Image Title

Search Results for each app team:

Opening Panel | Generative AI: Hype or Reality | AWS Startup Showcase S3 E1


 

(light airy music) >> Hello, everyone, welcome to theCUBE's presentation of the AWS Startup Showcase, AI and machine learning. "Top Startups Building Generative AI on AWS." This is season three, episode one of the ongoing series covering the exciting startups from the AWS ecosystem, talking about AI machine learning. We have three great guests Bratin Saha, VP, Vice President of Machine Learning and AI Services at Amazon Web Services. Tom Mason, the CTO of Stability AI, and Aidan Gomez, CEO and co-founder of Cohere. Two practitioners doing startups and AWS. Gentlemen, thank you for opening up this session, this episode. Thanks for coming on. >> Thank you. >> Thank you. >> Thank you. >> So the topic is hype versus reality. So I think we're all on the reality is great, hype is great, but the reality's here. I want to get into it. Generative AI's got all the momentum, it's going mainstream, it's kind of come out of the behind the ropes, it's now mainstream. We saw the success of ChatGPT, opens up everyone's eyes, but there's so much more going on. Let's jump in and get your early perspectives on what should people be talking about right now? What are you guys working on? We'll start with AWS. What's the big focus right now for you guys as you come into this market that's highly active, highly hyped up, but people see value right out of the gate? >> You know, we have been working on generative AI for some time. In fact, last year we released Code Whisperer, which is about using generative AI for software development and a number of customers are using it and getting real value out of it. So generative AI is now something that's mainstream that can be used by enterprise users. And we have also been partnering with a number of other companies. So, you know, stability.ai, we've been partnering with them a lot. We want to be partnering with other companies as well. In seeing how we do three things, you know, first is providing the most efficient infrastructure for generative AI. And that is where, you know, things like Trainium, things like Inferentia, things like SageMaker come in. And then next is the set of models and then the third is the kind of applications like Code Whisperer and so on. So, you know, it's early days yet, but clearly there's a lot of amazing capabilities that will come out and something that, you know, our customers are starting to pay a lot of attention to. >> Tom, talk about your company and what your focus is and why the Amazon Web Services relationship's important for you? >> So yeah, we're primarily committed to making incredible open source foundation models and obviously stable effusions been our kind of first big model there, which we trained all on AWS. We've been working with them over the last year and a half to develop, obviously a big cluster, and bring all that compute to training these models at scale, which has been a really successful partnership. And we're excited to take it further this year as we develop commercial strategy of the business and build out, you know, the ability for enterprise customers to come and get all the value from these models that we think they can get. So we're really excited about the future. We got hugely exciting pipeline for this year with new modalities and video models and wonderful things and trying to solve images for once and for all and get the kind of general value and value proposition correct for customers. So it's a really exciting time and very honored to be part of it. >> It's great to see some of your customers doing so well out there. Congratulations to your team. Appreciate that. Aidan, let's get into what you guys do. What does Cohere do? What are you excited about right now? >> Yeah, so Cohere builds large language models, which are the backbone of applications like ChatGPT and GPT-3. We're extremely focused on solving the issues with adoption for enterprise. So it's great that you can make a super flashy demo for consumers, but it takes a lot to actually get it into billion user products and large global enterprises. So about six months ago, we released our command models, which are some of the best that exist for large language models. And in December, we released our multilingual text understanding models and that's on over a hundred different languages and it's trained on, you know, authentic data directly from native speakers. And so we're super excited to continue pushing this into enterprise and solving those barriers for adoption, making this transformation a reality. >> Just real quick, while I got you there on the new products coming out. Where are we in the progress? People see some of the new stuff out there right now. There's so much more headroom. Can you just scope out in your mind what that looks like? Like from a headroom standpoint? Okay, we see ChatGPT. "Oh yeah, it writes my papers for me, does some homework for me." I mean okay, yawn, maybe people say that, (Aidan chuckles) people excited or people are blown away. I mean, it's helped theCUBE out, it helps me, you know, feed up a little bit from my write-ups but it's not always perfect. >> Yeah, at the moment it's like a writing assistant, right? And it's still super early in the technologies trajectory. I think it's fascinating and it's interesting but its impact is still really limited. I think in the next year, like within the next eight months, we're going to see some major changes. You've already seen the very first hints of that with stuff like Bing Chat, where you augment these dialogue models with an external knowledge base. So now the models can be kept up to date to the millisecond, right? Because they can search the web and they can see events that happened a millisecond ago. But that's still limited in the sense that when you ask the question, what can these models actually do? Well they can just write text back at you. That's the extent of what they can do. And so the real project, the real effort, that I think we're all working towards is actually taking action. So what happens when you give these models the ability to use tools, to use APIs? What can they do when they can actually affect change out in the real world, beyond just streaming text back at the user? I think that's the really exciting piece. >> Okay, so I wanted to tee that up early in the segment 'cause I want to get into the customer applications. We're seeing early adopters come in, using the technology because they have a lot of data, they have a lot of large language model opportunities and then there's a big fast follower wave coming behind it. I call that the people who are going to jump in the pool early and get into it. They might not be advanced. Can you guys share what customer applications are being used with large language and vision models today and how they're using it to transform on the early adopter side, and how is that a tell sign of what's to come? >> You know, one of the things we have been seeing both with the text models that Aidan talked about as well as the vision models that stability.ai does, Tom, is customers are really using it to change the way you interact with information. You know, one example of a customer that we have, is someone who's kind of using that to query customer conversations and ask questions like, you know, "What was the customer issue? How did we solve it?" And trying to get those kinds of insights that was previously much harder to do. And then of course software is a big area. You know, generating software, making that, you know, just deploying it in production. Those have been really big areas that we have seen customers start to do. You know, looking at documentation, like instead of you know, searching for stuff and so on, you know, you just have an interactive way, in which you can just look at the documentation for a product. You know, all of this goes to where we need to take the technology. One of which is, you know, the models have to be there but they have to work reliably in a production setting at scale, with privacy, with security, and you know, making sure all of this is happening, is going to be really key. That is what, you know, we at AWS are looking to do, which is work with partners like stability and others and in the open source and really take all of these and make them available at scale to customers, where they work reliably. >> Tom, Aidan, what's your thoughts on this? Where are customers landing on this first use cases or set of low-hanging fruit use cases or applications? >> Yeah, so I think like the first group of adopters that really found product market fit were the copywriting companies. So one great example of that is HyperWrite. Another one is Jasper. And so for Cohere, that's the tip of the iceberg, like there's a very long tail of usage from a bunch of different applications. HyperWrite is one of our customers, they help beat writer's block by drafting blog posts, emails, and marketing copy. We also have a global audio streaming platform, which is using us the power of search engine that can comb through podcast transcripts, in a bunch of different languages. Then a global apparel brand, which is using us to transform how they interact with their customers through a virtual assistant, two dozen global news outlets who are using us for news summarization. So really like, these large language models, they can be deployed all over the place into every single industry sector, language is everywhere. It's hard to think of any company on Earth that doesn't use language. So it's, very, very- >> We're doing it right now. We got the language coming in. >> Exactly. >> We'll transcribe this puppy. All right. Tom, on your side, what do you see the- >> Yeah, we're seeing some amazing applications of it and you know, I guess that's partly been, because of the growth in the open source community and some of these applications have come from there that are then triggering this secondary wave of innovation, which is coming a lot from, you know, controllability and explainability of the model. But we've got companies like, you know, Jasper, which Aidan mentioned, who are using stable diffusion for image generation in block creation, content creation. We've got Lensa, you know, which exploded, and is built on top of stable diffusion for fine tuning so people can bring themselves and their pets and you know, everything into the models. So we've now got fine tuned stable diffusion at scale, which is democratized, you know, that process, which is really fun to see your Lensa, you know, exploded. You know, I think it was the largest growing app in the App Store at one point. And lots of other examples like NightCafe and Lexica and Playground. So seeing lots of cool applications. >> So much applications, we'll probably be a customer for all you guys. We'll definitely talk after. But the challenges are there for people adopting, they want to get into what you guys see as the challenges that turn into opportunities. How do you see the customers adopting generative AI applications? For example, we have massive amounts of transcripts, timed up to all the videos. I don't even know what to do. Do I just, do I code my API there. So, everyone has this problem, every vertical has these use cases. What are the challenges for people getting into this and adopting these applications? Is it figuring out what to do first? Or is it a technical setup? Do they stand up stuff, they just go to Amazon? What do you guys see as the challenges? >> I think, you know, the first thing is coming up with where you think you're going to reimagine your customer experience by using generative AI. You know, we talked about Ada, and Tom talked about a number of these ones and you know, you pick up one or two of these, to get that robust. And then once you have them, you know, we have models and we'll have more models on AWS, these large language models that Aidan was talking about. Then you go in and start using these models and testing them out and seeing whether they fit in use case or not. In many situations, like you said, John, our customers want to say, "You know, I know you've trained these models on a lot of publicly available data, but I want to be able to customize it for my use cases. Because, you know, there's some knowledge that I have created and I want to be able to use that." And then in many cases, and I think Aidan mentioned this. You know, you need these models to be up to date. Like you can't have it staying. And in those cases, you augmented with a knowledge base, you know you have to make sure that these models are not hallucinating. And so you need to be able to do the right kind of responsible AI checks. So, you know, you start with a particular use case, and there are a lot of them. Then, you know, you can come to AWS, and then look at one of the many models we have and you know, we are going to have more models for other modalities as well. And then, you know, play around with the models. We have a playground kind of thing where you can test these models on some data and then you can probably, you will probably want to bring your own data, customize it to your own needs, do some of the testing to make sure that the model is giving the right output and then just deploy it. And you know, we have a lot of tools. >> Yeah. >> To make this easy for our customers. >> How should people think about large language models? Because do they think about it as something that they tap into with their IP or their data? Or is it a large language model that they apply into their system? Is the interface that way? What's the interaction look like? >> In many situations, you can use these models out of the box. But in typical, in most of the other situations, you will want to customize it with your own data or with your own expectations. So the typical use case would be, you know, these are models are exposed through APIs. So the typical use case would be, you know you're using these APIs a little bit for testing and getting familiar and then there will be an API that will allow you to train this model further on your data. So you use that AI, you know, make sure you augmented the knowledge base. So then you use those APIs to customize the model and then just deploy it in an application. You know, like Tom was mentioning, a number of companies that are using these models. So once you have it, then you know, you again, use an endpoint API and use it in an application. >> All right, I love the example. I want to ask Tom and Aidan, because like most my experience with Amazon Web Service in 2007, I would stand up in EC2, put my code on there, play around, if it didn't work out, I'd shut it down. Is that a similar dynamic we're going to see with the machine learning where developers just kind of log in and stand up infrastructure and play around and then have a cloud-like experience? >> So I can go first. So I mean, we obviously, with AWS working really closely with the SageMaker team, do fantastic platform there for ML training and inference. And you know, going back to your point earlier, you know, where the data is, is hugely important for companies. Many companies bringing their models to their data in AWS on-premise for them is hugely important. Having the models to be, you know, open sources, makes them explainable and transparent to the adopters of those models. So, you know, we are really excited to work with the SageMaker team over the coming year to bring companies to that platform and make the most of our models. >> Aidan, what's your take on developers? Do they just need to have a team in place, if we want to interface with you guys? Let's say, can they start learning? What do they got to do to set up? >> Yeah, so I think for Cohere, our product makes it much, much easier to people, for people to get started and start building, it solves a lot of the productionization problems. But of course with SageMaker, like Tom was saying, I think that lowers a barrier even further because it solves problems like data privacy. So I want to underline what Bratin was saying earlier around when you're fine tuning or when you're using these models, you don't want your data being incorporated into someone else's model. You don't want it being used for training elsewhere. And so the ability to solve for enterprises, that data privacy and that security guarantee has been hugely important for Cohere, and that's very easy to do through SageMaker. >> Yeah. >> But the barriers for using this technology are coming down super quickly. And so for developers, it's just becoming completely intuitive. I love this, there's this quote from Andrej Karpathy. He was saying like, "It really wasn't on my 2022 list of things to happen that English would become, you know, the most popular programming language." And so the barrier is coming down- >> Yeah. >> Super quickly and it's exciting to see. >> It's going to be awesome for all the companies here, and then we'll do more, we're probably going to see explosion of startups, already seeing that, the maps, ecosystem maps, the landscape maps are happening. So this is happening and I'm convinced it's not yesterday's chat bot, it's not yesterday's AI Ops. It's a whole another ballgame. So I have to ask you guys for the final question before we kick off the company's showcasing here. How do you guys gauge success of generative AI applications? Is there a lens to look through and say, okay, how do I see success? It could be just getting a win or is it a bigger picture? Bratin we'll start with you. How do you gauge success for generative AI? >> You know, ultimately it's about bringing business value to our customers. And making sure that those customers are able to reimagine their experiences by using generative AI. Now the way to get their ease, of course to deploy those models in a safe, effective manner, and ensuring that all of the robustness and the security guarantees and the privacy guarantees are all there. And we want to make sure that this transitions from something that's great demos to actual at scale products, which means making them work reliably all of the time not just some of the time. >> Tom, what's your gauge for success? >> Look, I think this, we're seeing a completely new form of ways to interact with data, to make data intelligent, and directly to bring in new revenue streams into business. So if businesses can use our models to leverage that and generate completely new revenue streams and ultimately bring incredible new value to their customers, then that's fantastic. And we hope we can power that revolution. >> Aidan, what's your take? >> Yeah, reiterating Bratin and Tom's point, I think that value in the enterprise and value in market is like a huge, you know, it's the goal that we're striving towards. I also think that, you know, the value to consumers and actual users and the transformation of the surface area of technology to create experiences like ChatGPT that are magical and it's the first time in human history we've been able to talk to something compelling that's not a human. I think that in itself is just extraordinary and so exciting to see. >> It really brings up a whole another category of markets. B2B, B2C, it's B2D, business to developer. Because I think this is kind of the big trend the consumers have to win. The developers coding the apps, it's a whole another sea change. Reminds me everyone use the "Moneyball" movie as example during the big data wave. Then you know, the value of data. There's a scene in "Moneyball" at the end, where Billy Beane's getting the offer from the Red Sox, then the owner says to the Red Sox, "If every team's not rebuilding their teams based upon your model, there'll be dinosaurs." I think that's the same with AI here. Every company will have to need to think about their business model and how they operate with AI. So it'll be a great run. >> Completely Agree >> It'll be a great run. >> Yeah. >> Aidan, Tom, thank you so much for sharing about your experiences at your companies and congratulations on your success and it's just the beginning. And Bratin, thanks for coming on representing AWS. And thank you, appreciate for what you do. Thank you. >> Thank you, John. Thank you, Aidan. >> Thank you John. >> Thanks so much. >> Okay, let's kick off season three, episode one. I'm John Furrier, your host. Thanks for watching. (light airy music)

Published Date : Mar 9 2023

SUMMARY :

of the AWS Startup Showcase, of the behind the ropes, and something that, you know, and build out, you know, Aidan, let's get into what you guys do. and it's trained on, you know, it helps me, you know, the ability to use tools, to use APIs? I call that the people and you know, making sure the first group of adopters We got the language coming in. Tom, on your side, what do you see the- and you know, everything into the models. they want to get into what you guys see and you know, you pick for our customers. then you know, you again, All right, I love the example. and make the most of our models. And so the ability to And so the barrier is coming down- and it's exciting to see. So I have to ask you guys and ensuring that all of the robustness and directly to bring in new and it's the first time in human history the consumers have to win. and it's just the beginning. I'm John Furrier, your host.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

TomPERSON

0.99+

Tom MasonPERSON

0.99+

AidanPERSON

0.99+

Red SoxORGANIZATION

0.99+

AWSORGANIZATION

0.99+

Andrej KarpathyPERSON

0.99+

Bratin SahaPERSON

0.99+

DecemberDATE

0.99+

2007DATE

0.99+

John FurrierPERSON

0.99+

Aidan GomezPERSON

0.99+

AmazonORGANIZATION

0.99+

Amazon Web ServicesORGANIZATION

0.99+

Billy BeanePERSON

0.99+

BratinPERSON

0.99+

MoneyballTITLE

0.99+

oneQUANTITY

0.99+

AdaPERSON

0.99+

last yearDATE

0.99+

twoQUANTITY

0.99+

EarthLOCATION

0.99+

yesterdayDATE

0.99+

Two practitionersQUANTITY

0.99+

Amazon Web ServicesORGANIZATION

0.99+

ChatGPTTITLE

0.99+

next yearDATE

0.99+

Code WhispererTITLE

0.99+

thirdQUANTITY

0.99+

this yearDATE

0.99+

App StoreTITLE

0.99+

first timeQUANTITY

0.98+

firstQUANTITY

0.98+

InferentiaTITLE

0.98+

EC2TITLE

0.98+

GPT-3TITLE

0.98+

bothQUANTITY

0.98+

LensaTITLE

0.98+

SageMakerORGANIZATION

0.98+

three thingsQUANTITY

0.97+

CohereORGANIZATION

0.96+

over a hundred different languagesQUANTITY

0.96+

EnglishOTHER

0.96+

one exampleQUANTITY

0.96+

about six months agoDATE

0.96+

OneQUANTITY

0.96+

first useQUANTITY

0.96+

SageMakerTITLE

0.96+

Bing ChatTITLE

0.95+

one pointQUANTITY

0.95+

TrainiumTITLE

0.95+

LexicaTITLE

0.94+

PlaygroundTITLE

0.94+

three great guestsQUANTITY

0.93+

HyperWriteTITLE

0.92+

John Kreisa, Couchbase | MWC Barcelona 2023


 

>> Narrator: TheCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music intro) (logo background tingles) >> Hi everybody, welcome back to day three of MWC23, my name is Dave Vellante and we're here live at the Theater of Barcelona, Lisa Martin, David Nicholson, John Furrier's in our studio in Palo Alto. Lot of buzz at the show, the Mobile World Daily Today, front page, Netflix chief hits back in fair share row, Greg Peters, the co-CEO of Netflix, talking about how, "Hey, you guys want to tax us, the telcos want to tax us, well, maybe you should help us pay for some of the content. Your margins are higher, you have a monopoly, you know, we're delivering all this value, you're bundling Netflix in, from a lot of ISPs so hold on, you know, pump the brakes on that tax," so that's the big news. Lockheed Martin, FOSS issues, AI guidelines, says, "AI's not going to take over your job anytime soon." Although I would say, your job's going to be AI-powered for the next five years. We're going to talk about data, we've been talking about the disaggregation of the telco stack, part of that stack is a data layer. John Kreisa is here, the CMO of Couchbase, John, you know, we've talked about all week, the disaggregation of the telco stacks, they got, you know, Silicon and operating systems that are, you know, real time OS, highly reliable, you know, compute infrastructure all the way up through a telemetry stack, et cetera. And that's a proprietary block that's really exploding, it's like the big bang, like we saw in the enterprise 20 years ago and we haven't had much discussion about that data layer, sort of that horizontal data layer, that's the market you play in. You know, Couchbase obviously has a lot of telco customers- >> John: That's right. >> We've seen, you know, Snowflake and others launch telco businesses. What are you seeing when you talk to customers at the show? What are they doing with that data layer? >> Yeah, so they're building applications to drive and power unique experiences for their users, but of course, it all starts with where the data is. So they're building mobile applications where they're stretching it out to the edge and you have to move the data to the edge, you have to have that capability to deliver that highly interactive experience to their customers or for their own internal use cases out to that edge, so seeing a lot of that with Couchbase and with our customers in telco. >> So what do the telcos want to do with data? I mean, they've got the telemetry data- >> John: Yeah. >> Now they frequently complain about the over-the-top providers that have used that data, again like Netflix, to identify customer demand for content and they're mopping that up in a big way, you know, certainly Amazon and shopping Google and ads, you know, they're all using that network. But what do the telcos do today and what do they want to do in the future? They're all talking about monetization, how do they monetize that data? >> Yeah, well, by taking that data, there's insight to be had, right? So by usage patterns and what's happening, just as you said, so they can deliver a better experience. It's all about getting that edge, if you will, on their competition and so taking that data, using it in a smart way, gives them that edge to deliver a better service and then grow their business. >> We're seeing a lot of action at the edge and, you know, the edge can be a Home Depot or a Lowe's store, but it also could be the far edge, could be a, you know, an oil drilling, an oil rig, it could be a racetrack, you know, certainly hospitals and certain, you know, situations. So let's think about that edge, where there's maybe not a lot of connectivity, there might be private networks going in, in the future- >> John: That's right. >> Private 5G networks. What's the data flow look like there? Do you guys have any customers doing those types of use cases? >> Yeah, absolutely. >> And what are they doing with the data? >> Yeah, absolutely, we've got customers all across, so telco and transportation, all kinds of service delivery and healthcare, for example, we've got customers who are delivering healthcare out at the edge where they have a remote location, they're able to deliver healthcare, but as you said, there's not always connectivity, so they need to have the applications, need to continue to run and then sync back once they have that connectivity. So it's really having the ability to deliver a service, reliably and then know that that will be synced back to some central server when they have connectivity- >> So the processing might occur where the data- >> Compute at the edge. >> How do you sync back? What is that technology? >> Yeah, so there's, so within, so Couchbase and Couchbase's case, we have an autonomous sync capability that brings it back to the cloud once they get back to whether it's a private network that they want to run over, or if they're doing it over a public, you know, wifi network, once it determines that there's connectivity and, it can be peer-to-peer sync, so different edge apps communicating with each other and then ultimately communicating back to a central server. >> I mean, the other theme here, of course, I call it the software-defined telco, right? But you got to have, you got to run on something, got to have hardware. So you see companies like AWS putting Outposts, out to the edge, Outposts, you know, doesn't really run a lot of database to mind, I mean, it runs RDS, you know, maybe they're going to eventually work with companies like... I mean, you're a partner of AWS- >> John: We are. >> Right? So do you see that kind of cloud infrastructure that's moving to the edge? Do you see that as an opportunity for companies like Couchbase? >> Yeah, we do. We see customers wanting to push more and more of that compute out to the edge and so partnering with AWS gives us that opportunity and we are certified on Outpost and- >> Oh, you are? >> We are, yeah. >> Okay. >> Absolutely. >> When did that, go down? >> That was last year, but probably early last year- >> So I can run Couchbase at the edge, on Outpost? >> Yeah, that's right. >> I mean, you know, Outpost adoption has been slow, we've reported on that, but are you seeing any traction there? Are you seeing any nibbles? >> Starting to see some interest, yeah, absolutely. And again, it has to be for the right use case, but again, for service delivery, things like healthcare and in transportation, you know, they're starting to see where they want to have that compute, be very close to where the actions happen. >> And you can run on, in the data center, right? >> That's right. >> You can run in the cloud, you know, you see HPE with GreenLake, you see Dell with Apex, that's essentially their Outposts. >> Yeah. >> They're saying, "Hey, we're going to take our whole infrastructure and make it as a service." >> Yeah, yeah. >> Right? And so you can participate in those environments- >> We do. >> And then so you've got now, you know, we call it supercloud, you've got the on-prem, you've got the, you can run in the public cloud, you can run at the edge and you want that consistent experience- >> That's right. >> You know, from a data layer- >> That's right. >> So is that really the strategy for a data company is taking or should be taking, that horizontal layer across all those use cases? >> You do need to think holistically about it, because you need to be able to deliver as a, you know, as a provider, wherever the customer wants to be able to consume that application. So you do have to think about any of the public clouds or private networks and all the way to the edge. >> What's different John, about the telco business versus the traditional enterprise? >> Well, I mean, there's scale, I mean, one thing they're dealing with, particularly for end user-facing apps, you're dealing at a very very high scale and the expectation that you're going to deliver a very interactive experience. So I'd say one thing in particular that we are focusing on, is making sure we deliver that highly interactive experience but it's the scale of the number of users and customers that they have, and the expectation that your application's always going to work. >> Speaking of applications, I mean, it seems like that's where the innovation is going to come from. We saw yesterday, GSMA announced, I think eight APIs telco APIs, you know, we were talking on theCUBE, one of the analysts was like, "Eight, that's nothing," you know, "What do these guys know about developers?" But you know, as Daniel Royston said, "Eight's better than zero." >> Right? >> So okay, so we're starting there, but the point being, it's all about the apps, that's where the innovation's going to come from- >> That's right. >> So what are you seeing there, in terms of building on top of the data app? >> Right, well you have to provide, I mean, have to provide the APIs and the access because it is really, the rubber meets the road, with the developers and giving them the ability to create those really rich applications where they want and create the experiences and innovate and change the way that they're giving those experiences. >> Yeah, so what's your relationship with developers at Couchbase? >> John: Yeah. >> I mean, talk about that a little bit- >> Yeah, yeah, so we have a great relationship with developers, something we've been investing more and more in, in terms of things like developer relations teams and community, Couchbase started in open source, continue to be based on open source projects and of course, those are very developer centric. So we provide all the consistent APIs for developers to create those applications, whether it's something on Couchbase Lite, which is our kind of edge-based database, or how they can sync that data back and we actually automate a lot of that syncing which is a very difficult developer task which lends them to one of the developer- >> What I'm trying to figure out is, what's the telco developer look like? Is that a developer that comes from the enterprise and somebody comes from the blockchain world, or AI or, you know, there really doesn't seem to be a lot of developer talk here, but there's a huge opportunity. >> Yeah, yeah. >> And, you know, I feel like, the telcos kind of remind me of, you know, a traditional legacy company trying to get into the developer world, you know, even Oracle, okay, they bought Sun, they got Java, so I guess they have developers, but you know, IBM for years tried with Bluemix, they had to end up buying Red Hat, really, and that gave them the developer community. >> Yep. >> EMC used to have a thing called EMC Code, which was a, you know, good effort, but eh. And then, you know, VMware always trying to do that, but, so as you move up the stack obviously, you have greater developer affinity. Where do you think the telco developer's going to come from? How's that going to evolve? >> Yeah, it's interesting, and I think they're... To kind of get to your first question, I think they're fairly traditional enterprise developers and when we break that down, we look at it in terms of what the developer persona is, are they a front-end developer? Like they're writing that front-end app, they don't care so much about the infrastructure behind or are they a full stack developer and they're really involved in the entire application development lifecycle? Or are they living at the backend and they're really wanting to just focus in on that data layer? So we lend towards all of those different personas and we think about them in terms of the APIs that we create, so that's really what the developers are for telcos is, there's a combination of those front-end and full stack developers and so for them to continue to innovate they need to appeal to those developers and that's technology, like Couchbase, is what helps them do that. >> Yeah and you think about the Apples, you know, the app store model or Apple sort of says, "Okay, here's a developer kit, go create." >> John: Yeah. >> "And then if it's successful, you're going to be successful and we're going to take a vig," okay, good model. >> John: Yeah. >> I think I'm hearing, and maybe I misunderstood this, but I think it was the CEO or chairman of Ericsson on the day one keynotes, was saying, "We are going to monetize the, essentially the telemetry data, you know, through APIs, we're going to charge for that," you know, maybe that's not the best approach, I don't know, I think there's got to be some innovation on top. >> John: Yeah. >> Now maybe some of these greenfield telcos are going to do like, you take like a dish networks, what they're doing, they're really trying to drive development layers. So I think it's like this wild west open, you know, community that's got to be formed and right now it's very unclear to me, do you have any insights there? >> I think it is more, like you said, Wild West, I think there's no emerging standard per se for across those different company types and sort of different pieces of the industry. So consequently, it does need to form some more standards in order to really help it grow and I think you're right, you have to have the right APIs and the right access in order to properly monetize, you have to attract those developers or you're not going to be able to monetize properly. >> Do you think that if, in thinking about your business and you know, you've always sold to telcos, but now it's like there's this transformation going on in telcos, will that become an increasingly larger piece of your business or maybe even a more important piece of your business? Or it's kind of be steady state because it's such a slow moving industry? >> No, it is a big and increasing piece of our business, I think telcos like other enterprises, want to continue to innovate and so they look to, you know, technologies like, Couchbase document database that allows them to have more flexibility and deliver the speed that they need to deliver those kinds of applications. So we see a lot of migration off of traditional legacy infrastructure in order to build that new age interface and new age experience that they want to deliver. >> A lot of buzz in Silicon Valley about open AI and Chat GPT- >> Yeah. >> You know, what's your take on all that? >> Yeah, we're looking at it, I think it's exciting technology, I think there's a lot of applications that are kind of, a little, sort of innovate traditional interfaces, so for example, you can train Chat GPT to create code, sample code for Couchbase, right? You can go and get it to give you that sample app which gets you a headstart or you can actually get it to do a better job of, you know, sorting through your documentation, like Chat GPT can do a better job of helping you get access. So it improves the experience overall for developers, so we're excited about, you know, what the prospect of that is. >> So you're playing around with it, like everybody is- >> Yeah. >> And potentially- >> Looking at use cases- >> Ways tO integrate, yeah. >> Hundred percent. >> So are we. John, thanks for coming on theCUBE. Always great to see you, my friend. >> Great, thanks very much. >> All right, you're welcome. All right, keep it right there, theCUBE will be back live from Barcelona at the theater. SiliconANGLE's continuous coverage of MWC23. Go to siliconangle.com for all the news, theCUBE.net is where all the videos are, keep it right there. (cheerful upbeat music outro)

