Image Title

Search Results for sanji:

Breaking Analysis Further defining Supercloud W/ tech leaders VMware, Snowflake, Databricks & others


 

from the cube studios in palo alto in boston bringing you data driven insights from the cube and etr this is breaking analysis with dave vellante at our inaugural super cloud 22 event we further refined the concept of a super cloud iterating on the definition the salient attributes and some examples of what is and what is not a super cloud welcome to this week's wikibon cube insights powered by etr you know snowflake has always been what we feel is one of the strongest examples of a super cloud and in this breaking analysis from our studios in palo alto we unpack our interview with benoit de javille co-founder and president of products at snowflake and we test our super cloud definition on the company's data cloud platform and we're really looking forward to your feedback first let's examine how we defl find super cloudant very importantly one of the goals of super cloud 22 was to get the community's input on the definition and iterate on previous work super cloud is an emerging computing architecture that comprises a set of services which are abstracted from the underlying primitives of hyperscale clouds we're talking about services such as compute storage networking security and other native tooling like machine learning and developer tools to create a global system that spans more than one cloud super cloud as shown on this slide has five essential properties x number of deployment models and y number of service models we're looking for community input on x and y and on the first point as well so please weigh in and contribute now we've identified these five essential elements of a super cloud let's talk about these first the super cloud has to run its services on more than one cloud leveraging the cloud native tools offered by each of the cloud providers the builder of the super cloud platform is responsible for optimizing the underlying primitives of each cloud and optimizing for the specific needs be it cost or performance or latency or governance data sharing security etc but those primitives must be abstracted such that a common experience is delivered across the clouds for both users and developers the super cloud has a metadata intelligence layer that can maximize efficiency for the specific purpose of the super cloud i.e the purpose that the super cloud is intended for and it does so in a federated model and it includes what we call a super pass this is a prerequisite that is a purpose-built component and enables ecosystem partners to customize and monetize incremental services while at the same time ensuring that the common experiences exist across clouds now in terms of deployment models we'd really like to get more feedback on this piece but here's where we are so far based on the feedback we got at super cloud 22. we see three deployment models the first is one where a control plane may run on one cloud but supports data plane interactions with more than one other cloud the second model instantiates the super cloud services on each individual cloud and within regions and can support interactions across more than one cloud with a unified interface connecting those instantiations those instances to create a common experience and the third model superimposes its services as a layer or in the case of snowflake they call it a mesh on top of the cloud on top of the cloud providers region or regions with a single global instantiation a single global instantiation of those services which spans multiple cloud providers this is our understanding from a comfort the conversation with benoit dejaville as to how snowflake approaches its solutions and for now we're going to park the service models we need to more time to flesh that out and we'll propose something shortly for you to comment on now we peppered benoit dejaville at super cloud 22 to test how the snowflake data cloud aligns to our concepts and our definition let me also say that snowflake doesn't use the term data cloud they really want to respect and they want to denigrate the importance of their hyperscale partners nor do we but we do think the hyperscalers today anyway are building or not building what we call super clouds but they are but but people who bar are building super clouds are building on top of hyperscale clouds that is a prerequisite so here are the questions that we tested with snowflake first question how does snowflake architect its data cloud and what is its deployment model listen to deja ville talk about how snowflake has architected a single system play the clip there are several ways to do this you know uh super cloud as as you name them the way we we we picked is is to create you know one single system and that's very important right the the the um [Music] there are several ways right you can instantiate you know your solution uh in every region of a cloud and and you know potentially that region could be a ws that region could be gcp so you are indeed a multi-cloud solution but snowflake we did it differently we are really creating cloud regions which are superposed on top of the cloud provider you know region infrastructure region so we are building our regions but but where where it's very different is that each region of snowflake is not one in instantiation of our service our service is global by nature we can move data from one region to the other when you land in snowflake you land into one region but but you can grow from there and you can you know exist in multiple clouds at the same time and that's very important right it's not one single i mean different instantiation of a system is one single instantiation which covers many cloud regions and many cloud providers snowflake chose the most advanced level of our three deployment models dodgeville talked about too presumably so it could maintain maximum control and ensure that common experience like the iphone model next we probed about the technical enablers of the data cloud listen to deja ville talk about snow grid he uses the term mesh and then this can get confusing with the jamaicani's data mesh concept but listen to benoit's explanation well as i said you know first we start by building you know snowflake regions we have today furry region that spawn you know the world so it's a worldwide worldwide system with many regions but all these regions are connected together they are you know meshed together with our technology we name it snow grid and that makes it hard because you know regions you know azure region can talk to a ws region or gcp regions and and as a as a user of our cloud you you don't see really these regional differences that you know regions are in different you know potentially clown when you use snowflake you can exist your your presence as an organization can be in several regions several clouds if you want geographic and and and both geographic and cloud provider so i can share data irrespective of the the cloud and i'm in the snowflake data cloud is that correct i can do that today exactly and and that's very critical right what we wanted is to remove data silos and and when you instantiate a system in one single region and that system is locked in that region you cannot communicate with other parts of the world you are locking the data in one region right and we didn't want to do that we wanted you know data to be distributed the way customer wants it to be distributed across the world and potentially sharing data at world scale now maybe there are many ways to skin the other cat meaning perhaps if a platform does instantiate in multiple places there are ways to share data but this is how snowflake chose to approach the problem next question how do you deal with latency in this big global system this is really important to us because while snowflake has some really smart people working as engineers and and the like we don't think they've solved for the speed of light problem the best people working on it as we often joke listen to benoit deja ville's comments on this topic so yes and no the the way we do it it's very expensive to do that because generally if you want to join you know data which is in which are in different regions and different cloud it's going to be very expensive because you need to move you know data every time you join it so the way we do it is that you replicate the subset of data that you want to access from one region from other regions so you can create this data mesh but data is replicated to make it very cheap and very performant too and is the snow grid does that have the metadata intelligence yes to actually can you describe that a little bit yeah snow grid is both uh a way to to exchange you know metadata about so each region of snowflake knows about all the other regions of snowflake every time we create a new region diary you know the metadata is distributed over our data cloud not only you know region knows all the regions but knows you know every organization that exists in our clouds where this organization is where data can be replicated by this organization and then of course it's it's also used as a way to uh uh exchange data right so you can exchange you know beta by scale of data size and we just had i was just receiving an email from one of our customers who moved more than four petabytes of data cross-region cross you know cloud providers in you know few days and you know it's a lot of data so it takes you know some time to move but they were able to do that online completely online and and switch over you know to the diff to the other region which is failover is very important also so yes and no probably means typically no he says yes and no probably means no so it sounds like snowflake is selectively pulling small amounts of data and replicating it where necessary but you also heard him talk about the metadata layer which is one of the essential aspects of super cloud okay next we dug into security it's one of the most important issues and we think one of the hardest parts related to deploying super cloud so we've talked about how the cloud has become the first line of defense for the cso but now with multi-cloud you have multiple first lines of defense and that means multiple shared responsibility models and multiple tool sets from different cloud providers and an expanded threat surface so listen to benoit's explanation here please play the clip this is a great question uh security has always been the most important aspect of snowflake since day one right this is the question that every customer of ours has you know how you can you guarantee the security of my data and so we secure data really tightly in region we have several layers of security it starts by by encrypting it every data at rest and that's very important a lot of customers are not doing that right you hear these attacks for example on on cloud you know where someone left you know their buckets uh uh open and then you know you can access the data because it's a non-encrypted uh so we are encrypting everything at rest we are encrypting everything in transit so a region is very secure now you know you never from one region you never access data from another region in snowflake that's why also we replicate data now the replication of that data across region or the metadata for that matter is is really highly secure so snow grits ensure that everything is encrypted everything is you know we have multiple you know encryption keys and it's you know stored in hardware you know secure modules so we we we built you know snow grids such that it's secure and it allows very secure movement of data so when we heard this explanation we immediately went to the lowest common denominator question meaning when you think about how aws for instance deals with data in motion or data and rest it might be different from how another cloud provider deals with it so how does aws uh uh uh differences for example in the aws maturity model for various you know cloud capabilities you know let's say they've got a faster nitro or graviton does it do do you have to how does snowflake deal with that do they have to slow everything else down like imagine a caravan cruising you know across the desert so you know every truck can keep up let's listen it's a great question i mean of course our software is abstracting you know all the cloud providers you know infrastructure so that when you run in one region let's say aws or azure it doesn't make any difference as far as the applications are concerned and and this abstraction of course is a lot of work i mean really really a lot of work because it needs to be secure it needs to be performance and you know every cloud and it has you know to expose apis which are uniform and and you know cloud providers even though they have potentially the same concept let's say blob storage apis are completely different the way you know these systems are secure it's completely different the errors that you can get and and the retry you know mechanism is very different from one cloud to the other performance is also different we discovered that when we were starting to port our software and and and you know we had to completely rethink how to leverage blob storage in that cloud versus that cloud because just of performance too so we had you know for example to you know stripe data so all this work is work that's you know you don't need as an application because our vision really is that applications which are running in our data cloud can you know be abstracted of all this difference and and we provide all the services all the workload that this application need whether it's transactional access to data analytical access to data you know managing you know logs managing you know metrics all of these is abstracted too such that they are not you know tied to one you know particular service of one cloud and and distributing this application across you know many regions many cloud is very seamless so from that answer we know that snowflake takes care of everything but we really don't understand the performance implications in you know in that specific case but we feel pretty certain that the promises that snowflake makes around governance and security within their data sharing construct construct will be kept now another criterion that we've proposed for super cloud is a super pass layer to create a common developer experience and an enabler for ecosystem partners to monetize please play the clip let's listen we build it you know a custom build because because as you said you know what exists in one cloud might not exist in another cloud provider right so so we have to build you know on this all these this components that modern application mode and that application need and and and and that you know goes to machine learning as i say transactional uh analytical system and the entire thing so such that they can run in isolation basically and the objective is the developer experience will be identical across those clouds yes right the developers doesn't need to worry about cloud provider and actually our system we have we didn't talk about it but the marketplace that we have which allows actually to deliver we're getting there yeah okay now we're not going to go deep into ecosystem today we've talked about snowflakes strengths in this regard but snowflake they pretty much ticked all the boxes on our super cloud attributes and definition we asked benoit dejaville to confirm that this is all shipping and available today and he also gave us a glimpse of the future play the clip and we are still developing it you know the transactional you know unistore as we call it was announced in last summit so so they are still you know working properly but but but that's the vision right and and and that's important because we talk about the infrastructure right you mentioned a lot about storage and compute but it's not only that right when you think about application they need to use the transactional database they need to use an analytical system they need to use you know machine learning so you need to provide also all these services which are consistent across all the cloud providers so you can hear deja ville talking about expanding beyond taking advantage of the core infrastructure storage and networking et cetera and bringing intelligence to the data through machine learning and ai so of course there's more to come and there better be at this company's valuation despite the recent sharp pullback in a tightening fed environment okay so i know it's cliche but everyone's comparing snowflakes and data bricks databricks has been pretty vocal about its open source posture compared to snowflakes and it just so happens that we had aligotsy on at super cloud 22 as well he wasn't in studio he had to do remote because i guess he's presenting at an investor conference this week so we had to bring him in remotely now i didn't get to do this interview john furrier did but i listened to it and captured this clip about how data bricks sees super cloud and the importance of open source take a listen to goatzee yeah i mean let me start by saying we just we're big fans of open source we think that open source is a force in software that's going to continue for you know decades hundreds of years and it's going to slowly replace all proprietary code in its way we saw that you know it could do that with the most advanced technology windows you know proprietary operating system very complicated got replaced with linux so open source can pretty much do anything and what we're seeing with the data lake house is that slowly the open source community is building a replacement for the proprietary data warehouse you know data lake machine learning real-time stack in open source and we're excited to be part of it for us delta lake is a very important project that really helps you standardize how you lay out your data in the cloud and with it comes a really important protocol called delta sharing that enables you in an open way actually for the first time ever share large data sets between organizations but it uses an open protocol so the great thing about that is you don't need to be a database customer you don't even like databricks you just need to use this open source project and you can now securely share data sets between organizations across clouds and it actually does so really efficiently just one copy of the data so you don't have to copy it if you're within the same cloud so the implication of ellie gotzi's comments is that databricks with delta sharing as john implied is playing a long game now i don't know if enough about the databricks architecture to comment in detail i got to do more research there so i reached out to my two analyst friends tony bear and sanji mohan to see what they thought because they cover these companies pretty closely here's what tony bear said quote i've viewed the divergent lake house strategies of data bricks and snowflake in the context of their roots prior to delta lake databrick's prime focus was the compute not the storage layer and more specifically they were a compute engine not a database snowflake approached from the opposite end of the pool as they originally fit the mold of the classic database company rather than a specific compute engine per se the lake house pushes both companies outside of their original comfort zones data bricks to storage snowflake to compute engine so it makes perfect sense for databricks to embrace the open source narrative at the storage layer and for snowflake to continue its walled garden approach but in the long run their strategies are already overlapping databricks is not a 100 open source company its practitioner experience has always been proprietary and now so is its sql query engine likewise snowflake has had to open up with the support of iceberg for open data lake format the question really becomes how serious snowflake will be in making iceberg a first-class citizen in its environment that is not necessarily officially branding a lake house but effectively is and likewise can databricks deliver the service levels associated with walled gardens through a more brute force approach that relies heavily on the query engine at the end of the day those are the key requirements that will matter to data bricks and snowflake customers end quote that was some deep thought by by tony thank you for that sanjay mohan added the following quote open source is a slippery slope people buy mobile phones based on open source android but it's not fully open similarly databricks delta lake was not originally fully open source and even today its photon execution engine is not we are always going to live in a hybrid world snowflake and databricks will support whatever model works best for them and their customers the big question is do customers care as deeply about which vendor has a higher degree of openness as we technology people do i believe customers evaluation criteria is far more nuanced than just to decipher each vendor's open source claims end quote okay so i had to ask dodgeville about their so-called wall garden approach and what their strategy is with apache iceberg here's what he said iceberg is is very important so just to to give some context iceberg is an open you know table format right which was you know first you know developed by netflix and netflix you know put it open source in the apache community so we embrace that's that open source standard because because it's widely used by by many um many you know companies and also many companies have you know really invested a lot of effort in building you know big data hadoop solution or data like solution and they want to use snowflake and they couldn't really use snowflake because all their data were in open you know formats so we are embracing icebergs to help these companies move through the cloud but why we have been relentless with direct access to data direct access to data is a little bit of a problem for us and and the reason is when you direct access to data now you have direct access to storage now you have to understand for example the specificity of one cloud versus the other so as soon as you start to have direct access to data you lose your you know your cloud diagnostic layer you don't access data with api when you have direct access to data it's very hard to secure data because you need to grant access direct access to tools which are not you know protected and you see a lot of you know hacking of of data you know because of that so so that was not you know direct access to data is not serving well our customers and that's why we have been relented to do that because it's it's cr it's it's not cloud diagnostic it's it's you you have to code that you have to you you you need a lot of intelligence while apis access so we want open apis that's that's i guess the way we embrace you know openness is is by open api versus you know you access directly data here's my take snowflake is hedging its bets because enough people care about open source that they have to have some open data format options and it's good optics and you heard benoit deja ville talk about the risks of directly accessing the data and the complexities it brings now is that maybe a little fud against databricks maybe but same can be said for ollie's comments maybe flooding the proprietaryness of snowflake but as both analysts pointed out open is a spectrum hey i remember unix used to equal open systems okay let's end with some etr spending data and why not compare snowflake and data bricks spending profiles this is an xy graph with net score or spending momentum on the y-axis and pervasiveness or overlap in the data set on the x-axis this is data from the january survey when snowflake was holding above 80 percent net score off the charts databricks was also very strong in the upper 60s now let's fast forward to this next chart and show you the july etr survey data and you can see snowflake has come back down to earth now remember anything above 40 net score is highly elevated so both companies are doing well but snowflake is well off its highs and data bricks has come down somewhat as well databricks is inching to the right snowflake rocketed to the right post its ipo and as we know databricks wasn't able to get to ipo during the covet bubble ali gotzi is at the morgan stanley ceo conference this week they got plenty of cash to withstand a long-term recession i'm told and they've started the message that they're a billion dollars in annualized revenue i'm not sure exactly what that means i've seen some numbers on their gross margins i'm not sure what that means i've seen some numbers on their net retention revenue or net revenue retention again i'll reserve judgment until we see an s1 but it's clear both of these companies have momentum and they're out competing in the market well as always be the ultimate arbiter different philosophies perhaps is it like democrats and republicans well it could be but they're both going after a solving data problem both companies are trying to help customers get more value out of their data and both companies are highly valued so they have to perform for their investors to paraphrase ralph nader the similarities may be greater than the differences okay that's it for today thanks to the team from palo alto for this awesome super cloud studio build alex myerson and ken shiffman are on production in the palo alto studios today kristin martin and sheryl knight get the word out to our community rob hoff is our editor-in-chief over at siliconangle thanks to all please check out etr.ai for all the survey data remember these episodes are all available as podcasts wherever you listen just search breaking analysis podcasts i publish each week on wikibon.com and siliconangle.com and you can email me at david.vellante at siliconangle.com or dm me at devellante or comment on my linkedin posts and please as i say etr has got some of the best survey data in the business we track it every quarter and really excited to be partners with them this is dave vellante for the cube insights powered by etr thanks for watching and we'll see you next time on breaking analysis [Music] you

