Image Title

Search Results for mill:

Ken Durazzo, Dell Technologies and Matt Keesan, IonQ | Super Computing 2022


 

>>How do y'all and welcome back to the cube where we're live from Dallas at a Supercomputing 2022. My name is Savannah Peterson. Joined with L AED today, as well as some very exciting guests talking about one of my favorite and most complex topics out there, talking about quantum a bit today. Please welcome Ken and Matthew. Thank you so much for reading here. Matthew. Everyone's gonna be able to see your shirt. What's going on with hybrid quantum? I have >>To ask. Wait, what is hybrid quantum? Yeah, let's not pretend that. >>Let's not >>Pretend that everybody knows, Everyone already knows what quantum computing is if we goes straight to highway. Yeah. Okay. So with the brief tour detour took qu regular quantum computing. Yeah, >>No, no. Yeah. Let's start with quantum start before. >>So you know, like regular computers made of transistors gives us ones and zeros, right? Binary, like you were talking about just like half of the Cheerios, right? The joke, it turns out there's some problems that even if we could build a computer as big as the whole universe, which would be pretty expensive, >>That might not be a bad thing, but >>Yeah. Yeah. Good for Dell Got mill. >>Yeah. >>Yeah. We wouldn't be able to solve them cuz they scale exponentially. And it turns out some of those problems have efficient solutions in quantum computing where we take any two state quantum system, which I'll explain in a sec and turn it into what we call a quantum bit or qubit. And those qubits can actually solve some problems that are just infeasible on even these world's largest computers by offering exponential advantage. And it turns out that today's quantum computers are a little too small and a little too noisy to do that alone. So by pairing a quantum computer with a classical computer, hence the partnership between IQ and Dell, you allow each kind of compute to do what it's best at and thereby get answers you can't get with either one alone. >>Okay. So the concept of introducing hybridity, I love that word bridge. I dunno if I made it up, but it's it for it. Let's about it. Abri, ding ding. So does this include simulating the quantum world within the, what was the opposite? The classical quantum world? Classical. Classical, classical computer. Yeah. So does it include the concept of simulating quantum in classical compute? >>Absolutely. >>Okay. How, how, how do, how do you do that? >>So there's simulators and emulators that effectively are programmed in exactly the same way that a physical quantum machine is through circuits translated into chasm or quantum assembly language. And those are the exact same ways that you would program either a physical q p or a simulated >>Q p. So, so access to quantum computing today is scarce, right? I mean it's, it's, it's, it's limited. So having the ability to have the world at large or a greater segment of society be able to access this through simulation is probably a good idea. >>Fair. It's absolutely a wonderful one. And so I often talk to customers and I tell them about the journey, which is hands on keyboard, learning, experimentation, building proof of concepts, and then finally productization. And you could do much of that first two steps anyway very robustly with simulation. >>It's much like classical computing where if you imagine back in the fifties, if, if the cube was at some conference in 1955, you know, we wouldn't have possibly been able to predict what we'd be doing with computing 70 years later, right? Yeah. That teenagers be making apps on their phones that changed the world, right? And so by democratizing access this way, suddenly we can open up all sorts of new use cases. We sort of like to joke, there's only a couple hundred people in the world who really know how to program quantum computers today. And so how are we gonna make thousands, tens of thousands, millions of quantum programmers? The answer is access and simulators are an amazingly accessible way for everyone to start playing around with the >>Fields. Very powerful tool. >>Wow. Yeah. I'm just thinking about how many, there's, are there really only hundreds of people who can program quantum computing? >>I kind of generally throw it out there and I say, you know, if you looked at a matrix of a thousand operations with hundreds of qubits, there's probably, I don't know, 2000 people worldwide that could program that type of a circuit. I mean it's a fairly complex circuit at that point and >>I, I mean it's pretty phenomenal When you think about how early we are in adoption and, and the rollout of this technology as a whole, can you see quite a bit as, as you look across your customer portfolio, what are some of the other trends you're seeing? >>Well, non quantum related trends or just any type you give us >>Both. >>Yeah. So >>We're a thought leader. This is >>Your moment. Yeah, so we do quite a bit. We see quite a bit actually. There's a lot of work happening at the edge as you're probably well aware of. And we see a lot of autonomous mobile robots. I actually lead the, the research office. So I get to see all the cool stuff that's really kind of emerging before it really regrets >>What's coming next. >>Let's see, Oh, I can't tell you what's coming next, but we see edge applications. Yes, we see a lot of, of AI applications and artificial intelligence is morphing dramatically through the number of frameworks and through the, the types and places you would place ai, even places I, I personally never thought we would go like manufacturing environments. Some places that were traditionally not very early adopters. We're seeing AI move very quickly in some of those areas. One of the areas that I'm really excited about is digital twins and the ability to eventually do, let's come up on acceleration with quantum technologies on, on things like computational fluid dynamics. And I think it's gonna be a wonderful, wonderful area for us moving forward. >>So, So I can hear the people screaming at the screen right now. Wait a minute, You said it was hybrid, you're only talking the front half. That's, that's cat. What about the back half? That's dog. What about the quantum part of it? So I, on Q and, and I apologize. Ion Q >>Ion >>Q, Yeah Ion Q cuz you never know. You never never know. Yeah. Where does the actual quantum come in? >>That's a great >>Question. So you guys have one of these things. >>Yeah, we've built, we currently have the world's best quantum computer by, by sub measures I drop there. Yeah, no big deal. Give me some snaps for that. Yeah, Ken knows how to pick em. Yeah, so right. Our, our approach, which is actually based on technology that's 50 years old, so it's quite, quite has a long history. The way we build atomic clocks is the basis for trapped eye quantum computing. And in fact the first quantum logic gate ever made in 1995 was at NIST where they modified their atomic clock experiment to do quantum gates. And that launched really the hardware experimentalist quantum Peter Revolution. And that was by Chris Monroe, our co-founder. So you know that history has flown directly into us. So to simplify, we start with an ion trap. Imagine a gold block with a bunch of electrodes that allow you to make precisely shaped electromagnetic fields, sort of like a rotating saddle. >>Then take a source of atoms. Now obviously we're all sources of atoms. We have a highly purified source of metal atium. We heat it up, we get a nice hot plume of atoms, we ionize those atoms with an ionizing later laser. Now they're hot and heavy and charged. So we can trap them in one of these fields. And now our electromagnetic field that's spitting rapidly holds the, the ions like balls in a bowl if you can imagine them. And they line up in a nice straight line and we hold them in place with these fields and with cooling laser beams. And up to now, that's how an atomic clock works. Trap an item and shine it with a laser beam. Count the oscillations, that's your clock. Now if you got 32 of those and you can manipulate their energy states, in our case we use the hyper fine energy states of the atom. >>But you can basically think of your high school chemistry where you have like an unexcited electron, an excited electron. Take your unexcited state as a zero, your excited state as a one. And it turns out with commercially available lasers, you can drive anywhere between a zero, a one or a super position of zero and one. And so that is our quantum bit, the hyper fine energy state of the atrium atom. And we just line up a bunch of them and through there access the magical powers of supervision entanglement, as we were talking about before, they don't really make sense to us here in the regular world, but >>They do exist. But what you just described is one cubit. That's right. And the way that you do it isn't exactly the same way that others who are doing quantum computing do it. That's right. Is that okay? >>And there's a lot of advantages to the trapped iron approach. So for example, you can also build a super conducting qubit where you, where you basically cool a chip to 47 mil kelvin and coerce millions of atoms to work together as a single system. The problem is that's not naturally quantum. So it's inherently noisy and it wants to deco here does not want to be a quantum bit. Whereas an atom is very happy to be by itself a qubit because we don't have to do anything to it. It's naturally quantum, if that makes sense. And so atomic qubits, like we use feature a few things. One the longest coherence times in the industry, meaning you can run very deep circuits, the most accurate operations, very low noise operations. And we don't have any wires. Our atoms are connected by laser light. That means you can connect any pair. So with some other technologies, the qubits are connected by wires. That means you can only run operations between physically connected qubits. It's like programming. If you could only use, for example, bits that are adjacent with an i untrapped approach, you can connect any pair so that all to all connectivity means your compilation is much more efficient and you can do much wider and deeper circuits. >>So what's the, what is the closest thing to a practical application that we've been able to achieve at this point? Question. And when I say practical, it doesn't have to be super practical. I mean, what is the, what is the sort of demonstration, the least esoteric demonstration of this at this point? >>To tie into what Ken was saying earlier, I think there's at least two areas that are very exciting. One is chemistry. Chemistry. So for example, you know, we have water in our cup and we understand water pretty well, but there's lots of molecules that in order to study them, we actually have to make them in a lab and do lots of experiments. And to give you a sense of the order of magnitude, if you wanted to understand the ground state of the caffeine molecule, which we all know and has 200 electrons, you would need to build a computer bigger than the moon. So, which is, you know, again, would be good profit for Dell, but probably not gonna happen time soon. That's >>Kind of fun to think about though. Yeah, that's a great analogy. That >>Was, yeah. And in fact it'd be like 10 moons of compute. Okay. So build 10 moons of >>Computer. I >>Love the sci-fi issue. Exactly. And now you can calculate caffeine, it's crazy or it just fits in a quantum computer the size of this table. And so we're using hybrid quantum computing now to start proving out these algorithms not for molecules as complex as caffeine or what we want in the future. Like biologics, you know, new cancer medications, new materials and so forth. But we are able to show, for example, the ground state of smaller molecules and prove a path to where, you know, decision maker could see in a few years from now, Oh, we'll be able to actually simulate not molecules we already understand, but molecules we've never been able to study a prayer, if that makes sense. And then, >>Yeah, I think there's a key point underneath that, and I think goes back to the question that you asked earlier about the why hybrid applications inherently run on the classical infrastructure and algorithms are accelerated through qs, the quantum processing units. >>And so are you sort of time sharing in the sense that this environment that you set up starts with classical, with simulation and then you get to a point where you say, okay, we're ready, you pick up the bat phone and you say I wanna, >>I would say it's more like a partnership, really. Yeah, >>Yeah. And I think, I think it's kind of the, the way I normally describe it is, you know, we've taken a look at it it from a really kind of a software development life cycle type of perspective where again, if you follow that learn experiment, pro proof of concept, and then finally productize, we, we can cover and allow for a developer to start prototyping and proofing on simulators and when they're ready all they do is flip a switch and a manifest and they can automatically engage a qu a real quantum physical quantum system. And so we've made it super simple and very accessible in a democratizing access for developers. >>Yeah. Makes such big difference. Go ahead. >>A good analogy is to like GPUs, right? Where it's not really like, you know, you send it away, but rather the GPU accelerates certain operations. The q p. Yeah, because quantum mechanics, it turns out the universe runs on linear algebra. So one way to think about the q p is the most efficient way of doing linear algebra that exists. So lots of problems that can be expressed in that form. Combinatorial optimization problems in general, certain kinds of machine learning, et cetera, get an exponential speed up by running a section of the algorithm on the quantum computer. But of course you wouldn't like port Microsoft Word. Yeah, exactly. You know, you're not gonna do that in your product. It would be a waste of your quantum computer. >>Not just that you wanna know exactly how much money is in your bank account, not probabilistically how much might be ballpark. Yeah. Realm 10, moon ballpark, right? >>10 moon ballpark. Be using that for the rest of the show. Yeah. Oh, I love that. Ken, tell me a little bit about how you identify companies and like I n Q and and end up working with Matthew. What, what's that like, >>What's it like or how do you >>Find it's the process? Like, so, you know, let's say I've got the the >>We're not going there though. Yeah. We're not >>Personal relationship. >>Well, >>You can answer these questions however you want, you know. No, but, but what does that look like for Dell? How do you, how do you curate and figure out who you're gonna bring into this partnership nest? >>Yeah, you know, I, I think it was a, it's, it was a, a very long drawn out learning opportunity. We started actually our working quantum back in 2016. So we've been at it for a long time. And only >>In quantum would we say six years is a long time. I love >>That. Exactly. >>By the way, that was like, we've been doing this for age for a >>Long time. Yeah. Very long time before >>You were born. Yes. >>Feels like it actually, believe it or not. But, so we've been at it for a long time and you know, we went down some very specific learning paths. We took a lot of different time to, to learn about different types of qubits available, different companies, what their approaches were, et cetera. Yeah. And, and we ended up meeting up with, with I N Q and, and we also have other partners as well, like ibm, but I N q you know, we, there is a nice symbiotic relationship. We're actually doing some really cool technologies that are even much, much further ahead than the, you know, strict classical does this, quantum does that where there's significant amount of interplay between the simulation systems and between the real physical QS. And so it's, it's turning out to be a great relationship. They're, they're very easy to work with and, and a lot of fun too, as you could probably tell. Yeah. >>Clearly. So before we wrap, I've got it. Okay. Okay. So get it. Let's get, let's get, yeah, let's get deep. Let's get deep for a second or a little deeper than we've been. So our current, our current understanding of all this, of the universe, it's pretty limited. It's down to the point where we effectively have it assigned to witchcraft. It's all dark energy and dark matter. Right. What does that mean exactly? Nobody knows. But if you're in the quantum computing space and you're living this every day, do you believe that it represents the key to us understanding things that currently we just can't understand classical models, including classical computing, our brains as they're constructed aren't capable of understanding the real real that's out there. Yeah. If you're in the quantum computing space, do you possess that level of hubris? Do you think that you are gonna deliver the answers? >>I'm just like, I think the more you're in the space, the more mysterious and amazing it all seems. There's a, but there is a great quote by Richard Feinman that sort of kicked off the quantum exploration. So he gave a lecture in 1981, so, you know, long before any of this began, truly ages ago, right? Yeah. And in this lecture he said, you know, kind of wild at that time, right? We had to build these giant supercomputers to simulate just a couple atoms interacting, right? And it's kind of crazy that you need all this compute to simulate what nature does with just a handful >>Particles. Yeah. >>Really small. So, and, and famously he said, you know, nature just isn't classical. Damn it. And so you need to build a computer that works with nature to understand nature. I think, you know, the, the quantum revolution has only just begun. There's so many new things to learn, and I'm sure the quantum computers of 40 years from now are not gonna look like the, you know, the computers of today, just as the classical computers of 40 years ago look quite different to us now, >>And we're a bunch of apes. But you think we'll get there? >>I, yeah, I, I mean, I, I have, I think we have, I feel incredibly optimistic that this tool, quantum computing as a tool represents a sea change in what's possible for humans to compute. >>Yeah. I think it's that possibility. You know, I, when I tell people right now in the quantum era, we're in the inac stage of the quantum era, and so we have a long way to go, but the potential is absolutely enormous. In fact, incomprehensibly enormous, I >>Was just gonna say, I don't even think we could grasp >>In the, from the inac is they had no idea of computers inside of your hand, right? Yeah. >>They're calculating, you know, trajectories, right? Yeah. If you told them, like, we'd all be video chatting, you >>Know, >>Like, and kids would be doing synchronized dances, you know, you'd be like, What? >>I love that. Well, well, on that note, Ken Matthew, really great to have you both, everyone now will be pondering the scale and scope of the universe with their 10 moon computer, 10 moons. That's right. And, and you've given me my, my new favorite bumper sticker since we've been on a, on a roll here, David and I, which is just naturally quantum. Yeah, that's, that's, that's, that's one of my new favorite phrases from the show. Thank you both for being here. David, thank you for hanging out and thank all of you for tuning in to our cube footage live here in Dallas. We are at Supercomputing. This is our last show for the day, but we look forward to seeing you tomorrow morning. My name's Savannah Peterson. Y'all have a lovely night.

