So if I heard correctly, what just, in terms of us defining what is and what isn't in supercloud, you would say traditional applications which have to run in a certain place, in a certain cloud can't run anywhere else, would be the stuff that you would not put in as being addressed by supercloud. And over time, you would want to be able to run the data where you want to and in any of those concepts. >> Or even modern apps, right? Or even modern apps that are siloed in SAS within an individual cloud, right? >> So yeah, I guess it's twofold. Number one, if you're going at the high application layers, there's lots of ways that you can give the appearance of anything running anywhere. The ISV, the SAS vendor can engineer stuff to have the ability to serve with low enough latency to different geographies, right? So if you go too high up the stack, it kind of loses its meaning because there's lots of different ways to make due and give the appearance of omni-presence of the service. Okay? As you come down more towards the platform layer, it gets harder and harder to mask the fact that supercloud is something entirely different than just a good regionally-distributed SAS service. So I don't think you, I don't think you can distinguish supercloud if you go too high up the stack because it's just SAS, it's just a good SAS service where the SAS vendor has done the hard work to give you low latency access from different geographic regions. >> Yeah, so this is one of the hardest things, David. >> Common among them. >> Yeah, this is really an important point. This is one of the things I've had the most trouble with is why is this not just SAS? >> So you dilute your message when you go up to the SAS layer. If you were to focus most of this around the super pass layer, the how can you host applications and run them anywhere and not host this, not run a service, not have a service available everywhere. So how can you take any application, even applications that are written, you know, in a traditional legacy data center fashion and be able to run them anywhere and have them have their binaries and their datasets and the runtime environment and the infrastructure to start them and stop them? You know, the jobs, the, what the Kubernetes, the job scheduler? What we're really talking about here, what I think we're really talking about here is building the operating system for a decentralized cloud. What is the operating system, the operating environment for a decentralized cloud? Where you can, and that the main two functions of an operating system or an operating environment are the process scheduler, the thing that's scheduling what is running where and when and so forth, and the file system, right? The thing that's supplying a common view and access to data. So when we talk about this, I think that the strongest argument for supercloud is made when you go down to the platform layer and talk of it, talk about it as an operating environment on which you can run all forms of applications. >> Would you exclude--? >> Not a specific application that's been engineered as a SAS. (audio distortion) >> He'll come back. >> Are you there? >> Yeah, yeah, you just cut out for a minute. >> I lost your last statement when you broke up. >> We heard you, you said that not the specific application. So would you exclude Snowflake from supercloud? >> Frankly, I would. I would. Because, well, and this is kind of hard to do because Snowflake doesn't like to, Frank doesn't like to talk about Snowflake as a SAS service. It has a negative connotation. >> But it is. >> I know, we all know it is. We all know it is and because it is, yes, I would exclude them. >> I think I actually have him on camera. >> There's nothing in common. >> I think I have him on camera or maybe Benoit as saying, "Well, we are a SAS." I think it's Slootman. I think I said to Slootman, "I know you don't like to say you're a SAS." And I think he said, "Well, we are a SAS." >> Because again, if you go to the top of the application stack, there's any number of ways you can give it location agnostic function or you know, regional, local stuff. It's like let's solve the location problem by having me be your one location. How can it be decentralized if you're centralizing on (audio distortion)? >> Well, it's more decentralized than if it's all in one cloud. So let me actually, so the spectrum. So again, in the spirit of what is and what isn't, I think it's safe to say Hammerspace is supercloud. I think there's no debate there, right? Certainly among this crowd. And I think we can all agree that Dell, Dell Storage is not supercloud. Where it gets fuzzy is this Snowflake example or even, how about a, how about a Cohesity that instantiates its stack in different cloud regions in different clouds, and synchronizes, however magic sauce it does that. Is that a supercloud? I mean, so I'm cautious about having too strict of a definition 'cause then only-- >> Fair enough, fair enough. >> But I could use your help and thoughts on that. >> So I think we're talking about two different spectrums here. One is the spectrum of platform to application-specific. As you go up the application stack and it becomes this specific thing. Or you go up to the more and more structured where it's serving a specific application function where it's more of a SAS thing. I think it's harder to call a SAS service a supercloud. And I would argue that the reason there, and what you're lacking in the definition is to talk about it as general purpose. Okay? Now, that said, a data warehouse is general purpose at the structured data level. So you could make the argument for why Snowflake is a supercloud by saying that it is a general purpose platform for doing lots of different things. It's just one at a higher level up at the structured data level. So one spectrum is the high level going from platform to, you know, unstructured data to structured data to very application-specific, right? Like a specific, you know, CAD/CAM mechanical design cloud, like an Autodesk would want to give you their cloud for running, you know, and sharing CAD/CAM designs, doing your CAD/CAM anywhere stuff. Well, the other spectrum is how well does the purported supercloud technology actually live up to allowing you to run anything anywhere with not just the same APIs but with the local presence of data with the exact same runtime environment everywhere, and to be able to correctly manage how to get that runtime environment anywhere. So a Cohesity has some means of running things in different places and some means of coordinating what's where and of serving diff, you know, things in different places. I would argue that it is a very poor approximation of what Hammerspace does in providing the exact same file system with local high performance access everywhere with metadata ability to control where the data is actually instantiated so that you don't have to wait for it to get orchestrated. But even then when you do have to wait for it, it happens automatically and so it's still only a matter of, well, how quick is it? And on the other end of the spectrum is you could look at NetApp with Flexcache and say, "Is that supercloud?" And I would argue, well kind of because it allows you to run things in different places because it's a cache. But you know, it really isn't because it presumes some central silo from which you're cacheing stuff. So, you know, is it or isn't it? Well, it's on a spectrum of exactly how fully is it decoupling a runtime environment from specific locality? And I think a cache doesn't, it stretches a specific silo and makes it have some semblance of similar access in other places. But there's still a very big difference to the central silo, right? You can't turn off that central silo, for example. >> So it comes down to how specific you make the definition. And this is where it gets kind of really interesting. It's like cloud. Does IBM have a cloud? >> Exactly. >> I would say yes. Does it have the kind of quality that you would expect from a hyper-scale cloud? No. Or see if you could say the same thing about-- >> But that's a problem with choosing a name. That's the problem with choosing a name supercloud versus talking about the concept of cloud and how true up you are to that concept. >> For sure. >> Right? Because without getting a name, you don't have to draw, yeah. >> I'd like to explore one particular or bring them together. You made a very interesting observation that from a enterprise point of view, they want to safeguard their store, their data, and they want to make sure that they can have that data running in their own workflows, as well as, as other service providers providing services to them for that data. So, and in in particular, if you go back to, you go back to Snowflake. If Snowflake could provide the ability for you to have your data where you wanted, you were in charge of that, would that make Snowflake a supercloud? >> I'll tell you, in my mind, they would be closer to my conceptualization of supercloud if you can instantiate Snowflake as software on your own infrastructure, and pump your own data to Snowflake that's instantiated on your own infrastructure. The fact that it has to be on their infrastructure or that it's on their, that it's on their account in the cloud, that you're giving them the data and they're, that fundamentally goes against it to me. If they, you know, they would be a pure, a pure plate if they were a software defined thing where you could instantiate Snowflake machinery on the infrastructure of your choice and then put your data into that machinery and get all the benefits of Snowflake. >> So did you see--? >> In other words, if they were not a SAS service, but offered all of the similar benefits of being, you know, if it were a service that you could run on your own infrastructure. >> So did you see what they announced, that--? >> I hope that's making sense. >> It does, did you see what they announced at Dell? They basically announced the ability to take non-native Snowflake data, read it in from an object store on-prem, like a Dell object store. They do the same thing with Pure, read it in, running it in the cloud, and then push it back out. And I was saying to Dell, look, that's fine. Okay, that's interesting. You're taking a materialized view or an extended table, whatever you're doing, wouldn't it be more interesting if you could actually run the query locally with your compute? That would be an extension that would actually get my attention and extend that. >> That is what I'm talking about. That's what I'm talking about. And that's why I'm saying I think Hammerspace is more progressive on that front because with our technology, anybody who can instantiate a service, can make a service. And so I, so MSPs can use Hammerspace as a way to build a super pass layer and host their clients on their infrastructure in a cloud-like fashion. And their clients can have their own private data centers and the MSP or the public clouds, and Hammerspace can be instantiated, get this, by different parties in these different pieces of infrastructure and yet linked together to make a common file system across all of it. >> But this is data mesh. If I were HPE and Dell it's exactly what I'd be doing. I'd be working with Hammerspace to create my own data. I'd work with Databricks, Snowflake, and any other-- >> Data mesh is a good way to put it. Data mesh is a good way to put it. And this is at the lowest level of, you know, the underlying file system that's mountable by the operating system, consumed as a real file system. You can't get lower level than that. That's why this is the foundation for all of the other apps and structured data systems because you need to have a data mesh that can at least mesh the binary blob. >> Okay. >> That hold the binaries and that hold the datasets that those applications are running. >> So David, in the third week of January, we're doing supercloud 2 and I'm trying to convince John Furrier to make it a data slash data mesh edition. I'm slowly getting him to the knothole. I would very much, I mean you're in the Bay Area, I'd very much like you to be one of the headlines. As Zhamak Dehghaniis going to speak, she's the creator of Data Mesh, >> Sure. >> I'd love to have you come into our studio as well, for the live session. If you can't make it, we can pre-record. But you're right there, so I'll get you the dates. >> We'd love to, yeah. No, you can count on it. No, definitely. And you know, we don't typically talk about what we do as Data Mesh. We've been, you know, using global data environment. But, you know, under the covers, that's what the thing is. And so yeah, I think we can frame the discussion like that to line up with other, you know, with the other discussions. >> Yeah, and Data Mesh, of course, is one of those evocative names, but she has come up with some very well defined principles around decentralized data, data as products, self-serve infrastructure, automated governance, and and so forth, which I think your vision plugs right into. And she's brilliant. You'll love meeting her. >> Well, you know, and I think.. Oh, go ahead. Go ahead, Peter. >> Just like to work one other interface which I think is important. How do you see yourself and the open source? You talked about having an operating system. Obviously, Linux is the operating system at one level. How are you imagining that you would interface with cost community as part of this development? >> Well, it's funny you ask 'cause my CTO is the kernel maintainer of the storage networking stack. So how the Linux operating system perceives and consumes networked data at the file system level, the network file system stack is his purview. He owns that, he wrote most of it over the last decade that he's been the maintainer, but he's the gatekeeper of what goes in. And we have leveraged his abilities to enhance Linux to be able to use this decentralized data, in particular with decoupling the control plane driven by metadata from the data access path and the many storage systems on which the data gets accessed. So this factoring, this splitting of control plane from data path, metadata from data, was absolutely necessary to create a data mesh like we're talking about. And to be able to build this supercloud concept. And the highways on which the data runs and the client which knows how to talk to it is all open source. And we have, we've driven the NFS 4.2 spec. The newest NFS spec came from my team. And it was specifically the enhancements needed to be able to build a spanning file system, a data mesh at a file system level. Now that said, our file system itself and our server, our file server, our data orchestration, our data management stuff, that's all closed source, proprietary Hammerspace tech. But the highways on which the mesh connects are actually all open source and the client that knows how to consume it. So we would, honestly, I would welcome competitors using those same highways. They would be at a major disadvantage because we kind of built them, but it would still be very validating and I think only increase the potential adoption rate by more than whatever they might take of the market. So it'd actually be good to split the market with somebody else to come in and share those now super highways for how to mesh data at the file system level, you know, in here. So yeah, hopefully that answered your question. Does that answer the question about how we embrace the open source? >> Right, and there was one other, just that my last one is how do you enable something to run in every environment? And if we take the edge, for example, as being, as an environment which is much very, very compute heavy, but having a lot less capability, how do you do a hold? >> Perfect question. Perfect question. What we do today is a software appliance. We are using a Linux RHEL 8, RHEL 8 equivalent or a CentOS 8, or it's, you know, they're all roughly equivalent. But we have bundled and a software appliance which can be instantiated on bare metal hardware on any type of VM system from VMware to all of the different hypervisors in the Linux world, to even Nutanix and such. So it can run in any virtualized environment and it can run on any cloud instance, server instance in the cloud. And we have it packaged and deployable from the marketplaces within the different clouds. So you can literally spin it up at the click of an API in the cloud on instances in the cloud. So with all of these together, you can basically instantiate a Hammerspace set of machinery that can offer up this file system mesh. like we've been using the terminology we've been using now, anywhere. So it's like being able to take and spin up Snowflake and then just be able to install and run some VMs anywhere you want and boom, now you have a Snowflake service. And by the way, it is so complete that some of our customers, I would argue many aren't even using public clouds at all, they're using this just to run their own data centers in a cloud-like fashion, you know, where they have a data service that can span it all. >> Yeah and to Molly's first point, we would consider that, you know, cloud. Let me put you on the spot. If you had to describe conceptually without a chalkboard what an architectural diagram would look like for supercloud, what would you say? >> I would say it's to have the same runtime environment within every data center and defining that runtime environment as what it takes to schedule the execution of applications, so job scheduling, runtime stuff, and here we're talking Kubernetes, Slurm, other things that do job scheduling. We're talking about having a common way to, you know, instantiate compute resources. So a global compute environment, having a common compute environment where you can instantiate things that need computing. Okay? So that's the first part. And then the second is the data platform where you can have file block and object volumes, and have them available with the same APIs in each of these distributed data centers and have the exact same data omnipresent with the ability to control where the data is from one moment to the next, local, where all the data is instantiate. So my definition would be a common runtime environment that's bifurcate-- >> Oh. (attendees chuckling) We just lost them at the money slide. >> That's part of the magic makes people listen. We keep someone on pin and needles waiting. (attendees chuckling) >> That's good. >> Are you back, David? >> I'm on the edge of my seat. Common runtime environment. It was like... >> And just wait, there's more. >> But see, I'm maybe hyper-focused on the lower level of what it takes to host and run applications. And that's the stuff to schedule what resources they need to run and to get them going and to get them connected through to their persistence, you know, and their data. And to have that data available in all forms and have it be the same data everywhere. On top of that, you could then instantiate applications of different types, including relational databases, and data warehouses and such. And then you could say, now I've got, you know, now I've got these more application-level or structured data-level things. I tend to focus less on that structured data level and the application level and am more focused on what it takes to host any of them generically on that super pass layer. And I'll admit, I'm maybe hyper-focused on the pass layer and I think it's valid to include, you know, higher levels up the stack like the structured data level. But as soon as you go all the way up to like, you know, a very specific SAS service, I don't know that you would call that supercloud. >> Well, and that's the question, is there value? And Marianna Tessel from Intuit said, you know, we looked at it, we did it, and it just, it was actually negative value for us because connecting to all these separate clouds was a real pain in the neck. Didn't bring us any additional-- >> Well that's 'cause they don't have this pass layer underneath it so they can't even shop around, which actually makes it hard to stand up your own SAS service. And ultimately they end up having to build their own infrastructure. Like, you know, I think there's been examples like Netflix moving away from the cloud to their own infrastructure. Basically, if you're going to rent it for more than a few months, it makes sense to build it yourself, if it's at any kind of scale. >> Yeah, for certain components of that cloud. But if the Goldman Sachs came to you, David, and said, "Hey, we want to collaborate and we want to build "out a cloud and essentially build our SAS system "and we want to do that with Hammerspace, "and we want to tap the physical infrastructure "of not only our data centers but all the clouds," then that essentially would be a SAS, would it not? And wouldn't that be a Super SAS or a supercloud? >> Well, you know, what they may be using to build their service is a supercloud, but their service at the end of the day is just a SAS service with global reach. Right? >> Yeah. >> You know, look at, oh shoot. What's the name of the company that does? It has a cloud for doing bookkeeping and accounting. I forget their name, net something. NetSuite. >> NetSuite. NetSuite, yeah, Oracle. >> Yeah. >> Yep. >> Oracle acquired them, right? Is NetSuite a supercloud or is it just a SAS service? You know? I think under the covers you might ask are they using supercloud under the covers so that they can run their SAS service anywhere and be able to shop the venue, get elasticity, get all the benefits of cloud in the, to the benefit of their service that they're offering? But you know, folks who consume the service, they don't care because to them they're just connecting to some endpoint somewhere and they don't have to care. So the further up the stack you go, the more location-agnostic it is inherently anyway. >> And I think it's, paths is really the critical layer. We thought about IAS Plus and we thought about SAS Minus, you know, Heroku and hence, that's why we kind of got caught up and included it. But SAS, I admit, is the hardest one to crack. And so maybe we exclude that as a deployment model. >> That's right, and maybe coming down a level to saying but you can have a structured data supercloud, so you could still include, say, Snowflake. Because what Snowflake is doing is more general purpose. So it's about how general purpose it is. Is it hosting lots of other applications or is it the end application? Right? >> Yeah. >> So I would argue general purpose nature forces you to go further towards platform down-stack. And you really need that general purpose or else there is no real distinguishing. So if you want defensible turf to say supercloud is something different, I think it's important to not try to wrap your arms around SAS in the general sense. >> Yeah, and we've kind of not really gone, leaned hard into SAS, we've just included it as a deployment model, which, given the constraints that you just described for structured data would apply if it's general purpose. So David, super helpful. >> Had it sign. Define the SAS as including the hybrid model hold SAS. >> Yep. >> Okay, so with your permission, I'm going to add you to the list of contributors to the definition. I'm going to add-- >> Absolutely. >> I'm going to add this in. I'll share with Molly. >> Absolutely. >> We'll get on the calendar for the date. >> If Molly can share some specific language that we've been putting in that kind of goes to stuff we've been talking about, so. >> Oh, great. >> I think we can, we can share some written kind of concrete recommendations around this stuff, around the general purpose, nature, the common data thing and yeah. >> Okay. >> Really look forward to it and would be glad to be part of this thing. You said it's in February? >> It's in January, I'll let Molly know. >> Oh, January. >> What the date is. >> Excellent. >> Yeah, third week of January. Third week of January on a Tuesday, whatever that is. So yeah, we would welcome you in. But like I said, if it doesn't work for your schedule, we can prerecord something. But it would be awesome to have you in studio. >> I'm sure with this much notice we'll be able to get something. Let's make sure we have the dates communicated to Molly and she'll get my admin to set it up outside so that we have it. >> I'll get those today to you, Molly. Thank you. >> By the way, I am so, so pleased with being able to work with you guys on this. I think the industry needs it very bad. They need something to break them out of the box of their own mental constraints of what the cloud is versus what it's supposed to be. And obviously, the more we get people to question their reality and what is real, what are we really capable of today that then the more business that we're going to get. So we're excited to lend the hand behind this notion of supercloud and a super pass layer in whatever way we can. >> Awesome. >> Can I ask you whether your platforms include ARM as well as X86? >> So we have not done an ARM port yet. It has been entertained and won't be much of a stretch. >> Yeah, it's just a matter of time. >> Actually, entertained doing it on behalf of NVIDIA, but it will absolutely happen because ARM in the data center I think is a foregone conclusion. Well, it's already there in some cases, but not quite at volume. So definitely will be the case. And I'll tell you where this gets really interesting, discussion for another time, is back to my old friend, the SSD, and having SSDs that have enough brains on them to be part of that fabric. Directly. >> Interesting. Interesting. >> Very interesting. >> Directly attached to ethernet and able to create a data mesh global file system, that's going to be really fascinating. Got to run now. >> All right, hey, thanks you guys. Thanks David, thanks Molly. Great to catch up. Bye-bye. >> Bye >> Talk to you soon.
SUMMARY :
So my question to you was, they don't have to do it. to starved before you have I believe that the ISVs, especially those the end users you need to So, if I had to take And and I think Ultimately the supercloud or the Snowflake, you know, more narrowly on just the stuff of the point of what you're talking Well, and you know, Snowflake founders, I don't want to speak over So it starts to even blur who's the main gravity is to having and, you know, that's where to be in a, you know, a lot of thought to this. But some of the inside baseball But the truth is-- So one of the things we wrote the fact that you even have that you would not put in as to give you low latency access the hardest things, David. This is one of the things I've the how can you host applications Not a specific application Yeah, yeah, you just statement when you broke up. So would you exclude is kind of hard to do I know, we all know it is. I think I said to Slootman, of ways you can give it So again, in the spirit But I could use your to allowing you to run anything anywhere So it comes down to how quality that you would expect and how true up you are to that concept. you don't have to draw, yeah. the ability for you and get all the benefits of Snowflake. of being, you know, if it were a service They do the same thing and the MSP or the public clouds, to create my own data. for all of the other apps and that hold the datasets So David, in the third week of January, I'd love to have you come like that to line up with other, you know, Yeah, and Data Mesh, of course, is one Well, you know, and I think.. and the open source? and the client which knows how to talk and then just be able to we would consider that, you know, cloud. and have the exact same data We just lost them at the money slide. That's part of the I'm on the edge of my seat. And that's the stuff to schedule Well, and that's the Like, you know, I think But if the Goldman Sachs Well, you know, what they may be using What's the name of the company that does? NetSuite, yeah, Oracle. So the further up the stack you go, But SAS, I admit, is the to saying but you can have a So if you want defensible that you just described Define the SAS as including permission, I'm going to add you I'm going to add this in. We'll get on the calendar to stuff we've been talking about, so. nature, the common data thing and yeah. to it and would be glad to have you in studio. and she'll get my admin to set it up I'll get those today to you, Molly. And obviously, the more we get people So we have not done an ARM port yet. because ARM in the data center I think is Interesting. that's going to be really fascinating. All right, hey, thanks you guys.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Slootman | PERSON | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
Adobe | ORGANIZATION | 0.99+ |
Molly | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
Frank | PERSON | 0.99+ |
Disney | ORGANIZATION | 0.99+ |
Goldman Sachs | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
January | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
February | DATE | 0.99+ |
Peter | PERSON | 0.99+ |
Zhamak Dehghaniis | PERSON | 0.99+ |
Hammerspace | ORGANIZATION | 0.99+ |
Word | TITLE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
RHEL 8 | TITLE | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Benoit | PERSON | 0.99+ |
Excel | TITLE | 0.99+ |
second | QUANTITY | 0.99+ |
Autodesk | ORGANIZATION | 0.99+ |
CentOS 8 | TITLE | 0.99+ |
David Flynn | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
PowerPoint | TITLE | 0.99+ |
first point | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Tuesday | DATE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
first part | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
each region | QUANTITY | 0.98+ |
Linux | TITLE | 0.98+ |
One | QUANTITY | 0.98+ |
Intuit | ORGANIZATION | 0.98+ |
Tim Burners Lee | PERSON | 0.98+ |
Zhamak Dehghaniis' | PERSON | 0.98+ |
Blue Origin | ORGANIZATION | 0.98+ |
Bay Area | LOCATION | 0.98+ |
two reasons | QUANTITY | 0.98+ |
each | QUANTITY | 0.98+ |
one application | QUANTITY | 0.98+ |
Snowflake | TITLE | 0.98+ |
first | QUANTITY | 0.98+ |
more than a few months | QUANTITY | 0.97+ |
SAS | ORGANIZATION | 0.97+ |
ARM | ORGANIZATION | 0.97+ |
Microsoft | ORGANIZATION | 0.97+ |
Michael Rogers, CrowdStrike | CrowdStrike Fal.Con 2022
foreign okay we're back at Falcon 2022 crowdstrike's big user conference first time in a couple of years obviously because of kova this is thecube's coverage Dave vellante and Dave Nicholson wall-to-wall coverage two days in a row Michael Rogers the series the newly minted vice president of global alliances at crowdstrike Michael first of all congratulations on the new appointment and welcome to the cube thank you very much it's an honor to be here so dial back just a bit like think about your first hundred days in this new role what was it like who'd you talk to what'd you learn wow well the first hundred days were filled with uh excitement uh I would say 18 plus hours a day getting to know the team across the globe a wonderful team across all of the partner types that we cover and um just digging in and spending time with people and understanding uh what the partner needs were and and and and it was just a it was a blur but a blast I agree with any common patterns that you heard that you could sort of coalesce around yeah I mean I think that uh really what a common thing that we hear at crowdstrike whether it's internal is extra external is getting to the market as fast as possible there's so much opportunity and every time we open a door the resource investment we need we continue to invest in resources and that was an area that we identified and quickly pivoted and started making some of those new investments in a structure of the organization how we cover Partners uh how we optimize uh the different routes to Market with our partners and yeah just a just a it's been a wonderful experience and in my 25 years of cyber security uh actually 24 and a half as of Saturday uh I can tell you that I have never felt and had a better experience in terms of culture people and a greater mission for our customers and our partners you'll Max funny a lot of times Dave we talk about this is we you know we learned a lot from Amazon AWS with the cloud you know taking something you did internally pointing it externally to Pizza teams there's shared responsibility model we talk about that and and one of the things is blockers you know Amazon uses that term blocker so were there any blockers that you identified that you're you're sort of working with the partner ecosystem to knock down to accelerate that go to market well I mean if I think about what we had put in place prior and I had the benefit of being vice president of America's prior to the appointment um and had the pleasure of succeeding my dear friend and Mentor Matthew Pauley um a lot of that groundwork was put in place and we work collectively as a leadership team to knock down a lot of those blockers and I think it really as I came into the opportunity and we made new Investments going into the fiscal year it's really getting to Market as fast as possible it's a massive Target addressable market and identifying the right routes and how to how to harness that power of we to drive the most value to the marketplace yeah what is it what does that look like in terms of alliances alliances can take a lot of shape we've we've talked to uh service providers today as an example um our Global Systems integrators in that group also what what is what does the range look like yeah I mean alliances at crowdstrike and it's a great question because a lot of times people think alliances and they only think of Technology alliances and for us it spans really any and all routes to Market it could be your traditional solution providers which might be regionally focused it could be nationally focused larger solution providers or Lars as you noted service providers and telcos global system integrators mssps iot Partners OEM Partners um and store crouchstrike store Partners so you look across that broad spectrum and we cover it all so the mssps we heard a lot about that on the recent earnings call we've heard this is a consistent theme we've interviewed a couple here today what's driving that I mean is it the fact that csos are just you know drowning for talent um and why crowdstrike why is there such an affinity between mssps and crowdstrike yeah a great question we um and you noted that uh succinctly that csos today are faced with the number one challenge is lack of resources and cyber security the last that I heard was you know in the hundreds of thousands like 350 000 and that's an old stat so I would venture to Guess that the open positions in cyber security are north of a half a million uh as we sit here today and um service providers and mssps are focused on providing service to those customers that are understaffed and have that Personnel need and they are harnessing the crowdstrike platform to bring a cloud native best of breed solution to their customers to augment and enhance the services that they bring to those customers so partner survey what tell us about the I love surveys I love data you know this what was the Genesis of the survey who took it give us the breakdown yeah that's a great question no uh nothing is more important than the feedback that we get from our partners so every single year we do a partner survey it reaches all partner types in the uh in the ecosystem and we use the net promoter score model and so we look at ourselves in terms of how we how we uh rate against other SAS solution providers and then we look at how we did last year and in the next year and so I'm happy to say that we increased our net promoter score by 16 percent year over year but my philosophy is there's always room for improvement so the feedback from our partners on the positive side they love the Falcon platform they love the crowdstrike technology they love the people that they work with at crowdstrike and they like our enablement programs the areas that they like us to see more investment in is the partner program uh better and enhanced enablement making it easier to work with crowdstrike and more opportunities to offer services enhance services to their customers dramatic differences between the types of Partners and and if so you know why do you think those were I mean like you mentioned you know iot Partners that's kind of a new area you know so maybe maybe there was less awareness there were there any sort of differences that you noticed by type of partner I would say that you know the areas or the part the partners that identified areas for improvement were the partners that that uh either were new to crowdstrike or they're areas that we're just investing in uh as as we expand as a company and a demand from the market is you know pull this thing into these new routes to Market um not not one in particular I mean iot is something that we're looking to really blow up in the next uh 12 to 18 months um but no no Common Thread uh consistent feedback across the partner base speaking of iot he brought it up before it's is it in a you see it as an adjacency to i-team it seems like it and OT used to never talk to each other and now they're increasingly doing so but they're still it still seems like different worlds what have you found and learned in that iot partner space yeah I mean I think the key and we the way we look at the journey is it starts with um Discovery discovering the assets that are in the OT environment um it then uh transitions to uh detection and response and really prevention and once you can solve that and you build that trust through certifications in the industry um you know it really is a game changer anytime you have Global in your job title first word that comes to mind for me anyway is sovereignty issues is that something that you deal with in this space uh in terms of partners that you're working with uh focusing on Partners in certain regions so that they can comply with any governance or sovereignty yeah that's that's a great question Dave I mean we have a fantastic and deep bench on our compliance team and there are certain uh you know parameters and processes that have been put in place to make sure that we have a solid understanding in all markets in terms of sovereignty and and uh where we're able to play and how that were you North America before or Americas uh Americas America so you're familiar with the sovereignty issue yeah a little already Latin America is certainly uh exposed me plenty of plenty of that yes 100 so you mentioned uh uh Tam before I think it was total available Market you had a different word for the t uh total addressable Mark still addressable Market okay fine so I'm hearing Global that's a tam expansion opportunity iot is definitely you know the OT piece and then just working better um you know better Groove swing with the partners for higher velocity when you think about the total available total addressable market and and accelerating penetration and growing your Tam I've seen the the charts in your investor presentation and you know starts out small and then grows to you know I think it could be 100 billion I do a lot of Tam analysis but just my back a napkin had you guys approaching 100 billion anyway how do you think about the Tam and what role do Partners play in terms of uh increasing your team yeah that's a great question I mean if you think about it today uh George announced on the day after our 11th anniversary as a company uh 20 000 customers and and if you look at that addressable Market just in the SMB space it's north of 50 million companies that are running on Legacy on-prem Solutions and it really provides us an opportunity to provide those customers with uh Next Generation uh threat protection and and detection and and response partners are the route to get there there is no doubt that we cannot cover 50 50 million companies requires a span of of uh of of of a number of service providers and mssps to get to that market and that's where we're making our bets what what's an SMB that is a candidate for crowdstrike like employee size or how do you look at that like what's the sort of minimum range yeah the way we segment out the SMB space it's 250 seats or endpoints and below 250 endpoints yes right and so it's going to be fairly significant so math changes with xdr with the X and xdr being extended the greater number of endpoints means that a customer today when you talk about total addressable Market that market can expand even without expanding the number of net new customers is that a fair yeah Fair assessment yep yeah you got that way in that way but but map that to like company size can you roughly what's the what's the smallest s that would do business with crowdstrike yeah I mean we have uh companies as small as five employees that will leverage crowd strike yeah 100 and they've got hundreds of endpoints oh no I'm sorry five uh five endpoints is oh okay so it's kind of 250 endpoints as well like the app that's the sweets that's it's that's kind of the Top Line we look at and then we focus oh okay when we Define SMB it's below so five to 250 endpoints right yes and so roughly so you're talking to companies with less than 100 employees right yeah yeah so I mean this is what I was talking about before I say I look around the the ecosystem myself it kind of reminds me of service now in 2013 but servicenow never had a SMB play right and and you know very kind of proprietary closed platform not that you don't have a lot of propriety in your platform you do but you they were never going to get down Market there and their Tam is not as big in my view but I mean your team is when you start bringing an iot it's it's mind-boggling it's endless how large it could be yeah all right so what's your vision for the Elevate program partner program well I I look at uh a couple things that we've we've have in place today one is um one is we've we've established for the first time ever at crowdstrike the Alliance program management office apmo and that team is focused on building out our next Generation partner program and that's you know processes it's you know uh it's it's ring fencing but it's most important importantly identifying capabilities for partners to expand to reduce friction and uh grow their business together with crowdstrike we also look at uh what we call program Harmony and that's taking all of the partner types or the majority of the partner types and starting to look at it with the customer in the middle and so multiple partners can play a role on the journey to bringing a customer on board initially to supporting that customer going forward and they can all participate and be rewarded for their contribution to that opportunity so it's really a key area for us going forward Hub and spoke model with the center of the that model is the customer you're saying that's good okay so you're not like necessarily fighting each other for for a sort of ownership of that model but uh cool Michael Rogers thanks so much for coming on thecube it was great to have you my pleasure thank you for having me you're welcome all right keep it right there Dave Nicholson and Dave vellante we'll be right back to Falcon 22 from the Aria in Las Vegas you're watching thecube foreign [Music]