Published Date : Aug 14 2022

SUMMARY :

and and the retry you know mechanism is

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
netflixORGANIZATION

0.99+

john furrierPERSON

0.99+

palo altoORGANIZATION

0.99+

tony bearPERSON

0.99+

bostonLOCATION

0.99+

sanji mohanPERSON

0.99+

ken shiffmanPERSON

0.99+

bothQUANTITY

0.99+

todayDATE

0.99+

ellie gotziPERSON

0.99+

VMwareORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

siliconangle.comOTHER

0.99+

more than four petabytesQUANTITY

0.99+

first pointQUANTITY

0.99+

kristin martinPERSON

0.99+

both companiesQUANTITY

0.99+

first questionQUANTITY

0.99+

rob hoffPERSON

0.99+

more than oneQUANTITY

0.99+

second modelQUANTITY

0.98+

alex myersonPERSON

0.98+

third modelQUANTITY

0.98+

one regionQUANTITY

0.98+

one copyQUANTITY

0.98+

one regionQUANTITY

0.98+

five essential elementsQUANTITY

0.98+

androidTITLE

0.98+

100QUANTITY

0.98+

first lineQUANTITY

0.98+

DatabricksORGANIZATION

0.98+

sherylPERSON

0.98+

more than one cloudQUANTITY

0.98+

firstQUANTITY

0.98+

iphoneCOMMERCIAL_ITEM

0.98+

super cloud 22EVENT

0.98+

each cloudQUANTITY

0.98+

eachQUANTITY

0.97+

sanjay mohanPERSON

0.97+

johnPERSON

0.97+

republicansORGANIZATION

0.97+

this weekDATE

0.97+

hundreds of yearsQUANTITY

0.97+

siliconangleORGANIZATION

0.97+

each weekQUANTITY

0.97+

data lake houseORGANIZATION

0.97+

one single regionQUANTITY

0.97+

januaryDATE

0.97+

dave vellantePERSON

0.96+

each regionQUANTITY

0.96+

oneQUANTITY

0.96+

dave vellantePERSON

0.96+

tonyPERSON

0.96+

above 80 percentQUANTITY

0.95+

more than one cloudQUANTITY

0.95+

more than one cloudQUANTITY

0.95+

data lakeORGANIZATION

0.95+

five essential propertiesQUANTITY

0.95+

democratsORGANIZATION

0.95+

first timeQUANTITY

0.95+

julyDATE

0.94+

linuxTITLE

0.94+

etrORGANIZATION

0.94+

devellanteORGANIZATION

0.93+

dodgevilleORGANIZATION

0.93+

each vendorQUANTITY

0.93+

super cloud 22ORGANIZATION

0.93+

delta lakeORGANIZATION

0.92+

three deployment modelsQUANTITY

0.92+

first linesQUANTITY

0.92+

dejavilleLOCATION

0.92+

day oneQUANTITY

0.92+

Starburst Panel Q2


 

>>We're back with Jess Borgman of Starburst and Richard Jarvis of emus health. Okay. We're gonna get into lie. Number two, and that is this an open source based platform cannot give you the performance and control that you can get with a proprietary system. Is that a lie? Justin, the enterprise data warehouse has been pretty dominant and has evolved and matured. Its stack has mature over the years. Why is it not the default platform for data? >>Yeah, well, I think that's become a lie over time. So I, I think, you know, if we go back 10 or 12 years ago with the advent of the first data lake really around Hudu, that probably was true that you couldn't get the performance that you needed to run fast, interactive, SQL queries in a data lake. Now a lot's changed in 10 or 12 years. I remember in the very early days, people would say, you'll, you'll never get performance because you need to be column. You need to store data in a column format. And then, you know, column formats were introduced to, to data lakes. You have Parque ORC file in aro that were created to ultimately deliver performance out of that. So, okay. We got, you know, largely over the performance hurdle, you know, more recently people will say, well, you don't have the ability to do updates and deletes like a traditional data warehouse. >>And now we've got the creation of new data formats, again like iceberg and Delta and DY that do allow for updates and delete. So I think the data lake has continued to mature. And I remember a, a quote from, you know, Kurt Monash many years ago where he said, you know, it takes six or seven years to build a functional database. I think that's that's right. And now we've had almost a decade go by. So, you know, these technologies have matured to really deliver very, very close to the same level performance and functionality of, of cloud data warehouses. So I think the, the reality is that's become a lie and now we have large giant hyperscale internet companies that, you know, don't have the traditional data warehouse at all. They do all of their analytics in a data lake. So I think we've, we've proven that it's very much possible today. >>Thank you for that. And so Richard, talk about your perspective as a practitioner in terms of what open brings you versus, I mean, the closed is it's open as a moving target. I remember Unix used to be open systems and so it's, it is an evolving, you know, spectrum, but, but from your perspective, what does open give you that you can't get from a proprietary system where you are fearful of in a proprietary system? >>I, I suppose for me open buys us the ability to be unsure about the future, because one thing that's always true about technology is it evolves in a, a direction, slightly different to what people expect. And what you don't want to end up is done is backed itself into a corner that then prevents it from innovating. So if you have chosen the technology and you've stored trillions of records in that technology and suddenly a new way of processing or machine learning comes out, you wanna be able to take advantage and your competitive edge might depend upon it. And so I suppose for us, we acknowledge that we don't have perfect vision of what the future might be. And so by backing open storage technologies, we can apply a number of different technologies to the processing of that data. And that gives us the ability to remain relevant, innovate on our data storage. And we have bought our way out of the, any performance concerns because we can use cloud scale infrastructure to scale up and scale down as we need. And so we don't have the concerns that we don't have enough hardware today to process what we want to do, but want to achieve. We can just scale up when we need it and scale back down. So open source has really allowed us to maintain the being at the cutting edge. >>So Justin, let me play devil's advocate here a little bit, and I've talked to JAK about this and you know, obviously her vision is there's an open source that, that data mesh is open source, an open source tooling, and it's not a proprietary, you know, you're not gonna buy a data mesh. You're gonna build it with, with open source toolings and, and vendors like you are gonna support it, but come back to sort of today, you can get to market with a proprietary solution faster. I'm gonna make that statement. You tell me if it's a lie and then you can say, okay, we support Apache iceberg. We're gonna support open source tooling, take a company like VMware, not really in the data business, but how, the way they embraced Kubernetes and, and you know, every new open source thing that comes along, they say, we do that too. Why can't proprietary systems do that and be as effective? >>Yeah, well, I think at least with the, within the data landscape saying that you can access open data formats like iceberg or, or others is, is a bit dis disingenuous because really what you're selling to your customer is a certain degree of performance, a certain SLA, and you know, those cloud data warehouses that can reach beyond their own proprietary storage drop all the performance that they were able to provide. So it is, it reminds me kind of, of, again, going back 10 or 12 years ago when everybody had a connector to hit and that they thought that was the solution, right? But the reality was, you know, a connector was not the same as running workloads in had back then. And I think, think similarly, you know, being able to connect to an external table that lives in an open data format, you know, you're, you're not going to give it the performance that your customers are accustomed to. And at the end of the day, they're always going to be predisposed. They're always going to be incentivized to get that data ingested into the data warehouse, cuz that's where they have control. And you know, the bottom line is the database industry has really been built around vendor lockin. I mean, from the start, how, how many people love Oracle today, but our customers, nonetheless, I think, you know, lockin is, is, is part of this industry. And I think that's really what we're trying to change with open data formats. >>Well, it's interesting reminded when I, you know, I see the, the gas price, the TSR gas price I, I drive up and then I say, oh, that's the cash price credit card. I gotta pay 20 cents more, but okay. But so the, the argument then, so let me, let me come back to you, Justin. So what's wrong with saying, Hey, we support open data formats, but yeah, you're gonna get better performance if you, if you, you keep it into our closed system, are you saying that long term that's gonna come back and bite you cuz you're gonna end up. You mentioned Oracle, you mentioned Teradata. Yeah. That's by, by implication, you're saying that's where snowflake customers are headed. >>Yeah, absolutely. I think this is a movie that, you know, we've all seen before. At least those of us who've been in the industry long enough to, to see this movie play over a couple times. So I do think that's the future. And I think, you know, I loved what Richard said. I actually wrote it down cause I thought it was amazing quote. He said, it buys us the ability to be unsure of the future. That that pretty much says it all the, the future is unknowable and the reality is using open data formats. You remain interoperable with any technology you want to utilize. If you want to use smart to train a machine learning model and you wanna use Starbust to query be a sequel, that's totally cool. They can both work off the same exact, you know, data, data sets by contrast, if you're, you know, focused on a proprietary model, then you're kind of locked in again to that model. I think the same applies to data, sharing to data products, to a wide variety of, of aspects of the data landscape that a proprietary approach kind of closes you and, and locks you in. >>So I would say this Richard, I'd love to get your thoughts on it. Cause I talked to a lot of Oracle customers, not as many te data customers, but, but a lot of Oracle customers and they, you know, they'll admit yeah, you know, they Jimin some price and the license cost they give, but we do get value out of it. And so my question to you, Richard, is, is do the, let's call it data warehouse systems or the proprietary systems. Are they gonna deliver a greater ROI sooner? And is that in allure of, of that customers, you know, are attracted to, or can open platforms deliver as fast an ROI? >>I think the answer to that is it can depend a bit. It depends on your business's skillset. So we are lucky that we have a number of proprietary teams that work in databases that provide our operational data capability. And we have teams of analytics and big data experts who can work with open data sets and open data formats. And so for those different teams, they can get to an ROI more quickly with different technologies for the business though, we can't do better for our operational data stores than proprietary databases. Today we can back off very tight SLAs to them. We can demonstrate reliability from millions of hours of those databases being run enterprise scale, but for an analytics workload where increasing our business is growing in that direction, we can't do better than open data formats with cloud based data mesh type technologies. And so it's not a simple answer. That one will always be the right answer for our business. We definitely have times when proprietary databases provide a capability that we couldn't easily represent or replicate with open technologies. >>Yeah. Richard, stay with you. You mentioned, you know, you know, some things before that, that strike me, you know, the data brick snowflake, you know, thing is a lot of fun for analysts like me. You've got data bricks coming at it. Richard, you mentioned you have a lot of rockstar, data engineers, data bricks coming at it from a data engineering heritage. You get snowflake coming at it from an analytics heritage. Those two worlds are, are colliding people like P Sanji Mohan said, you know what? I think it's actually harder to play in the data engineering. So I E it's easier to for data engineering world to go into the analytics world versus the reverse, but thinking about up and coming engineers and developers preparing for this future of data engineering and data analytics, how, how should they be thinking about the future? What, what's your advice to those young people? >>So I think I'd probably fall back on general programming skill sets. So the advice that I saw years ago was if you have open source technologies, the pythons and Javas on your CV, you command a 20% pay, hike over people who can only do proprietary programming languages. And I think that's true of data technologies as well. And from a business point of view, that makes sense. I'd rather spend the money that I save on proprietary licenses on better engineers, because they can provide more value to the business that can innovate us beyond our competitors. So I think I would my advice to people who are starting here or trying to build teams to capitalize on data assets is begin with open license, free capabilities, because they're very cheap to experiment with. And they generate a lot of interest from people who want to join you as a business. And you can make them very successful early, early doors with, with your analytics journey. >>It's interesting. Again, analysts like myself, we do a lot of TCO work and have over the last 20 plus years and in the world of Oracle, you know, normally it's the staff, that's the biggest nut in total cost of ownership, not an Oracle. It's the it's the license cost is by far the biggest component in the, in the blame pie. All right, Justin, help us close out this segment. We've been talking about this sort of data mesh open, closed snowflake data bricks. Where does Starburst sort of as this engine for the data lake data lake house, the data warehouse, it fit in this, in this world. >>Yeah. So our view on how the future ultimately unfolds is we think that data lakes will be a natural center of gravity for a lot of the reasons that we described open data formats, lowest total cost of ownership, because you get to choose the cheapest storage available to you. Maybe that's S3 or Azure data lake storage, or Google cloud storage, or maybe it's on-prem object storage that you bought at a, at a really good price. So ultimately storing a lot of data in a data lake makes a lot of sense, but I think what makes our perspective unique is we still don't think you're gonna get everything there either. We think that basically centralization of all your data assets is just an impossible endeavor. And so you wanna be able to access data that lives outside of the lake as well. So we kind of think of the lake as maybe the biggest place by volume in terms of how much data you have, but to, to have comprehensive analytics and to truly understand your business and understand it holistically, you need to be able to go access other data sources as well. And so that's the role that we wanna play is to be a single point of access for our customers, provide the right level of fine grained access control so that the right people have access to the right data and ultimately make it easy to discover and consume via, you know, the creation of data products as well. >>Great. Okay. Thanks guys. Right after this quick break, we're gonna be back to debate whether the cloud data model that we see emerging and the so-called modern data stack is really modern, or is it the same wine new bottle when it comes to data architectures, you're watching the cube, the leader in enterprise and emerging tech coverage.