Published Date : Nov 16 2022

SUMMARY :

Thank you so much for reading here. Yeah, let's not pretend that. So with the brief tour detour took qu regular quantum computing. hence the partnership between IQ and Dell, you allow each kind of compute to do what it's So does it include the concept of simulating quantum in you would program either a physical q p or a simulated So having the ability to have the And you could do much of that first if, if the cube was at some conference in 1955, you know, we wouldn't have possibly been Very powerful tool. I kind of generally throw it out there and I say, you know, if you looked at a matrix of a thousand operations with We're a thought leader. And we see a lot of the types and places you would place ai, even places I, What about the quantum part of it? Q, Yeah Ion Q cuz you never know. So you guys have one of these things. So you know that history has flown directly into Now if you got 32 of those and you can manipulate their And it turns out with commercially available lasers, you can drive anywhere between a zero, And the way that you do it isn't for example, bits that are adjacent with an i untrapped approach, you can connect any pair so that all And when I say practical, it doesn't have to be super practical. And to give you a sense of the order of magnitude, Kind of fun to think about though. And in fact it'd be like 10 moons of compute. I And now you can calculate caffeine, it's crazy or it just fits in a quantum computer the size of Yeah, I think there's a key point underneath that, and I think goes back to the question that you asked earlier about the why hybrid Yeah, of a software development life cycle type of perspective where again, if you follow that learn experiment, Where it's not really like, you know, Not just that you wanna know exactly how much money is in your bank account, not probabilistically how tell me a little bit about how you identify companies and like I n Q and and end Yeah. You can answer these questions however you want, you know. Yeah, you know, I, I think it was a, it's, it was a, a very long drawn out learning opportunity. In quantum would we say six years is a long time. You were born. But, so we've been at it for a long time and you know, do you believe that it represents the key to us understanding And it's kind of crazy that you need all this compute to simulate what nature does Yeah. And so you need to build a computer that works with nature to understand nature. But you think we'll get there? I, yeah, I, I mean, I, I have, I think we have, I feel incredibly optimistic that this to go, but the potential is absolutely enormous. Yeah. They're calculating, you know, trajectories, right? but we look forward to seeing you tomorrow morning.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
KenPERSON

0.99+

Chris MonroePERSON

0.99+

MatthewPERSON

0.99+

DavidPERSON

0.99+

2016DATE

0.99+

Ken DurazzoPERSON

0.99+

Savannah PetersonPERSON

0.99+

Matt KeesanPERSON

0.99+

1995DATE

0.99+

10 moonsQUANTITY

0.99+

Ken MatthewPERSON

0.99+

Richard FeinmanPERSON

0.99+

DallasLOCATION

0.99+

1981DATE

0.99+

32QUANTITY

0.99+

six yearsQUANTITY

0.99+

tomorrow morningDATE

0.99+

200 electronsQUANTITY

0.99+

1955DATE

0.99+

DellORGANIZATION

0.99+

thousandsQUANTITY

0.99+

10 moonQUANTITY

0.99+

one cubitQUANTITY

0.99+

hundreds of qubitsQUANTITY

0.99+

BothQUANTITY

0.99+

firstQUANTITY

0.99+

millions of atomsQUANTITY

0.99+

two stateQUANTITY

0.99+

zeroQUANTITY

0.99+

2000 peopleQUANTITY

0.99+

tens of thousandsQUANTITY

0.98+

bothQUANTITY

0.98+

L AEDORGANIZATION

0.98+

OneQUANTITY

0.98+

todayDATE

0.98+

IQORGANIZATION

0.98+

70 years laterDATE

0.98+

first two stepsQUANTITY

0.98+

Dell TechnologiesORGANIZATION

0.98+

zerosQUANTITY

0.97+

oneQUANTITY

0.97+

47 mil kelvinQUANTITY

0.96+

40 yearsQUANTITY

0.95+

each kindQUANTITY

0.94+

40 years agoDATE

0.93+

50 years oldQUANTITY

0.93+

SupercomputingORGANIZATION

0.92+

single systemQUANTITY

0.92+

millions of quantum programmersQUANTITY

0.91+

NISTORGANIZATION

0.9+

AbriPERSON

0.89+

2022DATE

0.87+

ages agoDATE

0.86+

hundreds of peopleQUANTITY

0.86+

couple hundred peopleQUANTITY

0.84+

thousand operationsQUANTITY

0.84+

couple atomsQUANTITY

0.77+

a secondQUANTITY

0.77+

Supercomputing 2022EVENT

0.74+

onesQUANTITY

0.72+

IonQPERSON

0.71+

millORGANIZATION

0.71+

two areasQUANTITY

0.71+

one wayQUANTITY

0.7+

WordTITLE

0.69+

fieldsQUANTITY

0.67+

frontQUANTITY

0.66+

MicrosoftORGANIZATION

0.65+

SuperEVENT

0.58+

yearsDATE

0.52+

moonLOCATION

0.5+

Armstrong and Guhamad and Jacques V2


 