**Summary and Sentiment Analysis are not been shown because of improper transcript**
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Nicholson | PERSON | 0.99+ |
Michael Rogers | PERSON | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
Dave vellante | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
250 seats | QUANTITY | 0.99+ |
25 years | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
100 billion | QUANTITY | 0.99+ |
16 percent | QUANTITY | 0.99+ |
Michael | PERSON | 0.99+ |
two days | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
next year | DATE | 0.99+ |
less than 100 employees | QUANTITY | 0.99+ |
hundreds of thousands | QUANTITY | 0.99+ |
Dave vellante | PERSON | 0.99+ |
today | DATE | 0.99+ |
100 | QUANTITY | 0.99+ |
250 | QUANTITY | 0.99+ |
first hundred days | QUANTITY | 0.98+ |
Americas | LOCATION | 0.98+ |
five | QUANTITY | 0.98+ |
five employees | QUANTITY | 0.98+ |
North America | LOCATION | 0.97+ |
first time | QUANTITY | 0.97+ |
250 endpoints | QUANTITY | 0.97+ |
18 plus hours a day | QUANTITY | 0.97+ |
first time | QUANTITY | 0.97+ |
24 and a half | QUANTITY | 0.97+ |
Mentor Matthew Pauley | PERSON | 0.97+ |
Saturday | DATE | 0.96+ |
hundreds of endpoints | QUANTITY | 0.96+ |
Las Vegas | LOCATION | 0.96+ |
Latin America | LOCATION | 0.95+ |
first hundred days | QUANTITY | 0.95+ |
50 50 million companies | QUANTITY | 0.95+ |
first | QUANTITY | 0.93+ |
north of a half a million | QUANTITY | 0.93+ |
first word | QUANTITY | 0.92+ |
12 | QUANTITY | 0.92+ |
11th anniversary | QUANTITY | 0.91+ |
18 months | QUANTITY | 0.91+ |
telcos | ORGANIZATION | 0.91+ |
iot | ORGANIZATION | 0.89+ |
five endpoints | QUANTITY | 0.88+ |
Global | ORGANIZATION | 0.88+ |
20 000 customers | QUANTITY | 0.88+ |
one | QUANTITY | 0.85+ |
north of 50 million companies | QUANTITY | 0.85+ |
CrowdStrike | EVENT | 0.85+ |
couple | QUANTITY | 0.85+ |
crowdstrike | ORGANIZATION | 0.84+ |
America | LOCATION | 0.83+ |
Falcon 22 | ORGANIZATION | 0.81+ |
number one | QUANTITY | 0.76+ |
Falcon 2022 crowdstrike | EVENT | 0.75+ |
couple of years | QUANTITY | 0.74+ |
350 000 | QUANTITY | 0.74+ |
SAS | ORGANIZATION | 0.72+ |
vice president | PERSON | 0.7+ |
every single year | QUANTITY | 0.7+ |
uh Next Generation | ORGANIZATION | 0.68+ |
Fal.Con 2022 | EVENT | 0.63+ |
Falcon | ORGANIZATION | 0.62+ |
big user conference | EVENT | 0.61+ |
CrowdStrike | ORGANIZATION | 0.6+ |
Elevate | TITLE | 0.57+ |
below | QUANTITY | 0.56+ |
Lars | PERSON | 0.54+ |
Aria | LOCATION | 0.53+ |
Alliance | ORGANIZATION | 0.53+ |
president | PERSON | 0.51+ |
George | PERSON | 0.51+ |
America | ORGANIZATION | 0.5+ |
Legacy | ORGANIZATION | 0.49+ |
csos | TITLE | 0.47+ |
AWS | ORGANIZATION | 0.45+ |
Generation | OTHER | 0.44+ |
Paula Hansen and Jacqui van der Leij Greyling | Democratizing Analytics Across the Enterprise
(light upbeat music) (mouse clicks) >> Hey, everyone. Welcome back to the program. Lisa Martin here. I've got two guests joining me. Please welcome back to The Cube, Paula Hansen, the chief revenue officer and president at Alteryx. And Jacqui Van der Leij - Greyling joins us as well, the global head of tax technology at eBay. They're going to share with you how Alteryx is helping eBay innovate with analytics. Ladies, welcome. It's great to have you both on the program. >> Thank you, Lisa. >> Thank you, Lisa. >> It's great to be here. >> Yeah, Paula. We're going to start with you. In this program, we've heard from Jason Klein, we've heard from Alan Jacobson, they talked about the need to democratize analytics across any organization to really drive innovation. With analytics as they talked about at the forefront of software investments, how's Alteryx helping its customers to develop roadmaps for success with analytics? >> Well, thank you, Lisa. It absolutely is about our customer's success. And we partner really closely with our customers to develop a holistic approach to their analytics success. And it starts, of course, with our innovative technology and platform but ultimately, we help our customers to create a culture of data literacy and analytics from the top of the organization, starting with the C-suite. And we partner with our customers to build their roadmaps for scaling that culture of analytics through things like enablement programs, skills assessments, hackathons, setting up centers of excellence to help their organizations scale and drive governance of this analytics capability across the enterprise. So at the end of the day, it's really about helping our customers to move up their analytics maturity curve with proven technologies and best practices so they can make better business decisions and compete in their respective industries. >> Excellent. Sounds like a very strategic program. We're going to unpack that. Jacqui let's bring you into the conversation. Speaking of analytics maturity, one of the things that we talked about in this event is the IDC report that showed that 93% of organizations are not utilizing the analytics skills of their employees, but then there's eBay. How, Jacqui, did eBay become one of the 7% of organizations who's really maturing and how are you using analytics across the organization at eBay? >> So I think the main thing for us is just when we started out was, is that, you know, our, especially in finance they became spreadsheet professionals, instead of the things that we really want our employees to add value to. And we realized we had to address that. And we also knew we couldn't wait for all our data to be centralized until we actually start using the data or start automating and be more effective. So ultimately, we really started very, very actively embedding analytics in our people and our data and our processes. >> Starting with people is really critical. Jacqui, continuing with you, what were some of the roadblocks to analytics adoption that you faced and how did you overcome them? >> So I think, you know, eBay is a very data driven company. We have a lot of data. I think we are 27 years around this year so we have the data, but it is everywhere. And how do you use that data? How do you use it efficiently? How do you get to the data? And I believe that that is definitely one of our biggest roadblocks when we started out and just finding those data sources and finding ways to connect to them to move forward. The other thing is, is that you know, people were experiencing a lot of frustration. I mentioned before about the spreadsheet professionals, right? And there was no, we're not independent. You couldn't move forward. You would've been dependent on somebody else's roadmap to get to data and to get the information you wanted. So really finding something that everybody could access analytics or access data. And finally, we have to realize is that this is uncharted territory. This is not exactly something that everybody is used to working with every day. So how do you find something that is easy and that is not so daunting on somebody who's brand new to the field? And I would call those out as your major roadblocks because you always have, not always, but most of the times you have support from the top in our case, we have, but in the end of the day, it's our people that need to actually really embrace it and making that accessible for them, I would say is definitely not per se, a roadblock but basically some, a block you want to be able to move. >> It's really all about putting people first. Question for both of you, and Paula will start with you, and then Jacqui will go to you. I think the message in this program that the audience is watching with us is very clear. Analytics is for everyone, should be for everyone. Let's talk now about how both of your organizations are empowering people those in the organization that may not have technical expertise to be able to leverage data so that they can actually be data driven? Paula? >> Yes. Well, we leverage our platform across all of our business functions here at Alteryx. And just like Jacqui explained at eBay finance is probably one of the best examples of how we leverage our own platform to improve our business performance. So just like Jacqui mentioned, we have this huge amount of data flowing through our enterprise and the opportunity to leverage that into insights and analytics is really endless. So our CFO, Kevin Rubin has been a key sponsor for using our own technology. We use Alteryx for forecasting, all of our key performance metrics for business planning across our audit function to help with compliance and regulatory requirements, tax and even to close our books at the end of each quarter so it's really remained across our business. And at the end of the day, it comes to how do you train users? How do you engage users to lean into this analytic opportunity to discover use cases. And so one of the other things that we've seen many companies do is to gamify that process to build a game that brings users into the experience for training and to work with each other, to problem solve, and along the way, maybe earn badges depending on the capabilities and trainings that they take. And just have a little healthy competition as an employee base around who can become more sophisticated in their analytic capability. So I think there's a lot of different ways to do it. And as Jacqui mentioned, it's really about ensuring that people feel comfortable, that they feel supported that they have access to the training that they need. And ultimately that they are given both the skills and the confidence to be able to be a part of this great opportunity of analytics. >> That confidence is key. Jacqui, talk about some of the ways that you're empowering folks without that technical expertise to really be data driven. >> Yeah, I think it means to what Paula has said in terms of you know, getting people excited about it but it's also understanding that this is a journey. And everybody is the different place in their journey. You have folks that's already really advanced who has done this every day, and then you have really some folks that this is brand new and, or maybe somewhere in between. And it's about how you could get everybody in their different phases to get to the initial destination. I say initially, because I believe the journey is never really complete. What we have done is that we decided to invest in a... We build a proof of concepts and we got our CFO to sponsor a hackathon. We opened it up to everybody in finance in the middle of the pandemic. So everybody was on Zoom. And we told people, "Listen, we're going to teach you this tool, super easy. And let's just see what you can do." We ended up having 70 entries. We had only three weeks. So, and these are people that has... They do not have a background. They are not engineers, they're not data scientists. And we ended up with a 25,000 hour savings at the end of that hackathon. From the 70 entries with people that have never, ever done anything like this before and there you had the result. And then it just went from there. It was people had a proof of concept, they knew that it worked, and they overcame that initial barrier of change. And that's where we are seeing things really, really picking up now. >> That's fantastic. And the business outcome that you mentioned there, the business impact is massive helping folks get that confidence to be able to overcome sometimes the cultural barriers is key here. I think another thing that this program has really highlighted is there is a clear demand for data literacy in the job market, regardless of organization. Can each of you share more about how you're empowering the next generation of data workers? Paula will start with you. >> Absolutely. And Jacqui says it so well, which is that it really is a journey that organizations are on. And we, as people in society are on in terms of upskilling our capabilities. So one of the things that we're doing here at Alteryx to help address this skillset gap on a global level is through a program that we call SparkED, which is essentially a no-cost analytics education program that we take to universities and colleges globally to help build the next generation of data workers. When we talk to our customers like eBay, and many others, they say that it's difficult to find the skills that they want when they're hiring people into the job market. And so this program's really developed to do just that, to close that gap and to work hand in hand with students and educators to improve data literacy for the next generation. So we're just getting started with SparkED, we started last May, but we currently have over 850 educational institutions globally engaged across 47 countries. And we're going to continue to invest here because there's so much opportunity for people, for society and for enterprises, when we close gap and empower more people with the necessary analytics skills to solve all the problems that data can help solve. >> So SparkED just made a really big impact in such a short time period. It's going to be fun to watch the progress of that. Jacqui let's go over to you now. Talk about some of the things that eBay is doing to empower the next generation of data workers. >> So we basically wanted to make sure that we kicked that momentum from the hackathon. Like we don't lose that excitement, right? So we just launched a program called eBay Masterminds. And what it basically is, it's an inclusive innovation initiative, where we firmly believe that innovation is for upscaling for all analytics role. So it doesn't matter your background, doesn't matter which function you are in, come and participate in this, where we really focus on innovation, introducing new technologies and upscaling our people. We are... Apart from that, we also said... Well, we should just keep it to inside eBay. We have to share this innovation with the community. So we are actually working on developing an analytics high school program, which we hope to pilot by the end of this year, where we will actually have high schoolers come in and teach them data essentials, the soft skills around analytics, but also how to use alter Alteryx. And we're working with actually, we're working with SparkED and they're helping us develop that program. And we really hope that, let us say, by the end of the year have a pilot and then also next, was hoping to roll it out in multiple locations, in multiple countries, and really, really focus on that whole concept of analytics role. >> Analytics role, sounds like Alteryx and eBay have a great synergistic relationship there, that is jointly aimed at, especially, kind of, going down the stuff and getting people when they're younger interested and understanding how they can be empowered with data across any industry. Paula let's go back to you. You were recently on The Cube's Supercloud event just a couple of weeks ago. And you talked about the challenges the companies are facing as they're navigating what is by default a multi-cloud world? How does the Alteryx Analytics Cloud platform enable CIOs to democratize analytics across their organization? >> Yes, business leaders and CIOs across all industries are realizing that there just aren't enough data scientists in the world to be able to make sense of the massive amounts of data that are flowing through organizations. Last, I check there was 2 million data scientists in the world. So that's woefully underrepresented in terms of the opportunity for people to be a part of the analytics solution. (Paula clears throat) So what we're seeing now with CIOs, with business leaders is that they're integrating data analysis and the skillset of data analysis into virtually every job function. And that is what we think of when we think of analytics for all. And so our mission with Alteryx Analytics Cloud, is to empower all of those people in every job function regardless of their skillset. As Jacqui pointed out from people that would, you know are just getting started all the way to the most sophisticated of technical users. Every worker across that spectrum can have a meaningful role in the opportunity to unlock the potential of the data for their company and their organizations. So that's our goal with Alteryx Analytics Cloud and it operates in a multi-cloud world and really helps across all sizes of data sets to blend, cleanse, shape, analyze and report out so that we can break down data silos across the enterprise and help drive real business outcomes as a result of unlocking the potential of data. >> As well as really lessening that skills gap as you were saying, there's only 2 million data scientists. You don't need to be a data scientist. That's the beauty of what Alteryx is enabling and eBay is a great example of that. Jacqui let's go ahead and wrap things with you. You talked a great deal about the analytics maturity that you have fostered at eBay. It obviously has the right culture to adapt to that. Can you talk a little bit and take us out here in terms of where Alteryx fits in as that analytics maturity journey continues. And what are some of the things that you are most excited about as analytics truly gets democratized across eBay? >> When we started about getting excited about things when it comes to analytics, I can go on all day but I'll keep it short and sweet for you. I do think we are on the topic full of data scientists. And I really feel that that is your next step, for us anyways, it's just that, how do we get folks to not see data scientists as this big thing, like a rocket scientist, it's something completely different. And it's something that is in everybody in a certain extent. So again, partnering with Alteryx would just release the AI/ML solution, allowing, you know, folks to not have a data scientist program but actually build models and be able to solve problems that way. So we have engaged with Alteryx and we purchased the licenses quite a few. And right now, through our mastermind program we're actually running a four-months program for all skill levels. Teaching them AI/ML and machine learning and how they can build their own models. We are really excited about that. We have over 50 participants without the background from all over the organization. We have members from our customer services, we have even some of our engineers, are actually participating in the program. We just kicked it off. And I really believe that that is our next step. I want to give you a quick example of the beauty of this is where we actually just allow people to go out and think about ideas and come up with things. And one of the people in our team who doesn't have a data scientist background at all was able to develop a solution where, you know, there is a checkout feedback, checkout functionality on the eBay site, where sellers or buyers can verbatim add information. And she build a model to be able to determine what relates to tax specific, what is the type of problem, and even predict how that problem can be solved before we, as a human even step in. And now instead of us or somebody going to the bay to try to figure out what's going on there, we can focus on fixing the error versus actually just reading through things and not adding any value. And it's a beautiful tool, and I'm very impressed when you saw the demo and they've been developing that further. >> That sounds fantastic. And I think just the one word that keeps coming to mind and we've said this a number of times in the program today is, empowerment. What you're actually really doing to truly empower people across the organization with varying degrees of skill level going down to the high school level, really exciting. We'll have to stay tuned to see what some of the great things are that come from this continued partnership. Ladies, I want to thank you so much for joining me on the program today and talking about how Alteryx and eBay are really partnering together to democratize analytics and to facilitate its maturity. It's been great talking to you >> Thank you, Lisa. >> Thank you so much. (light upbeat music) >> As you heard over the course of our program, organizations where more people are using analytics who have deeper capabilities in each of the four E's that's, everyone, everything, everywhere and easy analytics. Those organizations achieve more ROI from their respective investments in analytics and automation than those who don't. We also heard a great story from eBay, great example of an enterprise that is truly democratizing analytics across its organization. It's enabling an empowering line of business users to use analytics. Not only focused on key aspects of their job, but develop new skills rather than doing the same repetitive tasks. We want to thank you so much for watching the program today. Remember you can find all of the content on thecube.net. You can find all of the news from today on siliconangle.com, and of course alteryx.com. We also want to thank Alteryx for making this program possible and for sponsoring The Cube. For all of my guests, I'm Lisa Martin. We want to thank you for watching and bye for now. (light upbeat music)
SUMMARY :
the global head of tax technology at eBay. going to start with you. So at the end of the day, one of the things that we talked about instead of the things that that you faced and how but most of the times you that the audience is watching and the confidence to be able to be a part Jacqui, talk about some of the ways And everybody is the different get that confidence to be able to overcome that it's difficult to find Jacqui let's go over to you now. that momentum from the hackathon. And you talked about the in the opportunity to unlock and eBay is a great example of that. example of the beauty of this is It's been great talking to you Thank you so much. in each of the four E's
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jacqui | PERSON | 0.99+ |
Paula | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Jason Klein | PERSON | 0.99+ |
eBay | ORGANIZATION | 0.99+ |
Kevin Rubin | PERSON | 0.99+ |
Alteryx | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Paula Hansen | PERSON | 0.99+ |
Alan Jacobson | PERSON | 0.99+ |
70 entries | QUANTITY | 0.99+ |
Jacqui Van der Leij - Greyling | PERSON | 0.99+ |
25,000 hour | QUANTITY | 0.99+ |
four-months | QUANTITY | 0.99+ |
last May | DATE | 0.99+ |
today | DATE | 0.99+ |
27 years | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
93% | QUANTITY | 0.99+ |
two guests | QUANTITY | 0.99+ |
IDC | ORGANIZATION | 0.99+ |
over 50 participants | QUANTITY | 0.99+ |
Jacqui van der Leij Greyling | PERSON | 0.99+ |
one | QUANTITY | 0.98+ |
siliconangle.com | OTHER | 0.98+ |
each | QUANTITY | 0.98+ |
2 million data scientists | QUANTITY | 0.98+ |
over 850 educational institutions | QUANTITY | 0.97+ |
47 countries | QUANTITY | 0.97+ |
7% | QUANTITY | 0.97+ |
thecube.net | OTHER | 0.97+ |
Supercloud | EVENT | 0.95+ |
three weeks | QUANTITY | 0.95+ |
end of this year | DATE | 0.93+ |
Paula Hansen Jacqui van der Leij Greyling Alteryx
>>Hey everyone. Welcome back to the program. Lisa Martin here, I've got two guests joining me, please. Welcome back to the cube. Paula Hansen, the chief revenue officer and president at Al alters and Jackie Vander lake grayling joins us as well. The global head of tax technology at eBay. They're gonna share with you how an alter Ricks is helping eBay innovate with analytics. Ladies. Welcome. It's great to have you both on the program. >>Thank you, Lisa. It's great to be here. >>Yeah, Paula, we're gonna start with you in this program. We've heard from Jason Klein, we've heard from Alan Jacobson, they talked about the need to democratize analytics across any organization to really drive innovation with analytics. As they talked about at the forefront of software investments, how's alters helping its customers to develop roadmaps for success with analytics. >>Well, thank you, Lisa. It absolutely is about our customer's success. And we partner really closely with our customers to develop a holistic approach to their analytics success. And it starts of course, with our innovative technology and platform, but ultimately we help our customers to create a culture of data literacy and analytics from the top of the organization, starting with the C-suite. And we partner with our customers to build their roadmaps for scaling that culture of analytics through things like enablement programs, skills, assessments, hackathons, setting up centers of excellence to help their organizations scale and drive governance of this analytics capability across the enterprise. So at the end of the day, it's really about helping our customers to move up their analytics, maturity curve with proven technologies and best practices so they can make better business decisions and compete in their respective industries. >>Excellent. Sounds like a very strategic program. We're gonna unpack that Jackie, let's bring you into the conversation. Speaking of analytics maturity, one of the things that we talked about in this event is the IDC report that showed that 93% of organizations are not utilizing the analytics skills of their employees, but then there's eBay. How Jackie did eBay become one of the 7% of organizations who's really maturing and how are you using analytics across the organization at eBay? >>So I think the main thing for us is just when we started out was is that, you know, our, especially in finance, they became spreadsheet professionals instead of the things that we really want our employees to add value to. And we realized we had to address that. And we also knew we couldn't wait for all our data to be centralized until we actually start using the data or start automating and be more effective. So ultimately we really started very, very actively embedding analytics in our people and our data and our processes, >>Starting with people is really critical. Jackie, continuing with you, what were some of the roadblocks to analytics adoption that you faced and how did you overcome them? >>So I think, you know, eBay is a very data driven company. We have a lot of data. I think we are 27 years around this year, so we have the data, but it is everywhere. And how do you use that data? How do you use it efficiently? How do you get to the data? And I believe that that is definitely one of our biggest roadblocks when we started out and, and just finding those data sources and finding ways to connect to them to move forward. The other thing is, is that, you know, people were experiencing a lot of frustration. I mentioned before about the spreadsheet professionals, right? And we, there was no, we're not independent. You couldn't move forward. You would've opinion on somebody else's roadmap to get to data and to get the information you wanted. So really finding something that everybody could access analytics or access data. >>And finally we have to realize is that this is uncharted territory. This is not exactly something that everybody is used to working with every day. So how do you find something that is easy? And that is not so daunting on somebody who's brand new to the field. And I would, I would call those out as your, as your major roadblocks, because you always have not always, but most of the times you have support from the top in our case, we have, but in the end of the day, it's, it's our people that need to actually really embrace it and, and making that accessible for them, I would say is definitely not per se, a roadblock, but basically some, a block you wanna be able to move. >>It's really all about putting people. First question for both of you and Paula will start with you. And then Jackie will go to you. I think the message in this program that the audience is watching with us is very clear. Analytics is for everyone should be for everyone. Let's talk now about how both of your organizations are empowering people, those in the organization that may not have technical expertise to be able to leverage data so that they can actually be data driven Paula. >>Yes. Well, we leverage our platform across all of our business functions here at Altrix and just like Jackie explained it, eBay finances is probably one of the best examples of how we leverage our own platform to improve our business performance. So just like Jackie mentioned, we have this huge amount of data flowing through our enterprise and the opportunity to leverage that into insights and analytics is really endless. So our CFO, Kevin Rubin has been a, a key sponsor for using our own technology. We use Altrix for forecasting, all of our key performance metrics for business planning across our audit function, to help with compliance and regulatory requirements tax, and even to close our books at the end of each quarter. So it's really remain across our business. And at the end of the day, it comes to how do you train users? How do you engage users to lean into this analytic opportunity to discover use cases? >>And so one of the other things that we've seen many companies do is to gamify that process, to build a game that brings users into the experience for training and to work with each other, to problem solve and along the way, maybe earn badges depending on the capabilities and trainings that they take. And just have a little healthy competition as an employee base around who can become more sophisticated in their analytic capability. So I think there's a lot of different ways to do it. And as Jackie mentioned, it's really about ensuring that people feel comfortable, that they feel supported, that they have access to the training that they need. And ultimately that they are given both the skills and the confidence to be able to be a part of this great opportunity of analytics. >>That confidence is key. Jackie, talk about some of the ways that you're empowering folks without that technical expertise to really be data driven. >>Yeah, I think it means to what Paula has said in terms of, you know, you know, getting people excited about it, but it's also understanding that this is a journey and everybody's the different place in their journey. You have folks that's already really advanced who has done this every day. And then you have really some folks that this is brand new and, or maybe somewhere in between. And it's about how you put, get everybody in their different phases to get to the, the initial destination. I say initially, because I believe the journey is never really complete. What we have done is, is that we decided to invest in an Ebola group of concept. And we got our CFO to sponsor a hackathon. We opened it up to everybody in finance, in the middle of the pandemic. So everybody was on zoom and we had, and we told people, listen, we're gonna teach you this tool super easy. >>And let's just see what you can do. We ended up having 70 entries. We had only three weeks. So, and these are people that has N that do not have a background. They are not engineers, they're not data scientists. And we ended up with a 25,000 hour savings at the end of that hackathon from the 70 inches with people that have never, ever done anything like this before and there you had the result. And then it just went from there. It was, people had a proof of concept. They, they knew that it worked and they overcame the initial barrier of change. And that's where we are seeing things really, really picking up. Now >>That's fantastic. And the, the business outcome that you mentioned there, the business impact is massive helping folks get that confidence to be able to overcome. Sometimes the, the cultural barriers is key. I think another thing that this program has really highlighted is there is a clear demand for data literacy in the job market, regardless of organization. Can each of you share more about how you are empowering the next generation of data workers, Paula will start with you? >>Absolutely. And, and Jackie says it so well, which is that it really is a journey that organizations are on. And, and we, as people in society are on in terms of upskilling our capabilities. So one of the things that we're doing here at Altrix to help address this skillset gap on a global level is through a program that we call sparked, which is essentially a, no-cost a no cost analytics education program that we take to universities and colleges globally to help build the next generation of data workers. When we talk to our customers like eBay and many others, they say that it's difficult to find the skills that they want when they're hiring people into the job market. And so this program's really developed just to, to do just that, to close that gap and to work hand in hand with students and educators to improve data literacy for the next generation. So we're just getting started with sparked. We started last may, but we currently have over 850 educational institutions globally engaged across 47 countries. And we're gonna continue to invest here because there's so much opportunity for people, for society and for enterprises, when we close gap and empower more people within necessary analytics skills to solve all the problems that data can help solve. >>So spark has made a really big impact in such a short time period. And it's gonna be fun to watch the progress of that. Jackie, let's go over to you now talk about some of the things that eBay is doing to empower the next generation of data workers. >>So we basically wanted to make sure that we keep that momentum from the hackathon that we don't lose that excitement, right? So we just launched a program called Ebo masterminds. And what it basically is, it's an inclusive innovation initiative where we firmly believe that innovation is all up scaling for all analytics for. So it doesn't matter. Your background doesn't matter which function you are in, come and participate in, in this where we really focus on innovation, introducing new technologies and upskilling our people. We are apart from that, we also say, well, we should just keep it to inside eBay. We, we have to share this innovation with the community. So we are actually working on developing an analytics high school program, which we hope to pilot by the end of this year, where we will actually have high schoolers come in and teach them data essentials, the soft skills around analytics, but also how to use alter alter. And we're working with actually, we're working with spark and they're helping us develop that program. And we really hope that as a say, by the end of the year, have a pilot and then also make you, so we roll it out in multiple locations in multiple countries and really, really focus on, on that whole concept of analytics, role >>Analytics for all sounds like ultra and eBay have a great synergistic relationship there that is jointly aimed at, especially kind of going down the staff and getting people when they're younger, interested, and understanding how they can be empowered with data across any industry. Paula, let's go back to you. You were recently on the Cube's super cloud event just a couple of weeks ago. And you talked about the challenges the companies are facing as they're navigating. What is by default a multi-cloud world? How does the alters analytics cloud platform enable CIOs to democratize analytics across their organization? >>Yes, business leaders and CIOs across all industries are realizing that there just aren't enough data scientists in the world to be able to make sense of the massive amounts of data that are flowing through organizations. Last I check there was 2 million data scientists in the world. So that's woefully underrepresented in terms of the opportunity for people to be a part of the analytics solution. So what we're seeing now with CIOs with business leaders is that they're integrating data analysis and the skill of data analysis into virtually every job function. And that is what we think of when we think of analytics for all. And so our mission with Altrics analytics cloud is to empower all of those people in every job function, regardless of their skillset. As Jackie pointed out from people that would, you know, are just getting started all the way to the most sophisticated of technical users. Every worker across that spectrum can have a meaningful role in the opportunity to unlock the potential of the data for their company and their organizations. So that's our goal with Altrics analytics cloud, and it operates in a multi cloud world and really helps across all sizes of data sets to blend, cleanse, shape, analyze, and report out so that we can break down data silos across the enterprise and drive real business outcomes. As a result of unlocking the potential of data, >>As well as really re lessening that skill gap. As you were saying, there's only 2 million data scientists. You don't need to be a data scientist. That's the, the beauty of what Altrics is enabling. And, and eBay is a great example of that. Jackie, let's go ahead and wrap things with you. You talked a great deal about the analytics maturity that you have fostered at eBay. It obviously has the right culture to adapt to that. Can you talk a little bit and take us out here in terms of where alters fits in on as that analytics maturity journey continues and what are some of the things that you are most excited about as analytics truly gets democratized across eBay? >>When we start about getting excited about things, when it comes to analytics, I can go on all day, but I I'll keep it short and sweet for you. I do think we are on the topic full of, of, of data scientists. And I really feel that that is your next step for us anyways, is that, how do we get folks to not see data scientists as this big thing, like a rocket scientist, it's, it's something completely different. And it's something that, that is in everybody to a certain extent. So again, partner with three X would just released the AI ML solution, allowing, you know, folks to not have a data scientist program, but actually build models and be able to solve problems that way. So we have engaged with alters and we, we purchased a license, this quite a few. And right now through our mastermind program, we're actually running a four months program for all skill levels, teaching, teaching them AI ML and machine learning and how they can build their own models. >>We are really excited about that. We have over 50 participants without the background from all over the organization. We have members from our customer services. We have even some of our engineers are actually participating in the program. We just kicked it off. And I really believe that that is our next step. I wanna give you a quick example of, of the beauty of this is where we actually just allow people to go out and think about ideas and come up with things. And one of the people in our team who doesn't have a data scientist background at all, was able to develop a solution where, you know, there is a checkout feedback checkout functionality on the eBay site where sellers or buyers can verbatim add information. And she build a model to be able to determine what relates to tax specific, what is the type of problem, and even predict how that problem can be solved before we, as a human even step in, and now instead of us or somebody going to verbatim and try to figure out what's going on there, we can focus on fixing the error versus actually just reading through things and not adding any value. >>And it's a beautiful tool and very impressed. You saw the demo and they developing that further. >>That sounds fantastic. And I think just the one word that keeps coming to mind, and we've said this a number of times in the program today is empowerment. What you're actually really doing to truly empower people across the organization with, with varying degrees of skill level, going down to the high school level, really exciting, we'll have to stay tuned to see what some of the great things are that come from this continued partnership. Ladies, I wanna thank you so much for joining me on the program today and talking about how alters and eBay are really partnering together to democratize analytics and to facilitate its maturity. It's been great talking to you. >>Thank you. >>As you heard over the course of our program organizations, where more people are using analytics who have the deeper capabilities in each of the four E's, that's, everyone, everything everywhere and easy analytics, those organizations achieve more ROI from their respective investments in analytics and automation than those who don't. We also heard a great story from eBay, great example of an enterprise that is truly democratizing analytics across its organization. It's enabling an empowering line of business users to use analytics, not only focused on key aspects of their job, but develop new skills rather than doing the same repetitive tasks. We wanna thank you so much for watching the program today. Remember you can find all of the content on the cue.net. You can find all of the news from today on Silicon angle.com and of course, alter.com. We also wanna thank alt alters for making this program possible and for sponsored in the queue for all of my guests. I'm Lisa Martin. We wanna thank you for watching and bye for now.