Published Date : Aug 2 2022

SUMMARY :

cannot give you the performance and control that you can get with We got, you know, largely over the performance hurdle, you know, more recently people will say, And I remember a, a quote from, you know, Kurt Monash many years ago where he said, you know, open systems and so it's, it is an evolving, you know, spectrum, And what you don't want to end up So Justin, let me play devil's advocate here a little bit, and I've talked to JAK about this and you know, And I think, think similarly, you know, being able to connect to an external table that lives in an open data Well, it's interesting reminded when I, you know, I see the, the gas price, And I think, you know, I loved what Richard said. not as many te data customers, but, but a lot of Oracle customers and they, you know, I think the answer to that is it can depend a bit. that strike me, you know, the data brick snowflake, you know, thing is a lot of fun for analysts So the advice that I saw years ago was if you have open source technologies, years and in the world of Oracle, you know, normally it's the staff, it easy to discover and consume via, you know, the creation of data products as well. data model that we see emerging and the so-called modern data stack

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
RichardPERSON

0.99+

Jess BorgmanPERSON

0.99+

JustinPERSON

0.99+

sixQUANTITY

0.99+

OracleORGANIZATION

0.99+

Richard JarvisPERSON

0.99+

20 centsQUANTITY

0.99+

20%QUANTITY

0.99+

Kurt MonashPERSON

0.99+

P Sanji MohanPERSON

0.99+

TodayDATE

0.99+

seven yearsQUANTITY

0.99+

pythonsTITLE

0.99+

TeradataORGANIZATION

0.99+

JAKPERSON

0.99+

JavasTITLE

0.99+

10DATE

0.99+

todayDATE

0.98+

StarbustTITLE

0.98+

StarburstORGANIZATION

0.97+

VMwareORGANIZATION

0.97+

bothQUANTITY

0.97+

12 years agoDATE

0.96+

single pointQUANTITY

0.96+

millions of hoursQUANTITY

0.95+

10QUANTITY

0.93+

UnixTITLE

0.92+

12 yearsQUANTITY

0.92+

GoogleORGANIZATION

0.9+

two worldsQUANTITY

0.9+

DYORGANIZATION

0.87+

first data lakeQUANTITY

0.86+

HuduLOCATION

0.85+

trillionsQUANTITY

0.85+

one thingQUANTITY

0.83+

many years agoDATE

0.79+

Apache icebergORGANIZATION

0.79+

over a couple timesQUANTITY

0.77+

emus healthORGANIZATION

0.75+

JiminPERSON

0.73+

StarburstTITLE

0.73+

years agoDATE

0.72+

AzureTITLE

0.7+

KubernetesORGANIZATION

0.67+

TCOORGANIZATION

0.64+

S3TITLE

0.62+

DeltaORGANIZATION

0.6+

plus yearsDATE

0.59+

Number twoQUANTITY

0.58+

a decadeQUANTITY

0.56+

icebergTITLE

0.47+

ParqueORGANIZATION

0.47+

lastDATE

0.47+

20QUANTITY

0.46+

Q2QUANTITY

0.31+

ORCORGANIZATION

0.27+

The Great Supercloud Debate | Supercloud22


 

[Music] welcome to the great super cloud debate a power panel of three top technology industry analysts maribel lopez is here she's the founder and principal analyst at lopez research keith townsend is ceo and founder of the cto advisor and sanjeev mohan is principal at sanjmo super cloud is a term that we've used to describe the future of cloud architectures the idea is that super clouds are built on top of hyperscaler capex infrastructure and the idea is it goes beyond multi-cloud the premise being that multi-cloud is primarily a symptom of multi-vendor or m a or both and results in more stove we're going to talk about that super cloud's meant to connote a new architecture that leverages the underlying primitives of hyperscale clouds but hides and abstracts that complexity of each of their respective clouds and adds new value on top of that with services and a continuous experience a similar or identical experience across more than one cloud people may say hey that's multi-cloud we're going to talk about that as well so with that as brief background um i'd like to first welcome our painless guys thanks so much for coming on thecube it's great to see you all again great to be here thank you to be here so i'm going to start with maribel you know what i just described what's your reaction to that is it just like what like cloud is supposed to be is that really what multi-cloud is do you agree with the premise that multi-cloud has really been you know what like chuck whitten from dell calls it it's been multi-cloud by default i call it a symptom of multi-vendor what's your take on on what this is oh wow dave another term here we go right more more to define for people but okay the reality is i agree that it's time for something new something evolved right whether we call that super cloud or something else i you know i don't want to really debate the term but we need to move beyond where we are today in multi-cloud and into if we want to call it cloud 5 multi-cloud 2 whatever we want to call it i believe that we're at the next generation that we have to define what that next generation is but if you think about it we went from public to private to hybrid to multi and every time you have a discussion with somebody about cloud you spend 10 minutes defining what you're talking about so this doesn't seem any different to me so let's just go with super cloud for the moment and see where we go and you know if you're interested after everybody else makes their comments i got a few thoughts about what super cloud might mean as well yeah great so i and i agree with you when we like i said in a recent post you could call it cl cloud you know multi-cloud 2.0 but it's something different is happening and sanjeev i know you're not a you're not a big fan of buzz words either but i wonder if you could weigh in on this topic uh you mean by the way sanjeev is at the mit cdo iq conference a great conference uh in boston uh and so he's it's a public place so we're going to have i think you viewed his line when he's not speaking please go ahead yeah so you know i come from a pedigree of uh being an analyst of uh firms that love inventing new terms i am not a big fan of inventing new terms i feel that when we come up with a new term i spend all my time standing on a stage trying to define what it is it takes me away from trying to solve the problem so so i'm you know i find these terms to be uh words of convenience like for example big data you know big data to me may not mean anything but big data connotes some of this modern way of handling vast volumes of data that traditional systems could not handle so from that point of view i'm i'm completely okay with super cloud but just inventing a new term is what i have called in my previous sessions tyranny of jargons where we have just too many jargons and uh and they resonate with i.t people they do not resonate with the business people business people care about the problem they don't care about what we and i t called them yeah and i think this is a really important point that you make and by the way we're not trying to create a new industry category per se yeah we leave that to gartner that's why actually i like super cloud because nobody's going to use that no vendor's going to use the term super cloud it's just too buzzy so so but but but it brings up the point about practitioners and so keith i want to bring you in so the what we've talked about and i'll just sort of share some some thoughts on the problems that we see and and get keith get your practitioner view most clouds most companies use multiple clouds we all kind of agree on that i think and largely these clouds operate in silos and they have their own development environment their own operating environment different apis different primitives and the functionality of a particular cloud doesn't necessarily extend to other clouds so the problem is that increases friction for customers increases cost increases security risk and so there's this promise maribel multi-cloud 2.0 that's going to solve that problem so keith my question to you is is is that an accurate description of the problem that practitioners face today do what did i miss and i wonder if you could elaborate so i think we'll get into some of the detail later on why this is a problem specifically around technologies but if we think about it in the abstract most customers have their hands full dealing with one cloud like we'll you know through m a and such and you zoom in and you look at companies that have multiple clouds or multi-cloud from result of mma mna m a activity you'll see that most of that is in silos so organizationally the customer may have multiple clouds but sub orchid silos they're generally a single silo in a single cloud so as you think about being able to take advantage of of tooling across the multicloud of what dave you guys are calling the super cloud this becomes a serious problem it's just a skill problem it's too much capability uh across too many things that look completely different than another okay so dave can i pick up on that please i'd love i was gonna just go to you maribel please chime in here okay so if we think about what we're talking about with super cloud and what keith just mentioned remember when we went to see tcp ip and the whole idea was like how do we get computers to talk to each other in a more standardized way how do we get data to move in a more standardized way i think that the problem we have with multi-cloud right now is that we don't have that so i think that's sort of a ground level of getting us to your super cloud premise is that and and you know google's tried it with anthony's like everybody every hyperscaler has tried their like right one to run anywhere but that abstraction layer you talk about what whatever we want to call it is super necessary and it's sort of the foundation so if you really think about it we've spent like 15 years or so building out all the various components of cloud and now's the time to take it so that cloud is actually more of an operating model versus a place there's at least a base level of it that is vendor neutral and then to your point the value that's going to be built on top of that you know people been trying to commoditize the basic infrastructure for a while now and i think that's what you're seeing in your super cloud multi-cloud whatever you want to call it the infrastructure is the infrastructure and then what would have been traditionally that past layer and above is where we're going to start to see some real innovation but we still haven't gotten to that point where you can do visibility observability manageability across that really complex cloud stack that we have the reason i the reason i love that tcpip example hm is because it changed the industry and it had an ecosystem effect in sanjiv the the the example that i first example that i used was snowflake a company that you're very familiar with that is sort of hiding all that complexity and right and so we're not there yet but please chime in on this topic uh you gotta you gotta view it again uh after you building upon what maribel said you know to me uh this sounds like a multi-cloud operating system where uh you know you need that kind of a common uh set of primitives and layers because if you go in in the typical multi-cloud process you've got multiple identities and you can't have that you how can you govern if i'm if i have multiple identities i don't have observability i don't know what's going on across my different stacks so to me super cloud is that call it single pane of glass or or one way through which i'm unifying my experience my my technology interfaces my integration and uh and i as an end user don't even care which uh which cloud i'm in it makes no difference to me it makes a difference to the vendor the vendor may say this is coming from aws and this is coming from gcp or azure but to the end user it is a consistent experience with consistent id and and observability and governance so that to me makes it a big difference and so one of floyer's contribution conversation was in order to have a super cloud you got to have a super pass i'm like oh boy people are going to love that but the point being that that allows a consistent developer experience and to maribel's earlier point about tcp it explodes the ecosystem because the ecosystem can now write to that super pass if you will those apis so keith do you do do you buy that number one and number two do you see that industries financial services and healthcare are actually going to be on clouds or what we call super clouds so sanjeev hit on a really key aspect of this is identity let's make this real they you love talk about data collaboration i love senji's point on the business user kind of doesn't care if this is aws versus super cloud versus etc i was collaborating with the client and he wanted to send video file and the video file uh his organization's access control policy didn't allow him to upload or share the file from their preferred platform so he had to go out to another cloud provider and create yet another identity for that data on the cloud same data different identity a proper super cloud will enable me to simply say as a end user here's a set of data or data sets and i want to share a collaboration a collaborator and that requires cross identity across multiple clouds so even before we get to the past layer and the apis we have to solve the most basic problem which is data how do we stop data scientists from shipping snowballs to a location because we can't figure out the identity the we're duplicating the same data within the same cloud because we can't share identity across customer accounts or etc we we have to solve these basic thoughts before we get to supercloud otherwise we get to us a turtles all the way down thing so we'll get into snowflake and what snowflake can do but that's what happens when i want to share my snowflake data across multiple clouds to a different platform yeah you have to go inside the snowflake cloud which leads right so i would say to keith's question sanjeev snowflake i think is solving that problem but then he brings up the other problem which is what if i want to share share data outside the snowflake cloud so that gets to the point of visit open is it closed and so sanji chime in on the sort of snowflake example and in maribel i wonder if there are networking examples because that's that's keith's saying you got to fix the plumbing before you get these higher level abstractions but sanji first yeah so i so i actually want to go and talk a little bit about network but from a data and analytics point of view so i never built upon what what keith said so i i want to give an example let's say i am getting fantastic web logs i and i know who uh uh how much time they're spending on my web pages and which pages they're looking at so i have all of that now all of that is going into cloud a now it turns out that i use google analytics or maybe i use adobe's you know analytics uh suite now that is giving me the business view and i'm trying to do customer journey analytics and guess what i now have two separate identities two separate products two separate clouds if i and i as an id person no problem i can solve any problem by writing tons of code but why would i do that if i can have that super pass or a multi-cloud layout where i've got like a single way of looking at my network traffic my customer metrics and i can do my customer journey analytics it solves a huge problem and then i can share that data with my with my partners so they can see data about their products which is a combination of data from different uh clouds great thank you uh maribel please i think we're having a lord of the rings moment here with the run one room to rule them all concept and i'm not sure that anybody's actually incented to do that right so i think there's two levels of the stack i think in the basic we're talking a lot about we don't have the basic fundamentals of how do you move data authenticate data secure data do data lineage all that stuff across different clouds right we haven't even spoken right now i feel like we're really just talking about the public cloud venue and we haven't even pulled in the fact that people are doing hybrid cloud right so hybrid cloud you know then you're talking about you've got hardware vendors and you've got hyperscaler vendors and there's two or three different ways of doing things so i honestly think that something will emerge like if we think about where we are in technology today it's almost like we need back to that operating system that sanji was talking about like we need a next generation operating system like nobody wants to build the cloud mouse driver of the 21st century over and over again right we need something like that as a foundation layer but then on top of it you know there's obviously a lot of opportunity to build differentiation like when i think back on what happened with cloud amazon remained aws remained very powerful and popular because people invested in building things on amazon right they created a platform and it took a while for anybody else to catch up to that or to have that kind of presence and i still feel that way when i talk to companies but having said that i talked to retail the other day and they were like hey we spent a long time building an abstraction layer on top of the clouds so that our developers could basically write once and run anywhere but they were a massive global presence retailer that's not something that everybody can do so i think that we are still missing a gap i don't know if that exactly answers your question but i i do feel like we're kind of in this chicken and egg thing which comes first and nobody wants to necessarily invest in like oh well you know amazon has built a way to do this so we're all just going to do it the amazon way right it seems like that's not going to work either but i think you bring up a really important point which there is going to be no one ring to rule them all you're going to have you know vmware is going to solve its multi-cloud problem snowflake's going to do a very has a very specific you know purpose-built system for it itself databricks is going to do its thing and it's going to be you know more open source i would companies like aviatrix i would say cisco even is going to go out and solve this problem dell showed at uh at dell tech world a thing called uh project alpine which is basically storage across clouds they're going to be many super clouds we're going to get maybe super cloud stove pipes but but the point is however for a specific problem in a set of use cases they will be addressing those and solving incremental value so keith maybe we won't have that single cloud operating you know system but we'll have multiple ones what are your thoughts on that yeah we're definitely going to have multiple ones uh the there is no um there is no community large enough or influential enough to push a design take maribel's example of the mega retailer they've solved it but they're not going to that's that's competitive that's their competitive advantage they're not going to share that with the rest of us and open source that and force that upon the industry via just agreement from everyone else so we're not going to get uh the level of collaboration either originated by the cloud provider originated from user groups that solves this problem big for us we will get silos in which this problem is solved we'll get groups working together inside of maybe uh industry or subgroups within the industry to say that hey we're going to share or federate identity across our three or four or five or a dozen organizations we'll be able to share data we're going to solve that data problem but in the same individual organizations in another part of the super cloud problem are going to again just be silos i can't uh i can't run machine learning against my web assets for the community group that i run because that's not part of the working group that solved a different data science problem so yes we're going to have these uh bifurcations and forks within the super cloud the question is where is the focus for each individual organization where do i point my smart people and what problems they solve okay i want to throw out a premise and get you guys reaction to it because i think this again i go back to the maribel's tcpip example it changed the industry it opened up an ecosystem and to me this is what digital transformation is all about you've got now industry participants marc andreessen says every company is a software company you've now got industry participants and here's some examples it's not i wouldn't call them true super clouds yet but walmart's doing their hybrid thing with azure you got goldman sachs announced at the last reinvent and it's going to take its tools its software its data and which is on-prem and connect that to the aws cloud and actually deliver a service capital one we saw sanjiv at the snowflake summit is is taking their tooling and doing it now granted just within snowflake and aws but i fully expect them to expand that across other clouds these are industry examples capital one software is the name of the division that are now it's to the re reason why i don't get so worried that we're not solving the lord of the rings problem that maribel mentioned is because it opens up tremendous opportunities for companies we got like just under five minutes left i want to throw that out there and see what you guys think yeah i would just i want to build upon what maribel said i love what she said you're not going to build a mouse driver so if multi-cloud supercloud is a multi-cloud os the mouse driver would be identity or maybe it's data quality and to teach point that data quality is not going to come from a single vendor that is going to come from a different vendor whose job is to to harmonize data because there might be data might be for the same identity but it may be a different granularity level so you cannot just mix and match so you need to have some sort of like resolution and that is is an example of a driver for multi-cloud interesting okay so you know octa might be the identity cloud or z scaler might be the security cloud or calibre has its cloud etc any thoughts on that keith or maribel yeah so let's talk about where the practical challenges run into this we did some really great research that was sponsored by one of the large cloud providers in which we took all we looked at all the vmware cloud solutions when i say vmware cloud vmware has a lot of products across multi-cloud now in the rock broadcloud portfolio but we're talking about the og solution vmware vsphere it would seem like on paper if i put vmware vsphere in each cloud that is therefore a super cloud i think we would all agree to that in principle what we found in our research was that when we put hands on keyboard the differences of the clouds show themselves in the training gap and that skills gap between the clouds show themselves if i needed to expose less our favorite friend a friend a tc pip address to the public internet that is a different process on each one of the clouds that needs to be done on each one of the clouds and not abstracted in vmware vsphere so as we look at the nuance yes we can give the big controls but where the capital ones the uh jp morgan chase just spent two billion dollars on this type of capability where the spin effort is done is taking it from that 80 percent to that 90 95 experience and that's where the effort and money is spent on that last mile maribel we're out of time but please you know bring us home give us your closing thoughts hey i think we're still going to be working on what the multi-cloud thing is for a while and you know super cloud i think is a direction of the future of cloud computing but we got some real problems to solve around authentication uh identity data lineage data security so i think those are going to be sort of the tactical things that we're working on for the next couple years right guys always a pleasure having you on the cube i hope we see you around keith i understand you're you're bringing your airstream to vmworld or vmware explorer putting it on the on the floor i can't wait to see that and uh mrs cto advisor i'm sure we'll be uh by your side so looking forward to that hopefully sanjeev and maribel we'll see you uh on the circuit as well yes hope to see you there right looking forward to hopefully even doing some content with you guys at vmware explorer too awesome looking forward all right keep it right there for more content from super cloud 22 right back [Music] you