Published Date : Mar 1 2023

SUMMARY :

that drive human progress. that's the market you play in. We've seen, you know, and you have to move the data to the edge, you know, certainly Amazon that edge, if you will, it could be a racetrack, you know, Do you guys have any customers the applications, need to over a public, you know, out to the edge, Outposts, you know, of that compute out to the edge in transportation, you know, You can run in the cloud, you know, and make it as a service." to deliver as a, you know, and the expectation that But you know, as Daniel Royston said, and change the way that they're continue to be based on open or AI or, you know, there developer world, you know, And then, you know, VMware and so for them to continue to innovate about the Apples, you know, and we're going to take data, you know, through APIs, are going to do like, you and the right access in and so they look to, you know, so we're excited about, you know, yeah. Always great to see you, Go to siliconangle.com for all the news,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

JohnPERSON

0.99+

Greg PetersPERSON

0.99+

Daniel RoystonPERSON

0.99+

Lisa MartinPERSON

0.99+

AWSORGANIZATION

0.99+

EricssonORGANIZATION

0.99+

David NicholsonPERSON

0.99+

Palo AltoLOCATION

0.99+

John KreisaPERSON

0.99+

IBMORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

NetflixORGANIZATION

0.99+

last yearDATE

0.99+

Silicon ValleyLOCATION

0.99+

GSMAORGANIZATION

0.99+

JavaTITLE

0.99+

LoweORGANIZATION

0.99+

first questionQUANTITY

0.99+

Lockheed MartinORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

OracleORGANIZATION

0.99+

telcosORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

DellORGANIZATION

0.99+

yesterdayDATE

0.99+

EightQUANTITY

0.99+

oneQUANTITY

0.99+

Chat GPTTITLE

0.99+

Hundred percentQUANTITY

0.99+

AppleORGANIZATION

0.99+

telcoORGANIZATION

0.98+

CouchbaseORGANIZATION

0.98+

John FurrierPERSON

0.98+

siliconangle.comOTHER

0.98+

ApexORGANIZATION

0.98+

Home DepotORGANIZATION

0.98+

early last yearDATE

0.98+

BarcelonaLOCATION

0.98+

20 years agoDATE

0.98+

MWC23EVENT

0.97+

BluemixORGANIZATION

0.96+

SunORGANIZATION

0.96+

SiliconANGLEORGANIZATION

0.96+

theCUBEORGANIZATION

0.95+

GreenLakeORGANIZATION

0.94+

ApplesORGANIZATION

0.94+

SnowflakeORGANIZATION

0.93+

OutpostORGANIZATION

0.93+

VMwareORGANIZATION

0.93+

zeroQUANTITY

0.93+

EMCORGANIZATION

0.91+

day threeQUANTITY

0.9+

todayDATE

0.89+

Mobile World Daily TodayTITLE

0.88+

Wild WestORGANIZATION

0.88+

theCUBE.netOTHER

0.87+

app storeTITLE

0.86+

one thingQUANTITY

0.86+

EMC CodeTITLE

0.86+

CouchbaseTITLE

0.85+

Deania Davidson, Dell Technologies & Dave Lincoln, Dell Technologies | MWC Barcelona 2023


 

>> Narrator: theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (upbeat music) >> Hey everyone and welcome back to Barcelona, Spain, it's theCUBE. We are live at MWC 23. This is day two of our coverage, we're giving you four days of coverage, but you already know that because you were here yesterday. Lisa Martin with Dave Nicholson. Dave this show is massive. I was walking in this morning and almost getting claustrophobic with the 80,000 people that are joining us. There is, seems to be at MWC 23 more interest in enterprise-class technology than we've ever seen before. What are some of the things that you've observed with that regard? >> Well I've observed a lot of people racing to the highest level messaging about how wonderful it is to have the kiss of a breeze on your cheek, and to feel the flowing wheat. (laughing) I want to hear about the actual things that make this stuff possible. >> Right. >> So I think we have a couple of guests here who can help us start to go down that path of actually understanding the real cool stuff that's behind the scenes. >> And absolutely we got some cool stuff. We've got two guests from Dell. Dave Lincoln is here, the VP of Networking and Emerging the Server Solutions, and Deania Davidson, Director Edge Server Product Planning and Management at Dell. So great to have you. >> Thank you. >> Two Daves, and a Davidson. >> (indistinct) >> Just me who stands alone here. (laughing) So guys talk about, Dave, we'll start with you the newest generation of PowerEdge servers. What's new? Why is it so exciting? What challenges for telecom operators is it solving? >> Yeah, well so this is actually Dell's largest server launch ever. It's the most expansive, which is notable because of, we have a pretty significant portfolio. We're very proud of our core mainstream portfolio. But really since the Supercompute in Dallas in November, that we started a rolling thunder of launches. MWC being part of that leading up to DTW here in May, where we're actually going to be announcing big investments in those parts of the market that are the growth segments of server. Specifically AIML, where we in, to address that. We're investing heavy in our XE series which we, as I said, we announced at Supercompute in November. And then we have to address the CSP segment, a big investment around the HS series which we just announced, and then lastly, the edge telecom segment which we're, we had the biggest investment, biggest announce in portfolio launch with XR series. >> Deania, lets dig into that. >> Yeah. >> Where we see the growth coming from you mentioned telecom CSPs with the edge. What are some of the growth opportunities there that organizations need Dell's help with to manage, so that they can deliver what they're demanding and user is wanting? >> The biggest areas being obviously, in addition the telecom has been the biggest one, but the other areas too we're seeing is in retail and manufacturing as well. And, so internally, I mean we're going to be focused on hardware, but we also have a solutions team who are working with us to build the solutions focused on retail, and edge and telecom as well on top of the servers that we'll talk about shortly. >> What are some of the biggest challenges that retailers and manufacturers are facing? And during the pandemic retailers, those that were successful pivoted very quickly to curbside delivery. >> Deania: Yeah. >> Those that didn't survive weren't able to do that digitally. >> Deania: Yeah. >> But we're seeing such demand. >> Yeah. >> At the retail edge. On the consumer side we want to get whatever we want right now. >> Yes. >> It has to be delivered, it has to be personalized. Talk a little bit more about some of the challenges there, within those two verticals and how Dell is helping to address those with the new server technologies. >> For retail, I think there's couple of things, the one is like in the fast food area. So obviously through COVID a lot of people got familiar and comfortable with driving through. >> Lisa: Yeah. >> And so there's probably a certain fast food restaurant everyone's pretty familiar with, they're pretty efficient in that, and so there are other customers who are trying to replicate that, and so how do we help them do that all, from a technology perspective. From a retail, it's one of the pickup and the online experience, but when you go into a store, I don't know about you but I go to Target, and I'm looking for something and I have kids who are kind of distracting you. Its like where is this one thing, and so I pull up the Target App for example, and it tells me where its at, right. And then obviously, stores want to make more money, so like hey, since you picked this thing, there are these things around you. So things like that is what we're having conversations with customers about. >> It's so interesting because the demand is there. >> Yeah, it is. >> And its not going to go anywhere. >> No. >> And it's certainly not going to be dialed down. We're not going to want less stuff, less often. >> Yeah (giggles) >> And as typical consumers, we don't necessarily make the association between what we're seeing in the palm of our hand on a mobile device. >> Deania: Right. >> And the infrastructure that's actually supporting all of it. >> Deania: Right. >> People hear the term Cloud and they think cloud-phone mystery. >> Yeah, magic just happens. >> Yeah. >> Yeah. >> But in fact, in order to support the things that we want to be able to do. >> Yeah. >> On the move, you have to optimize the server hardware. >> Deania: Yes. >> In certain ways. What does that mean exactly? When you say that its optimized, what are the sorts of decisions that you make when you're building? I think of this in the terms of Lego bricks. >> Yes, yeah >> Put together. What are some of the decisions that you make? >> So there were few key things that we really had to think about in terms of what was different from the Data center, which obviously supports the cloud environment, but it was all about how do we get closer to the customer right? How do we get things really fast and how do we compute that information really quickly. So for us, it's things like size. All right, so our server is going to weigh one of them is the size of a shoe box and (giggles), we have a picture with Dave. >> Dave: It's true. >> Took off his shoe. >> Its actually, its actually as big as a shoe. (crowd chuckles) >> It is. >> It is. >> To be fair, its a pretty big shoe. >> True, true. >> It is, but its small in relative to the old big servers that you see. >> I see what you're doing, you find a guy with a size 12, (crowd giggles) >> Yeah. >> Its the size of your shoe. >> Yeah. >> Okay. >> Its literally the size of a shoe, and that's our smallest server and its the smallest one in the portfolio, its the XR 4000, and so we've actually crammed a lot of technology in there going with the Intel ZRT processors for example to get into that compute power. The XR 8000 which you'll be hearing a lot more about shortly with our next guest is one I think from a telco perspective is our flagship product, and its size was a big thing there too. Ruggedization so its like (indistinct) certification, so it can actually operate continuously in negative 5 to 55 C, which for customers, or they need that range of temperature operation, flexibility was a big thing too. In meaning that, there are some customers who wanted to have one system in different areas of deployment. So can I take this one system and configure it one way, take that same system, configure another way and have it here. So flexibility was really key for us as well, and so we'll actually be seeing that in the next segment coming. >> I think one of, some of the common things you're hearing from this is our focus on innovation, purpose build servers, so yes our times, you know economic situation like in itself is tough yeah. But far from receding we've doubled down on investment and you've seen that with the products that we are launching here, and we will be launching in the years to come. >> I imagine there's a pretty sizeable day impact to the total adjustable market for PowerEdge based on the launch what you're doing, its going to be a tam, a good size tam expansion. >> Yeah, absolutely. Depending on how you look at it, its roughly we add about $30 Billion of adjustable tam between the three purposeful series that we've launched, XE, HS and XR. >> Can you comment on, I know Dell and customers are like this. Talk about, I'd love to get both of your perspective, I'm sure you have a favorite customer stories. But talk about the involvement of the customer in the generation, and the evolution of PowerEdge. Where are they in that process? What kind of feedback do they deliver? >> Well, I mean, just to start, one thing that is essential Cortana of Dell period, is it all is about the customer. All of it, everything that we do is about the customer, and so there is a big focus at our level, from on high to get out there and talk with customers, and actually we have a pretty good story around XR8000 which is call it our flagship of the XR line that we've just announced, and because of this deep customer intimacy, there was a last minute kind of architectural design change. >> Hm-mm. >> Which actually would have been, come to find out it would have been sort of a fatal flaw for deployment. So we corrected that because of this tight intimacy with our customers. This was in two Thanksgiving ago about and, so anyways it's super cool and the fact that we were able to make a change so late in development cycle, that's a testament to a lot of the speed and, speed of innovation that we're driving, so anyway that was that's one, just case of one example. >> Hm-mm. >> Let talk about AI, we can't go to any trade show without talking about AI, the big thing right now is ChatGPT. >> Yeah. >> I was using it the other day, it's so interesting. But, the growing demand for AI, talk about how its driving the evolution of the server so that more AI use cases can become more (indistinct). >> In the edge space primarily, we actually have another product, so I guess what you'll notice in the XR line itself because there are so many different use cases and technologies that support the different use cases. We actually have a range form factor, so we have really small, I guess I would say 350 ml the size of a shoe box, you know, Dave's shoe box. (crowd chuckles) And then we also have, at the other end a 472, so still small, but a little bit bigger, but we did recognize obviously AI was coming up, and so that is our XR 7620 platform and that does support 2 GPUs right, so, like for Edge infrencing, making sure that we have the capability to support customers in that too, but also in the small one, we do also have a GPU capability there, that also helps in those other use cases as well. So we've built the platforms even though they're small to be able to handle the GPU power for customers. >> So nice tight package, a lot of power there. >> Yes. >> Beside as we've all clearly demonstrated the size of Dave's shoe. (crowd chuckles) Dave, talk about Dell's long standing commitment to really helping to rapidly evolve the server market. >> Dave: Yeah. >> Its a pivotal payer there. >> Well, like I was saying, we see innovation, I mean, this is, to us its a race to the top. You talked about racing and messaging that sort of thing, when you opened up the show here, but we see this as a race to the top, having worked at other server companies where maybe its a little bit different, maybe more of a race to the bottom source of approach. That's what I love about being at Dell. This is very much, we understand that it's innovation is that is what's going to deliver the most value for our customers. So whether its some of the first to market, first of its kind sort of innovation that you find in the XR4000, or XR8000, or any of our XE line, we know that at the end of day, that is what going to propel Dell, do the best for our customers and thereby do the best for us. To be honest, its a little bit surprising walking by some of our competitors booths, there's been like a dearth of zero, like no, like it's almost like you wouldn't even know that there was a big launch here right? >> Yeah. >> Or is it just me? >> No. >> It was a while, we've been walking around and yet we've had, and its sort of maybe I should take this as a flattery, but a lot of our competitors have been coming by to our booth everyday actually. >> Deania: Yeah, everyday. >> They came by multiple times yesterday, they came by multiple times today, they're taking pictures of our stuff I kind of want to just send 'em a sample. >> Lisa: Or your shoe. >> Right? Or just maybe my shoe right? But anyway, so I suppose I should take it as an honor. >> Deania: Yeah. >> And conversely when we've walked over there we actually get in back (indistinct), maybe I need a high Dell (indistinct). (crowd chuckles) >> We just had that experience, yeah. >> Its kind of funny but. >> Its a good position to be in. >> Yeah. >> Yes. >> You talked about the involvement of the customers, talk a bit more about Dell's ecosystem is also massive, its part of what makes Dell, Dell. >> Wait did you say ego-system? (laughing) After David just. >> You caught that? Darn it! The talk about the influence or the part of the ecosystem and also some of the feedback from the partners as you've been rapidly evolving the server market and clearly your competitors are taking notice. >> Yeah, sorry. >> Deania: That's okay. >> Dave: you want to take that? >> I mean I would say generally, one of the things that Dell prides itself on is being able to deliver the worlds best innovation into the hands of our customers, faster and better that any other, the optimal solution. So whether its you know, working with our great partners like Intel, AMD Broadcom, these sorts of folks. That is, at the end of the day that is our core mantra, again its retractor on service, doing the best, you know, what's best for the customers. And we want to bring the world's best innovation from our technology partners, get it into the hands of our partners you know, faster and better than any other option out there. >> Its a satisfying business for all of us to be in, because to your point, I made a joke about the high level messaging. But really, that's what it comes down to. >> Lisa: Yeah. >> We do these things, we feel like sometimes we're toiling in obscurity, working with the hardware. But what it delivers. >> Deania: Hm-mm. >> The experiences. >> Dave: Absolutely. >> Deania: Yes. >> Are truly meaningful. So its a fun. >> Absolutely. >> Its a really fun thing to be a part of. >> It is. >> Absolutely. >> Yeah. Is there a favorite customer story that you have that really articulates the value of what Dell is doing, full PowerEdge, at the Edge? >> Its probably one I can't particularly name obviously but, it was, they have different environments, so, in one case there's like on flights or on sea vessels, and just being able to use the same box in those different environments is really cool. And they really appreciate having the small compact, where they can just take the server with them and go somewhere. That was really cool to me in terms of how they were using the products that we built for them. >> I have one that's kind of funny. It around XR8000. Again a customer I won't name but they're so proud of it, they almost kinds feel like they co defined it with us, they want to be on the patent with us so, anyways that's. >> Deania: (indistinct). >> That's what they went in for, yeah. >> So it shows the strength of the partnership that. >> Yeah, exactly. >> Of course, the ecosystem of partners, customers, CSVs, telecom Edge. Guys thank you so much for joining us today. >> Thank you. >> Thank you. >> Sharing what's new with the PowerEdge. We can't wait to, we're just, we're cracking open the box, we saw the shoe. (laughing) And we're going to be dealing a little bit more later. So thank you. >> We're going to be able to touch something soon? >> Yes, yes. >> Yeah. >> In couple of minutes? >> Next segment I think. >> All right! >> Thanks for setting the table for that guys. We really appreciate your time. >> Thank you for having us. >> Thank you. >> Alright, our pleasure. >> For our guests and for Dave Nicholson, I'm Lisa Martin . You're watching theCUBE. The leader in live tech coverage, LIVE in Barcelona, Spain, MWC 23. Don't go anywhere, we will be right back with our next guests. (gentle music)

Published Date : Feb 28 2023

SUMMARY :

that drive human progress. What are some of the have the kiss of a breeze that's behind the scenes. the VP of Networking and and a Davidson. the newest generation that are the growth segments of server. What are some of the but the other areas too we're seeing is What are some of the biggest challenges do that digitally. On the consumer side we some of the challenges there, the one is like in the fast food area. and the online experience, because the demand is there. going to be dialed down. in the palm of our hand And the infrastructure People hear the term Cloud the things that we want to be able to do. the server hardware. decisions that you make What are some of the from the Data center, its actually as big as a shoe. that you see. and its the smallest one in the portfolio, some of the common things for PowerEdge based on the between the three purposeful and the evolution of PowerEdge. flagship of the XR line and the fact that we were able the big thing right now is ChatGPT. the evolution of the server but also in the small one, a lot of power there. the size of Dave's shoe. the first to market, and its sort of maybe I should I kind of want to just send 'em a sample. But anyway, so I suppose I should take it we actually get in back (indistinct), involvement of the customers, Wait did you say ego-system? and also some of the one of the things that I made a joke about the we feel like sometimes So its a fun. that really articulates the the server with them they want to be on the patent with us so, So it shows the Of course, the ecosystem of partners, we saw the shoe. the table for that guys. we will be right back

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

DavePERSON

0.99+

DeaniaPERSON

0.99+

Lisa MartinPERSON

0.99+

LisaPERSON

0.99+

MayDATE

0.99+

Dave LincolnPERSON

0.99+

DavidPERSON

0.99+

NovemberDATE

0.99+

DellORGANIZATION

0.99+

CortanaTITLE

0.99+

350 mlQUANTITY

0.99+

DallasLOCATION

0.99+

TargetORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

IntelORGANIZATION

0.99+

TwoQUANTITY

0.99+

XR 4000COMMERCIAL_ITEM

0.99+

four daysQUANTITY

0.99+

80,000 peopleQUANTITY

0.99+

two guestsQUANTITY

0.99+

XR 8000COMMERCIAL_ITEM

0.99+

XR8000COMMERCIAL_ITEM

0.99+

55 CQUANTITY

0.99+

2 GPUsQUANTITY

0.99+

Deania DavidsonPERSON

0.99+

XR4000COMMERCIAL_ITEM

0.99+

yesterdayDATE

0.99+

todayDATE

0.99+

two verticalsQUANTITY

0.99+

Barcelona, SpainLOCATION

0.98+

bothQUANTITY

0.98+

LegoORGANIZATION

0.98+

oneQUANTITY

0.98+

XR seriesCOMMERCIAL_ITEM

0.98+

one systemQUANTITY

0.98+

about $30 BillionQUANTITY

0.97+

SupercomputeORGANIZATION

0.97+

MWCEVENT

0.97+

zeroQUANTITY

0.95+

5QUANTITY

0.95+

firstQUANTITY

0.94+

MWC 23EVENT

0.94+

this morningDATE

0.94+

telcoORGANIZATION

0.93+

one wayQUANTITY

0.93+

DavidsonORGANIZATION

0.92+

coupleQUANTITY

0.92+

twoDATE

0.91+

EdgeORGANIZATION

0.91+

SiliconANGLE News | Beyond the Buzz: A deep dive into the impact of AI


 