SUMMARY :
It's great to have you both on the program. Yeah, Paula, we're gonna start with you in this program. end of the day, it's really about helping our customers to move up their analytics, Speaking of analytics maturity, one of the things that we talked about in this event is the IDC instead of the things that we really want our employees to add value to. adoption that you faced and how did you overcome them? data and to get the information you wanted. And finally we have to realize is that this is uncharted territory. those in the organization that may not have technical expertise to be able to leverage data it comes to how do you train users? that people feel comfortable, that they feel supported, that they have access to the training that they need. expertise to really be data driven. And then you have really some folks that this is brand new and, And we ended up with a 25,000 folks get that confidence to be able to overcome. and colleges globally to help build the next generation of data workers. Jackie, let's go over to you now talk about some of the things that eBay is doing to empower And we really hope that as a say, by the end of the year, And you talked about the challenges the companies are facing as in terms of the opportunity for people to be a part of the analytics solution. It obviously has the right culture to adapt to that. And it's something that, that is in everybody to a certain extent. And she build a model to be able to determine what relates to tax specific, You saw the demo and they developing that skill level, going down to the high school level, really exciting, we'll have to stay tuned to see what some of We wanna thank you so much for watching the program today.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Paula | PERSON | 0.99+ |
Jason Klein | PERSON | 0.99+ |
Kevin Rubin | PERSON | 0.99+ |
eBay | ORGANIZATION | 0.99+ |
Paula Hansen | PERSON | 0.99+ |
Jackie | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Altrix | ORGANIZATION | 0.99+ |
Alan Jacobson | PERSON | 0.99+ |
25,000 hour | QUANTITY | 0.99+ |
70 entries | QUANTITY | 0.99+ |
Al alters | ORGANIZATION | 0.99+ |
27 years | QUANTITY | 0.99+ |
93% | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
70 inches | QUANTITY | 0.99+ |
First question | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
four months | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
over 50 participants | QUANTITY | 0.99+ |
two guests | QUANTITY | 0.99+ |
IDC | ORGANIZATION | 0.98+ |
2 million data scientists | QUANTITY | 0.97+ |
47 countries | QUANTITY | 0.97+ |
7% | QUANTITY | 0.97+ |
this year | DATE | 0.97+ |
over 850 educational institutions | QUANTITY | 0.97+ |
each | QUANTITY | 0.96+ |
three weeks | QUANTITY | 0.95+ |
each quarter | QUANTITY | 0.95+ |
Altrics analytics | ORGANIZATION | 0.95+ |
three X | ORGANIZATION | 0.94+ |
Jackie Vander | PERSON | 0.93+ |
couple of weeks ago | DATE | 0.93+ |
alter Ricks | ORGANIZATION | 0.93+ |
Altrics analytics | ORGANIZATION | 0.93+ |
pandemic | EVENT | 0.92+ |
last may | DATE | 0.91+ |
Altrics | ORGANIZATION | 0.89+ |
one word | QUANTITY | 0.89+ |
Jacqui van der Leij Greyling Alteryx | PERSON | 0.86+ |
end of this year | DATE | 0.81+ |
ultra | ORGANIZATION | 0.76+ |
four E's | QUANTITY | 0.73+ |
cue.net | ORGANIZATION | 0.73+ |
end | DATE | 0.71+ |
Silicon angle.com | OTHER | 0.64+ |
Alteryx Democratizing Analytics Across the Enterprise Full Episode V1b
>> It's no surprise that 73% of organizations indicate analytics spend will outpace other software investments in the next 12 to 18 months. After all as we know, data is changing the world and the world is changing with it. But is everyone's spending resulting in the same ROI? This is Lisa Martin. Welcome to "theCUBE"'s presentation of democratizing analytics across the enterprise, made possible by Alteryx. An Alteryx commissioned IDC info brief entitled, "Four Ways to Unlock Transformative Business Outcomes from Analytics Investments" found that 93% of organizations are not utilizing the analytics skills of their employees, which is creating a widening analytics gap. On this special "CUBE" presentation, Jason Klein, product marketing director of Alteryx, will join me to share key findings from the new Alteryx commissioned IDC brief and uncover how enterprises can derive more value from their data. In our second segment, we'll hear from Alan Jacobson, chief data and analytics officer at Alteryx. He's going to discuss how organizations across all industries can accelerate their analytic maturity to drive transformational business outcomes. And then in our final segment, Paula Hansen, who is the president and chief revenue officer of Alteryx, and Jacqui Van der Leij Greyling, who is the global head of tax technology at eBay, they'll join me. They're going to share how Alteryx is helping the global eCommerce company innovate with analytics. Let's get the show started. (upbeat music) Jason Klein joins me next, product marketing director at Alteryx. Jason, welcome to the program. >> Hello, nice to be here. >> Excited to talk with you. What can you tell me about the new Alteryx IDC research, which spoke with about 1500 leaders, what nuggets were in there? >> Well, as the business landscape changes over the next 12 to 18 months, we're going to see that analytics is going to be a key component to navigating this change. 73% of the orgs indicated that analytics spend will outpace other software investments. But just putting more money towards technology, it isn't going to solve everything. And this is why everyone's spending is resulting in different ROIs. And one of the reasons for this gap is because 93% of organizations, they're still not fully using the analytics skills of their employees, and this widening analytics gap, it's threatening operational progress by wasting workers' time, harming business productivity and introducing costly errors. So in this research, we developed a framework of enterprise analytics proficiency that helps organizations reap greater benefits from their investments. And we based this framework on the behaviors of organizations that saw big improvements across financial, customer, and employee metrics, and we're able to focus on the behaviors driving higher ROI. >> So the info brief also revealed that nearly all organizations are planning to increase their analytics spend. And it looks like from the info brief that nearly three quarters plan on spending more on analytics than any other software. And can you unpack, what's driving this demand, this need for analytics across organizations? >> Sure, well first there's more data than ever before, the data's changing the world, and the world is changing data. Enterprises across the world, they're accelerating digital transformation to capitalize on new opportunities, to grow revenue, to increase margins and to improve customer experiences. And analytics along with automation and AI is what's making digital transformation possible. They're providing the fuel to new digitally enabled lines of business. >> One of the things that the study also showed was that not all analytics spending is resulting in the same ROI. What are some of the discrepancies that the info brief uncovered with respect to the changes in ROI that organizations are achieving? >> Our research with IDC revealed significant roadblocks across people, processes, and technologies. They're preventing companies from reaping greater benefits from their investments. So for example, on the people side, only one out of five organizations reported a commensurate investment in upskilling for analytics and data literacy as compared to the technology itself. And next, while data is everywhere, most organizations, 63% from our survey, are still not using the full breadth of data types available. Yet data's never been this prolific, it's going to continue to grow, and orgs should be using it to their advantage. And lastly organizations, they need to provide the right analytics tools to help everyone unlock the power of data. >> So they- >> They instead rely on outdated spreadsheet technology. In our survey, nine out of 10 respondents said less than half of their knowledge workers are active users of analytics software beyond spreadsheets. But true analytic transformation can't happen for an organization in a few select pockets or silos. We believe everyone regardless of skill level should be able to participate in the data and analytics process and be driving value. >> Should we retake that, since I started talking over Jason accidentally? >> Yep, absolutely we can do so. We'll just go, yep, we'll go back to Lisa's question. Let's just, let's do the, retake the question and the answer, that'll be able to. >> It'll be not all analytics spending results in the same ROI, what are some of the discrepancies? >> Yes, Lisa, so we'll go from your ISO, just so we get that clean question and answer. >> Okay. >> Thank you for that. On your ISO, we're still speeding, Lisa, so give it a beat in your head and then on you. >> Yet not all analytics spending is resulting in the same ROI. So what are some of the discrepancies that the info brief uncovered with respect to ROI? >> Well, our research with IDC revealed significant roadblocks across people, processes, and technologies, all preventing companies from reaping greater benefits from their investments. So on the people side, for example, only one out of five organizations reported a commensurate investment in upskilling for analytics and data literacy as compared to the technology itself. And next, while data is everywhere, most organizations, 63% in our survey, are still not using the full breadth of data types available. Data has never been this prolific. It's going to continue to grow and orgs should be using it to their advantage. And lastly, organizations, they need to provide the right analytic tools to help everyone unlock the power of data, yet instead they're relying on outdated spreadsheet technology. Nine of 10 survey respondents said that less than half of their knowledge workers are active users of analytics software. True analytics transformation can't happen for an organization in a few select pockets or silos. We believe everyone regardless of skill level should be able to participate in the data and analytics process and drive value. >> So if I look at this holistically, then what would you say organizations need to do to make sure that they're really deriving value from their investments in analytics? >> Yeah, sure. So overall, the enterprises that derive more value from their data and analytics and achieve more ROI, they invested more aggressively in the four dimensions of enterprise analytics proficiency. So they've invested in the comprehensiveness of analytics across all data sources and data types, meaning they're applying analytics to everything. They've invested in the flexibility of analytics across deployment scenarios and departments, meaning they're putting analytics everywhere. They've invested in the ubiquity of analytics and insights for every skill level, meaning they're making analytics for everyone. And they've invested in the usability of analytics software, meaning they're prioritizing easy technology to accelerate analytics democratization. >> So very strategic investments. Did the survey uncover any specific areas where most companies are falling short, like any black holes that organizations need to be aware of at the outset? >> It did, it did. So organizations, they need to build a data-centric culture. And this begins with people. But what the survey told us is that the people aspect of analytics is the most heavily skewed towards low proficiency. In order to maximize ROI, organizations need to make sure everyone in the organization has access to the data and analytics technology they need. And then the organizations also have to align their investments with upskilling in data literacy to enjoy that higher ROI. Companies who did so experience higher ROI than companies who underinvested in analytics literacy. So among the high ROI achievers, 78% have a good or great alignment between analytics investment and workforce upskilling compared to only 64% among those without positive ROI. And as more orgs adopt cloud data warehouses or cloud data lakes, in order to manage the massively increasing workloads- Can I start that one over. >> Sure. >> Can I redo this one? >> Yeah. >> Of course, stand by. >> Tongue tied. >> Yep, no worries. >> One second. >> If we could do the same, Lisa, just have a clean break, we'll go your question. >> Yep, yeah. >> On you Lisa. Just give that a count and whenever you're ready. Here, I'm going to give us a little break. On you Lisa. >> So are there any specific areas that the survey uncovered where most companies are falling short? Like any black holes organizations need to be aware of from the outset? >> It did. You need to build a data-centric culture and this begins with people, but we found that the people aspect of analytics is most heavily skewed towards low proficiency. In order to maximize ROI organizations need to make sure everyone has access to the data and analytics technology they need. Organizations that align their analytics investments with upskilling enjoy higher ROI than orgs that are less aligned. For example, among the high ROI achievers in our survey, 78% had good or great alignment between analytics investments and workforce upskilling, compared to only 64% among those without positive ROI. And as more enterprises adopt cloud data warehouses or cloud data lakes to manage increasingly massive data sets, analytics needs to exist everywhere, especially for those cloud environments. And what we found is organizations that use more data types and more data sources generate higher ROI from their analytics investments. Among those with improved customer metrics, 90% were good or great at utilizing all data sources, compared to only 67% among the ROI laggards. >> So interesting that you mentioned people, I'm glad that you mentioned people. Data scientists, everybody talks about data scientists. They're in high demand, we know that, but there aren't enough to meet the needs of all enterprises. So given that discrepancy, how can organizations fill the gap and really maximize the investments that they're making in analytics? >> Right, so analytics democratization, it's no longer optional, but it doesn't have to be complex. So we at Alteryx, we're democratizing analytics by empowering every organization to upskill every worker into a data worker. And the data from this survey shows this is the optimal approach. Organizations with a higher percentage of knowledge workers who are actively using analytics software enjoy higher returns from their analytics investment than orgs still stuck on spreadsheets. Among those with improved financial metrics, AKA the high ROI achievers, nearly 70% say that at least a quarter of their knowledge workers are using analytics software other than spreadsheets compared to only 56% in the low ROI group. Also among the high ROI performers, 63% said data and analytic workers collaborate well or extremely well compared to only 51% in the low ROI group. The data from the survey shows that supporting more business domains with analytics and providing cross-functional analytics correlates with higher ROI. So to maximize ROI, orgs should be transitioning workers from spreadsheets to analytics software. They should be letting them collaborate effectively and letting them do so cross-functionally. >> Yeah, that cross-functional collaboration is essential for anyone in any organization and in any discipline. Another key thing that jumped out from the survey was around shadow IT. The business side is using more data science tools than the IT side. And it's expected to spend more on analytics than other IT. What risks does this present to the overall organization, if IT and the lines of business guys and gals aren't really aligned? >> Well, there needs to be better collaboration and alignment between IT and the line of business. The data from the survey, however, shows that business managers, they're expected to spend more on analytics and use more analytics tools than IT is aware of. And this isn't because the lines of business have recognized the value of analytics and plan to invest accordingly, but a lack of alignment between IT and business. This will negatively impact governance, which ultimately impedes democratization and hence ROI. >> So Jason, where can organizations that are maybe at the outset of their analytics journey, or maybe they're in environments where there's multiple analytics tools across shadow IT, where can they go to Alteryx to learn more about how they can really simplify, streamline, and dial up the value on their investment? >> Well, they can learn more on our website. I also encourage them to explore the Alteryx community, which has lots of best practices, not just in terms of how you do the analytics, but how you stand up in Alteryx environment, but also to take a look at your analytics stack and prioritize technologies that can snap to and enhance your organization's governance posture. It doesn't have to change it, but it should be able to align to and enhance it. >> And of course, as you mentioned, it's about people, process, and technologies. Jason, thank you so much for joining me today, unpacking the IDC info brief and the great nuggets in there. Lots that organizations can learn and really become empowered to maximize their analytics investments. We appreciate your time. >> Thank you, it's been a pleasure. >> In a moment, Alan Jacobson, who's the chief data and analytics officer at Alteryx is going to join me. He's going to be here to talk about how organizations across all industries can accelerate their analytic maturity to drive transformational business outcomes. You're watching "theCUBE", the leader in tech enterprise coverage. >> Somehow many have come to believe that data analytics is for the few, for the scientists, the PhDs, the MBAs. Well, it is for them, but that's not all. You don't have to have an advanced degree to do amazing things with data. You don't even have to be a numbers person. You can be just about anything. A titan of industry or a future titan of industry. You could be working to change the world, your neighborhood, or the course of your business. You can be saving lives or just looking to save a little time. The power of data analytics shouldn't be limited to certain job titles or industries or organizations because when more people are doing more things with data, more incredible things happen. Analytics makes us smarter and faster and better at what we do. It's practically a superpower. That's why we believe analytics is for everyone, and everything, and should be everywhere. That's why we believe in analytics for all. (upbeat music) >> Hey, everyone. Welcome back to "Accelerating Analytics Maturity". I'm your host, Lisa Martin. Alan Jacobson joins me next. The chief of data and analytics officer at Alteryx. Alan, it's great to have you on the program. >> Thanks, Lisa. >> So Alan, as we know, everyone knows that being data driven is very important. It's a household term these days, but 93% of organizations are not utilizing the analytics skills of their employees, which is creating a widening analytics gap. What's your advice, your recommendations for organizations who are just starting out with analytics? >> You're spot on, many organizations really aren't leveraging the full capability of their knowledge workers. And really the first step is probably assessing where you are on the journey, whether that's you personally, or your organization as a whole. We just launched an assessment tool on our website that we built with the International Institute of Analytics, that in a very short period of time, in about 15 minutes, you can go on and answer some questions and understand where you sit versus your peer set versus competitors and kind of where you are on the journey. >> So when people talk about data analytics, they often think, ah, this is for data science experts like people like you. So why should people in the lines of business like the finance folks, the marketing folks, why should they learn analytics? >> So domain experts are really in the best position. They know where the gold is buried in their companies. They know where the inefficiencies are. And it is so much easier and faster to teach a domain expert a bit about how to automate a process or how to use analytics than it is to take a data scientist and try to teach them to have the knowledge of a 20 year accounting professional or a logistics expert of your company. Much harder to do that. And really, if you think about it, the world has changed dramatically in a very short period of time. If you were a marketing professional 30 years ago, you likely didn't need to know anything about the internet, but today, do you know what you would call that marketing professional if they didn't know anything about the internet, probably unemployed or retired. And so knowledge workers are having to learn more and more skills to really keep up with their professions. And analytics is really no exception. Pretty much in every profession, people are needing to learn analytics to stay current and be capable for their companies. And companies need people who can do that. >> Absolutely, it seems like it's table stakes these days. Let's look at different industries now. Are there differences in how you see analytics in automation being employed in different industries? I know Alteryx is being used across a lot of different types of organizations from government to retail. I also see you're now with some of the leading sports teams. Any differences in industries? >> Yeah, there's an incredible actually commonality between the domains industry to industry. So if you look at what an HR professional is doing, maybe attrition analysis, it's probably quite similar, whether they're in oil and gas or in a high tech software company. And so really the similarities are much larger than you might think. And even on the sports front, we see many of the analytics that sports teams perform are very similar. So McLaren is one of the great partners that we work with and they use Alteryx across many areas of their business from finance to production, extreme sports, logistics, wind tunnel engineering, the marketing team analyzes social media data, all using Alteryx, and if I take as an example, the finance team, the finance team is trying to optimize the budget to make sure that they can hit the very stringent targets that F1 Sports has, and I don't see a ton of difference between the optimization that they're doing to hit their budget numbers and what I see Fortune 500 finance departments doing to optimize their budget, and so really the commonality is very high, even across industries. >> I bet every Fortune 500 or even every company would love to be compared to the same department within McLaren F1. Just to know that wow, what they're doing is so incredibly important as is what we're doing. >> So talk- >> Absolutely. >> About lessons learned, what lessons can business leaders take from those organizations like McLaren, who are the most analytically mature? >> Probably first and foremost, is that the ROI with analytics and automation is incredibly high. Companies are having a ton of success. It's becoming an existential threat to some degree, if your company isn't going on this journey and your competition is, it can be a huge problem. IDC just did a recent study about how companies are unlocking the ROI using analytics. And the data was really clear, organizations that have a higher percentage of their workforce using analytics are enjoying a much higher return from their analytic investment, and so it's not about hiring two double PhD statisticians from Oxford. It really is how widely you can bring your workforce on this journey, can they all get 10% more capable? And that's having incredible results at businesses all over the world. An another key finding that they had is that the majority of them said that when they had many folks using analytics, they were going on the journey faster than companies that didn't. And so picking technologies that'll help everyone do this and do this fast and do it easily. Having an approachable piece of software that everyone can use is really a key. >> So faster, able to move faster, higher ROI. I also imagine analytics across the organization is a big competitive advantage for organizations in any industry. >> Absolutely the IDC, or not the IDC, the International Institute of Analytics showed huge correlation between companies that were more analytically mature versus ones that were not. They showed correlation to growth of the company, they showed correlation to revenue and they showed correlation to shareholder values. So across really all of the key measures of business, the more analytically mature companies simply outperformed their competition. >> And that's key these days, is to be able to outperform your competition. You know, one of the things that we hear so often, Alan, is people talking about democratizing data and analytics. You talked about the line of business workers, but I got to ask you, is it really that easy for the line of business workers who aren't trained in data science to be able to jump in, look at data, uncover and extract business insights to make decisions? >> So in many ways, it really is that easy. I have a 14 and 16 year old kid. Both of them have learned Alteryx, they're Alteryx certified and it was quite easy. It took 'em about 20 hours and they were off to the races, but there can be some hard parts. The hard parts have more to do with change management. I mean, if you're an accountant that's been doing the best accounting work in your company for the last 20 years, and all you happen to know is a spreadsheet for those 20 years, are you ready to learn some new skills? And I would suggest you probably need to, if you want to keep up with your profession. The big four accounting firms have trained over a hundred thousand people in Alteryx. Just one firm has trained over a hundred thousand. You can't be an accountant or an auditor at some of these places without knowing Alteryx. And so the hard part, really in the end, isn't the technology and learning analytics and data science, the harder part is this change management, change is hard. I should probably eat better and exercise more, but it's hard to always do that. And so companies are finding that that's the hard part. They need to help people go on the journey, help people with the change management to help them become the digitally enabled accountant of the future, the logistics professional that is E enabled, that's the challenge. >> That's a huge challenge. Cultural shift is a challenge, as you said, change management. How do you advise customers if you might be talking with someone who might be early in their analytics journey, but really need to get up to speed and mature to be competitive, how do you guide them or give them recommendations on being able to facilitate that change management? >> Yeah, that's a great question. So people entering into the workforce today, many of them are starting to have these skills. Alteryx is used in over 800 universities around the globe to teach finance and to teach marketing and to teach logistics. And so some of this is happening naturally as new workers are entering the workforce, but for all of those who are already in the workforce, have already started their careers, learning in place becomes really important. And so we work with companies to put on programmatic approaches to help their workers do this. And so it's, again, not simply putting a box of tools in the corner and saying free, take one. We put on hackathons and analytic days, and it can be great fun. We have a great time with many of the customers that we work with, helping them do this, helping them go on the journey, and the ROI, as I said, is fantastic. And not only does it sometimes affect the bottom line, it can really make societal changes. We've seen companies have breakthroughs that have really made great impact to society as a whole. >> Isn't that so fantastic, to see the difference that that can make. It sounds like you guys are doing a great job of democratizing access to Alteryx to everybody. We talked about the line of business folks and the incredible importance of enabling them and the ROI, the speed, the competitive advantage. Can you share some specific examples that you think of Alteryx customers that really show data breakthroughs by the lines of business using the technology? >> Yeah, absolutely, so many to choose from. I'll give you two examples quickly. One is Armor Express. They manufacture life saving equipment, defensive equipments, like armor plated vests, and they were needing to optimize their supply chain, like many companies through the pandemic. We see how important the supply chain is. And so adjusting supply to match demand is really vital. And so they've used Alteryx to model some of their supply and demand signals and built a predictive model to optimize the supply chain. And it certainly helped out from a dollar standpoint. They cut over a half a million dollars of inventory in the first year, but more importantly, by matching that demand and supply signal, you're able to better meet customer demand. And so when people have orders and are looking to pick up a vest, they don't want to wait. And it becomes really important to get that right. Another great example is British Telecom. They're a company that services the public sector. They have very strict reporting regulations that they have to meet and they had, and this is crazy to think about, over 140 legacy spreadsheet models that they had to run to comply with these regulatory processes and report, and obviously running 140 legacy models that had to be done in a certain order and length, incredibly challenging. It took them over four weeks each time that they had to go through that process. And so to save time and have more efficiency in doing that, they trained 50 employees over just a two week period to start using Alteryx and learn Alteryx. And they implemented an all new reporting process that saw a 75% reduction in the number of man hours it took to run in a 60% run time performance. And so, again, a huge improvement. I can imagine it probably had better quality as well, because now that it was automated, you don't have people copying and pasting data into a spreadsheet. And that was just one project that this group of folks were able to accomplish that had huge ROI, but now those people are moving on and automating other processes and performing analytics in other areas. So you can imagine the impact by the end of the year that they will have on their business, potentially millions upon millions of dollars. And this is what we see again and again, company after company, government agency after government agency, is how analytics are really transforming the way work is being done. >> That was the word that came to mind when you were describing the all three customer examples, transformation, this is transformative. The ability to leverage Alteryx, to truly democratize data and analytics, give access to the lines of business is transformative for every organization. And also the business outcome you mentioned, those are substantial metrics based business outcomes. So the ROI in leveraging a technology like Alteryx seems to be right there, sitting in front of you. >> That's right, and to be honest, it's not only important for these businesses. It's important for the knowledge workers themselves. I mean, we hear it from people that they discover Alteryx, they automate a process, they finally get to get home for dinner with their families, which is fantastic, but it leads to new career paths. And so knowledge workers that have these added skills have so much larger opportunity. And I think it's great when the needs of businesses to become more analytic and automate processes actually matches the needs of the employees, and they too want to learn these skills and become more advanced in their capabilities. >> Huge value there for the business, for the employees themselves to expand their skillset, to really open up so many opportunities for not only the business to meet the demands of the demanding customer, but the employees to be able to really have that breadth and depth in their field of service. Great opportunities there, Alan. Is there anywhere that you want to point the audience to go to learn more about how they can get started? >> Yeah, so one of the things that we're really excited about is how fast and easy it is to learn these tools. So any of the listeners who want to experience Alteryx, they can go to the website, there's a free download on the website. You can take our analytic maturity assessment, as we talked about at the beginning, and see where you are on the journey and just reach out. We'd love to work with you and your organization to see how we can help you accelerate your journey on analytics and automation. >> Alan, it was a pleasure talking to you about democratizing data and analytics, the power in it for organizations across every industry. We appreciate your insights and your time. >> Thank you so much. >> In a moment, Paula Hansen, who is the president and chief revenue officer of Alteryx, and Jacqui Van der Leij Greyling, who's the global head of tax technology at eBay, will join me. You're watching "theCUBE", the leader in high tech enterprise coverage. >> 1200 hours of wind tunnel testing, 30 million race simulations, 2.4 second pit stops. >> Make that 2.3. >> Sector times out the wazoo. >> Way too much of this. >> Velocities, pressures, temperatures, 80,000 components generating 11.8 billion data points and one analytics platform to make sense of it all. When McLaren needs to turn complex data into winning insights, they turn to Alteryx. Alteryx, analytics automation. (upbeat music) >> Hey, everyone, welcome back to the program. Lisa Martin here, I've got two guests joining me. Please welcome back to "theCUBE" Paula Hansen, the chief revenue officer and president at Alteryx, and Jacqui Van der Leij Greyling joins us as well, the global head of tax technology at eBay. They're going to share with you how Alteryx is helping eBay innovate with analytics. Ladies, welcome, it's great to have you both on the program. >> Thank you, Lisa, it's great to be here. >> Yeah, Paula, we're going to start with you. In this program, we've heard from Jason Klein, we've heard from Alan Jacobson. They talked about the need to democratize analytics across any organization to really drive innovation. With analytics, as they talked about, at the forefront of software investments, how's Alteryx helping its customers to develop roadmaps for success with analytics? >> Well, thank you, Lisa. It absolutely is about our customers' success. And we partner really closely with our customers to develop a holistic approach to their analytics success. And it starts of course with our innovative technology and platform, but ultimately we help our customers to create a culture of data literacy and analytics from the top of the organization, starting with the C-suite. And we partner with our customers to build their roadmaps for scaling that culture of analytics, through things like enablement programs, skills assessments, hackathons, setting up centers of excellence to help their organization scale and drive governance of this analytics capability across the enterprise. So at the end of the day, it's really about helping our customers to move up their analytics maturity curve with proven technologies and best practices, so they can make better business decisions and compete in their respective industries. >> Excellent, sounds like a very strategic program, we're going to unpack that. Jacqui, let's bring you into the conversation. Speaking of analytics maturity, one of the things that we talked about in this event is the IDC report that showed that 93% of organizations are not utilizing the analytics skills of their employees, but then there's eBay. How Jacqui did eBay become one of the 7% of organizations who's really maturing and how are you using analytics across the organization at eBay? >> So I think the main thing for us is when we started out was is that, our, especially in finance, they became spreadsheet professionals instead of the things that we really want our employees to add value to. And we realized we had to address that. And we also knew we couldn't wait for all our data to be centralized until we actually start using the data or start automating and being more effective. So ultimately we really started very, very actively embedding analytics in our people and our data and our processes. >> Starting with people is really critical. Jacqui, continuing with you, what were some of the roadblocks to analytics adoption that you faced and how did you overcome them? >> So I think eBay is a very data driven company. We have a lot of data. I think we are 27 years around this year, so we have the data, but it is everywhere. And how do you use that data? How do you use it efficiently? How do you get to the data? And I believe that that is definitely one of our biggest roadblocks when we started out and just finding those data sources and finding ways to connect to them to move forward. The other thing is that people were experiencing a lot of frustration. I mentioned before about the spreadsheet professionals. And there was no, we were not independent. You couldn't move forward, you would've put it on somebody else's roadmap to get the data and to get the information if you want it. So really finding something that everybody could access analytics or access data. And finally we have to realize is that this is uncharted territory. This is not exactly something that everybody is used to working with every day. So how do you find something that is easy, and that is not so daunting on somebody who's brand new to the field? And I would call those out as your major roadblocks, because you always have, not always, but most of the times you have support from the top, and in our case we have, but at the end of the day, it's our people that need to actually really embrace it, and making that accessible for them, I would say is definitely not per se, a roadblock, but basically a block you want to be able to move. >> It's really all about putting people first. Question for both of you, and Paula we'll start with you, and then Jacqui we'll go to you. I think the message in this program that the audience is watching with us is very clear. Analytics is for everyone, should be for everyone. Let's talk now about how both of your organizations are empowering people, those in the organization that may not have technical expertise to be able to leverage data, so that they can actually be data driven. Paula. >> Yes, well, we leverage our platform across all of our business functions here at Alteryx. And just like Jacqui explained, at eBay finance is probably one of the best examples of how we leverage our own platform to improve our business performance. So just like Jacqui mentioned, we have this huge amount of data flowing through our enterprise and the opportunity to leverage that into insights and analytics is really endless. So our CFO Kevin Rubin has been a key sponsor for using our own technology. We use Alteryx for forecasting all of our key performance metrics, for business planning, across our audit function, to help with compliance and regulatory requirements, tax, and even to close our books at the end of each quarter. So it's really going to remain across our business. And at the end of the day, it comes to how do you train users? How do you engage users to lean into this analytic opportunity to discover use cases? And so one of the other things that we've seen many companies do is to gamify that process, to build a game that brings users into the experience for training and to work with each other, to problem solve and along the way, maybe earn badges depending on the capabilities and trainings that they take. And just have a little healthy competition as an employee base around who can become more sophisticated in their analytic capability. So I think there's a lot of different ways to do it. And as Jacqui mentioned, it's really about ensuring that people feel comfortable, that they feel supported, that they have access to the training that they need, and ultimately that they are given both the skills and the confidence to be able to be a part of this great opportunity of analytics. >> That confidence is key. Jacqui, talk about some of the ways that you're empowering folks without that technical expertise to really be data driven. >> Yeah, I think it means to what Paula has said in terms of getting people excited about it, but it's also understanding that this is a journey and everybody is at a different place in their journey. You have folks that's already really advanced who has done this every day. And then you have really some folks that this is brand new or maybe somewhere in between. And it's about how you get everybody in their different phases to get to the initial destination. I say initial, because I believe a journey is never really complete. What we have done is that we decided to invest, and built a proof of concept, and we got our CFO to sponsor a hackathon. We opened it up to everybody in finance in the middle of the pandemic. So everybody was on Zoom and we told people, listen, we're going to teach you this tool, it's super easy, and let's just see what you can do. We ended up having 70 entries. We had only three weeks. So and these are people that do not have a background. They are not engineers, they're not data scientists. And we ended up with a 25,000 hour savings at the end of that hackathon from the 70 entries with people that have never, ever done anything like this before. And there you have the result. And then it just went from there. People had a proof of concept. They knew that it worked and they overcame the initial barrier of change. And that's where we are seeing things really, really picking up now. >> That's fantastic. And the business outcome that you mentioned there, the business impact is massive, helping folks get that confidence to be able to overcome sometimes the cultural barriers is key here. I think another thing that this program has really highlighted is there is a clear demand for data literacy in the job market, regardless of organization. Can each of you share more about how you're empowering the next generation of data workers? Paula, we'll start with you. >> Absolutely, and Jacqui says it so well, which is that it really is a journey that organizations are on and we as people in society are on in terms of upskilling our capabilities. So one of the things that we're doing here at Alteryx to help address this skillset gap on a global level is through a program that we call SparkED, which is essentially a no-cost analytics education program that we take to universities and colleges globally to help build the next generation of data workers. When we talk to our customers like eBay and many others, they say that it's difficult to find the skills that they want when they're hiring people into the job market. And so this program's really developed just to do just that, to close that gap and to work hand in hand with students and educators to improve data literacy for the next generation. So we're just getting started with SparkED. We started last May, but we currently have over 850 educational institutions globally engaged across 47 countries, and we're going to continue to invest here because there's so much opportunity for people, for society and for enterprises, when we close the gap and empower more people with the necessary analytics skills to solve all the problems that data can help solve. >> So SparkED has made a really big impact in such a short time period. It's going to be fun to watch the progress of that. Jacqui, let's go over to you now. Talk about some of the things that eBay is doing to empower the next generation of data workers. >> So we basically wanted to make sure that we kept that momentum from the hackathon, that we don't lose that excitement. So we just launched the program called eBay Masterminds. And what it basically is, is it's an inclusive innovation in each other, where we firmly believe that innovation is for upskilling for all analytics roles. So it doesn't matter your background, doesn't matter which function you are in, come and participate in in this where we really focus on innovation, introducing new technologies and upskilling our people. We are, apart from that, we also said, well, we shouldn't just keep it to inside eBay. We have to share this innovation with the community. So we are actually working on developing an analytics high school program, which we hope to pilot by the end of this year, where we will actually have high schoolers come in and teach them data essentials, the soft skills around analytics, but also how to use Alteryx. And we're working with, actually, we're working with SparkED and they're helping us develop that program. And we really hope that at, say, by the end of the year, we have a pilot and then also next year, we want to roll it out in multiple locations in multiple countries and really, really focus on that whole concept of analytics for all. >> Analytics for all, sounds like Alteryx and eBay have a great synergistic relationship there that is jointly aimed at especially going down the stuff and getting people when they're younger interested, and understanding how they can be empowered with data across any industry. Paula, let's go back to you, you were recently on "theCUBE"'s Supercloud event just a couple of weeks ago. And you talked about the challenges the companies are facing as they're navigating what is by default a multi-cloud world. How does the Alteryx Analytics Cloud platform enable CIOs to democratize analytics across their organization? >> Yes, business leaders and CIOs across all industries are realizing that there just aren't enough data scientists in the world to be able to make sense of the massive amounts of data that are flowing through organizations. Last I checked, there was 2 million data scientists in the world, so that's woefully underrepresented in terms of the opportunity for people to be a part of the analytics solution. So what we're seeing now with CIOs, with business leaders is that they're integrating data analysis and the skillset of data analysis into virtually every job function, and that is what we think of when we think of analytics for all. And so our mission with Alteryx Analytics Cloud is to empower all of those people in every job function, regardless of their skillset, as Jacqui pointed out from people that are just getting started all the way to the most sophisticated of technical users. Every worker across that spectrum can have a meaningful role in the opportunity to unlock the potential of the data for their company and their organizations. So that's our goal with Alteryx Analytics Cloud, and it operates in a multi cloud world and really helps across all sizes of data sets to blend, cleanse, shape, analyze, and report out so that we can break down data silos across the enterprise and help drive real business outcomes as a result of unlocking the potential of data. >> As well as really lessening that skill gap. As you were saying, there's only 2 million data scientists. You don't need to be a data scientist, that's the beauty of what Alteryx is enabling and eBay is a great example of that. Jacqui, let's go ahead and wrap things with you. You talked a great deal about the analytics maturity that you have fostered at eBay. It obviously has the right culture to adapt to that. Can you talk a little bit and take us out here in terms of where Alteryx fits in as that analytics maturity journey continues and what are some of the things that you are most excited about as analytics truly gets democratized across eBay? >> When we're starting up and getting excited about things when it comes to analytics, I can go on all day, but I'll keep it short and sweet for you. I do think we are on the top of the pool of data scientists. And I really feel that that is your next step, for us anyways, is that how do we get folks to not see data scientists as this big thing, like a rocket scientist, it's something completely different. And it's something that is in everybody in a certain extent. So again, partnering with Alteryx who just released the AI ML solution, allowing folks to not have a data scientist program, but actually build models and be able to solve problems that way. So we have engaged with Alteryx and we purchased the licenses, quite a few. And right now through our Masterminds program, we're actually running a four month program for all skill levels, teaching them AI ML and machine learning and how they can build their own models. We are really excited about that. We have over 50 participants without a background from all over the organization. We have members from our customer services. We have even some of our engineers are actually participating in the program. We just kicked it off. And I really believe that that is our next step. I want to give you a quick example of the beauty of this is where we actually just allow people to go out and think about ideas and come up with things. And one of the people in our team who doesn't have a data scientist background at all, was able to develop a solution where there is a checkout feedback functionality on the eBay side where sellers or buyers can verbatim add information. And she built a model to be able to determine what relates to tax specific, what is the type of problem, and even predict how that problem can be solved before we as a human even step in, and now instead of us or somebody going to verbatim and try to figure out what's going on there, we can focus on fixing the error versus actually just reading through things and not adding any value, and it's a beautiful tool and I was very impressed when I saw the demo and definitely developing that sort of thing. >> That sounds fantastic. And I think just the one word that keeps coming to mind, and we've said this a number of times in the program today is empowerment. What you're actually really doing to truly empower people across the organization with varying degrees of skill level, going down to the high school level, really exciting. We'll have to stay tuned to see what some of the great things are that come from this continued partnership. Ladies, I want to thank you so much for joining me on the program today and talking about how Alteryx and eBay are really partnering together to democratize analytics and to facilitate its maturity. It's been great talking to you. >> Thank you, Lisa. >> Thank you so much. (cheerful electronic music) >> As you heard over the course of our program, organizations where more people are using analytics who have deeper capabilities in each of the four Es, that's everyone, everything, everywhere, and easy analytics, those organizations achieve more ROI from their respective investments in analytics and automation than those who don't. We also heard a great story from eBay, great example of an enterprise that is truly democratizing analytics across its organization. It's enabling and empowering line of business users to use analytics, not only focused on key aspects of their job, but develop new skills rather than doing the same repetitive tasks. We want to thank you so much for watching the program today. Remember you can find all of the content on thecube.net. You can find all of the news from today on siliconangle.com and of course alteryx.com. We also want to thank Alteryx for making this program possible and for sponsoring "theCUBE". For all of my guests, I'm Lisa Martin. We want to thank you for watching and bye for now. (upbeat music)