Published Date : Jul 20 2022

SUMMARY :

that problem so keith my question to you

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
marc andreessenPERSON

0.99+

maribel lopezPERSON

0.99+

threeQUANTITY

0.99+

amazonORGANIZATION

0.99+

10 minutesQUANTITY

0.99+

twoQUANTITY

0.99+

two billion dollarsQUANTITY

0.99+

maribelPERSON

0.99+

sanjeevPERSON

0.99+

fourQUANTITY

0.99+

ciscoORGANIZATION

0.99+

fiveQUANTITY

0.99+

keithPERSON

0.99+

80 percentQUANTITY

0.99+

sanjiPERSON

0.99+

walmartORGANIZATION

0.99+

aviatrixORGANIZATION

0.99+

bostonLOCATION

0.99+

sanjmoORGANIZATION

0.99+

cto advisorORGANIZATION

0.99+

two levelsQUANTITY

0.98+

15 yearsQUANTITY

0.98+

sanjeev mohanPERSON

0.98+

21st centuryDATE

0.98+

more than one cloudQUANTITY

0.97+

uh project alpineORGANIZATION

0.96+

each oneQUANTITY

0.96+

awsORGANIZATION

0.96+

lopezORGANIZATION

0.96+

each cloudQUANTITY

0.96+

under five minutesQUANTITY

0.96+

senjiPERSON

0.96+

todayDATE

0.95+

oneQUANTITY

0.94+

first exampleQUANTITY

0.94+

firstQUANTITY

0.94+

vmwareTITLE

0.93+

bothQUANTITY

0.93+

one roomQUANTITY

0.92+

vmworldORGANIZATION

0.92+

azureTITLE

0.92+

single cloudQUANTITY

0.92+

keith townsendPERSON

0.91+

one wayQUANTITY

0.91+

googleORGANIZATION

0.9+

three different waysQUANTITY

0.89+

two separateQUANTITY

0.89+

single wayQUANTITY

0.89+

eachQUANTITY

0.88+

adobeTITLE

0.88+

each individual organizationQUANTITY

0.86+

gartnerORGANIZATION

0.86+

dellORGANIZATION

0.86+

awsTITLE

0.86+

vmwareORGANIZATION

0.85+

uhORGANIZATION

0.85+

single paneQUANTITY

0.84+

next couple yearsDATE

0.83+

single vendorQUANTITY

0.83+

a dozen organizationsQUANTITY

0.83+

floyerPERSON

0.82+

tons of codeQUANTITY

0.81+

one cloudQUANTITY

0.81+

super cloudTITLE

0.8+

maribelLOCATION

0.79+

three top technology industry analystsQUANTITY

0.78+

dell tech worldORGANIZATION

0.78+

davePERSON

0.77+

cloudsORGANIZATION

0.77+

Breaking Analysis: Technology & Architectural Considerations for Data Mesh


 