(upbeat music) >> Hello, everyone, welcome to theCUBE. I'm John Furrier, the host of theCUBE in Palo Alto, California. Also it's SiliconANGLE News. Got two great guests here to talk about AI, the impact of the future of the internet, the applications, the people. Amr Awadallah, the founder and CEO, Ed Alban is the CEO of Vectara, a new startup that emerged out of the original Cloudera, I would say, 'cause Amr's known, famous for the Cloudera founding, which was really the beginning of the big data movement. And now as AI goes mainstream, there's so much to talk about, so much to go on. And plus the new company is one of the, now what I call the wave, this next big wave, I call it the fifth wave in the industry. You know, you had PCs, you had the internet, you had mobile. This generative AI thing is real. And you're starting to see startups come out in droves. Amr obviously was founder of Cloudera, Big Data, and now Vectara. And Ed Albanese, you guys have a new company. Welcome to the show. >> Thank you. It's great to be here. >> So great to see you. Now the story is theCUBE started in the Cloudera office. Thanks to you, and your friendly entrepreneurship views that you have. We got to know each other over the years. But Cloudera had Hadoop, which was the beginning of what I call the big data wave, which then became what we now call data lakes, data oceans, and data infrastructure that's developed from that. It's almost interesting to look back 12 plus years, and see that what AI is doing now, right now, is opening up the eyes to the mainstream, and the application's almost mind blowing. You know, Sati Natel called it the Mosaic Moment, didn't say Netscape, he built Netscape (laughing) but called it the Mosaic Moment. You're seeing companies in startups, kind of the alpha geeks running here, because this is the new frontier, and there's real meat on the bone, in terms of like things to do. Why? Why is this happening now? What's is the confluence of the forces happening, that are making this happen? >> Yeah, I mean if you go back to the Cloudera days, with big data, and so on, that was more about data processing. Like how can we process data, so we can extract numbers from it, and do reporting, and maybe take some actions, like this is a fraud transaction, or this is not. And in the meanwhile, many of the researchers working in the neural network, and deep neural network space, were trying to focus on data understanding, like how can I understand the data, and learn from it, so I can take actual actions, based on the data directly, just like a human does. And we were only good at doing that at the level of somebody who was five years old, or seven years old, all the way until about 2013. And starting in 2013, which is only 10 years ago, a number of key innovations started taking place, and each one added on. It was no major innovation that just took place. It was a couple of really incremental ones, but they added on top of each other, in a very exponentially additive way, that led to, by the end of 2019, we now have models, deep neural network models, that can read and understand human text just like we do. Right? And they can reason about it, and argue with you, and explain it to you. And I think that's what is unlocking this whole new wave of innovation that we're seeing right now. So data understanding would be the essence of it. >> So it's not a Big Bang kind of theory, it's been evolving over time, and I think that the tipping point has been the advancements and other things. I mean look at cloud computing, and look how fast it just crept up on AWS. I mean AWS you back three, five years ago, I was talking to Swami yesterday, and their big news about AI, expanding the Hugging Face's relationship with AWS. And just three, five years ago, there wasn't a model training models out there. But as compute comes out, and you got more horsepower,, these large language models, these foundational models, they're flexible, they're not monolithic silos, they're interacting. There's a whole new, almost fusion of data happening. Do you see that? I mean is that part of this? >> Of course, of course. I mean this wave is building on all the previous waves. We wouldn't be at this point if we did not have hardware that can scale, in a very efficient way. We wouldn't be at this point, if we don't have data that we're collecting about everything we do, that we're able to process in this way. So this, this movement, this motion, this phase we're in, absolutely builds on the shoulders of all the previous phases. For some of the observers from the outside, when they see chatGPT for the first time, for them was like, "Oh my god, this just happened overnight." Like it didn't happen overnight. (laughing) GPT itself, like GPT3, which is what chatGPT is based on, was released a year ahead of chatGPT, and many of us were seeing the power it can provide, and what it can do. I don't know if Ed agrees with that. >> Yeah, Ed? >> I do. Although I would acknowledge that the possibilities now, because of what we've hit from a maturity standpoint, have just opened up in an incredible way, that just wasn't tenable even three years ago. And that's what makes it, it's true that it developed incrementally, in the same way that, you know, the possibilities of a mobile handheld device, you know, in 2006 were there, but when the iPhone came out, the possibilities just exploded. And that's the moment we're in. >> Well, I've had many conversations over the past couple months around this area with chatGPT. John Markoff told me the other day, that he calls it, "The five dollar toy," because it's not that big of a deal, in context to what AI's doing behind the scenes, and all the work that's done on ethics, that's happened over the years, but it has woken up the mainstream, so everyone immediately jumps to ethics. "Does it work? "It's not factual," And everyone who's inside the industry is like, "This is amazing." 'Cause you have two schools of thought there. One's like, people that think this is now the beginning of next gen, this is now we're here, this ain't your grandfather's chatbot, okay?" With NLP, it's got reasoning, it's got other things. >> I'm in that camp for sure. >> Yeah. Well I mean, everyone who knows what's going on is in that camp. And as the naysayers start to get through this, and they go, "Wow, it's not just plagiarizing homework, "it's helping me be better. "Like it could rewrite my memo, "bring the lead to the top." It's so the format of the user interface is interesting, but it's still a data-driven app. >> Absolutely. >> So where does it go from here? 'Cause I'm not even calling this the first ending. This is like pregame, in my opinion. What do you guys see this going, in terms of scratching the surface to what happens next? >> I mean, I'll start with, I just don't see how an application is going to look the same in the next three years. Who's going to want to input data manually, in a form field? Who is going to want, or expect, to have to put in some text in a search box, and then read through 15 different possibilities, and try to figure out which one of them actually most closely resembles the question they asked? You know, I don't see that happening. Who's going to start with an absolute blank sheet of paper, and expect no help? That is not how an application will work in the next three years, and it's going to fundamentally change how people interact and spend time with opening any element on their mobile phone, or on their computer, to get something done. >> Yes. I agree with that. Like every single application, over the next five years, will be rewritten, to fit within this model. So imagine an HR application, I don't want to name companies, but imagine an HR application, and you go into application and you clicking on buttons, because you want to take two weeks of vacation, and menus, and clicking here and there, reasons and managers, versus just telling the system, "I'm taking two weeks of vacation, going to Las Vegas," book it, done. >> Yeah. >> And the system just does it for you. If you weren't completing in your input, in your description, for what you want, then the system asks you back, "Did you mean this? "Did you mean that? "Were you trying to also do this as well?" >> Yeah. >> "What was the reason?" And that will fit it for you, and just do it for you. So I think the user interface that we have with apps, is going to change to be very similar to the user interface that we have with each other. And that's why all these apps will need to evolve. >> I know we don't have a lot of time, 'cause you guys are very busy, but I want to definitely have multiple segments with you guys, on this topic, because there's so much to talk about. There's a lot of parallels going on here. I was talking again with Swami who runs all the AI database at AWS, and I asked him, I go, "This feels a lot like the original AWS. "You don't have to provision a data center." A lot of this heavy lifting on the back end, is these large language models, with these foundational models. So the bottleneck in the past, was the energy, and cost to actually do it. Now you're seeing it being stood up faster. So there's definitely going to be a tsunami of apps. I would see that clearly. What is it? We don't know yet. But also people who are going to leverage the fact that I can get started building value. So I see a startup boom coming, and I see an application tsunami of refactoring things. >> Yes. >> So the replatforming is already kind of happening. >> Yes, >> OpenAI, chatGPT, whatever. So that's going to be a developer environment. I mean if Amazon turns this into an API, or a Microsoft, what you guys are doing. >> We're turning it into API as well. That's part of what we're doing as well, yes. >> This is why this is exciting. Amr, you've lived the big data dream, and and we used to talk, if you didn't have a big data problem, if you weren't full of data, you weren't really getting it. Now people have all the data, and they got to stand this up. >> Yeah. >> So the analogy is again, the mobile, I like the mobile movement, and using mobile as an analogy, most companies were not building for a mobile environment, right? They were just building for the web, and legacy way of doing apps. And as soon as the user expectations shifted, that my expectation now, I need to be able to do my job on this small screen, on the mobile device with a touchscreen. Everybody had to invest in re-architecting, and re-implementing every single app, to fit within that model, and that model of interaction. And we are seeing the exact same thing happen now. And one of the core things we're focused on at Vectara, is how to simplify that for organizations, because a lot of them are overwhelmed by large language models, and ML. >> They don't have the staff. >> Yeah, yeah, yeah. They're understaffed, they don't have the skills. >> But they got developers, they've got DevOps, right? >> Yes. >> So they have the DevSecOps going on. >> Exactly, yes. >> So our goal is to simplify it enough for them that they can start leveraging this technology effectively, within their applications. >> Ed, you're the COO of the company, obviously a startup. You guys are growing. You got great backup, and good team. You've also done a lot of business development, and technical business development in this area. If you look at the landscape right now, and I agree the apps are coming, every company I talk to, that has that jet chatGPT of, you know, epiphany, "Oh my God, look how cool this is. "Like magic." Like okay, it's code, settle down. >> Mm hmm. >> But everyone I talk to is using it in a very horizontal way. I talk to a very senior person, very tech alpha geek, very senior person in the industry, technically. they're using it for log data, they're using it for configuration of routers. And in other areas, they're using it for, every vertical has a use case. So this is horizontally scalable from a use case standpoint. When you hear horizontally scalable, first thing I chose in my mind is cloud, right? >> Mm hmm. >> So cloud, and scalability that way. And the data is very specialized. So now you have this vertical specialization, horizontally scalable, everyone will be refactoring. What do you see, and what are you seeing from customers, that you talk to, and prospects? >> Yeah, I mean put yourself in the shoes of an application developer, who is actually trying to make their application a bit more like magic. And to have that soon-to-be, honestly, expected experience. They've got to think about things like performance, and how efficiently that they can actually execute a query, or a question. They've got to think about cost. Generative isn't cheap, like the inference of it. And so you've got to be thoughtful about how and when you take advantage of it, you can't use it as a, you know, everything looks like a nail, and I've got a hammer, and I'm going to hit everything with it, because that will be wasteful. Developers also need to think about how they're going to take advantage of, but not lose their own data. So there has to be some controls around what they feed into the large language model, if anything. Like, should they fine tune a large language model with their own data? Can they keep it logically separated, but still take advantage of the powers of a large language model? And they've also got to take advantage, and be aware of the fact that when data is generated, that it is a different class of data. It might not fully be their own. >> Yeah. >> And it may not even be fully verified. And so when the logical cycle starts, of someone making a request, the relationship between that request, and the output, those things have to be stored safely, logically, and identified as such. >> Yeah. >> And taken advantage of in an ongoing fashion. So these are mega problems, each one of them independently, that, you know, you can think of it as middleware companies need to take advantage of, and think about, to help the next wave of application development be logical, sensible, and effective. It's not just calling some raw API on the cloud, like openAI, and then just, you know, you get your answer and you're done, because that is a very brute force approach. >> Well also I will point, first of all, I agree with your statement about the apps experience, that's going to be expected, form filling. Great point. The interesting about chatGPT. >> Sorry, it's not just form filling, it's any action you would like to take. >> Yeah. >> Instead of clicking, and dragging, and dropping, and doing it on a menu, or on a touch screen, you just say it, and it's and it happens perfectly. >> Yeah. It's a different interface. And that's why I love that UIUX experiences, that's the people falling out of their chair moment with chatGPT, right? But a lot of the things with chatGPT, if you feed it right, it works great. If you feed it wrong and it goes off the rails, it goes off the rails big. >> Yes, yes. >> So the the Bing catastrophes. >> Yeah. >> And that's an example of garbage in, garbage out, classic old school kind of comp-side phrase that we all use. >> Yep. >> Yes. >> This is about data in injection, right? It reminds me the old SQL days, if you had to, if you can sling some SQL, you were a magician, you know, to get the right answer, it's pretty much there. So you got to feed the AI. >> You do, Some people call this, the early word to describe this as prompt engineering. You know, old school, you know, search, or, you know, engagement with data would be, I'm going to, I have a question or I have a query. New school is, I have, I have to issue it a prompt, because I'm trying to get, you know, an action or a reaction, from the system. And the active engineering, there are a lot of different ways you could do it, all the way from, you know, raw, just I'm going to send you whatever I'm thinking. >> Yeah. >> And you get the unintended outcomes, to more constrained, where I'm going to just use my own data, and I'm going to constrain the initial inputs, the data I already know that's first party, and I trust, to, you know, hyper constrain, where the application is actually, it's looking for certain elements to respond to. >> It's interesting Amr, this is why I love this, because one we are in the media, we're recording this video now, we'll stream it. But we got all your linguistics, we're talking. >> Yes. >> This is data. >> Yep. >> So the data quality becomes now the new intellectual property, because, if you have that prompt source data, it makes data or content, in our case, the original content, intellectual property. >> Absolutely. >> Because that's the value. And that's where you see chatGPT fall down, is because they're trying to scroll the web, and people think it's search. It's not necessarily search, it's giving you something that you wanted. It is a lot of that, I remember in Cloudera, you said, "Ask the right questions." Remember that phrase you guys had, that slogan? >> Mm hmm. And that's prompt engineering. So that's exactly, that's the reinvention of "Ask the right question," is prompt engineering is, if you don't give these models the question in the right way, and very few people know how to frame it in the right way with the right context, then you will get garbage out. Right? That is the garbage in, garbage out. But if you specify the question correctly, and you provide with it the metadata that constrain what that question is going to be acted upon or answered upon, then you'll get much better answers. And that's exactly what we solved Vectara. >> Okay. So before we get into the last couple minutes we have left, I want to make sure we get a plug in for the opportunity, and the profile of Vectara, your new company. Can you guys both share with me what you think the current situation is? So for the folks who are now having those moments of, "Ah, AI's bullshit," or, "It's not real, it's a lot of stuff," from, "Oh my god, this is magic," to, "Okay, this is the future." >> Yes. >> What would you say to that person, if you're at a cocktail party, or in the elevator say, "Calm down, this is the first inning." How do you explain the dynamics going on right now, to someone who's either in the industry, but not in the ropes? How would you explain like, what this wave's about? How would you describe it, and how would you prepare them for how to change their life around this? >> Yeah, so I'll go first and then I'll let Ed go. Efficiency, efficiency is the description. So we figured that a way to be a lot more efficient, a way where you can write a lot more emails, create way more content, create way more presentations. Developers can develop 10 times faster than they normally would. And that is very similar to what happened during the Industrial Revolution. I always like to look at examples from the past, to read what will happen now, and what will happen in the future. So during the Industrial Revolution, it was about efficiency with our hands, right? So I had to make a piece of cloth, like this piece of cloth for this shirt I'm wearing. Our ancestors, they had to spend month taking the cotton, making it into threads, taking the threads, making them into pieces of cloth, and then cutting it. And now a machine makes it just like that, right? And the ancestors now turned from the people that do the thing, to manage the machines that do the thing. And I think the same thing is going to happen now, is our efficiency will be multiplied extremely, as human beings, and we'll be able to do a lot more. And many of us will be able to do things they couldn't do before. So another great example I always like to use is the example of Google Maps, and GPS. Very few of us knew how to drive a car from one location to another, and read a map, and get there correctly. But once that efficiency of an AI, by the way, behind these things is very, very complex AI, that figures out how to do that for us. All of us now became amazing navigators that can go from any point to any point. So that's kind of how I look at the future. >> And that's a great real example of impact. Ed, your take on how you would talk to a friend, or colleague, or anyone who asks like, "How do I make sense of the current situation? "Is it real? "What's in it for me, and what do I do?" I mean every company's rethinking their business right now, around this. What would you say to them? >> You know, I usually like to show, rather than describe. And so, you know, the other day I just got access, I've been using an application for a long time, called Notion, and it's super popular. There's like 30 or 40 million users. And the new version of Notion came out, which has AI embedded within it. And it's AI that allows you primarily to create. So if you could break down the world of AI into find and create, for a minute, just kind of logically separate those two things, find is certainly going to be massively impacted in our experiences as consumers on, you know, Google and Bing, and I can't believe I just said the word Bing in the same sentence as Google, but that's what's happening now (all laughing), because it's a good example of change. >> Yes. >> But also inside the business. But on the crate side, you know, Notion is a wiki product, where you try to, you know, note down things that you are thinking about, or you want to share and memorialize. But sometimes you do need help to get it down fast. And just in the first day of using this new product, like my experience has really fundamentally changed. And I think that anybody who would, you know, anybody say for example, that is using an existing app, I would show them, open up the app. Now imagine the possibility of getting a starting point right off the bat, in five seconds of, instead of having to whole cloth draft this thing, imagine getting a starting point then you can modify and edit, or just dispose of and retry again. And that's the potential for me. I can't imagine a scenario where, in a few years from now, I'm going to be satisfied if I don't have a little bit of help, in the same way that I don't manually spell check every email that I send. I automatically spell check it. I love when I'm getting type ahead support inside of Google, or anything. Doesn't mean I always take it, or when texting. >> That's efficiency too. I mean the cloud was about developers getting stuff up quick. >> Exactly. >> All that heavy lifting is there for you, so you don't have to do it. >> Right? >> And you get to the value faster. >> Exactly. I mean, if history taught us one thing, it's, you have to always embrace efficiency, and if you don't fast enough, you will fall behind. Again, looking at the industrial revolution, the companies that embraced the industrial revolution, they became the leaders in the world, and the ones who did not, they all like. >> Well the AI thing that we got to watch out for, is watching how it goes off the rails. If it doesn't have the right prompt engineering, or data architecture, infrastructure. >> Yes. >> It's a big part. So this comes back down to your startup, real quick, I know we got a couple minutes left. Talk about the company, the motivation, and we'll do a deeper dive on on the company. But what's the motivation? What are you targeting for the market, business model? The tech, let's go. >> Actually, I would like Ed to go first. Go ahead. >> Sure, I mean, we're a developer-first, API-first platform. So the product is oriented around allowing developers who may not be superstars, in being able to either leverage, or choose, or select their own large language models for appropriate use cases. But they that want to be able to instantly add the power of large language models into their application set. We started with search, because we think it's going to be one of the first places that people try to take advantage of large language models, to help find information within an application context. And we've built our own large language models, focused on making it very efficient, and elegant, to find information more quickly. So what a developer can do is, within minutes, go up, register for an account, and get access to a set of APIs, that allow them to send data, to be converted into a format that's easy to understand for large language models, vectors. And then secondarily, they can issue queries, ask questions. And they can ask them very, the questions that can be asked, are very natural language questions. So we're talking about long form sentences, you know, drill down types of questions, and they can get answers that either come back in depending upon the form factor of the user interface, in list form, or summarized form, where summarized equals the opportunity to kind of see a condensed, singular answer. >> All right. I have a. >> Oh okay, go ahead, you go. >> I was just going to say, I'm going to be a customer for you, because I want, my dream was to have a hologram of theCUBE host, me and Dave, and have questions be generated in the metaverse. So you know. (all laughing) >> There'll be no longer any guests here. They'll all be talking to you guys. >> Give a couple bullets, I'll spit out 10 good questions. Publish a story. This brings the automation, I'm sorry to interrupt you. >> No, no. No, no, I was just going to follow on on the same. So another way to look at exactly what Ed described is, we want to offer you chatGPT for your own data, right? So imagine taking all of the recordings of all of the interviews you have done, and having all of the content of that being ingested by a system, where you can now have a conversation with your own data and say, "Oh, last time when I met Amr, "which video games did we talk about? "Which movie or book did we use as an analogy "for how we should be embracing data science, "and big data, which is moneyball," I know you use moneyball all the time. And you start having that conversation. So, now the data doesn't become a passive asset that you just have in your organization. No. It's an active participant that's sitting with you, on the table, helping you make decisions. >> One of my favorite things to do with customers, is to go to their site or application, and show them me using it. So for example, one of the customers I talked to was one of the biggest property management companies in the world, that lets people go and rent homes, and houses, and things like that. And you know, I went and I showed them me searching through reviews, looking for information, and trying different words, and trying to find out like, you know, is this place quiet? Is it comfortable? And then I put all the same data into our platform, and I showed them the world of difference you can have when you start asking that question wholeheartedly, and getting real information that doesn't have anything to do with the words you asked, but is really focused on the meaning. You know, when I asked like, "Is it quiet?" You know, answers would come back like, "The wind whispered through the trees peacefully," and you know, it's like nothing to do with quiet in the literal word sense, but in the meaning sense, everything to do with it. And that that was magical even for them, to see that. >> Well you guys are the front end of this big wave. Congratulations on the startup, Amr. I know you guys got great pedigree in big data, and you've got a great team, and congratulations. Vectara is the name of the company, check 'em out. Again, the startup boom is coming. This will be one of the major waves, generative AI is here. I think we'll look back, and it will be pointed out as a major inflection point in the industry. >> Absolutely. >> There's not a lot of hype behind that. People are are seeing it, experts are. So it's going to be fun, thanks for watching. >> Thanks John. (soft music)

Published Date : Feb 23 2023

SUMMARY :

I call it the fifth wave in the industry. It's great to be here. and the application's almost mind blowing. And in the meanwhile, and you got more horsepower,, of all the previous phases. in the same way that, you know, and all the work that's done on ethics, "bring the lead to the top." in terms of scratching the surface and it's going to fundamentally change and you go into application And the system just does it for you. is going to change to be very So the bottleneck in the past, So the replatforming is So that's going to be a That's part of what and they got to stand this up. And one of the core things don't have the skills. So our goal is to simplify it and I agree the apps are coming, I talk to a very senior And the data is very specialized. and be aware of the fact that request, and the output, some raw API on the cloud, about the apps experience, it's any action you would like to take. you just say it, and it's But a lot of the things with chatGPT, comp-side phrase that we all use. It reminds me the old all the way from, you know, raw, and I'm going to constrain But we got all your So the data quality And that's where you That is the garbage in, garbage out. So for the folks who are and how would you prepare them that do the thing, to manage the current situation? And the new version of Notion came out, But on the crate side, you I mean the cloud was about developers so you don't have to do it. and the ones who did not, they all like. If it doesn't have the So this comes back down to Actually, I would like Ed to go first. factor of the user interface, I have a. generated in the metaverse. They'll all be talking to you guys. This brings the automation, of all of the interviews you have done, one of the customers I talked to Vectara is the name of the So it's going to be fun, Thanks John.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
John MarkoffPERSON

0.99+

2013DATE

0.99+

AWSORGANIZATION

0.99+

Ed AlbanPERSON

0.99+

AmazonORGANIZATION

0.99+

30QUANTITY

0.99+

10 timesQUANTITY

0.99+

2006DATE

0.99+

John FurrierPERSON

0.99+

two weeksQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

DavePERSON

0.99+

Ed AlbanesePERSON

0.99+

JohnPERSON

0.99+

five secondsQUANTITY

0.99+

Las VegasLOCATION

0.99+

EdPERSON

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

10 good questionsQUANTITY

0.99+

SwamiPERSON

0.99+

15 different possibilitiesQUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

VectaraORGANIZATION

0.99+

Amr AwadallahPERSON

0.99+

GoogleORGANIZATION

0.99+

ClouderaORGANIZATION

0.99+

first timeQUANTITY

0.99+

bothQUANTITY

0.99+

end of 2019DATE

0.99+

yesterdayDATE

0.98+

Big DataORGANIZATION

0.98+

40 million usersQUANTITY

0.98+

two thingsQUANTITY

0.98+

two great guestsQUANTITY

0.98+

12 plus yearsQUANTITY

0.98+

oneQUANTITY

0.98+

five dollarQUANTITY

0.98+

NetscapeORGANIZATION

0.98+

five years agoDATE

0.98+

SQLTITLE

0.98+

first inningQUANTITY

0.98+

AmrPERSON

0.97+

two schoolsQUANTITY

0.97+

firstQUANTITY

0.97+

10 years agoDATE

0.97+

OneQUANTITY

0.96+

first dayQUANTITY

0.96+

threeDATE

0.96+

chatGPTTITLE

0.96+

first placesQUANTITY

0.95+

BingORGANIZATION

0.95+

NotionTITLE

0.95+

first thingQUANTITY

0.94+

theCUBEORGANIZATION

0.94+

Beyond the BuzzTITLE

0.94+

Sati NatelPERSON

0.94+

Industrial RevolutionEVENT

0.93+

one locationQUANTITY

0.93+

three years agoDATE

0.93+

single applicationQUANTITY

0.92+

one thingQUANTITY

0.91+

first platformQUANTITY

0.91+

five years oldQUANTITY

0.91+

Is Data Mesh the Killer App for Supercloud | Supercloud2


 