SUMMARY :
in the next 12 to 18 months. Excited to talk with you. over the next 12 to 18 months, And it looks like from the info brief and the world is changing data. that the info brief uncovered with respect So for example, on the people side, in the data and analytics and the answer, that'll be able to. just so we get that clean Thank you for that. that the info brief uncovered as compared to the technology itself. So overall, the enterprises to be aware of at the outset? is that the people aspect of analytics If we could do the same, Lisa, Here, I'm going to give us a little break. to the data and analytics and really maximize the investments And the data from this survey shows this And it's expected to spend more and plan to invest accordingly, that can snap to and the great nuggets in there. Alteryx is going to join me. that data analytics is for the few, Alan, it's great to that being data driven is very important. And really the first step the lines of business and more skills to really keep of the leading sports teams. between the domains industry to industry. to be compared to the same is that the majority of them said So faster, able to So across really all of the is to be able to outperform that is E enabled, that's the challenge. and mature to be competitive, around the globe to teach finance and the ROI, the speed, that they had to run to comply And also the business of the employees, and they of the demanding customer, to see how we can help you the power in it for organizations and Jacqui Van der Leij 1200 hours of wind tunnel testing, to make sense of it all. back to the program. going to start with you. So at the end of the day, one of the 7% of organizations to be centralized until we of the roadblocks to analytics adoption and to get the information if you want it. that the audience is watching and the confidence to be able to be a part to really be data driven. in their different phases to And the business outcome and to work hand in hand Jacqui, let's go over to you now. We have to share this Paula, let's go back to in the opportunity to unlock and eBay is a great example of that. and be able to solve problems that way. that keeps coming to mind, Thank you so much. in each of the four Es,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jacqui | PERSON | 0.99+ |
Paula | PERSON | 0.99+ |
Jason Klein | PERSON | 0.99+ |
Paula Hansen | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Paula Hansen | PERSON | 0.99+ |
Alan Jacobson | PERSON | 0.99+ |
Alteryx | ORGANIZATION | 0.99+ |
eBay | ORGANIZATION | 0.99+ |
Jason | PERSON | 0.99+ |
International Institute of Analytics | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Alan | PERSON | 0.99+ |
Alan Jacobson | PERSON | 0.99+ |
60% | QUANTITY | 0.99+ |
Kevin Rubin | PERSON | 0.99+ |
Jacqui Van der Leij Greyling | PERSON | 0.99+ |
14 | QUANTITY | 0.99+ |
International Institute of Analytics | ORGANIZATION | 0.99+ |
10% | QUANTITY | 0.99+ |
50 employees | QUANTITY | 0.99+ |
63% | QUANTITY | 0.99+ |
93% | QUANTITY | 0.99+ |
90% | QUANTITY | 0.99+ |
nine | QUANTITY | 0.99+ |
75% | QUANTITY | 0.99+ |
70 entries | QUANTITY | 0.99+ |
16 year | QUANTITY | 0.99+ |
1200 hours | QUANTITY | 0.99+ |
Paula Hansen & Jacqui van der Leij Greyling
>>Hey, everyone, welcome back to the programme. Lisa Martin here. I've got two guests joining me. Please welcome back to the Q. Paula Hanson, the chief Revenue officer and president at all tricks. And Jackie Vanderlei Grayling joins us as well. The global head of tax technology at eBay. They're gonna share with you how an all tricks is helping eBay innovate with analytics. Ladies, welcome. It's great to have you both on the programme. >>Thank you, Lisa. Not great to be >>here. >>Yeah, Paula, we're gonna start with you in this programme. We've heard from Jason Klein. We've heard from Allan Jacobsen. They talked about the need to democratise analytics across any organisation to really drive innovation with analytics as they talked about at the forefront of software investments. House all tricks, helping its customers to develop roadmaps for success with analytics. >>Well, thank you, Lisa. Absolutely is about our customers success. And we partner really closely with our customers to develop a holistic approach to their analytics success. And it starts, of course, with our innovative technology and platform. But ultimately we help our customers to create a culture of data literacy and analytics from the top of the organisation starting with the C suite and we partner with our customers to build their road maps for scaling that culture of analytics through things like enablement programmes, skills assessments, hackathons, uh, setting up centres of excellence to help their organisation scale and drive governance of this, uh, analytics capability across the Enterprise. So at the end of the day, it's really about helping our customers to move up their analytics maturity curve with proven technologies and best practises so they can make better business decisions and compete in their respective industries. >>Excellent. Sounds like a very strategic programme. We're gonna unpack that, Jackie, let's bring you into the conversation. Speaking of analytics maturity, one of the things that we talked about in this event is the I. D. C report that showed that 93% of organisations are not utilising the analytic skills of their employees. But then there's eBay. How Jackie did eBay become one of the 7% of organisations who's really maturing and how are you using analytics across the organisation at bay? >>So I think the main thing for us is when we started out was is that you know our especially in finance. They became spreadsheet professionals instead of the things that we really want our influence to add value to. And we realised we have to address that. And we also knew we couldn't wait for all our data to be centralised until we actually start using the data or start automating and be more effective. Um, so ultimately, we really started very, very actively embedding analytics in our people and our data and our processes. >>Starting with people is really critical jacket continuing with you. What was in the roadblocks to analytics adoption that you faced and how did you overcome them? >>So I think you know, Eva is a very data driven company. We have a lot of data. I think we are 27 years around this year. So we have the data, but it is everywhere. And how do you use that data? How do you use it efficiently? How do you get to the data? And I believe that that is definitely one of our biggest roadblocks when we started out and just finding those data sources and finding ways to connect to them, um, to move forward. The other thing is that you know, people were experiencing a lot of frustration. I mentioned before about the spreadsheet professionals, right? And there was no we're not independent. You couldn't move forward. You're dependent on somebody else's roadmap to get to data to get the information you want it. So really finding something that everybody could access analytics or access data. And finally we have to realise, is that this is uncharted territory. This is not exactly something that everybody is used to working with every day. So how do you find something that is easy and that is not so daunting on somebody who's brand new to the field? And I would I would call those out as your as your major roadblocks, because you always have always. But most of the times you have support from the top. In our case we have. But in the end of the day, it's it's our people that need to actually really embrace it and making that accessible for them. I would say it's not to say a road block a block you want to be able to do. >>It's really all about putting people first question for both of you and Paula will start with you and then Jackie will go to you. I think the message in this programme that the audience is watching with us is very clear. Analytics is for everyone should be for everyone. Let's talk now about how both of your organisations are empowering people, those in the organisation that may not have technical expertise to be able to leverage data so that they can actually be data driven colour. >>Yes, well, we leverage our platform across all of our business functions here at all tricks. And just like Jackie explained that eBay finance is probably one of the best examples of how we leverage our own platform to improve our business performance. So just like Jackie mentioned, we have this huge amount of data, uh, flowing through our enterprise, and the opportunity to leverage that into insights and analytics is really endless. So our CFO, Kevin Ruben has been a key sponsor for using our own technology. We use all tricks for forecasting all of our key performance metrics for business planning across our audit function, uh, to help with compliance and regulatory requirements, tax and even to close our books at the end of each quarter. So it's really remain across our business. And at the end of the day, it comes to How do you train users? How do you engage users to lean into this analytic opportunity to discover use cases? And so one of the other things that we've seen many companies do is to gamify that process, to build a game that brings users into the experience for training and to work with each other to problem solve and, along the way, maybe earn badges, depending on the capabilities and trainings that they take and just have a little healthy competition, Uh, as an employee based around who can become more sophisticated in their analytic capability. So I think there's a lot of different ways to do it. And as Jackie mentioned, it's really about ensuring that people feel comfortable that they feel supportive, that they have access to the training that they need, and ultimately that they are given both the skills and the confidence to be able to be a part of this great opportunity of analytics. >>That confidence is key. Jackie talk about some of the ways that you're empowering folks without that technical expertise to really be data driven. >>I think it means to what Paula has said in terms of, you know, getting people excited about it. But it's also understanding that this is a journey and everybody is the different place in their journey. You have folks that's already really advanced. Who's done this every day. And then you have really some folks that this is brand new and, um, or maybe somewhere in between. And it's about how you could get everybody in their different phases to get to the the initial destination. And I say initial because I believe the journey is never really complete. Um, what we have done is that we decided to invest in a group of concept when we got our CFO to sponsor a hackathon. Um, we open it up to everybody in finance, um, in the middle of the pandemic. So everybody was on Zoom, um, and we had and we told people, Listen, we're gonna teach you this tool. It's super easy, and let's just see what you can do. We ended up having 70 injuries. We had only three weeks. So these are people that that do not have a background. They are not engineers and not data scientists and we ended up with 25,000 our savings at the end of the hackathon. Um, from the 70 countries with people that I've never, ever done anything like this before. And there you have the results. And they just went from there because people had a proof of concept. They knew that it worked and they overcame the initial barrier of change. Um, and that's what we are seeing things really, really picking up now >>that's fantastic. And the business outcome that you mentioned that the business impact is massive, helping folks get that confidence to be able to overcome. Sometimes the cultural barriers is key there. I think another thing that this programme has really highlighted is there is a clear demand for data literacy in the job market, regardless of organisation. Can each of you share more about how your empowering the next generation of data workers Paula will start with you? >>Absolutely. And Jackie says it so well, which is that it really is a journey that organisations are on and we, as people in society, are on in terms of up skilling our capabilities. Uh, so one of the things that we're doing here at all tricks to help address the skill set gap on a global level is through a programme that we call Sparked, which is essentially a no cost analyst education programme that we take to universities and colleges globally to help build the next generation of data workers. When we talk to our customers like eBay and many others, they say that it's difficult to find the skills that they want when they're hiring people into the job market. And so this programme is really developed just to do just that, to close that gap and to work hand in hand with students and educators to improve data literacy for the next generation. So we're just getting started with sparked we started last May, but we currently have over 850 educational institutions globally engaged across 47 countries, and we're going to continue to invest here because there's so much opportunity for people, for society and for enterprises when we close gap and empower more people with the necessary analytic skills to solve all the problems that data can help solve. >>So >>I just made a really big impact in such a short time period is gonna be fun to watch the progress of that. Jackie, let's go over to you now Talk about some of the things that eBay is doing to empower the next generation of data workers. >>So we definitely wanted to make sure that we kept implemented from the hackathon that we don't lose that excitement life. So we just launched a programme for evil masterminds and what it basically is. It's an inclusive innovation initiative where we firmly believe that innovation is all upscaling for all analytics role. So it doesn't matter. Your background doesn't matter which function you are in. Come and participate in this where we really focus on innovation, introducing these technologies and upscaling of people. Um, we are apart from that. We also said, Well, we should just keep it to inside the way we have to share this innovation with the community. So we are actually working on developing an analytics high school programme which we hope to pilot by the end of this year. We will actually have high schoolers come in and teach them data essentials, the soft skills around analytics, But also, um, how to use all tricks and we're working with Actually, we're working with spark and they're helping us develop that programme. And we really hope that it is said by the end of the year, have a pilot and then also makes you must have been rolled out in multiple locations in multiple countries and really, really, uh, focused on that whole concept of analytic school >>analytics. Girl sounds like ultra and everybody have a great synergistic relationship there that is jointly aimed at especially kind of going down the stock and getting people when they're younger, interested and understanding how they can be empowered with data across any industry. Paula, let's go back to you. You were recently on the cubes Super Cloud event just a couple of weeks ago and you talked about the challenges the companies are facing as they are navigating what is by default, a multi cloud world. How does the all tricks analytics cloud platform enable CEO s to democratise analytics across their organisation? >>Yes, business leaders and CEO s across all industries are realising that there just aren't enough data scientists in the world to be able to make sense of the massive amounts of data that are flowing through organisations. Last I checked, there was two million data scientists in the world. So that's, uh, woefully underrepresented in terms of the opportunity for people to be a part of the analytics solution. So what we're seeing now with CEO s with business leaders is that they are integrating data analysis and the skill set of data analysis into virtually every job function. Uh, and that is what we think of when we think of analytics for all. And so our mission with all tricks analytics cloud is to empower all of those people in every job function, regardless of their skill set, as Jackie pointed out, from people that would are just getting started all the way to the most sophisticated of technical users. Um, every worker across that spectrum can have a meaningful role in the opportunity to unlock the potential of the data for their company and their organisations. So that's our goal with all tricks, analytics cloud and it operates in a multi cloud world and really helps across all sizes of data sets to blend, cleanse, shape, analyse and report out so that we can break down data silos across the Enterprise and Dr Real Business Outcomes. As a result, of unlocking the potential of data >>as well as really listening that skills gap. As you were saying, There's only two million data scientists. You don't need to be a data scientist. That's the beauty of what all tricks is enabling. And eBay is a great example of that. Jackie, let's go ahead and wrap things with you. You talked a great deal about the analytics maturity that you have fostered at eBay. It obviously has the right culture to adapt to that. Can you talk a little bit and take us out here in terms of where all tricks fits in as that analytics maturity journey continues. And what are some of the things that you're most excited about as analytics truly gets democratised across eBay >>when we start about getting excited about things when it comes to analytics, I can go on all day, but I'll keep it short and sweet for you. Um, I do think we're on the topic full of data scientists, and I really feel that that is your next step for us, anyway. Is that how do we get folks to not see data scientist as this big thing like a rocket scientist it's something completely different and it's something that is in everybody in a certain extent. So, um, game partnering with all tricks to just release uh, ai ml um, solution allowing. You know, folks do not have a data scientist programme but actually build models and be able to solve problems that way. So we have engaged with all turrets and we purchase the licence is quite a few. And right now, through our masterminds programme, we're actually running a four months programme. Um, for all skill levels, um, teaching them ai ml and machine learning and how they can build their own models. Um, we are really excited about that. We have over 50 participants without the background from all over the organisation. We have members from our customer services. We have even some of our engineers are actually participating in the programme will just kick it off. And I really believe that that is our next step. Um, I want to give you a quick example of the beauty of this is where we actually, um, just allow people to go out and think about ideas and come up with things and one of the people in our team who doesn't have a data scientist background at all, was able to develop a solution. Where, um, you know there is a checkout feedback checkout functionality on the eBay side, There's sellers or buyers can pervade them at information. And she built a model to be able to determine what relates to tax specific what is the type of problem and even predict how that problem can be solved before we as human, even stepped in. And now, instead of us or somebody going to debate and try to figure out what's going on there, we can focus on fixing their versus, um, actually just reading through things and not adding any value and its a beautiful tool. And I'm very impressed when we saw the demo and they've been developing that further. >>That sounds fantastic. And I think just the one word that keeps coming to mind. And we've said this a number of times in the programme. Today's empowerment, what you're actually really doing to truly empower people across the organisation with with varying degrees of skill level, going down to the high school level really exciting. We'll have so stay tuned to see what some of the great things are that come from this continued partnership? Ladies, I wanna thank you so much for joining me on the programme today and talking about how all tricks and eBay are really partnering together to democratise analytics and to facilitate its maturity. It's been great talking to you. >>Thank you. >>Thank you so much.
SUMMARY :
It's great to have you both on the programme. They talked about the need to democratise analytics So at the end of the day, it's really about helping our customers to move Speaking of analytics maturity, one of the things that we talked about in this event is the I. instead of the things that we really want our influence to add value to. adoption that you faced and how did you overcome them? But most of the times you have support from the top. those in the organisation that may not have technical expertise to be able to leverage data And at the end of the day, it comes to How do you train users? Jackie talk about some of the ways that you're empowering folks without that technical and we had and we told people, Listen, we're gonna teach you this tool. And the business outcome that you mentioned that the business impact is massive, And so this programme is really developed just to Jackie, let's go over to you now Talk about some of the things that eBay is doing to empower the next And we really hope that it is said by the end of the year, have a pilot and then also that is jointly aimed at especially kind of going down the stock and getting people when they're younger, have a meaningful role in the opportunity to unlock the potential of the data for It obviously has the right culture to adapt to that. And she built a model to be able to determine of the great things are that come from this continued partnership?
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jason Klein | PERSON | 0.99+ |
Paula | PERSON | 0.99+ |
Jackie | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Kevin Ruben | PERSON | 0.99+ |
eBay | ORGANIZATION | 0.99+ |
Allan Jacobsen | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
25,000 | QUANTITY | 0.99+ |
Jackie Vanderlei Grayling | PERSON | 0.99+ |
Paula Hansen | PERSON | 0.99+ |
93% | QUANTITY | 0.99+ |
27 years | QUANTITY | 0.99+ |
70 injuries | QUANTITY | 0.99+ |
Jacqui van der Leij Greyling | PERSON | 0.99+ |
both | QUANTITY | 0.99+ |
70 countries | QUANTITY | 0.99+ |
two guests | QUANTITY | 0.99+ |
over 50 participants | QUANTITY | 0.99+ |
four months | QUANTITY | 0.99+ |
first question | QUANTITY | 0.99+ |
47 countries | QUANTITY | 0.99+ |
one | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
over 850 educational institutions | QUANTITY | 0.98+ |
last May | DATE | 0.98+ |
Today | DATE | 0.97+ |
7% | QUANTITY | 0.97+ |
this year | DATE | 0.96+ |
Eva | ORGANIZATION | 0.96+ |
two million data scientists | QUANTITY | 0.95+ |
Super Cloud | EVENT | 0.95+ |
pandemic | EVENT | 0.95+ |
three weeks | QUANTITY | 0.94+ |
each | QUANTITY | 0.94+ |
one word | QUANTITY | 0.94+ |
couple of weeks ago | DATE | 0.91+ |
Paula Hanson | PERSON | 0.87+ |
Sparked | TITLE | 0.86+ |
end of this year | DATE | 0.84+ |
each quarter | QUANTITY | 0.83+ |
Q. | PERSON | 0.78+ |
D. C | TITLE | 0.68+ |
Zoom | ORGANIZATION | 0.64+ |
sparked | TITLE | 0.58+ |
Brent Meadows, Expedient & Bryan Smith, Expedient | VMware Explore 2022
(upbeat music) >> Hey everyone. Welcome to theCUBE's coverage of VMware Explore 2022. We are at Moscone West. Lisa Martin and Dave Nicholson here. Excited, really excited, whereas they were saying in the VMware keynote, pumped and jacked and jazzed to be back in-person with a lot of folks here. Keynote with standing room only. We've just come from that. We've got a couple of guests here from Expedient, going to unpack their relationship with VMware. Please welcome Brian Smith, the Senior Vice President and Chief Strategy Officer at Expedient. And Brent Meadows, the Vice President of Advanced Solution Architecture at Expedient. Guys it's great to have you on the program. >> Appreciate it bringing us on. >> Yep, welcome. >> Isn't it great to be back in person? >> It is phenomenal to be back. >> So let's talk about obviously three years since the last, what was called VMworld, so many dynamics in the market. Talk to us about what's going on at Expedient, we want to dig into Cloud Different, but kind of give us a lay of the land of what's going on and then we're going to uncrack the VMware partnership as well. >> Sure, so Expedient we're a full stack cloud service provider. So we have physical data centers that we run and then have VMware-based cloud and we've seen a huge shift from the client perspective during the pandemic in how they've really responded from everything pre-pandemic was very focused with Cloud First and trying to go that route only with hyper scaler. And there's been a big evolution with how people have to change how they think about their transformation to get the end result they're looking for. >> Talk about Cloud Different and what it's helping customers to achieve as everyone's in this accelerated transformation. >> Yeah. So, Cloud Different is something that Expedient branded. It's really about how the transformation works. And traditionally, companies thought about doing their transformation, at first they kept everything in house that they were doing and they started building their new applications out into a hyper scale cloud. And what that really is like is, a good analogy would be, it's like living in a house while you're renovating it. And I know what that's like from my relationship versus if you build a new house, or move to a new property that's completed already. And that's really the difference in that experience from a Cloud Different approach from transformation is you think of all the things that you have internally, and there's a lot of technical debt there, and that's a lot of weight that you're carrying when you're trying to do that transformation. So if you kind of flip that around and instead look to make that transformation and move all that technical debt into a cloud that's already built to run those same types of applications, a VMware-based cloud, now you can remove all of that noise, move into a curated stack of technology and everything just works. It has the security in place, your teams know how to run it, and then you can take that time you really reclaim and apply that towards new applications and new things that are strategic to the business. >> That's really critical, Brent, to get folks in the IT organization across the business, really focused on strategic initiatives rather than a lot of the mundane tasks that they just don't have time for. Brent, what are you hearing in the last couple of years with the dynamics we talked about, what are you hearing from the customer? >> Right. So, one of the big things and the challenges in the current dynamic is kind of that staffing part. So as people have built their infrastructure over the years, there's a lot of tribal knowledge that's been created during that process and every day more and more of that knowledge is walking out the door. So taking some of that technical debt that Brian mentioned and kind of removing that so you don't have to have all that tribal knowledge, really standardizing on the foundational infrastructure pieces, allows them to make that transition and not have to carry that technical debt along with them as they make their digital transformations. >> We heard a lot this morning in the keynote guys about customers going, most of them still being in cloud chaos, but VMware wanting them to get to cloud smart. What does that mean, Brian, from Expedient's perspective? What does cloud smart look like to Expedient and its customers? >> Yeah, we completely agree with that message. And it's something we've been preaching for a couple years in part of that Cloud Different story. And it's really about having a consistent wrapper across all of your environments. It doesn't matter if it's things that you're running on-premises that's legacy to things that are in a VMware-based cloud, like an Expedient cloud or things that are in a hyper scale, but having one consistent security, one consistent automation, one consistent cost management, really gives you the governance so that you can get the value out of cloud that you are hoping for and remove a lot of the noise and think less about the technology and more about what the business is getting out of the technology. >> So what does that look like as a practical matter? I imagine you have customers whose on-premises VMware environments look different than what you've created within Expedient data centers. I'm thinking of things like the level of adoption of NSX, how well a customer may embrace VSAN on-prem as an example. Is part of this transmogrification into your data center, kind of nudging people to adopt frameworks that are really necessary for success in the future? >> It's less of a nudge because a lot of times as a service provider, we don't talk about the technology, we talk more about the outcome. So the nice thing with VMware is we can move that same virtual machine or that container into the platform and the client doesn't always know exactly what's underneath because we have that standardized VMware stack and it just works. And that's part of the beauty of the process. I dunno if you want to talk about a specific client or... >> Yeah, so one of the ones we worked with is Bob Evans Foods. So they were in that transformation stage of refreshing, not only their office space and their data center, but also their VMware environment. So we helped them go through and first thing is looking at their existing environment, figuring out what they currently have, because you can't really make a good decision of what you need to change until you know where you're starting from. So we worked with them through that process, completely evacuated their data center. And from a business perspective, what that allowed them to do as well is have more flexibility in the choice of their next corporate office, because they didn't have to have a data center attached to it. So just from that data center perspective, we gave them some flexibility there. But then from an operations perspective, really standardize that process, offloaded some of those menial tasks that you mentioned earlier, and allow them to really look more towards business-driving projects, instead of just trying to keep those lights on, keeping the backups running, et cetera. >> Brian, question for you, here we are, the theme of the event is "The Center of the Multi-cloud Universe" which seems like a Marvel movie, I haven't seen any new superheroes yet, but I suspect there might be some here. But as customers end up and land in multi-cloud by default not by strategy, how does Expedient and VMware help them actually take the environment that they have and make it strategic so that the business can achieve the outcomes, improving revenue, finding new revenue streams, new products, new routes to market to delight those customers. How do you turn that kind of cloud chaos into a strategy? >> Yeah. I'd say there's a couple different components. One is really time. How can you give them time back for things that are creating noise and aren't really strategic to the business? And so if you can give that time back, that's the first way that you can really impact the business. And the second is through that standardization, but also a lot of times when people think of that new standard, they're only thinking if you're building from scratch. And what VMware has really helped is by taking those existing workloads and giving a standard that works for those applications and what you're building new and brings those together under a common platform and so had a really significant impact to the speed that somebody can get to that cloud operating model, that used to be a multi-year process and most of our clients can go from really everything or almost everything on-prem and a little bit in a cloud to a complete cloud operating model, on average, in four to six months. >> Wow! >> So if I have an on-premises environment and some of my workloads are running in a VMware context, VMware would make the pitch in an agnostic way that, "Well, you can go and deploy that "on top of a stack of infrastructure "and anybody and anywhere now." Why do customers come to you instead of saying, "Oh, we'll go to "pick your flavor of hyper scale cloud provider." What's kind of your superpower? You've mentioned a couple of things, but really hone it in on, why would someone want to go to Expedient? >> Yeah. In a single word, service. I mean, we have a 99% client retention rate and have for well over a decade. So it's really that expertise that wraps around all the different technology so that you're not worried about what's happening and you're not worried about trying to keep the lights on and doing the firefighting. You're really focused on the business. And the other way to, I guess another analogy is, if you think about a lot of the technology and the way people go to cloud, it's like if you got a set of Legos without the box or the instructions. So you can build stuff, it could be cool, but you're not going to get to that end state-- >> Hold on. That's how Legos used to work. Just maybe you're too young to remember a time-- >> You see their sales go up because now you buy a different set for this-- >> I build those sets with my son, but I do it grudgingly. >> Do you ever step on one? >> Of course I do. >> Yeah, there's some pain involved. Same thing happens in the transformation. So when they're buying services from an Expedient, you're buying that box set where you have a picture of what your outcome's going to be, the instructions are there. So you also have confidence that you're going to get to the end outcome much faster than you would if you're trying to assemble everything yourself. (David laughing) >> In my mind, I'm imagining the things that I built with Lego, before there were instructions. >> No death star? >> No. Nothing close with the death star. Definitely something that you would not want your information technology to depend upon. >> Got it. >> Brent, we've seen obviously, it seems like every customer these days, regardless of industry has a cloud first initiative. They have competitors in the rear view mirror who are, if they're able to be more agile and faster to market, are potential huge competitive threat. As we see the rise of multi-cloud in the last 12 months, there's also been a lot of increased analyst coverage for alternate specialty hybrid cloud. Talk to us about, Expedient was in the recent Gartner market guide for specialty cloud. How are these related? What's driving this constant change out in the customer marketplace? >> Sure. So a lot of that agility that clients are getting and trying to do that digital transformation or refactor their applications requires a lot of effort from the developers and the internal IT practitioners. So by moving to a model with an enterprise kind of like Expedient, that allows them to get a consistent foundational level for those technical debt, the 'traditional workloads' where they can start focusing their efforts more on that refactoring of their applications, to get that agility, to get the flexibility, to get the market advantage of time to market with their new refactored applications. That takes them much faster to market, allows them to get ahead of those competitors, if they're not already ahead of them, get further ahead of them or catch up the ones that may have already made that transition. >> And I would add that the analyst coverage you've seen in the last 9 to 12 months, really accelerate for our type of cloud because before everything was hyper scale, everything's going to be hyper scale and they realized that companies have been trying to go to the cloud really for over a decade, really 15 years, that digital transformation, but most companies, when you look at the analysts say they're about 30% there, they've hit a plateau. So they need to look at a different way to approach that. And they're realizing that a VMware-based cloud or the specialty cloud providers give a different mode of cloud. Because you had of a pendulum that everything was on-premises, everything swung to cloud first and then it swung to multi-cloud, which meant multiple hyper scale providers and now it's really landing at that equilibrium where you have different modes of cloud. So it's similar like if you want to travel the world, you don't use one mode of transportation to get from one continent to the other. You have to use different modes. Same thing to get all the way to that cloud transformation, you need to use different modes of cloud, an enterprise cloud, a hyper scale cloud, working them together with that common management plan. >> And with that said Brian, where have customer conversations gone in the last couple of years? Obviously this has got to be an executive level, maybe even a board level conversation. Talk to us about how your customer conversations have changed. Have the stakeholders changed? Has things gone up to stack? >> Yeah. The business is much more involved than what it's been in the past and some of the drivers, even through the pandemic, as people reevaluate office space, a lot of times data centers were part of the same building. Or they were added into a review that nobody ever asked, "Well, why are you only using 20% of your data center?" So now that conversation is very active and they're reevaluating that and then the conversation shifts to "Where's the best place?" And that's a lot of, the conference also talks about the best place for your application for the workload in the right location. >> My role here is to dive down into the weeds constantly to stay away from business outcomes and things like that. But somewhere in the middle there's this question of how what you provide is consumed. So fair to assume that often people are moving from CapEx model to an OPEX model where they're consuming by the glass, by the drink. What does that mean organizationally for your customers? And do you help them work through that journey, reorganizing their internal organization to take advantage of cloud? Is that something that Expedient is a part of, or do you have partners that help them through that? How does that work? >> Yeah. There's some unique things that an enterprise doesn't understand when they think about what they've done on-prem versus a service provider is. There's whole models that they can purchase with us in consumption, not just the physical hardware, but licensing as well. Do you want to talk about how clients actually step in and start to do that evaluation? >> Sure. So it really kind of starts on the front end of evaluating what they have. So going through an assessment process, because traditionally, if you have a big data center full of hardware, you've already paid for it. So as you're deploying new workloads, it's "free to deploy." But when you go to that cloud operating model, you're paying for each drink that you're taking. So we want to make sure that as they're going into that cloud operating model, that they are right sized on the front end. They're not over-provisioned on anything that they're going to just waste money and resources on after they make that transition. So it's really about giving them great data on the front end, doing all that collection from a foundational level, from a infrastructure level, but also from a business and IT operations perspective and figuring out where they're spending, not just their money, but also their time and effort and helping them streamline and simplify those IT operations. >> Let's talk about one of the other elephants in the room and that is the remote hybrid workforce. Obviously it's been two and a half years, which is hard to believe. I think I'm one of the only people that hates working from home. Most people, do you too? Okay, good. Thank you, we're normal. >> Absolutely. (Lisa laughing) But VMware was talking about desktop as a service, there was so much change and quick temporary platform set up to accommodate offsite workers during the pandemic. What are some of the experiences that your clients are having and how is Expedient plus VMware helping businesses adapt and really create them the right hybrid model for them going forward? >> Sure. So as part of being that full sack cloud service provider, desktop in that remote user has to be part of that consideration. And one of the biggest things we saw with the pandemic was people stood up what we call pandemic VDI, very temporary solutions. And you saw the news articles that they said, "We did it in 10 days." And how many big transformational events do people plan and execute in 10 days that transform their workforce? So now they're having to come back and say, "Okay, what's the right way to deploy it?" And do you want to talk about some of the specifics of what we're seeing in the adjustments that they're doing? >> Sure. So it is, when you look at it from the end user perspective, it's how they're operating, how they're getting their tools through their day to day job, but it's also the IT administrators that are having to provide that service to the end users. So it's really kind of across the board, it's affecting everyone. So it's really kind of going through and helping them figure out how they're going to support their users going forward. So we've spun up things like VMware desktop as a service providing that multi-tenant ability to consume on a per desktop basis, but then we've also wrapped around with a lot of security features. So one of the big things is as people are going and distributing where they're working from, that data and access to data is also opened up to those locations. So putting those protections in place to be able to protect the environment and then be able, if something does get in, to be able to detect what's going on. And then of course, with a lot of the other components, being able to recover those environments. So building the desktops, the end user access into the disaster recovery plans. >> And talk more, a little bit Brent, about the security aspect. We've seen the threat landscape change dramatically in the last couple of years, ransomware is a household word. I'm pretty sure even my mom knows what that means, to some degree. Where is that in customer conversations? I can imagine in certain industries like financial services and healthcare with PII, it's absolutely critical to ensure that that data is, they know where it is. It's protected and it's recoverable, 'cause everyone's talking about cyber resilience these days. >> Right. And if it's not conversation 1, it's conversation 1A. So it's really kind of core to everything that we do when we're talking to clients. It's whether it's production DR or the desktops, is building that security in place to help them build their security practice up. So when you think about it, it's doing it at layers. So starting with things like more advanced antivirus to see what's actually going on the desktop and then kind of layering above there. So even up to micro-segmentation, where you can envelop each individual desktop in their own quasi network, so that they're only allowed kind of that zero trust model where, Hey, if you can get to a file share, that's the only place you should be going or do I need web apps to get my day to day job done, but really restricting that access and making sure that everything is more good traffic versus unknown traffic. >> Yeah. >> And also on the, you asked about the clouds smarter earlier. And you can really weave the desktop into that because when you're thinking of your production compute environment and your remote desktop environment, and now you can actually share storage together, you can share security together and you start to get economies of scale across those different environments as well. >> So as we are in August, I think still yeah, 2022, barely for a couple more days, lot of change going on at VMware. Expedient has been VMware America's partner of the year before. Talk to us about some of the things that you think from a strategic perspective are next for the partnership. >> That it's definitely the multi-cloud world is here. And it's how we can go deeper, how we're going to see that really mature. You know, one of the things that we've actually done together this year was we worked on a project and evaluated over 30 different companies of what they spend on IT. Everything from the physical data center to the entire stack, to people and actually build a cloud transformation calculator that allows you to compare strategies, so that if you look at Strategy A over a five year period, doing your current transformation, versus that Cloud Different approach, it can actually help quantify the number of hours difference that you can get, the total cost of ownership and the speed that you can get there. So it's things like that that help people make easier decisions and simplify information are going to be part of it. But without a doubt, it's going to be how you can have that wrapper across all of your different environments that really delivers that cloud-like environment that panacea people have been looking for. >> Yeah. That panacea, that seems like it's critical for every organization to achieve. Last question for you. When customers come to you, when they've hit that plateau. They come to Expedient saying, "Guys, with VMware, help us accelerate past this. "We don't have the time, we need to get this done quickly." How do you advise them to move forward? >> Sure. So it goes back to that, what's causing them to hit that plateau? Is it more on the development side of things? Is it the infrastructure teams, not being able to respond fast enough to the developers? And really putting a plan in place to really get rid of those plateaus. It could be getting rid of the technical debt. It could be changing the IT operations and kind of that, the way that they're looking at a cloud transformation model, to help them kind of get accelerated and get them back on the right path. >> Back on the right path. I think we all want to get back on the right path. Guys, thank you so much for joining David and me on theCUBE today, talking about Expedient Cloud Different, what you're seeing in the marketplace, and how Expedient and VMware are helping customers to succeed. We appreciate your time. >> Yep. >> Thanks for having us. >> For our guests and Dave Nicholson, I'm Lisa Martin. You're watching theCUBE live from VMware Explorer '22, stick around, Dave and I will be back shortly with our next guest. (gentle upbeat music)