>> From theCUBE Studios in Palo Alto and Boston, bringing you data driven insights from theCUBE in ETR, this is Breaking Analysis with Dave Vellante. >> The introduction in socialization of data mesh has caused practitioners, business technology executives, and technologists to pause, and ask some probing questions about the organization of their data teams, their data strategies, future investments, and their current architectural approaches. Some in the technology community have embraced the concept, others have twisted the definition, while still others remain oblivious to the momentum building around data mesh. Here we are in the early days of data mesh adoption. Organizations that have taken the plunge will tell you that aligning stakeholders is a non-trivial effort, but necessary to break through the limitations that monolithic data architectures and highly specialized teams have imposed over frustrated business and domain leaders. However, practical data mesh examples often lie in the eyes of the implementer, and may not strictly adhere to the principles of data mesh. Now, part of the problem is lack of open technologies and standards that can accelerate adoption and reduce friction, and that's what we're going to talk about today. Some of the key technology and architecture questions around data mesh. Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR, and in this Breaking Analysis, we welcome back the founder of data mesh and director of Emerging Technologies at Thoughtworks, Zhamak Dehghani. Hello, Zhamak. Thanks for being here today. >> Hi Dave, thank you for having me back. It's always a delight to connect and have a conversation. Thank you. >> Great, looking forward to it. Okay, so before we get into it in the technology details, I just want to quickly share some data from our friends at ETR. You know, despite the importance of data initiative since the pandemic, CIOs and IT organizations have had to juggle of course, a few other priorities, this is why in the survey data, cyber and cloud computing are rated as two most important priorities. Analytics and machine learning, and AI, which are kind of data topics, still make the top of the list, well ahead of many other categories. And look, a sound data architecture and strategy is fundamental to digital transformations, and much of the past two years, as we've often said, has been like a forced march into digital. So while organizations are moving forward, they really have to think hard about the data architecture decisions that they make, because it's going to impact them, Zhamak, for years to come, isn't it? >> Yes, absolutely. I mean, we are moving really from, slowly moving from reason based logical algorithmic to model based computation and decision making, where we exploit the patterns and signals within the data. So data becomes a very important ingredient, of not only decision making, and analytics and discovering trends, but also the features and applications that we build for the future. So we can't really ignore it, and as we see, some of the existing challenges around getting value from data is not necessarily that no longer is access to computation, is actually access to trustworthy, reliable data at scale. >> Yeah, and you see these domains coming together with the cloud and obviously it has to be secure and trusted, and that's why we're here today talking about data mesh. So let's get into it. Zhamak, first, your new book is out, 'Data Mesh: Delivering Data-Driven Value at Scale' just recently published, so congratulations on getting that done, awesome. Now in a recent presentation, you pulled excerpts from the book and we're going to talk through some of the technology and architectural considerations. Just quickly for the audience, four principles of data mesh. Domain driven ownership, data as product, self-served data platform and federated computational governance. So I want to start with self-serve platform and some of the data that you shared recently. You say that, "Data mesh serves autonomous domain oriented teams versus existing platforms, which serve a centralized team." Can you elaborate? >> Sure. I mean the role of the platform is to lower the cognitive load for domain teams, for people who are focusing on the business outcomes, the technologies that are building the applications, to really lower the cognitive load for them, to be able to work with data. Whether they are building analytics, automated decision making, intelligent modeling. They need to be able to get access to data and use it. So the role of the platform, I guess, just stepping back for a moment is to empower and enable these teams. Data mesh by definition is a scale out model. It's a decentralized model that wants to give autonomy to cross-functional teams. So it is core requires a set of tools that work really well in that decentralized model. When we look at the existing platforms, they try to achieve this similar outcome, right? Lower the cognitive load, give the tools to data practitioners, to manage data at scale because today centralized teams, really their job, the centralized data teams, their job isn't really directly aligned with a one or two or different, you know, business units and business outcomes in terms of getting value from data. Their job is manage the data and make the data available for then those cross-functional teams or business units to use the data. So the platforms they've been given are really centralized around or tuned to work with this structure as a team, structure of centralized team. Although on the surface, it seems that why not? Why can't I use my, you know, cloud storage or computation or data warehouse in a decentralized way? You should be able to, but some changes need to happen to those online platforms. As an example, some cloud providers simply have hard limits on the number of like account storage, storage accounts that you can have. Because they never envisaged you have hundreds of lakes. They envisage one or two, maybe 10 lakes, right. They envisage really centralizing data, not decentralizing data. So I think we see a shift in thinking about enabling autonomous independent teams versus a centralized team. >> So just a follow up if I may, we could be here for a while. But so this assumes that you've sorted out the organizational considerations? That you've defined all the, what a data product is and a sub product. And people will say, of course we use the term monolithic as a pejorative, let's face it. But the data warehouse crowd will say, "Well, that's what data march did. So we got that covered." But Europe... The primest of data mesh, if I understand it is whether it's a data march or a data mart or a data warehouse, or a data lake or whatever, a snowflake warehouse, it's a node on the mesh. Okay. So don't build your organization around the technology, let the technology serve the organization is that-- >> That's a perfect way of putting it, exactly. I mean, for a very long time, when we look at decomposition of complexity, we've looked at decomposition of complexity around technology, right? So we have technology and that's maybe a good segue to actually the next item on that list that we looked at. Oh, I need to decompose based on whether I want to have access to raw data and put it on the lake. Whether I want to have access to model data and put it on the warehouse. You know I need to have a team in the middle to move the data around. And then try to figure organization into that model. So data mesh really inverses that, and as you said, is look at the organizational structure first. Then scale boundaries around which your organization and operation can scale. And then the second layer look at the technology and how you decompose it. >> Okay. So let's go to that next point and talk about how you serve and manage autonomous interoperable data products. Where code, data policy you say is treated as one unit. Whereas your contention is existing platforms of course have independent management and dashboards for catalogs or storage, et cetera. Maybe we double click on that a bit. >> Yeah. So if you think about that functional, or technical decomposition, right? Of concerns, that's one way, that's a very valid way of decomposing, complexity and concerns. And then build solutions, independent solutions to address them. That's what we see in the technology landscape today. We will see technologies that are taking care of your management of data, bring your data under some sort of a control and modeling. You'll see technology that moves that data around, will perform various transformations and computations on it. And then you see technology that tries to overlay some level of meaning. Metadata, understandability, discovery was the end policy, right? So that's where your data processing kind of pipeline technologies versus data warehouse, storage, lake technologies, and then the governance come to play. And over time, we decomposed and we compose, right? Deconstruct and reconstruct back this together. But, right now that's where we stand. I think for data mesh really to become a reality, as in independent sources of data and teams can responsibly share data in a way that can be understood right then and there can impose policies, right then when the data gets accessed in that source and in a resilient manner, like in a way that data changes structure of the data or changes to the scheme of the data, doesn't have those downstream down times. We've got to think about this new nucleus or new units of data sharing. And we need to really bring back transformation and governing data and the data itself together around these decentralized nodes on the mesh. So that's another, I guess, deconstruction and reconstruction that needs to happen around the technology to formulate ourselves around the domains. And again the data and the logic of the data itself, the meaning of the data itself. >> Great. Got it. And we're going to talk more about the importance of data sharing and the implications. But the third point deals with how operational, analytical technologies are constructed. You've got an app DevStack, you've got a data stack. You've made the point many times actually that we've contextualized our operational systems, but not our data systems, they remain separate. Maybe you could elaborate on this point. >> Yes. I think this is, again, has a historical background and beginning. For a really long time, applications have dealt with features and the logic of running the business and encapsulating the data and the state that they need to run that feature or run that business function. And then we had for anything analytical driven, which required access data across these applications and across the longer dimension of time around different subjects within the organization. This analytical data, we had made a decision that, "Okay, let's leave those applications aside. Let's leave those databases aside. We'll extract the data out and we'll load it, or we'll transform it and put it under the analytical kind of a data stack and then downstream from it, we will have analytical data users, the data analysts, the data sciences and the, you know, the portfolio of users that are growing use that data stack. And that led to this really separation of dual stack with point to point integration. So applications went down the path of transactional databases or urban document store, but using APIs for communicating and then we've gone to, you know, lake storage or data warehouse on the other side. If we are moving and that again, enforces the silo of data versus app, right? So if we are moving to the world that our missions that are ambitions around making applications, more intelligent. Making them data driven. These two worlds need to come closer. As in ML Analytics gets embedded into those app applications themselves. And the data sharing, as a very essential ingredient of that, gets embedded and gets closer, becomes closer to those applications. So, if you are looking at this now cross-functional, app data, based team, right? Business team, then the technology stacks can't be so segregated, right? There has to be a continuum of experience from app delivery, to sharing of the data, to using that data, to embed models back into those applications. And that continuum of experience requires well integrated technologies. I'll give you an example, which actually in some sense, we are somewhat moving to that direction. But if we are talking about data sharing or data modeling and applications use one set of APIs, you know, HTTP compliant, GraQL or RAC APIs. And on the other hand, you have proprietary SQL, like connect to my database and run SQL. Like those are very two different models of representing and accessing data. So we kind of have to harmonize or integrate those two worlds a bit more closely to achieve that domain oriented cross-functional teams. >> Yeah. We are going to talk about some of the gaps later and actually you look at them as opportunities, more than barriers. But they are barriers, but they're opportunities for more innovation. Let's go on to the fourth one. The next point, it deals with the roles that the platform serves. Data mesh proposes that domain experts own the data and take responsibility for it end to end and are served by the technology. Kind of, we referenced that before. Whereas your contention is that today, data systems are really designed for specialists. I think you use the term hyper specialists a lot. I love that term. And the generalist are kind of passive bystanders waiting in line for the technical teams to serve them. >> Yes. I mean, if you think about the, again, the intention behind data mesh was creating a responsible data sharing model that scales out. And I challenge any organization that has a scaled ambitions around data or usage of data that relies on small pockets of very expensive specialists resources, right? So we have no choice, but upscaling cross-scaling. The majority population of our technologists, we often call them generalists, right? That's a short hand for people that can really move from one technology to another technology. Sometimes we call them pandric people sometimes we call them T-shaped people. But regardless, like we need to have ability to really mobilize our generalists. And we had to do that at Thoughtworks. We serve a lot of our clients and like many other organizations, we are also challenged with hiring specialists. So we have tested the model of having a few specialists, really conveying and translating the knowledge to generalists and bring them forward. And of course, platform is a big enabler of that. Like what is the language of using the technology? What are the APIs that delight that generalist experience? This doesn't mean no code, low code. We have to throw away in to good engineering practices. And I think good software engineering practices remain to exist. Of course, they get adopted to the world of data to build resilient you know, sustainable solutions, but specialty, especially around kind of proprietary technology is going to be a hard one to scale. >> Okay. I'm definitely going to come back and pick your brain on that one. And, you know, your point about scale out in the examples, the practical examples of companies that have implemented data mesh that I've talked to. I think in all cases, you know, there's only a handful that I've really gone deep with, but it was their hadoop instances, their clusters wouldn't scale, they couldn't scale the business and around it. So that's really a key point of a common pattern that we've seen now. I think in all cases, they went to like the data lake model and AWS. And so that maybe has some violation of the principles, but we'll come back to that. But so let me go on to the next one. Of course, data mesh leans heavily, toward this concept of decentralization, to support domain ownership over the centralized approaches. And we certainly see this, the public cloud players, database companies as key actors here with very large install bases, pushing a centralized approach. So I guess my question is, how realistic is this next point where you have decentralized technologies ruling the roost? >> I think if you look at the history of places, in our industry where decentralization has succeeded, they heavily relied on standardization of connectivity with, you know, across different components of technology. And I think right now you are right. The way we get value from data relies on collection. At the end of the day, collection of data. Whether you have a deep learning machinery model that you're training, or you have, you know, reports to generate. Regardless, the model is bring your data to a place that you can collect it, so that we can use it. And that leads to a naturally set of technologies that try to operate as a full stack integrated proprietary with no intention of, you know, opening, data for sharing. Now, conversely, if you think about internet itself, web itself, microservices, even at the enterprise level, not at the planetary level, they succeeded as decentralized technologies to a large degree because of their emphasis on open net and openness and sharing, right. API sharing. We don't talk about, in the API worlds, like we don't say, you know, "I will build a platform to manage your logical applications." Maybe to a degree but we actually moved away from that. We say, "I'll build a platform that opens around applications to manage your APIs, manage your interfaces." Right? Give you access to API. So I think the shift needs to... That definition of decentralized there means really composable, open pieces of the technology that can play nicely with each other, rather than a full stack, all have control of your data yet being somewhat decentralized within the boundary of my platform. That's just simply not going to scale if data needs to come from different platforms, different locations, different geographical locations, it needs to rethink. >> Okay, thank you. And then the final point is, is data mesh favors technologies that are domain agnostic versus those that are domain aware. And I wonder if you could help me square the circle cause it's nuanced and I'm kind of a 100 level student of your work. But you have said for example, that the data teams lack context of the domain and so help us understand what you mean here in this case. >> Sure. Absolutely. So as you said, we want to take... Data mesh tries to give autonomy and decision making power and responsibility to people that have the context of those domains, right? The people that are really familiar with different business domains and naturally the data that that domain needs, or that naturally the data that domains shares. So if the intention of the platform is really to give the power to people with most relevant and timely context, the platform itself naturally becomes as a shared component, becomes domain agnostic to a large degree. Of course those domains can still... The platform is a (chuckles) fairly overloaded world. As in, if you think about it as a set of technology that abstracts complexity and allows building the next level solutions on top, those domains may have their own set of platforms that are very much doing agnostic. But as a generalized shareable set of technologies or tools that allows us share data. So that piece of technology needs to relinquish the knowledge of the context to the domain teams and actually becomes domain agnostic. >> Got it. Okay. Makes sense. All right. Let's shift gears here. Talk about some of the gaps and some of the standards that are needed. You and I have talked about this a little bit before, but this digs deeper. What types of standards are needed? Maybe you could walk us through this graphic, please. >> Sure. So what I'm trying to depict here is that if we imagine a world that data can be shared from many different locations, for a variety of analytical use cases, naturally the boundary of what we call a node on the mesh will encapsulates internally a fair few pieces. It's not just the boundary of that, not on the mesh, is the data itself that it's controlling and updating and maintaining. It's of course a computation and the code that's responsible for that data. And then the policies that continue to govern that data as long as that data exists. So if that's the boundary, then if we shift that focus from implementation details, that we can leave that for later, what becomes really important is the scene or the APIs and interfaces that this node exposes. And I think that's where the work that needs to be done and the standards that are missing. And we want the scene and those interfaces be open because that allows, you know, different organizations with different boundaries of trust to share data. Not only to share data to kind of move that data to yes, another location, to share the data in a way that distributed workloads, distributed analytics, distributed machine learning model can happen on the data where it is. So if you follow that line of thinking around the centralization and connection of data versus collection of data, I think the very, very important piece of it that needs really deep thinking, and I don't claim that I have done that, is how do we share data responsibly and sustainably, right? That is not brittle. If you think about it today, the ways we share data, one of the very common ways is around, I'll give you a JDC endpoint, or I give you an endpoint to your, you know, database of choice. And now as technology, whereas a user actually, you can now have access to the schema of the underlying data and then run various queries or SQL queries on it. That's very simple and easy to get started with. That's why SQL is an evergreen, you know, standard or semi standard, pseudo standard that we all use. But it's also very brittle, because we are dependent on a underlying schema and formatting of the data that's been designed to tell the computer how to store and manage the data. So I think that the data sharing APIs of the future really need to think about removing this brittle dependencies, think about sharing, not only the data, but what we call metadata, I suppose. Additional set of characteristics that is always shared along with data to make the data usage, I suppose ethical and also friendly for the users and also, I think we have to... That data sharing API, the other element of it, is to allow kind of computation to run where the data exists. So if you think about SQL again, as a simple primitive example of computation, when we select and when we filter and when we join, the computation is happening on that data. So maybe there is a next level of articulating, distributed computational data that simply trains models, right? Your language primitives change in a way to allow sophisticated analytical workloads run on the data more responsibly with policies and access control and force. So I think that output port that I mentioned simply is about next generation data sharing, responsible data sharing APIs. Suitable for decentralized analytical workloads. >> So I'm not trying to bait you here, but I have a follow up as well. So you schema, for all its good creates constraints. No schema on right, that didn't work, cause it was just a free for all and it created the data swamps. But now you have technology companies trying to solve that problem. Take Snowflake for example, you know, enabling, data sharing. But it is within its proprietary environment. Certainly Databricks doing something, you know, trying to come at it from its angle, bringing some of the best to data warehouse, with the data science. Is your contention that those remain sort of proprietary and defacto standards? And then what we need is more open standards? Maybe you could comment. >> Sure. I think the two points one is, as you mentioned. Open standards that allow... Actually make the underlying platform invisible. I mean my litmus test for a technology provider to say, "I'm a data mesh," (laughs) kind of compliant is, "Is your platform invisible?" As in, can I replace it with another and yet get the similar data sharing experience that I need? So part of it is that. Part of it is open standards, they're not really proprietary. The other angle for kind of sharing data across different platforms so that you know, we don't get stuck with one technology or another is around APIs. It is around code that is protecting that internal schema. So where we are on the curve of evolution of technology, right now we are exposing the internal structure of the data. That is designed to optimize certain modes of access. We're exposing that to the end client and application APIs, right? So the APIs that use the data today are very much aware that this database was optimized for machine learning workloads. Hence you will deal with a columnar storage of the file versus this other API is optimized for a very different, report type access, relational access and is optimized around roles. I think that should become irrelevant in the API sharing of the future. Because as a user, I shouldn't care how this data is internally optimized, right? The language primitive that I'm using should be really agnostic to the machine optimization underneath that. And if we did that, perhaps this war between warehouse or lake or the other will become actually irrelevant. So we're optimizing for that human best human experience, as opposed to the best machine experience. We still have to do that but we have to make that invisible. Make that an implementation concern. So that's another angle of what should... If we daydream together, the best experience and resilient experience in terms of data usage than these APIs with diagnostics to the internal storage structure. >> Great, thank you for that. We've wrapped our ankles now on the controversy, so we might as well wade all the way in, I can't let you go without addressing some of this. Which you've catalyzed, which I, by the way, I see as a sign of progress. So this gentleman, Paul Andrew is an architect and he gave a presentation I think last night. And he teased it as quote, "The theory from Zhamak Dehghani versus the practical experience of a technical architect, AKA me," meaning him. And Zhamak, you were quick to shoot back that data mesh is not theory, it's based on practice. And some practices are experimental. Some are more baked and data mesh really avoids by design, the specificity of vendor or technology. Perhaps you intend to frame your post as a technology or vendor specific, specific implementation. So touche, that was excellent. (Zhamak laughs) Now you don't need me to defend you, but I will anyway. You spent 14 plus years as a software engineer and the better part of a decade consulting with some of the most technically advanced companies in the world. But I'm going to push you a little bit here and say, some of this tension is of your own making because you purposefully don't talk about technologies and vendors. Sometimes doing so it's instructive for us neophytes. So, why don't you ever like use specific examples of technology for frames of reference? >> Yes. My role is pushes to the next level. So, you know everybody picks their fights, pick their battles. My role in this battle is to push us to think beyond what's available today. Of course, that's my public persona. On a day to day basis, actually I work with clients and existing technology and I think at Thoughtworks we have given the talk we gave a case study talk with a colleague of mine and I intentionally got him to talk about (indistinct) I want to talk about the technology that we use to implement data mesh. And the reason I haven't really embraced, in my conversations, the specific technology. One is, I feel the technology solutions we're using today are still not ready for the vision. I mean, we have to be in this transitional step, no matter what we have to be pragmatic, of course, and practical, I suppose. And use the existing vendors that exist and I wholeheartedly embrace that, but that's just not my role, to show that. I've gone through this transformation once before in my life. When microservices happened, we were building microservices like architectures with technology that wasn't ready for it. Big application, web application servers that were designed to run these giant monolithic applications. And now we're trying to run little microservices onto them. And the tail was riding the dock, the environmental complexity of running these services was consuming so much of our effort that we couldn't really pay attention to that business logic, the business value. And that's where we are today. The complexity of integrating existing technologies is really overwhelmingly, capturing a lot of our attention and cost and effort, money and effort as opposed to really focusing on the data product themselves. So it's just that's the role I have, but it doesn't mean that, you know, we have to rebuild the world. We've got to do with what we have in this transitional phase until the new generation, I guess, technologies come around and reshape our landscape of tools. >> Well, impressive public discipline. Your point about microservice is interesting because a lot of those early microservices, weren't so micro and for the naysayers look past this, not prologue, but Thoughtworks was really early on in the whole concept of microservices. So be very excited to see how this plays out. But now there was some other good comments. There was one from a gentleman who said the most interesting aspects of data mesh are organizational. And that's how my colleague Sanji Mohan frames data mesh versus data fabric. You know, I'm not sure, I think we've sort of scratched the surface today that data today, data mesh is more. And I still think data fabric is what NetApp defined as software defined storage infrastructure that can serve on-prem and public cloud workloads back whatever, 2016. But the point you make in the thread that we're showing you here is that you're warning, and you referenced this earlier, that the segregating different modes of access will lead to fragmentation. And we don't want to repeat the mistakes of the past. >> Yes, there are comments around. Again going back to that original conversation that we have got this at a macro level. We've got this tendency to decompose complexity based on technical solutions. And, you know, the conversation could be, "Oh, I do batch or you do a stream and we are different."' They create these bifurcations in our decisions based on the technology where I do events and you do tables, right? So that sort of segregation of modes of access causes accidental complexity that we keep dealing with. Because every time in this tree, you create a new branch, you create new kind of new set of tools and then somehow need to be point to point integrated. You create new specialization around that. So the least number of branches that we have, and think about really about the continuum of experiences that we need to create and technologies that simplify, that continuum experience. So one of the things, for example, give you a past experience. I was really excited around the papers and the work that came around on Apache Beam, and generally flow based programming and stream processing. Because basically they were saying whether you are doing batch or whether you're doing streaming, it's all one stream. And sometimes the window of time, narrows and sometimes the window of time over which you're computing, widens and at the end of today, is you are just getting... Doing the stream processing. So it is those sort of notions that simplify and create continuum of experience. I think resonate with me personally, more than creating these tribal fights of this type versus that mode of access. So that's why data mesh naturally selects kind of this multimodal access to support end users, right? The persona of end users. >> Okay. So the last topic I want to hit, this whole discussion, the topic of data mesh it's highly nuanced, it's new, and people are going to shoehorn data mesh into their respective views of the world. And we talked about lake houses and there's three buckets. And of course, the gentleman from LinkedIn with Azure, Microsoft has a data mesh community. See you're going to have to enlist some serious army of enforcers to adjudicate. And I wrote some of the stuff down. I mean, it's interesting. Monte Carlo has a data mesh calculator. Starburst is leaning in, chaos. Search sees themselves as an enabler. Oracle and Snowflake both use the term data mesh. And then of course you've got big practitioners J-P-M-C, we've talked to Intuit, Orlando, HelloFresh has been on, Netflix has this event based sort of streaming implementation. So my question is, how realistic is it that the clarity of your vision can be implemented and not polluted by really rich technology companies and others? (Zhamak laughs) >> Is it even possible, right? Is it even possible? That's a yes. That's why I practice then. This is why I should practice things. Cause I think, it's going to be hard. What I'm hopeful, is that the socio-technical, Leveling Data mentioned that this is a socio-technical concern or solution, not just a technology solution. Hopefully always brings us back to, you know, the reality that vendors try to sell you safe oil that solves all of your problems. (chuckles) All of your data mesh problems. It's just going to cause more problem down the track. So we'll see, time will tell Dave and I count on you as one of those members of, (laughs) you know, folks that will continue to share their platform. To go back to the roots, as why in the first place? I mean, I dedicated a whole part of the book to 'Why?' Because we get, as you said, we get carried away with vendors and technology solution try to ride a wave. And in that story, we forget the reason for which we even making this change and we are going to spend all of this resources. So hopefully we can always come back to that. >> Yeah. And I think we can. I think you have really given this some deep thought and as we pointed out, this was based on practical knowledge and experience. And look, we've been trying to solve this data problem for a long, long time. You've not only articulated it well, but you've come up with solutions. So Zhamak, thank you so much. We're going to leave it there and I'd love to have you back. >> Thank you for the conversation. I really enjoyed it. And thank you for sharing your platform to talk about data mesh. >> Yeah, you bet. All right. And I want to thank my colleague, Stephanie Chan, who helps research topics for us. Alex Myerson is on production and Kristen Martin, Cheryl Knight and Rob Hoff on editorial. Remember all these episodes are available as podcasts, wherever you listen. And all you got to do is search Breaking Analysis Podcast. Check out ETR's website at etr.ai for all the data. And we publish a full report every week on wikibon.com, siliconangle.com. You can reach me by email david.vellante@siliconangle.com or DM me @dvellante. Hit us up on our LinkedIn post. This is Dave Vellante for theCUBE Insights powered by ETR. Have a great week, stay safe, be well. And we'll see you next time. (bright music)