(gentle bright music) >> Okay, welcome back to our "Supercloud 2" event live coverage here at stage performance in Palo Alto syndicating around the world. I'm John Furrier with Dave Vellante. We've got exclusive news and a scoop here for SiliconANGLE and theCUBE. Zhamak Dehghani, creator of data mesh has formed a new company called NextData.com NextData, she's a cube alumni and contributor to our Supercloud initiative, as well as our coverage and breaking analysis with Dave Vellante on data, the killer app for Supercloud. Zhamak, great to see you. Thank you for coming into the studio and congratulations on your newly formed venture and continued success on the data mesh. >> Thank you so much. It's great to be here. Great to see you in person. >> Dave: Yeah, finally. >> John: Wonderful. Your contributions to the data conversation has been well-documented certainly by us and others in the industry. Data mesh taking the world by storm. Some people are debating it, throwing, you know, cold water on it. Some are, I think, it's the next big thing. Tell us about the data mesh super data apps that are emerging out of cloud. >> I mean, data mesh, as you said, it's, you know, the pain point that it surfaced were universal. Everybody said, "Oh, why didn't I think of that?" You know, it was just an obvious next step and people are approaching it, implementing it. I guess the last few years, I've been involved in many of those implementations, and I guess Supercloud is somewhat a prerequisite for it because it's data mesh and building applications using data mesh is about sharing data responsibly across boundaries. And those boundaries include boundaries, organizational boundaries cloud technology boundaries and trust boundaries. >> I want to bring that up because your venture, NextData which is new, just formed. Tell us about that. What wave is that riding? What specifically are you targeting? What's the pain point? >> Zhamak: Absolutely, yes. So next data is the result of, I suppose, the pains that I suffered from implementing a database for many of the organizations. Basically, a lot of organizations that I've worked with, they want decentralized data. So they really embrace this idea of decentralized ownership of the data, but yet they want interconnectivity through standard APIs, yet they want discoverability and governance. So they want to have policies implemented, they want to govern that data, they want to be able to discover that data and yet they want to decentralize it. And we do that with a developer experience that is easy and native to a generalist developer. So we try to find, I guess, the common denominator that solves those problems and enables that developer experience for data sharing. >> John: Since you just announced the news, what's been the reaction? >> Zhamak: I just announced the news right now, so what's the reaction? >> John: But people in the industry that know you, you did a lot of work in the area. What have been some of the feedback on the new venture in terms of the approach, the customers, problem? >> Yeah, so we've been in stealth modes, so we haven't publicly talked about it, but folks that have been close to us in fact have reached out. We already have implementations of our pilot platform with early customers, which is super exciting. And we're going to have multiple of those. Of course, we're a tiny, tiny company. We can have many of those where we are going to have multiple pilots, implementations of our platform in real world. We're real global large scale organizations that have real world problems. So we're not going to build our platform in vacuum. And that's what's happening right now. >> Zhamak: When I think about your role at ThoughtWorks, you had a very wide observation space with a number of clients helping them implement data mesh and other things as well prior to your data mesh initiative. But when I look at data mesh, at least the ones that I've seen, they're very narrow. I think of JPMC, I think of HelloFresh. They're generally obviously not surprising. They don't include the big vision of inclusivity across clouds across different data stores. But it seems like people are having to go through some gymnastics to get to, you know, the organizational reality of decentralizing data, and at least pushing data ownership to the line of business. How are you approaching or are you approaching, solving that problem? Are you taking a narrow slice? What can you tell us about Next Data? >> Zhamak: Sure, yeah, absolutely. Gymnastics, the cute word to describe what the organizations have to go through. And one of those problems is that, you know, the data, as you know, resides on different platforms. It's owned by different people, it's processed by pipelines that who owns them. So there's this very disparate and disconnected set of technologies that were very useful for when we thought about data and processing as a centralized problem. But when you think about data as a decentralized problem, the cost of integration of these technologies in a cohesive developer experience is what's missing. And we want to focus on that cohesive end-to-end developer experience to share data responsibly in this autonomous units, we call them data products, I guess in data mesh, right? That constitutes computation, that governs that data policies, discoverability. So I guess, I heard this expression in the last talks that you can have your cake and eat it too. So we want people have their cakes, which is, you know, data in different places, decentralization and eat it too, which is interconnected access to it. So we start with standardizing and codifying this idea of a data product container that encapsulates data computation, APIs to get to it in a technology agnostic way, in an open way. And then, sit on top and use existing existing tech, you know, Snowflake, Databricks, whatever exists, you know, the millions of dollars of investments that companies have made, sit on top of those but create this cohesive, integrated experience where data product is a first class primitive. And that's really key here, that the language, and the modeling that we use is really native to data mesh is that I will make a data product, I'm sharing a data product, and that encapsulates on providing metadata about this. I'm providing computation that's constantly changing the data. I'm providing the API for that. So we're trying to kind of codify and create a new developer experience based on that. And developer, both from provider side and user side connected to peer-to-peer data sharing with data product as a primitive first class concept. >> Okay, so the idea would be developers would build applications leveraging those data products which are discoverable and governed. Now, today you see some companies, you know, take a snowflake for example. >> Zhamak: Yeah. >> Attempting to do that within their own little walled garden. They even, at one point, used the term, "Mesh." I dunno if they pull back on that. And then they sort of became aware of some of your work. But a lot of the things that they're doing within their little insulated environment, you know, support that, that, you know, governance, they're building out an ecosystem. What's different in your vision? >> Exactly. So we realize that, you know, and this is a reality, like you go to organizations, they have a snowflake and half of the organization happily operates on Snowflake. And on the other half, oh, we are on, you know, bare infrastructure on AWS, or we are on Databricks. This is the realities, you know, this Supercloud that's written up here. It's about working across boundaries of technology. So we try to embrace that. And even for our own technology with the way we're building it, we say, "Okay, nobody's going to use next data mesh operating system. People will have different platforms." So you have to build with openness in mind, and in case of Snowflake, I think, you know, they have I'm sure very happy customers as long as customers can be on Snowflake. But once you cross that boundary of platforms then that becomes a problem. And we try to keep that in mind in our solution. >> So, it's worth reviewing that basically, the concept of data mesh is that, whether you're a data lake or a data warehouse, an S3 bucket, an Oracle database as well, they should be inclusive inside of the data. >> We did a session with AWS on the startup showcase, data as code. And remember, I wrote a blog post in 2007 called, "Data's the new developer kit." Back then, they used to call 'em developer kits, if you remember. And that we said at that time, whoever can code data >> Zhamak: Yes. >> Will have a competitive advantage. >> Aren't there machines going to be doing that? Didn't we just hear that? >> Well we have, and you know, Hey Siri, hey Cube. Find me that best video for data mesh. There it is. I mean, this is the point, like what's happening is that, now, data has to be addressable >> Zhamak: Yes. >> For machines and for coding. >> Zhamak: Yes. >> Because as you need to call the data. So the question is, how do you manage the complexity of big things as promiscuous as possible, making it available as well as then governing it because it's a trade off. The more you make open >> Zhamak: Definitely. >> The better the machine learning. >> Zhamak: Yes. >> But yet, the governance issue, so this is the, you need an OS to handle this maybe. >> Yes, well, we call our mental model for our platform is an OS operating system. Operating systems, you know, have shown us how you can kind of abstract what's complex and take care of, you know, a lot of complexities, but yet provide an open and, you know, dynamic enough interface. So we think about it that way. We try to solve the problem of policies live with the data. An enforcement of the policies happens at the most granular level which is, in this concept, the data product. And that would happen whether you read, write, or access a data product. But we can never imagine what are these policies could be. So our thinking is, okay, we should have a open policy framework that can allow organizations write their own policy drivers, and policy definitions, and encode it and encapsulated in this data product container. But I'm not going to fool myself to say that, you know, that's going to solve the problem that you just described. I think we are in this, I don't know, if I look into my crystal ball, what I think might happen is that right now, the primitives that we work with to train machine-learning model are still bits and bites in data. They're fields, rows, columns, right? And that creates quite a large surface area, an attack area for, you know, for privacy of the data. So perhaps, one of the trends that we might see is this evolution of data APIs to become more and more computational aware to bring the compute to the data to reduce that surface area so you can really leave the control of the data to the sovereign owners of that data, right? So that data product. So I think the evolution of our data APIs perhaps will become more and more computational. So you describe what you want, and the data owner decides, you know, how to manage the- >> John: That's interesting, Dave, 'cause it's almost like we just talked about ChatGPT in the last segment with you, who's a machine learning, could really been around the industry. It's almost as if you're starting to see reason come into the data, reasoning. It's like you starting to see not just metadata, using the data to reason so that you don't have to expose the raw data. It's almost like a, I won't say curation layer, but an intelligence layer. >> Zhamak: Exactly. >> Can you share your vision on that 'cause that seems to be where the dots are connecting. >> Zhamak: Yes, this is perhaps further into the future because just from where we stand, we have to create still that bridge of familiarity between that future and present. So we are still in that bridge-making mode, however, by just the basic notion of saying, "I'm going to put an API in front of my data, and that API today might be as primitive as a level of indirection as in you tell me what you want, tell me who you are, let me go process that, all the policies and lineage, and insert all of this intelligence that need to happen. And then I will, today, I will still give you a file. But by just defining that API and standardizing it, now we have this amazing extension point that we can say, "Well, the next revision of this API, you not just tell me who you are, but you actually tell me what intelligence you're after. What's a logic that I need to go and now compute on your API?" And you can kind of evolve that, right? Now you have a point of evolution to this very futuristic, I guess, future where you just describe the question that you're asking from the chat. >> Well, this is the Supercloud, Dave. >> I have a question from a fan, I got to get it in. It's George Gilbert. And so, his question is, you're blowing away the way we synchronize data from operational systems to the data stack to applications. So the concern that he has, and he wants your feedback on this, "Is the data product app devs get exposed to more complexity with respect to moving data between data products or maybe it's attributes between data products, how do you respond to that? How do you see, is that a problem or is that something that is overstated, or do you have an answer for that?" >> Zhamak: Absolutely. So I think there's a sweet spot in getting data developers, data product developers closer to the app, but yet not burdening them with the complexity of the application and application logic, and yet reducing their cognitive load by localizing what they need to know about which is that domain where they're operating within. Because what's happening right now? what's happening right now is that data engineers, a ton of empathy for them for their high threshold of pain that they can, you know, deal with, they have been centralized, they've put into the data team, and they have been given this unbelievable task of make meaning out of data, put semantic over it, curates it, cleans it, and so on. So what we are saying is that get those folks embedded into the domain closer to the application developers, these are still separately moving units. Your app and your data products are independent but yet tightly closed with each other, tightly coupled with each other based on the context of the domain, so reduce cognitive load by localizing what they need to know about to the domain, get them closer to the application but yet have them them separate from app because app provides a very different service. Transactional data for my e-commerce transaction, data product provides a very different service, longitudinal data for the, you know, variety of this intelligent analysis that I can do on the data. But yet, it's all within the domain of e-commerce or sales or whatnot. >> So a lot of decoupling and coupling create that cohesiveness. >> Zhamak: Absolutely. >> Architecture. So I have to ask you, this is an interesting question 'cause it came up on theCUBE all last year. Back on the old server, data center days and cloud, SRE, Google coined the term, "Site Reliability Engineer" for someone to look over the hundreds of thousands of servers. We asked a question to data engineering community who have been suffering, by the way, agree. Is there an SRE-like role for data? Because in a way, data engineering, that platform engineer, they are like the SRE for data. In other words, managing the large scale to enable automation and cell service. What's your thoughts and reaction to that? >> Zhamak: Yes, exactly. So, maybe we go through that history of how SRE came to be. So we had the first DevOps movement which was, remove the wall between dev and ops and bring them together. So you have one cross-functional units of the organization that's responsible for, you build it you run it, right? So then there is no, I'm going to just shoot my application over the wall for somebody else to manage it. So we did that, and then we said, "Okay, as we decentralized and had this many microservices running around, we had to create a layer that abstracted a lot of the complexity around running now a lot or monitoring, observing and running a lot while giving autonomy to this cross-functional team." And that's where the SRE, a new generation of engineers came to exist. So I think if I just look- >> Hence Borg, hence Kubernetes. >> Hence, hence, exactly. Hence chaos engineering, hence embracing the complexity and messiness, right? And putting engineering discipline to embrace that and yet give a cohesive and high integrity experience of those systems. So I think, if we look at that evolution, perhaps something like that is happening by bringing data and apps closer and make them these domain-oriented data product teams or domain oriented cross-functional teams, full stop, and still have a very advanced maybe at the platform infrastructure level kind of operational team that they're not busy doing two jobs which is taking care of domains and the infrastructure, but they're building infrastructure that is embracing that complexity, interconnectivity of this data process. >> John: So you see similarities. >> Absolutely, but I feel like we're probably in a more early days of that movement. >> So it's a data DevOps kind of thing happening where scales happening. It's good things are happening yet. Eh, a little bit fast and loose with some complexities to clean up. >> Yes, yes. This is a different restructure. As you said we, you know, the job of this industry as a whole on architects is decompose, recompose, decompose, recomposing a new way, and now we're like decomposing centralized team, recomposing them as domains and- >> John: So is data mesh the killer app for Supercloud? >> You had to do this for me. >> Dave: Sorry, I couldn't- (John and Dave laughing) >> Zhamak: What do you want me to say, Dave? >> John: Yes. >> Zhamak: Yes of course. >> I mean Supercloud, I think it's, really the terminology's Supercloud, Opencloud. But I think, in spirits of it, this embracing of diversity and giving autonomy for people to make decisions for what's right for them and not yet lock them in. I think just embracing that is baked into how data mesh assume the world would work. >> John: Well thank you so much for coming on Supercloud too, really appreciate it. Data has driven this conversation. Your success of data mesh has really opened up the conversation and exposed the slow moving data industry. >> Dave: Been a great catalyst. (John laughs) >> John: That's now going well. We can move faster, so thanks for coming on. >> Thank you for hosting me. It was wonderful. >> Okay, Supercloud 2 live here in Palo Alto. Our stage performance, I'm John Furrier with Dave Vellante. We're back with more after this short break, Stay with us all day for Supercloud 2. (gentle bright music)

Published Date : Feb 17 2023

SUMMARY :

and continued success on the data mesh. Great to see you in person. and others in the industry. I guess the last few years, What's the pain point? a database for many of the organizations. in terms of the approach, but folks that have been close to us to get to, you know, the data, as you know, resides Okay, so the idea would be developers But a lot of the things that they're doing This is the realities, you know, inside of the data. And that we said at that Well we have, and you know, So the question is, how do so this is the, you need and the data owner decides, you know, so that you don't have 'cause that seems to be where of this API, you not So the concern that he has, into the domain closer to So a lot of decoupling So I have to ask you, this a lot of the complexity of domains and the infrastructure, in a more early days of that movement. to clean up. the job of this industry the world would work. John: Well thank you so much for coming Dave: Been a great catalyst. We can move faster, so Thank you for hosting me. after this short break,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

JohnPERSON

0.99+

ZhamakPERSON

0.99+

DavePERSON

0.99+

George GilbertPERSON

0.99+

AWSORGANIZATION

0.99+

2007DATE

0.99+

Palo AltoLOCATION

0.99+

John FurrierPERSON

0.99+

John FurrierPERSON

0.99+

Zhamak DehghaniPERSON

0.99+

JPMCORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

DavPERSON

0.99+

two jobsQUANTITY

0.99+

SupercloudORGANIZATION

0.99+

NextDataORGANIZATION

0.99+

todayDATE

0.99+

OpencloudORGANIZATION

0.99+

last yearDATE

0.99+

SiriTITLE

0.99+

ThoughtWorksORGANIZATION

0.98+

NextData.comORGANIZATION

0.98+

Supercloud 2EVENT

0.98+

bothQUANTITY

0.98+

oneQUANTITY

0.98+

HelloFreshORGANIZATION

0.98+

firstQUANTITY

0.98+

millions of dollarsQUANTITY

0.96+

SnowflakeEVENT

0.96+

OracleORGANIZATION

0.96+

SRETITLE

0.94+

SnowflakeORGANIZATION

0.94+

CubePERSON

0.93+

ZhamaPERSON

0.92+

Data Mesh the Killer AppTITLE

0.92+

SiliconANGLEORGANIZATION

0.91+

DatabricksORGANIZATION

0.9+

first classQUANTITY

0.89+

Supercloud 2ORGANIZATION

0.88+

theCUBEORGANIZATION

0.88+

hundreds of thousandsQUANTITY

0.85+

one pointQUANTITY

0.84+

ZhamPERSON

0.83+

SupercloudEVENT

0.83+

ChatGPTORGANIZATION

0.72+

SREORGANIZATION

0.72+

BorgPERSON

0.7+

SnowflakeTITLE

0.66+

SupercloudTITLE

0.65+

halfQUANTITY

0.64+

Discussion about Walmart's Approach | Supercloud2


 

(upbeat electronic music) >> Okay, welcome back to Supercloud 2, live here in Palo Alto. I'm John Furrier, with Dave Vellante. Again, all day wall-to-wall coverage, just had a great interview with Walmart, we've got a Next interview coming up, you're going to hear from Bob Muglia and Tristan Handy, two experts, both experienced entrepreneurs, executives in technology. We're here to break down what just happened with Walmart, and what's coming up with George Gilbert, former colleague, Wikibon analyst, Gartner Analyst, and now independent investor and expert. George, great to see you, I know you're following this space. Like you read about it, remember the first days when Dataverse came out, we were talking about them coming out of Berkeley? >> Dave: Snowflake. >> John: Snowflake. >> Dave: Snowflake In the early days. >> We, collectively, have been chronicling the data movement since 2010, you were part of our team, now you've got your nose to the grindstone, you're seeing the next wave. What's this all about? Walmart building their own super cloud, we got Bob Muglia talking about how these next wave of apps are coming. What are the super apps? What's the super cloud to you? >> Well, this key's off Dave's really interesting questions to Walmart, which was like, how are they building their supercloud? 'Cause it makes a concrete example. But what was most interesting about his description of the Walmart WCMP, I forgot what it stood for. >> Dave: Walmart Cloud Native Platform. >> Walmart, okay. He was describing where the logic could run in these stateless containers, and maybe eventually serverless functions. But that's just it, and that's the paradigm of microservices, where the logic is in this stateless thing, where you can shoot it, or it fails, and you can spin up another one, and you've lost nothing. >> That was their triplet model. >> Yeah, in fact, and that was what they were trying to move to, where these things move fluidly between data centers. >> But there's a but, right? Which is they're all stateless apps in the cloud. >> George: Yeah. >> And all their stateful apps are on-prem and VMs. >> Or the stateful part of the apps are in VMs. >> Okay. >> And so if they really want to lift their super cloud layer off of this different provider's infrastructure, they're going to need a much more advanced software platform that manages data. And that goes to the -- >> Muglia and Handy, that you and I did, that's coming up next. So the big takeaway there, George, was, I'll set it up and you can chime in, a new breed of data apps is emerging, and this highly decentralized infrastructure. And Tristan Handy of DBT Labs has a sort of a solution to begin the journey today, Muglia is working on something that's way out there, describe what you learned from it. >> Okay. So to talk about what the new data apps are, and then the platform to run them, I go back to the using what will probably be seen as one of the first data app examples, was Uber, where you're describing entities in the real world, riders, drivers, routes, city, like a city plan, these are all defined by data. And the data is described in a structure called a knowledge graph, for lack of a, no one's come up with a better term. But that means the tough, the stuff that Jack built, which was all stateless and sits above cloud vendors' infrastructure, it needs an entirely different type of software that's much, much harder to build. And the way Bob described it is, you're going to need an entirely new data management infrastructure to handle this. But where, you know, we had this really colorful interview where it was like Rock 'Em Sock 'Em, but they weren't really that much in opposition to each other, because Tristan is going to define this layer, starting with like business intelligence metrics, where you're defining things like bookings, billings, and revenue, in business terms, not in SQL terms -- >> Well, business terms, if I can interrupt, he said the one thing we haven't figured out how to APIify is KPIs that sit inside of a data warehouse, and that's essentially what he's doing. >> George: That's what he's doing, yes. >> Right. And so then you can now expose those APIs, those KPIs, that sit inside of a data warehouse, or a data lake, a data store, whatever, through APIs. >> George: And the difference -- >> So what does that do for you? >> Okay, so all of a sudden, instead of working at technical data terms, where you're dealing with tables and columns and rows, you're dealing instead with business entities, using the Uber example of drivers, riders, routes, you know, ETA prices. But you can define, DBT will be able to define those progressively in richer terms, today they're just doing things like bookings, billings, and revenue. But Bob's point was, today, the data warehouse that actually runs that stuff, whereas DBT defines it, the data warehouse that runs it, you can't do it with relational technology >> Dave: Relational totality, cashing architecture. >> SQL, you can't -- >> SQL caching architectures in memory, you can't do it, you've got to rethink down to the way the data lake is laid out on the disk or cache. Which by the way, Thomas Hazel, who's speaking later, he's the chief scientist and founder at Chaos Search, he says, "I've actually done this," basically leave it in an S3 bucket, and I'm going to query it, you know, with no caching. >> All right, so what I hear you saying then, tell me if I got this right, there are some some things that are inadequate in today's world, that's not compatible with the Supercloud wave. >> Yeah. >> Specifically how you're using storage, and data, and stateful. >> Yes. >> And then the software that makes it run, is that what you're saying? >> George: Yeah. >> There's one other thing you mentioned to me, it's like, when you're using a CRM system, a human is inputting data. >> George: Nothing happens till the human does something. >> Right, nothing happens until that data entry occurs. What you're talking about is a world that self forms, polling data from the transaction system, or the ERP system, and then builds a plan without human intervention. >> Yeah. Something in the real world happens, where the user says, "I want a ride." And then the software goes out and says, "Okay, we got to match a driver to the rider, we got to calculate how long it takes to get there, how long to deliver 'em." That's not driven by a form, other than the first person hitting a button and saying, "I want a ride." All the other stuff happens autonomously, driven by data and analytics. >> But my question was different, Dave, so I want to get specific, because this is where the startups are going to come in, this is the disruption. Snowflake is a data warehouse that's in the cloud, they call it a data cloud, they refactored it, they did it differently, the success, we all know it looks like. These areas where it's inadequate for the future are areas that'll probably be either disrupted, or refactored. What is that? >> That's what Muglia's contention is, that the DBT can start adding that layer where you define these business entities, they're like mini digital twins, you can define them, but the data warehouse isn't strong enough to actually manage and run them. And Muglia is behind a company that is rethinking the database, really in a fundamental way that hasn't been done in 40 or 50 years. It's the first, in his contention, the first real rethink of database technology in a fundamental way since the rise of the relational database 50 years ago. >> And I think you admit it's a real Hail Mary, I mean it's quite a long shot right? >> George: Yes. >> Huge potential. >> But they're pretty far along. >> Well, we've been talking on theCUBE for 12 years, and what, 10 years going to AWS Reinvent, Dave, that no one database will rule the world, Amazon kind of showed that with them. What's different, is it databases are changing, or you can have multiple databases, or? >> It's a good question. And the reason we've had multiple different types of databases, each one specialized for a different type of workload, but actually what Muglia is behind is a new engine that would essentially, you'll never get rid of the data warehouse, or the equivalent engine in like a Databricks datalake house, but it's a new engine that manages the thing that describes all the data and holds it together, and that's the new application platform. >> George, we have one minute left, I want to get real quick thought, you're an investor, and we know your history, and the folks watching, George's got a deep pedigree in investment data, and we can testify against that. If you're going to invest in a company right now, if you're a customer, I got to make a bet, what does success look like for me, what do I want walking through my door, and what do I want to send out? What companies do I want to look at? What's the kind of of vendor do I want to evaluate? Which ones do I want to send home? >> Well, the first thing a customer really has to do when they're thinking about next gen applications, all the people have told you guys, "we got to get our data in order," getting that data in order means building an integrated view of all your data landscape, which is data coming out of all your applications. It starts with the data model, so, today, you basically extract data from all your operational systems, put it in this one giant, central place, like a warehouse or lake house, but eventually you want this, whether you call it a fabric or a mesh, it's all the data that describes how everything hangs together as in one big knowledge graph. There's different ways to implement that. And that's the most critical thing, 'cause that describes your Uber landscape, your Uber platform. >> That's going to power the digital transformation, which will power the business transformation, which powers the business model, which allows the builders to build -- >> Yes. >> Coders to code. That's Supercloud application. >> Yeah. >> George, great stuff. Next interview you're going to see right here is Bob Muglia and Tristan Handy, they're going to unpack this new wave. Great segment, really worth unpacking and reading between the lines with George, and Dave Vellante, and those two great guests. And then we'll come back here for the studio for more of the live coverage of Supercloud 2. Thanks for watching. (upbeat electronic music)

Published Date : Feb 17 2023

SUMMARY :

remember the first days What's the super cloud to you? of the Walmart WCMP, I and that's the paradigm of microservices, and that was what they stateless apps in the cloud. And all their stateful of the apps are in VMs. And that goes to the -- Muglia and Handy, that you and I did, But that means the tough, he said the one thing we haven't And so then you can now the data warehouse that runs it, Dave: Relational totality, Which by the way, Thomas I hear you saying then, and data, and stateful. thing you mentioned to me, George: Nothing happens polling data from the transaction Something in the real world happens, that's in the cloud, that the DBT can start adding that layer Amazon kind of showed that with them. and that's the new application platform. and the folks watching, all the people have told you guys, Coders to code. for more of the live

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

GeorgePERSON

0.99+

Bob MugliaPERSON

0.99+

Tristan HandyPERSON

0.99+

DavePERSON

0.99+

BobPERSON

0.99+

Thomas HazelPERSON

0.99+

George GilbertPERSON

0.99+

AmazonORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

John FurrierPERSON

0.99+

Palo AltoLOCATION

0.99+

Chaos SearchORGANIZATION

0.99+

JackPERSON

0.99+

TristanPERSON

0.99+

12 yearsQUANTITY

0.99+

BerkeleyLOCATION

0.99+

UberORGANIZATION

0.99+

firstQUANTITY

0.99+

DBT LabsORGANIZATION

0.99+

10 yearsQUANTITY

0.99+

two expertsQUANTITY

0.99+

Supercloud 2TITLE

0.99+

GartnerORGANIZATION

0.99+

AWSORGANIZATION

0.99+

bothQUANTITY

0.99+

MugliaORGANIZATION

0.99+

one minuteQUANTITY

0.99+

40QUANTITY

0.99+

two great guestsQUANTITY

0.98+

WikibonORGANIZATION

0.98+

50 yearsQUANTITY

0.98+

JohnPERSON

0.98+

Rock 'Em Sock 'EmTITLE

0.98+

todayDATE

0.98+

first personQUANTITY

0.98+

DatabricksORGANIZATION

0.98+

S3COMMERCIAL_ITEM

0.97+

50 years agoDATE

0.97+

2010DATE

0.97+

MaryPERSON

0.96+

first daysQUANTITY

0.96+

SQLTITLE

0.96+

oneQUANTITY

0.95+

Supercloud waveEVENT

0.95+

each oneQUANTITY

0.93+

DBTORGANIZATION

0.91+

SupercloudTITLE

0.91+

Supercloud2TITLE

0.91+

Supercloud 2ORGANIZATION

0.89+

SnowflakeTITLE

0.86+

DataverseORGANIZATION

0.83+

tripletQUANTITY

0.78+

Is Data Mesh the Next Killer App for Supercloud?