SUMMARY :
And Brent Meadows, the Vice President the land of what's going on to get the end result they're looking for. and what it's helping customers to achieve and instead look to in the last couple of years and kind of removing that to get to cloud smart. so that you can get the value out of cloud kind of nudging people to adopt frameworks or that container into the platform and allow them to really look more towards so that the business can that you can really impact the business. Why do customers come to and the way people go to cloud, Just maybe you're too I build those sets with my son, So you also have confidence I'm imagining the things that you would not want agile and faster to market, that allows them to get a and then it swung to multi-cloud, in the last couple of years? and some of the drivers, So fair to assume that and start to do that evaluation? that they're going to just and that is the remote hybrid workforce. What are some of the experiences And one of the biggest things that service to the end users. in the last couple of years, that's the only place you should be going and now you can actually that you think from a and the speed that you can get there. "We don't have the time, we of the technical debt. Back on the right path. with our next guest.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Nicholson | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
Brent Meadows | PERSON | 0.99+ |
Brian Smith | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
August | DATE | 0.99+ |
20% | QUANTITY | 0.99+ |
Brent | PERSON | 0.99+ |
Expedient | ORGANIZATION | 0.99+ |
15 years | QUANTITY | 0.99+ |
99% | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Lego | ORGANIZATION | 0.99+ |
Bryan Smith | PERSON | 0.99+ |
two and a half years | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
three years | QUANTITY | 0.99+ |
each drink | QUANTITY | 0.99+ |
VMware America | ORGANIZATION | 0.99+ |
10 days | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
first initiative | QUANTITY | 0.98+ |
six months | QUANTITY | 0.98+ |
Legos | ORGANIZATION | 0.98+ |
Gartner | ORGANIZATION | 0.98+ |
One | QUANTITY | 0.98+ |
second | QUANTITY | 0.98+ |
pandemic | EVENT | 0.98+ |
VMworld | ORGANIZATION | 0.98+ |
today | DATE | 0.97+ |
over a decade | QUANTITY | 0.97+ |
about 30% | QUANTITY | 0.97+ |
this year | DATE | 0.96+ |
first thing | QUANTITY | 0.96+ |
over 30 different companies | QUANTITY | 0.96+ |
one continent | QUANTITY | 0.95+ |
single word | QUANTITY | 0.95+ |
Moscone West | LOCATION | 0.95+ |
first way | QUANTITY | 0.94+ |
Marvel | ORGANIZATION | 0.94+ |
each individual desktop | QUANTITY | 0.94+ |
Bob Evans Foods | ORGANIZATION | 0.94+ |
VMware | TITLE | 0.93+ |
The Center of the Multi | TITLE | 0.93+ |
this morning | DATE | 0.92+ |
Lisa | PERSON | 0.91+ |
last couple of years | DATE | 0.9+ |
VMware Explore 2022 | TITLE | 0.89+ |
12 months | QUANTITY | 0.89+ |
theCUBE | ORGANIZATION | 0.88+ |
last 12 months | DATE | 0.88+ |
Shishir Shrivastava, TEKsystems & Devang Pandya, TEKsystems | Snowflake Summit 2022
>>Welcome back everyone to the Cube's live coverage of snowflake summit 22, we are live in Las Vegas. Caesar's forum, Lisa Martin, Dave Valante, Dave. This is day one of a lot of wall action on the, >>Yeah. A lot of content on day one. It, it feels like, you know, the, the reinvent fire hose yes. Of announcements feels like a little mini version of that. >>It does. That's a good, that's a good way of putting it. We've been unpacking a lot of the news. That's come out, stick around, lots more coming. We've got two guests joining us from tech systems global services. Please welcome Devon. Pania managing director and Shai Sheva of us senior and Shire. Shrivastava senior manager, guys. Great to have you on the cube. >>Thank you so much. Good to see you. And it's great to be in person. Finally, it's been a long UE, so excited to be here. >>Agree. The keynote this morning was not only standing room only, but there was an overflow area. >>Oh my goodness. We have a hard time getting in and it is unbelievable announcement that we have heard looking forward for an exciting time. Next two days here >>Absolutely exciting. The, the cannon shotgun of announcements this morning was amazing. The innovation that has been happening at snowflake and you know, this clearly as partner has been, it just seems like it's the innovation flywheel is getting faster and faster and faster. Talk to us a little bit, Devon about tech systems. Give us the audience a little bit of an overview of the company, and then talk to us about the partnership with snowflake. >>Sure. Thank you. Lisa tech system global services is a full stack global system integrator working with 8% of fortune 500 customers helping in accelerating their business as well as technology modernization journey. We have been a snowflake partner since 2019, and we are one of the highest accredited sales and technical certification with snowflake. And that's what we have earned as a elite partner or sorry, emerging partner with snowflake last year. And we are one of the top elite partner as well. >>Yeah. So since 2019, I mean, in the keynote this morning, Frank showed it. I think Christian showed it as well in terms of the amount of, of change innovation that's happened since 2019 Ellen, we were talking before we went live to share about the, the last two years, the acceleration of innovation cloud adoption digital transformation. The last two years is kind of knock your head back. You need a yeah. A whiplash collar to deal with that. Talk about what you've seen in the last three years, particularly with the partnership and how quickly they are moving and listening to their customers. >>Yeah. Yeah. I think last two years really has given pretty much every organization, including us and our customers a complete different perspective. And that's, that's the exact thing which Christian was talking about, you know, disruption, that's the that's that has been the core message, which we have seen and we've got it from the customers. And we have worked on that right from the get go. We have, you know, all our tools and technology. We are working hand in hand with snowflake in terms of our offerings, working with customers, we have tools. We talk about, you know, accelerators quote unquote that's that helps our customers, you know, to take it from on-prem systems to all the way to the snowflake data cloud and that too, you know, fraction of seconds. You talk about data, you talk about, you know, code conversion, you talk about data validation. So, you know, there are ample amount of things, you know, in terms of, you know, innovation, all workload, I've heard, you know, those are the buzzwords today, and those are like such an exciting time out here. >>So before the pandemic, you know, digital transformation, it was, it was sort of a thing, but it was, it was also a lot of complacency around it. And then of course, if you weren't in a digital business, you were out of the business and boom. So you talked to bang about the stack. You guys obviously do a lot in cloud migration. What's changed in cloud migration. And how is the stack evolving to accommodate that? >>That's a great question there when last two years, it's absolutely a game changer in terms of the digital transformation. Can we believe that 90% of world's data that we have produced and captured is in last two years? It's, isn't that amazing? Right. And what IDC is predicting by 20 25, 200 terabytes of data is going to be generated. And most of them is going to be unstructured. And what we are fascinated about is only 0.5% of unstructured data is currently analyzed by the organization to look at the immense opportunity in front of us and with Snowflake's data cloud, as well as some of the retail data cloud finance and healthcare data cloud launching, it's going to immensely help in processing that unstructured data and really bring life to the data in making organization and market leader. >>Quick, quick fall, if I could, why is, is such a small, why is so much data dark and not accessible to organizations? What's >>The, that's a, that's a great question. I think it's a legacy that we have been trained such a way that data has to be structured. It needs to be modeled, but last decade or so we have seen note it hasn't required that way. And all the social media data being generated, how we communicate in a world is all arm structure, right? We don't create structured data and put it into the CSV and things like that. It's just a natural human behavior. And I think that's where we see a lot of potential in mining that dataset and bringing, you know, AI ML capabilities from descriptive to diagnostic analysis, moving forward with prescriptive and predictive analytics. And that's what we heard from snowflake in Christian announce, Hey, machine learning workload is going to be the key lot of investment happening last 10 years. Now it's going to, you know, capitalize on those ROI in making quick decisions. >>Should you talk to me about those customer conversations? Obviously they have they've transformed and evolved considerably. Yeah. But for customers that have this tremendous amount of unstructured data, a lot of potential as you talked about dung, but there's gotta be, it's gotta be a daunting task. Oh yeah. But these days, every company has to be a data company to be successful, to be competitive and to deliver the experience that the demanding consumers expect. Yeah. How do you start with customers? Where do they start? What's that conversation like and how can tech systems help them get rid of that kind of that daunting iceberg, if you will and get around >>It. Yeah, yeah, yeah, exactly. And I think you got the right point there. Unstructured data is just the tip of the iceberg we are talking about and we have just scratched little surface of it, you know, it's it's and as the one was mentioning earlier, it's, it's gone out those days, you know, where we are talking about, you know, gigabytes of data or, you know, terabytes. Now we are talking about petabytes and Zab bytes of data, and there are so many, and that's, that's the data insight we are looking for and what else, you know, what best platform you can get better than, you know, snowflake data cloud. You have everything in there. You talk about programmability today. You know, Christian was talking about snow park, you know, that, that gives you all the cutting edge languages. You talk about Java, you talk about scale, you talk about Python, you know, all those languages. >>I mean, there were days when these languages, you need to bring that data to a separate platform, process it and then connect it. Now it is right there. You can connect it and just process it. So I think that's, that's the beginning. And to start the conversation, we always, you know, go ahead and talk to the customers and, you know, understand their perspective, know where they want to start, you know, what are their pain points and where they, they want to go, you know, what's their end goal, you know, how they want to pro proceed, you know, how they want to mature in terms of, you know, data agility and flexibility and you know, how do they want to offer their customers? So that's, that's the basically, you know, that's our, the path forward and that's how we see it. >>And just, >>Just to add on top of that, Dave, sorry about that. What we have seen with our customers, the legacy mindset of creating the data silos, primarily because it's not that they wanted it that way, but there were limitations in terms of either the infrastructure or the unlimited scalability and flexibility and accent extensibility, right? That's why those kind of, you know, work around has been built. But with snowflake unified data cloud platform, you have everything in unified platform and what we are telling our customers, we need to eliminate the Datalog. Yes, data is a new oil, but we need to make sure that you eliminate the Datalog within the enterprise, as well as outside the enterprise to really combine then and get a, you know, valuable insight to be the market leader. >>You know, when the cube started, it was 2010. And I remember we went to Hadoop world and it was a lot of excitement around big data and yes, and it turned out, it didn't quite live up to the expectations. That's an understatement, but we, we learned a lot and we made some strides and, and now we're sort of entering this, this new era, but you know, the, the, the last era was largely this big batch job right now, today. You're seeing real time, you know, we've, we've projected out real time in, is gonna become more and more of a thing. How do you guys see the, the sort of data patterns changing and again, where do you see snowflake fitting in? >>Yeah. Great question. And they, what I would have to say, just in a one word is removing the complexity and moving towards the simplicity. Why the legacy solutions such as big data didn't really work out well, it had all the capabilities, but it was a complex environment. You need to really be, you know, knowing a lot of technical aspect of it. And your data analyst were struggling with that kind of a tool set. So with snowflake simplicity, you can bring citizen data scientists, you can bring your data scientists, you can bring your data analysts, all of them under one platform, and they can all mine the data because it's all sitting in the one environment, are >>You seeing organizations change the way they architect their data teams? And specifically, are you seeing a decentralization of data teams or you see, you mentioned citizen data scientists, are you seeing lines of business take more ownership of the data or is it still cuz again, that big data era created this data science role, the data engineering role, the data pipeline, and it was sort of an extension of the sort of EDW. We had a, a few people, maybe one or two experts who knew how to use the system and you build cubes. And it was sort of a, you know, in order of magnitude more complex than that could maybe do more, but are you seeing it being pushed out to the lines of business? >>That's a great question. And I think what we are seeing in the organization today is this time is absolutely both it and business coming together, hand in hand. It's not that, Hey, it, you do this data pipeline work. And then I will analyze this data. And then we'll, you know, share the dashboards to the CEO. We are seeing more and more cohesiveness within the organization in making a path forward in making the decision intelligence very, very rapid. So I think that's a great change. We don't need to operate in silos. I think it's coming together. And I think it's going to create a win-win combination for our >>Customers. Just to add one more point, what the one has mentioned. I think it's the world of data democratization we are talking about, you know, data is available there, insights. We need to pull it out and you know, just give it to every consumer of the organization and they're ready to consume it. They are, they are hungry. They are ready to take it. You know, that's, that's, that's something, you know, we need to look forward for. >>Well, absolutely look forward to it. And as you talked about, there's so much potential it's we see the tip of the iceberg, right? There's so much underneath that guys. I wish we had more time to continue unpacking this, but thank you so much for joining Dave and me on the program, talking about tech systems and snowflake, what you guys are doing together and what you're enabling those end customers to achieve. We appreciate your insights. >>Yeah. Thank you so much. It's an exciting time for us. And we have been, you know, partnering with snowflake on retail data cloud launch, as well as some upcoming opportunity with manufacturing and also the financial competency that we have earned. So I think it's a great time for us ahead in future. So >>Excellent. Lots to come from Texas systems guys. Thank you. We appreciate your time. Thank you. >>Appreciate it. Thank you. Let it snow. I would say let >>It snow, snow. Let it snow. I like that. You're heard of your life from hot Las Vegas for our guests and Dave ante. I'm Lisa Martin. We are live in Las Vegas. It's not snowing. It's very hot here. We're at the snowflake summit, 22 covering that stick around Dave and I will be joined where next guests in just a moment.
SUMMARY :
Welcome back everyone to the Cube's live coverage of snowflake summit 22, It, it feels like, you know, the, the reinvent fire hose yes. Great to have you on the cube. Thank you so much. The keynote this morning was not only standing room only, but there was an overflow area. We have a hard time getting in and it is unbelievable announcement that we have The innovation that has been happening at snowflake and you know, this clearly as partner has been, And we are one of the top elite partner as well. I think Christian showed it as well in terms of the amount of, of change innovation that's happened since that's the exact thing which Christian was talking about, you know, disruption, that's the that's that has been the So before the pandemic, you know, digital transformation, it was, it was sort of a thing, And most of them is going to be unstructured. in mining that dataset and bringing, you know, AI ML capabilities from descriptive a lot of potential as you talked about dung, but there's gotta be, it's gotta be a daunting task. of the iceberg we are talking about and we have just scratched little surface of it, you know, it's it's and as the one was mentioning And to start the conversation, we always, you know, go ahead and talk to the customers and, That's why those kind of, you know, work around has been built. and now we're sort of entering this, this new era, but you know, the, the, the last era was largely this big you know, knowing a lot of technical aspect of it. And it was sort of a, you know, in order of magnitude more And then we'll, you know, share the dashboards to the CEO. We need to pull it out and you know, And as you talked about, there's so much potential it's we see the And we have been, you know, partnering with snowflake on Lots to come from Texas systems guys. Let it snow. We're at the snowflake summit, 22 covering that stick around Dave and I will be
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Shai Sheva | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Frank | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
one | QUANTITY | 0.99+ |
Shishir Shrivastava | PERSON | 0.99+ |
Shire | PERSON | 0.99+ |
Texas | LOCATION | 0.99+ |
two guests | QUANTITY | 0.99+ |
Java | TITLE | 0.99+ |
Python | TITLE | 0.99+ |
Shrivastava | PERSON | 0.99+ |
last year | DATE | 0.99+ |
2019 | DATE | 0.99+ |
Pania | PERSON | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
90% | QUANTITY | 0.99+ |
8% | QUANTITY | 0.99+ |
both | QUANTITY | 0.98+ |
two experts | QUANTITY | 0.98+ |
one word | QUANTITY | 0.98+ |
Devang Pandya | PERSON | 0.98+ |
Caesar | PERSON | 0.98+ |
Ellen | PERSON | 0.98+ |
one platform | QUANTITY | 0.98+ |
Devon | PERSON | 0.98+ |
0.5% | QUANTITY | 0.97+ |
Snowflake Summit 2022 | EVENT | 0.97+ |
today | DATE | 0.97+ |
Christian | ORGANIZATION | 0.96+ |
day one | QUANTITY | 0.96+ |
20 25, 200 terabytes | QUANTITY | 0.94+ |
TEKsystems | ORGANIZATION | 0.92+ |
this morning | DATE | 0.91+ |
pandemic | EVENT | 0.9+ |
one environment | QUANTITY | 0.89+ |
IDC | ORGANIZATION | 0.88+ |
one more point | QUANTITY | 0.87+ |
last two years | DATE | 0.87+ |
last three years | DATE | 0.86+ |
last 10 years | DATE | 0.85+ |
TEK | PERSON | 0.84+ |
last decade | DATE | 0.8+ |
Lisa | PERSON | 0.74+ |
snowflake summit 22 | EVENT | 0.74+ |
fortune 500 customers | QUANTITY | 0.71+ |
Cube | ORGANIZATION | 0.66+ |
two days | QUANTITY | 0.61+ |
highest accredited sales | QUANTITY | 0.59+ |
petabytes | QUANTITY | 0.55+ |
Devon | ORGANIZATION | 0.52+ |
terabytes | QUANTITY | 0.52+ |
22 | QUANTITY | 0.37+ |
Atri Basu & Necati Cehreli | Root Cause as a Service - Never dig through logs again
(upbeat music) >> Okay, we're back with Atri Basu who is Cisco's resident philosopher who also holds a master's in computer science. We're going to have to unpack that a little bit. And Necati Cehreli, who's technical lead at Cisco. Welcome, guys. Thanks for coming on theCUBE. >> Happy to be here. >> Thanks a lot. >> All right, let's get into it. We want you to explain how Cisco validated the Zebrium technology and the proof points that you have that it actually works as advertised. So first Atri, first tell us about Cisco TAC. What does Cisco TAC do? >> So TAC is otherwise it's an acronym for Technical Assistance Center, is Cisco's support arm, the support organization. And the risk of sounding like I'm spouting a corporate line. The easiest way to summarize what TAC does is provide world class support to Cisco customers. What that means is we have about 8,000 engineers worldwide and any of our Cisco customers can either go on our web portal or call us to open a support request. And we get about 2.2 million of these support requests a year. And what these support requests are, are essentially the customer will describe something that they need done some networking goal that they have that they want to accomplish. And then it's TACs job to make sure that that goal does get accomplished. Now, it could be something like they're having trouble with an existing network solution and it's not working as expected or it could be that they're integrating with a new solution. They're, you know, upgrading devices maybe there's a hardware failure anything really to do with networking support and, you know the customer's network goals. If they open up a case for testing for help then TACs job is to respond and make sure the customer's, you know questions and requirements are met. About 44% of these support requests are usually trivial and, you know can be solved within a call or within a day. But the rest of TAC cases really involve getting into the network device, looking at logs. It's a very technical role. It's a very technical job. You need to be conversed with network solutions, their designs, protocols, et cetera. >> Wow. So 56% non-trivial. And so I would imagine you spend a lot of time digging through logs. Is that true? Can you quantify that like, you know, every month how much time you spend digging through logs and is that a pain point? >> Yeah, it's interesting you asked that because when we started on this journey to augment our support engineers workflow with Zebrium solution, one of the things that we did was we went out and asked our engineers what their experience was like doing log analysis. And the anecdotal evidence was that on average an engineer will spend three out of their eight hours reviewing logs either online or offline. So what that means is either with the customer live on a WebEx, they're going to be going over logs, network, state information, et cetera or they're going to do it offline where the customer sends them the logs it's attached to a, you know, a service request and they review it and try to figure out what's going on and provide the customer with information. So it's a very large chunk of our day. You know, I said 8,000 plus engineers and so three hours a day that's 24,000 man hours a day spent on log analysis. Now the struggle with logs or analyzing logs is there by out of necessity, logs are very contrite. They try to pack a lot of information in a very little space. And this is for performance reasons, storage reasons, et cetera, but the side effect of that is they're very esoteric. So they're hard to read if you're not conversant if you're not the developer who wrote these logs or you aren't doing code deep dives. And you're looking at where this logs getting printed and things like that, it may not be immediately obvious or even after a little while it may not be obvious what that log line means or how it correlates to whatever problem you're troubleshooting. So it requires tenure. It requires, you know, like I was saying before it requires a lot of knowledge about the protocol what's expected because when you're doing log analysis what you're really looking for is a needle in a haystack. You're looking for that one anomalous event, that single thing that tells you this shouldn't have happened, and this was a problem right. Now doing that kind of anomaly detection requires you to know what is normal. It requires, you know, what the baseline is. And that requires a very in depth understanding of, you know the state changes for that network solution or product. So it requires time to near and expertise to do well. And it takes a lot of time even when you have that kind of expertise. >> Wow. So thank you, Atri. And Necati, that's almost two days a week for a technical resource. That's not inexpensive. So what was Cisco looking for to sort of help with this and how'd you stumble upon Zebrium? >> Yeah, so, we have our internal automation system which has been running more than a decade now. And what happens is when a customer attach log bundle or diagnostic bundle into the service request we take that from the Sr we analyze it and we represent some kind of information. You know, it can be alerts or some tables, some graph, to the engineer, so they can, you know troubleshoot this particular issue. This is an incredible system, but it comes with its own challenges around maintenance to keep it up to date and relevant with Cisco's new products or a new version of a product, new defects, new issues and all kind of things. And when I mean with those challenges are let's say Cisco comes up with a product today. We need to come together with those engineers. We need to figure out how this bundle works, how it's structured out. We need to select individual logs, which are relevant and then start modeling these logs and get some values out of those logs, using PaaS or some rag access to come to a level that we can consume the logs. And then people start writing rules on top of that abstraction. So people can say in this log I'm seeing this value together with this other value in another log, maybe I'm hitting this particular defect. So that's how it works. And if you look at it, the abstraction it can fail the next time. And the next release when the development or engineer decides to change that log line which you write that rag X or we can come up with a new version which we completely change the services or processes then whatever you have wrote needs to be re-written for the new service. And we see that a lot with products, like for instance, WebEx where you have a very short release cycle that things can change maybe the next week with a new release. So whatever you are writing, especially for that abstraction and for those rules are maybe not relevant with that new release. With that being said we have a incredible rule creation process and governance process around it which starts with maybe a defect. And then it takes it to a level where we have an automation in place. But if you look at it, this really ties to human bandwidth. And our engineers are really busy working on you know, customer facing, working on issues daily and sometimes creating news rules or these PaaS are not their biggest priorities so they can be delayed a bit. So we have this delay between a new issue being identified to a level where we have the automation to detect it next time that some customer faces it. So with all these questions and with all challenges in mind we start looking into ways of actually how we can automate these automation. So these things that we are doing manually how we can move it a bit further and automate. And we had actually a couple of things in mind that we were looking for and this being one of them being this has to be product agnostic. Like if Cisco comes up with a product tomorrow I should be able to take it logs without writing, you know, complex regs, PaaS, whatever and deploy it into this system. So it can embrace our logs and make sense of it. And we wanted this platform to be unsupervised. So none of the engineers need to create rules, you know, label logs, this is bad, this is good. Or train the system like which requires a lot of computational power. And the other most important thing for us was we wanted this to be not noisy at all because what happens with noises when your level of false positives really high your engineers start ignoring the good things between that noise. So they start the next time, you know thinking that this thing will not be relevant. So we want something with a lot more less noise. And ultimately we wanted this new platform or new framework to be easily adaptable to our existing workflow. So this is where we started. We start looking into the, you know first of all, internally, if we can build this thing and also start researching it, and we came up to Zebrium actually Larry, one of the co-founders of Zebrium. We came upon his presentation where he clearly explained why this is different, how this works and it immediately clicked in and we said, okay, this is exactly what we were looking for. We dive deeper. We checked the block posts where Zebrium guys really explain everything very clearly there. They're really open about it. And most importantly, there is a button in their system. And so what happens usually with AI ML vendors is they have this button where you fill in your details and a sales guys call you back and you know, explains the system here. They were like, this is our trial system. We believe in the system you can just sign up and try it yourself. And that's what we did. We took one of our Cisco live DNA Center, wireless platforms. We start streaming logs out of it. And then we synthetically, you know, introduce errors like we broke things. And then we realized that Zebrium was really catching the errors perfectly. And on top of that, it was really quiet unless you are really breaking something. And the other thing we realized was during that first trial is Zebrium was actually bringing a lot of context on top of the logs. During those failures, we worked with couple of technical leaders and they said, "Okay if this failure happens I'm expecting this individual log to be there." And we found out with Zebrium apart from that individual log there were a lot of other things which gives a bit more context around the root cause, which was great. And that's where we wanted to take it to the next level. Yeah. >> Okay. So, you know, a couple things to unpack there. I mean, you have the dart board behind you which is kind of interesting, 'cause a lot of times it's like throwing darts at the board to try to figure this stuff out. But to your other point, Cisco actually has some pretty rich tools with AppD and doing observability and you've made acquisitions like thousand eyes. And like you said, I'm presuming you got to eat your own dog food or drink your own champagne. And so you've got to be tools agnostic. And when I first heard about Zebrium, I was like wait a minute. Really? I was kind of skeptical. I've heard this before. You're telling me all I need is plain text and a timestamp. And you got my problem solved. So, and I understand that you guys said, okay let's run a POC. Let's see if we can cut that from, let's say two days a week down to one day, a week. In other words, 50%, let's see if we can automate 50% of the root cause analysis. And so you funded a POC. How did you test it? You put, you know, synthetic, you know errors and problems in there, but how did you test that, it actually works Necati? >> Yeah. So we wanted to take it to the next level which is meaning that we wanted to back test is with existing SaaS. And we decided, you know, we chose four different products from four different verticals, data center security, collaboration, and enterprise networking. And we find out SaaS where the engineer put some kind of log in the resolution summary. So they closed the case. And in the summary of the SR, they put "I identified these log lines and they led me to the root cause" and we ingested those log bundles. And we tried to see if Zebrium can surface that exact same log line in their analysis. So we initially did it with archery ourself and after 50 tests or so we were really happy with the results. I mean, almost most of them we saw the log line that we were looking for but that was not enough. And we brought it of course to our management and they said, "Okay, let's try this with real users" because the log being there is one thing but the engineer reaching to that log is another take. So we wanted to make sure that when we put it in front of our users, our engineers, they can actually come to that log themselves because, you know, we know this platform so we can, you know make searches and find whatever we are looking for but we wanted to do that. So we extended our pilots to some selected engineers and they tested with their own SaaS. Also due some back testing for some SaaS which are closed in the past or recently. And with a sample set of, I guess, close to 200 SaaS we find out like majority of the time, almost 95% of the time the engineer could find the log they were looking for in Zebrium's analysis. >> Yeah. Okay. So you were looking for 50%, you got the 95%. And my understanding is you actually did it with four pretty well known Cisco products, WebEx client, DNA Center Identity services, engine ISE, and then UCS. Unified pursuit. So you use actual real data and that was kind of your proof point, but Atri, so that sounds pretty impressive. And have you put this into production now and what have you found? >> Well, yes, we've launched this with the four products that you mentioned. We're providing our TAC engineers with the ability, whenever a support bundle for that product gets attached to the support request. We are processing it, using sense and then providing that sense analysis to the TAC engineer for their review. >> So are you seeing the results in production? I mean, are you actually able to reclaim that time that people are spending? I mean, it was literally almost two days a week down to you know, a part of a day, is that what you're seeing in production and what are you able to do with that extra time and people getting their weekends back? Are you putting 'em on more strategic tasks? How are you handling that? >> Yeah. So what we're seeing is, and I can tell you from my own personal experience using this tool that troubleshooting any one of the cases, I don't take more than 15 to 20 minutes to go through the Zebrium report. And I know within that time either what the root causes or I know that Zebrium doesn't have the information that I need to solve this particular case. So we've definitely seen, well it's been very hard to measure exactly how much time we've saved per engineer, right? Again, anecdotally, what we've heard from our users is that out of those three hours that they were spending per day, we're definitely able to reclaim at least one of those hours and what even more importantly, you know, what the kind of feedback that we've gotten in terms of I think one statement that really summarizes how Zebrium's impacted our workflow was from one of our users. And they said, "Well, you know, until you provide us with this tool, log analysis was a very black and white affair, but now it's become really colorful." And I mean, if you think about it log analysis is indeed black and white. You're looking at it on a terminal screen where the background is black and the text is white, or you're looking at it as a text where the background is white and the text is black, but what they're really trying to say is there are hardly any visual cues that help you navigate these logs which are so esoteric, so dense, et cetera. But what Zebrium does is it provides a lot of color and context to the whole process. So now you're able to quickly get to, you know using their Word Cloud, using their interactive histogram, using the summaries of every incident. You're very quickly able to summarize what might be happening and what you need to look into. Like, what are the important aspects of this particular log bundle that might be relevant to you? So we've definitely seen that. A really great use case that kind of encapsulates all of this was very early on in our experiment. There was this support request that had been escalated to the business unit or the development team. And the TAC engineer had really, they had an intuition about what was going wrong because of their experience because of, you know the symptoms that they'd seen. They kind of had an idea but they weren't able to convince the development team because they weren't able to find any evidence to back up what they thought was happening. And it was entirely happenstance that I happened to pick up that case and did an analysis using Zebrium. And then I sat down with a TAC engineer and we were very quickly within 15 minutes we were able to get down to the exact sequence of events that highlighted what the customer thought was happening, evidence of what the sorry not the customer what the TAC engineer thought was a root cause. And then we were able to share that evidence with our business unit and, you know redirect their resources so that we could chase down what the problem was. And that that really shows you how that color and context helps in log analysis. >> Interesting. You know, we do a fair amount of work in theCUBE in the RPA space, the robotic process automation and the narrative in the press when our RPA first started taking off was, oh, it's, you know machines replacing humans, or we're going to lose jobs. And what actually happened was people were just eliminating mundane tasks and the employees actually very happy about it. But what my question to you is was there ever a reticence amongst your team? Like, oh, wow, I'm going to lose my job if the machine's going to replace me or have you found that people were excited about this and what's been the reaction amongst the team? >> Well, I think, you know, every automation and AI project has that immediate gut reaction of you're automating away our jobs and so forth. And there is initially there's a little bit of reticence but I mean, it's like you said once you start using the tool, you realize that it's not your job, that's getting automated away. It's just that your job's becoming a little easier to do and it's faster and more efficient. And you're able to get more done in less time. That's really what we're trying to accomplish here. At the end of the day, Zebrium will identify these incidents. They'll do the correlation, et cetera. But if you don't understand what you're reading then that information's useless to you. So you need the human you need the network expert to actually look at these incidents, but what we are able to skin away or get rid of is all of is all the fat that's involved in our process like without having to download the bundle, which, you know when it's many gigabytes in size and now we're working from home with the pandemic and everything, you're, you know pulling massive amounts of logs from the corporate network onto your local device that takes time and then opening it up, loading it in a text editor that takes time. All of these things are we're trying to get rid of. And instead we're trying to make it easier and quicker for you to find what you're looking for. So it's like you said, you take away the mundane you take away the difficulties and the slog but you don't really take away the work the work still needs to be done. >> Yeah, great. Guys, thanks so much appreciate you sharing your story. It's quite, quite fascinating. Really. Thank you for coming on. >> Thanks for having us. >> You're very welcome. >> Excellent. >> Okay. In a moment, I'll be back to wrap up with some final thoughts. This is Dave Vellante and you're watching theCUBE. (upbeat music)
SUMMARY :
We're going to have to that you have that it the customer's, you know And so I would imagine you spend a lot it's attached to a, you and how'd you stumble upon Zebrium? And the other thing we realized was And like you said, I'm And we decided, you know, and what have you found? with the four products that you mentioned. And they said, "Well, you But what my question to you is the bundle, which, you know you sharing your story. I'll be back to wrap up