>>from around the globe. It's the Cube covering >>space and cybersecurity. Symposium 2020 hosted by Cal Poly >>Over On Welcome to this Special virtual conference. The Space and Cybersecurity Symposium 2020 put on by Cal Poly with support from the Cube. I'm John for your host and master of ceremonies. Got a great topic today in this session. Really? The intersection of space and cybersecurity. This topic and this conversation is the cybersecurity workforce development through public and private partnerships. And we've got a great lineup. We have Jeff Armstrong's the president of California Polytechnic State University, also known as Cal Poly Jeffrey. Thanks for jumping on and Bang. Go ahead. The second director of C four s R Division. And he's joining us from the office of the Under Secretary of Defense for the acquisition Sustainment Department of Defense, D O D. And, of course, Steve Jake's executive director, founder, National Security Space Association and managing partner at Bello's. Gentlemen, thank you for joining me for this session. We got an hour conversation. Thanks for coming on. >>Thank you. >>So we got a virtual event here. We've got an hour, have a great conversation and love for you guys do? In opening statement on how you see the development through public and private partnerships around cybersecurity in space, Jeff will start with you. >>Well, thanks very much, John. It's great to be on with all of you. Uh, on behalf Cal Poly Welcome, everyone. Educating the workforce of tomorrow is our mission to Cal Poly. Whether that means traditional undergraduates, master students are increasingly mid career professionals looking toe up, skill or re skill. Our signature pedagogy is learn by doing, which means that our graduates arrive at employers ready Day one with practical skills and experience. We have long thought of ourselves is lucky to be on California's beautiful central Coast. But in recent years, as we have developed closer relationships with Vandenberg Air Force Base, hopefully the future permanent headquarters of the United States Space Command with Vandenberg and other regional partners, we have discovered that our location is even more advantages than we thought. We're just 50 miles away from Vandenberg, a little closer than u C. Santa Barbara, and the base represents the southern border of what we have come to think of as the central coast region. Cal Poly and Vandenberg Air force base have partner to support regional economic development to encourage the development of a commercial spaceport toe advocate for the space Command headquarters coming to Vandenberg and other ventures. These partnerships have been possible because because both parties stand to benefit Vandenberg by securing new streams of revenue, workforce and local supply chain and Cal Poly by helping to grow local jobs for graduates, internship opportunities for students, and research and entrepreneurship opportunities for faculty and staff. Crucially, what's good for Vandenberg Air Force Base and for Cal Poly is also good for the Central Coast and the US, creating new head of household jobs, infrastructure and opportunity. Our goal is that these new jobs bring more diversity and sustainability for the region. This regional economic development has taken on a life of its own, spawning a new nonprofit called Reach, which coordinates development efforts from Vandenberg Air Force Base in the South to camp to Camp Roberts in the North. Another factor that is facilitated our relationship with Vandenberg Air Force Base is that we have some of the same friends. For example, Northrop Grumman has has long been an important defense contractor, an important partner to Cal poly funding scholarships and facilities that have allowed us to stay current with technology in it to attract highly qualified students for whom Cal Poly's costs would otherwise be prohibitive. For almost 20 years north of grimness funded scholarships for Cal Poly students this year, their funding 64 scholarships, some directly in our College of Engineering and most through our Cal Poly Scholars program, Cal Poly Scholars, a support both incoming freshman is transfer students. These air especially important because it allows us to provide additional support and opportunities to a group of students who are mostly first generation, low income and underrepresented and who otherwise might not choose to attend Cal Poly. They also allow us to recruit from partner high schools with large populations of underrepresented minority students, including the Fortune High School in Elk Grove, which we developed a deep and lasting connection. We know that the best work is done by balanced teams that include multiple and diverse perspectives. These scholarships help us achieve that goal, and I'm sure you know Northrop Grumman was recently awarded a very large contract to modernized the U. S. I. C B M Armory with some of the work being done at Vandenberg Air Force Base, thus supporting the local economy and protecting protecting our efforts in space requires partnerships in the digital realm. How Polly is partnered with many private companies, such as AWS. Our partnerships with Amazon Web services has enabled us to train our students with next generation cloud engineering skills, in part through our jointly created digital transformation hub. Another partnership example is among Cal Poly's California Cybersecurity Institute, College of Engineering and the California National Guard. This partnership is focused on preparing a cyber ready workforce by providing faculty and students with a hands on research and learning environment, side by side with military, law enforcement professionals and cyber experts. We also have a long standing partnership with PG and E, most recently focused on workforce development and redevelopment. Many of our graduates do indeed go on to careers in aerospace and defense industry as a rough approximation. More than 4500 Cal Poly graduates list aerospace and defense as their employment sector on linked in, and it's not just our engineers and computer sciences. When I was speaking to our fellow Panelists not too long ago, >>are >>speaking to bang, we learned that Rachel sins, one of our liberal arts arts majors, is working in his office. So shout out to you, Rachel. And then finally, of course, some of our graduates sword extraordinary heights such as Commander Victor Glover, who will be heading to the International space station later this year as I close. All of which is to say that we're deeply committed the workforce, development and redevelopment that we understand the value of public private partnerships and that were eager to find new ways in which to benefit everyone from this further cooperation. So we're committed to the region, the state in the nation and our past efforts in space, cybersecurity and links to our partners at as I indicated, aerospace industry and governmental partners provides a unique position for us to move forward in the interface of space and cybersecurity. Thank you so much, John. >>President, I'm sure thank you very much for the comments and congratulations to Cal Poly for being on the forefront of innovation and really taking a unique progressive. You and wanna tip your hat to you guys over there. Thank you very much for those comments. Appreciate it. Bahng. Department of Defense. Exciting you gotta defend the nation spaces Global. Your opening statement. >>Yes, sir. Thanks, John. Appreciate that day. Thank you, everybody. I'm honored to be this panel along with President Armstrong, Cal Poly in my long longtime friend and colleague Steve Jakes of the National Security Space Association, to discuss a very important topic of cybersecurity workforce development, as President Armstrong alluded to, I'll tell you both of these organizations, Cal Poly and the N S. A have done and continue to do an exceptional job at finding talent, recruiting them in training current and future leaders and technical professionals that we vitally need for our nation's growing space programs. A swell Asare collective National security Earlier today, during Session three high, along with my colleague Chris Hansen discussed space, cyber Security and how the space domain is changing the landscape of future conflicts. I discussed the rapid emergence of commercial space with the proliferations of hundreds, if not thousands, of satellites providing a variety of services, including communications allowing for global Internet connectivity. S one example within the O. D. We continue to look at how we can leverage this opportunity. I'll tell you one of the enabling technologies eyes the use of small satellites, which are inherently cheaper and perhaps more flexible than the traditional bigger systems that we have historically used unemployed for the U. D. Certainly not lost on Me is the fact that Cal Poly Pioneer Cube SATs 2020 some years ago, and they set the standard for the use of these systems today. So they saw the valiant benefit gained way ahead of everybody else, it seems, and Cal Poly's focus on training and education is commendable. I especially impressed by the efforts of another of Steve's I colleague, current CEO Mr Bill Britain, with his high energy push to attract the next generation of innovators. Uh, earlier this year, I had planned on participating in this year's Cyber Innovation Challenge. In June works Cal Poly host California Mill and high school students and challenge them with situations to test their cyber knowledge. I tell you, I wish I had that kind of opportunity when I was a kid. Unfortunately, the pandemic change the plan. Why I truly look forward. Thio feature events such as these Thio participating. Now I want to recognize my good friend Steve Jakes, whom I've known for perhaps too long of a time here over two decades or so, who was in acknowledge space expert and personally, I truly applaud him for having the foresight of years back to form the National Security Space Association to help the entire space enterprise navigate through not only technology but Polly policy issues and challenges and paved the way for operational izing space. Space is our newest horrifying domain. That's not a secret anymore. Uh, and while it is a unique area, it shares a lot of common traits with the other domains such as land, air and sea, obviously all of strategically important to the defense of the United States. In conflict they will need to be. They will all be contested and therefore they all need to be defended. One domain alone will not win future conflicts in a joint operation. We must succeed. All to defending space is critical as critical is defending our other operational domains. Funny space is no longer the sanctuary available only to the government. Increasingly, as I discussed in the previous session, commercial space is taking the lead a lot of different areas, including R and D, A so called new space, so cyber security threat is even more demanding and even more challenging. Three US considers and federal access to and freedom to operate in space vital to advancing security, economic prosperity, prosperity and scientific knowledge of the country. That's making cyberspace an inseparable component. America's financial, social government and political life. We stood up US Space force ah, year ago or so as the newest military service is like the other services. Its mission is to organize, train and equip space forces in order to protect us and allied interest in space and to provide space capabilities to the joint force. Imagine combining that US space force with the U. S. Cyber Command to unify the direction of space and cyberspace operation strengthened U D capabilities and integrate and bolster d o d cyber experience. Now, of course, to enable all of this requires had trained and professional cadre of cyber security experts, combining a good mix of policy as well as high technical skill set much like we're seeing in stem, we need to attract more people to this growing field. Now the D. O. D. Is recognized the importance of the cybersecurity workforce, and we have implemented policies to encourage his growth Back in 2013 the deputy secretary of defense signed the D. O d cyberspace workforce strategy to create a comprehensive, well equipped cyber security team to respond to national security concerns. Now this strategy also created a program that encourages collaboration between the D. O. D and private sector employees. We call this the Cyber Information Technology Exchange program or site up. It's an exchange programs, which is very interesting, in which a private sector employees can naturally work for the D. O. D. In a cyber security position that spans across multiple mission critical areas are important to the d. O. D. A key responsibility of cybersecurity community is military leaders on the related threats and cyber security actions we need to have to defeat these threats. We talk about rapid that position, agile business processes and practices to speed up innovation. Likewise, cybersecurity must keep up with this challenge to cyber security. Needs to be right there with the challenges and changes, and this requires exceptional personnel. We need to attract talent investing the people now to grow a robust cybersecurity, workforce, streets, future. I look forward to the panel discussion, John. Thank you. >>Thank you so much bomb for those comments and you know, new challenges and new opportunities and new possibilities and free freedom Operating space. Critical. Thank you for those comments. Looking forward. Toa chatting further. Steve Jakes, executive director of N. S. S. A Europe opening statement. >>Thank you, John. And echoing bangs thanks to Cal Poly for pulling these this important event together and frankly, for allowing the National Security Space Association be a part of it. Likewise, we on behalf the association delighted and honored Thio be on this panel with President Armstrong along with my friend and colleague Bonneau Glue Mahad Something for you all to know about Bomb. He spent the 1st 20 years of his career in the Air Force doing space programs. He then went into industry for several years and then came back into government to serve. Very few people do that. So bang on behalf of the space community, we thank you for your long life long devotion to service to our nation. We really appreciate that and I also echo a bang shot out to that guy Bill Britain, who has been a long time co conspirator of ours for a long time and you're doing great work there in the cyber program at Cal Poly Bill, keep it up. But professor arms trying to keep a close eye on him. Uh, I would like to offer a little extra context to the great comments made by by President Armstrong and bahng. Uh, in our view, the timing of this conference really could not be any better. Um, we all recently reflected again on that tragic 9 11 surprise attack on our homeland. And it's an appropriate time, we think, to take pause while the percentage of you in the audience here weren't even born or babies then For the most of us, it still feels like yesterday. And moreover, a tragedy like 9 11 has taught us a lot to include to be more vigilant, always keep our collective eyes and ears open to include those quote eyes and ears from space, making sure nothing like this ever happens again. So this conference is a key aspect. Protecting our nation requires we work in a cybersecurity environment at all times. But, you know, the fascinating thing about space systems is we can't see him. No, sir, We see Space launches man there's nothing more invigorating than that. But after launch, they become invisible. So what are they really doing up there? What are they doing to enable our quality of life in the United States and in the world? Well, to illustrate, I'd like to paraphrase elements of an article in Forbes magazine by Bonds and my good friend Chuck Beans. Chuck. It's a space guy, actually had Bonds job a fuse in the Pentagon. He is now chairman and chief strategy officer at York Space Systems, and in his spare time he's chairman of the small satellites. Chuck speaks in words that everyone can understand. So I'd like to give you some of his words out of his article. Uh, they're afraid somewhat. So these are Chuck's words. Let's talk about average Joe and playing Jane. Before heading to the airport for a business trip to New York City, Joe checks the weather forecast informed by Noah's weather satellites to see what pack for the trip. He then calls an uber that space app. Everybody uses it matches riders with drivers via GPS to take into the airport, So Joe has lunch of the airport. Unbeknownst to him, his organic lunch is made with the help of precision farming made possible through optimized irrigation and fertilization, with remote spectral sensing coming from space and GPS on the plane, the pilot navigates around weather, aided by GPS and nose weather satellites. And Joe makes his meeting on time to join his New York colleagues in a video call with a key customer in Singapore made possible by telecommunication satellites. Around to his next meeting, Joe receives notice changing the location of the meeting to another to the other side of town. So he calmly tells Syria to adjust the destination, and his satellite guided Google maps redirects him to the new location. That evening, Joe watches the news broadcast via satellite. The report details a meeting among world leaders discussing the developing crisis in Syria. As it turns out, various forms of quote remotely sensed. Information collected from satellites indicate that yet another band, chemical weapon, may have been used on its own people. Before going to bed, Joe decides to call his parents and congratulate them for their wedding anniversary as they cruise across the Atlantic, made possible again by communications satellites and Joe's parents can enjoy the call without even wondering how it happened the next morning. Back home, Joe's wife, Jane, is involved in a car accident. Her vehicle skids off the road. She's knocked unconscious, but because of her satellite equipped on star system, the crash is detected immediately and first responders show up on the scene. In time, Joe receives the news books. An early trip home sends flowers to his wife as he orders another uber to the airport. Over that 24 hours, Joe and Jane used space system applications for nearly every part of their day. Imagine the consequences if at any point they were somehow denied these services, whether they be by natural causes or a foreign hostility. And each of these satellite applications used in this case were initially developed for military purposes and continue to be, but also have remarkable application on our way of life. Just many people just don't know that. So, ladies and gentlemen, now you know, thanks to chuck beans, well, the United States has a proud heritage being the world's leading space faring nation, dating back to the Eisenhower and Kennedy years. Today we have mature and robust systems operating from space, providing overhead reconnaissance to quote, wash and listen, provide missile warning, communications, positioning, navigation and timing from our GPS system. Much of what you heard in Lieutenant General J. T. Thompson earlier speech. These systems are not only integral to our national security, but also our also to our quality of life is Chuck told us. We simply no longer could live without these systems as a nation and for that matter, as a world. But over the years, adversary like adversaries like China, Russia and other countries have come to realize the value of space systems and are aggressively playing ketchup while also pursuing capabilities that will challenge our systems. As many of you know, in 2000 and seven, China demonstrated it's a set system by actually shooting down is one of its own satellites and has been aggressively developing counter space systems to disrupt hours. So in a heavily congested space environment, our systems are now being contested like never before and will continue to bay well as Bond mentioned, the United States has responded to these changing threats. In addition to adding ways to protect our system, the administration and in Congress recently created the United States Space Force and the operational you United States Space Command, the latter of which you heard President Armstrong and other Californians hope is going to be located. Vandenberg Air Force Base Combined with our intelligence community today, we have focused military and civilian leadership now in space. And that's a very, very good thing. Commence, really. On the industry side, we did create the National Security Space Association devoted solely to supporting the national security Space Enterprise. We're based here in the D C area, but we have arms and legs across the country, and we are loaded with extraordinary talent. In scores of Forman, former government executives, So S s a is joined at the hip with our government customers to serve and to support. We're busy with a multitude of activities underway ranging from a number of thought provoking policy. Papers are recurring space time Webcast supporting Congress's Space Power Caucus and other main serious efforts. Check us out at NSS. A space dot org's One of our strategic priorities in central to today's events is to actively promote and nurture the workforce development. Just like cow calling. We will work with our U. S. Government customers, industry leaders and academia to attract and recruit students to join the space world, whether in government or industry and two assistant mentoring and training as their careers. Progress on that point, we're delighted. Be delighted to be working with Cal Poly as we hopefully will undertake a new pilot program with him very soon. So students stay tuned something I can tell you Space is really cool. While our nation's satellite systems are technical and complex, our nation's government and industry work force is highly diverse, with a combination of engineers, physicists, method and mathematicians, but also with a large non technical expertise as well. Think about how government gets things thes systems designed, manufactured, launching into orbit and operating. They do this via contracts with our aerospace industry, requiring talents across the board from cost estimating cost analysis, budgeting, procurement, legal and many other support. Tasker Integral to the mission. Many thousands of people work in the space workforce tens of billions of dollars every year. This is really cool stuff, no matter what your education background, a great career to be part of. When summary as bang had mentioned Aziz, well, there is a great deal of exciting challenges ahead we will see a new renaissance in space in the years ahead, and in some cases it's already begun. Billionaires like Jeff Bezos, Elon Musk, Sir Richard Richard Branson are in the game, stimulating new ideas in business models, other private investors and start up companies. Space companies are now coming in from all angles. The exponential advancement of technology and microelectronics now allows the potential for a plethora of small SAT systems to possibly replace older satellites the size of a Greyhound bus. It's getting better by the day and central to this conference, cybersecurity is paramount to our nation's critical infrastructure in space. So once again, thanks very much, and I look forward to the further conversation. >>Steve, thank you very much. Space is cool. It's relevant. But it's important, as you pointed out, and you're awesome story about how it impacts our life every day. So I really appreciate that great story. I'm glad you took the time Thio share that you forgot the part about the drone coming over in the crime scene and, you know, mapping it out for you. But that would add that to the story later. Great stuff. My first question is let's get into the conversations because I think this is super important. President Armstrong like you to talk about some of the points that was teased out by Bang and Steve. One in particular is the comment around how military research was important in developing all these capabilities, which is impacting all of our lives. Through that story. It was the military research that has enabled a generation and generation of value for consumers. This is kind of this workforce conversation. There are opportunities now with with research and grants, and this is, ah, funding of innovation that it's highly accelerate. It's happening very quickly. Can you comment on how research and the partnerships to get that funding into the universities is critical? >>Yeah, I really appreciate that And appreciate the comments of my colleagues on it really boils down to me to partnerships, public private partnerships. You mentioned Northrop Grumman, but we have partnerships with Lockie Martin, Boeing, Raytheon Space six JPL, also member of organization called Business Higher Education Forum, which brings together university presidents and CEOs of companies. There's been focused on cybersecurity and data science, and I hope that we can spill into cybersecurity in space but those partnerships in the past have really brought a lot forward at Cal Poly Aziz mentioned we've been involved with Cube set. Uh, we've have some secure work and we want to plan to do more of that in the future. Uh, those partnerships are essential not only for getting the r and d done, but also the students, the faculty, whether masters or undergraduate, can be involved with that work. Uh, they get that real life experience, whether it's on campus or virtually now during Covic or at the location with the partner, whether it may be governmental or our industry. Uh, and then they're even better equipped, uh, to hit the ground running. And of course, we'd love to see even more of our students graduate with clearance so that they could do some of that a secure work as well. So these partnerships are absolutely critical, and it's also in the context of trying to bring the best and the brightest and all demographics of California and the US into this field, uh, to really be successful. So these partnerships are essential, and our goal is to grow them just like I know other colleagues and C. S u and the U C are planning to dio, >>you know, just as my age I've seen I grew up in the eighties, in college and during that systems generation and that the generation before me, they really kind of pioneered the space that spawned the computer revolution. I mean, you look at these key inflection points in our lives. They were really funded through these kinds of real deep research. Bond talk about that because, you know, we're living in an age of cloud. And Bezos was mentioned. Elon Musk. Sir Richard Branson. You got new ideas coming in from the outside. You have an accelerated clock now on terms of the innovation cycles, and so you got to react differently. You guys have programs to go outside >>of >>the Defense Department. How important is this? Because the workforce that air in schools and our folks re skilling are out there and you've been on both sides of the table. So share your thoughts. >>No, thanks, John. Thanks for the opportunity responded. And that's what you hit on the notes back in the eighties, R and D in space especially, was dominated by my government funding. Uh, contracts and so on. But things have changed. As Steve pointed out, A lot of these commercial entities funded by billionaires are coming out of the woodwork funding R and D. So they're taking the lead. So what we can do within the deal, the in government is truly take advantage of the work they've done on. Uh, since they're they're, you know, paving the way to new new approaches and new way of doing things. And I think we can We could certainly learn from that. And leverage off of that saves us money from an R and D standpoint while benefiting from from the product that they deliver, you know, within the O D Talking about workforce development Way have prioritized we have policies now to attract and retain talent. We need I I had the folks do some research and and looks like from a cybersecurity workforce standpoint. A recent study done, I think, last year in 2019 found that the cybersecurity workforce gap in the U. S. Is nearing half a million people, even though it is a growing industry. So the pipeline needs to be strengthened off getting people through, you know, starting young and through college, like assess a professor Armstrong indicated, because we're gonna need them to be in place. Uh, you know, in a period of about maybe a decade or so, Uh, on top of that, of course, is the continuing issue we have with the gap with with stamps students, we can't afford not to have expertise in place to support all the things we're doing within the with the not only deal with the but the commercial side as well. Thank you. >>How's the gap? Get? Get filled. I mean, this is the this is again. You got cybersecurity. I mean, with space. It's a whole another kind of surface area, if you will, in early surface area. But it is. It is an I o t. Device if you think about it. But it does have the same challenges. That's kind of current and and progressive with cybersecurity. Where's the gap Get filled, Steve Or President Armstrong? I mean, how do you solve the problem and address this gap in the workforce? What is some solutions and what approaches do we need to put in place? >>Steve, go ahead. I'll follow up. >>Okay. Thanks. I'll let you correct. May, uh, it's a really good question, and it's the way I would. The way I would approach it is to focus on it holistically and to acknowledge it up front. And it comes with our teaching, etcetera across the board and from from an industry perspective, I mean, we see it. We've gotta have secure systems with everything we do and promoting this and getting students at early ages and mentoring them and throwing internships at them. Eyes is so paramount to the whole the whole cycle, and and that's kind of and it really takes focused attention. And we continue to use the word focus from an NSS, a perspective. We know the challenges that are out there. There are such talented people in the workforce on the government side, but not nearly enough of them. And likewise on industry side. We could use Maura's well, but when you get down to it, you know we can connect dots. You know that the the aspect That's a Professor Armstrong talked about earlier toe where you continue to work partnerships as much as you possibly can. We hope to be a part of that. That network at that ecosystem the will of taking common objectives and working together to kind of make these things happen and to bring the power not just of one or two companies, but our our entire membership to help out >>President >>Trump. Yeah, I would. I would also add it again. It's back to partnerships that I talked about earlier. One of our partners is high schools and schools fortune Margaret Fortune, who worked in a couple of, uh, administrations in California across party lines and education. Their fifth graders all visit Cal Poly and visit our learned by doing lab and you, you've got to get students interested in stem at a early age. We also need the partnerships, the scholarships, the financial aid so the students can graduate with minimal to no debt to really hit the ground running. And that's exacerbated and really stress. Now, with this covert induced recession, California supports higher education at a higher rate than most states in the nation. But that is that has dropped this year or reasons. We all understand, uh, due to Kobe, and so our partnerships, our creativity on making sure that we help those that need the most help financially uh, that's really key, because the gaps air huge eyes. My colleagues indicated, you know, half of half a million jobs and you need to look at the the students that are in the pipeline. We've got to enhance that. Uh, it's the in the placement rates are amazing. Once the students get to a place like Cal Poly or some of our other amazing CSU and UC campuses, uh, placement rates are like 94%. >>Many of our >>engineers, they have jobs lined up a year before they graduate. So it's just gonna take key partnerships working together. Uh, and that continued partnership with government, local, of course, our state of CSU on partners like we have here today, both Stephen Bang So partnerships the thing >>e could add, you know, the collaboration with universities one that we, uh, put a lot of emphasis, and it may not be well known fact, but as an example of national security agencies, uh, National Centers of Academic Excellence in Cyber, the Fast works with over 270 colleges and universities across the United States to educate its 45 future cyber first responders as an example, so that Zatz vibrant and healthy and something that we ought Teoh Teik, banjo >>off. Well, I got the brain trust here on this topic. I want to get your thoughts on this one point. I'd like to define what is a public private partnership because the theme that's coming out of the symposium is the script has been flipped. It's a modern error. Things air accelerated get you got security. So you get all these things kind of happen is a modern approach and you're seeing a digital transformation play out all over the world in business. Andi in the public sector. So >>what is what >>is a modern public private partnership? What does it look like today? Because people are learning differently, Covert has pointed out, which was that we're seeing right now. How people the progressions of knowledge and learning truth. It's all changing. How do you guys view the modern version of public private partnership and some some examples and improve points? Can you can you guys share that? We'll start with the Professor Armstrong. >>Yeah. A zai indicated earlier. We've had on guy could give other examples, but Northup Grumman, uh, they helped us with cyber lab. Many years ago. That is maintained, uh, directly the software, the connection outside its its own unit so that students can learn the hack, they can learn to penetrate defenses, and I know that that has already had some considerations of space. But that's a benefit to both parties. So a good public private partnership has benefits to both entities. Uh, in the common factor for universities with a lot of these partnerships is the is the talent, the talent that is, that is needed, what we've been working on for years of the, you know, that undergraduate or master's or PhD programs. But now it's also spilling into Skilling and re Skilling. As you know, Jobs. Uh, you know, folks were in jobs today that didn't exist two years, three years, five years ago. But it also spills into other aspects that can expand even mawr. We're very fortunate. We have land, there's opportunities. We have one tech part project. We're expanding our tech park. I think we'll see opportunities for that, and it'll it'll be adjusted thio, due to the virtual world that we're all learning more and more about it, which we were in before Cove it. But I also think that that person to person is going to be important. Um, I wanna make sure that I'm driving across the bridge. Or or that that satellites being launched by the engineer that's had at least some in person training, uh, to do that and that experience, especially as a first time freshman coming on a campus, getting that experience expanding and as adult. And we're gonna need those public private partnerships in order to continue to fund those at a level that is at the excellence we need for these stem and engineering fields. >>It's interesting People in technology can work together in these partnerships in a new way. Bank Steve Reaction Thio the modern version of what a public, successful private partnership looks like. >>If I could jump in John, I think, you know, historically, Dodi's has have had, ah, high bar thio, uh, to overcome, if you will, in terms of getting rapid pulling in your company. This is the fault, if you will and not rely heavily in are the usual suspects of vendors and like and I think the deal is done a good job over the last couple of years off trying to reduce the burden on working with us. You know, the Air Force. I think they're pioneering this idea around pitch days where companies come in, do a two hour pitch and immediately notified of a wooden award without having to wait a long time. Thio get feedback on on the quality of the product and so on. So I think we're trying to do our best. Thio strengthen that partnership with companies outside the main group of people that we typically use. >>Steve, any reaction? Comment to add? >>Yeah, I would add a couple of these air. Very excellent thoughts. Uh, it zits about taking a little gamble by coming out of your comfort zone. You know, the world that Bond and Bond lives in and I used to live in in the past has been quite structured. It's really about we know what the threat is. We need to go fix it, will design it says we go make it happen, we'll fly it. Um, life is so much more complicated than that. And so it's it's really to me. I mean, you take you take an example of the pitch days of bond talks about I think I think taking a gamble by attempting to just do a lot of pilot programs, uh, work the trust factor between government folks and the industry folks in academia. Because we are all in this together in a lot of ways, for example. I mean, we just sent the paper to the White House of their requests about, you know, what would we do from a workforce development perspective? And we hope Thio embellish on this over time once the the initiative matures. But we have a piece of it, for example, is the thing we call clear for success getting back Thio Uh, President Armstrong's comments at the collegiate level. You know, high, high, high quality folks are in high demand. So why don't we put together a program they grabbed kids in their their underclass years identifies folks that are interested in doing something like this. Get them scholarships. Um, um, I have a job waiting for them that their contract ID for before they graduate, and when they graduate, they walk with S C I clearance. We believe that could be done so, and that's an example of ways in which the public private partnerships can happen to where you now have a talented kid ready to go on Day one. We think those kind of things can happen. It just gets back down to being focused on specific initiatives, give them giving them a chance and run as many pilot programs as you can like these days. >>That's a great point, E. President. >>I just want to jump in and echo both the bank and Steve's comments. But Steve, that you know your point of, you know, our graduates. We consider them ready Day one. Well, they need to be ready Day one and ready to go secure. We totally support that and and love to follow up offline with you on that. That's that's exciting, uh, and needed very much needed mawr of it. Some of it's happening, but way certainly have been thinking a lot about that and making some plans, >>and that's a great example of good Segway. My next question. This kind of reimagining sees work flows, eyes kind of breaking down the old the old way and bringing in kind of a new way accelerated all kind of new things. There are creative ways to address this workforce issue, and this is the next topic. How can we employ new creative solutions? Because, let's face it, you know, it's not the days of get your engineering degree and and go interview for a job and then get slotted in and get the intern. You know the programs you get you particularly through the system. This is this is multiple disciplines. Cybersecurity points at that. You could be smart and math and have, ah, degree in anthropology and even the best cyber talents on the planet. So this is a new new world. What are some creative approaches that >>you know, we're >>in the workforce >>is quite good, John. One of the things I think that za challenge to us is you know, we got somehow we got me working for with the government, sexy, right? The part of the challenge we have is attracting the right right level of skill sets and personnel. But, you know, we're competing oftentimes with the commercial side, the gaming industry as examples of a big deal. And those are the same talents. We need to support a lot of programs we have in the U. D. So somehow we have to do a better job to Steve's point off, making the work within the U. D within the government something that they would be interested early on. So I tracked him early. I kind of talked about Cal Poly's, uh, challenge program that they were gonna have in June inviting high school kid. We're excited about the whole idea of space and cyber security, and so on those air something. So I think we have to do it. Continue to do what were the course the next several years. >>Awesome. Any other creative approaches that you guys see working or might be on idea, or just a kind of stoked the ideation out their internship. So obviously internships are known, but like there's gotta be new ways. >>I think you can take what Steve was talking about earlier getting students in high school, uh, and aligning them sometimes. Uh, that intern first internship, not just between the freshman sophomore year, but before they inter cal poly per se. And they're they're involved s So I think that's, uh, absolutely key. Getting them involved many other ways. Um, we have an example of of up Skilling a redeveloped work redevelopment here in the Central Coast. PG and e Diablo nuclear plant as going to decommission in around 2020 24. And so we have a ongoing partnership toe work on reposition those employees for for the future. So that's, you know, engineering and beyond. Uh, but think about that just in the manner that you were talking about. So the up skilling and re Skilling uh, on I think that's where you know, we were talking about that Purdue University. Other California universities have been dealing with online programs before cove it and now with co vid uh, so many more faculty or were pushed into that area. There's going to be much more going and talk about workforce development and up Skilling and Re Skilling The amount of training and education of our faculty across the country, uh, in in virtual, uh, and delivery has been huge. So there's always a silver linings in the cloud. >>I want to get your guys thoughts on one final question as we in the in the segment. And we've seen on the commercial side with cloud computing on these highly accelerated environments where you know, SAS business model subscription. That's on the business side. But >>one of The >>things that's clear in this trend is technology, and people work together and technology augments the people components. So I'd love to get your thoughts as we look at the world now we're living in co vid um, Cal Poly. You guys have remote learning Right now. It's a infancy. It's a whole new disruption, if you will, but also an opportunity to enable new ways to collaborate, Right? So if you look at people and technology, can you guys share your view and vision on how communities can be developed? How these digital technologies and people can work together faster to get to the truth or make a discovery higher to build the workforce? These air opportunities? How do you guys view this new digital transformation? >>Well, I think there's there's a huge opportunities and just what we're doing with this symposium. We're filming this on one day, and it's going to stream live, and then the three of us, the four of us, can participate and chat with participants while it's going on. That's amazing. And I appreciate you, John, you bringing that to this this symposium, I think there's more and more that we can do from a Cal poly perspective with our pedagogy. So you know, linked to learn by doing in person will always be important to us. But we see virtual. We see partnerships like this can expand and enhance our ability and minimize the in person time, decrease the time to degree enhanced graduation rate, eliminate opportunity gaps or students that don't have the same advantages. S so I think the technological aspect of this is tremendous. Then on the up Skilling and Re Skilling, where employees air all over, they can be reached virtually then maybe they come to a location or really advanced technology allows them to get hands on virtually, or they come to that location and get it in a hybrid format. Eso I'm I'm very excited about the future and what we can do, and it's gonna be different with every university with every partnership. It's one. Size does not fit all. >>It's so many possibilities. Bond. I could almost imagine a social network that has a verified, you know, secure clearance. I can jump in, have a little cloak of secrecy and collaborate with the d o. D. Possibly in the future. But >>these are the >>kind of kind of crazy ideas that are needed. Are your thoughts on this whole digital transformation cross policy? >>I think technology is gonna be revolutionary here, John. You know, we're focusing lately on what we call digital engineering to quicken the pace off, delivering capability to warfighter. As an example, I think a I machine language all that's gonna have a major play and how we operate in the future. We're embracing five G technologies writing ability Thio zero latency or I o t More automation off the supply chain. That sort of thing, I think, uh, the future ahead of us is is very encouraging. Thing is gonna do a lot for for national defense on certainly the security of the country. >>Steve, your final thoughts. Space systems are systems, and they're connected to other systems that are connected to people. Your thoughts on this digital transformation opportunity >>Such a great question in such a fun, great challenge ahead of us. Um echoing are my colleague's sentiments. I would add to it. You know, a lot of this has I think we should do some focusing on campaigning so that people can feel comfortable to include the Congress to do things a little bit differently. Um, you know, we're not attuned to doing things fast. Uh, but the dramatic You know, the way technology is just going like crazy right now. I think it ties back Thio hoping Thio, convince some of our senior leaders on what I call both sides of the Potomac River that it's worth taking these gamble. We do need to take some of these things very way. And I'm very confident, confident and excited and comfortable. They're just gonna be a great time ahead and all for the better. >>You know, e talk about D. C. Because I'm not a lawyer, and I'm not a political person, but I always say less lawyers, more techies in Congress and Senate. So I was getting job when I say that. Sorry. Presidential. Go ahead. >>Yeah, I know. Just one other point. Uh, and and Steve's alluded to this in bonded as well. I mean, we've got to be less risk averse in these partnerships. That doesn't mean reckless, but we have to be less risk averse. And I would also I have a zoo. You talk about technology. I have to reflect on something that happened in, uh, you both talked a bit about Bill Britton and his impact on Cal Poly and what we're doing. But we were faced a few years ago of replacing a traditional data a data warehouse, data storage data center, and we partner with a W S. And thank goodness we had that in progress on it enhanced our bandwidth on our campus before Cove. It hit on with this partnership with the digital transformation hub. So there is a great example where, uh, we we had that going. That's not something we could have started. Oh, covitz hit. Let's flip that switch. And so we have to be proactive on. We also have thio not be risk averse and do some things differently. Eyes that that is really salvage the experience for for students. Right now, as things are flowing, well, we only have about 12% of our courses in person. Uh, those essential courses, uh, and just grateful for those partnerships that have talked about today. >>Yeah, and it's a shining example of how being agile, continuous operations, these air themes that expand into space and the next workforce needs to be built. Gentlemen, thank you. very much for sharing your insights. I know. Bang, You're gonna go into the defense side of space and your other sessions. Thank you, gentlemen, for your time for great session. Appreciate it. >>Thank you. Thank you. >>Thank you. >>Thank you. Thank you. Thank you all. >>I'm John Furry with the Cube here in Palo Alto, California Covering and hosting with Cal Poly The Space and Cybersecurity Symposium 2020. Thanks for watching.