Published Date : Apr 20 2022

SUMMARY :

bringing you data driven insights Organizations that have taken the plunge and have a conversation. and much of the past two years, and as we see, and some of the data and make the data available But the data warehouse crowd will say, in the middle to move the data around. and talk about how you serve and the data itself together and the implications. and the logic of running the business and are served by the technology. to build resilient you I think in all cases, you know, And that leads to a that the data teams lack and naturally the data and some of the standards that are needed. and formatting of the data and it created the data swamps. We're exposing that to the end client and the better part of a decade So it's just that's the role I have, and for the naysayers look and at the end of today, And of course, the gentleman part of the book to 'Why?' and I'd love to have you back. And thank you for sharing your platform etr.ai for all the data.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Kristen MartinPERSON

0.99+

Rob HoffPERSON

0.99+

Cheryl KnightPERSON

0.99+

Stephanie ChanPERSON

0.99+

Alex MyersonPERSON

0.99+

DavePERSON

0.99+

ZhamakPERSON

0.99+

oneQUANTITY

0.99+

Dave VellantePERSON

0.99+

AWSORGANIZATION

0.99+

10 lakesQUANTITY

0.99+

Sanji MohanPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Paul AndrewPERSON

0.99+

twoQUANTITY

0.99+

NetflixORGANIZATION

0.99+

Zhamak DehghaniPERSON

0.99+

Data Mesh: Delivering Data-Driven Value at ScaleTITLE

0.99+

BostonLOCATION

0.99+

OracleORGANIZATION

0.99+

14 plus yearsQUANTITY

0.99+

Palo AltoLOCATION

0.99+

two pointsQUANTITY

0.99+

siliconangle.comOTHER

0.99+

second layerQUANTITY

0.99+

2016DATE

0.99+

LinkedInORGANIZATION

0.99+

todayDATE

0.99+

SnowflakeORGANIZATION

0.99+

hundreds of lakesQUANTITY

0.99+

theCUBEORGANIZATION

0.99+

david.vellante@siliconangle.comOTHER

0.99+

theCUBE StudiosORGANIZATION

0.98+

SQLTITLE

0.98+

one unitQUANTITY

0.98+

firstQUANTITY

0.98+

100 levelQUANTITY

0.98+

third pointQUANTITY

0.98+

DatabricksORGANIZATION

0.98+

EuropeLOCATION

0.98+

three bucketsQUANTITY

0.98+

ETRORGANIZATION

0.98+

DevStackTITLE

0.97+

OneQUANTITY

0.97+

wikibon.comOTHER

0.97+

bothQUANTITY

0.97+

ThoughtworksORGANIZATION

0.96+

one setQUANTITY

0.96+

one streamQUANTITY

0.96+

IntuitORGANIZATION

0.95+

one wayQUANTITY

0.93+

two worldsQUANTITY

0.93+

HelloFreshORGANIZATION

0.93+

this weekDATE

0.93+

last nightDATE

0.91+

fourth oneQUANTITY

0.91+

SnowflakeTITLE

0.91+

two different modelsQUANTITY

0.91+

ML AnalyticsTITLE

0.91+

Breaking AnalysisTITLE

0.87+

two worldsQUANTITY

0.84+

Analyst Predictions 2022: The Future of Data Management


 