 

(upbeat music) >> Welcome back to our Supercloud 2 event live coverage here of stage performance in Palo Alto syndicating around the world. I'm John Furrier with Dave Vellante. We got exclusive news and a scoop here for SiliconANGLE in theCUBE. Zhamak Dehghani, creator of data mesh has formed a new company called Nextdata.com, Nextdata. She's a cube alumni and contributor to our supercloud initiative, as well as our coverage and Breaking Analysis with Dave Vellante on data, the killer app for supercloud. Zhamak, great to see you. Thank you for coming into the studio and congratulations on your newly formed venture and continued success on the data mesh. >> Thank you so much. It's great to be here. Great to see you in person. >> Dave: Yeah, finally. >> Wonderful. Your contributions to the data conversation has been well documented certainly by us and others in the industry. Data mesh taking the world by storm. Some people are debating it, throwing cold water on it. Some are thinking it's the next big thing. Tell us about the data mesh, super data apps that are emerging out of cloud. >> I mean, data mesh, as you said, the pain point that it surface were universal. Everybody said, "Oh, why didn't I think of that?" It was just an obvious next step and people are approaching it, implementing it. I guess the last few years I've been involved in many of those implementations and I guess supercloud is somewhat a prerequisite for it because it's data mesh and building applications using data mesh is about sharing data responsibly across boundaries. And those boundaries include organizational boundaries, cloud technology boundaries, and trust boundaries. >> I want to bring that up because your venture, Nextdata, which is new just formed. Tell us about that. What wave is that riding? What specifically are you targeting? What's the pain point? >> Absolutely. Yes, so Nextdata is the result of, I suppose the pains that I suffered from implementing data mesh for many of the organizations. Basically a lot of organizations that I've worked with they want decentralized data. So they really embrace this idea of decentralized ownership of the data, but yet they want interconnectivity through standard APIs, yet they want discoverability and governance. So they want to have policies implemented, they want to govern that data, they want to be able to discover that data, and yet they want to decentralize it. And we do that with a developer experience that is easy and native to a generalist developer. So we try to find the, I guess the common denominator that solves those problems and enables that developer experience for data sharing. >> Since you just announced the news, what's been the reaction? >> I just announced the news right now, so what's the reaction? >> But people in the industry know you did a lot of work in the area. What have been some of the feedback on the new venture in terms of the approach, the customers, problem? >> Yeah, so we've been in stealth mode so we haven't publicly talked about it, but folks that have been close to us, in fact have reached that we already have implementations of our pilot platform with early customers, which is super exciting. And we going to have multiple of those. Of course, we're a tiny, tiny company. We can have many of those, but we are going to have multiple pilot implementations of our platform in real world where real global large scale organizations that have real world problems. So we're not going to build our platform in vacuum. And that's what's happening right now. >> Zhamak, when I think about your role at ThoughtWorks, you had a very wide observation space with a number of clients, helping them implement data mesh and other things as well prior to your data mesh initiative. But when I look at data mesh, at least the ones that I've seen, they're very narrow. I think of JPMC, I think of HelloFresh. They're generally, obviously not surprising, they don't include the big vision of inclusivity across clouds, across different data storage. But it seems like people are having to go through some gymnastics to get to the organizational reality of decentralizing data and at least pushing data ownership to the line of business. How are you approaching, or are you approaching solving that problem? Are you taking a narrow slice? What can you tell us about Nextdata? >> Yeah, absolutely. Gymnastics, the cute word to describe what the organizations have to go through. And one of those problems is that the data as you know resides on different platforms, it's owned by different people, is processed by pipelines that who knows who owns them. So there's this very disparate and disconnected set of technologies that were very useful for when we thought about data and processing as a centralized problem. But when you think about data as a decentralized problem the cost of integration of these technologies in a cohesive developer experience is what's missing. And we want to focus on that cohesive end-to-end developer experience to share data responsibly in these autonomous units. We call them data products, I guess in data mesh. That constitutes computation. That governs that data policies, discoverability. So I guess, I heard this expression in the last talks that you can have your cake and eat it too. So we want people have their cakes, which is data in different places, decentralization, and eat it too, which is interconnected access to it. So we start with standardizing and codifying this idea of a data product container that encapsulates data computation APIs to get to it in a technology agnostic way, in an open way. And then sit on top and use existing tech, Snowflake, Databricks, whatever exists, the millions of dollars of investments that companies have made, sit on top of those but create this cohesive, integrated experience where data product is a first class primitive. And that's really key here. The language and the modeling that we use is really native to data mesh, which is that I'm building a data product I'm sharing a data product, and that encapsulates I'm providing metadata about this. I'm providing computation that's constantly changing the data. I'm providing the API for that. So we we're trying to kind of codify and create a new developer experience based on that. And developer, both from provider side and user side, connected to peer-to-peer data sharing with data product as a primitive first class concept. >> So the idea would be developers would build applications leveraging those data products, which are discoverable and governed. Now today you see some companies, take a Snowflake for example, attempting to do that within their own little walled garden. They even at one point used the term mesh. I don't know if they pull back on that. And then they became aware of some of your work. But a lot of the things that they're doing within their little insulated environment support that governance, they're building out an ecosystem. What's different in your vision? >> Exactly. So we realized that, and this is a reality, like you go to organizations, they have a Snowflake and half of the organization happily operates on Snowflake. And on the other half, "oh, we are on Bare infrastructure on AWS or we are on Databricks." This is the reality. This supercloud that's written up here, it's about working across boundaries of technology. So we try to embrace that. And even for our own technology with the way we're building it, we say, "Okay, nobody's going to use Nextdata, data mesh operating system. People will have different platforms." So you have to build with openness in mind and in case of Snowflake, I think, they have very, I'm sure very happy customers as long as customers can be on Snowflake. But once you cross that boundary of platforms then that becomes a problem. And we try to keep that in mind in our solution. >> So it's worth reviewing that basically the concept of data mesh is that whether you're a data lake or a data warehouse, an S3 bucket, an Oracle database as well, they should be inclusive inside of the data. >> We did a session with AWS on the startup showcase, data as code. And remember I wrote a blog post in 2007 called "Data as the New Developer Kit" back then we used to call them developer kits if you remember. And that we said at that time, whoever can code data will have a competitive advantage. >> Aren't the machines going to be doing that? Didn't we just hear that? >> Well, we have. Hey, Siri. Hey, Cube, find me that best video for data mesh. There it is. But this is the point, like what's happening is that now data has to be addressable. for machines and for coding because as you need to call the data. So the question is how do you manage the complexity of big things as promiscuous as possible, making it available, as well as then governing it? Because it's a trade off. The more you make open, the better the machine learning. But yet the governance issue, so this is the, you need an OS to handle this maybe. >> Yes. So yes, well we call, our mental model for our platform is an OS operating system. Operating systems have shown us how you can abstract what's complex and take care of a lot of complexities, but yet provide an open and dynamic enough interface. So we think about it that way. Just, we try to solve the problem of policies live with the data, an enforcement of the policies happens at the most granular level, which is in this concept of the data product. And that would happen whether you read, write or access a data product. But we can never imagine what are these policies could be. So our thinking is we should have a policy, open policy framework that can allow organizations write their own policy drivers and policy definitions and encode it and encapsulated in this data product container. But I'm not going to fool myself to say that, that's going to solve the problem that you just described. I think we are in this, I don't know, if I look into my crystal ball, what I think might happen is that right now the primitives that we work with to train machine learning model are still bits and bytes and data. They're fields, rows, columns and that creates quite a large surface area and attack area for privacy of the data. So perhaps one of the trends that we might see is this evolution of data APIs to become more and more computational aware to bring the compute to the data to reduce that surface area. So you can really leave the control of the data to the sovereign owners of that data. So that data product. So I think that evolution of our data APIs perhaps will become more and more computational. So you describe what you want and the data owner decides how to manage. >> That's interesting, Dave, 'cause it's almost like we just talked about ChatGPT in the last segment we had with you. It was a machine learning have been around the industry. It's almost as if you're starting to see reason come into, the data reasoning is like starting to see not just metadata. Using the data to reason so that you don't have to expose the raw data. So almost like a, I won't say curation layer, but an intelligence layer. >> Zhamak: Exactly. >> Can you share your vision on that? 'Cause that seems to be where the dots are connecting. >> Yes, perhaps further into the future because just from where we stand, we have to create still that bridge of familiarity between that future and present. So we are still in that bridge making mode. However, by just the basic notion of saying, "I'm going to put an API in front of my data." And that API today might be as primitive as a level of indirection, as in you tell me what you want, tell me who you are, let me go process that, all the policies and lineage and insert all of this intelligence that need to happen. And then today, I will still give you a file. But by just defining that API and standardizing it now we have this amazing extension point that we can say, "Well, the next revision of this API, you not just tell me who you are, but you actually tell me what intelligence you're after. What's a logic that I need to go and now compute on your API?" And you can evolve that. Now you have a point of evolution to this very futuristic, I guess, future where you just described the question that you're asking from the ChatGPT. >> Well, this is the supercloud, go ahead, Dave. >> I have a question from a fan, I got to get it in. It's George Gilbert. And so his question is, you're blowing away the way we synchronize data from operational systems to the data stack to applications. So the concern that he has and he wants your feedback on this, is the data product app devs get exposed to more complexity with respect to moving data between data products or maybe it's attributes between data products? How do you respond to that? How do you see? Is that a problem? Is that something that is overstated or do you have an answer for that? >> Absolutely. So I think there's a sweet spot in getting data developers, data product developers closer to the app, but yet not overburdening them with the complexity of the application and application logic and yet reducing their cognitive load by localizing what they need to know about, which is that domain where they're operating within. Because what's happening right now? What's happening right now is that data engineers with, a ton of empathy for them for their high threshold of pain that they can deal with, they have been centralized, they've put into the data team, and they have been given this unbelievable task of make meaning out of data, put semantic over it, curate it, cleans it, and so on. So what we are saying is that get those folks embedded into the domain closer to the application developers. These are still separately moving units. Your app and your data products are independent, but yet tightly closed with each other, tightly coupled with each other based on the context of the domain. So reduce cognitive load by localizing what they need to know about to the domain, get them closer to the application, but yet have them separate from app because app provides a very different service. Transactional data for my e-commerce transaction. Data product provides a very different service. Longitudinal data for the variety of this intelligent analysis that I can do on the data. But yet it's all within the domain of e-commerce or sales or whatnot. >> It's a lot of decoupling and coupling create that cohesiveness architecture. So I have to ask you, this is an interesting question 'cause it came up on theCUBE all last year. Back on the old server data center days and cloud, SRE, Google coined the term, site reliability engineer, for someone to look over the hundreds of thousands of servers. We asked the question to data engineering community who have been suffering, by the way, I agree. Is there an SRE like role for data? Because in a way data engineering, that platform engineer, they are like the SRE for data. In other words managing the large scale to enable automation and cell service. What's your thoughts and reaction to that? >> Yes, exactly. So maybe we go through that history of how SRE came to be. So we had the first DevOps movement, which was remove the wall between dev and ops and bring them together. So you have one unit of one cross-functional units of the organization that's responsible for you build it, you run it. So then there is no, I'm going to just shoot my application over the wall for somebody else to manage it. So we did that and then we said, okay, there is a ton, as we decentralized and had these many microservices running around, we had to create a layer that abstracted a lot of the complexity around running now a lot or monitoring, observing, and running a lot while giving autonomy to this cross-functional team. And that's where the SRE, a new generation of engineers came to exist. So I think if I just look at. >> Hence, Kubernetes. >> Hence, hence, exactly. Hence, chaos engineering. Hence, embracing the complexity and messiness. And putting engineering discipline to embrace that and yet give a cohesive and high integrity experience of those systems. So I think if we look at that evolution, perhaps something like that is happening by bringing data and apps closer and make them these domain-oriented data product teams or domain-oriented cross-functional teams full stop and still have a very advanced maybe at the platform level, infrastructure level operational team that they're not busy doing two jobs, which is taking care of domains and the infrastructure, but they're building infrastructure that is embracing that complexity, interconnectivity of this data process. >> So you see similarities? >> I see, absolutely. But I feel like we're probably in a more early days of that movement. >> So it's a data DevOps kind of thing happening where scales happening. It's good things are happening, yet a little bit fast and loose with some complexities to clean up. >> Yes. This is a different restructure. As you said, the job of this industry as a whole, an architect, is decompose recompose, decompose recompose in new way and now we're like decomposing centralized team, recomposing them as domains. >> So is data mesh the killer app for supercloud? >> You had to do this to me. >> Sorry, I couldn't resist. >> I know. Of course you want me to say this. >> Yes. >> Yes, of course. I mean, supercloud, I think it's really, the terminology supercloud, open cloud, but I think in spirits of it this embracing of diversity and giving autonomy for people to make decisions for what's right for them and not yet lock them in. I think just embracing that is baked into how data mesh assume the world would work. >> Well, thank you so much for coming on Supercloud 2. We really appreciate it. Data has driven this conversation. Your success of data mesh has really opened up the conversation and exposed the slow moving data industry. >> Dave: Been a great catalyst. >> That's now going well. We can move faster. So thanks for coming on. >> Thank you for hosting me. It was wonderful. >> Supercloud 2 live here in Palo Alto, our stage performance. I'm John Furrier with Dave Vellante. We'll back with more after this short break. Stay with us all day for Supercloud 2. (upbeat music)

Published Date : Jan 25 2023

SUMMARY :

and continued success on the data mesh. Great to see you in person. and others in the industry. I guess the last few What's the pain point? for many of the organizations. But people in the industry know you did but folks that have been close to us, at least the ones that I've is that the data as you know But a lot of the things that they're doing and half of the organization that basically the concept of data mesh And that we said at that time, is that now data has to be addressable. and the data owner decides how to manage. the data reasoning is like starting to see 'Cause that seems to be where What's a logic that I need to go Well, this is the So the concern that he has into the domain closer to We asked the question to of the organization that's responsible So I think if we look at that evolution, in a more early days of that movement. So it's a data DevOps As you said, the job of Of course you want me to say this. assume the world would work. the conversation and exposed So thanks for coming on. Thank you for hosting me. I'm John Furrier with Dave Vellante.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

DavePERSON

0.99+

AWSORGANIZATION

0.99+

2007DATE

0.99+

George GilbertPERSON

0.99+

Zhamak DehghaniPERSON

0.99+

NextdataORGANIZATION

0.99+

ZhamakPERSON

0.99+

Palo AltoLOCATION

0.99+

GoogleORGANIZATION

0.99+

John FurrierPERSON

0.99+

oneQUANTITY

0.99+

Nextdata.comORGANIZATION

0.99+

two jobsQUANTITY

0.99+

JPMCORGANIZATION

0.99+

todayDATE

0.99+

HelloFreshORGANIZATION

0.99+

ThoughtWorksORGANIZATION

0.99+

last yearDATE

0.99+

Supercloud 2EVENT

0.99+

OracleORGANIZATION

0.98+

firstQUANTITY

0.98+

SiriTITLE

0.98+

CubePERSON

0.98+

DatabricksORGANIZATION

0.98+

SnowflakeORGANIZATION

0.97+

SupercloudORGANIZATION

0.97+

bothQUANTITY

0.97+

one unitQUANTITY

0.97+

SnowflakeTITLE

0.96+

SRETITLE

0.95+

millions of dollarsQUANTITY

0.94+

first classQUANTITY

0.94+

hundreds of thousands of serversQUANTITY

0.92+

supercloudORGANIZATION

0.92+

one pointQUANTITY

0.92+

Supercloud 2TITLE

0.89+

ChatGPTORGANIZATION

0.81+

halfQUANTITY

0.81+

Data Mesh the Next Killer AppTITLE

0.78+

supercloudTITLE

0.75+

a tonQUANTITY

0.73+

Supercloud 2ORGANIZATION

0.72+

SiliconANGLEORGANIZATION

0.7+

DevOpsTITLE

0.66+

SnowflakeEVENT

0.59+

S3TITLE

0.54+

lastDATE

0.54+

supercloudEVENT

0.48+

KubernetesTITLE

0.47+

Brian Gracely, The Cloudcast | Does the World Really Need Supercloud?


 