Published Date : Oct 1 2020

SUMMARY :

It's the Cube space and cybersecurity. We have Jeff Armstrong's the president of California Polytechnic in space, Jeff will start with you. We know that the best work is done by balanced teams that include multiple and diverse perspectives. speaking to bang, we learned that Rachel sins, one of our liberal arts arts majors, on the forefront of innovation and really taking a unique progressive. of the National Security Space Association, to discuss a very important topic of Thank you so much bomb for those comments and you know, new challenges and new opportunities and new possibilities of the space community, we thank you for your long life long devotion to service to the drone coming over in the crime scene and, you know, mapping it out for you. Yeah, I really appreciate that And appreciate the comments of my colleagues on clock now on terms of the innovation cycles, and so you got to react differently. Because the workforce that air in schools and our folks re So the pipeline needs to be strengthened But it does have the same challenges. Steve, go ahead. the aspect That's a Professor Armstrong talked about earlier toe where you continue to work Once the students get to a place like Cal Poly or some of our other amazing Uh, and that continued partnership is the script has been flipped. How people the progressions of knowledge and learning truth. that is needed, what we've been working on for years of the, you know, Thio the modern version of what a public, successful private partnership looks like. This is the fault, if you will and not rely heavily in are the usual suspects for example, is the thing we call clear for success getting back Thio Uh, that and and love to follow up offline with you on that. You know the programs you get you particularly through We need to support a lot of programs we have in the U. D. So somehow we have to do a better idea, or just a kind of stoked the ideation out their internship. in the manner that you were talking about. And we've seen on the commercial side with cloud computing on these highly accelerated environments where you know, So I'd love to get your thoughts as we look at the world now we're living in co vid um, decrease the time to degree enhanced graduation rate, eliminate opportunity you know, secure clearance. kind of kind of crazy ideas that are needed. certainly the security of the country. and they're connected to other systems that are connected to people. that people can feel comfortable to include the Congress to do things a little bit differently. So I Eyes that that is really salvage the experience for Bang, You're gonna go into the defense side of Thank you. Thank you all. I'm John Furry with the Cube here in Palo Alto, California Covering and hosting with Cal

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ChuckPERSON

0.99+

StevePERSON

0.99+

Steve JakesPERSON

0.99+

JohnPERSON

0.99+

JoePERSON

0.99+

Steve JakePERSON

0.99+

RachelPERSON

0.99+

Cal PolyORGANIZATION

0.99+

National Security Space AssociationORGANIZATION

0.99+

Jeff ArmstrongPERSON

0.99+

Northrop GrummanORGANIZATION

0.99+

PGORGANIZATION

0.99+

Chris HansenPERSON

0.99+

CaliforniaLOCATION

0.99+

AWSORGANIZATION

0.99+

JeffPERSON

0.99+

JanePERSON

0.99+

National Security Space AssociationORGANIZATION

0.99+

Jeff BezosPERSON

0.99+

Chuck BeansPERSON

0.99+

California National GuardORGANIZATION

0.99+

New York CityLOCATION

0.99+

BoeingORGANIZATION

0.99+

National Security Space AssociationORGANIZATION

0.99+

Cal PolyORGANIZATION

0.99+

BondPERSON

0.99+

United States Space ForceORGANIZATION

0.99+

2013DATE

0.99+

SingaporeLOCATION

0.99+

94%QUANTITY

0.99+

TrumpPERSON

0.99+

Richard BransonPERSON

0.99+

California Cybersecurity InstituteORGANIZATION

0.99+

United States Space CommandORGANIZATION

0.99+

JuneDATE

0.99+

ThioPERSON

0.99+

oneQUANTITY

0.99+

CongressORGANIZATION

0.99+

ArmstrongPERSON

0.99+

hundredsQUANTITY

0.99+

United StatesLOCATION

0.99+

N S. AORGANIZATION

0.99+

fourQUANTITY

0.99+

Cal polyORGANIZATION

0.99+

threeQUANTITY

0.99+

Elon MuskPERSON

0.99+

York Space SystemsORGANIZATION

0.99+

National Centers of Academic Excellence in CyberORGANIZATION

0.99+

BezosPERSON

0.99+

Purdue UniversityORGANIZATION

0.99+

OneQUANTITY

0.99+

Jesse Rothstein, ExtraHop | AWS re:Invent 2019


 