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
one day | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
Larry | PERSON | 0.99+ |
Necati Cehreli | PERSON | 0.99+ |
95% | QUANTITY | 0.99+ |
Zebrium | ORGANIZATION | 0.99+ |
56% | QUANTITY | 0.99+ |
Atri | PERSON | 0.99+ |
eight hours | QUANTITY | 0.99+ |
Atri Basu | PERSON | 0.99+ |
TACs | ORGANIZATION | 0.99+ |
Necati | ORGANIZATION | 0.99+ |
50 tests | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
TAC | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
about 8,000 engineers | QUANTITY | 0.98+ |
single | QUANTITY | 0.98+ |
first trial | QUANTITY | 0.98+ |
three hours | QUANTITY | 0.98+ |
four products | QUANTITY | 0.98+ |
a week | QUANTITY | 0.98+ |
next week | DATE | 0.98+ |
pandemic | EVENT | 0.97+ |
about 2.2 million | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
three | QUANTITY | 0.97+ |
Word Cloud | TITLE | 0.96+ |
UCS | ORGANIZATION | 0.96+ |
more than a decade | QUANTITY | 0.95+ |
one statement | QUANTITY | 0.95+ |
20 minutes | QUANTITY | 0.95+ |
two days a week | QUANTITY | 0.94+ |
About 44% | QUANTITY | 0.93+ |
tomorrow | DATE | 0.93+ |
15 minutes | QUANTITY | 0.92+ |
almost two days a week | QUANTITY | 0.92+ |
more than 15 | QUANTITY | 0.92+ |
AppD | TITLE | 0.92+ |
one thing | QUANTITY | 0.91+ |
almost 95% | QUANTITY | 0.91+ |
a year | QUANTITY | 0.91+ |
four different products | QUANTITY | 0.9+ |
8,000 plus engineers | QUANTITY | 0.88+ |
three hours a day | QUANTITY | 0.88+ |
four | QUANTITY | 0.86+ |
200 SaaS | QUANTITY | 0.86+ |
Atri | ORGANIZATION | 0.86+ |
24,000 man hours a day | QUANTITY | 0.84+ |
a day | QUANTITY | 0.84+ |
ISE | TITLE | 0.8+ |
Michael Ferranti, Teleport | Kubecon + Cloudnativecon Europe 2022
>>The cube presents Koon and cloud native con Europe, 2022, brought to you by red hat, the cloud native computing foundation and its ecosystem partners. >>Welcome to Valencia Spain and CubeCon cloud native con Europe, 2022 I'm cube Townsend, along with Paul Gill, senior editor, enterprise architecture at Silicon angle. We are talking to some incredible folks this week, continuing the conversation around enabling developers to do their work. Paul you've said that this conference is about developers. What are you finding key as a theme running throughout the show >>That that developers really need a whole set of special tools. You know, it's not the end user, the end user tools, the end user access controls the authentication it's developers need a need their own to live their in their own environment. They need their own workflow tools, their own collaboration and their own security. And that's where teleport comes in. >>So speaking of teleport, we have Michael fork, chief marking our officer at teleport new world role for you. First, tell me about how long have you been at teleport now >>Going on seven or eight months now, >>Seven or eight months in this fast moving market. I'm I'm going to tell you a painful experience I've had in this new world. We've built applications. We've moved fast audits come in. The auditors have come in and they said, you know what, who authorized this change to the cluster? And we'll go into the change ticket and say, this person authorized the changes and the change ticket. And then they'll ask for trace back. Okay. Show me the change. What do it mean? Show you the changes. It just happened. >>Yeah. Check, check GitHub. >>Yeah, check GI, get, see, we, we, we, we said we were gonna make the changes, the change happen. That's not enough. What are CU, how are you helping customers solve this access control and audit problem? >>Yeah, that's a great question. There're kind of, there're kind of two, two sides to the puzzle. And actually I think that the intro hits it. Well, you you've talked about kind of developer experience needing needing tools to more efficiently do the job as a practitioner. And you're coming at it from kind of a security and compliance angle. And there's a tension between both of those teams. It's like, you know, there's, there's a tension between dev and ops before we created DevOps. There's also a tension between kind of security teams and developers. So we've created dev SecOps. What that means is you need an easy way for developers to get access, access to the resources they needed through their jobs. That's, you know, Linux hosts and databases and Kubernetes clusters and, you know, monitoring dashboards and managing all of those credentials is quite cumbersome. If I need to access a dozen systems, then you know, I'm using SSH keys to access this. >>I have admin credentials for my database. I I'm going through a VPN to access an internal dashboard, teleport, consolidates, all of that access into a single login via your identity provider, Okta active directory, but then on the security and compliance side, we make it really easy for that compliance officer. When they say, show me that change, we have all of the audit logs. That's that show exactly what changes Keith made when he logged into, into that system. And in fact, one of the booths behind here is talking about E B P F a modern way to get that kind of kernel level grade granularity. We build all of that observability into teleport to make the security and compliance teams happy. And the engineering teams a lot more productive. >>Where do the, the access control tools like Okta, you mentioned fall short. I mean, why, why is there a need for your level of, of control at the control plane? >>Yeah. When you, when you start to talk about authorization, authentication, audit at the infrastructure level, each of these technologies has its own way of managing what kind of in, in the jargon often and Ze, right? Authentication authorization. So you have SSH for, for Linux. Kubernetes has its own way of doing authorization. All of the database providers have their own way and it's quite complicated, right? It's, it's much different. So, you know, if I'm gonna access office 365 or I'm gonna a access Salesforce, right. I'm really talking about the HTTP protocol. It's relatively trivial to implement single sign on for web-based applications. But when we start talking about things that are happening at the Linux kernel level, or with Kubernetes, it's quite complicated to build those integrations. And that's where teleport extends what you have with your IDP. So for instance, Okta, lots of our customers use Okta as their identity provider, but then teleport takes those roles and applies them and enforces them at the actual infrastructure level. >>So if I'm a lay developer, I'm looking at this thinking, you know, I, I have service mesh, I've implemented link D SEO or something to that level. And I also have Ansible and Ansible has security, etcetera. What, what role, or how does that integrate to all together from a big picture perspective? >>Yeah. So >>What, one of the, kind of the meta themes at teleport is we, we like to, we like to say that we are fighting complexity cuz as we build new technologies, we tend to run the new tech on top of the old tech. Whereas for instance, when you buy a new car, you typically don't, you know, hook the old car to the back and then pull it around with you. Right? We, we replace old technology with new technology, but in infrastructure that doesn't happen as often. And so you end up with kind of layers of complexity with one protocol sitting on top of another protocol on top of another protocol. And what teleport does is for the access control plane, we, we kind of replace the legacy ways of doing authentication authorization and audit with a new modern experience. But we allow you to continue to use the existing tools. >>So we don't replace, for instance, you know, your configuration management system, you can keep using Ansible or, or salt or Jenkins, but teleport now is gonna give those, those scripts or those pipelines in identity that you can define. What, what should Ansible be able to do? Right? If, cuz people are worried about supply chain attacks, if a, if a vulnerable dependency gets introduced into your supply chain pipeline and your kind of Ansible playbook goes crazy and starts deploying that vulnerability everywhere, that's probably something you wanna limit with teleport. You can limit that with an identity, but you can still use the tools that you're, that you're used to. >>So how do I guarantee something like an ex-employee doesn't come in and, and initiate Ansible script that was sitting in the background just waiting to happen until, you know, they left. >>Yeah. Great question. It's there's kind of the, the, the great resignation that's happening. We did a survey where actually we asked the question kind of, you know, can you guarantee that X employees can no longer access your infrastructure? And shockingly like 89% of companies could not guarantee that it's like, wow, that's like that should, that should be a headline somewhere. And we actually just learned that there are on the dark web, there are people that are targeting current employees of Netflix and Uber and trying to buy credentials of those employees to the infrastructure. So it's a big problem with teleport. We solve this in a really easy, transparent way for developers. Everything that we do is based on short lift certificates. So unlike a SSH key, which exists until you decommission it, shortlist certificates by, by default expire. And if you don't reissue them based on a new login based on the identity, then, then you can't do anything. So even a stolen credential kind of the it's value decreases dramatically over time. >>So that statistic or four out of five companies can't guarantee X employees can't access infrastructure. Why is simply removing the employee from the, you know, from the L app or directory decommissioning their login credentials. Why is that not sufficient? >>Well, it, it depends on if everything is integrated into your identity provider and because of the complexities of accessing infrastructure, we know that developers are creative people. And by, by kind of by definition, they're able to create systems to make their lives easier. So one thing that we see developers doing is kind of copying an SSH key to a local notepad on, on their computer. So they essentially can take that credential out of a vault. They can put it somewhere that's easier for them to access. And if you're not rotating that credential, then I can also, you know, copy it to a, to a personal device as well. Same thing for shared admin credentials. So the, the, the issue is that those credentials are not completely managed in a unified way that enables the developer to not go around the system in order to make their lives easier. >>But rather to actually use the system, there's a, there's a market called privilege access management that a lot of enterprises are using to kind of manage credentials for their developers, but it's notoriously disruptive to developer workflows. And so developers kind of go around the system in order to make their jobs easier. What teleport does is we obviate the need to go around the system, cuz the simplest thing is just to come in in the morning, log in one time to my identity provider. And now I have access to all of my servers, all of my databases, all of my Kubernetes clusters with a short lift certificate, that's completely transparent. And does >>This apply to, to your, both your local and your cloud accounts? >>Yes. Yes, exactly. >>So as a security company, what's driving the increase in security breaches. Is it the lack of developer hygiene? Is it this ex-employee great resignation bill. Is it external intruders? What's driving security breaches today. >>Yes. >>It's you know, it's, it's all of those things. I think if I had to put, give you a one word answer, I would say complexity. The systems that we are building are just massively complex, right? Look at how many vendors there are at this show in order to make Kubernetes easy to use, to do what its promises. It's just, we're building very complex systems. When you build complex systems, there's a lot of back doors, we call it kind of a tax surface. And that's why for every new thing that we introduce, we also need to think about how do we remove old layers of the stack so that we can simplify so that we can consolidate and take advantage of the power of something like Kubernetes without introducing security vulnerabilities. >>One of the problems or challenges with security solutions is, you know, you there's this complexity versus flexibility knob that you, you need to be careful of. What's the deployment experience in integration experience for deploying teleport. >>Yeah, it's it, we built it to be cloud native to feel like any other kind of cloud native or Kubernetes like solution. So you basically, you deploy it using helm chart, you deploy it using containers and we take care of all of the auto configuration and auto update. So that it's just, it's, it's part of your stack and you manage it using the same automation that you use to manage everything else. That's a, that's a big kind of installation and developer experience. Part of it. If it's complex to use, then not only are developers not gonna use it. Operations teams are not gonna want to have to deal with it. And then you're left with doing things the old way, which is very unsatisfactory for everybody. >>How does Kubernetes change the security equation? Are there vulnerabilities? It introduces to the, to the stack that maybe companies aren't aware of >>Almost by definition. Yes. Kind of any new technology is gonna introduce new security vulnerabilities. That's the that's that is the result of the complexity, which is, there are things that you just don't know when you introduce new components. I think kind of all of the supply chain vulnerabilities are our way of looking at that, which is we have, you know, Kubernetes is itself built on a lot of dependencies. Those dependencies themselves could have security vulnerabilities. You might have a package that's maintained by one kind of hobbyist developer, but that's actually deployed across hundreds of thousands of applications across, across the internet. So again, it's about one understanding that that complexity exists and then saying, is there a way that we can kind of layer on a solution that provides a common layer to let us kind of avoid that complexity and say, okay, every critical action needs to be authorized with an identity that way if it's automated or if it's human, I have that level of assurance that a hacked Ansible pipeline is not going to be able to introduce vulnerabilities across my entire infrastructure. >>So one of the challenges for CIOs and CTOs, it's the lack of developer resources and another resulting pain point that compounds that issue is rework due to security audits is teleport a source of truth that when a auditor comes in to audit a, a, a, a C I C D pipeline that the developer or, or operations team can just say, Hey, here's, self-service get what you need. And come back to us with any questions or is there a second set of tools we have to use to get that audit and compliance reporting? >>Yeah, it's teleport can be that single source of truth. We can also integrate with your other systems so you can export all of the, what we call access logs. So every, every behavior that took place, every query that was run on a database, every, you know, curl command that was run on a Lennox, host, teleport is creating a log of that. And so you can go in and you can filter and you can view those, those actions within teleport. But we also integrate with other systems that, that people are using, you have its Splunk or Datadog or whatever other tool chain it's really important that we integrate, but you can also use teleport as that single source. So >>You can work with the observability suites that are now being >>Installed. Yeah, there, the, the wonderful thing about kind of an ecosystem like Kubernetes is there's a lot of standardization. You can pick your preferred tool, but under the hood, the protocols for taking a log and putting it in another system are standardized. And so we can integrate with any of the tools that developers are already using. >>So how big is teleport when I'm thinking about a, from a couple of things big as in what's the footprint and then from a developer operations team overhead, is this kind of a set and forget it, how much care feed and maintenance does it >>Need? So it's very lightweight. We basically have kind of two components. There's the, the access proxy that sits in front of your infrastructure. And that's what enables us to, you know, regardless of the complexity that sits across your multi data center footprint, your traditional applications, running on windows, your, your, your modern applications running on, you know, Linux and Kubernetes, we provide seamless access to all of that. And then there's an agent that runs on all of your hosts. And this is the part that can be deployed using yo helm or any other kind of cloud native deployment methodology that enables us to do the, the granular application level audit. For instance, what queries are actually being run on CockroachDB or on, on Postgres, you know, what, what CIS calls are running on Linnux kernel, very lightweight automation can be used to install, manage, upgrade all of it. And so from an operations perspective, kind of bringing in teleport shouldn't be any more complicated than running any application on a container. That's, that's the design goal and what we built for our customers. >>If I'm in a hybrid environment, I'm transitioning, I'm making the migration to teleport. Is this a team? Is this a solution that sits only on the Kubernetes cloud native side? Or is this something that I can trans transition to initially, and then migrate all of my applications to, as I transition to cloud native? >>Yeah. We, there are kind of, no, there are no cloud native dependencies for teleport. Meaning if you are, you're a hundred percent windows shop, then we support for instance, RDP. That's the way in which windows handles room access. If you have some applications that are running on Linux, we can support that as well. If you've got kind of the, you know, the complete opposite in the spectrum, you're doing everything, cloud native containers, Kubernetes, everything. We also support that. >>Well, Michael, I really appreciate you stopping by and sharing the teleport story. Security is becoming an obvious pain point for cloud native and container management. And teleport has a really good story around ensuring compliance and security from Licia Spain. I'm Keith towns, along with Paul Gillon and you're watching the cue, the, the leader, not the, the leader two, the high take tech coverage.
SUMMARY :
The cube presents Koon and cloud native con Europe, 2022, brought to you by red hat, What are you finding key it's developers need a need their own to live their in their own environment. how long have you been at teleport now I'm going to tell you a painful experience I've had in this new world. What are CU, how are you helping customers solve this If I need to access a dozen systems, then you know, I'm using SSH keys to access And in fact, one of the booths behind here is talking about E B P F a modern way you mentioned fall short. And that's where teleport extends what you have with your IDP. you know, I, I have service mesh, I've implemented link D SEO or And so you end up with kind of layers of complexity with one protocol So we don't replace, for instance, you know, your configuration management system, waiting to happen until, you know, they left. a new login based on the identity, then, then you can't do anything. Why is simply removing the employee from the, you know, from the L app or directory decommissioning their you know, copy it to a, to a personal device as well. And so developers kind of go around the system in order to make their jobs easier. Is it the lack of developer hygiene? I think if I had to put, give you a one word answer, One of the problems or challenges with security solutions is, you know, So you basically, you deploy it using helm chart, you deploy it using which is we have, you know, Kubernetes is itself built on a lot of dependencies. the developer or, or operations team can just say, Hey, here's, self-service get what you need. But we also integrate with other systems that, that people are using, you have its Splunk or Datadog or whatever And so we can integrate with any of the tools that developers to, you know, regardless of the complexity that sits across your multi data center footprint, Or is this something that I can trans transition to initially, and then migrate all of my applications the, you know, the complete opposite in the spectrum, you're doing everything, cloud native containers, Kubernetes, Well, Michael, I really appreciate you stopping by and sharing the teleport story.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Michael | PERSON | 0.99+ |
Paul Gill | PERSON | 0.99+ |
Keith | PERSON | 0.99+ |
seven | QUANTITY | 0.99+ |
Paul | PERSON | 0.99+ |
Paul Gillon | PERSON | 0.99+ |
Michael Ferranti | PERSON | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
89% | QUANTITY | 0.99+ |
Seven | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
eight months | QUANTITY | 0.99+ |
five companies | QUANTITY | 0.99+ |
Michael fork | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
one word | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
two sides | QUANTITY | 0.99+ |
GitHub | ORGANIZATION | 0.99+ |
four | QUANTITY | 0.99+ |
Kubecon | ORGANIZATION | 0.98+ |
Teleport | ORGANIZATION | 0.98+ |
each | QUANTITY | 0.98+ |
one thing | QUANTITY | 0.98+ |
Linux | TITLE | 0.97+ |
Cloudnativecon | ORGANIZATION | 0.97+ |
one time | QUANTITY | 0.97+ |
single | QUANTITY | 0.97+ |
one protocol | QUANTITY | 0.97+ |
second set | QUANTITY | 0.96+ |
two components | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.96+ |
windows | TITLE | 0.95+ |
single source | QUANTITY | 0.95+ |
this week | DATE | 0.95+ |
One | QUANTITY | 0.95+ |
today | DATE | 0.94+ |
Ansible | ORGANIZATION | 0.94+ |
office 365 | TITLE | 0.94+ |
2022 | DATE | 0.93+ |
Koon | ORGANIZATION | 0.92+ |
a dozen systems | QUANTITY | 0.92+ |
hundreds of thousands of applications | QUANTITY | 0.92+ |
single login | QUANTITY | 0.91+ |
Valencia Spain | LOCATION | 0.91+ |
Postgres | ORGANIZATION | 0.9+ |
Linux kernel | TITLE | 0.89+ |
hundred percent | QUANTITY | 0.87+ |
Europe | LOCATION | 0.85+ |
red hat | ORGANIZATION | 0.85+ |
Okta | ORGANIZATION | 0.84+ |
Lennox | ORGANIZATION | 0.84+ |
CU | ORGANIZATION | 0.84+ |
Jenkins | TITLE | 0.81+ |
Splunk | ORGANIZATION | 0.8+ |
SecOps | TITLE | 0.79+ |
teleport | ORGANIZATION | 0.77+ |
Salesforce | TITLE | 0.75+ |
Ansible | TITLE | 0.73+ |
Datadog | ORGANIZATION | 0.73+ |
HTTP | OTHER | 0.73+ |
CockroachDB | TITLE | 0.69+ |
GI | ORGANIZATION | 0.68+ |
Okta | TITLE | 0.68+ |
Kubernetes | ORGANIZATION | 0.66+ |
E B P F | TITLE | 0.65+ |
cloud native con | EVENT | 0.63+ |
Jason Buffington, Veeam | VeeamON 2022
(upbeat music) >> Welcome back to theCUBE's coverage of VEEMON 2022. We're here at the Aria in Las Vegas. Dave Vellante with David Nicholson, my co-host for the week, two days at wall to wall coverage. Jason Buffington is here, JBuff, who does some amazing work for VEEAM, former Analyst from the Enterprise Strategy Group. So he's got a real appreciation for independence data, and we're going to dig into some data. You guys, I got to say, Jason, first of all, welcome back to theCUBE. It's great to see you again. >> Yeah, two and a half years, thanks for having me back. >> Yeah, that's right. (Jason laughs) Seems like a blur. >> No doubt. >> But so here's the thing as analysts, you can appreciate this, the trend is your friend, right? and everybody just inundates you with now, ransomware. It's the trend. So you get everybody's talking about the ransomware, cyber resiliency, immutability, air gaps, et cetera. Okay, great. Technology's there, it's kind of like the NFL, everybody kind of does the same thing. >> There's a lot of wonderful buzzwords in that sentence. >> Absolutely, but what you guys have done that's different is you brought in some big time thought leadership, with data and survey work which of course as an analyst we love, but you drive strategies off of this. So you got to, I'll set it up. You got a new study out that's pivoted off of February study of 3,600 organizations, and then you follow that up with a thousand organizations that actually got hit with ransomware. So tell us more about the study and the work that you've done there. >> Yeah, I got to say I have the best job ever. So I spent seven years as an analyst. And when I decided I didn't want to be an analyst anymore, I called VEEAM and said, I'd like to get in the fight and they let me in. But they let me do independent research on their behalf. So it's kind of like being an in-house counsel. I'm an in-house analyst. And for the beginning of this year, in February, we published a report called the Data Protection Trends Report. And it was over 3000 responses, right? 28 countries around the world looking at digital transformation, the effects of COVID, where are they are on BAS and DRS. But one of the new areas we wanted to look at was how pervasive is ransomware? How does that align with BCDR overall? So some of those just big thought questions that everyone's trying to solve for. And out of that, we said, "Wow, this is really worth double clicking." And so today, actually about an hour ago we published the Ransomware Trends Report and it's a thousand organizations all of which have all been survived. They all had a ransomware attack. One of the things I think I'm most proud of for VEEAM in this particular project, we use an independent research firm. So no one knows it's VEEAM that's asking the questions. We don't have any access to the respondents along the way. I wish we did, right? >> Yeah, I bet >> Go sell 'em back up software. But of the thousands 200 were CISOs, 400 were security professionals which we don't normally interact with, 200 backup admins, 200 IT ops, and the idea was, "Okay, you've all been through a really bad day. Tell us from your four different views, how did that go? What did you solve for? What did you learn? What are you moving forward with?" And so, yeah, some great learnings all around helping us understand how do we deliver solutions that meet their needs? >> I mean, there's just not enough time here to cover all this data. And I think I like about it is, like you said, it's a blind survey. You used an independent third party whom I know they're really good. And you guys are really honest about it. It's like, it was funny that the analyst called today for the analyst meeting when Danny was saying if 54% and Dave Russell was like, it's 52%, actually ended up being 53%. (Jason laughs) So, whereas many companies would say 75%. So anyway, what were some of the more striking findings of that study? Let's get into it a little bit. >> So a couple of the ones that were really startling for me, on average about one in four organizations say they have not been hit. But since we know that ransomware has a gestation for around 200 days from first intrusions, so when you have that attack, 25% may be wrong. That's 25% in best case. Another 16% said they only got hit once in the last year. And that means 60%, right on the money got hit more than once per year. And so when you think about it's like that school bully Once they take your lunch money once and they want lunch money, again, they just come right back again. Did you fix this hole? Did you fix that hole? Cool, payday. And so that was really, really scary. Once they get in, on average organizations said 47% of their production data was encrypted. Think about that. So, and we tested for, hey, was it in the, maybe it's just in the ROBO. So on the edge where the tech isn't as good, or maybe it's in the cloud because it's in a broad attack surface. Whatever it is, turns out, doesn't matter. >> So this isn't just nibbling around the edges. >> No. >> This is going straight to the heart of the enterprise. >> 47% of production data, regardless of where it's stored, data center ROBO or cloud, on average was encrypted. But what I thought was really interesting was when you look at the four personas, the security professional and the backup admin. The person responsible for prevention or mediation, they saw a much higher rate of infection than the CSOs and the IT pros, which I think the meta point there is the closer you are to the problem. the worst this is. 47% is bad. it's worse than that. As you get closer to it. >> The other thing that struck me is that a large proportion of, I think it was a third of the companies that paid ransom. >> Oh yeah. >> Weren't able to recover it. Maybe got the keys and it didn't work or maybe they never got the keys. >> That's crazy too. And I think one thing that a lot of folks, you watch the movies and stuff and you think, "Oh, I'm going to pay the Bitcoin. I'm going to get this magic incantation key and all of a sudden it's like it never happened. That is not how this works. And so yeah. So the question actually was did you pay and did it work right? And so 52%, just at half of organization said, yes. I paid and I was able to recover it. A third of folks, 27%. So a third of those that paid, they paid they cut the check, they did the ransom, whatever, and they still couldn't get back. Almost even money by the way. So 24% paid, but could not get back. 19% did not pay, but recovered from backup. VEEAM's whole job for all of 2022 and 23 needs to be invert that number and help the other 81% say, "No, I didn't pay I just recovered." >> Well, in just a huge number of cases they attacked the backup Corpus. >> Yes. >> I mean, that's was... >> 94% >> 94%? >> 94% of the time, one of the first intrusions is to attempt to get rid of the backup repository. And in two thirds of all cases the back repository is impacted. And so when I describe this, I talk about it this way. The ransomware thief, they're selling a product. They're selling your survivability as a product. And how do you increase the likelihood that you will buy what they're selling? Get rid of the life preserver. Get rid of their only other option 'cause then they got nothing left. So yeah, two thirds, the backup password goes away. That's why VEEAM is so important around cloud and disk and tape, immutable at every level. How we do what we do. >> So what's the answer here. We hear things like immutability. We hear terms like air gap. We heard, which we don't hear often, is orchestrated recovery and automated recovery. I wonder if you could get, I want to come back to... So, okay. So you're differentiating with some thought leadership, that's nice. >> Yep. >> Okay, good. Thank you. The industry thanks you for that free service. But how about product and practices? How does VEEAM differentiate in that regard? >> Sure. Now full disclosure. So when you download that report, for every five or six pages of research, the marketing department is allowed to put in one paragraph. It says, this is our answer. They call the VEEAM perspective. That's their rebuttal. To five pages of research, they get one paragraph, 250 word count and you're done. And so there is actually a commercial... >> We're here to buy here in. (chuckles) >> To the back of that. It's how we pay for the research. >> Everybody sells an onset. (laughs) >> All right. So let's talk about the tech that actually matters though, because there actually are some good insights there. Certainly the first one is immutability. So if you don't have a survivable repository you have no options. And so we provide air gaping, whether you are cloud based. So your favorite hyper-scale or one of the tens of thousands of cloud service providers that offer VEEAM products. So you can have, immutability at the cloud layer. You can certainly have immutability at the object layer on-prem or disk. We're happy to use all your favorite DDoS and then tape. It is hard to get more air-gaped and take the tape out drive, stick it on a shelf or stick it in a white van and have it shipped down the street. So, and the fact that we aren't dependent on any architecture, means choose your favorite cloud, choose your favorite disc, choose your favorite tape and we'll make all of 'em usable and defendable. So that's super key Number one. Super key number two there's three. >> So Platform agnostic essentially. >> Yeah. >> Cloud platform agenda, >> Any cloud, any physical, we work happily with everybody. Just here for your data. So, now you know you have at least a repository, which is not affectable. The next thing is you need to know, do you actually have recoverable data? And that's two different questions. >> How do you know? Right, I mean... >> You don't. So one of my colleagues, Chris Hoff, talks about how you can have this Nalgene bottle that makes sure that no water spills. Do you know that that's water? Is it vodka? Is it poison? You don't know. You just know that nothing's spilling out of it. That's an immutable repository. Then you got to know, can you actually restore the data? And so automating test restores every night, not just did the backup log work. Only 16% actually test their backups. That breaks my heart. That means 84% got it wrong. >> And that's because it just don't have the resource or sometimes testing is dangerous. >> It can be dangerous. It can also just be hard. I mean, how do you spend something up without breaking what's already live. So several years ago, VEEAM created the sandbox is what we call a data lab. And so we create a whole framework for you with a proxy that goes in you can stand up whatever you want. You can, if file exists, you can ping it, you can ODBC SQL, you can map the exchange. I mean, you can, did it actually come up. >> You can actually run water through the recovery pipes. >> Yes. >> And tweak it so that it actually works. >> Exactly. So that's the second thing. And only 16% of organizations do. >> Wow. >> And then the third thing is orchestration. So there's a lot of complexity that happens when you recover one workload. There is a stupid amount of complexity happens when you try cover a whole site or old system, or I don't know, 47% of your infrastructure. And so what can you do to orchestrate that to remediate that time? Those are the three things we found. >> So, and that orchestration piece, a number of customers that were in the survey were trying to recover manually. Which is a formula for failure. A number of, I think the largest percentage were scripts which I want you to explain why scripts are problematic. And then there was a portion that was actually doing it right. Maybe it was bigger, maybe it was a quarter that was doing orchestrated recovery. But talk about why scripts are not the right approach. >> So there were two numbers in there. So there was 16% test the ability to recover, 25% use orchestration as part of the recovery process. And so the problem where it is, is that okay, if I'm doing it manually, think about, okay, I've stood back up these databases. Now I have to reconnect the apps. Now I have to re IP. I mean, there's lots of stuff to stand up any given application. Scripts says, "Hey, I'm going to write those steps down." But we all know that, that IT and infrastructure is a living breathing thing. And so those scripts are good for about the day after you put the application in, and after that they start to gather dust pretty quick. The thing about orchestration is, if you only have a script, it's as frequently as you run the script that's all you know. But if you do a workflow, have it run the workflow every night, every week, every month. Test it the same way. That's why that's such a key to success. And for us that's VEEAM disaster recovery orchestra tour. That's a product that orchestrates all the stuff that VEEAM users know and love about our backend recovery engine. >> So imagine you're, you are an Excel user, you're using macros. And I got to go in here, click on that, doing this, sort of watching you and it repeats that, but then something changes. New data or new compliance issue, whatever... >> That got renamed directly. >> So you're going to have to go in and manually change that. How do you, what's the technology behind automated orchestration? What's the magic there? >> The magic is a product that we call orchestrator. And so it actually takes all of those steps and you actually define each step along the way. You define the IP addresses. You define the paths. You define where it's going to go. And then it runs the job in test mode every night, every week, whatever. And so if there's a problem with any step along the way, it gives you the report. Fix those things before you need it. That's the power of orchestrator. >> So what are you guys doing with this study? What can we expect? >> So the report came out today. In a couple weeks, we'll release regional versions of the same data. The reason that we survey at scale is because we want to know what's different in a PJ versus the Americas versus Europe and all those different personas. So we'll be releasing regional versions of the data along the way. And then we'll enable road shows and events and all the other stuff that happens and our partners get it so they can use it for consulting, et cetera. >> So you saw differences in persona. In terms of their perception, the closer you were to the problem, the more obvious it was, did you have enough end to discern its pearly? I know that's why you're due the drill downs but did you sense any preliminary data you can share on regions as West getting hit harder or? >> So attack rate's actually pretty consistent. Especially because so many criminals now use ransomware as a service. I mean, you're standing it up and you're spreading wide and you're seeing what hits. Where we actually saw pretty distinct geographic problems is the cloud is not of as available in all segments. Expertise around preventative measures and remediation is not available in all segments, in all regions. And so really geographic split and segment split and the lack of expertise in some of the more advanced technologies you want to use, that's really where things break down. Common attack plane, uncommon disadvantage in recovery. >> Great stuff. I want to dig in more. I probably have a few more questions if you don't mind, I can email you or give you a call. It's Jason Buffington. Thanks so much for coming on theCUBE. >> Thanks for having me. >> All right, keep it right there. You're watching theCUBE's live coverage of VEEAMON 2022. We're here in person in Las Vegas, huge hybrid audience. Keep it right there, be right back. (upbeat music)
SUMMARY :
It's great to see you again. Yeah, two and a half years, Yeah, that's right. But so here's the thing as analysts, buzzwords in that sentence. and the work that you've done there. And for the beginning of But of the thousands 200 were CISOs, And you guys are really honest about it. So a couple of the ones that nibbling around the edges. straight to the heart of the enterprise. is the closer you are to the problem. is that a large proportion of, Maybe got the keys and it didn't work So the question actually was Well, in just a huge number of cases And how do you increase the likelihood I wonder if you could get, The industry thanks you So when you download that report, We're here to buy here in. To the back of that. So, and the fact that we aren't dependent The next thing is you need to know, How do you know? not just did the backup log work. just don't have the resource And so we create a whole framework for you You can actually run water So that's the second thing. And so what can you do to orchestrate that are not the right approach. And so the problem where it is, And I got to go in here, What's the magic there? and you actually define So the report came out today. the closer you were to the problem, and the lack of expertise I can email you or give you a call. live coverage of VEEAMON 2022.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jason | PERSON | 0.99+ |
Dave Russell | PERSON | 0.99+ |
Danny | PERSON | 0.99+ |
David Nicholson | PERSON | 0.99+ |
Chris Hoff | PERSON | 0.99+ |
Jason Buffington | PERSON | 0.99+ |
JBuff | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
25% | QUANTITY | 0.99+ |
February | DATE | 0.99+ |
16% | QUANTITY | 0.99+ |
seven years | QUANTITY | 0.99+ |
3,600 organizations | QUANTITY | 0.99+ |
five pages | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
47% | QUANTITY | 0.99+ |
Excel | TITLE | 0.99+ |
84% | QUANTITY | 0.99+ |
54% | QUANTITY | 0.99+ |
75% | QUANTITY | 0.99+ |
53% | QUANTITY | 0.99+ |
52% | QUANTITY | 0.99+ |
two numbers | QUANTITY | 0.99+ |
24% | QUANTITY | 0.99+ |
one paragraph | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
27% | QUANTITY | 0.99+ |
six pages | QUANTITY | 0.99+ |
19% | QUANTITY | 0.99+ |
VEEAM | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Data Protection Trends Report | TITLE | 0.99+ |
two days | QUANTITY | 0.99+ |
Europe | LOCATION | 0.99+ |
81% | QUANTITY | 0.99+ |
four personas | QUANTITY | 0.99+ |
over 3000 responses | QUANTITY | 0.99+ |
200 backup admins | QUANTITY | 0.99+ |
250 word | QUANTITY | 0.99+ |
each step | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
28 countries | QUANTITY | 0.98+ |
DRS. | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
two different questions | QUANTITY | 0.98+ |
third thing | QUANTITY | 0.98+ |
two thirds | QUANTITY | 0.98+ |
two and a half years | QUANTITY | 0.98+ |
second thing | QUANTITY | 0.98+ |
Americas | LOCATION | 0.98+ |
94% | QUANTITY | 0.98+ |
several years ago | DATE | 0.97+ |
Enterprise Strategy Group | ORGANIZATION | 0.97+ |
three | QUANTITY | 0.97+ |
first one | QUANTITY | 0.97+ |
Ransomware Trends Report | TITLE | 0.97+ |
thousands | QUANTITY | 0.97+ |
one thing | QUANTITY | 0.97+ |
last year | DATE | 0.96+ |
One | QUANTITY | 0.96+ |
BAS | ORGANIZATION | 0.96+ |
around 200 days | QUANTITY | 0.96+ |
COVID | OTHER | 0.95+ |
200 IT ops | QUANTITY | 0.95+ |
third | QUANTITY | 0.94+ |
four organizations | QUANTITY | 0.94+ |
NFL | ORGANIZATION | 0.94+ |
400 | QUANTITY | 0.94+ |
about an hour ago | DATE | 0.94+ |
four different views | QUANTITY | 0.94+ |
first intrusions | QUANTITY | 0.93+ |
once | QUANTITY | 0.93+ |
ROBO | ORGANIZATION | 0.92+ |
Sasha Rosenbaum, Red Hat | AWS 2021 CUBE Testimonial
[Music] is an open source first company right and we've been around for 20 years and we're pretty amazing at being good at open source giving back to the community building software with people and sharing it back to the community the cubism is an amazing kind of community outreach show and it's really great to be able to communicate and talk to the right people working with the cube has been incredible we do have a couple people that have been on the show a lot and like been able to do that and i think you're very friendly um and yeah just just have a good community around you i've worked for microsoft for a really long time and this is my first reinvent and it's it feels a little odd to be here for a non-microsoft event um and odd and exciting in a way um we are so redhead is partnering with both aws azure as well as gcp ibm and we we are working across different clouds partnering with a lot of cloud providers and i think this is a very interesting new relationship that we have that is new to me compared to being very committed to one single vendor one single line of business like one single operating system and stuff like that being able to partner with different people across the industry and board can build stuff together for the customers one word community
**Summary and Sentiment Analysis are not been shown because of improper transcript**
ENTITIES
Entity | Category | Confidence |
---|---|---|
Sasha Rosenbaum | PERSON | 0.99+ |
microsoft | ORGANIZATION | 0.99+ |
20 years | QUANTITY | 0.99+ |
Red Hat | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.97+ |
one | QUANTITY | 0.94+ |
AWS | ORGANIZATION | 0.92+ |
first company | QUANTITY | 0.91+ |
aws azure | ORGANIZATION | 0.89+ |
redhead | ORGANIZATION | 0.85+ |
one single operating system | QUANTITY | 0.81+ |
one single line | QUANTITY | 0.77+ |
one word | QUANTITY | 0.73+ |
couple people | QUANTITY | 0.69+ |
first reinvent | QUANTITY | 0.67+ |
single | QUANTITY | 0.61+ |
2021 | DATE | 0.55+ |
CUBE | TITLE | 0.44+ |
Ed Walsh, Courtney Pallotta & Thomas Hazel, ChaosSearch | AWS 2021 CUBE Testimonial
(upbeat music) >> My name's Courtney Pallota, I'm the Vice President of Marketing at ChaosSearch. We've partnered with theCUBE team to take every one of those assets, tailor them to meet whatever our needs were, and get them out and shared far and wide. And theCUBE team has been tremendously helpful in partnering with us to make that a success. >> theCUBE has been fantastic with us. They are thought leaders in this space. And we have a unique product, a unique vision, and they have an insight into where the market's going. They've had conference with us with data mesh, and how do we fit into that new realm of data access. And with our unique vision, with our unique platform, and with theCUBE, we've uniquely come out into the market. >> What's my overall experience with theCUBE? Would I do it again, would I recommended it to others? I said, I recommend theCUBE to everyone. In fact, I was at IBM, and some of the IBM executives didn't want to go on theCUBE because it's a live interview. Live interviews can be traumatic. But the fact of the matter is, one, yeah, they're tough questions, but they're in line, they're what clients are looking for. So yes, you have to be on ball. I mean, you're always on your toes, but you get your message out so crisply. So I recommend it to everyone. I've gotten a lot of other executives to participate, and they've all had a great example. You have to be ready. I mean, you can't go on theCUBE and not be ready, but now you can get your message out. And it has such a good distribution. I can't think of a better platform. So I recommended it to everyone. If I say ChaosSearch in one word, I'd say digital transformation, with a hyphen.