(upbeat music) >> Welcome back to Supercloud 2 this is Dave Vellante. We're here exploring the intersection of data and analytics and the future of cloud. And in this segment, we're going to look at the evolution of cloud, and try to test some of the Supercloud concepts and assumptions with Brian Gracely, is the founder and co-host along with Aaron Delp of the popular Cloudcast program. Amazing series, if you're not already familiar with it. The Cloudcast is one of the best ways to keep up with so many things going on in our industry. Enterprise tech, platform engineering, business models, obviously, cloud developer trends, crypto, Web 3.0. Sorry Brian, I know that's a sore spot, but Brian, thanks for coming >> That's okay. >> on the program, really appreciate it. >> Yeah, great to be with you, Dave. Happy New Year, and great to be back with everybody with SiliconANGLE again this year. >> Yeah, we love having you on. We miss working with you day-to-day, but I want to start with Gracely's theorem, which basically says, I'm going to paraphrase. For the most part, nothing new gets introduced in the enterprise tech business, patterns repeat themselves, maybe get applied in new ways. And you know this industry well, when something comes out that's new, if you take virtualization, for example, been around forever with mainframes, but then VMware applied it, solve a real problem in the client service system. And then it's like, "Okay, this is awesome." We get really excited and then after a while we pushed the architecture, we break things, introduce new things to fix the things that are broken and start adding new features. And oftentimes you do that through acquisitions. So, you know, has the cloud become that sort of thing? And is Supercloud sort of same wine, new bottle, following Gracely's theorem? >> Yeah, I think there's some of both of it. I hate to be the sort of, it depends sort of answer but, I think to a certain extent, you know, obviously Cloud in and of itself was, kind of revolutionary in that, you know, it wasn't that you couldn't rent things in the past, it was just being able to do it at scale, being able to do it with such amazing self-service. And then, you know, kind of proliferation of like, look at how many services I can get from, from one cloud, whether it was Amazon or Azure or Google. And then, you know, we, we slip back into the things that we know, we go, "Oh, well, okay, now I can get computing on demand, but, now it's just computing." Or I can get database on demand and it's, you know, it's got some of the same limitations of, of say, of database, right? It's still, you know, I have to think about IOPS and I have to think about caching, and other stuff. So, I think we do go through that and then we, you know, we have these sort of next paradigms that come along. So, you know, serverless was another one of those where it was like, okay, it seems sort of new. I don't have to, again, it was another level of like, I don't have to think about anything. And I was able to do that because, you know, there was either greater bandwidth available to me, or compute got cheaper. And what's been interesting is not the sort of, that specific thing, serverless in and of itself is just another way of doing compute, but the fact that it now gets applied as, sort of a no-ops model to, you know, again, like how do I provision a database? How do I think about, you know, do I have to think about the location of a service? Does that just get taken care of for me? So I think the Supercloud concept, and I did a thing and, and you and I have talked about it, you know, behind the scenes that maybe the, maybe a better name is Super app for something like Snowflake or other, but I think we're, seeing these these sort of evolutions over and over again of what were the big bottlenecks? How do we, how do we solve those bottlenecks? And I think the big thing here is, it's never, it's very rarely that you can take the old paradigm of what the thing was, the concept was, and apply it to the new model. So, I'll just give you an example. So, you know, something like VMware, which we all know, wildly popular, wildly used, but when we apply like a Supercloud concept of VMware, the concept of VMware has always been around a cluster, right? It's some finite number of servers, you sort of manage it as a cluster. And when you apply that to the cloud and you say, okay, there's, you know, for example, VMware in the cloud, it's still the same concept of a cluster of VMware. But yet when you look at some of these other services that would fit more into the, you know, Supercloud kind of paradigm, whether it's a Snowflake or a MongoDB Atlas or maybe what CloudFlare is doing at the edge, those things get rid of some of those old paradigms. And I think that's where stuff, you start to go, "Oh, okay, this is very different than before." Yes, it's still computing or storage, or data access, but there's a whole nother level of something that we didn't carry forward from the previous days. And that really kind of breaks the paradigm. And so that's the way I think I've started to think about, are these things really brand new? Yes and no, but I think it's when you can see that big, that thing that you didn't leave behind isn't there anymore, you start to get some really interesting new innovation come out of it. >> Yeah. And that's why, you know, lift and shift is okay, when you talk to practitioners, they'll say, "You know, I really didn't change my operating model. And so I just kind of moved it into the cloud. there were some benefits, but it was maybe one zero not three zeros that I was looking for." >> Right. >> You know, we always talk about what's great about cloud, the agility, and all the other wonderful stuff that we know, what's not working in cloud, you know, tie it into multi-cloud, you know, in terms of, you hear people talk about multi-cloud by accident, okay, that's true. >> Yep. >> What's not great about cloud. And then I want to get into, you know, is multi-cloud really a problem or is it just sort of vendor hype? But, but what's not working in cloud? I mean, you mentioned serverless and serverless is kind of narrow, right, for a lot of stateless apps, right? But, what's not great about cloud? >> Well, I think there's a few things that if you ask most people they don't love about cloud. I think, we can argue whether or not sort of this consolidation around a few cloud providers has been a good thing or a bad thing. I think, regardless of that, you know, we are seeing, we are hearing more and more people that say, look, you know, the experience I used to have with cloud when I went to, for example, an Amazon and there was, you know, a dozen services, it was easy to figure out what was going on. It was easy to figure out what my billing looked like. You know, now they've become so widespread, the number of services they have, you know, the number of stories you just hear of people who went, "Oh, I started a service over in US West and I can't find it anymore 'cause it's on a different screen. And I, you know, I just got billed for it." Like, so I think the sprawl of some of the clouds has gotten, has created a user experience that a lot of people are frustrated with. I think that's one thing. And we, you know, we see people like Digital Ocean and we see others who are saying, "Hey, we're going to be that simplified version." So, there's always that yin and yang. I think people are super frustrated at network costs, right? So, you know, and that's kind of at a lot of, at the center of maybe why we do or don't see more of these Supercloud services is just, you know, in the data center as an application owner, I didn't have to think about, well where, where does this go to? Where are my users? Yes, somebody took care of it, but when those things become front and center, that's super frustrating. That's the one area that we've seen absolutely no cost savings, cost reduction. So I think that frustrates people a lot. And then I think the third piece is just, you know, we're, we went from super centralized IT organizations, which, you know, for decades was how it worked. It was part of the reason why the cloud expanded and became a thing, right? Sort of shadow IT and I can't get things done. And then, now what we've seen is sort of this proliferation of little pockets of groups that are your IT, for lack of a better thing, whether they're called platform engineering or SRE or DevOps. But we have this, expansion, explosion if you will, of groups that, if I'm an app dev team, I go, "Hey, you helped me make this stuff run, but then the team next to you has another group and they have another group." And so you see this explosion of, you know, we don't have any standards in the company anymore. And, so sort of self-service has created its own nightmare to a certain extent for a lot of larger companies. >> Yeah. Thank you for that. So, you know, I want, I want to explore this multi-cloud, you know, by accident thing and is a real problem. You hear that a lot from vendors and we've been talking about Supercloud as this unifying layer across cloud. You know, but when you talk to customers, a lot of them are saying, "Yes, we have multiple clouds in our organization, but my group, we have mono cloud, we know the security, edicts, we know how to, you know, deal with the primitives, whether it's, you know, S3 or Azure Blob or whatever it is. And we're very comfortable with this." It's, that's how we're simplifying. So, do you think this is really a problem? Does it have merit that we need that unifying layer across clouds, or is it just too early for that? >> I think, yeah, I think what you, what you've laid out is basically how the world has played out. People have picked a cloud for a specific application or a series of applications. Yeah, and I think if you talk to most companies, they would tell you, you know, holistically, yes, we're multi-cloud, not, maybe not necessarily on, I don't necessarily love the phrase where people say like, well it happened by accident. I think it happened on purpose, but we got to multi-cloud, not in the way that maybe that vendors, you know, perceived, you know, kind of laid out a map for. So it was, it was, well you will lay out this sort of Supercloud framework. We didn't call it that back then, we just called it sort of multi-cloud. Maybe it was Kubernetes or maybe it was whatever. And different groups, because central IT kind of got disbanded or got fragmented. It turned into, go pick the best cloud for your application, for what you need to do for the business. And then, you know, multiple years later it was like, "Oh, hold on, I've got 20% in Google and 50% in AWS and I've got 30% in Azure. And, you know, it's, yeah, it's been evolution. I don't know that it's, I don't know if it's a mistake. I think it's now groups trying to figure out like, should I make sense of it? You know, should I try and standardize and I backwards standardize some stuff? I think that's going to be a hard thing for, for companies to do. 'cause I think they feel okay with where the applications are. They just happen to be in multiple clouds. >> I want to run something by you, and you guys, you and Aaron have talked about this. You know, still depending on who, which keynote you listen to, small percentage of the workloads are actually in cloud. And when you were with us at Wikibon, I think we called it true private cloud, and we looked at things like Nutanix and there were a lot of other examples of companies that were trying to replicate the hyperscale experience on Prem. >> Yeah. >> And, we would evaluate that, you know, beyond virtualization, and so we sort of defined that and, but I think what's, maybe what's more interesting than Supercloud across clouds is if you include that, that on Prem estate, because that's where most of the work is being done, that's where a lot of the proprietary tools have been built, a lot of data, a lot of software. So maybe there's this concept of sending that true private cloud to true hybrid cloud. So I actually think hybrid cloud in some cases is the more interesting use case for so-called Supercloud. What are your thoughts on that? >> Yeah, I think there's a couple aspects too. I think, you know, if we were to go back five or six years even, maybe even a little further and look at like what a data center looked like, even if it was just, "Hey we're a data center that runs primarily on VMware. We use some of their automation". Versus what you can, even what you can do in your data center today. The, you know, the games that people have seen through new types of automation through Kubernetes, through get ops, and a number of these things, like they've gotten significantly further along in terms of I can provision stuff really well, I can do multi-tenancy, I can do self-service. Is it, you know, is it still hard? Yeah. Because those things are hard to do, but there's been significant progress there. I don't, you know, I still look for kind of that, that killer application, that sort of, you know, lighthouse use case of, hybrid applications, you know, between data center and between cloud. I think, you know, we see some stuff where, you know, backup is a part of it. So you use the cloud for storage, maybe you use the cloud for certain kinds of resiliency, especially on maybe front end load balancing and stuff. But I think, you know, I think what we get into is, this being hung up on hybrid cloud or multi-cloud as a term and go like, "Look, what are you trying to measure? Are you trying to measure, you know, efficiency of of of IT usage? Are you trying to measure how quickly can I give these business, you know, these application teams that are part of a line of business resources that they need?" I think if we start measuring that way, we would look at, you know, you'd go, "Wow, it used to be weeks and months. Now we got rid of these boards that have to review everything every time I want to do a change management type of thing." We've seen a lot more self-service. I think those are the things we want to measure on. And then to your point of, you know, where does, where do these Supercloud applications fit in? I think there are a bunch of instances where you go, "Look, I have a, you know, global application, I have a thing that has to span multiple regions." That's where the Supercloud concept really comes into play. We used to do it in the data center, right? We'd had all sorts of technologies to help with that, I think you can now start to do it in the cloud. >> You know, one of the other things, trying to understand, your thoughts on this, do you think that you, you again have talked about this, like I'm with you. It's like, how is it that Google's losing, you know, 3 billion dollars a year, whatever. I mean, because when you go back and look at Amazon, when they were at that level of revenue where Google is today, they were making money, you know, and they were actually growing faster, by the way. So it's kind of interesting what's happened with Google. But, the reason I bring that up is, trying to understand if you think the hyperscalers will ever be motivated to create standards across clouds, and that may be a play for Google. I mean, obviously with Kubernetes it was like a Hail Mary and kind of made them relevant. Where would Google be without Kubernetes? But then did it achieve the objectives? We could have that conversation some other time, but do you think the hyperscalers will actually say, "Okay, we're going to lean in and create these standards across clouds." Because customers would love that, I would think, but it would sub-optimize their competitive advantage. What are your thoughts? >> I think, you know, on the surface, I would say they, they probably aren't. I think if you asked 'em the question, they would say, "Well, you know, first and foremost, you know, we do deliver standards, so we deliver a, you know, standard SQL interface or a SQL you know, or a standard Kubernetes API or whatever. So, in that, from that perspective, you know, we're not locking you into, you know, an Amazon specific database, or a Google specific database." You, you can argue about that, but I think to a certain extent, like they've been very good about, "Hey, we're going to adopt the standards that people want." A lot of times the open source standards. I think the problem is, let's say they did come up with a standard for it. I think you still have the problem of the costs of migration and you know, the longer you've, I think their bet is basically the longer you've been in some cloud. And again, the more data you sort of compile there, the data gravity concept, there's just going to be a natural thing that says, okay, the hurdle to get over to say, "Look, we want to move this to another cloud", becomes so cost prohibitive that they don't really have to worry about, you know, oh, I'm going to get into a war of standards. And so far I think they sort of realize like that's the flywheel that the cloud creates. And you know, unless they want to get into a world where they just cut bandwidth costs, like it just kind of won't happen. You know, I think we've even seen, and you know, the one example I'll use, and I forget the name of it off the top of my head, but there's a, there's a Google service. I think it's like BigQuery external or something along those lines, that allows you to say, "Look, you can use BigQuery against like S3 buckets and against other stuff." And so I think the cloud providers have kind of figured out, I'm never going to get the application out of that other guy's cloud or you know, the other cloud. But maybe I'm going to have to figure out some interesting ways to sort of work with it. And, you know, it's a little bit, it's a little janky, but that might be, you know, a moderate step that sort of gets customers where they want to be. >> Yeah. Or you know, it'd be interesting if you ever see AWS for example, running its database in other clouds, you started, even Oracle is doing that with, with with Azure, which is a form of Supercloud. My last question for you is, I want to get you thinking about sort of how the future plays out. You know, think about some of the companies that we've put forth this Supercloud, and by the way, this has been a criticism of the concept. Charles Fitzer, "Everything is Supercloud!" Which if true would defeat the purpose of course. >> Right. >> And so right with the community effort, we really tried to put some guardrails down on the essential characteristics, the deployment models, you know, so for example, running across multiple clouds with a purpose build pass, creating a common experience, metadata intelligence that solves a specific problem. I mean, the example I often use is Snowflake's governed data sharing. But yeah, Snowflake, Databricks, CloudFlare, Cohesity, you know, I just mentioned Oracle and Azure, these and others, they certainly claim to have that common experience across clouds. But my question is, again, I come back to, do customers need this capability? You know, is Mono Cloud the way to solve that problem? What's your, what are your thoughts on how this plays out in the future of, I guess, PAs, apps and cloud? >> Yeah, I think a couple of things. So, from a technology perspective, I think, you know, the companies you name, the services you've named, have sort of proven that the concept is viable and it's viable at a reasonable size, right? These aren't completely niche businesses, right? They're multi-billion dollar businesses. So, I think there's a subset of applications that, you know, maybe a a bigger than a niche set of applications that are going to use these types of things. A lot of what you talked about is very data centric, and that's, that's fine. That's that layer is, figuring that out. I think we'll see messaging types of services, so like Derek Hallison's, Caya Company runs a, sort of a Supercloud for messaging applications. So I think there'll be places where it makes a ton of sense. I think, the thing that I'm not sure about, and because again, we've been now 10 plus years of sort of super low, you know, interest rates in terms of being able to do things, is a lot of these things come out of research that have been done previously. Then they get turned into maybe somewhat of an open source project, and then they can become something. You know, will we see as much investment into the next Snowflake if, you know, the interest rates are three or four times that they used to be, do we, do we see VCs doing it? So that's the part that worries me a little bit, is I think we've seen what's possible. I think, you know, we've seen companies like what those services are. I think I read yesterday Snowflake was saying like, their biggest customers are growing at 30, like 50 or 60%. Like the, value they get out of it is becoming exponential. And it's just a matter of like, will the economics allow the next big thing to happen? Because some of these things are pretty, pretty costly, you know, expensive to get started. So I'm bullish on the idea. I don't know that it becomes, I think it's okay that it's still sort of, you know, niche plus, plus in terms of the size of it. Because, you know, if we think about all of IT it's still, you know, even microservices is a small part of bigger things. But I'm still really bullish on the idea. I like that it's been proven. I'm a little wary, like a lot of people have the economics of, you know, what might slow things down a little bit. But yeah, I, think the future is going to involve Supercloud somewhere, whatever people end up calling it. And you and I discussed that. (laughs) But I don't, I don't think it goes away. I don't think it's, I don't think it's a fad. I think it is something that people see tremendous value and it's just, it's got to be, you know, for what you're trying to do, your application specific thing. >> You're making a great point on the funding of innovation and we're entering a new era of public policy as well. R and D tax credit is now is shifting. >> Yeah. >> You know, you're going to have to capitalize that over five years now. And that's something that goes back to the 1950s and many people would argue that's at least in part what has helped the United States be so, you know, competitive in tech. But Brian, always great to talk to you. Thanks so much for participating in the program. Great to see you. >> Thanks Dave, appreciate it. Good luck with the rest of the show. >> Thank you. All right, this is Dave Vellante for John Furrier, the entire Cube community. Stay tuned for more content from Supercloud2.

Published Date : Jan 4 2023

SUMMARY :

of the popular Cloudcast program. Yeah, great to be with you, Dave. So, you know, has the cloud I think to a certain extent, you know, when you talk to cloud, you know, tie it into you know, is multi-cloud And we, you know, So, you know, I want, I want And then, you know, multiple you and Aaron have talked about this. And, we would evaluate that, you know, But I think, you know, I money, you know, and I think, you know, on the is, I want to get you Cohesity, you know, I just of sort of super low, you know, on the funding of innovation the United States be so, you Good luck with the rest of the show. the entire Cube community.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Aaron DelpPERSON

0.99+

DavePERSON

0.99+

BrianPERSON

0.99+

Dave VellantePERSON

0.99+

Dave VellantePERSON

0.99+

Charles FitzerPERSON

0.99+

AmazonORGANIZATION

0.99+

Brian GracelyPERSON

0.99+

GoogleORGANIZATION

0.99+

Caya CompanyORGANIZATION

0.99+

30%QUANTITY

0.99+

50%QUANTITY

0.99+

AaronPERSON

0.99+

60%QUANTITY

0.99+

John FurrierPERSON

0.99+

20%QUANTITY

0.99+

threeQUANTITY

0.99+

AWSORGANIZATION

0.99+

50QUANTITY

0.99+

third pieceQUANTITY

0.99+

BigQueryTITLE

0.99+

1950sDATE

0.99+

10 plus yearsQUANTITY

0.99+

OracleORGANIZATION

0.99+

SnowflakeTITLE

0.99+

DatabricksORGANIZATION

0.99+

CohesityORGANIZATION

0.99+

SiliconANGLEORGANIZATION

0.99+

NutanixORGANIZATION

0.99+

WikibonORGANIZATION

0.98+

Digital OceanORGANIZATION

0.98+

SnowflakeORGANIZATION

0.98+

fiveQUANTITY

0.98+

SnowflakeEVENT

0.98+

30QUANTITY

0.98+

six yearsQUANTITY

0.98+

this yearDATE

0.98+

four timesQUANTITY

0.98+

yesterdayDATE

0.98+

US WestLOCATION

0.97+

todayDATE

0.97+

one thingQUANTITY

0.97+

over five yearsQUANTITY

0.97+

S3TITLE

0.96+

CloudFlareORGANIZATION

0.95+

Super appTITLE

0.94+

SupercloudORGANIZATION

0.94+

oneQUANTITY

0.93+

Supercloud2ORGANIZATION

0.93+

AzureORGANIZATION

0.92+

CloudFlareTITLE

0.91+

one areaQUANTITY

0.91+

bothQUANTITY

0.9+

a dozen servicesQUANTITY

0.9+

New YearEVENT

0.9+

MongoDB AtlasTITLE

0.89+

KubernetesTITLE

0.89+

VMwareTITLE

0.88+

SQLTITLE

0.88+

PremORGANIZATION

0.88+

firstQUANTITY

0.88+

multiple years laterDATE

0.88+

3 billion dollars a yearQUANTITY

0.86+

MaryTITLE

0.84+

AzureTITLE

0.84+

CubeORGANIZATION

0.83+

The CloudcastORGANIZATION

0.8+

one cloudQUANTITY

0.78+

Jesse Cugliotta & Nicholas Taylor | The Future of Cloud & Data in Healthcare


 

(upbeat music) >> Welcome back to Supercloud 2. This is Dave Vellante. We're here exploring the intersection of data and analytics in the future of cloud and data. In this segment, we're going to look deeper into the life sciences business with Jesse Cugliotta, who leads the Healthcare and Life Sciences industry practice at Snowflake. And Nicholas Nick Taylor, who's the executive director of Informatics at Ionis Pharmaceuticals. Gentlemen, thanks for coming in theCUBE and participating in the program. Really appreciate it. >> Thank you for having us- >> Thanks for having me. >> You're very welcome, okay, we're go really try to look at data sharing as a use case and try to understand what's happening in the healthcare industry generally and specifically, how Nick thinks about sharing data in a governed fashion whether tapping the capabilities of multiple clouds is advantageous long term or presents more challenges than the effort is worth. And to start, Jesse, you lead this industry practice for Snowflake and it's a challenging and vibrant area. It's one that's hyper-focused on data privacy. So the first question is, you know there was a time when healthcare and other regulated industries wouldn't go near the cloud. What are you seeing today in the industry around cloud adoption and specifically multi-cloud adoption? >> Yeah, for years I've heard that healthcare and life sciences has been cloud diverse, but in spite of all of that if you look at a lot of aspects of this industry today, they've been running in the cloud for over 10 years now. Particularly when you look at CRM technologies or HR or HCM, even clinical technologies like EDC or ETMF. And it's interesting that you mentioned multi-cloud as well because this has always been an underlying reality especially within life sciences. This industry grows through acquisition where companies are looking to boost their future development pipeline either by buying up smaller biotechs, they may have like a late or a mid-stage promising candidate. And what typically happens is the larger pharma could then use their commercial muscle and their regulatory experience to move it to approvals and into the market. And I think the last few decades of cheap capital certainly accelerated that trend over the last couple of years. But this typically means that these new combined institutions may have technologies that are running on multiple clouds or multiple cloud strategies in various different regions to your point. And what we've often found is that they're not planning to standardize everything onto a single cloud provider. They're often looking for technologies that embrace this multi-cloud approach and work seamlessly across them. And I think this is a big reason why we, here at Snowflake, we've seen such strong momentum and growth across this industry because healthcare and life science has actually been one of our fastest growing sectors over the last couple of years. And a big part of that is in fact that we run on not only all three major cloud providers, but individual accounts within each and any one of them, they had the ability to communicate and interoperate with one another, like a globally interconnected database. >> Great, thank you for that setup. And so Nick, tell us more about your role and Ionis Pharma please. >> Sure. So I've been at Ionis for around five years now. You know, when when I joined it was, the IT department was pretty small. There wasn't a lot of warehousing, there wasn't a lot of kind of big data there. We saw an opportunity with Snowflake pretty early on as a provider that would be a lot of benefit for us, you know, 'cause we're small, wanted something that was fairly hands off. You know, I remember the days where you had to get a lot of DBAs in to fine tune your databases, make sure everything was running really, really well. The notion that there's, you know, no indexes to tune, right? There's very few knobs and dials, you can turn on Snowflake. That was appealing that, you know, it just kind of worked. So we found a use case to bring the platform in. We basically used it as a logging replacement as a Splunk kind of replacement with a platform called Elysium Analytics as a way to just get it in the door and give us the opportunity to solve a real world use case, but also to help us start to experiment using Snowflake as a platform. It took us a while to A, get the funding to bring it in, but B, build the momentum behind it. But, you know, as we experimented we added more data in there, we ran a few more experiments, we piloted in few more applications, we really saw the power of the platform and now, we are becoming a commercial organization. And with that comes a lot of major datasets. And so, you know, we really see Snowflake as being a very important part of our ecology going forward to help us build out our infrastructure. >> Okay, and you are running, your group runs on Azure, it's kind of mono cloud, single cloud, but others within Ionis are using other clouds, but you're not currently, you know, collaborating in terms of data sharing. And I wonder if you could talk about how your data needs have evolved over the past decade. I know you came from another highly regulated industry in financial services. So what's changed? You sort of touched on this before, you had these, you know, very specialized individuals who were, you know, DBAs, and, you know, could tune databases and the like, so that's evolved, but how has generally your needs evolved? Just kind of make an observation over the last, you know, five or seven years. What have you seen? >> Well, we, I wasn't in a group that did a lot of warehousing. It was more like online trade capture, but, you know, it was very much on-prem. You know, being in the cloud is very much a dirty word back then. I know that's changed since I've left. But in, you know, we had major, major teams of everyone who could do everything, right. As I mentioned in the pharma organization, there's a lot fewer of us. So the data needs there are very different, right? It's, we have a lot of SaaS applications. One of the difficulties with bringing a lot of SaaS applications on board is obviously data integration. So making sure the data is the same between them. But one of the big problems is joining the data across those SaaS applications. So one of the benefits, one of the things that we use Snowflake for is to basically take data out of these SaaS applications and load them into a warehouse so we can do those joins. So we use technologies like Boomi, we use technologies like Fivetran, like DBT to bring this data all into one place and start to kind of join that basically, allow us to do, run experiments, do analysis, basically take better, find better use for our data that was siloed in the past. You mentioned- >> Yeah. And just to add on to Nick's point there. >> Go ahead. >> That's actually something very common that we're seeing across the industry is because a lot of these SaaS applications that you mentioned, Nick, they're with from vendors that are trying to build their own ecosystem in walled garden. And by definition, many of them do not want to integrate with one another. So from a, you know, from a data platform vendor's perspective, we see this as a huge opportunity to help organizations like Ionis and others kind of deal with the challenges that Nick is speaking about because if the individual platform vendors are never going to make that part of their strategy, we see it as a great way to add additional value to these customers. >> Well, this data sharing thing is interesting. There's a lot of walled gardens out there. Oracle is a walled garden, AWS in many ways is a walled garden. You know, Microsoft has its walled garden. You could argue Snowflake is a walled garden. But the, what we're seeing and the whole reason behind the notion of super-cloud is we're creating an abstraction layer where you actually, in this case for this use case, can share data in a governed manner. Let's forget about the cross-cloud for a moment. I'll come back to that, but I wonder, Nick, if you could talk about how you are sharing data, again, Snowflake sort of, it's, I look at Snowflake like the app store, Apple, we're going to control everything, we're going to guarantee with data clean rooms and governance and the standards that we've created within that platform, we're going to make sure that it's safe for you to share data in this highly regulated industry. Are you doing that today? And take us through, you know, the considerations that you have in that regard. >> So it's kind of early days for us in Snowflake in general, but certainly in data sharing, we have a couple of examples. So data marketplace, you know, that's a great invention. It's, I've been a small IT shop again, right? The fact that we are able to just bring down terabyte size datasets straight into our Snowflake and run analytics directly on that is huge, right? The fact that we don't have to FTP these massive files around run jobs that may break, being able to just have that on tap is huge for us. We've recently been talking to one of our CRO feeds- CRO organizations about getting their data feeds in. Historically, this clinical trial data that comes in on an FTP file, we have to process it, take it through the platforms, put it into the warehouse. But one of the CROs that we talked to recently when we were reinvestigate in what data opportunities they have, they were a Snowflake customer and we are, I think, the first production customer they have, have taken that feed. So they're basically exposing their tables of data that historically came in these FTP files directly into our Snowflake instance now. We haven't taken advantage of that. It only actually flipped the switch about three or four weeks ago. But that's pretty big for us again, right? We don't have to worry about maintaining those jobs that take those files in. We don't have to worry about the jobs that take those and shove them on the warehouse. We now have a feed that's directly there that we can use a tool like DBT to push through directly into our model. And then the third avenue that's came up, actually fairly recently as well was genetics data. So genetics data that's highly, highly regulated. We had to be very careful with that. And we had a conversation with Snowflake about the data white rooms practice, and we see that as a pretty interesting opportunity. We are having one organization run genetic analysis being able to send us those genetic datasets, but then there's another organization that's actually has the in quotes "metadata" around that, so age, ethnicity, location, et cetera. And being able to join those two datasets through some kind of mechanism would be really beneficial to the organization. Being able to build a data white room so we can put that genetic data in a secure place, anonymize it, and then share the amalgamated data back out in a way that's able to be joined to the anonymized metadata, that could be pretty huge for us as well. >> Okay, so this is interesting. So you talk about FTP, which was the common way to share data. And so you basically, it's so, I got it now you take it and do whatever you want with it. Now we're talking, Jesse, about sharing the same copy of live data. How common is that use case in your industry? >> It's become very common over the last couple of years. And I think a big part of it is having the right technology to do it effectively. You know, as Nick mentioned, historically, this was done by people sending files around. And the challenge with that approach, of course, while there are multiple challenges, one, every time you send a file around your, by definition creating a copy of the data because you have to pull it out of your system of record, put it into a file, put it on some server where somebody else picks it up. And by definition at that point you've lost governance. So this creates challenges in general hesitation to doing so. It's not that it hasn't happened, but the other challenge with it is that the data's no longer real time. You know, you're working with a copy of data that was as fresh as at the time at that when that was actually extracted. And that creates limitations in terms of how effective this can be. What we're starting to see now with some of our customers is live sharing of information. And there's two aspects of that that are important. One is that you're not actually physically creating the copy and sending it to someone else, you're actually exposing it from where it exists and allowing another consumer to interact with it from their own account that could be in another region, some are running in another cloud. So this concept of super-cloud or cross-cloud could becoming realized here. But the other important aspect of it is that when that other- when that other entity is querying your data, they're seeing it in a real time state. And this is particularly important when you think about use cases like supply chain planning, where you're leveraging data across various different enterprises. If I'm a manufacturer or if I'm a contract manufacturer and I can see the actual inventory positions of my clients, of my distributors, of the levels of consumption at the pharmacy or the hospital that gives me a lot of indication as to how my demand profile is changing over time versus working with a static picture that may have been from three weeks ago. And this has become incredibly important as supply chains are becoming more constrained and the ability to plan accurately has never been more important. >> Yeah. So the race is on to solve these problems. So it start, we started with, hey, okay, cloud, Dave, we're going to simplify database, we're going to put it in the cloud, give virtually infinite resources, separate compute from storage. Okay, check, we got that. Now we've moved into sort of data clean rooms and governance and you've got an ecosystem that's forming around this to make it safer to share data. And then, you know, nirvana, at least near term nirvana is we're going to build data applications and we're going to be able to share live data and then you start to get into monetization. Do you see, Nick, in the near future where I know you've got relationships with, for instance, big pharma like AstraZeneca, do you see a situation where you start sharing data with them? Is that in the near term? Is that more long term? What are the considerations in that regard? >> I mean, it's something we've been thinking about. We haven't actually addressed that yet. Yeah, I could see situations where, you know, some of these big relationships where we do need to share a lot of data, it would be very nice to be able to just flick a switch and share our data assets across to those organizations. But, you know, that's a ways off for us now. We're mainly looking at bringing data in at the moment. >> One of the things that we've seen in financial services in particular, and Jesse, I'd love to get your thoughts on this, is companies like Goldman or Capital One or Nasdaq taking their stack, their software, their tooling actually putting it on the cloud and facing it to their customers and selling that as a new monetization vector as part of their digital or business transformation. Are you seeing that Jesse at all in healthcare or is it happening today or do you see a day when that happens or is healthier or just too scary to do that? >> No, we're seeing the early stages of this as well. And I think it's for some of the reasons we talked about earlier. You know, it's a much more secure way to work with a colleague if you don't have to copy your data and potentially expose it. And some of the reasons that people have historically copied that data is that they needed to leverage some sort of algorithm or application that a third party was providing. So maybe someone was predicting the ideal location and run a clinical trial for this particular rare disease category where there are only so many patients around the world that may actually be candidates for this disease. So you have to pick the ideal location. Well, sending the dataset to do so, you know, would involve a fairly complicated process similar to what Nick was mentioning earlier. If the company who was providing the logic or the algorithm to determine that location could bring that algorithm to you and you run it against your own data, that's a much more ideal and a much safer and more secure way for this industry to actually start to work with some of these partners and vendors. And that's one of the things that we're looking to enable going into this year is that, you know, the whole concept should be bring the logic to your data versus your data to the logic and the underlying sharing mechanisms that we've spoken about are actually what are powering that today. >> And so thank you for that, Jesse. >> Yes, Dave. >> And so Nick- Go ahead please. >> Yeah, if I could add, yeah, if I could add to that, that's something certainly we've been thinking about. In fact, we'd started talking to Snowflake about that a couple of years ago. We saw the power there again of the platform to be able to say, well, could we, we were thinking in more of a data share, but could we share our data out to say an AI/ML vendor, have them do the analytics and then share the data, the results back to us. Now, you know, there's more powerful mechanisms to do that within the Snowflake ecosystem now, but you know, we probably wouldn't need to have onsite AI/ML people, right? Some of that stuff's very sophisticated, expensive resources, hard to find, you know, it's much better for us to find a company that would be able to build those analytics, maintain those analytics for us. And you know, we saw an opportunity to do that a couple years ago and we're kind of excited about the opportunity there that we can just basically do it with a no op, right? We share the data route, we have the analytics done, we get the result back and it's just fairly seamless. >> I mean, I could have a whole another Cube session on this, guys, but I mean, I just did a a session with Andy Thurai, a Constellation research about how difficult it's been for organization to get ROI because they don't have the expertise in house so they want to either outsource it or rely on vendor R&D companies to inject that AI and machine intelligence directly into applications. My follow-up question to you Nick is, when you think about, 'cause Jesse was talking about, you know, let the data basically stay where it is and you know bring the compute to that data. If that data lives on different clouds, and maybe it's not your group, but maybe it's other parts of Ionis or maybe it's your partners like AstraZeneca, or you know, the AI/ML partners and they're potentially on other clouds or that data is on other clouds. Do you see that, again, coming back to super-cloud, do you see it as an advantage to be able to have a consistent experience across those clouds? Or is that just kind of get in the way and make things more complex? What's your take on that, Nick? >> Well, from the vendors, so from the client side, it's kind of seamless with Snowflake for us. So we know for a fact that one of the datasets we have at the moment, Compile, which is a, the large multi terabyte dataset I was talking about. They're on AWS on the East Coast and we are on Azure on the West Coast. And they had to do a few tweaks in the background to make sure the data was pushed over from, but from my point of view, the data just exists, right? So for me, I think it's hugely beneficial that Snowflake supports this kind of infrastructure, right? We don't have to jump through hoops to like, okay, well, we'll download it here and then re-upload it here. They already have the mechanism in the background to do these multi-cloud shares. So it's not important for us internally at the moment. I could see potentially at some point where we start linking across different groups in the organization that do have maybe Amazon or Google Cloud, but certainly within our providers. We know for a fact that they're on different services at the moment and it just works. >> Yeah, and we learned from Benoit Dageville, who came into the studio on August 9th with first Supercloud in 2022 that Snowflake uses a single global instance across regions and across clouds, yeah, whether or not you can query across you know, big regions, it just depends, right? It depends on latency. You might have to make a copy or maybe do some tweaks in the background. But guys, we got to jump, I really appreciate your time. Really thoughtful discussion on the future of data and cloud, specifically within healthcare and pharma. Thank you for your time. >> Thanks- >> Thanks for having us. >> All right, this is Dave Vellante for theCUBE team and my co-host, John Furrier. Keep it right there for more action at Supercloud 2. (upbeat music)