>> Announcer: Live from Las Vegas, it's theCUBE. Covering AWS re:Invent 2019, brought to you by Amazon Web Services, and Intel, along with its ecosystem partners. >> Welcome back, this is theCUBE seventh year of coverage of the mega AWS re:Invent show, here in Las Vegas. Somewhere between 60 and 65,000, up and down the street. We are here in the Sands Convention Center. I am Stu Miniman, my cohost for this segment is Justin Warren. And happy to welcome back to the program, one of our CUBE alumni Jesse Rothstein, who is the co-founder and CTO of ExtraHop, Jesse, great to see you. >> Thank you for having me again. >> So, we caught up with you at AWS re:Inforce-- >> We did. >> Not that long ago, in Boston. Where, it rains more often in Boston than it does in Vegas and it's raining here in Vegas, which is a little odd. >> Strangely it is raining here in Vegas, but re:Inforce at the end of June in Boston was the first AWS security conference. Great energy, great size, we had a lot of fun at that show. >> Yeah, so Dave Vellante, who was one of the ones at re:Inforce, and he actually came out of the three-hour keynote yesterday with Andy Jassy and said, "I'm a little surprised there wasn't as much security talk." You know, it's not like we can remove security from the discussion of cloud, it is you know one of the top issues here. So I want to get your viewpoint, were we missing something? Is it just there, what grabbed you? >> I know this thing as well. I think, perhaps, they're saving some announcements for, you know, re:Inforce coming again in June in Houston this year. There was at least one announcement around IAM Access Analyzer as I recall. But generally the announcements seem to focus in some other areas. You know some big announcements around data warehousing, you know for federated red shift queries I think. And some big announcements around machine learning tooling, like the SageMaker Studio. But I noticed that as well, not as many security announcements. >> You never know, Werner still has his keynote tomorrow. So we're sure there'll still be another 50 or 100 announcements before the week is done. ExtraHop also has something new this week, so why don't we make sure-- >> Well first I can assure you that cloud security is not solved. It's not a solved problem, in fact, unfortunately despite record spend year after year after year, we still continue to see record numbers of compromises and data breaches that are published. I think cloud security in particular remains a challenge. There's a lot of energy there and I think a lot of attention, people recognize it's a problem. But we're dealing with massive cyber security skill shortages. It's very hard to find people with the expertise needed to really secure these workloads. We're dealing with more sophisticated attackers. I think in many cases, attackers with nation state sponsorship. Which is scary, you know five or 10 years ago we didn't see that quite as much. More cyber criminals, fewer nation states. And of course, we're seeing an ever increasing attack surface. So ExtraHop's right in the mix here, and we focus on network detection and response. I'm a huge believer in the power of network security, and I'll talk more about that. At re:Inforce last June, we announced ExtraHop Reveal(x) Cloud, which is a SaaS offering using AWS's recent VPC Traffic Mirroring capability. So the idea is, all you do is you mirror a copy of the traffic, using VPC Traffic Mirroring, to our SaaS, and then we provide all of the sophisticated detection, investigation and response capabilities, as a product. So that's hosted, you still do the work of investigating it, but you know we provide the entire offering around that. Very low TCO, very turnkey capabilities. And of course, it wouldn't be a modern day security offering if we didn't leverage very sophisticated machine learning, to detect suspicious behaviors and potential threats. But this is something I think we do better than anybody else in the world. >> So walk us through some of what the machine learning actually does. 'Cause I feel that the machine learning and AI is kind of hitting peak hype cycle maybe. >> You know I almost can't say it with a straight face because it's so overused. But, it is absolutely real, that's where the state of the art is. Machine learning allows us to recognize behaviors, and behaviors are very important because we're looking for post-breach behaviors and indicators of compromise. So there are a million ways that you can be breached. The attack surface is absolutely enormous. But there's actually a relatively small number, and a relatively tractable set of post-breach behaviors that attackers will do once you're compromised. And I think more and more organizations are realizing that it's a matter of when and not if. So what we've done is we've built the machine learning behavioral model so that we can detect these suspicious behaviors. In some cases we have an entire team of threat researchers that are simulating attacks, simulating pen testing tools, lateral movement, exfiltration so we can train our models on these behaviors. In some cases, we're looking for very specific indicators of compromise. But in just about all cases, this results in very high quality detections. And because just detections alone are completely insufficient, ExtraHop is built on top of an entire analytics platform, so that you're always one or two clicks away from being able to determine, is this something that requires immediate attention and requires kind of an incident response scenario? One of the capabilities that we announced here at this show, is automated response. So we integrate with the AWS API, so that we can automatically isolate and quarantine a workload that's behaving suspiciously. You know in cyber security, some attacks are low and slow but some are very fast and destructive. And for the fast and destructive ones, you move faster than a human's ability to respond, so we need that automated response. And we also announced a continuous packet capture capability for forensics, because sometimes you need the packets. >> That's a response, a lot of different things that we'd actually like to bring the capability a little bit earlier than that so that we don't actually get breached. It's great that we can detect it and say, great we've got the indication of compromise and we can react very, very quickly to that. Are you able to help us get one step ahead of the cyber crimes? >> So I'll actually be a little contrarian on that. I'm going to say that organizations have really been investing in protection and prevention, for the last decade or two. You know this strategy's called defense and depth, and you should do it, everybody should, that's a best practice. But, you know, with defense and depth, you have lots of layers of defense at the perimeters. You know keep the attackers out of the perimeter, gateways, firewalls, proxies. Lots of layers of defense at the end point, you know keep attackers off of my workstations, my instances, my laptops, things like that. But, you know, I think again, organizations have learned that attackers can fire, you know, 1,000 arrows, or 100,000 arrows, or 100 million arrows and only one needs to land. So the pendulum is really swung toward detection response. How do I know if I'm breached right now? How can I detect it quickly? The industry average dwell time is over three months, which is unacceptably long, and we always hear about cases in the news that are three years or more. And what I like to say is if it were three weeks, that would be too long. If it were three days, that would be too long, if it were three hours, I think you could do a lot of damage in three hours. If you can start getting this down to three minutes, well maybe, you know, we can limit the blast radius in three minutes. >> So Jesse, you brought up the ever growing surface area of attack and one of the big themes we've seen at the show is AWS is pushing the boundaries of where they touch customers. You know I said if Amazon is the everything store, AWS is becoming the everywhere cloud. Outposts, from Amazon's perspective, they said Outposts just extends their security models. I see and hear a lot of the ecosystem talking about how they're leveraging that and integrating with that. Does Outposts or any of their other Edge solutions impact what your customers and your solutions are doing? >> So it's funny you say that, I was wondering that myself. My expectation is that Outposts are a good thing because they the have same security controls that we expect to see in any AWS kind of VPC enabled environment. Where I haven't gotten full clarification is do we have the full capabilities that we expect with VPCs? In particular, you know VPC Traffic Mirroring, which is the capability that was announced at re:Inforce, that I'm so excited about, because it allows us to actually analyze and inspect that traffic. Another capability that I think slipped in under the radar but it was announced yesterday is VPC Ingress Routing. This doesn't really effect ExtraHop that much, but as a network head, I like seeing Amazon enable organizations to kind of make their own choices around how they want to inspect and control traffic. And with VPC Ingress Routing, it actually allows you to run in-line devices between your VPCs, which previously you were unable to do. So I think that one slipped in under the radar, maybe you have to be a network head like me to really appreciate it. But I'm seeing more flexibility and not less and that's something that I'm really pleased with. >> That one thing that we definitely see with cloud is that explosion of customer choice, and all of these different methods that are available. And Amazon just keeps pushing the boundaries on how quickly they can release new features. What does that mean for ExtraHop in being able to keep up with the pace of change that customers are using all of these different features? >> That's a good question, I think that's just the reality, so I don't think about what it means or doesn't mean, that's just the way it is. In general though, I've seen this trend toward more flexibility. You know VPC Traffic Mirroring, to use that example again, was one of the few examples I could point to a year ago as something really useful and valuable that I could do on-premises, you know for diagnostic purposes, for forensics purposes, that for some reason wasn't available in public cloud, at least not easily. And, you know, with this announcement six months ago, and going to general availability, Amazon finally ticked that one off. And we're starting to see the rest of the public cloud ecosystem move that way as well. So I'm seeing more flexibility, and more control. Maybe that comes with a pace of innovation, but I think that's just the world we live in. >> You do mention that the customers are having to adopt this new regime, of look we need to look at compromise, can we detect if we've been compromised, and can we do it quickly. We have a lot of tools that are now being made available, like Igress Routing, but, sorry Ingress Routing. But what does that mean for customers in changing their mindset? One of the themes that we had from the keynote yesterday was transformation, so do customers need to just transform the way they think about security? >> Yes and no. You know certainly customers who are used to a certain set of on-prem tool set, tool chain can't necessarily just shoehorn that into their public cloud workloads. But on the other hand, I think that public cloud workloads have really suffered from an opacity problem, it's very difficult to see what's going on, you know its hard to sift through all those logs, it's hard to get the visibility that you expect. And I think that the cyber security tool set, tool chain, has been pretty fragmented. There are a lot of vulnerability scanners, there are a lot of kind of like API inspectors and recommendation engines. But I think the industry is still really trying to figure out what this means. So I'm seeing a lot of innovation, and I'm seeing kind of a rapid maturing of that kind of cloud security ecosystem. And for products like ExtraHop, I'm just a huge believer in the power of the network for security, because it's got these great properties that other sources of data don't have. It's as close to ground truth as you could possibly get, very hard to tamper with and impossible to turn off. With VPC Traffic Mirroring, we get the full power of network security and it's really designed with the controls and kind of the IAM roles and such that you would expect for these security use cases, which, I just, great, great advance. >> So along the discussion of transformation, one of the things Andy Jassy talked about is the you know, the senior leadership, the CEOs need to be involved. Something we've been saying in the security industry for years. Not only CEOs, the board is you know, talking about this and it's there, so you know, what are you seeing? You stated before that we haven't solved security yet, but so, bring us inside the mindset of your customers today, and what's the angst and you know, where are we making progress? >> That's a very interesting question. I'll probably be a little contrarian here as well, maybe not but I think we see a lot of pressure is regulatory pressure. You know were seeing a lot of new regulations come out around data privacy and security, GDPR was you know pretty transformative in terms of how organizations thought about that. I also think it's important that there are consequences. I was worried that for a few years data breaches were becoming so commonplace that people were getting kind of desensitized to it. Like, there was once a time that if, when there was a massive data breach kind of heads would roll. And there was a sense of consequences all the way up into the C-suite. But a few years ago I was starting to get concerned that people were getting a little lackadaisical like, "Oh just another data breach." My perception is that the pendulum's swinging back again. I think for truly massive data breaches, there really is a sense of brand. And I'm seeing the industry starting to demand better privacy. The consumer industry is perhaps leading the way. I think Apple's doing a very good job of actually selling privacy. So when you see the economics, I mean we're, it's a capitalist system. And when you see kind of the market economics align with the incentives, then that's when you actually see change. So I'm very encouraged by the alignment of kind of the market economics for paying greater attention to privacy and security. >> All right, want to give you a final word here, you said you'd like to have some contrarian viewpoints. So you know, the last question is just you know, what would you like to kind of just educate the marketplace on that maybe goes against the common perception when it comes to security in general, maybe network security specifically? >> Well, I'll probably just reiterate what I said earlier. Network security is a fundamental capability, and a fundamental source of data. I think organizations pay a lot of attention to their log files. I think organizations do invest in protection and prevention. But I think the ability to observe all of the network communications, and then the ability to detect suspicious behaviors and potential threats, bring it to your attention, take you through an investigative workflow, make sure that you're one click away from determining you know, whether this requires an actual incident response, and in some cases take an automated response. I think that is a very powerful solution and one that drastically increases an organization's cyber security posture. So I would always encourage organizations to invest there regardless of whether it's our solution or somebody else's. I'm a huge believer in the space. >> All right so, Jesse, thank you so much for sharing. We know that the security industry still has lots of work to do. So we look forward to catching ExtraHop soon at another event. And we have lots of work to do to cover all of the angles of this sprawling ecosystem here at AWS re:Invent. For Justin Warren, I'm Stu Miniman, be back with lots more right after this, and thank you for watching theCUBE. (bouncy electronic music)

Published Date : Dec 5 2019

SUMMARY :

brought to you by Amazon Web Services, of coverage of the mega AWS re:Invent show, and it's raining here in Vegas, which is a little odd. but re:Inforce at the end of June in Boston from the discussion of cloud, it is you know But generally the announcements seem to focus 50 or 100 announcements before the week is done. So the idea is, all you do is you mirror 'Cause I feel that the machine learning and AI One of the capabilities that we announced here at this show, It's great that we can detect it and say, and you should do it, You know I said if Amazon is the everything store, that we expect with VPCs? And Amazon just keeps pushing the boundaries And, you know, with this announcement six months ago, One of the themes that we had from the keynote yesterday that you would expect for these security use cases, is the you know, the senior leadership, My perception is that the pendulum's swinging back again. So you know, the last question is just you know, But I think the ability to observe We know that the security industry

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jesse RothsteinPERSON

0.99+

Justin WarrenPERSON

0.99+

Dave VellantePERSON

0.99+

Amazon Web ServicesORGANIZATION

0.99+

Andy JassyPERSON

0.99+

Stu MinimanPERSON

0.99+

BostonLOCATION

0.99+

VegasLOCATION

0.99+

AWSORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

three daysQUANTITY

0.99+

three yearsQUANTITY

0.99+

HoustonLOCATION

0.99+

JessePERSON

0.99+

three weeksQUANTITY

0.99+

100,000 arrowsQUANTITY

0.99+

three hoursQUANTITY

0.99+

WernerPERSON

0.99+

AppleORGANIZATION

0.99+

Las VegasLOCATION

0.99+

1,000 arrowsQUANTITY

0.99+

three minutesQUANTITY

0.99+

JuneDATE

0.99+

oneQUANTITY

0.99+

yesterdayDATE

0.99+

50QUANTITY

0.99+

100 million arrowsQUANTITY

0.99+

IntelORGANIZATION

0.99+

Sands Convention CenterLOCATION

0.99+

100 announcementsQUANTITY

0.99+

six months agoDATE

0.99+

this yearDATE

0.99+

tomorrowDATE

0.99+

SageMaker StudioORGANIZATION

0.99+

a year agoDATE

0.98+

this weekDATE

0.98+

seventh yearQUANTITY

0.98+

end of JuneDATE

0.98+

last JuneDATE

0.98+

GDPRTITLE

0.98+

OneQUANTITY

0.97+

fiveDATE

0.97+

ExtraHopORGANIZATION

0.97+

firstQUANTITY

0.96+

65,000QUANTITY

0.96+

one stepQUANTITY

0.95+

10 years agoDATE

0.95+

last decadeDATE

0.94+

over three monthsQUANTITY

0.94+

two clicksQUANTITY

0.94+

60QUANTITY

0.93+

todayDATE

0.91+

three-hour keynoteQUANTITY

0.9+

AWS re:Invent showEVENT

0.87+

InforceORGANIZATION

0.84+

Igress RoutingTITLE

0.82+

few years agoDATE

0.81+

VPCTITLE

0.79+

VPC Ingress RoutingTITLE

0.76+

re:Invent 2019EVENT

0.76+

Wikibon Predictions Webinar with Slides


 