[Music] in the 2010s organizations became keenly aware that data would become the key ingredient in driving competitive advantage differentiation and growth but to this day putting data to work remains a difficult challenge for many if not most organizations now as the cloud matures it has become a game changer for data practitioners by making cheap storage and massive processing power readily accessible we've also seen better tooling in the form of data workflows streaming machine intelligence ai developer tools security observability automation new databases and the like these innovations they accelerate data proficiency but at the same time they had complexity for practitioners data lakes data hubs data warehouses data marts data fabrics data meshes data catalogs data oceans are forming they're evolving and exploding onto the scene so in an effort to bring perspective to the sea of optionality we've brought together the brightest minds in the data analyst community to discuss how data management is morphing and what practitioners should expect in 2022 and beyond hello everyone my name is dave vellante with the cube and i'd like to welcome you to a special cube presentation analyst predictions 2022 the future of data management we've gathered six of the best analysts in data and data management who are going to present and discuss their top predictions and trends for 2022 in the first half of this decade let me introduce our six power panelists sanjeev mohan is former gartner analyst and principal at sanjamo tony bear is principal at db insight carl olufsen is well-known research vice president with idc dave meninger is senior vice president and research director at ventana research brad shimon chief analyst at ai platforms analytics and data management at omnia and doug henschen vice president and principal analyst at constellation research gentlemen welcome to the program and thanks for coming on thecube today great to be here thank you all right here's the format we're going to use i as moderator are going to call on each analyst separately who then will deliver their prediction or mega trend and then in the interest of time management and pace two analysts will have the opportunity to comment if we have more time we'll elongate it but let's get started right away sanjeev mohan please kick it off you want to talk about governance go ahead sir thank you dave i i believe that data governance which we've been talking about for many years is now not only going to be mainstream it's going to be table stakes and all the things that you mentioned you know with data oceans data lakes lake houses data fabric meshes the common glue is metadata if we don't understand what data we have and we are governing it there is no way we can manage it so we saw informatica when public last year after a hiatus of six years i've i'm predicting that this year we see some more companies go public uh my bet is on colibra most likely and maybe alation we'll see go public this year we we i'm also predicting that the scope of data governance is going to expand beyond just data it's not just data and reports we are going to see more transformations like spark jaws python even airflow we're going to see more of streaming data so from kafka schema registry for example we will see ai models become part of this whole governance suite so the governance suite is going to be very comprehensive very detailed lineage impact analysis and then even expand into data quality we already seen that happen with some of the tools where they are buying these smaller companies and bringing in data quality monitoring and integrating it with metadata management data catalogs also data access governance so these so what we are going to see is that once the data governance platforms become the key entry point into these modern architectures i'm predicting that the usage the number of users of a data catalog is going to exceed that of a bi tool that will take time and we already seen that that trajectory right now if you look at bi tools i would say there are 100 users to a bi tool to one data catalog and i i see that evening out over a period of time and at some point data catalogs will really become you know the main way for us to access data data catalog will help us visualize data but if we want to do more in-depth analysis it'll be the jumping-off point into the bi tool the data science tool and and that is that is the journey i see for the data governance products excellent thank you some comments maybe maybe doug a lot a lot of things to weigh in on there maybe you could comment yeah sanjeev i think you're spot on a lot of the trends uh the one disagreement i think it's it's really still far from mainstream as you say we've been talking about this for years it's like god motherhood apple pie everyone agrees it's important but too few organizations are really practicing good governance because it's hard and because the incentives have been lacking i think one thing that deserves uh mention in this context is uh esg mandates and guidelines these are environmental social and governance regs and guidelines we've seen the environmental rags and guidelines imposed in industries particularly the carbon intensive industries we've seen the social mandates particularly diversity imposed on suppliers by companies that are leading on this topic we've seen governance guidelines now being imposed by banks and investors so these esgs are presenting new carrots and sticks and it's going to demand more solid data it's going to demand more detailed reporting and solid reporting tighter governance but we're still far from mainstream adoption we have a lot of uh you know best of breed niche players in the space i think the signs that it's going to be more mainstream are starting with things like azure purview google dataplex the big cloud platform uh players seem to be uh upping the ante and and addressing starting to address governance excellent thank you doug brad i wonder if you could chime in as well yeah i would love to be a believer in data catalogs um but uh to doug's point i think that it's going to take some more pressure for for that to happen i recall metadata being something every enterprise thought they were going to get under control when we were working on service oriented architecture back in the 90s and that didn't happen quite the way we we anticipated and and uh to sanjeev's point it's because it is really complex and really difficult to do my hope is that you know we won't sort of uh how do we put this fade out into this nebulous nebula of uh domain catalogs that are specific to individual use cases like purview for getting data quality right or like data governance and cyber security and instead we have some tooling that can actually be adaptive to gather metadata to create something i know is important to you sanjeev and that is this idea of observability if you can get enough metadata without moving your data around but understanding the entirety of a system that's running on this data you can do a lot to help with with the governance that doug is talking about so so i just want to add that you know data governance like many other initiatives did not succeed even ai went into an ai window but that's a different topic but a lot of these things did not succeed because to your point the incentives were not there i i remember when starbucks oxley had come into the scene if if a bank did not do service obviously they were very happy to a million dollar fine that was like you know pocket change for them instead of doing the right thing but i think the stakes are much higher now with gdpr uh the floodgates open now you know california you know has ccpa but even ccpa is being outdated with cpra which is much more gdpr like so we are very rapidly entering a space where every pretty much every major country in the world is coming up with its own uh compliance regulatory requirements data residence is becoming really important and and i i think we are going to reach a stage where uh it won't be optional anymore so whether we like it or not and i think the reason data catalogs were not successful in the past is because we did not have the right focus on adoption we were focused on features and these features were disconnected very hard for business to stop these are built by it people for it departments to to take a look at technical metadata not business metadata today the tables have turned cdo's are driving this uh initiative uh regulatory compliances are beating down hard so i think the time might be right yeah so guys we have to move on here and uh but there's some some real meat on the bone here sanjeev i like the fact that you late you called out calibra and alation so we can look back a year from now and say okay he made the call he stuck it and then the ratio of bi tools the data catalogs that's another sort of measurement that we can we can take even though some skepticism there that's something that we can watch and i wonder if someday if we'll have more metadata than data but i want to move to tony baer you want to talk about data mesh and speaking you know coming off of governance i mean wow you know the whole concept of data mesh is decentralized data and then governance becomes you know a nightmare there but take it away tony we'll put it this way um data mesh you know the the idea at least is proposed by thoughtworks um you know basically was unleashed a couple years ago and the press has been almost uniformly almost uncritical um a good reason for that is for all the problems that basically that sanjeev and doug and brad were just you know we're just speaking about which is that we have all this data out there and we don't know what to do about it um now that's not a new problem that was a problem we had enterprise data warehouses it was a problem when we had our hadoop data clusters it's even more of a problem now the data's out in the cloud where the data is not only your data like is not only s3 it's all over the place and it's also including streaming which i know we'll be talking about later so the data mesh was a response to that the idea of that we need to debate you know who are the folks that really know best about governance is the domain experts so it was basically data mesh was an architectural pattern and a process my prediction for this year is that data mesh is going to hit cold hard reality because if you if you do a google search um basically the the published work the articles and databases have been largely you know pretty uncritical um so far you know that you know basically learning is basically being a very revolutionary new idea i don't think it's that revolutionary because we've talked about ideas like this brad and i you and i met years ago when we were talking about so and decentralizing all of us was at the application level now we're talking about at the data level and now we have microservices so there's this thought of oh if we manage if we're apps in cloud native through microservices why don't we think of data in the same way um my sense this year is that you know this and this has been a very active search if you look at google search trends is that now companies are going to you know enterprises are going to look at this seriously and as they look at seriously it's going to attract its first real hard scrutiny it's going to attract its first backlash that's not necessarily a bad thing it means that it's being taken seriously um the reason why i think that that uh that it will you'll start to see basically the cold hard light of day shine on data mesh is that it's still a work in progress you know this idea is basically a couple years old and there's still some pretty major gaps um the biggest gap is in is in the area of federated governance now federated governance itself is not a new issue uh federated governance position we're trying to figure out like how can we basically strike the balance between getting let's say you know between basically consistent enterprise policy consistent enterprise governance but yet the groups that understand the data know how to basically you know that you know how do we basically sort of balance the two there's a huge there's a huge gap there in practice and knowledge um also to a lesser extent there's a technology gap which is basically in the self-service technologies that will help teams essentially govern data you know basically through the full life cycle from developed from selecting the data from you know building the other pipelines from determining your access control determining looking at quality looking at basically whether data is fresh or whether or not it's trending of course so my predictions is that it will really receive the first harsh scrutiny this year you are going to see some organization enterprises declare premature victory when they've uh when they build some federated query implementations you're going to see vendors start to data mesh wash their products anybody in the data management space they're going to say that whether it's basically a pipelining tool whether it's basically elt whether it's a catalog um or confederated query tool they're all going to be like you know basically promoting the fact of how they support this hopefully nobody is going to call themselves a data mesh tool because data mesh is not a technology we're going to see one other thing come out of this and this harks back to the metadata that sanji was talking about and the catalogs that he was talking about which is that there's going to be a new focus on every renewed focus on metadata and i think that's going to spur interest in data fabrics now data fabrics are pretty vaguely defined but if we just take the most elemental definition which is a common metadata back plane i think that if anybody is going to get serious about data mesh they need to look at a data fabric because we all at the end of the day need to speak you know need to read from the same sheet of music so thank you tony dave dave meninger i mean one of the things that people like about data mesh is it pretty crisply articulates some of the flaws in today's organizational approaches to data what are your thoughts on this well i think we have to start by defining data mesh right the the term is already getting corrupted right tony said it's going to see the cold hard uh light of day and there's a problem right now that there are a number of overlapping terms that are similar but not identical so we've got data virtualization data fabric excuse me for a second sorry about that data virtualization data fabric uh uh data federation right uh so i i think that it's not really clear what each vendor means by these terms i see data mesh and data fabric becoming quite popular i've i've interpreted data mesh as referring primarily to the governance aspects as originally you know intended and specified but that's not the way i see vendors using i see vendors using it much more to mean data fabric and data virtualization so i'm going to comment on the group of those things i think the group of those things is going to happen they're going to happen they're going to become more robust our research suggests that a quarter of organizations are already using virtualized access to their data lakes and another half so a total of three quarters will eventually be accessing their data lakes using some sort of virtualized access again whether you define it as mesh or fabric or virtualization isn't really the point here but this notion that there are different elements of data metadata and governance within an organization that all need to be managed collectively the interesting thing is when you look at the satisfaction rates of those organizations using virtualization versus those that are not it's almost double 68 of organizations i'm i'm sorry um 79 of organizations that were using virtualized access express satisfaction with their access to the data lake only 39 expressed satisfaction if they weren't using virtualized access so thank you uh dave uh sanjeev we just got about a couple minutes on this topic but i know you're speaking or maybe you've spoken already on a panel with jamal dagani who sort of invented the concept governance obviously is a big sticking point but what are your thoughts on this you are mute so my message to your mark and uh and to the community is uh as opposed to what dave said let's not define it we spent the whole year defining it there are four principles domain product data infrastructure and governance let's take it to the next level i get a lot of questions on what is the difference between data fabric and data mesh and i'm like i can compare the two because data mesh is a business concept data fabric is a data integration pattern how do you define how do you compare the two you have to bring data mesh level down so to tony's point i'm on a warp path in 2022 to take it down to what does a data product look like how do we handle shared data across domains and govern it and i think we are going to see more of that in 2022 is operationalization of data mesh i think we could have a whole hour on this topic couldn't we uh maybe we should do that uh but let's go to let's move to carl said carl your database guy you've been around that that block for a while now you want to talk about graph databases bring it on oh yeah okay thanks so i regard graph database as basically the next truly revolutionary database management technology i'm looking forward to for the graph database market which of course we haven't defined yet so obviously i have a little wiggle room in what i'm about to say but that this market will grow by about 600 percent over the next 10 years now 10 years is a long time but over the next five years we expect to see gradual growth as people start to learn how to use it problem isn't that it's used the problem is not that it's not useful is that people don't know how to use it so let me explain before i go any further what a graph database is because some of the folks on the call may not may not know what it is a graph database organizes data according to a mathematical structure called a graph a graph has elements called nodes and edges so a data element drops into a node the nodes are connected by edges the edges connect one node to another node combinations of edges create structures that you can analyze to determine how things are related in some cases the nodes and edges can have properties attached to them which add additional informative material that makes it richer that's called a property graph okay there are two principal use cases for graph databases there's there's semantic proper graphs which are used to break down human language text uh into the semantic structures then you can search it organize it and and and answer complicated questions a lot of ai is aimed at semantic graphs another kind is the property graph that i just mentioned which has a dazzling number of use cases i want to just point out is as i talk about this people are probably wondering well we have relational databases isn't that good enough okay so a relational database defines it uses um it supports what i call definitional relationships that means you define the relationships in a fixed structure the database drops into that structure there's a value foreign key value that relates one table to another and that value is fixed you don't change it if you change it the database becomes unstable it's not clear what you're looking at in a graph database the system is designed to handle change so that it can reflect the true state of the things that it's being used to track so um let me just give you some examples of use cases for this um they include uh entity resolution data lineage uh um social media analysis customer 360 fraud prevention there's cyber security there's strong supply chain is a big one actually there's explainable ai and this is going to become important too because a lot of people are adopting ai but they want a system after the fact to say how did the ai system come to that conclusion how did it make that recommendation right now we don't have really good ways of tracking that okay machine machine learning in general um social network i already mentioned that and then we've got oh gosh we've got data governance data compliance risk management we've got recommendation we've got personalization anti-money money laundering that's another big one identity and access management network and i.t operations is already becoming a key one where you actually have mapped out your operation your your you know whatever it is your data center and you you can track what's going on as things happen there root cause analysis fraud detection is a huge one a number of major credit card companies use graph databases for fraud detection risk analysis tracking and tracing churn analysis next best action what-if analysis impact analysis entity resolution and i would add one other thing or just a few other things to this list metadata management so sanjay here you go this is your engine okay because i was in metadata management for quite a while in my past life and one of the things i found was that none of the data management technologies that were available to us could efficiently handle metadata because of the kinds of structures that result from it but grass can okay grafts can do things like say this term in this context means this but in that context it means that okay things like that and in fact uh logistics management supply chain it also because it handles recursive relationships by recursive relationships i mean objects that own other objects that are of the same type you can do things like bill materials you know so like parts explosion you can do an hr analysis who reports to whom how many levels up the chain and that kind of thing you can do that with relational databases but yes it takes a lot of programming in fact you can do almost any of these things with relational databases but the problem is you have to program it it's not it's not supported in the database and whenever you have to program something that means you can't trace it you can't define it you can't publish it in terms of its functionality and it's really really hard to maintain over time so carl thank you i wonder if we could bring brad in i mean brad i'm sitting there wondering okay is this incremental to the market is it disruptive and replaceable what are your thoughts on this space it's already disrupted the market i mean like carl said go to any bank and ask them are you using graph databases to do to get fraud detection under control and they'll say absolutely that's the only way to solve this problem and it is frankly um and it's the only way to solve a lot of the problems that carl mentioned and that is i think it's it's achilles heel in some ways because you know it's like finding the best way to cross the seven bridges of konigsberg you know it's always going to kind of be tied to those use cases because it's really special and it's really unique and because it's special and it's unique uh it it still unfortunately kind of stands apart from the rest of the community that's building let's say ai outcomes as the great great example here the graph databases and ai as carl mentioned are like chocolate and peanut butter but technologically they don't know how to talk to one another they're completely different um and you know it's you can't just stand up sql and query them you've got to to learn um yeah what is that carlos specter or uh special uh uh yeah thank you uh to actually get to the data in there and if you're gonna scale that data that graph database especially a property graph if you're gonna do something really complex like try to understand uh you know all of the metadata in your organization you might just end up with you know a graph database winter like we had the ai winter simply because you run out of performance to make the thing happen so i i think it's already disrupted but we we need to like treat it like a first-class citizen in in the data analytics and ai community we need to bring it into the fold we need to equip it with the tools it needs to do that the magic it does and to do it not just for specialized use cases but for everything because i i'm with carl i i think it's absolutely revolutionary so i had also identified the principal achilles heel of the technology which is scaling now when these when these things get large and complex enough that they spill over what a single server can handle you start to have difficulties because the relationships span things that have to be resolved over a network and then you get network latency and that slows the system down so that's still a problem to be solved sanjeev any quick thoughts on this i mean i think metadata on the on the on the word cloud is going to be the the largest font uh but what are your thoughts here i want to like step away so people don't you know associate me with only meta data so i want to talk about something a little bit slightly different uh dbengines.com has done an amazing job i think almost everyone knows that they chronicle all the major databases that are in use today in january of 2022 there are 381 databases on its list of ranked list of databases the largest category is rdbms the second largest category is actually divided into two property graphs and rdf graphs these two together make up the second largest number of data databases so talking about accolades here this is a problem the problem is that there's so many graph databases to choose from they come in different shapes and forms uh to bright's point there's so many query languages in rdbms is sql end of the story here we've got sci-fi we've got gremlin we've got gql and then your proprietary languages so i think there's a lot of disparity in this space but excellent all excellent points sanji i must say and that is a problem the languages need to be sorted and standardized and it needs people need to have a road map as to what they can do with it because as you say you can do so many things and so many of those things are unrelated that you sort of say well what do we use this for i'm reminded of the saying i learned a bunch of years ago when somebody said that the digital computer is the only tool man has ever devised that has no particular purpose all right guys we gotta we gotta move on to dave uh meninger uh we've heard about streaming uh your prediction is in that realm so please take it away sure so i like to say that historical databases are to become a thing of the past but i don't mean that they're going to go away that's not my point i mean we need historical databases but streaming data is going to become the default way in which we operate with data so in the next say three to five years i would expect the data platforms and and we're using the term data platforms to represent the evolution of databases and data lakes that the data platforms will incorporate these streaming capabilities we're going to process data as it streams into an organization and then it's going to roll off into historical databases so historical databases don't go away but they become a thing of the past they store the data that occurred previously and as data is occurring we're going to be processing it we're going to be analyzing we're going to be acting on it i mean we we only ever ended up with historical databases because we were limited by the technology that was available to us data doesn't occur in batches but we processed it in batches because that was the best we could do and it wasn't bad and we've continued to improve and we've improved and we've improved but streaming data today is still the exception it's not the rule right there's there are projects within organizations that deal with streaming data but it's not the default way in which we deal with data yet and so that that's my prediction is that this is going to change we're going to have um streaming data be the default way in which we deal with data and and how you label it what you call it you know maybe these databases and data platforms just evolve to be able to handle it but we're going to deal with data in a different way and our research shows that already about half of the participants in our analytics and data benchmark research are using streaming data you know another third are planning to use streaming technologies so that gets us to about eight out of ten organizations need to use this technology that doesn't mean they have to use it throughout the whole organization but but it's pretty widespread in its use today and has continued to grow if you think about the consumerization of i.t we've all been conditioned to expect immediate access to information immediate responsiveness you know we want to know if an uh item is on the shelf at our local retail store and we can go in and pick it up right now you know that's the world we live in and that's spilling over into the enterprise i.t world where we have to provide those same types of capabilities um so that's my prediction historical database has become a thing of the past streaming data becomes the default way in which we we operate with data all right thank you david well so what what say you uh carl a guy who's followed historical databases for a long time well one thing actually every database is historical because as soon as you put data in it it's now history it's no longer it no longer reflects the present state of things but even if that history is only a millisecond old it's still history but um i would say i mean i know you're trying to be a little bit provocative in saying this dave because you know as well as i do that people still need to do their taxes they still need to do accounting they still need to run general ledger programs and things like that that all involves historical data that's not going to go away unless you want to go to jail so you're going to have to deal with that but as far as the leading edge functionality i'm totally with you on that and i'm just you know i'm just kind of wondering um if this chain if this requires a change in the way that we perceive applications in order to truly be manifested and rethinking the way m applications work um saying that uh an application should respond instantly as soon as the state of things changes what do you say about that i i think that's true i think we do have to think about things differently that's you know it's not the way we design systems in the past uh we're seeing more and more systems designed that way but again it's not the default and and agree 100 with you that we do need historical databases you know that that's clear and even some of those historical databases will be used in conjunction with the streaming data right so absolutely i mean you know let's take the data warehouse example where you're using the data warehouse as context and the streaming data as the present you're saying here's a sequence of things that's happening right now have we seen that sequence before and where what what does that pattern look like in past situations and can we learn from that so tony bear i wonder if you could comment i mean if you when you think about you know real-time inferencing at the edge for instance which is something that a lot of people talk about um a lot of what we're discussing here in this segment looks like it's got great potential what are your thoughts yeah well i mean i think you nailed it right you know you hit it right on the head there which is that i think a key what i'm seeing is that essentially and basically i'm going to split this one down the middle is i don't see that basically streaming is the default what i see is streaming and basically and transaction databases um and analytics data you know data warehouses data lakes whatever are converging and what allows us technically to converge is cloud native architecture where you can basically distribute things so you could have you can have a note here that's doing the real-time processing that's also doing it and this is what your leads in we're maybe doing some of that real-time predictive analytics to take a look at well look we're looking at this customer journey what's happening with you know you know with with what the customer is doing right now and this is correlated with what other customers are doing so what i so the thing is that in the cloud you can basically partition this and because of basically you know the speed of the infrastructure um that you can basically bring these together and or and so and kind of orchestrate them sort of loosely coupled manner the other part is that the use cases are demanding and this is part that goes back to what dave is saying is that you know when you look at customer 360 when you look at let's say smart you know smart utility grids when you look at any type of operational problem it has a real-time component and it has a historical component and having predictives and so like you know you know my sense here is that there that technically we can bring this together through the cloud and i think the use case is that is that we we can apply some some real-time sort of you know predictive analytics on these streams and feed this into the transactions so that when we make a decision in terms of what to do as a result of a transaction we have this real time you know input sanjeev did you have a comment yeah i was just going to say that to this point you know we have to think of streaming very different because in the historical databases we used to bring the data and store the data and then we used to run rules on top uh aggregations and all but in case of streaming the mindset changes because the rules normally the inference all of that is fixed but the data is constantly changing so it's a completely reverse way of thinking of uh and building applications on top of that so dave menninger there seemed to be some disagreement about the default or now what kind of time frame are you are you thinking about is this end of decade it becomes the default what would you pin i i think around you know between between five to ten years i think this becomes the reality um i think you know it'll be more and more common between now and then but it becomes the default and i also want sanjeev at some point maybe in one of our subsequent conversations we need to talk about governing streaming data because that's a whole other set of challenges we've also talked about it rather in a two dimensions historical and streaming and there's lots of low latency micro batch sub second that's not quite streaming but in many cases it's fast enough and we're seeing a lot of adoption of near real time not quite real time as uh good enough for most for many applications because nobody's really taking the hardware dimension of this information like how do we that'll just happen carl so near real time maybe before you lose the customer however you define that right okay um let's move on to brad brad you want to talk about automation ai uh the the the pipeline people feel like hey we can just automate everything what's your prediction yeah uh i'm i'm an ai fiction auto so apologies in advance for that but uh you know um i i think that um we've been seeing automation at play within ai for some time now and it's helped us do do a lot of things for especially for practitioners that are building ai outcomes in the enterprise uh it's it's helped them to fill skills gaps it's helped them to speed development and it's helped them to to actually make ai better uh because it you know in some ways provides some swim lanes and and for example with technologies like ottawa milk and can auto document and create that sort of transparency that that we talked about a little bit earlier um but i i think it's there's an interesting kind of conversion happening with this idea of automation um and and that is that uh we've had the automation that started happening for practitioners it's it's trying to move outside of the traditional bounds of things like i'm just trying to get my features i'm just trying to pick the right algorithm i'm just trying to build the right model uh and it's expanding across that full life cycle of building an ai outcome to start at the very beginning of data and to then continue on to the end which is this continuous delivery and continuous uh automation of of that outcome to make sure it's right and it hasn't drifted and stuff like that and because of that because it's become kind of powerful we're starting to to actually see this weird thing happen where the practitioners are starting to converge with the users and that is to say that okay if i'm in tableau right now i can stand up salesforce einstein discovery and it will automatically create a nice predictive algorithm for me um given the data that i that i pull in um but what's starting to happen and we're seeing this from the the the companies that create business software so salesforce oracle sap and others is that they're starting to actually use these same ideals and a lot of deep learning to to basically stand up these out of the box flip a switch and you've got an ai outcome at the ready for business users and um i i'm very much you know i think that that's that's the way that it's going to go and what it means is that ai is is slowly disappearing uh and i don't think that's a bad thing i think if anything what we're going to see in 2022 and maybe into 2023 is this sort of rush to to put this idea of disappearing ai into practice and have as many of these solutions in the enterprise as possible you can see like for example sap is going to roll out this quarter this thing called adaptive recommendation services which which basically is a cold start ai outcome that can work across a whole bunch of different vertical markets and use cases it's just a recommendation engine for whatever you need it to do in the line of business so basically you're you're an sap user you look up to turn on your software one day and you're a sales professional let's say and suddenly you have a recommendation for customer churn it's going that's great well i i don't know i i think that's terrifying in some ways i think it is the future that ai is going to disappear like that but i am absolutely terrified of it because um i i think that what it what it really does is it calls attention to a lot of the issues that we already see around ai um specific to this idea of what what we like to call it omdia responsible ai which is you know how do you build an ai outcome that is free of bias that is inclusive that is fair that is safe that is secure that it's audible etc etc etc etc that takes some a lot of work to do and so if you imagine a customer that that's just a sales force customer let's say and they're turning on einstein discovery within their sales software you need some guidance to make sure that when you flip that switch that the outcome you're going to get is correct and that's that's going to take some work and so i think we're going to see this let's roll this out and suddenly there's going to be a lot of a lot of problems a lot of pushback uh that we're going to see and some of that's going to come from gdpr and others that sam jeeve was mentioning earlier a lot of it's going to come from internal csr requirements within companies that are saying hey hey whoa hold up we can't do this all at once let's take the slow route let's make ai automated in a smart way and that's going to take time yeah so a couple predictions there that i heard i mean ai essentially you disappear it becomes invisible maybe if i can restate that and then if if i understand it correctly brad you're saying there's a backlash in the near term people can say oh slow down let's automate what we can those attributes that you talked about are non trivial to achieve is that why you're a bit of a skeptic yeah i think that we don't have any sort of standards that companies can look to and understand and we certainly within these companies especially those that haven't already stood up in internal data science team they don't have the knowledge to understand what that when they flip that switch for an automated ai outcome that it's it's gonna do what they think it's gonna do and so we need some sort of standard standard methodology and practice best practices that every company that's going to consume this invisible ai can make use of and one of the things that you know is sort of started that google kicked off a few years back that's picking up some momentum and the companies i just mentioned are starting to use it is this idea of model cards where at least you have some transparency about what these things are doing you know so like for the sap example we know for example that it's convolutional neural network with a long short-term memory model that it's using we know that it only works on roman english uh and therefore me as a consumer can say oh well i know that i need to do this internationally so i should not just turn this on today great thank you carl can you add anything any context here yeah we've talked about some of the things brad mentioned here at idc in the our future of intelligence group regarding in particular the moral and legal implications of having a fully automated you know ai uh driven system uh because we already know and we've seen that ai systems are biased by the data that they get right so if if they get data that pushes them in a certain direction i think there was a story last week about an hr system that was uh that was recommending promotions for white people over black people because in the past um you know white people were promoted and and more productive than black people but not it had no context as to why which is you know because they were being historically discriminated black people being historically discriminated against but the system doesn't know that so you know you have to be aware of that and i think that at the very least there should be controls when a decision has either a moral or a legal implication when when you want when you really need a human judgment it could lay out the options for you but a person actually needs to authorize that that action and i also think that we always will have to be vigilant regarding the kind of data we use to train our systems to make sure that it doesn't introduce unintended biases and to some extent they always will so we'll always be chasing after them that's that's absolutely carl yeah i think that what you have to bear in mind as a as a consumer of ai is that it is a reflection of us and we are a very flawed species uh and so if you look at all the really fantastic magical looking supermodels we see like gpt three and four that's coming out z they're xenophobic and hateful uh because the people the data that's built upon them and the algorithms and the people that build them are us so ai is a reflection of us we need to keep that in mind yeah we're the ai's by us because humans are biased all right great okay let's move on doug henson you know a lot of people that said that data lake that term's not not going to not going to live on but it appears to be have some legs here uh you want to talk about lake house bring it on yes i do my prediction is that lake house and this idea of a combined data warehouse and data lake platform is going to emerge as the dominant data management offering i say offering that doesn't mean it's going to be the dominant thing that organizations have out there but it's going to be the predominant vendor offering in 2022. now heading into 2021 we already had cloudera data bricks microsoft snowflake as proponents in 2021 sap oracle and several of these fabric virtualization mesh vendors join the bandwagon the promise is that you have one platform that manages your structured unstructured and semi-structured information and it addresses both the beyond analytics needs and the data science needs the real promise there is simplicity and lower cost but i think end users have to answer a few questions the first is does your organization really have a center of data gravity or is it is the data highly distributed multiple data warehouses multiple data lakes on-premises cloud if it if it's very distributed and you you know you have difficulty consolidating and that's not really a goal for you then maybe that single platform is unrealistic and not likely to add value to you um you know also the fabric and virtualization vendors the the mesh idea that's where if you have this highly distributed situation that might be a better path forward the second question if you are looking at one of these lake house offerings you are looking at consolidating simplifying bringing together to a single platform you have to make sure that it meets both the warehouse need and the data lake need so you have vendors like data bricks microsoft with azure synapse new really to the data warehouse space and they're having to prove that these data warehouse capabilities on their platforms can meet the scaling requirements can meet the user and query concurrency requirements meet those tight slas and then on the other hand you have the or the oracle sap snowflake the data warehouse uh folks coming into the data science world and they have to prove that they can manage the unstructured information and meet the needs of the data scientists i'm seeing a lot of the lake house offerings from the warehouse crowd managing that unstructured information in columns and rows and some of these vendors snowflake in particular is really relying on partners for the data science needs so you really got to look at a lake house offering and make sure that it meets both the warehouse and the data lake requirement well thank you doug well tony if those two worlds are going to come together as doug was saying the analytics and the data science world does it need to be some kind of semantic layer in between i don't know weigh in on this topic if you would oh didn't we talk about data fabrics before common metadata layer um actually i'm almost tempted to say let's declare victory and go home in that this is actually been going on for a while i actually agree with uh you know much what doug is saying there which is that i mean we i remembered as far back as i think it was like 2014 i was doing a a study you know it was still at ovum predecessor omnia um looking at all these specialized databases that were coming up and seeing that you know there's overlap with the edges but yet there was still going to be a reason at the time that you would have let's say a document database for json you'd have a relational database for tran you know for transactions and for data warehouse and you had you know and you had basically something at that time that that resembles to do for what we're considering a day of life fast fo and the thing is what i was saying at the time is that you're seeing basically blur you know sort of blending at the edges that i was saying like about five or six years ago um that's all and the the lake house is essentially you know the amount of the the current manifestation of that idea there is a dichotomy in terms of you know it's the old argument do we centralize this all you know you know in in in in in a single place or do we or do we virtualize and i think it's always going to be a yin and yang there's never going to be a single single silver silver bullet i do see um that they're also going to be questions and these are things that points that doug raised they're you know what your what do you need of of of your of you know for your performance there or for your you know pre-performance characteristics do you need for instance hiking currency you need the ability to do some very sophisticated joins or is your requirement more to be able to distribute and you know distribute our processing is you know as far as possible to get you know to essentially do a kind of brute force approach all these approaches are valid based on you know based on the used case um i just see that essentially that the lake house is the culmination of it's nothing it's just it's a relatively new term introduced by databricks a couple years ago this is the culmination of basically what's been a long time trend and what we see in the cloud is that as we start seeing data warehouses as a checkbox item say hey we can basically source data in cloud and cloud storage and s3 azure blob store you know whatever um as long as it's in certain formats like you know like you know parquet or csv or something like that you know i see that as becoming kind of you know a check box item so to that extent i think that the lake house depending on how you define it is already reality um and in some in some cases maybe new terminology but not a whole heck of a lot new under the sun yeah and dave menger i mean a lot of this thank you tony but a lot of this is going to come down to you know vendor marketing right some people try to co-opt the term we talked about data mesh washing what are your thoughts on this yeah so um i used the term data platform earlier and and part of the reason i use that term is that it's more vendor neutral uh we've we've tried to uh sort of stay out of the the vendor uh terminology patenting world right whether whether the term lake house is what sticks or not the concept is certainly going to stick and we have some data to back it up about a quarter of organizations that are using data lakes today already incorporate data warehouse functionality into it so they consider their data lake house and data warehouse one in the same about a quarter of organizations a little less but about a quarter of organizations feed the data lake from the data warehouse and about a quarter of organizations feed the data warehouse from the data lake so it's pretty obvious that three quarters of organizations need to bring this stuff together right the need is there the need is apparent the technology is going to continue to verge converge i i like to talk about you know you've got data lakes over here at one end and i'm not going to talk about why people thought data lakes were a bad idea because they thought you just throw stuff in a in a server and you ignore it right that's not what a data lake is so you've got data lake people over here and you've got database people over here data warehouse people over here database vendors are adding data lake capabilities and data lake vendors are adding data warehouse capabilities so it's obvious that they're going to meet in the middle i mean i think it's like tony says i think we should there declare victory and go home and so so i it's just a follow-up on that so are you saying these the specialized lake and the specialized warehouse do they go away i mean johnny tony data mesh practitioners would say or or advocates would say well they could all live as just a node on the on the mesh but based on what dave just said are we going to see those all morph together well number one as i was saying before there's always going to be this sort of you know kind of you know centrifugal force or this tug of war between do we centralize the data do we do it virtualize and the fact is i don't think that work there's ever going to be any single answer i think in terms of data mesh data mesh has nothing to do with how you physically implement the data you could have a data mesh on a basically uh on a data warehouse it's just that you know the difference being is that if we use the same you know physical data store but everybody's logically manual basically governing it differently you know um a data mission is basically it's not a technology it's a process it's a governance process um so essentially um you know you know i basically see that you know as as i was saying before that this is basically the culmination of a long time trend we're essentially seeing a lot of blurring but there are going to be cases where for instance if i need let's say like observe i need like high concurrency or something like that there are certain things that i'm not going to be able to get efficiently get out of a data lake um and you know we're basically i'm doing a system where i'm just doing really brute forcing very fast file scanning and that type of thing so i think there always will be some delineations but i would agree with dave and with doug that we are seeing basically a a confluence of requirements that we need to essentially have basically the element you know the ability of a data lake and a data laid out their warehouse we these need to come together so i think what we're likely to see is organizations look for a converged platform that can handle both sides for their center of data gravity the mesh and the fabric vendors the the fabric virtualization vendors they're all on board with the idea of this converged platform and they're saying hey we'll handle all the edge cases of the stuff that isn't in that center of data gradient that is off distributed in a cloud or at a remote location so you can have that single platform for the center of of your your data and then bring in virtualization mesh what have you for reaching out to the distributed data bingo as they basically said people are happy when they virtualize data i i think yes at this point but to this uh dave meningas point you know they have convert they are converging snowflake has introduced support for unstructured data so now we are literally splitting here now what uh databricks is saying is that aha but it's easy to go from data lake to data warehouse than it is from data warehouse to data lake so i think we're getting into semantics but we've already seen these two converge so is that so it takes something like aws who's got what 15 data stores are they're going to have 15 converged data stores that's going to be interesting to watch all right guys i'm going to go down the list and do like a one i'm going to one word each and you guys each of the analysts if you wouldn't just add a very brief sort of course correction for me so sanjeev i mean governance is going to be the maybe it's the dog that wags the tail now i mean it's coming to the fore all this ransomware stuff which really didn't talk much about security but but but what's the one word in your prediction that you would leave us with on governance it's uh it's going to be mainstream mainstream okay tony bear mesh washing is what i wrote down that's that's what we're going to see in uh in in 2022 a little reality check you you want to add to that reality check is i hope that no vendor you know jumps the shark and calls their offering a data mesh project yeah yeah let's hope that doesn't happen if they do we're going to call them out uh carl i mean graph databases thank you for sharing some some you know high growth metrics i know it's early days but magic is what i took away from that it's the magic database yeah i would actually i've said this to people too i i kind of look at it as a swiss army knife of data because you can pretty much do anything you want with it it doesn't mean you should i mean that's definitely the case that if you're you know managing things that are in a fixed schematic relationship probably a relational database is a better choice there are you know times when the document database is a better choice it can handle those things but maybe not it may not be the best choice for that use case but for a great many especially the new emerging use cases i listed it's the best choice thank you and dave meninger thank you by the way for bringing the data in i like how you supported all your comments with with some some data points but streaming data becomes the sort of default uh paradigm if you will what would you add yeah um i would say think fast right that's the world we live in you got to think fast fast love it uh and brad shimon uh i love it i mean on the one hand i was saying okay great i'm afraid i might get disrupted by one of these internet giants who are ai experts so i'm gonna be able to buy instead of build ai but then again you know i've got some real issues there's a potential backlash there so give us the there's your bumper sticker yeah i i would say um going with dave think fast and also think slow uh to to talk about the book that everyone talks about i would say really that this is all about trust trust in the idea of automation and of a transparent invisible ai across the enterprise but verify verify before you do anything and then doug henson i mean i i look i think the the trend is your friend here on this prediction with lake house is uh really becoming dominant i liked the way you set up that notion of you know the the the data warehouse folks coming at it from the analytics perspective but then you got the data science worlds coming together i still feel as though there's this piece in the middle that we're missing but your your final thoughts we'll give you the last well i think the idea of consolidation and simplification uh always prevails that's why the appeal of a single platform is going to be there um we've already seen that with uh you know hadoop platforms moving toward cloud moving toward object storage and object storage becoming really the common storage point for whether it's a lake or a warehouse uh and that second point uh i think esg mandates are uh are gonna come in alongside uh gdpr and things like that to uh up the ante for uh good governance yeah thank you for calling that out okay folks hey that's all the time that that we have here your your experience and depth of understanding on these key issues and in data and data management really on point and they were on display today i want to thank you for your your contributions really appreciate your time enjoyed it thank you now in addition to this video we're going to be making available transcripts of the discussion we're going to do clips of this as well we're going to put them out on social media i'll write this up and publish the discussion on wikibon.com and siliconangle.com no doubt several of the analysts on the panel will take the opportunity to publish written content social commentary or both i want to thank the power panelist and thanks for watching this special cube presentation this is dave vellante be well and we'll see you next time [Music] you