Published Date : Jan 3 2023

SUMMARY :

and analytics in the So the first question is, you know And it's interesting that you Great, thank you for that setup. get the funding to bring it in, over the last, you know, So one of the benefits, one of the things And just to add on to Nick's point there. that you mentioned, Nick, and the standards that we've So data marketplace, you know, And so you basically, it's so, And the challenge with Is that in the near term? bringing data in at the moment. One of the things that we've seen that algorithm to you and you And so Nick- the results back to us. Or is that just kind of get in the way in the background to do on the future of data and cloud, All right, this is Dave Vellante

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jesse CugliottaPERSON

0.99+

Dave VellantePERSON

0.99+

GoldmanORGANIZATION

0.99+

AstraZenecaORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

John FurrierPERSON

0.99+

Capital OneORGANIZATION

0.99+

JessePERSON

0.99+

Andy ThuraiPERSON

0.99+

AWSORGANIZATION

0.99+

August 9thDATE

0.99+

NickPERSON

0.99+

NasdaqORGANIZATION

0.99+

Nicholas Nick TaylorPERSON

0.99+

fiveQUANTITY

0.99+

AmazonORGANIZATION

0.99+

IonisORGANIZATION

0.99+

DavePERSON

0.99+

Ionis PharmaORGANIZATION

0.99+

Nicholas TaylorPERSON

0.99+

Ionis PharmaceuticalsORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

first questionQUANTITY

0.99+

Benoit DagevillePERSON

0.99+

AppleORGANIZATION

0.99+

seven yearsQUANTITY

0.99+

OracleORGANIZATION

0.99+

2022DATE

0.99+

todayDATE

0.99+

over 10 yearsQUANTITY

0.98+

SnowflakeTITLE

0.98+

oneQUANTITY

0.98+

OneQUANTITY

0.98+

two aspectsQUANTITY

0.98+

firstQUANTITY

0.98+

this yearDATE

0.97+

eachQUANTITY

0.97+

two datasetsQUANTITY

0.97+

West CoastLOCATION

0.97+

four weeks agoDATE

0.97+

around five yearsQUANTITY

0.97+

threeQUANTITY

0.95+

first productionQUANTITY

0.95+

East CoastLOCATION

0.95+

third avenueQUANTITY

0.95+

one organizationQUANTITY

0.94+

theCUBEORGANIZATION

0.94+

couple years agoDATE

0.93+

single cloudQUANTITY

0.92+

single cloud providerQUANTITY

0.92+

hree weeks agoDATE

0.91+

one placeQUANTITY

0.88+

AzureTITLE

0.86+

last couple of yearsDATE

0.85+

AWS re:Invent Show Wrap | AWS re:Invent 2022


 

foreign welcome back to re invent 2022 we're wrapping up four days well one evening and three solid days wall-to-wall of cube coverage I'm Dave vellante John furrier's birthday is today he's on a plane to London to go see his nephew get married his his great Sister Janet awesome family the furriers uh spanning the globe and uh and John I know you wanted to be here you're watching in Newark or you were waiting to uh to get in the plane so all the best to you happy birthday one year the Amazon PR people brought a cake out to celebrate John's birthday because he's always here at AWS re invented his birthday so I'm really pleased to have two really special guests uh former Cube host Cube Alum great wikibon contributor Stu miniman now with red hat still good to see you again great to be here Dave yeah I was here for that cake uh the twitterverse uh was uh really helping to celebrate John's birthday today and uh you know always great to be here with you and then with this you know Awesome event this week and friend of the cube of many time Cube often Cube contributor as here's a cube analyst this week as his own consultancy sarbj johal great to see you thanks for coming on good to see you Dave uh great to see you stu I'm always happy to participate in these discussions and um I enjoy the discussion every time so this is kind of cool because you know usually the last day is a getaway day and this is a getaway day but this place is still packed I mean it's I mean yeah it's definitely lighter you can at least walk and not get slammed but I subjit I'm going to start with you I I wanted to have you as the the tail end here because cause you participated in the analyst sessions you've been watching this event from from the first moment and now you've got four days of the Kool-Aid injection but you're also talking to customers developers Partners the ecosystem where do you want to go what's your big takeaways I think big takeaways that Amazon sort of innovation machine is chugging along they are I was listening to some of the accessions and when I was back to my room at nine so they're filling the holes in some areas but in some areas they're moving forward there's a lot to fix still it doesn't seem like that it seems like we are done with the cloud or The Innovation is done now we are building at the millisecond level so where do you go next there's a lot of room to grow on the storage side on the network side uh the improvements we need and and also making sure that the software which is you know which fits the hardware like there's a specialized software um sorry specialized hardware for certain software you know so there was a lot of talk around that and I attended some of those sessions where I asked the questions around like we have a specialized database for each kind of workload specialized processes processors for each kind of workload yeah the graviton section and actually the the one interesting before I forget that the arbitration was I asked that like why there are so many so many databases and IRS for the egress costs and all that stuff can you are you guys thinking about reducing that you know um the answer was no egress cost is not a big big sort of uh um show stopper for many of the customers but but the from all that sort of little discussion with with the folks sitting who build these products over there was that the plethora of choice is given to the customers to to make them feel that there's no vendor lock-in so if you are using some open source you know um soft software it can be on the you know platform side or can be database side you have database site you have that option at AWS so this is a lot there because I always thought that that AWS is the mother of all lock-ins but it's got an ecosystem and we're going to talk about exactly we'll talk about Stu what's working within AWS when you talk to customers and where are the challenges yeah I I got a comment on open source Dave of course there because I mean look we criticized to Amazon for years about their lack of contribution they've gotten better they're doing more in open source but is Amazon the mother of all lock-ins many times absolutely there's certain people inside Amazon I'm saying you know many of us talk Cloud native they're like well let's do Amazon native which means you're like full stack is things from Amazon and do things the way that we want to do things and you know I talk to a lot of customers they use more than one Cloud Dave and therefore certain things absolutely I want to Leverage The Innovation that Amazon has brought I do think we're past building all the main building blocks in many ways we are like in day two yes Amazon is fanatically customer focused and will always stay that way but you know there wasn't anything that jumped out at me last year or this year that was like Wow new category whole new way of thinking about something we're in a vocals last year Dave said you know we have over 200 services and if we listen to you the customer we'd have over two thousand his session this week actually got some great buzz from my friends in the serverless ecosystem they love some of the things tying together we're using data the next flywheel that we're going to see for the next 10 years Amazon's at the center of the cloud ecosystem in the IT world so you know there's a lot of good things here and to your point Dave the ecosystem one of the things I always look at is you know was there a booth that they're all going to be crying in their beer after Amazon made an announcement there was not a tech vendor that I saw this week that was like oh gosh there was an announcement and all of a sudden our business is gone where I did hear some rumbling is Amazon might be the next GSI to really move forward and we've seen all the gsis pushing really deep into supporting Cloud bringing workloads to the cloud and there's a little bit of rumbling as to that balance between what Amazon will do and their uh their go to market so a couple things so I think I think we all agree that a lot of the the announcements here today were taping seams right I call it and as it relates to the mother of all lock-in the reason why I say that it's it's obviously very much a pejorative compare Oracle company you know really well with Amazon's lock-in for Amazon's lock-in is about bringing this ecosystem together so that you actually have Choice Within the the house so you don't have to leave you know there's a there's a lot to eat at the table yeah you look at oracle's ecosystem it's like yeah you know oracle is oracle's ecosystem so so that is how I think they do lock in customers by incenting them not to leave because there's so much Choice Dave I agree with you a thousand I mean I'm here I'm a I'm a good partner of AWS and all of the partners here want to be successful with Amazon and Amazon is open to that it's not our way or get out which Oracle tries how much do you extract from the overall I.T budget you know are you a YouTube where you give the people that help you create a large sum of the money YouTube hasn't been all that profitable Amazon I think is doing a good balance of the ecosystem makes money you know we used to talk Dave about you know how much dollars does VMware make versus there um I think you know Amazon is a much bigger you know VMware 2.0 we used to think talk about all the time that VMware for every dollar spent on VMware licenses 15 or or 12 or 20 were spent in the ecosystem I would think the ratio is even higher here sarbji and an Oracle I would say it's I don't know yeah actually 1 to 0.5 maybe I don't know but I want to pick on your discussion about the the ecosystem the the partner ecosystem is so it's it's robust strong because it's wider I was I was not saying that there's no lock-in with with Amazon right AWS there's lock-in there's lock-in with everything there's lock-in with open source as well but but the point is that they're they're the the circle is so big you don't feel like locked in but they're playing smart as well they're bringing in the software the the platforms from the open source they're picking up those packages and saying we'll bring it in and cater that to you through AWS make it better perform better and also throw in their custom chips on top of that hey this MySQL runs better here so like what do you do I said oh Oracle because it's oracle's product if you will right so they are I think think they're filing or not slenders from their go to market strategy from their engineering and they listen to they're listening to customers like very closely and that has sort of side effects as well listening to customers creates a sprawl of services they have so many services and I criticized them last year for calling everything a new service I said don't call it a new service it's a feature of a existing service sure a lot of features a lot of features this is egress our egress costs a real problem or is it just the the on-prem guys picking at the the scab I mean what do you hear from customers so I mean Dave you know I I look at what Corey Quinn talks about all the time and Amazon charges on that are more expensive than any other Cloud the cloud providers and partly because Amazon is you know probably not a word they'd use they are dominant when it comes to the infrastructure space and therefore they do want to make it a little bit harder to do that they can get away with it um because um yeah you know we've seen some of the cloud providers have special Partnerships where you can actually you know leave and you're not going to be charged and Amazon they've been a little bit more flexible but absolutely I've heard customers say that they wish some good tunning and tongue-in-cheek stuff what else you got we lay it on us so do our players okay this year I think the focus was on the upside it's shifting gradually this was more focused on offside there were less talk of of developers from the main stage from from all sort of quadrants if you will from all Keynotes right so even Werner this morning he had a little bit for he was talking about he he was talking he he's job is to Rally up the builders right yeah so he talks about the go build right AWS pipes I thought was kind of cool then I said like I'm making glue easier I thought that was good you know I know some folks don't use that I I couldn't attend the whole session but but I heard in between right so it is really adopt or die you know I am Cloud Pro for last you know 10 years and I think it's the best model for a technology consumption right um because of economies of scale but more importantly because of division of labor because of specialization because you can't afford to hire the best security people the best you know the arm chip designers uh you can't you know there's one actually I came up with a bumper sticker you guys talked about bumper sticker I came up with that like last couple of weeks The Innovation favorite scale they have scale they have Innovation so that's where the Innovation is and it's it's not there again they actually say the market sets the price Market you as a customer don't set the price the vendor doesn't set the price Market sets the price so if somebody's complaining about their margins or egress and all that I think that's BS um yeah I I have a few more notes on the the partner if you you concur yeah Dave you know with just coming back to some of this commentary about like can Amazon actually enable something we used to call like Community clouds uh your companies like you know Goldman and NASDAQ and the like where Industries will actually be able to share data uh and you know expand the usage and you know Amazon's going to help drive that API economy forward some so it's good to see those things because you know we all know you know all of us are smarter than just any uh single company together so again some of that's open source but some of that is you know I think Amazon is is you know allowing Innovation to thrive I think the word you're looking for is super cloud there well yeah I mean it it's uh Dave if you want to go there with the super cloud because you know there's a metaphor for exactly what you described NASDAQ Goldman Sachs we you know and and you know a number of other companies that are few weeks at the Berkeley Sky Computing paper yeah you know that's a former supercloud Dave Linthicum calls it metacloud I'm not really careful I mean you know I go back to the the challenge we've been you know working at for a decade is the distributed architecture you know if you talk about AI architectures you know what lives in the cloud what lives at the edge where do we train things where do we do inferences um locations should matter a lot less Amazon you know I I didn't hear a lot about it this show but when they came out with like local zones and oh my gosh out you know all the things that Amazon is building to push out to the edge and also enabling that technology and software and the partner ecosystem helps expand that and Pull It in it's no longer you know Dave it was Hotel California all of the data eventually is going to end up in the public cloud and lock it in it's like I don't think that's going to be the case we know that there will be so much data out at the edge Amazon absolutely is super important um there some of those examples we're giving it's not necessarily multi-cloud but there's collaboration happening like in the healthcare world you know universities and hospitals can all share what they're doing uh regardless of you know where they live well Stephen Armstrong in the analyst session did say that you know we're going to talk about multi-cloud we're not going to lead with it necessarily but we are going to actually talk about it and that's different to your points too than in the fullness of time all the data will be in the cloud that's a new narrative but go ahead yeah actually Amazon is a leader in the cloud so if they push the cloud even if they don't say AWS or Amazon with it they benefit from it right and and the narrative is that way there's the proof is there right so again Innovation favorite scale there are chips which are being made for high scale their software being tweaked for high scale you as a Bank of America or for the Chrysler as a typical Enterprise you cannot afford to do those things in-house what cloud providers can I'm not saying just AWS Google cloud is there Azure guys are there and few others who are behind them and and you guys are there as well so IBM has IBM by the way congratulations to your red hat I know but IBM won the award um right you know very good partner and yeah but yeah people are dragging their feet people usually do on the change and they are in denial denial they they drag their feet and they came in IBM director feed the cave Den Dell drag their feed the cave in yeah you mean by Dragon vs cloud deniers cloud deniers right so server Huggers I call them but they they actually are sitting in Amazon Cloud Marketplace everybody is buying stuff from there the marketplace is the new model OKAY Amazon created the marketplace for b2c they are leading the marketplace of B2B as well on the technology side and other people are copying it so there are multiple marketplaces now so now actually it's like if you're in in a mobile app development there are two main platforms Android and Apple you first write the application for Apple right then for Android hex same here as a technology provider as and I I and and I actually you put your stuff to AWS first then you go anywhere else yeah they are later yeah the Enterprise app store is what we've wanted for a long time the question is is Amazon alone the Enterprise app store or are they partner of a of a larger portfolio because there's a lot of SAS companies out there uh that that play into yeah what we need well and this is what you're talking about the future but I just want to make a point about the past you talking about dragging their feet because the Cube's been following this and Stu you remember this in 2013 IBM actually you know got in a big fight with with Amazon over the CIA deal you know and it all became public judge wheeler eviscerated you know IBM and it ended up IBM ended up buying you know soft layer and then we know what happened there and it Joe Tucci thought the cloud was Mosey right so it's just amazing to see we have booksellers you know VMware called them books I wasn't not all of them are like talking about how great Partnerships they are it's amazing like you said sub GC and IBM uh with the the GSI you know Partnership of the year but what you guys were just talking about was the future and that's what I wanted to get to is because you know Amazon's been leading the way I I was listening to Werner this morning and that just reminded me of back in the days when we used to listen to IBM educate us give us a master class on system design and decoupled systems and and IO and everything else now Amazon is you know the master educator and it got me thinking how long will that last you know will they go the way of you know the other you know incumbents will they be disrupted or will they you know keep innovating maybe it's going to take 10 or 20 years I don't know yeah I mean Dave you actually you did some research I believe it was a year or so ago yeah but what will stop Amazon and the one thing that worries me a little bit um is the two Pizza teams when you have over 202 Pizza teams the amount of things that each one of those groups needs to take care of was more than any human could take care of people burn out they run out of people how many amazonians only last two or three years and then leave because it is tough I bumped into plenty of friends of mine that have been you know six ten years at Amazon and love it but it is a tough culture and they are driving werner's keynote I thought did look to from a product standpoint you could say tape over some of the seams some of those solutions to bring Beyond just a single product and bring them together and leverage data so there are some signs that they might be able to get past some of those limitations but I still worry structurally culturally there could be some challenges for Amazon to keep the momentum going especially with the global economic impact that we are likely to see in the next year bring us home I think the future side like we could talk about the vendors all day right to serve the community out there I think we should talk about how what's the future of technology consumption from the consumer side so from the supplier side just a quick note I think the only danger AWS has has that that you know Fred's going after them you know too big you know like we will break you up and that can cause some disruption there other than that I think they they have some more steam to go for a few more years at least before we start thinking about like oh this thing is falling apart or anything like that so they have a lot more they have momentum and it's continuing so okay from the I think game is on retail by the way is going to get disrupted before AWS yeah go ahead from the buyer's side I think um the the future of the sort of Technology consumption is based on the paper uh use and they actually are turning all their services to uh they are sort of becoming serverless behind the scenes right all analytics service they had one service left they they did that this year so every service is serverless so that means you pay exactly for the amount you use the compute the iops the the storage so all these three layers of course Network we talked about the egress stuff and that's a problem there because of the network design mainly because Google has a flatter design and they have lower cost so so they are actually squeezing the their their designing this their services in a way that you don't waste any resources as a buyer so for example very simple example when early earlier In This Cloud you will get a VM right in Cloud that's how we started so and you can get 20 use 20 percent of the VM 80 is getting wasted that's not happening now that that has been reduced to the most extent so now your VM grows as you grow the usage and if you go higher than the tier you picked they will charge you otherwise they will not charge you extra so that's why there's still a lot of instances like many different types you have to pick one I think the future is that those instances will go away the the instance will be formed for you on the fly so that is the future serverless all right give us bumper sticker Stu and then Serb G I'll give you my quick one and then we'll wrap yeah so just Dave to play off of sharp G and to wrap it up you actually wrote about it on your preview post for here uh serverless we're talking about how developers think about things um and you know Amazon in many ways you know is the new default server uh you know for the cloud um and containerization fits into the whole serverless Paradigm uh it's the space that I live in uh you know every day here and you know I was happy to see the last few years serverless and containers there's a blurring a line and you know subject we're still going to see VMS for a long time yeah yeah we will see that so give us give us your book Instagram my number six is innovation favorite scale that's my bumper sticker and and Amazon has that but also I I want everybody else to like the viewers to take a look at the the Google Cloud as well as well as IBM with others like maybe you have a better price to Performance there for certain workloads and by the way one vendor cannot do it alone we know that for sure the market is so big there's a lot of room for uh Red Hats of the world and and and Microsoft's the world to innovate so keep an eye on them they we need the competition actually and that's why competition Will Keep Us to a place where Market sets the price one vendor doesn't so the only only danger is if if AWS is a monopoly then I will be worried I think ecosystems are the Hallmark of a great Cloud company and Amazon's got the the biggest and baddest ecosystem and I think the other thing to watch for is Industries building on top of the cloud you mentioned the Goldman Sachs NASDAQ Capital One and Warner media these all these industries are building their own clouds and that's where the real money is going to be made in the latter half of the 2020s all right we're a wrap this is Dave Valente I want to first of all thank thanks to our great sponsors AWS for for having us here this is our 10th year at the cube AMD you know sponsoring as well the the the cube here Accenture sponsor to third set upstairs upstairs on the fifth floor all the ecosystem partners that came on the cube this week and supported our mission for free content our content is always free we try to give more to the community and we we take back so go to thecube.net and you'll see all these videos go to siliconangle com for all the news wikibon.com I publish weekly a breaking analysis series I want to thank our amazing crew here you guys we have probably 30 35 people unbelievable our awesome last session John Walls uh Paul Gillen Lisa Martin Savannah Peterson John Furrier who's on a plane we appreciate Andrew and Leonard in our ear and all of our our crew Palo Alto Boston and across the country thank you so much really appreciate it all right we are a wrap AWS re invent 2022 we'll see you in two weeks we'll see you two weeks at Palo Alto ignite back here in Vegas thanks for watching thecube the leader in Enterprise and emerging Tech coverage [Music]

Published Date : Dec 2 2022

SUMMARY :

of the ecosystem makes money you know we

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Stephen ArmstrongPERSON

0.99+

DavePERSON

0.99+

AmazonORGANIZATION

0.99+

AWSORGANIZATION

0.99+

LeonardPERSON

0.99+

Joe TucciPERSON

0.99+

JohnPERSON

0.99+

LondonLOCATION

0.99+

Corey QuinnPERSON

0.99+

AndrewPERSON

0.99+

2013DATE

0.99+

10QUANTITY

0.99+

IBMORGANIZATION

0.99+

NASDAQORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

NewarkLOCATION

0.99+

John WallsPERSON

0.99+

Paul GillenPERSON

0.99+

GoldmanORGANIZATION

0.99+

VegasLOCATION

0.99+

10th yearQUANTITY

0.99+

two weeksQUANTITY

0.99+

YouTubeORGANIZATION

0.99+

last yearDATE

0.99+

Dave LinthicumPERSON

0.99+

GoogleORGANIZATION

0.99+

six ten yearsQUANTITY

0.99+

Palo AltoLOCATION

0.99+

thecube.netOTHER

0.99+

AppleORGANIZATION

0.99+

AndroidTITLE

0.99+

John FurrierPERSON

0.99+

over 200 servicesQUANTITY

0.99+

fifth floorQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

this yearDATE

0.99+

Alice McElroy and Greg Ostrowski Final


 