(upbeat music) >> Hi, welcome to this year's Annual Wikibon Predictions. This is our 2018 version. Last year, we had a very successful webinar describing what we thought was going to happen in 2017 and beyond and we've assembled a team to do the same thing again this year. I'm very excited to be joined by the folks listed here on the screen. My name is Peter Burris. But with me is David Floyer, Jim Kobielus is remote. George Gilbert's here in our Pal Alto studio with me. Neil Raden is remote. David Vellante is here in the studio with me. And Stuart Miniman is back in our Marlboro office. So thank you analysts for attending and we look forward to a great teleconference today. Now what we're going to do over the course of the next 45 minutes or so is we're going to hit about 13 of the 22 predictions that we have for the coming year. So if you have additional questions, I want to reinforce this, if you have additional questions or things that don't get answered, if you're a client, give us a call. Reach out to us. We'll leave you with the contact information at the end of the session. But to start things off we just want to make sure that everybody understands where we're coming from. And let you know who is Wikibon. So Wikibon is a company that starts with the idea of what's important as to research communities. Communities are where the action is. Community is where the change is happening. And community is where the trends are being established. And so we use digital technologies like theCUbE, CrowdChat and others to really ensure that we are surfacing the best ideas that are in a community and making them available to our clients so that they can succeed successfully, they can be more successful in their endeavors. When we do that, our focus has always been on a very simple premise. And that is that we're moving to an era of digital business. For many people, digital business can mean virtually anything. For us it means something very specific. To us, the difference between business and digital business is data. A digital business uses data to differentially create and keep a customer. So borrowing from what Peter Drucker said if the goal of business is to create customers and keep and sustain customers, the goal of digital business is to use data to do that. And that's going to inform an enormous number of conversations and an enormous number of decisions and strategies over the next few years. We specifically believe that all businesses are going to have establish what we regard as the five core digital business capabilities. First, they're going to have to put in place concrete approaches to turning more data into work. It's not enough to just accrete data, to capture data or to move data around. You have to be very purposeful and planful in how you establish the means by which you turn that data into work so that you can create and keep more customers. Secondly, it's absolutely essential that we build kind of the three core technology issues here, technology capabilities of effectively doing a better job of capturing data and IoT and people, or internet of things and people, mobile computing for example, is going to be a crucial feature of that. You have to then once you capture that data, turn it into value. And we think this is the essence of what big data and in many respects AI is going to be all about. And then once you have the possibility, kind of the potential energy of that data in place, then you have to turn it into kinetic energy and generate work in your business through what we call systems of agency. Now, all of this is made possible by this significant transformation that happens to be conterminous with this transition to digital business. And that is the emergence of the cloud. The technology industry has always been defined by the problems it was able to solve, catalyzed by the characteristics of the technology that made it possible to solve them. And cloud is crucial to almost all of the new types of problems that we're going to solve. So these are the five digital business capabilities that we're going to talk about, where we're going to have our predictions. Let's start first and foremost with this notion of turn more data into work. So our first prediction relates to how data governance is likely to change in a global basis. If we believe that we need to turn more data into work well, businesses haven't generally adopted many of the principles associated with those practices. They haven't optimized to do that better. They haven't elevated those concepts within the business as broadly and successfully as they have or as they should. We think that's going to change in part by the emergence of GDPR or the General Data Protection Regulation. It's going to go in full effect in May 2018. A lot has been written about it. A lot has been talked about. But our core issues ultimately are is that the dictates associated with GDPR are going to elevate the conversation on a global basis. And it mandates something that's now called the data protection officer. We're going to talk about that in a second David Vellante. But if is going to have real teeth. So we were talking with one chief privacy officer not too long ago who suggested that had the Equifax breach occurred under the rules of GDPR that the actual finds that would have been levied would have been in excess of 160 billion dollars which is a little bit more than the zero dollars that has been fined thus far. Now we've seen new bills introduced in Congress but ultimately our observation and our conversations with a lot of data chief privacy officers or data protection officers is that in the B2B world, GDPR is going to strongly influence not just our businesses behavior regarding data in Europe but on a global basis. Now that has an enormous implication David Vellante because it certainly suggest this notion of a data protection officer is something now we've got another potential chief here. How do we think that's going to organize itself over the course of the next few years? >> Well thank you Peter. There are a lot of chiefs (laughs) in the house and sometimes it gets confusing as the CIO, there's the CDO and that's either chief digital officer or chief data officer. There's the CSO, could be strategy, sometimes that could be security. There's the CPO, is that privacy or product. As he says, it gets confusing sometimes. On theCUbE we talked to all of these roles so we wanted to try to add some clarity to that. First thing we want to say is that the CIO, the chief information officer, that role is not going away. A lot of people predict that, we think that's nonsense. They will continue to have a critical role. Digital transformations are the priority in organizations. And so the chief digital officer is evolving from more than just a strategy role to much more of an operation role. Generally speaking, these chiefs tend to report in our observation to the chief operating officer, president COO. And we see the chief digital officer as increasing operational responsibility aligning with the COO and getting incremental responsibility that's more operational in nature. So the prediction really is that the chief digital officer is going to emerge as a charismatic leader amongst these chiefs. And by 2022, nearly 50% of organizations will position the chief digital officer in a more prominent role than the CIO, the CISO, the CDO and the CPO. Those will still be critical roles. The CIO will be an enabler. The chief information security officer has a huge role obviously to play especially in terms of making security a teams sport and not just falling on IT's shoulders or the security team's shoulders. The chief data officer who really emerged from a records and data management role in many cases, particularly within regulated industries will still be responsible for that data architecture and data access working very closely with the emerging chief privacy officer and maybe even the chief data protection officer. Those roles will be pretty closely aligned. So again, these roles remain critical but the chief digital officer we see as increasing in prominence. >> Great, thank you very much David. So when we think about these two activities, what we're really describing is over the course of the next few years, we strongly believe that data will be regarded more as an asset within business and we'll see resources devoted to it and we'll see certainly management devoted to it. Now, that leads to the next set of questions as data becomes an asset, the pressure to acquire data becomes that much more acute. We believe strongly that IoT has an enormous implication longer term as a basis for thinking about how data gets acquired. Now, operational technology has been in place for a long time. We're not limiting ourselves just operational technology when we talk about this. We're really talking about the full range of devices that are going to provide and extend information and digital services out to consumers, out to the Edge, out to a number of other places. So let's start here. Over the course of the next few years, the Edge analytics are going to be an increasingly important feature overall of how technology decisions get made, how technology or digital business gets conceived and even ultimately how business gets defined. Now David Floyer's done a significant amount of work in this domain and we've provided that key finding on the right hand side. And what it shows is that if you take a look at an Edge based application, a stylized Edge based application and you presume that all the data moves back to an centralized cloud, you're going to increase your costs dramatically over a three year period. Now that moderates the idea or moderates the need ultimately for providing an approach to bringing greater autonomy, greater intelligence down to the Edge itself and we think that ultimately IoT and Edge analytics become increasingly synonymous. The challenge though is that as we evolve, while this has a pressure to keep more of the data at the Edge, that ultimately a lot of the data exhaust can someday become regarded as valuable data. And so as a consequence of that, there's still a countervailing impression to try to still move all data not at the moment of automation but for modeling and integration purposes, back to some other location. The thing that's going to determine that is going to be rate at which the cost of moving the data around go down. And our expectation is over the next few years when we think about the implications of some of the big cloud suppliers, Amazon, Google, others, that are building out significant networks to facilitate their business services may in fact have a greater impact on the common carriers or as great an impact on the common carriers as they have on any server or other infrastructure company. So our prediction over the next few years is watch what Amazon, watch what Google do as they try to drive costs down inside their networks because that will have an impact how much data moves from the Edge back to the cloud. It won't have an impact necessarily on the need for automation at the Edge because latency doesn't change but it will have a cost impact. Now that leads to a second consideration and the second consideration is ultimately that when we talk about greater autonomy at the Edge we need to think about how that's going to play out. Jim Kobielus. >> Jim: Hey thanks a lot Peter. Yeah, so what we're seeing at Wikibon is that more and more of the AI applications, more of the AI application development involves AI and more and more of the AI involves deployment of those models, deep learning machine learning and so forth to the Edges of the internet of things and people. And much of that AI will be operating autonomously with little or no round-tripping back to the cloud. What that's causing, in fact, we're seeing really about a quarter of the AI development projects (static interference with web-conference) as Edge deployment. What that involves is that more and more of that AI will be, those applications will be bespoke. They'll be one of a kind, or unique or an unprecedented application and what that means is that, you know, there's a lot of different deployment scenarios within which organizations will need to use new forms of learning to be able to ready that data, those AI applications to do their jobs effectively albeit to predictions of real time, guiding of an autonomous vehicle and so forth. Reinforcement learning is the core of what many of these kinds of projects, especially those that involve robotics. So really software is hitting the world and you know the biggest parts are being taken out of the Edge, much of that is AI, much of that autonomous, where there is no need or less need for real time latency in need of adaptive components, AI infused components where as they can learn by doing. From environmental variables, they can adapt their own algorithms to take the right actions. So, they'll have far reaching impacts on application development in 2018. For the developer, the new developer really is a data scientist at heart. They're going to have to tap into a new range of sources of data especially Edge sourced data from the senors on those devices. They're going to need to do commitment training and testing especially reinforcement learning which doesn't involve trained data so much as it involves being able to build an algorithm that can learn to maximum what's called accumulative reward function and if you do the training there adaptly in real time at the Edge and so forth and so on. So really, much of this will be bespoke in the sense that every Edge device increasingly will have its own set of parameters and its own set of objective functions which will need to be optimized. So that's one of the leading edge forces, trends, in development that we see in the coming year. Back to you Peter. >> Excellent Jim, thank you very much. The next question here how are you going to create value from data? So once you've, we've gone through a couple trends and we have multiple others about what's going to happen at the Edge. But as we think about how we're going to create value from data, Neil Raden. >> Neil: You know, the problem is that data science emerged rapidly out of sort of a perfect storm of big data and cloud computing and so forth. And people who had been involved in quantitative methods you know rapidly glommed onto the title because it was, lets face it, it was very glamorous and paid very well. But there weren't really good best practices. So what we have in data science is a pretty wide field of things that are called data science. My opinion is that the true data scientists are people who are scientists and are involved in developing new or improving algorithms as opposed to prepping data and applying models. So the whole field really kind of generated very quickly, in really, just in a few years. To me I called it generation zero which is more like data prep and model management all done manually. And it wasn't really sustainable in most organizations because for obvious reasons. So generation one, then some vendors stepped up with tool kits or benchmarks or whatever for data scientists and made it a little better. And generation two is what we're going to see in 2018, is the need for data scientists to no longer prep data or at least not spend very much time with it. And not to do model management because the software will not only manage the progression of the models but even recommend them and generate them and select the data and so forth. So it's in for a very big change and I think what you're going to see is that the ranks of data scientists are going to sort of bifurcate to old style, let me sit down and write some spaghetti code in R or Java or something and those that use these advanced tool kits to really get the work done. >> That's great Neil and of course, when we start talking about getting the work done, we are becoming increasingly dependent upon tools, aren't we George? But the tool marketplace for data science, for big data, has been somewhat fragmented and fractured. And hasn't necessarily focused on solving the problems of the data scientists. But in many respects focusing the problems that the tools themselves have. What's going to happen in the coming year when we start thinking about Neil's prescription that as the tools improve what's going to happen to the tools. >> Okay so, the big thing that we see supporting what Neil's talking about, what Neil was talking about is partly a symptom of a product issue and a go to market issue where the produce issue was we had a lot of best of breed products that were all designed to fit together. That in the broader big data space, that's the same issue that we faced with more narrowly with ArpiM Hadoop where you know, where we were trying to fit together a bunch of open source packages that had an admin and developer burden. More broadly, what Neil is talking about is sort of a richer end to end tools that handle both everything from the ingest all to the way to the operationalization and feedback of the models. But part of what has to go on here is that with open source, these open source tools the price point and the functional footprints that many of the vendors are supporting right now can't feed an enterprise sales force. Everyone talks with their open source business models about land and expand and inside sales. But the problem is once you want to go to wide deployment in an enterprise, you still need someone negotiating commercial terms at a senior level. You still need the technical people fitting the tools into a broader architecture. And most of the vendors that we have who are open source vendors today, don't have either the product breadth or the deal size to support traditional enterprise software. An account team would typically a million and a half to two million quota every year so we see consolidation and the consolidation again driven by the need for simplicity for the admins and the developers and for business model reasons to support enterprise sales force. >> All right, so what we're going to see happen in the course of the coming year is a lot of specialization and recognition of what is data science, what are the practices, how is it going to work, supported by an increasing quality of tools and a lot of tool vendors are going to be left behind. Now the third kind of notion here for those core technology capabilities is we still have to enact based on data. The good new is that big data is starting to show some returns in part because of some of the things that AI and other technologies are capable of doing. But we have to move beyond just creating the potential for, we have to turn that into work and that's what we mean ultimately by this notion of systems of agency. The idea that data driven applications will increasingly be act on behalf of a brand, on behalf of a company and building those systems out is going to be crucial. It's going to have a whole new set of disciplines and expertise required. So when we think about what's going to be required, it always starts with this notion of AI. A lot of folks are presuming however, that AI is going to be relatively easy to build or relatively easy to put together. We have a different opinion George. What do we think is going to happen as these next few years unfold related to AI adoption in large enterprises? >> Okay so, let's go back to the lessons we learned from sort of the big data, the raw, you know, let's put a data link in place which was sort of the top of everyone's agenda for several years. The expectation was it was going to cure cancer, taste like chocolate and cost a dollar. And uh. (laughing) It didn't quite work out that way. Partly because we had a burden on the administrator again of so many tools that weren't all designed to fit together, even though they were distributed together. And then the data scientists, the guys who had to take all this data that wasn't carefully curated yet. And turn that into advanced analytics and machine learning models. We have many of the same problems now with tool sets that are becoming more integrated but at lower levels. This is partly what Neil Raden was just talking about. What we have to recognize is something that we see all along, I mean since the beginning of (laughs) corporate computing. We have different levels of extraction and you know at the very bottom, when you're dealing with things like Tensorflow or MXNet, that's not for mainstream enterprises. That's for you know, the big sophisticated tech companies who are building new algorithms on those frameworks. There's a level above that where you're using like a spark cluster in the machine learning built into that. That's slightly more accessible but when we talk about mainstream enterprises taking advantage of AI, the low hanging fruit is for them to use the pre-trained models that the public cloud vendors have created with all the consumer data on speech, image recognition, natural language processing. And then some of those capabilities can be further combined into applications like managing a contact center and we'll see more from like Amazon, like recommendation engines, fulfillment optimization, pricing optimization. >> So our expectation ultimately George is that we're going to see a lot of this, a lot of AI adoption happen through existing applications because the vendors that are capable of acquiring a talent, taking or experimenting, creating value, software vendors are going to be where a lot of the talent ends up. So Neil, we have an example of that. Give us an example of what we think is going to happen in 2018 when we start thinking about exploiting AI and applications. >> Neil: I think that it's fairly clear to be the application of what's called advanced analytics and data science and even machine learning. But really, it's rapidly becoming a commonplace in organizations not just at the bottom of the triangle here. But I like the example of SalesForce.com. What they've done with Einstein, is they've made machine learning and I guess you can say, AI applications available to their customer base and why is that a good thing? Because their customer base already has a giant database of clean data that they can use. So you're going to see a huge number of applications being built with Einstein against Salesforce.com data. But there's another thing to consider and that is a long time ago Salesforce.com built connectors to a zillion times of external data. So, if you're a SalesForce.com customer using Einstein, you're going to be able to use those advanced tools without knowing anything about how to train a machine learning model and start to build those things. And I think that they're going to lead the industry in that sense. That's going to push their revenue next year to, I don't know, 11 billion dollars or 12 billion dollars. >> Great, thanks Neil. All right so when we think about further evidence of this and further impacts, we ultimately have to consider some of the challenges associated with how we're going to create application value continually from these tools. And that leads to the idea that one of the cobblers children, it's going to gain or benefit from AI will in fact be the developer organization. Jim, what's our prediction for how auto-programming impacts development? >> Jim: Thank you very much Peter. Yeah, automation, wow. Auto-programming like I said is the epitome of enterprise application development for us going forward. People know it as co-generation but that really understates the control of auto-programming as it's evolving. Within 2018, what we're going to see is that machine learning driven co-generation approach of becoming the forefront of innovation. We're seeing a lot of activity in the industry in which applications use ML to drive the productivity of developers for all kinds of applications. We're also seeing a fair amount of what's called RPA, robotic process automation. And really, how they differ is that ML will deliver or will drive co-generation, from what I call the inside out meaning, creating reams of code that are geared to optimize a particular application scenario. This is RPA which really takes over the outside in approach which is essentially, it's the evolution of screen scraping that it's able to infer the underlined code needed for applications of various sorts from the external artifacts, the screens and from sort of the flow of interactions and clips and so forth for a given application. We're going to see that ML and RPA will compliment each other in the next generation of auto-programming capabilities. And so, you know, really application development tedium is really the enemy of, one of the enemies of productivity (static interference with web-conference). This is a lot of work, very detailed painstaking work. And what they need is to be better, more nuanced and more adaptive auto-programming tools to be able to build the code at the pace that's absolutely necessary for this new environment of cloud computing. So really AI-related technologies can be applied and are being applied to application development productivity challenges of all sorts. AI is fundamental to RPA as well. We're seeing a fair number of the vendors in that stage incorporate ML driven OCR and natural language processing and screen scraping and so forth into their core tools to be able to quickly build up the logic albeit to drive sort of the verbiage outside in automation of fairly complex orchestration scenario. In 2018, we'll see more of these technologies come together. But you know, they're not a silver bullet. 'Cause fundamentally and for organizations that are considering going deeply down into auto-programming they're going to have to factor AI into their overall plans. They need to get knowledgeable about AI. They're going to need to bring more AI specialists into their core development teams to be able to select from the growing range of tools that are out there, RPA and ML driven auto-programming. Overall, really what we're seeing is that the AI, the data scientists, who's been the fundamental developer of AI, they're coming into the core of development tools and skills in organizations. And they're going to be fundamental to this whole trend in 2018 and beyond. If AI gets proven out in auto-programming, these developers will then be able to evangelize the core utility of the this technology, AI. In a variety of other backend but critically important investments that organizations will be making in 2018 and beyond. Especially in IT operations and in management, AI is big in that area as well. Back to you there, Peter. >> Yeah, we'll come to that a little bit later in the presentation Jim, that's a crucial point but the other thing we want to note here regarding ultimately how folks will create value out of these technologies is to consider the simple question of okay, how much will developers need to know about infrastructure? And one of the big things we see happening is this notion of serverless. And here we've called it serverless, developer more. Jim, why don't you take us through why we think serverless is going to have a significant impact on the industry, at least certainly from a developer perspective and developer productivity perspective. >> Jim: Yeah, thanks. Serverless is really having an impact already and has for the last several years now. Now, everybody, many are familiar in the developer world, AWS Lambda which is really the ground breaking public cloud service that incorporates the serverless capabilities which essentially is an extraction layer that enables developers to build stateless code that executes in a cloud environment without having to worry about and to build microservices, we don't have to worry about underlined management of containers and virtual machines and so forth. So in many ways, you know, serverless is a simplification strategy for developers. They don't have to worry about the underlying plumbing. They can worry, they need to worry about the code, of course. What are called Lambda functions or functional methods and so forth. Now functional programming has been around for quite a while but now it's coming to the form in this new era of serverless environment. What we'll see in 2018 is that we're predicting is that more than 50% of lean microservices employees, in the public cloud will be deployed in serverless environments. There's AWS and Microsoft has the Azure function. IMB has their own. Google has their own. There's a variety of private, there's a variety of multiple service cloud code bases for private deployment of serverless environments that we're seeing evolving and beginning to deploy in 2018. They all involve functional programming which really, along, you know, when coupled with serverless clouds, enables greater scale and speed in terms of development. And it's very agile friendly in the sense that you can quickly Github a functionally programmed serverless microservice in a hurry without having to manage state and so forth. It's very DevOps friendly. In the very real sense it's a lot faster than having to build and manage and tune. You know, containers and DM's and so forth. So it can enable a more real time and rapid and iterative development pipeline going forward in cloud computing. And really fundamentally what serverless is doing is it's pushing more of these Lamba functions to the Edge, to the Edges. If you're at an AWS Green event last week or the week before, but you notice AWS is putting a big push on putting Lambda functions at the Edge and devices for the IoT as we're going to see in 2018. Pretty much the entire cloud arena. Everybody will push more of the serverless, functional programming to the Edge devices. It's just a simplification strategy. And that actually is a powerful tool for speeding up some of the development metabolism. >> All right, so Jim let me jump in here and say that we've now introduced the, some of these benefits and really highlighted the role that the cloud is going to play. So, let's turn our attention to this question of cloud optimization. And Stu, I'm going to ask you to start us off by talking about what we mean by true private cloud and ultimately our prediction for private cloud. Do we have, why don't you take us through what we think is going to happen in this world of true private cloud? >> Stuart: Sure Peter, thanks a lot. So when Wikibon, when we launched the true private cloud terminology which was about two weeks ago next week, two years ago next week, it was in some ways coming together of a lot of trends similar to things that you know, George, Neil and James have been talking about. So, it is nothing new to say that we needed to simplify the IT stack. We all know, you know the tried and true discussion of you know, way too much of the budget is spent kind of keeping lights on. What we'd like to say is kind of running the business. If you squint through this beautiful chart that we have on here, a big piece of this is operational staffing is where we need to be able to make a significant change. And what we've been really excited and what led us to this initial market segment and what we're continuing to see good growth on is the move from traditional, really siloed infrastructure to you want to have, you know, infrastructure where it is software based. You want IT to really be able to focus on the application services that they're running. And what our focus for the this for the 2018 is of course it's the central point, it's the data that matters here. The whole reason we've infrastructured this to be able to run applications and one of the things that is a key determiner as to where and what I use is the data and how can I not only store that data but actually gain value from that data. Something we've talked about time and again and that is a major determining factor as to am I building this in a public cloud or am I doing it in you know my core. Is it something that is going to live on the Edge. So that's what we were saying here with the true private cloud is not only are we going to simplify our environment and therefore it's really the operational model that we talked about. So we often say the line, cloud is not a destination. But it's an operational model. So a true private cloud giving me some of the you know, feel and management type of capability that I had had in the public cloud. It's, as I said, not just virtualization. It's much more than that. But how can I start getting services and one of the extensions is true private cloud does not live in isolation. When we have kind of a core public cloud and Edge deployments, I need to think about the operational models. Where data lives, what processing happens need to be as environments, and what data we'll need to move between them and of course there's fundamental laws of physics that we need to consider in that. So, the prediction of course is that we know how much gear and focus has been on the traditional data center. And true private cloud helps that transformation to modernization and the big focus is many of these applications we've been talking about and uses of data sets are starting to come into these true private cloud environments. So, you know, we've had discussions. There's Spark, there's modern databases. Many of these, there's going to be many reasons why they might live in the private cloud environment. And therefore that's something that we're going to see tremendous growth and a lot of focus. And we're seeing a new wave of companies that are focusing on this to deliver solutions that will do more than just a step function for infrastructure or get us outside of our silos. But really helps us deliver on those cloud native applications where we pull in things like what Jim was talking about with serverless and the like. >> All right, so Stu, what that suggests ultimately is that data is going to dictate that everything's not going to end up in the private or in the public cloud or centralized public clouds because of latency costs, data governance and IP protection reasons. And there will be some others. At bare minimum, that means that we're going to have it in most large enterprises as least a couple of clouds. Talk to us about what this impact of multi cloud is going to look like over the course of the next few years. >> Stuart: Yeah, critical point there Peter. Because, right, unfortunately, we don't have one solution. There's nobody that we run into that say, oh, you know, I just do a single you know, one environment. You know it would be great if we only had one application to worry about. But as you've done this lovely diagram here, we all use lots of SaaS and increasingly, you know, Oracle, Microsoft, SalesForce, you know, all pushing everybody to multiple SaaS environments that has major impacts on my security and where my data lives. Public clouds, no doubt is growing at leaps and bounds. And many customers are choosing applications to live in different places. So just as in data centers, I would kind of look at it from an application standpoint and build up what I need. Often, there's you know, Amazon doing phenomenal. But you know, maybe there's things that I'm doing with Azure. Maybe there's things that's I'm doing with Google or others as well as my service providers for locality, for you know, specialized services, that there's reasons why people are doing it. And what customers would love is an operational model that can actually span between those. So we are very early in trying to attack this multi cloud environment. There's everything from licensing to security to you know, just operationally how do I manage those. And a piece of them that we were touching on in this prediction year, is Kubernetes actually can be a key enabler for that cloud native environment. As Jim talked about the serverless, what we'd really like is our developer to be able to focus on building their application and not think as much about the underlined infrastructure whether that be you know, racket servers that I built myself or public cloud infrastructures. So we really want to think more it's at the data and application level. It's SaaS and pass is the model and Kubernetes holds the promise to solve a piece of this puzzle. Now Kubernetes is not by no means a silver bullet for everything that we need. But it absolutely, it is doing very well. Our team was at the Linux, the CNCF show at KubeCon last week and there is you know, broad adoption from over 40 of the leading providers including Amazon is now a piece. Even SalesForce signed up to the CNCF. So Kubernetes is allowing me to be able to manage multi cloud workflows and therefore the prediction we have here Peter is that 50% of developing teams will be building, sustaining multi cloud with Kubernetes as a foundational component of that. >> That's excellent Stu. But when we think about it, the hardware of technology especially because of the opportunities associated with true private cloud, the hardware technologies are also going to evolve. There will be enough money here to sustain that investment. David Floyer, we do see another architecture on the horizon where for certain classes of workloads, we will be able to collapse and replicate many of these things in an economical, practical way on premise. We call that UniGrid, NVME is, over fabric is a crucial feature of UniGrid. >> Absolutely. So, NVMe takes, sorry NVMe over fabric or NVMe-oF takes NVMe which is out there as storage and turns it into a system framework. It's a major change in system architecture. We call this UniGrid. And it's going to be a focus of our research in 2018. Vendors are already out there. This is the fastest movement from early standards into products themselves. You can see on the chart that IMB have come out with NVMe over fabrics with the 900 storage connected to the power. Nine systems. NetApp have the EF750. A lot of other companies are there. Meta-Lox is out there looking for networks, for high speed networks. Acceler has a major part of the storage software. So and it's going to be used in particular with things like AI. So what are the drivers and benefits of this architecture? The key is that data is the bottleneck for application. We've talked about data. The amount of data is key to making applications more effective and higher value. So NVMe and NVMe over fabrics allows data to be accessed in microseconds as opposed to milliseconds. And it allows gigabytes of data per second as opposed to megabytes of data per second. And it also allows thousands of processes to access all of the data in very very low latencies. And that gives us amazing parallelism. So what's is about is disaggregation of storage and network and processes. There are some huge benefits from that. Not least of which is you save about 50% of the processor you get back because you don't have to do storage and networking on it. And you save from stranded storage. You save from stranded processor and networking capabilities. So it's overall, it's going to be cheaper. But more importantly, it makes it a basis for delivering systems of intelligence. And systems of intelligence are bringing together systems of record, the traditional systems, not rewriting them but attaching them to real time analytics, real time AI and being able to blend those two systems together because you've got all of that additional data you can bring to bare on a particular problem. So systems themselves have reached pretty well the limit of human management. So, one of the great benefits of UniGrid is to have a single metadata lab from all of that data, all of those processes. >> Peter: All those infrastructure elements. >> All those infrastructure elements. >> Peter: And application. >> And applications themselves. So what that leads to is a huge potential to improve automation of the data center and the application of AI to operations, operational AI. >> So George, it sounds like it's going to be one of the key potential areas where we'll see AI be practically adopted within business. What do we think is going to happen here as we think about the role that AI is going to play in IT operations management? >> Well if we go back to the analogy with big data that we thought was going to you know, cure cancer, taste like chocolate, cost a dollar, and it turned out that the application, the most wide spread application of big data was to offload ETL from expensive data warehouses. And what we expect is the first widespread application of AI embedded in applications for horizontal use where Neil mentioned SalesForce and the ability to use Einstein as SalesForce data and connected data. Now because the applications we're building are so complex that as Stu mentioned you know, we have this operational model with a true private cloud. It's actually not just the legacy stuff that's sucking up all the admin overhead. It's the complexity of the new applications and the stringency of the SLA's, means that we would have to turn millions of people into admins, the old you know, when the telephone networks started, everyone's going to have to be an operator. The only way we can get past this is if we sort of apply machine learning to IT Ops and application performance management. The key here is that the models can learn how the infrastructure is laid out and how it operates. And it can also learn about how all the application services and middleware works, behaving independently and with each other and how they tie with the infrastructure. The reason that's important is because all of a sudden you can get very high fidelity root cause analysis. In the old management technology, if you had an underlined problem, you'd have a whole sort of storm of alerts, because there was no reliable way to really triangulate on the or triage the root cause. Now, what's critical is if you have high fidelity root cause analysis, you can have really precise recommendations for remediation or automated remediation which is something that people will get comfortable with over time, that's not going to happen right away. But this is critical. And this is also the first large scale application of not just machine learning but machine data and so this topology of collecting widely desperate machine data and then applying models and then reconfiguring the software, it's training wheels for IoT apps where you're going to have it far more distributed and actuating devices instead of software. >> That's great, George. So let me sum up and then we'll take some questions. So very quickly, the action items that we have out of this overall session and again, we have another 15 or so predictions that we didn't get to today. But one is, as we said, digital business is the use of data assets to compete. And so ultimately, this notion is starting to diffuse rapidly. We're seeing it on theCUbE. We're seeing it on the the CrowdChats. We're seeing it in the increase of our customers. Ultimately, we believe that the users need to start preparing for even more business scrutiny over their technology management. For example, something very simple and David Floyer, you and I have talked about this extensively in our weekly action item research meeting, the idea of backing up and restoring a system is no longer in a digital business world. It's not just backing up and restoring a system or an application, we're talking about restoring the entire business. That's going to require greater business scrutiny over technology management. It's going to lead to new organizational structures. New challenges of adopting systems, et cetera. But, ultimately, our observations is that data is going to indicate technology directions across the board whether we talk about how businesses evolve or the roles that technology takes in business or we talk about the key business capability, digital business capabilities, of capturing data, turning it into value and then turning into work. Or whether we talk about how we think about cloud architecture and which organizations of cloud resources we're going to utilize. It all comes back to the role that data's going to play in helping us drive decisions. The last action item we want to put here before we get to the questions is clients, if we don't get to your question right now, contact us. Send us an inquiry. Support@silicongangle.freshdesk.com. And we'll respond to you as fast as we can over the course of the next day, two days, to try to answer your question. All right, David Vellante, you've been collecting some questions here. Why don't we see if we can take a couple of them before we close out. >> Yeah, we got about five or six minutes in the chat room, Jim Kobielus has been awesome helping out and so there's a lot of detailed answer there. The first, there's some questions and comments. The first one was, are there too many chiefs? And I guess, yeah. There's some title inflation. I guess my comment there would be titles are cheap, results aren't. So if you're creating chief X officers just for the, to check a box, you're probably wasting money. So you've got to give them clear roles. But I think each of these chiefs has clear roles to the extent that they are you know empowered. Another comment came up which is we don't want you know, Hadoop spaghetti soup all over again. Well true that. Are we at risk of having Hadoop spaghetti soup as the centricity of big data moves from Hadoop to AI and ML and deep learning? >> Well, my answer is we are at risk of that but that there's customer pressure and vendor economic pressure to start consolidating. And we'll also see, what we didn't see in the ArpiM big data era, with cloud vendors, they're just going to start making it easier to use some of the key services together. That's just natural. >> And I'll speak for Neil on this one too, very quickly, that the idea ultimately is as the discipline starts to mature, we won't have people that probably aren't really capable of doing some of this data science stuff, running around and buying a tool to try to supplement their knowledge and their experience. So, that's going to be another factor that I think ultimately leads to clarity in how we utilize these tools as we move into an AI oriented world. >> Okay, Jim is on mute so if you wouldn't mind unmuting him. There was a question, is ML a more informative way of describing AI? Jim, when you and I were in our Boston studio, I sort of asked a similar question. AI is sort of the uber category. Machine learning is math. Deep learning is a more sophisticated math. You have a detailed answer in the chat. But maybe you can give a brief summary. >> Jim: Sure, sure. I don't want too pedantic here but deep learning is essentially, it's a lot more hierarchical deeper stacks of neural network of layers to be able to infer high level extractions from data, you know face recognitions, sentiment analysis and so forth. Machine learning is the broader phenomenon. That's simply along a different and part various approaches for distilling patterns, correlations and algorithms from the data itself. What we've seen in the last week, five, six tenure, let's say, is that all of the neural network approaches for AI have come to the forefront. And in fact, the core often market place and the state of the art. AI is an ancient paradigm that's older than probably you or me that began and for the longest time was rules based system, expert systems. Those haven't gone away. The new era of AI we see as a combination of both statical approaches as well as rules based approaches, and possibly even orchestration based approaches like graph models or building broader context or AI for a variety of applications especially distributed Edge application. >> Okay, thank you and then another question slash comment, AI like graphics in 1985, we move from a separate category to a core part of all apps. AI infused apps, again, Jim, you have a very detailed answer in the chat room but maybe you can give the summary version. >> Jim: Well quickly now, the most disruptive applications we see across the world, enterprise, consumer and so forth, the advantage involves AI. You know at the heart of its machine learning, that's neural networking. I wouldn't say that every single application is doing AI. But the ones that are really blazing the trail in terms of changing the fabric of our lives very much, most of them have AI at their heart. That will continue as the state of the art of AI continues to advance. So really, one of the things we've been saying in our research at Wikibon `is that the data scientists or those skills and tools are the nucleus of the next generation application developer, really in every sphere of our lives. >> Great, quick comment is we will be sending out these slides to all participants. We'll be posting these slides. So thank you Kip for that question. >> And very importantly Dave, over the course of the next few days, most of our predictions docs will be posted up on Wikibon and we'll do a summary of everything that we've talked about here. >> So now the questions are coming through fast and furious. But let me just try to rapid fire here 'cause we only got about a minute left. True private cloud definition. Just say this, we have a detailed definition that we can share but essentially it's substantially mimicking the public cloud experience on PRIM. The way we like to say it is, bringing the cloud operating model to your data versus trying to force fit your business into the cloud. So we've got detailed definitions there that frankly are evolving. about PaaS, there's a question about PaaS. I think we have a prediction in one of our, you know, appendices predictions but maybe a quick word on PaaS. >> Yeah, very quick word on PaaS is that there's been an enormous amount of effort put on the idea of the PaaS marketplace. Cloud Foundry, others suggested that there would be a PaaS market that would evolve because you want to be able to effectively have mobility and migration and portability for this large cloud application. We're not seeing that happen necessarily but what we are seeing is that developers are increasingly becoming a force in dictating and driving cloud decision making and developers will start biasing their choices to the platforms that demonstrate that they have the best developer experience. So whether we call it PaaS, whether we call it something else. Providing the best developer experience is going to be really important to the future of the cloud market place. >> Okay great and then George, George O, George Gilbert, you'll follow up with George O with that other question we need some clarification on. There's a question, really David, I think it's for you. Will persistent dims emerge first on public clouds? >> Almost certainly. But public clouds are where everything is going first. And when we talked about UniGrid, that's where it's going first. And then, the NVMe over fabrics, that architecture is going to be in public clouds. And it has the same sort of benefits there. And NV dims will again develop pretty rapidly as a part of the NVMe over fabrics. >> Okay, we're out of time. We'll look through the chat and follow up with any other questions. Peter, back to you. >> Great, thanks very much Dave. So once again, we want to thank you everybody here that has participated in the webinar today. I apologize for, I feel like Hans Solo and saying it wasn't my fault. But having said that, none the less, I apologize Neil Raden and everybody who had to deal with us finding and unmuting people but we hope you got a lot out of today's conversation. Look for those additional pieces of research on Wikibon, that pertain to the specific predictions on each of these different things that we're talking about. And by all means, Support@silicongangle.freshdesk.com, if you have an additional question but we will follow up with as many as we can from those significant list that's starting to queue up. So thank you very much. This closes out our webinar. We appreciate your time. We look forward to working with you more in 2018. (upbeat music)