SUMMARY :
tailor them to meet And with our unique vision, I said, I recommend theCUBE to everyone.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Courtney Pallota | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Ed Walsh | PERSON | 0.99+ |
ChaosSearch | ORGANIZATION | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
theCUBE | ORGANIZATION | 0.99+ |
one word | QUANTITY | 0.97+ |
Courtney Pallotta | PERSON | 0.9+ |
theCUBE | TITLE | 0.71+ |
one | QUANTITY | 0.56+ |
AWS 2021 | ORGANIZATION | 0.55+ |
Webb Brown, Kubecost | CUBE Conversation
>>Welcome to this cube conversation. I'm Dave Nicholson, and this is part of the AWS startup showcase season two. I'm very happy to have with me Webb brown CEO of Qube cost web. Welcome to the program. How are you? I'm doing >>Great. It's great to be here, Dave. Thank you so much for having me really excited for the discussion. >>Good to see you. I guess we saw each other last down in Los Angeles for, for coop con, >>Right? Exactly. Right. Still feeling the energy from that event. Hoping we can be back together in person. Not, not too long from now. >>Yeah. Well I'll second that, well, let, let's get straight to it. Tell us, tell us about Q cost. What do you guys do? And I think just central to that question is what gives you guys the right to exist? What problem are you solving? >>Yeah, I love the question. So first and foremost coupe costs, we provide cost monitoring and cost management solutions for teams running Kubernetes or cloud native workloads. Everything we do is, is built on open source. Our founding team was working on infrastructure monitoring solutions at Google before this. And, and what we saw was as we had several teammates join the Kubernetes effort very early days at Google, we saw teams really struggling even just to, to monitor and understand Kubernetes costs, right? There's lots of complexity with the Kubernetes scheduler and being able to answer the question of what is the cost of an application or what is the cost of, you know, a team department, et cetera. And the workloads that they're deploying was really hard for most teams. If you look at CNCF study from late last year, still today, about two thirds of teams, can't answer where they are spending money. And what we saw when digging in there is that when you can't answer that question, it's really hard to be efficient. And by be efficient, we, we mean get the right balance between cost and performance and reliability. So we help teams in, in these areas and more where, you know, now have thousands of teams using our product. You know, we feel where we're just getting started on our mission as well. >>So when people hear it, when people think of coop costs, they w they naturally associate that with Kubernetes. And they think, well, Kubernetes is open-source wait, isn't that free? So what, so what costs are you tracking? Exactly. >>Yeah. Great question. We would track costs in any environment where you can run Kubernetes. So if that's on-prem, you can bring a custom pricing sheet to monitor, say the cost of your underlying CPU course, you know, GPU's memory, et cetera. If you're running in a cloud environment, we have integrations with Azure, GCP and AWS, where we would be able to reflect all the complexity of, you know, whatever deployment you have, whether you're using a spot and multiple regions where you have complex enterprise discounts are eyes savings plans, you name it, we'd be reflecting it. So it's really about, you know, not just generic prices, it's about getting the right price for your organization. >>So the infrastructure that goes into this calculation can be on premises or off premises in the form of cloud. I heard that, right? >>Yeah, that's exactly right. So all of those environments, we'd give you a visibility into all the resources that your Kubernetes clusters are consuming. Again, that's, you know, nodes, load balancers, every resource that it's directly touching also have the ability for you to pull in external costs, right? So if you have Kubernetes tenants that are using S3 or cloud sequel, or, you know, another external cloud service, we would make that connection for you. And then lastly, if you have shared costs, sometimes even like the cost of a dev ops team, we'd give you the ability to kind of allocate that back to your core infrastructure, which may be used for showback or even charged back across your, your, >>So who are the folks in an organization that are tapping into this, are these, you know, our, our, our, our developers being encouraged to be cognizant of these costs throughout the process, or is this just sort of a CFO on down visibility tool? >>Yeah, it's a great, it's a great question. And what we see is a major transformation here where, you know, kind of shift left from a cost perspective where more and more engineering teams are interested in just being aware or having transparency. So they can build a culture of accountability with costs, right, with the amazing ability to rapidly push to production and iterate, you know, with microservices and Kubernetes, it's hard to have this kind of, you know, just wait for say the finance team to review this at the end of the month or the end of the quarter. We see this increasingly be being viewed in real time by infrastructure teams, by engineering teams. Now finance is still a very important stakeholder and, you know, absolutely has a very important like seat at the table in these conversations. But increasingly these are, again, real time or near real time engineering decisions that are really moving the needle on cost and cost efficiency, overtime and performance as well. >>Now, can you use this to model what costs might be, or is this, or is this, you know, you, you mentioned monitoring in real time, is this only for pulling information as it exists, or could you do, could you use some of the aspects of, of, of your toolset to make a decision, whether something makes more sense to run on your existing infrastructure on premises versus moving into, you know, working in a cloud? Is that something that is designed for or not? >>Great question. So we do have the ability to predict cost cost going forward, based on everything we've learned about your environment, whether you're in multi-cloud hybrid cloud, et cetera. So some really interesting functionality there and a lot more coming later this year, because we do see more and more teams wanting to model the state of the future, right? As you deploy really complex technologies, like say the cluster auto scale or, or HPA in different environments, it can really challenging to do an apples to apples comparison, and we help teams do exactly that. And again, gonna have a lot more interesting announcements here later this year. >>So later that later this year, meaning not in the next few minutes while we're together, >>Nothing new to announce on that front today, but I would say, you know, expect later this quarter for us to have more. >>Okay, that sounds good. Now, now you touched on this a little bit, but I want to hone in on why this is particularly relevant now and moving into the future. You know, we've always tracking costs has always been important, you know, even before the Dawn of cloud, but why is it increasingly important? And, and, you know, there are, there are alternatives for cost tracking legacy alternatives that are out there. So talk about why it's particularly relevant now and tell us what your super power is. You know, what's the, all right. All right. >>Secrets, >>Secret sauce is something you can't share super power. You can talk about >>Absolutely >>NDA. So yes, >>Your superpower. Yeah. Great questions. So for support, just to, to, to touch on, what's fundamentally changing to make a company like ours, you know, impactful or relevant. There's really three things here first and foremost is the new abstractions or complexities that come with Kubernetes, right. Super powerful, but from a cost standpoint, make it considerably harder to accurately track costs. And the big transformation here is, you know, with Kubernetes, you can, at any given moment have 50 applications running on a single node or a single VM, you can fast forward five minutes and there could be 50 entirely new applications, right? So just assigning that VM or, you know, tagging that VM back to an application or team or department really is not relevant in those places. So just the new complexity related to costs makes this problem harder for teams. Second is what we touch on. >>Just again, the power of Cooney. Kubernetes is the ability to allow distributed engineering teams to work on many microservices concurrently. So you're no longer in a lot of ways managing this problem where they centralized kind of single point of decision-making. Oftentimes these decisions are distributed across not only your infrastructure team, but your engineering team. So just the way these decisions and, you know, innovation is happening is changing how you manage these. And lastly, it's just scale, right? The, the cloud and, you know, Kubernetes continue to be incredibly successful. You know, where as goop costs now managing billions of dollars as these numbers get bigger and bigger just becomes more of a business focus and business critical issue. So those are the, you know, the three kind of underlying themes that are changing. When I talk about what we do, that makes us special. It's really this like foundational layer of visibility that we build. >>And what we can do is in real time with a very high degree of accuracy at the largest Kubernetes clusters in the world, give you visibility at any dimension. And so from there, you can do things like have real-time monitoring. You can have real-time insights, you can allow automation to make decisions on these, you know, inputs or data feeds. You can set alerts, you can set recurring reports. All of these things are made possible because of, you know, the, the, I would say really hard work that we've done to, again, give this real-time visibility with a high degree of accuracy at, at crazy scale. >>So if we were to play little make-believe for a moment, pretend like I'm a skeptical sitting on the fence. Not sure if I want to go down this path kind of person. And I say, you know what, web, I think I have a really good handle on all of my costs so far. What would you hit me with as, as, as an example of something that people really didn't expect until they, until they were running coup costs and they had actually had that visibility, what are some of the things that people are surprised by? >>Yeah. Great question. There'd be a number, number one. I'd have, you know, one data point I want to get from you, which is, you know, for your organization or for all of your clusters, what is your cost efficiency? Can you answer that with a high degree of accuracy and by cost efficiency? >>And the answer is now. So tell me, tell me, tell me how to sign up for coupons. >>Yeah. And so the answer, the answer there is you can go get our community version, you know, you can be up and running in minutes, you don't have to share any data, right? Like it is, you know, simply a helmet install, but cost efficiency is this notion of, of every dollar that you are spending on provision resources. What percentage of those dollars are you actually utilizing? And we have, you know, we, we now have, you know, thousands of teams using our product and we've worked with, you know, hundreds of them really closely, you know, this is, you know, that's not the entire market, but in our large sample sizes, we regularly see teams start in the low 20% cost efficiency, meaning that approximately 80% is quote waste time and time. Again, we see teams just be shocked by this number. And again, most of it is not because they were measuring it and accurately or anything like that. Most teams again today still just don't have that visibility until they start working with this. >>So is that, is that sort of the, I in my house household, certain members seem to only believe that there is one position for a light switch, and that would be the on position. Is there, is this a bit of a parallel where, where folks are, are spinning up resources and then just out of sight, out of mind, maybe not spinning them down when not needed. Yeah. >>Yeah. It's, it's, that's definitely one class of the challenges I would say, you know, so today, if you look at our product, we have 14 different insights across like different dimensions of your infrastructure one, or, or I would say several of those relate to exactly what you just described, which is you spin up a VM, you spend a bit load balancer, you spin up an external IP address. You're using it. You're not paying for it. Another class is this notion of, again, I don't have an understanding of what my resources cost. I also don't have a great sense for how much my microservice or application will need. So I'm just going to turn on all the lights, which is, or I'm going to drastically over provision again, I don't know the cost, so I'm just going to kind of set it and forget it. And if my application is performing, you know, then you know, we're doing well here. Again, with this visibility, you can get much more specific, much more accurate, much more actionable with making that trade off, you know, again, down to the individual pod workload, you know, deployment, et cetera. >>So we've, we've touched on this a bit peripherally, but give me an example. You know, you, you run into someone who happens to be a happy user of coop cost. What's the dream story that you love to hear from them about what life was before was before coop costs and what life was like after? >>Yeah, there's a lot, a lot of different dimensions there. You know, one, one is, you know, working with an infrastructure team that, that used to get asked these questions a lot about, you know, why does this cost so much, or why are we spending this and Kubernetes or, or wire expenses growing the rate that they are, you know, like when this, when this works, you know, engineering teams or infrastructure teams, aren't getting asked those questions, right? The tool could cost itself is getting asked that and answering that. So I think one is infrastructure teams, not fielding those types of questions as much. Secondly, is just, you know, more and more teams rolling this out throughout their organization. And ultimately just getting, building a culture of awareness, like ownership, accountability. And then, you know, we just increasingly are seeing teams, you know, find this right balance between cost and performance again. So, you know, in certain cases, improving performance, when are resource bottlenecks in places and other places, you know, reducing costs, you know, by 10 plus million dollars, ultimately at the end of the day, we like to see just teams being more comfortable running their workloads in Kubernetes, right? That is the ultimate sign of success is just an organization, feels comfortable with how they're deploying, how they're managing, how they're spending in Kubernetes. Again, whether that be, you know, on-prem or transitioning from on-prem to a cloud in multiple clouds, et cetera. >>So we're talking to you today as part of the second season of the AWS startup showcase. What's, what's the relationship there with, with AWS? >>So it is the, the largest platform for coop costs being run today. So I believe, you know, at this point, at least a thousand different organizations running our product on AWS hosted clusters, whether they're, you know, ETS or, or self-managed, but you know, a growing number of those on, on EKS. And, you know, we've just, you know, absolutely loved working with the team across, I think at this point, you know, six or seven different groups from marketplace to their containers team, you know, obviously, you know, ETS and others, and just very much see them continuing to push the boundaries on what's possible from a scale and, you know, ease of use and, you know, just breadth of, of offering to this market. >>Well, we really look forward to having you back and hearing about some of these announcements, things that are, that are coming down the line. So we'll definitely have to touch base in the future, but just one, one final, more general question for you, where do you see Kubernetes in general going in 2022? Is it sort of a linear growth? Is there some, is there an inflection point that we see, you know, a good percentage of software that's running enterprises right now is already in that open source category, but what are your thoughts on Kubernetes in 2022? >>Yeah, I think, you know, the one word is everywhere is where I see Kubernetes in 2022, like very deep in the like large and really complex enterprises. Right. So I think you'll see just, you know, major bets there. And I think you'll continue to see more engineers adopted. And I think you'll also continue to see, you know, more and more flavors of it, right? So, you know, some teams find that running Kubernetes anymore serverless fashion is, is right for them. Others find that, you know, having full control, you know, at every part of the stack, including running their own autoscaler for example is really powerful. So I think just, you know, you'll see more and more options. And again, I think teams increasingly adopting the right, you know, abstraction level on top of Kubernetes that works for their workloads and their organizations >>Sounds good. We'll we'll, we'll come back in 2023 and we'll check and see how that, how that all panned out. Well, it's been great talking to you today as part of the startup showcase. Really appreciate it. Great to see you again. It's right about the time where I can still tell you happy new year, because we're still, we're still in January here. Hope you have a great 2022 with that from me, Dave Nicholson, part of the cube part of AWS startup showcase season two, I'd like to thank everyone for joining and stay with us for the best in hybrid tech coverage.
SUMMARY :
I'm Dave Nicholson, and this is part of the AWS startup showcase Thank you so much for having me really excited for the discussion. Good to see you. Still feeling the energy from that event. And I think just central to that question is what gives you guys in, in these areas and more where, you know, now have thousands of teams using our so what costs are you tracking? all the complexity of, you know, whatever deployment you have, whether you're using a spot So the infrastructure that goes into this calculation can be on premises or cloud sequel, or, you know, another external cloud service, we would make that connection this kind of, you know, just wait for say the finance team to review this at the end of As you deploy really say, you know, expect later this quarter for us to have more. we've always tracking costs has always been important, you know, even before the Dawn of cloud, Secret sauce is something you can't share super power. So yes, So just assigning that VM or, you know, tagging that VM The, the cloud and, you know, Kubernetes continue to be incredibly decisions on these, you know, inputs or data feeds. And I say, you know what, web, I think I have a really good handle you know, one data point I want to get from you, which is, you know, for your organization So tell me, tell me, tell me how to sign up for coupons. you know, hundreds of them really closely, you know, this is, So is that, is that sort of the, I in my house And if my application is performing, you know, then you know, What's the dream story that you love to hear from them about what And then, you know, we just increasingly So we're talking to you today as part of the second season of the AWS startup So I believe, you know, at this point, at least a thousand we see, you know, a good percentage of software that's running enterprises right now is already in that open source So I think just, you know, you'll see more and more options. Well, it's been great talking to you today as part of the startup showcase.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Nicholson | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
six | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
50 | QUANTITY | 0.99+ |
50 applications | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
January | DATE | 0.99+ |
2022 | DATE | 0.99+ |
Webb Brown | PERSON | 0.99+ |
five minutes | QUANTITY | 0.99+ |
hundreds | QUANTITY | 0.99+ |
Second | QUANTITY | 0.99+ |
2023 | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
Los Angeles | LOCATION | 0.99+ |
today | DATE | 0.99+ |
late last year | DATE | 0.99+ |
10 plus million dollars | QUANTITY | 0.99+ |
ETS | ORGANIZATION | 0.99+ |
later this year | DATE | 0.99+ |
S3 | TITLE | 0.99+ |
billions of dollars | QUANTITY | 0.98+ |
Kubernetes | TITLE | 0.98+ |
approximately 80% | QUANTITY | 0.98+ |
EKS | ORGANIZATION | 0.98+ |
14 different insights | QUANTITY | 0.98+ |
three things | QUANTITY | 0.98+ |
20% | QUANTITY | 0.98+ |
CNCF | ORGANIZATION | 0.98+ |
second season | QUANTITY | 0.97+ |
apples | ORGANIZATION | 0.97+ |
first | QUANTITY | 0.97+ |
thousands of teams | QUANTITY | 0.96+ |
one word | QUANTITY | 0.96+ |
Secondly | QUANTITY | 0.95+ |
later this quarter | DATE | 0.95+ |
one position | QUANTITY | 0.94+ |
Kubecost | PERSON | 0.93+ |
Webb brown | PERSON | 0.92+ |
seven different groups | QUANTITY | 0.92+ |
single point | QUANTITY | 0.91+ |
Kubernetes | PERSON | 0.91+ |
season two | QUANTITY | 0.9+ |
about two thirds | QUANTITY | 0.9+ |
one class | QUANTITY | 0.9+ |
three kind | QUANTITY | 0.89+ |
Kubernetes | ORGANIZATION | 0.87+ |
new applications | QUANTITY | 0.84+ |
Qube cost web | ORGANIZATION | 0.83+ |
single node | QUANTITY | 0.83+ |
end | DATE | 0.82+ |
Q cost | ORGANIZATION | 0.82+ |
single VM | QUANTITY | 0.81+ |
Azure | TITLE | 0.77+ |
HPA | ORGANIZATION | 0.73+ |
GCP | TITLE | 0.7+ |
new year | EVENT | 0.65+ |
Analyst Predictions 2022: The Future of Data Management
[Music] in the 2010s organizations became keenly aware that data would become the key ingredient in driving competitive advantage differentiation and growth but to this day putting data to work remains a difficult challenge for many if not most organizations now as the cloud matures it has become a game changer for data practitioners by making cheap storage and massive processing power readily accessible we've also seen better tooling in the form of data workflows streaming machine intelligence ai developer tools security observability automation new databases and the like these innovations they accelerate data proficiency but at the same time they had complexity for practitioners data lakes data hubs data warehouses data marts data fabrics data meshes data catalogs data oceans are forming they're evolving and exploding onto the scene so in an effort to bring perspective to the sea of optionality we've brought together the brightest minds in the data analyst community to discuss how data management is morphing and what practitioners should expect in 2022 and beyond hello everyone my name is dave vellante with the cube and i'd like to welcome you to a special cube presentation analyst predictions 2022 the future of data management we've gathered six of the best analysts in data and data management who are going to present and discuss their top predictions and trends for 2022 in the first half of this decade let me introduce our six power panelists sanjeev mohan is former gartner analyst and principal at sanjamo tony bear is principal at db insight carl olufsen is well-known research vice president with idc dave meninger is senior vice president and research director at ventana research brad shimon chief analyst at ai platforms analytics and data management at omnia and doug henschen vice president and principal analyst at constellation research gentlemen welcome to the program and thanks for coming on thecube today great to be here thank you all right here's the format we're going to use i as moderator are going to call on each analyst separately who then will deliver their prediction or mega trend and then in the interest of time management and pace two analysts will have the opportunity to comment if we have more time we'll elongate it but let's get started right away sanjeev mohan please kick it off you want to talk about governance go ahead sir thank you dave i i believe that data governance which we've been talking about for many years is now not only going to be mainstream it's going to be table stakes and all the things that you mentioned you know with data oceans data lakes lake houses data fabric meshes the common glue is metadata if we don't understand what data we have and we are governing it there is no way we can manage it so we saw informatica when public last year after a hiatus of six years i've i'm predicting that this year we see some more companies go public uh my bet is on colibra most likely and maybe alation we'll see go public this year we we i'm also predicting that the scope of data governance is going to expand beyond just data it's not just data and reports we are going to see more transformations like spark jaws python even airflow we're going to see more of streaming data so from kafka schema registry for example we will see ai models become part of this whole governance suite so the governance suite is going to be very comprehensive very detailed lineage impact analysis and then even expand into data quality we already seen that happen with some of the tools where they are buying these smaller companies and bringing in data quality monitoring and integrating it with metadata management data catalogs also data access governance so these so what we are going to see is that once the data governance platforms become the key entry point into these modern architectures i'm predicting that the usage the number of users of a data catalog is going to exceed that of a bi tool that will take time and we already seen that that trajectory right now if you look at bi tools i would say there are 100 users to a bi tool to one data catalog and i i see that evening out over a period of time and at some point data catalogs will really become you know the main way for us to access data data catalog will help us visualize data but if we want to do more in-depth analysis it'll be the jumping-off point into the bi tool the data science tool and and that is that is the journey i see for the data governance products excellent thank you some comments maybe maybe doug a lot a lot of things to weigh in on there maybe you could comment yeah sanjeev i think you're spot on a lot of the trends uh the one disagreement i think it's it's really still far from mainstream as you say we've been talking about this for years it's like god motherhood apple pie everyone agrees it's important but too few organizations are really practicing good governance because it's hard and because the incentives have been lacking i think one thing that deserves uh mention in this context is uh esg mandates and guidelines these are environmental social and governance regs and guidelines we've seen the environmental rags and guidelines imposed in industries particularly the carbon intensive industries we've seen the social mandates particularly diversity imposed on suppliers by companies that are leading on this topic we've seen governance guidelines now being imposed by banks and investors so these esgs are presenting new carrots and sticks and it's going to demand more solid data it's going to demand more detailed reporting and solid reporting tighter governance but we're still far from mainstream adoption we have a lot of uh you know best of breed niche players in the space i think the signs that it's going to be more mainstream are starting with things like azure purview google dataplex the big cloud platform uh players seem to be uh upping the ante and and addressing starting to address governance excellent thank you doug brad i wonder if you could chime in as well yeah i would love to be a believer in data catalogs um but uh to doug's point i think that it's going to take some more pressure for for that to happen i recall metadata being something every enterprise thought they were going to get under control when we were working on service oriented architecture back in the 90s and that didn't happen quite the way we we anticipated and and uh to sanjeev's point it's because it is really complex and really difficult to do my hope is that you know we won't sort of uh how do we put this fade out into this nebulous nebula of uh domain catalogs that are specific to individual use cases like purview for getting data quality right or like data governance and cyber security and instead we have some tooling that can actually be adaptive to gather metadata to create something i know is important to you sanjeev and that is this idea of observability if you can get enough metadata without moving your data around but understanding the entirety of a system that's running on this data you can do a lot to help with with the governance that doug is talking about so so i just want to add that you know data governance like many other initiatives did not succeed even ai went into an ai window but that's a different topic but a lot of these things did not succeed because to your point the incentives were not there i i remember when starbucks oxley had come into the scene if if a bank did not do service obviously they were very happy to a million dollar fine that was like you know pocket change for them instead of doing the right thing but i think the stakes are much higher now with gdpr uh the floodgates open now you know california you know has ccpa but even ccpa is being outdated with cpra which is much more gdpr like so we are very rapidly entering a space where every pretty much every major country in the world is coming up with its own uh compliance regulatory requirements data residence is becoming really important and and i i think we are going to reach a stage where uh it won't be optional anymore so whether we like it or not and i think the reason data catalogs were not successful in the past is because we did not have the right focus on adoption we were focused on features and these features were disconnected very hard for business to stop these are built by it people for it departments to to take a look at technical metadata not business metadata today the tables have turned cdo's are driving this uh initiative uh regulatory compliances are beating down hard so i think the time might be right yeah so guys we have to move on here and uh but there's some some real meat on the bone here sanjeev i like the fact that you late you called out calibra and alation so we can look back a year from now and say okay he made the call he stuck it and then the ratio of bi tools the data catalogs that's another sort of measurement that we can we can take even though some skepticism there that's something that we can watch and i wonder if someday if we'll have more metadata than data but i want to move to tony baer you want to talk about data mesh and speaking you know coming off of governance i mean wow you know the whole concept of data mesh is decentralized data and then governance becomes you know a nightmare there but take it away tony we'll put it this way um data mesh you know the the idea at least is proposed by thoughtworks um you know basically was unleashed a couple years ago and the press has been almost uniformly almost uncritical um a good reason for that is for all the problems that basically that sanjeev and doug and brad were just you know we're just speaking about which is that we have all this data out there and we don't know what to do about it um now that's not a new problem that was a problem we had enterprise data warehouses it was a problem when we had our hadoop data clusters it's even more of a problem now the data's out in the cloud where the data is not only your data like is not only s3 it's all over the place and it's also including streaming which i know we'll be talking about later so the data mesh was a response to that the idea of that we need to debate you know who are the folks that really know best about governance is the domain experts so it was basically data mesh was an architectural pattern and a process my prediction for this year is that data mesh is going to hit cold hard reality because if you if you do a google search um basically the the published work the articles and databases have been largely you know pretty uncritical um so far you know that you know basically learning is basically being a very revolutionary new idea i don't think it's that revolutionary because we've talked about ideas like this brad and i you and i met years ago when we were talking about so and decentralizing all of us was at the application level now we're talking about at the data level and now we have microservices so there's this thought of oh if we manage if we're apps in cloud native through microservices why don't we think of data in the same way um my sense this year is that you know this and this has been a very active search if you look at google search trends is that now companies are going to you know enterprises are going to look at this seriously and as they look at seriously it's going to attract its first real hard scrutiny it's going to attract its first backlash that's not necessarily a bad thing it means that it's being taken seriously um the reason why i think that that uh that it will you'll start to see basically the cold hard light of day shine on data mesh is that it's still a work in progress you know this idea is basically a couple years old and there's still some pretty major gaps um the biggest gap is in is in the area of federated governance now federated governance itself is not a new issue uh federated governance position we're trying to figure out like how can we basically strike the balance between getting let's say you know between basically consistent enterprise policy consistent enterprise governance but yet the groups that understand the data know how to basically you know that you know how do we basically sort of balance the two there's a huge there's a huge gap there in practice and knowledge um also to a lesser extent there's a technology gap which is basically in the self-service technologies that will help teams essentially govern data you know basically through the full life cycle from developed from selecting the data from you know building the other pipelines from determining your access control determining looking at quality looking at basically whether data is fresh or whether or not it's trending of course so my predictions is that it will really receive the first harsh scrutiny this year you are going to see some organization enterprises declare premature victory when they've uh when they build some federated query implementations you're going to see vendors start to data mesh wash their products anybody in the data management space they're going to say that whether it's basically a pipelining tool whether it's basically elt whether it's a catalog um or confederated query tool they're all going to be like you know basically promoting the fact of how they support this hopefully nobody is going to call themselves a data mesh tool because data mesh is not a technology we're going to see one other thing come out of this and this harks back to the metadata that sanji was talking about and the catalogs that he was talking about which is that there's going to be a new focus on every renewed focus on metadata and i think that's going to spur interest in data fabrics now data fabrics are pretty vaguely defined but if we just take the most elemental definition which is a common metadata back plane i think that if anybody is going to get serious about data mesh they need to look at a data fabric because we all at the end of the day need to speak you know need to read from the same sheet of music so thank you tony dave dave meninger i mean one of the things that people like about data mesh is it pretty crisply articulates some of the flaws in today's organizational approaches to data what are your thoughts on this well i think we have to start by defining data mesh right the the term is already getting corrupted right tony said it's going to see the cold hard uh light of day and there's a problem right now that there are a number of overlapping terms that are similar but not identical so we've got data virtualization data fabric excuse me for a second sorry about that data virtualization data fabric uh uh data federation right uh so i i think that it's not really clear what each vendor means by these terms i see data mesh and data fabric becoming quite popular i've i've interpreted data mesh as referring primarily to the governance aspects as originally you know intended and specified but that's not the way i see vendors using i see vendors using it much more to mean data fabric and data virtualization so i'm going to comment on the group of those things i think the group of those things is going to happen they're going to happen they're going to become more robust our research suggests that a quarter of organizations are already using virtualized access to their data lakes and another half so a total of three quarters will eventually be accessing their data lakes using some sort of virtualized access again whether you define it as mesh or fabric or virtualization isn't really the point here but this notion that there are different elements of data metadata and governance within an organization that all need to be managed collectively the interesting thing is when you look at the satisfaction rates of those organizations using virtualization versus those that are not it's almost double 68 of organizations i'm i'm sorry um 79 of organizations that were using virtualized access express satisfaction with their access to the data lake only 39 expressed satisfaction if they weren't using virtualized access so thank you uh dave uh sanjeev we just got about a couple minutes on this topic but i know you're speaking or maybe you've spoken already on a panel with jamal dagani who sort of invented the concept governance obviously is a big sticking point but what are your thoughts on this you are mute so my message to your mark and uh and to the community is uh as opposed to what dave said let's not define it we spent the whole year defining it there are four principles domain product data infrastructure and governance let's take it to the next level i get a lot of questions on what is the difference between data fabric and data mesh and i'm like i can compare the two because data mesh is a business concept data fabric is a data integration pattern how do you define how do you compare the two you have to bring data mesh level down so to tony's point i'm on a warp path in 2022 to take it down to what does a data product look like how do we handle shared data across domains and govern it and i think we are going to see more of that in 2022 is operationalization of data mesh i think we could have a whole hour on this topic couldn't we uh maybe we should do that uh but let's go to let's move to carl said carl your database guy you've been around that that block for a while now you want to talk about graph databases bring it on oh yeah okay thanks so i regard graph database as basically the next truly revolutionary database management technology i'm looking forward to for the graph database market which of course we haven't defined yet so obviously i have a little wiggle room in what i'm about to say but that this market will grow by about 600 percent over the next 10 years now 10 years is a long time but over the next five years we expect to see gradual growth as people start to learn how to use it problem isn't that it's used the problem is not that it's not useful is that people don't know how to use it so let me explain before i go any further what a graph database is because some of the folks on the call may not may not know what it is a graph database organizes data according to a mathematical structure called a graph a graph has elements called nodes and edges so a data element drops into a node the nodes are connected by edges the edges connect one node to another node combinations of edges create structures that you can analyze to determine how things are related in some cases the nodes and edges can have properties attached to them which add additional informative material that makes it richer that's called a property graph okay there are two principal use cases for graph databases there's there's semantic proper graphs which are used to break down human language text uh into the semantic structures then you can search it organize it and and and answer complicated questions a lot of ai is aimed at semantic graphs another kind is the property graph that i just mentioned which has a dazzling number of use cases i want to just point out is as i talk about this people are probably wondering well we have relational databases