Published Date : Jan 8 2022

SUMMARY :

the end of the day need to speak you

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
381 databasesQUANTITY

0.99+

2014DATE

0.99+

2022DATE

0.99+

2021DATE

0.99+

january of 2022DATE

0.99+

100 usersQUANTITY

0.99+

jamal daganiPERSON

0.99+

last weekDATE

0.99+

dave meningerPERSON

0.99+

sanjiPERSON

0.99+

second questionQUANTITY

0.99+

15 converged data storesQUANTITY

0.99+

dave vellantePERSON

0.99+

microsoftORGANIZATION

0.99+

threeQUANTITY

0.99+

sanjeevPERSON

0.99+

2023DATE

0.99+

15 data storesQUANTITY

0.99+

siliconangle.comOTHER

0.99+

last yearDATE

0.99+

sanjeev mohanPERSON

0.99+

sixQUANTITY

0.99+

twoQUANTITY

0.99+

carlPERSON

0.99+

tonyPERSON

0.99+

carl olufsenPERSON

0.99+

six yearsQUANTITY

0.99+

davidPERSON

0.99+

carlos specterPERSON

0.98+

both sidesQUANTITY

0.98+

2010sDATE

0.98+

first backlashQUANTITY

0.98+

five yearsQUANTITY

0.98+

todayDATE

0.98+

davePERSON

0.98+

eachQUANTITY

0.98+

three quartersQUANTITY

0.98+

firstQUANTITY

0.98+

single platformQUANTITY

0.98+

lake houseORGANIZATION

0.98+

bothQUANTITY

0.98+

this yearDATE

0.98+

dougPERSON

0.97+

one wordQUANTITY

0.97+

this yearDATE

0.97+

wikibon.comOTHER

0.97+

one platformQUANTITY

0.97+

39QUANTITY

0.97+

about 600 percentQUANTITY

0.97+

two analystsQUANTITY

0.97+

ten yearsQUANTITY

0.97+

single platformQUANTITY

0.96+

fiveQUANTITY

0.96+

oneQUANTITY

0.96+

three quartersQUANTITY

0.96+

californiaLOCATION

0.96+

googleORGANIZATION

0.96+

singleQUANTITY

0.95+