Published Date : Dec 16 2017

SUMMARY :

And that is the emergence of the cloud. but the chief digital officer we see how much data moves from the Edge back to the cloud. and more and more of the AI involves deployment and we have multiple others that the ranks of data scientists are going to sort Neil's prescription that as the tools improve And most of the vendors that we have that AI is going to be relatively easy to build the low hanging fruit is for them to use of the talent ends up. of the triangle here. And that leads to the idea the logic albeit to drive sort of the verbiage And one of the big things we see happening is in the sense that you can quickly the role that the cloud is going to play. Is it something that is going to live on the Edge. is that data is going to dictate that and Kubernetes holds the promise to solve the hardware technologies are also going to evolve. of the processor you get back and the application of AI to So George, it sounds like it's going to be one of the key and the stringency of the SLA's, over the course of the next day, two days, to the extent that they are you know empowered. in the ArpiM big data era, with cloud vendors, as the discipline starts to mature, AI is sort of the uber category. and the state of the art. in the chat room but maybe you can give the summary version. at Wikibon `is that the data scientists these slides to all participants. over the course of the next few days, bringing the cloud operating model to your data Providing the best developer experience is going to be with that other question we need some clarification on. that architecture is going to be in public clouds. Peter, back to you. on Wikibon, that pertain to the specific predictions