isn't that good enough okay so a relational database defines it uses um it supports what i call definitional relationships that means you define the relationships in a fixed structure the database drops into that structure there's a value foreign key value that relates one table to another and that value is fixed you don't change it if you change it the database becomes unstable it's not clear what you're looking at in a graph database the system is designed to handle change so that it can reflect the true state of the things that it's being used to track so um let me just give you some examples of use cases for this um they include uh entity resolution data lineage uh um social media analysis customer 360 fraud prevention there's cyber security there's strong supply chain is a big one actually there's explainable ai and this is going to become important too because a lot of people are adopting ai but they want a system after the fact to say how did the ai system come to that conclusion how did it make that recommendation right now we don't have really good ways of tracking that okay machine machine learning in general um social network i already mentioned that and then we've got oh gosh we've got data governance data compliance risk management we've got recommendation we've got personalization anti-money money laundering that's another big one identity and access management network and i.t operations is already becoming a key one where you actually have mapped out your operation your your you know whatever it is your data center and you you can track what's going on as things happen there root cause analysis fraud detection is a huge one a number of major credit card companies use graph databases for fraud detection risk analysis tracking and tracing churn analysis next best action what-if analysis impact analysis entity resolution and i would add one other thing or just a few other things to this list metadata management so sanjay here you go this is your engine okay because i was in metadata management for quite a while in my past life and one of the things i found was that none of the data management technologies that were available to us could efficiently handle metadata because of the kinds of structures that result from it but grass can okay grafts can do things like say this term in this context means this but in that context it means that okay things like that and in fact uh logistics management supply chain it also because it handles recursive relationships by recursive relationships i mean objects that own other objects that are of the same type you can do things like bill materials you know so like parts explosion you can do an hr analysis who reports to whom how many levels up the chain and that kind of thing you can do that with relational databases but yes it takes a lot of programming in fact you can do almost any of these things with relational databases but the problem is you have to program it it's not it's not supported in the database and whenever you have to program something that means you can't trace it you can't define it you can't publish it in terms of its functionality and it's really really hard to maintain over time so carl thank you i wonder if we could bring brad in i mean brad i'm sitting there wondering okay is this incremental to the market is it disruptive and replaceable what are your thoughts on this space it's already disrupted the market i mean like carl said go to any bank and ask them are you using graph databases to do to get fraud detection under control and they'll say absolutely that's the only way to solve this problem and it is frankly um and it's the only way to solve a lot of the problems that carl mentioned and that is i think it's it's achilles heel in some ways because you know it's like finding the best way to cross the seven bridges of konigsberg you know it's always going to kind of be tied to those use cases because it's really special and it's really unique and because it's special and it's unique uh it it still unfortunately kind of stands apart from the rest of the community that's building let's say ai outcomes as the great great example here the graph databases and ai as carl mentioned are like chocolate and peanut butter but technologically they don't know how to talk to one another they're completely different um and you know it's you can't just stand up sql and query them you've got to to learn um yeah what is that carlos specter or uh special uh uh yeah thank you uh to actually get to the data in there and if you're gonna scale that data that graph database especially a property graph if you're gonna do something really complex like try to understand uh you know all of the metadata in your organization you might just end up with you know a graph database winter like we had the ai winter simply because you run out of performance to make the thing happen so i i think it's already disrupted but we we need to like treat it like a first-class citizen in in the data analytics and ai community we need to bring it into the fold we need to equip it with the tools it needs to do that the magic it does and to do it not just for specialized use cases but for everything because i i'm with carl i i think it's absolutely revolutionary so i had also identified the principal achilles heel of the technology which is scaling now when these when these things get large and complex enough that they spill over what a single server can handle you start to have difficulties because the relationships span things that have to be resolved over a network and then you get network latency and that slows the system down so that's still a problem to be solved sanjeev any quick thoughts on this i mean i think metadata on the on the on the word cloud is going to be the the largest font uh but what are your thoughts here i want to like step away so people don't you know associate me with only meta data so i want to talk about something a little bit slightly different uh dbengines.com has done an amazing job i think almost everyone knows that they chronicle all the major databases that are in use today in january of 2022 there are 381 databases on its list of ranked list of databases the largest category is rdbms the second largest category is actually divided into two property graphs and rdf graphs these two together make up the second largest number of data databases so talking about accolades here this is a problem the problem is that there's so many graph databases to choose from they come in different shapes and forms uh to bright's point there's so many query languages in rdbms is sql end of the story here we've got sci-fi we've got gremlin we've got gql and then your proprietary languages so i think there's a lot of disparity in this space but excellent all excellent points sanji i must say and that is a problem the languages need to be sorted and standardized and it needs people need to have a road map as to what they can do with it because as you say you can do so many things and so many of those things are unrelated that you sort of say well what do we use this for i'm reminded of the saying i learned a bunch of years ago when somebody said that the digital computer is the only tool man has ever devised that has no particular purpose all right guys we gotta we gotta move on to dave uh meninger uh we've heard about streaming uh your prediction is in that realm so please take it away sure so i like to say that historical databases are to become a thing of the past but i don't mean that they're going to go away that's not my point i mean we need historical databases but streaming data is going to become the default way in which we operate with data so in the next say three to five years i would expect the data platforms and and we're using the term data platforms to represent the evolution of databases and data lakes that the data platforms will incorporate these streaming capabilities we're going to process data as it streams into an organization and then it's going to roll off into historical databases so historical databases don't go away but they become a thing of the past they store the data that occurred previously and as data is occurring we're going to be processing it we're going to be analyzing we're going to be acting on it i mean we we only ever ended up with historical databases because we were limited by the technology that was available to us data doesn't occur in batches but we processed it in batches because that was the best we could do and it wasn't bad and we've continued to improve and we've improved and we've improved but streaming data today is still the exception it's not the rule right there's there are projects within organizations that deal with streaming data but it's not the default way in which we deal with data yet and so that that's my prediction is that this is going to change we're going to have um streaming data be the default way in which we deal with data and and how you label it what you call it you know maybe these databases and data platforms just evolve to be able to handle it but we're going to deal with data in a different way and our research shows that already about half of the participants in our analytics and data benchmark research are using streaming data you know another third are planning to use streaming technologies so that gets us to about eight out of ten organizations need to use this technology that doesn't mean they have to use it throughout the whole organization but but it's pretty widespread in its use today and has continued to grow if you think about the consumerization of i.t we've all been conditioned to expect immediate access to information immediate responsiveness you know we want to know if an uh item is on the shelf at our local retail store and we can go in and pick it up right now you know that's the world we live in and that's spilling over into the enterprise i.t world where we have to provide those same types of capabilities um so that's my prediction historical database has become a thing of the past streaming data becomes the default way in which we we operate with data all right thank you david well so what what say you uh carl a guy who's followed historical databases for a long time well one thing actually every database is historical because as soon as you put data in it it's now history it's no longer it no longer reflects the present state of things but even if that history is only a millisecond old it's still history but um i would say i mean i know you're trying to be a little bit provocative in saying this dave because you know as well as i do that people still need to do their taxes they still need to do accounting they still need to run general ledger programs and things like that that all involves historical data that's not going to go away unless you want to go to jail so you're going to have to deal with that but as far as the leading edge functionality i'm totally with you on that and i'm just you know i'm just kind of wondering um if this chain if this requires a change in the way that we perceive applications in order to truly be manifested and rethinking the way m applications work um saying that uh an application should respond instantly as soon as the state of things changes what do you say about that i i think that's true i think we do have to think about things differently that's you know it's not the way we design systems in the past uh we're seeing more and more systems designed that way but again it's not the default and and agree 100 with you that we do need historical databases you know that that's clear and even some of those historical databases will be used in conjunction with the streaming data right so absolutely i mean you know let's take the data warehouse example where you're using the data warehouse as context and the streaming data as the present you're saying here's a sequence of things that's happening right now have we seen that sequence before and where what what does that pattern look like in past situations and can we learn from that so tony bear i wonder if you could comment i mean if you when you think about you know real-time inferencing at the edge for instance which is something that a lot of people talk about um a lot of what we're discussing here in this segment looks like it's got great potential what are your thoughts yeah well i mean i think you nailed it right you know you hit it right on the head there which is that i think a key what i'm seeing is that essentially and basically i'm going to split this one down the middle is i don't see that basically streaming is the default what i see is streaming and basically and transaction databases um and analytics data you know data warehouses data lakes whatever are converging and what allows us technically to converge is cloud native architecture where you can basically distribute things so you could have you can have a note here that's doing the real-time processing that's also doing it and this is what your leads in we're maybe doing some of that real-time predictive analytics to take a look at well look we're looking at this customer journey what's happening with you know you know with with what the customer is doing right now and this is correlated with what other customers are doing so what i so the thing is that in the cloud you can basically partition this and because of basically you know the speed of the infrastructure um that you can basically bring these together and or and so and kind of orchestrate them sort of loosely coupled manner the other part is that the use cases are demanding and this is part that goes back to what dave is saying is that you know when you look at customer 360 when you look at let's say smart you know smart utility grids when you look at any type of operational problem it has a real-time component and it has a historical component and having predictives and so like you know you know my sense here is that there that technically we can bring this together through the cloud and i think the use case is that is that we we can apply some some real-time sort of you know predictive analytics on these streams and feed this into the transactions so that when we make a decision in terms of what to do as a result of a transaction we have this real time you know input sanjeev did you have a comment yeah i was just going to say that to this point you know we have to think of streaming very different because in the historical databases we used to bring the data and store the data and then we used to run rules on top uh aggregations and all but in case of streaming the mindset changes because the rules normally the inference all of that is fixed but the data is constantly changing so it's a completely reverse way of thinking of uh and building applications on top of that so dave menninger there seemed to be some disagreement about the default or now what kind of time frame are you are you thinking about is this end of decade it becomes the default what would you pin i i think around you know between between five to ten years i think this becomes the reality um i think you know it'll be more and more common between now and then but it becomes the default and i also want sanjeev at some point maybe in one of our subsequent conversations we need to talk about governing streaming data because that's a whole other set of challenges we've also talked about it rather in a two dimensions historical and streaming and there's lots of low latency micro batch sub second that's not quite streaming but in many cases it's fast enough and we're seeing a lot of adoption of near real time not quite real time as uh good enough for most for many applications because nobody's really taking the hardware dimension of this information like how do we that'll just happen carl so near real time maybe before you lose the customer however you define that right okay um let's move on to brad brad you want to talk about automation ai uh the the the pipeline people feel like hey we can just automate everything what's your prediction yeah uh i'm i'm an ai fiction auto so apologies in advance for that but uh you know um i i think that um we've been seeing automation at play within ai for some time now and it's helped us do do a lot of things for especially for practitioners that are building ai outcomes in the enterprise uh it's it's helped them to fill skills gaps it's helped them to speed development and it's helped them to to actually make ai better uh because it you know in some ways provides some swim lanes and and for example with technologies like ottawa milk and can auto document and create that sort of transparency that that we talked about a little bit earlier um but i i think it's there's an interesting kind of conversion happening with this idea of automation um and and that is that uh we've had the automation that started happening for practitioners it's it's trying to move outside of the traditional bounds of things like i'm just trying to get my features i'm just trying to pick the right algorithm i'm just trying to build the right model uh and it's expanding across that full life cycle of building an ai outcome to start at the very beginning of data and to then continue on to the end which is this continuous delivery and continuous uh automation of of that outcome to make sure it's right and it hasn't drifted and stuff like that and because of that because it's become kind of powerful we're starting to to actually see this weird thing happen where the practitioners are starting to converge with the users and that is to say that okay if i'm in tableau right now i can stand up salesforce einstein discovery and it will automatically create a nice predictive algorithm for me um given the data that i that i pull in um but what's starting to happen and we're seeing this from the the the companies that create business software so salesforce oracle sap and others is that they're starting to actually use these same ideals and a lot of deep learning to to basically stand up these out of the box flip a switch and you've got an ai outcome at the ready for business users and um i i'm very much you know i think that that's that's the way that it's going to go and what it means is that ai is is slowly disappearing uh and i don't think that's a bad thing i think if anything what we're going to see in 2022 and maybe into 2023 is this sort of rush to to put this idea of disappearing ai into practice and have as many of these solutions in the enterprise as possible you can see like for example sap is going to roll out this quarter this thing called adaptive recommendation services which which basically is a cold start ai outcome that can work across a whole bunch of different vertical markets and use cases it's just a recommendation engine for whatever you need it to do in the line of business so basically you're you're an sap user you look up to turn on your software one day and you're a sales professional let's say and suddenly you have a recommendation for customer churn it's going that's great well i i don't know i i think that's terrifying in some ways i think it is the future that ai is going to disappear like that but i am absolutely terrified of it because um i i think that what it what it really does is it calls attention to a lot of the issues that we already see around ai um specific to this idea of what what we like to call it omdia responsible ai which is you know how do you build an ai outcome that is free of bias that is inclusive that is fair that is safe that is secure that it's audible etc etc etc etc that takes some a lot of work to do and so if you imagine a customer that that's just a sales force customer let's say and they're turning on einstein discovery within their sales software you need some guidance to make sure that when you flip that switch that the outcome you're going to get is correct and that's that's going to take some work and so i think we're going to see this let's roll this out and suddenly there's going to be a lot of a lot of problems a lot of pushback uh that we're going to see and some of that's going to come from gdpr and others that sam jeeve was mentioning earlier a lot of it's going to come from internal csr requirements within companies that are saying hey hey whoa hold up we can't do this all at once let's take the slow route let's make ai automated in a smart way and that's going to take time yeah so a couple predictions there that i heard i mean ai essentially you disappear it becomes invisible maybe if i can restate that and then if if i understand it correctly brad you're saying there's a backlash in the near term people can say oh slow down let's automate what we can those attributes that you talked about are non trivial to achieve is that why you're a bit of a skeptic yeah i think that we don't have any sort of standards that companies can look to and understand and we certainly within these companies especially those that haven't already stood up in internal data science team they don't have the knowledge to understand what that when they flip that switch for an automated ai outcome that it's it's gonna do what they think it's gonna do and so we need some sort of standard standard methodology and practice best practices that every company that's going to consume this invisible ai can make use of and one of the things that you know is sort of started that google kicked off a few years back that's picking up some momentum and the companies i just mentioned are starting to use it is this idea of model cards where at least you have some transparency about what these things are doing you know so like for the sap example we know for example that it's convolutional neural network with a long short-term memory model that it's using we know that it only works on roman english uh and therefore me as a consumer can say oh well i know that i need to do this internationally so i should not just turn this on today great thank you carl can you add anything any context here yeah we've talked about some of the things brad mentioned here at idc in the our future of intelligence group regarding in particular the moral and legal implications of having a fully automated you know ai uh driven system uh because we already know and we've seen that ai systems are biased by the data that they get right so if if they get data that pushes them in a certain direction i think there was a story last week about an hr system that was uh that was recommending promotions for white people over black people because in the past um you know white people were promoted and and more productive than black people but not it had no context as to why which is you know because they were being historically discriminated black people being historically discriminated against but the system doesn't know that so you know you have to be aware of that and i think that at the very least there should be controls when a decision has either a moral or a legal implication when when you want when you really need a human judgment it could lay out the options for you but a person actually needs to authorize that that action and i also think that we always will have to be vigilant regarding the kind of data we use to train our systems to make sure that it doesn't introduce unintended biases and to some extent they always will so we'll always be chasing after them that's that's absolutely carl yeah i think that what you have to bear in mind as a as a consumer of ai is that it is a reflection of us and we are a very flawed species uh and so if you look at all the really fantastic magical looking supermodels we see like gpt three and four that's coming out z they're xenophobic and hateful uh because the people the data that's built upon them and the algorithms and the people that build them are us so ai is a reflection of us we need to keep that in mind yeah we're the ai's by us because humans are biased all right great okay let's move on doug henson you know a lot of people that said that data lake that term's not not going to not going to live on but it appears to be have some legs here uh you want to talk about lake house bring it on yes i do my prediction is that lake house and this idea of a combined data warehouse and data lake platform is going to emerge as the dominant data management offering i say offering that doesn't mean it's going to be the dominant thing that organizations have out there but it's going to be the predominant vendor offering in 2022. now heading into 2021 we already had cloudera data bricks microsoft snowflake as proponents in 2021 sap oracle and several of these fabric virtualization mesh vendors join the bandwagon the promise is that you have one platform that manages your structured unstructured and semi-structured information and it addresses both the beyond analytics needs and the data science needs the real promise there is simplicity and lower cost but i think end users have to answer a few questions the first is does your organization really have a center of data gravity or is it is the data highly distributed multiple data warehouses multiple data lakes on-premises cloud if it if it's very distributed and you you know you have difficulty consolidating and that's not really a goal for you then maybe that single platform is unrealistic and not likely to add value to you um you know also the fabric and virtualization vendors the the mesh idea that's where if you have this highly distributed situation that might be a better path forward the second question if you are looking at one of these lake house offerings you are looking at consolidating simplifying bringing together to a single platform you have to make sure that it meets both the warehouse need and the data lake need so you have vendors like data bricks microsoft with azure synapse new really to the data warehouse space and they're having to prove that these data warehouse capabilities on their platforms can meet the scaling requirements can meet the user and query concurrency requirements meet those tight slas and then on the other hand you have the or the oracle sap snowflake the data warehouse uh folks coming into the data science world and they have to prove that they can manage the unstructured information and meet the needs of the data scientists i'm seeing a lot of the lake house offerings from the warehouse crowd managing that unstructured information in columns and rows and some of these vendors snowflake in particular is really relying on partners for the data science needs so you really got to look at a lake house offering and make sure that it meets both the warehouse and the data lake requirement well thank you doug well tony if those two worlds are going to come together as doug was saying the analytics and the data science world does it need to be some kind of semantic layer in between i don't know weigh in on this topic if you would oh didn't we talk about data fabrics before common metadata layer um actually i'm almost tempted to say let's declare victory and go home in that this is actually been going on for a while i actually agree with uh you know much what doug is saying there which is that i mean we i remembered as far back as i think it was like 2014 i was doing a a study you know it was still at ovum predecessor omnia um looking at all these specialized databases that were coming up and seeing that you know there's overlap with the edges but yet there was still going to be a reason at the time that you would have let's say a document database for json you'd have a relational database for tran you know for transactions and for data warehouse and you had you know and you had basically something at that time that that resembles to do for what we're considering a day of life fast fo and the thing is what i was saying at the time is that you're seeing basically blur you know sort of blending at the edges that i was saying like about five or six years ago um that's all and the the lake house is essentially you know the amount of the the current manifestation of that idea there is a dichotomy in terms of you know it's the old argument do we centralize this all you know you know in in in in in a single place or do we or do we virtualize and i think it's always going to be a yin and yang there's never going to be a single single silver silver bullet i do see um that they're also going to be questions and these are things that points that doug raised they're you know what your what do you need of of of your of you know for your performance there or for your you know pre-performance characteristics do you need for instance hiking currency you need the ability to do some very sophisticated joins or is your requirement more to be able to distribute and you know distribute our processing is you know as far as possible to get you know to essentially do a kind of brute force approach all these approaches are valid based on you know based on the used case um i just see that essentially that the lake house is the culmination of it's nothing it's just it's a relatively new term introduced by databricks a couple years ago this is the culmination of basically what's been a long time trend and what we see in the cloud is that as we start seeing data warehouses as a checkbox item say hey we can basically source data in cloud and cloud storage and s3 azure blob store you know whatever um as long as it's in certain formats like you know like you know parquet or csv or something like that you know i see that as becoming kind of you know a check box item so to that extent i think that the lake house depending on how you define it is already reality um and in some in some cases maybe new terminology but not a whole heck of a lot new under the sun yeah and dave menger i mean a lot of this thank you tony but a lot of this is going to come down to you know vendor marketing right some people try to co-opt the term we talked about data mesh washing what are your thoughts on this yeah so um i used the term data platform earlier and and part of the reason i use that term is that it's more vendor neutral uh we've we've tried to uh sort of stay out of the the vendor uh terminology patenting world right whether whether the term lake house is what sticks or not the concept is certainly going to stick and we have some data to back it up about a quarter of organizations that are using data lakes today already incorporate data warehouse functionality into it so they consider their data lake house and data warehouse one in the same about a quarter of organizations a little less but about a quarter of organizations feed the data lake from the data warehouse and about a quarter of organizations feed the data warehouse from the data lake so it's pretty obvious that three quarters of organizations need to bring this stuff together right the need is there the need is apparent the technology is going to continue to verge converge i i like to talk about you know you've got data lakes over here at one end and i'm not going to talk about why people thought data lakes were a bad idea because they thought you just throw stuff in a in a server and you ignore it right that's not what a data lake is so you've got data lake people over here and you've got database people over here data warehouse people over here database vendors are adding data lake capabilities and data lake vendors are adding data warehouse capabilities so it's obvious that they're going to meet in the middle i mean i think it's like tony says i think we should there declare victory and go home and so so i it's just a follow-up on that so are you saying these the specialized lake and the specialized warehouse do they go away i mean johnny tony data mesh practitioners would say or or advocates would say well they could all live as just a node on the on the mesh but based on what dave just said are we going to see those all morph together well number one as i was saying before there's always going to be this sort of you know kind of you know centrifugal force or this tug of war between do we centralize the data do we do it virtualize and the fact is i don't think that work there's ever going to be any single answer i think in terms of data mesh data mesh has nothing to do with how you physically implement the data you could have a data mesh on a basically uh on a data warehouse it's just that you know the difference being is that if we use the same you know physical data store but everybody's logically manual basically governing it differently you know um a data mission is basically it's not a technology it's a process it's a governance process um so essentially um you know you know i basically see that you know as as i was saying before that this is basically the culmination of a long time trend we're essentially seeing a lot of blurring but there are going to be cases where for instance if i need let's say like observe i need like high concurrency or something like that there are certain things that i'm not going to be able to get efficiently get out of a data lake um and you know we're basically i'm doing a system where i'm just doing really brute forcing very fast file scanning and that type of thing so i think there always will be some delineations but i would agree with dave and with doug that we are seeing basically a a confluence of requirements that we need to essentially have basically the element you know the ability of a data lake and a data laid out their warehouse we these need to come together so i think what we're likely to see is organizations look for a converged platform that can handle both sides for their center of data gravity the mesh and the fabric vendors the the fabric virtualization vendors they're all on board with the idea of this converged platform and they're saying hey we'll handle all the edge cases of the stuff that isn't in that center of data gradient that is off distributed in a cloud or at a remote location so you can have that single platform for the center of of your your data and then bring in virtualization mesh what have you for reaching out to the distributed data bingo as they basically said people are happy when they virtualize data i i think yes at this point but to this uh dave meningas point you know they have convert they are converging snowflake has introduced support for unstructured data so now we are literally splitting here now what uh databricks is saying is that aha but it's easy to go from data lake to data warehouse than it is from data warehouse to data lake so i think we're getting into semantics but we've already seen these two converge so is that so it takes something like aws who's got what 15 data stores are they're going to have 15 converged data stores that's going to be interesting to watch all right guys i'm going to go down the list and do like a one i'm going to one word each and you guys each of the analysts if you wouldn't just add a very brief sort of course correction for me so sanjeev i mean governance is going to be the maybe it's the dog that wags the tail now i mean it's coming to the fore all this ransomware stuff which really didn't talk much about security but but but what's the one word in your prediction that you would leave us with on governance it's uh it's going to be mainstream mainstream okay tony bear mesh washing is what i wrote down that's that's what we're going to see in uh in in 2022 a little reality check you you want to add to that reality check is i hope that no vendor you know jumps the shark and calls their offering a data mesh project yeah yeah let's hope that doesn't happen if they do we're going to call them out uh carl i mean graph databases thank you for sharing some some you know high growth metrics i know it's early days but magic is what i took away from that it's the magic database yeah i would actually i've said this to people too i i kind of look at it as a swiss army knife of data because you can pretty much do anything you want with it it doesn't mean you should i mean that's definitely the case that if you're you know managing things that are in a fixed schematic relationship probably a relational database is a better choice there are you know times when the document database is a better choice it can handle those things but maybe not it may not be the best choice for that use case but for a great many especially the new emerging use cases i listed it's the best choice thank you and dave meninger thank you by the way for bringing the data in i like how you supported all your comments with with some some data points but streaming data becomes the sort of default uh paradigm if you will what would you add yeah um i would say think fast right that's the world we live in you got to think fast fast love it uh and brad shimon uh i love it i mean on the one hand i was saying okay great i'm afraid i might get disrupted by one of these internet giants who are ai experts so i'm gonna be able to buy instead of build ai but then again you know i've got some real issues there's a potential backlash there so give us the there's your bumper sticker yeah i i would say um going with dave think fast and also think slow uh to to talk about the book that everyone talks about i would say really that this is all about trust trust in the idea of automation and of a transparent invisible ai across the enterprise but verify verify before you do anything and then doug henson i mean i i look i think the the trend is your friend here on this prediction with lake house is uh really becoming dominant i liked the way you set up that notion of you know the the the data warehouse folks coming at it from the analytics perspective but then you got the data science worlds coming together i still feel as though there's this piece in the middle that we're missing but your your final thoughts we'll give you the last well i think the idea of consolidation and simplification uh always prevails that's why the appeal of a single platform is going to be there um we've already seen that with uh you know hadoop platforms moving toward cloud moving toward object storage and object storage becoming really the common storage point for whether it's a lake or a warehouse uh and that second point uh i think esg mandates are uh are gonna come in alongside uh gdpr and things like that to uh up the ante for uh good governance yeah thank you for calling that out okay folks hey that's all the time that that we have here your your experience and depth of understanding on these key issues and in data and data management really on point and they were on display today i want to thank you for your your contributions really appreciate your time enjoyed it thank you now in addition to this video we're going to be making available transcripts of the discussion we're going to do clips of this as well we're going to put them out on social media i'll write this up and publish the discussion on wikibon.com and siliconangle.com no doubt several of the analysts on the panel will take the opportunity to publish written content social commentary or both i want to thank the power panelist and thanks for watching this special cube presentation this is dave vellante be well and we'll see you next time [Music] you
SUMMARY :
the end of the day need to speak you
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
381 databases | QUANTITY | 0.99+ |
2014 | DATE | 0.99+ |
2022 | DATE | 0.99+ |
2021 | DATE | 0.99+ |
january of 2022 | DATE | 0.99+ |
100 users | QUANTITY | 0.99+ |
jamal dagani | PERSON | 0.99+ |
last week | DATE | 0.99+ |
dave meninger | PERSON | 0.99+ |
sanji | PERSON | 0.99+ |
second question | QUANTITY | 0.99+ |
15 converged data stores | QUANTITY | 0.99+ |
dave vellante | PERSON | 0.99+ |
microsoft | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
sanjeev | PERSON | 0.99+ |
2023 | DATE | 0.99+ |
15 data stores | QUANTITY | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
last year | DATE | 0.99+ |
sanjeev mohan | PERSON | 0.99+ |
six | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
carl | PERSON | 0.99+ |
tony | PERSON | 0.99+ |
carl olufsen | PERSON | 0.99+ |
six years | QUANTITY | 0.99+ |
david | PERSON | 0.99+ |
carlos specter | PERSON | 0.98+ |
both sides | QUANTITY | 0.98+ |
2010s | DATE | 0.98+ |
first backlash | QUANTITY | 0.98+ |
five years | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
dave | PERSON | 0.98+ |
each | QUANTITY | 0.98+ |
three quarters | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
single platform | QUANTITY | 0.98+ |
lake house | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
this year | DATE | 0.98+ |
doug | PERSON | 0.97+ |
one word | QUANTITY | 0.97+ |
this year | DATE | 0.97+ |
wikibon.com | OTHER | 0.97+ |
one platform | QUANTITY | 0.97+ |
39 | QUANTITY | 0.97+ |
about 600 percent | QUANTITY | 0.97+ |
two analysts | QUANTITY | 0.97+ |
ten years | QUANTITY | 0.97+ |
single platform | QUANTITY | 0.96+ |
five | QUANTITY | 0.96+ |
one | QUANTITY | 0.96+ |
three quarters | QUANTITY | 0.96+ |
california | LOCATION | 0.96+ |
ORGANIZATION | 0.96+ | |
single | QUANTITY | 0.95+ |