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
David FloyerPERSON

0.99+

David VellantePERSON

0.99+

JimPERSON

0.99+

NeilPERSON

0.99+

DavidPERSON

0.99+

StuartPERSON

0.99+

Jim KobielusPERSON

0.99+

Neil RadenPERSON

0.99+

EuropeLOCATION

0.99+

AmazonORGANIZATION

0.99+

2018DATE

0.99+

AWSORGANIZATION

0.99+

Peter BurrisPERSON

0.99+

GeorgePERSON

0.99+

WikibonORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

2017DATE

0.99+

Stuart MinimanPERSON

0.99+

George GilbertPERSON

0.99+

Peter DruckerPERSON

0.99+

May 2018DATE

0.99+

PeterPERSON

0.99+

MicrosoftORGANIZATION

0.99+

General Data Protection RegulationTITLE

0.99+

DavePERSON

0.99+

1985DATE

0.99+

50%QUANTITY

0.99+

Last yearDATE

0.99+

George OPERSON

0.99+

OracleORGANIZATION

0.99+

Hans SoloPERSON

0.99+

Support@silicongangle.freshdesk.comOTHER

0.99+

12 billion dollarsQUANTITY

0.99+

second considerationQUANTITY

0.99+

11 billion dollarsQUANTITY

0.99+

Nine systemsQUANTITY

0.99+

Derek Kerton, Autotech Council | Autotech Council - Innovation in Motion


 

hey welcome back everybody Jeff Rick here with the cube we're at the mill pedis at an interesting event is called the auto tech council innovation in motion mapping and navigation event so a lot of talk about autonomous vehicles so it's a lot of elements to autonomous vehicles this is just one small piece of it it's about mapping and navigation and we're excited to have with us our first guest again and give us a background of this whole situation just Derick Curtin and he's the founder and chairman of the auto tech council so first up there welcome thank you very much good to be here absolutely so for the folks that aren't familiar what is the auto tech council autofit council is a sort of a club based in Silicon Valley where we have gathered together some of the industry's largest OMS om is mean car makers you know of like Rio de Gono from France and a variety of other ones they have offices here in Silicon Valley right and their job is to find innovation you find that Silicon Valley spark and take it back and get it into cars eventually and so what we are able to do is gather them up put them in a club and route a whole bunch of Silicon Valley startups and startups from other places to in front of them in a sort of parade and say these are some of the interesting technologies of the month so did they reach out for you did you see an opportunity because obviously they've all got the the Innovation Centers here we were at the Ford launch of their innovation center you see that the tagline is all around is there too now Palo Alto and up and down the peninsula so you know they're all here so was this something that they really needed an assist with that something opportunity saw or was it did it come from more the technology side to say we needed I have a new one to go talk to Raja Ford's well it's certainly true that they came on their own so they spotted Silicon Valley said this is now relevant to us where historically we were able to do our own R&D build our stuff in Detroit or in Japan or whatever the cases all of a sudden these Silicon Valley technologies are increasingly relevant to us and in fact disruptive to us we better get our finger on that pulse and they came here of their own at the time we were already running something called the telecom Council Silicon Valley where we're doing a similar thing for phone companies here so we had a structure in place that we needed to translate that into beyond modem industry and meet all those guys and say listen we can help you we're going to be a great tool in your toolkit to work the valley ok and then specifically what types of activities do you do with them to execute division you know it's interesting when we launched this about five years ago we're thinking well we have telecommunication back when we don't have the automotive skills but we have the organizational skills what turned out to be the cases they're not coming here the car bakers and the tier 1 vendors that sell to them they're not coming here to study break pad material science and things like that they're coming to Silicon Valley to find the same stuff the phone company two years ago it's lookin at least of you know how does Facebook work in a car out of all these sensors that we have in phones relate to automotive industry accelerometers are now much cheaper because of reaching economies of scale and phones so how do we use those more effectively hey GPS is you know reach scale economies how do we put more GPS in cars how do we provide mapping solutions all these things you'll set you'll see and sound very familiar right from that smartphone industry in fact the thing that disrupts them the thing that they're here for that brought them here and out of out of defensive need to be here is the fact that the smartphone itself was that disruptive factor inside the car right right so you have events like today so gives little story what's it today a today's event is called the mapping and navigation event what are people who are not here what's what's happening well so every now and then we pick a theme that's really relevant or interesting so today is mapping and navigation actually specifically today is high definition mapping and sensors and so there's been a battle in the automotive industry for the autonomous driving space hey what will control an autonomous car will it be using a map that's stored in memory onboard the car it knows what the world looked like when they mapped it six months ago say and it follows along a pre-programmed route inside of that world a 3d model world or is it a car more likely with the Tesla's current they're doing where it has a range of sensors on it and the sensors don't know anything about the world around the corner they only know what they're sensing right around them and they drive within that environment so there's two competing ways of modeling a 3d world around autonomous car and I think you know there was a battle looking backwards which one is going to win and I think the industry has come to terms with the fact the answer is both more everyday and so today we're talking about both and how to infuse those two and make better self-driving vehicles so for the outsider looking in right I'm sure they get wait the mapping wars are over you know Google Maps what else is there right but then I see we've got TomTom and meet a bunch of names that we've seen you know kind of pre pre Google Maps and you know shame on me I said the same thing when Google came out with a cert I'm like certain doors are over who's good with so so do well so Eddie's interesting there's a lot of different angles to this beyond just the Google map that you get on your phone well anything MapQuest what do you hear you moved on from MapQuest you print it out you're good together right well that's my little friends okay yeah some people written about some we're burning through paper listen the the upshot is that you've MapQuest is an interesting starting board probably first it's these maps folding maps we have in our car there's a best thing we have then we move to MapQuest era and $5,000 Sat Navs in some cars and then you might jump forward to where Google had kind of dominate they offered it for free kicked you know that was the disruptive factor one of the things where people use their smartphones in the car instead of paying $5,000 like car sat-nav and that was a long-running error that we have in very recent memory but the fact of the matter is when you talk about self-driving cars or autonomous vehicles now you need a much higher level of detail than TURN RIGHT in 400 feet right that's that's great for a human who's driving the car but for a computer driving the car you need to know turn right in 400.000 five feet and adjust one quarter inch to the left please so the level of detail requires much higher and so companies like TomTom like a variety of them that are making more high-level Maps Nokia's form a company called here is doing a good job and now a class of car makers lots of startups and there's crowdsource mapping out there as well and the idea is how do we get incredibly granular high detail maps that we can push into a car so that it has that reference of a 3d world that is extremely accurate and then the next problem is oh how do we keep those things up to date because when we Matt when when a car from this a Nokia here here's the company house drives down the street does a very high-level resolution map with all the equipment you see on some of these cars except for there was a construction zone when they mapped it and the construction zone is now gone right update these things so these are very important questions if you want to have to get the answers correct and in the car stored well for that credit self drive and once again we get back to something to mention just two minutes ago the answer is sensor fusion it's a map as a mix of high-level maps you've got in the car and what the sensors are telling you in real time so the sensors are now being used for what's going on right now and the maps are give me a high level of detail from six months ago and when this road was driven it's interesting back of the day right when we had to have the CD for your own board mapping Houston we had to keep that thing updated and you could actually get to the edge of the sea didn't work we were in the islands are they covering here too which feeds into this is kind of of the optical sensors because there's kind of the light our school of thought and then there's the the biopic cameras tripod and again the answers probably both yeah well good that's a you know that's there's all these beat little battles shaping up in the industry and that's one of them for sure which is lidar versus everything else lidar is the gold standard for building I keep saying a 3d model and that's basically you know a computer sees the world differently than your eye your eye look out a window we build a 3d model of what we're looking at how does computer do it so there's a variety of ways you can do it one is using lidar sensors which spin around biggest company in this space is called Bella died and been doing it for years for defense and aviation it's been around pointing laser lasers and waiting for the signal to come back so you basically use a reflected signal back and the time difference it takes to be billows back it builds a 3d model of the objects around that particular sensor that is the gold standard for precision the problem is it's also bloody expensive so the karmak is said that's really nice but I can't put for $8,000 sensors on each corner of a car and get it to market at some price that a consumers willing to pay so until every car has one and then you get the mobile phone aside yeah but economies of scale at eight thousand dollars we're looking at going that's a little stuff so there's a lot of startups now saying this we've got a new version of lighter that's solid-state it's not a spinning thing point it's actually a silicon chip with our MEMS and stuff on it they're doing this without the moving parts and we can drop the price down to two hundred dollars maybe a hundred dollars in the future and scale that starts being interesting that's four hundred dollars if you put it off all four corners of the car but there's also also other people saying listen cameras are cheap and readily available so you look at a company like Nvidia that has very fast GPUs saying listen our GPUs are able to suck in data from up to 12 cameras at a time and with those different stereoscopic views with different angle views we can build a 3d model from cheap cameras so there's competing ideas on how you build a model of the world and then those come to like Bosh saying well we're strong in car and written radar and we can actually refine our radar more and more and get 3d models from radar it's not the good resolution that lidar has which is a laser sense right so there's all these different sensors and I think there the answer is not all of them because cost comes into play below so a car maker has to choose well we're going to use cameras and radar we're gonna use lidar and high heaven so they're going to pick from all these different things that are used to build a high-definition 3d model of the world around the car cost effective and successful and robust can handle a few of the sensors being covered by snow hopefully and still provide a good idea of the world around them and safety and so they're going to fuse these together and then let their their autonomous driving intelligence right on top of that 3d model and drive the car right so it's interesting you brought Nvidia in what's really fun I think about the autonomous vehicle until driving cars and the advances is it really plays off the kind of Moore's laws impact on the three tillers of its compute right massive compute power to take the data from these sensors massive amounts of data whether it's in the pre-programmed map whether you're pulling it off the sensors you're pulling off a GPS lord knows where by for Wi-Fi waypoints I'm sure they're pulling all kinds of stuff and then of course you know storage you got to put that stuff the networking you gotta worry about latency is it on the edge is it not on the edge so this is really an interesting combination of technologies all bring to bear on how successful your car navigates that exit ramp you're spot-on and that's you're absolutely right and that's one of the reasons I'm really bullish on self-driving cars a lot more than in the general industry analyst is and you mentioned Moore's law and in videos taking advantage of that with a GPUs so let's wrap other than you should be into kind of big answer Big Data and more and more data yes that's a huge factor in cars not only are cars going to take advantage of more and more data high definition maps are way more data than the MapQuest Maps we printed out so that's a massive amount of data the car needs to use but then in the flipside the cars producing massive amounts of data I just talked about a whole range of sensors I talked lidar radar cameras etc that's producing data and then there's all the telemetric data how's the car running how's the engine performing all those things car makers want that data so there's massive amounts of data needing to flow both ways now you can do that at night over Wi-Fi cheaply you can do it over an LTE and we're looking at 5g regular standards being able to enable more transfer of data between the cars and the cloud so that's pretty important cloud data and then cloud analytics on top of that ok now that we've got all this data from the car what do we do with it we know for example that Tesla uses that data sucked out of cars to do their fleet driving their fleet learning so instead of teaching the cars how to drive I'm a programmer saying if you see this that they're they're taking the information out of the cars and saying what are the situation these cars are seen how did our autonomous circuitry suggest the car responds and how did the user override or control the car in that point and then they can compare human driving with their algorithms and tweak their algorithms based on all that fleet to driving so it's a master advantage in sucking data out of cars massive advantage of pushing data to cars and you know we're here at Kingston SanDisk right now today so storage is interesting as well storage in the car increasingly important through these big amount of data right and fast storage as well High Definition maps are beefy beefy maps so what do you do do you have that in the cloud and constantly stream it down to the car what if you drive through a tunnel or you go out of cellular signal so it makes sense to have that map data at least for the region you're in stored locally on the car in easily retrievable flash memory that's dropping in price as well alright so loop in the last thing about that was a loaded question by the way and I love it and this is the thing I love this is why I'm bullish and more crazier than anybody else about the self-driving car space you mentioned Moore's law I find Moore's law exciting used to not be relevant to the automotive industry they used to build except we talked about I talked briefly about brake pad technology material science like what kind of asbestos do we use and how do we I would dissipate the heat more quickly that's science physics important Rd does not take advantage of Moore's law so cars been moving along with laws of thermodynamics getting more miles per gallon great stuff out of Detroit out of Tokyo out of Europe out of Munich but Moore's law not entirely relevant all of a sudden since very recently Moore's law starting to apply to cars so they've always had ECU computers but they're getting more compute put in the car Tesla has the Nvidia processors built into the car many cars having stronger central compute systems put in okay so all of a sudden now Moore's law is making cars more able to do things that they we need them to do we're talking about autonomous vehicles couldn't happen without a huge central processing inside of cars so Moore's law applying now what it did before so cars will move quicker than we thought next important point is that there's other there's other expansion laws in technology if people look up these are the cool things kryder's law so kryder's law is a law about storage in the rapidly expanding performance of storage so for $8.00 and how many megabytes or gigabytes of storage you get well guess what turns out that's also exponential and your question talked about isn't dat important sure it is that's why we could put so much into the cloud and so much locally into the car huge kryder's law next one is Metcalfe's law Metcalfe's law has a lot of networking in it states basically in this roughest form the value of network is valued to the square of the number of nodes in the network so if I connect my car great that's that's awesome but who does it talk to nobody you connect your car now we can have two cars you can talk together and provide some amount of element of car to car communications and some some safety elements tell me the network is now connected I have a smart city all of a sudden the value keeps shooting up and up and up so all of these things are exponential factors and there all of a sudden at play in the automotive industry so anybody who looks back in the past and says well you know the pace of innovation here has been pretty steep it's been like this I expect in the future we'll carry on and in ten years we'll have self-driving cars you can't look back at the slope of the curve right and think that's a slope going forward especially with these exponential laws at play so the slope ahead is distinctly steeper in this deeper and you left out my favorite law which is a Mars law which is you know we underestimate in the short term or overestimate in the short term and underestimate in the long term that's all about it's all about the slope so there we could go on for probably like an hour and I know I could but you got a kill you got to go into your event so thanks for taking min out of your busy day really enjoyed the conversation and look forward to our next one my pleasure thanks all right Jeff Rick here with the Q we're at the Western Digital headquarters in Milpitas at the Auto Tech Council innovation in motion mapping and navigation event thanks for watching

Published Date : Jun 15 2017

SUMMARY :

for the signal to come back so you

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
$8,000QUANTITY

0.99+

$8.00QUANTITY

0.99+

$5,000QUANTITY

0.99+

JapanLOCATION

0.99+

Jeff RickPERSON

0.99+

Derick CurtinPERSON

0.99+

DetroitLOCATION

0.99+

Silicon ValleyLOCATION

0.99+

Autotech CouncilORGANIZATION

0.99+

Derek KertonPERSON

0.99+

TokyoLOCATION

0.99+

Silicon ValleyLOCATION

0.99+

FranceLOCATION

0.99+

Jeff RickPERSON

0.99+

MunichLOCATION

0.99+

TeslaORGANIZATION

0.99+

MilpitasLOCATION

0.99+

NokiaORGANIZATION

0.99+

todayDATE

0.99+

Palo AltoLOCATION

0.99+

400 feetQUANTITY

0.99+

eight thousand dollarsQUANTITY

0.99+

HoustonLOCATION

0.99+

two hundred dollarsQUANTITY

0.99+

two carsQUANTITY

0.99+

four hundred dollarsQUANTITY

0.99+

NvidiaORGANIZATION

0.99+

MoorePERSON

0.99+

FordORGANIZATION

0.99+

first guestQUANTITY

0.99+

FacebookORGANIZATION

0.99+

EuropeLOCATION

0.99+

ten yearsQUANTITY

0.99+

six months agoDATE

0.99+

EddiePERSON

0.99+

two years agoDATE

0.98+

Google MapsTITLE

0.98+

twoQUANTITY

0.98+

MapQuestORGANIZATION

0.98+

two minutes agoDATE

0.98+

one quarter inchQUANTITY

0.98+

GoogleORGANIZATION

0.98+

TomTomORGANIZATION

0.97+

six months agoDATE

0.97+

Western DigitalLOCATION

0.97+

bothQUANTITY

0.97+

Silicon ValleyLOCATION

0.97+

both waysQUANTITY

0.97+

each cornerQUANTITY

0.96+

firstQUANTITY

0.96+

one of the reasonsQUANTITY

0.96+

two competing waysQUANTITY

0.96+

MarsLOCATION

0.95+

telecom Council Silicon ValleyORGANIZATION

0.95+

an hourQUANTITY

0.95+

Google mapTITLE

0.95+

MetcalfePERSON

0.93+

oneQUANTITY

0.92+

every carQUANTITY

0.89+

up to 12 camerasQUANTITY

0.89+

Kingston SanDiskORGANIZATION

0.88+

OMSORGANIZATION

0.88+

one small pieceQUANTITY

0.88+

about five years agoDATE

0.87+

innovation in motion mapping and navigationEVENT

0.86+

auto tech councilORGANIZATION

0.86+

tier 1QUANTITY

0.82+