(relaxing music) >> Hello everyone and welcome back to theCUBE's continuing coverage of AWS re:Invent. My name is Savannah Peterson and I am absolutely thrilled for this segment. We are joined by leaders at Cisco AppDynamics as well as Royal Caribbean. The two have been working together for over five years, leveraging full stack observability. We're going to dig in, but first of all please welcome Alice from Royal Caribbean and Greg from Cisco AppDynamics to the show. Hey friends. >> Hi. How are you doing? >> I'm excited, clearly. How are you doing, Greg? >> I'm doing fantastic. Thanks for having me on the show today. >> Hey, it's our, it is absolutely our pleasure. Alice, I have to start with you. I don't think there are too many industries that have gotten as much coverage as cruising has over the last couple of years. You've been working with Royal Caribbean for over a decade so you've seen it through the stormy seas of the pandemic, if you will. What has the last few years and the last few months been like for you? >> You know, it's really been a wild ride. To your point, we were sailing high, and then I don't think any other industry experienced what we did in COVID, that you walked in one day and then that day the whole industry shut down. So it was a big challenge for us. And then as soon as we shut down and we weathered the storm with COVID, then we had what we called our healthy return to service. So as quickly as it stopped, we had to start sailing again. So it's really been a challenge but we're happy to be back on our feet and heading in the right direction now. >> I really hope we can continue the sailing metaphors throughout the course of this interview. And you nailed that for a segment, Alice, I'm so here for it. I want to talk about how you've worked together but I want to give Greg a second to chime in here. So, Greg, you're the executive CTO at Cisco AppDynamics. How have you and the team weathered the last two and a half years? >> Well, you know, it's interesting, the pandemic really brought together an interesting conundrum, right? So on one hand, you had, you know, the consumers, the end users that became very reliant on digital services. They had a function in a way that was very performing, right? So, 84% of the respondents that we had come back through a report called the App Attention Index, came back and said that digital services were really instrumental for them to get back to some level of normalcy. But the interesting part that came about that is that out of those respondents, 60% of them blamed the brand if the application did not work the way they expected it. So they didn't really care about the complex- >> Wow. >> In the back end, right? So when you look at- >> Yeah. >> You look at the shift in the IT department, the IT department had to go out and quickly innovate. Quickly start to introduce new services, which ultimately brought together a sprawl in their technology stack. So, when you're adding to it you're not taking things away, you're continuously growing. So finding that the problems or the root cause of an application issue became more difficult. So that's where, you know, from a Cisco AppDynamics perspective, you know we're one of the leading observability and application performance monitoring tools. So, we help customers like Royal Caribbean to be able to zero in on root cause and ensure that their end users have that best experience. >> It's, I'm smiling as someone who was a former waitress and I can remember the amount of times I was scolded for something that happened that was far out of my control in the complex layers of the kitchen. (Greg laughs) And I think that anyone who's had a poor customer experience while interacting with a brand may or may not intentionally, you know, I think it's actually sometimes very unintentional to your point, get frustrated with said brand. I can imagine that is an experience and a priority that you have at Royal Caribbean, Alice. How has full stack observability played a role in your team's ability to serve the customers and keep your community engaged during this very kind of wobbly time? >> Yeah, you know, we have really worked hard to improve and remove friction from our guest vacation. And we want to keep them on vacation and having a great time. You know, we say we don't really sell a cruise. We sell an experience. So we use AppDynamics to monitor those key applications that our guests are interacting with to ensure that they're having that experience that we expect. You know, we've learned that just because a system or a server says, hey I'm up 99% of the time, that doesn't mean that my guests are experiencing that same type of stability, you know? So once again, we really worked well with AppDynamics. They've partnered with us to ensure that, you know, our guests are getting that vacation experience they're looking for. >> Do you think, just a follow up there, do you think that you would have advanced in the ways that you have working with Cisco AppDynamics and across functions over the last few years, without this crunch? Was necessity the mother of invention for you to any degree? >> You know, I don't think that the crunch brought it on 'cause we, like I said, we started this journey back in 2017. And we're not unlike a lot of companies where we're on this maturity ride where we want to go from being reactive, where our guests are telling us something is broken, to being preventive. Definitely, you know, COVID played into this because I think we learned to do less, you know, more with less. So, you know, it's very hard in the cruise industry. We did take a hit but we were able to use the AppDynamics tools to ensure that our systems were running with having less people also watching those systems. So less eyes on glass, more automation. >> And that's more stability, more credibility, and more transparency is definitely something that we're all looking forward. And it's nice to see that implemented, especially at scale when you're dealing with so many customers from all over the world trying to access your service and wanting that personalized experience. Greg, what does it feel like for you as a leader to hear someone like Alice say how powerful your tool has been in ensuring that customer experience? >> Yeah, that's, you know, it's absolutely fantastic. And especially, you know, Alice is absolutely right. You know, the cruise industry was really, had a very unique challenge in front of them. And I really applaud the folks at Royal Caribbean for stepping up to make sure that when the pandemic eased, so to speak, that the experience to the customer was actually even better, right? So when we were able to work and partner together to make sure that, you know, the user experience is topnotch, the availability's there, the resiliency of their platform is there. So, by working with customers like Royal Caribbean is really one of the shining stars that we can talk about that really helped make a big difference in, you know that post pandemic era to be able to really do what's right for the customer. >> How often are you engaging with customers like Alice as a team? How big is that feedback in your product roadmap? >> Oh, personally, I'm engaged with customers on a daily basis. And I see it across the map from many different industries. And, you know, a lot of folks had different challenges, but the ultimate commonality that I've seen across, you know, multiple industries is that, you know, when we're in that pandemic state, digital services were the only way that their customers were interacting with them. So, you know, when you're looking at a bank or you're looking at, you know, different types of travel agencies and organizations that, you know like Royal Caribbean as well, that really had that opportunity to focus on what's the most valuable thing to them which is user experience. It's a very, very common trend that we saw. And, you know, you see an expedited path of digital transformation happen. And really that's where we partner with, you know, customers like Royal Caribbean and many others across different industries to make sure that the business outcomes were being driven towards the proper direction as well as that, you know, the user experience. And I don't think I can emphasize user experience as being so critically important, anymore than I already have. But it's really one of the most valuable currencies most organizations have. >> One of my favorite lines is community is your first defensible asset. And you know, you can talk about user experience as much as you want on here, at the end of the day. If people aren't having a positive interaction with your brand or your product, it's probably not going to last super long unless it's legacy. And we don't have to go down that rabbit hole today. >> Especially if I can add, there's a lot of competition there. >> Of course. >> Right? There's a lot of competition out there. So if your applications do not perform or your digital services do not perform the end user has the quick ability to just quickly delete and move on. And the same thing with what Alice sees in the cruise industry, you know. You have an opportunity to rise to the top and I really applaud them for taking advantage of that opportunity. >> Yeah. Well, I'm here for both of you cheering each other on. Certainly, the water level rises together. >> That's right. >> Alice, what sort of challenges are you taking on currently that you're able to disclose? What sort of leaps do you think or it doesn't have to be leaps, but what kind of experience are you hoping to continue to enhance for Royal Caribbean customers? >> You know, right now, you know with our current connectivity it's all about managing that bandwidth. You know, we're hoping to go to that state where bandwidth isn't at a high cost. So now we're going to be even able to watch our user interaction more from ship to shore. You know, and we're maybe moving to that area where we're thinking cloud first from a shift. If you think about it, we've got 50 plus data centers floating around the world. So that connectivity is key. Now we're opening up that bandwidth. Now I need to see how the transactions are performing as we come off ship. You know, with that, once again, that cloud first mentality. It's a super exciting time for us. And I really see, you know, AppD is going to play a role in that. >> I love that visual just for a second of 50 data centers with also, surrounded by people having a very wonderful time on board. What a nice thought. I can't say that every data center I've ever been to is as glamorous, fun or sexy as being on a Royal Caribbean ship. However, I hope that we move perhaps in that direction. We were just at Super Computing a few weeks ago and it was great to see all the hardware there. So you never know. What role do you see yourself and the team and Cisco AppDynamics playing in that future for companies like Royal Caribbean, Greg? >> You know, it's really, it's really staying right lockstep with our customers as they move through that digital transformation efforts. The key piece is that we look at it from that full stack view. So we offer full stack observability, which, you know, if you look at the challenges that we want to go after. Traditional IT departments were historically siloed pretty significantly between, you know network and infrastructure, security, app dev. So I mean, ensuring that we can get our customers to be able to have that common view that shows what's the real important pieces across all domains. So when they start moving down the path of digital transformation, that's an opportunity to also revamp how their processes are, the people interact and the technology that they use to be able to deliver the proper business outcomes. So we talk a lot with our customers around full stack observability, but the key part is business context. So if you have a big effort for digital transformation, you're starting to add new services to it. How do you know if it's actually impacting the business in a positive or negative way? So by us implementing the business context to ensure that you understand the investments being made, that you can show to your business leaders, is showing an uptake in the business outcomes you're going after. It's really, really about a strong partnership with our customers. But also ensuring that their business is being positively impacted by our technology to be able to help them really align the teams and be able to have the right desired outcomes. >> I love that Greg and I love that customer first, that community first attitude. It's something that you both share. Final question for the two of you. And I'm going to start with you, Alice, since I suspect you've probably been on more cruises than Greg and I combined. Though I could be making a wild assumption. Where are you cruising to next? >> You know, I just got off a cruise. So next stop, I want to revisit the Galapagos. I think the Galapagos is the best place to go. And if you haven't done it that's absolutely where you should go. >> Oh, it's a beautiful trip. Greg, have you ever done the Galapagos? Is that going to be your next Royal Caribbean cruise? >> I have never done the Galapagos, but that may just have made it to my list. >> Fantastic. Well, I second Alice's endorsement on that. I had the pleasure of going about a decade ago. Very magical place that teaches you a lot about nature. Much like the two of you have taught us very extensively about full stack observability, how it applies to user experience, customer experience and the ocean that I am currently staring at here in Pacifica, California. Alice, thank you so much for joining us from Miami. Greg, to you in Colorado. I hope that you both continue to work in harmony together and that we can all see each other on the friendly seas soon. Thank you all for tuning in to our AWS re:Invent coverage. This is theCUBE. My name's Savannah Peterson. And we look forward to seeing you for our next segment. (relaxing music)

Published Date : Nov 30 2022

SUMMARY :

AppDynamics to the show. How are you doing, Greg? Thanks for having me on the show today. Alice, I have to start with you. that you walked in one day And you nailed that for a segment, Alice, So on one hand, you had, So finding that the that you have at Royal Caribbean, Alice. that same type of stability, you know? that the crunch brought it on 'cause we, And it's nice to see that implemented, that the experience to the customer we partner with, you know, And you know, you can Especially if I can add, in the cruise industry, you know. Certainly, the water level rises together. And I really see, you know, However, I hope that we move that you can show to It's something that you both share. is the best place to go. Is that going to be your but that may just have made it to my list. I hope that you both continue

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
GregPERSON

0.99+

MiamiLOCATION

0.99+

Royal CaribbeanORGANIZATION

0.99+

Royal CaribbeanORGANIZATION

0.99+

ColoradoLOCATION

0.99+

AlicePERSON

0.99+

Alice McElroyPERSON

0.99+

2017DATE

0.99+

Savannah PetersonPERSON

0.99+

twoQUANTITY

0.99+

Greg OstrowskiPERSON

0.99+

Cisco AppDynamicsORGANIZATION

0.99+

84%QUANTITY

0.99+

Cisco AppDynamicsORGANIZATION

0.99+

GalapagosLOCATION

0.99+

60%QUANTITY

0.99+

Pacifica, CaliforniaLOCATION

0.99+

bothQUANTITY

0.99+

firstQUANTITY

0.99+

50 data centersQUANTITY

0.99+

OneQUANTITY

0.99+

AppDynamicsORGANIZATION

0.99+

99%QUANTITY

0.99+

oneQUANTITY

0.98+

50 plus data centersQUANTITY

0.98+

one dayQUANTITY

0.98+

over five yearsQUANTITY

0.98+

pandemicEVENT

0.97+

todayDATE

0.97+

over a decadeQUANTITY

0.97+

AWSORGANIZATION

0.97+

App Attention IndexTITLE

0.95+

a decade agoDATE

0.93+

few weeks agoDATE

0.87+

last few monthsDATE

0.84+

theCUBEORGANIZATION

0.81+

RoyalORGANIZATION

0.77+

yearsDATE

0.75+

last coupleDATE

0.72+

last twoDATE

0.72+

a secondQUANTITY

0.71+

CaribbeanCOMMERCIAL_ITEM

0.71+

last few yearsDATE

0.67+

**DO NOT PUBLISH** Appdynamics Alice McElroy and Greg Ostrowski


 

>>Hello everyone and welcome back to The Cube's Continuing coverage of AWS Reinvent. My name is Savannah Peterson and I am absolutely thrilled for this segment. We are joined by leaders at Cisco App Dynamics, as well as Royal Caribbean. The two have been working together for over five years, leveraging full stack observability. We're gonna dig in, but first of all, please welcome Alice from Royal Caribbean and Greg from Cisco App, app Dynamics to the show. Hey friends. >>Hi. How are you doing? >>I'm excited, clearly. How are you doing, Greg? >>I'm doing fantastic. Thanks for having me on the show today. >>Hey, it's our, it is absolutely our pleasure. Alice, I have to start with you. I don't think there are too many industries that have gotten as much coverage as cruising has over the last couple of years. You've been working with Royal Caribbean for over a decade, so you've seen it through the stormy seas of the pandemic, if you will. What has the last few years and the last few months been like for you? >>You know, it's, it's really been a wild ride. To your point, we were sailing high and then I don't think any other industry experience what we did in Covid, that you walked in one day and then that day the whole industry shut down. So it was a, it was a big challenge for us. And then as soon as we shut down and we weathered the storm with Covid, then we have what we called our healthy and return to service. So as quickly as it stopped, we had to start sailing again. So it's, it's really been a challenge, but we're happy to be back on our feet and heading in the right direction now. >>I, I really hope we can continue the sailing metaphors throughout the course of this interview. And you, you nailed that for a segment. Alice, I'm, I'm, I'm so, I'm so here for it. I, I, I wanna talk about how you've worked together, but I wanna give Greg a second to chime in here. So Greg, you're the executive CTO at Cisco App Dynamics. How, how have you and the team, whether the last two and a half years? >>Well, you, you know, it's interesting, the, the pandemic really brought together an interesting conundrum, right? So on, on one hand, you had, you know, the, the, the consumers, the end users that became very reliant on digital services. They had a function in a way that was very performing, right? So, 84% of the respondents that we had come back through a report called the App Attention Index, came back and said that digital services were, were really instrumental for them to, to get back to some level of normalcy. But the interesting part that came about that is that out of those respondents, 60% of them blame the brand if the, if the application did not work the way they expected it. So they didn't really care about the, it's in the back end, right? So when you look at, yeah, you look at the shift in the IT department, the IT department had to go out and, and quickly innovate, quickly start to introduce new services, which ultimately brought together a, a sprawl in their technology stack. So when you're adding to it, you're not taking things away, you're continuously growing. So finding that that, that the problems or the, the root cause of an application issue became more difficult. So that's where, you know, from an app, Cisco AppDynamics perspective, you know, we're one of the leading observability and app application performance monitoring tools. So we help customers like Ro Caribbean to be able to zero in on root cause and ensure that their end users have that best experience. It's, >>It's, it's, I I'm smiling as someone who was a, a former waitress and I can remember the amount of times I was scolded for something that happened that was far out of my control and the complex layers of the kitchen. And I think that, that anyone who's, who's had a, a poor customer experience while interacting with a brand may or may not intentional, I think it's actually sometimes very unintentional to your point, get frustrated with said brand. I can imagine that is an experience and a priority that you have at Royal Caribbean. Alice, how, how has Full Stack Observability played a role in your, in your team's ability to, to serve the customers and your, and keep your community engaged during this, this very kind of wobbly time? >>Yeah, you know, we have, have really worked hard to improve and remove friction from our guest vacation. And we wanna keep them on vacation and having a great time. You know, we say we don't really sell a cruise. We sell an experience. So we use App AppDynamics to monitor those key applications that our guests are interacting with to ensure that they're having that experience that we expect, you know, we've learned that just because a system or a server says, Hey, I'm up 99% of the time, that doesn't mean that my guests are experiencing that same type of stability, you know? So once again, we really worked well with App Dynamics. They've partnered with us to ensure that, you know, our guests are getting that vacation experience they're looking for. >>Do you think, just a follow up there, do you think that you would have advanced in the ways that you have working with Cisco App Dynamics and across functions over the last few years without this crunch, was necessity the mother of invention for you to any degree? >>You know, I don't, I don't think that the Crunch brought it on cuz we, like I said, we started this journey back in 2017 and we're not unlike a lot of companies where we're on this maturity ride where we wanna go from being reactive, where our guests are telling us something is broken to being preventive. Definitely, you know, COVID played into this because I think we learned to do less, you know, more with less. So, you know, we, you know, it's very hard in the cruise industry. We did take a hit, but we were able to use the app dynamics tools to ensure that our systems were running with having less people also watching those systems. So less eyes on glass, more automation, >>And that's a more, with more, more stability, more credibility, and more transparency is definitely something that we're all looking forward. And, and it's nice to see that implemented, especially at scale when you're dealing with so many customers from all over the world trying to access your service and, and wanting that personalized experience. Greg, what does it feel like for you as a leader to hear someone like Alice say how powerful your tool has been in ensuring that customer experience? >>Yeah, that's, you know, it's absolutely fantastic and especially, you know, Alice is absolutely right. You know, the, the, the cruise industry was really, had a very unique challenge in front of them, and I, I really applaud the folks at Royal Caribbean for stepping up to make sure that when the pandemic eased, so to speak, that they, that the experience to the customer was actually even better, right? So when we were able to work and partner together to make sure that, you know, the, the, the user experience is topnotch, the availability is there, the, the, the, the resiliency of their platform is there. So by, by working with customers like Royal CRI and is really one of the, the, the shining stars that we can talk about that really help make a big difference in, you know, that post pandemic era to be able to really do what's right for the customer. >>How often are you engaging with customers like Alice as a team? How big is that feedback in your product roadmap? >>Oh, personally, I, I'm, I'm engaged with customers on a daily basis and I see it fr across the map from many different industries. And, you know, a lot of folks had different challenges, but the, the ultimate commonality that I've seen across, you know, multiple industries is that, you know, when you, when we're in that pandemic state, digital services were the only way that they, their customers were interacting with, with them. So, you know, when you, when you're looking at a, at a bank or you're looking at a, you know, different types of travel agencies and organizations that, you know, like rural Caribbean as well, that, that really had that opportunity to, to focus on what's the most valuable thing to them, which is user experience. It's a very, very common common trend that we saw. And, you know, you see an expedited path of, of, of digital transformation happen. And really that's where we partner with, you know, customers like Royal Caribbean and, and many others across different industries to make sure that that, that the, the business outcomes were being driven towards the, the proper direction. As well as that, you know, the, the user experience, and I don't think I can emphasize user experience as being so critically important anymore than I've already have, but it's really the, one of the most valuable currencies most organizations have. >>I, one of my favorite lines is, is community is your first defensible asset. And you know, I, you can, you can talk about user experience as much as you want on here. At the end of the day, if people aren't having a positive interaction with your brand or your product, it's probably not going to last super long unless it's legacy. And we won't have to go down that rabbit hole today, >>Especially if I can add there's a lot of competition there. Course, right? There's a lot of competition out there. So if your applications do not perform, or your digital services do not perform, the end user has the quick ability to just quickly delete and move on. And, and the same thing with, with what Alice sees in the, in the cruise industry, you know, you have an opportunity to rise to the top and I, I really applaud them for taking advantage of that, that opportunity. Community. >>Community. Yeah. Well, I'm, I'm here for both of you cheering each other on certainly the, the water level rises together. That's >>Right. Alice, >>What sort of, what sort of challenges are you taking on currently that you're able to disclose? What, what sort of leaps do you think, or doesn't have to be leaps, but what, what kind of experience are you hoping to continue to enhance for Royal Caribbean customers? >>So I think, you know, one of our big challenges that we've, you know, we've announced that we do have a relationship with starlink, so that's going to improve our satellite connectivity, and it really is a game changer for our industry. It's very exciting and, and, but it puts the, it puts the user back in the forefront once again. You know, right now, you know, with our current connectivity, it's all about managing that bandwidth. You know, we're hoping to go to that state where bandwidth isn't at a high cost, so now we're gonna be even able to watch our user interaction more from ship to shore, you know, and you're, and you're, we're maybe moving to that area where we're thinking cloud first from a shift. If you think about it, we've got 50 plus data centers floating around the world, so that connectivity is key. Now we're opening up that bandwidth now I need to see how that, how the transactions are performing as we come off ship. You know, with that, once again, that cloud first mentality, it's a super exciting time for us. And I really see, you know, AppD is gonna play a role in that. >>I, I I, I love that visual just for a second of 50 data centers with also surrounded by people having a very wonderful time on board. What a, what a nice spot. I, I can't say that every data center I've ever been to is, is glamorous, fun or sexy as being on a Royal Caribbean ship. However, I, I hope that we move perhaps in that direction. We were just at super computing a few weeks ago and it was great to see all the hardware there. So you never know. What role do you see yourself in the team and, and Cisco app Dynamics playing in that future for companies like Royal Caribbean, Greg? >>You know, it's really, it's really staying right lockstep with our customers as they move through that digital transformation efforts. The key piece is that we look at it from that full stack view. So we offer full stack observability, which, you know, if you look at the challenges that we want to go after is traditional IT departments were historically siloed pretty significantly between, you know, network and infrastructure security app dev. So ensuring that we can get our customers to, to be able to have that common view that shows what's the real important pieces across all domains. So when they start moving down the path of digital transformation, that's an opportunity to also revamp how their processes are that people interact and the technology that they use to be able to deliver the proper business outcomes. So we talk a lot with our customers around full stack observability, but the key part is business context. >>So if you have a big effort for digital transformation, you're starting to add new services to it, how do you know if it's actually impacting the business in a positive or negative way? So by us implementing the, the business context to ensure that you understand the investments being made that you can show to your business leaders is showing an uptick and the business outcomes you're, you're going after, it's really, really about a strong partnership with our customers, but also ensuring that their business is being positively impacted by our technology to be able to help them really align the teams and be able to have the right desired outcomes. >>I love that Greg and I love that customer first. That community first attitude, it's something that you both share. Final question for the two of you, and I'm gonna start with you, Alice, since I suspect you've probably been on more cruises than Greg and I combined, though I could be making a wild assumption. Where are you cruising to next? >>You know, I just got off the cruise, so next up I wanna revisit the Galapagos. I think the Galapagos is the best place to go, and if you haven't done it, that's absolutely where you should go. >>Oh, it's a beautiful trip. Greg, have you ever done the Galapagos? Is that gonna be your next Royal Caribbean cruise? >>I have never done the Galapagos, but I may just have made it to my list. >>Fantastic. Well, I second Alice's endorsement on that. I, I had the pleasure of going about a decade ago. Very magical place that teaches you a lot about nature, much like the two of you have taught us very extensively about full stack absorbability, how it applies to user experience, customer experience, and the ocean that I am currently staring at here in Pacifica, California. Alice, thank you so much for joining us from Miami Greg to you in Colorado. I hope that you both continue to work in harmony together and that we can all see each other on the friendly sees soon. Thank you all for tuning in to our AWS reinvent coverage. This is the cube. My name's Savannah Peterson, and we look forward to seeing you for our next segment.

Published Date : Nov 23 2022

SUMMARY :

from Royal Caribbean and Greg from Cisco App, app Dynamics to the show. How are you doing, Greg? Thanks for having me on the show today. the stormy seas of the pandemic, if you will. in Covid, that you walked in one day and then that day the whole industry shut down. How, how have you and the team, whether the last two and a half years? So that's where, you know, is an experience and a priority that you have at Royal Caribbean. you know, our guests are getting that vacation experience they're looking for. So, you know, we, you know, it's very hard in the cruise industry. Greg, what does it feel like for you as a leader to hear someone like Alice say So when we were able to work and partner together to make sure that, you know, but the, the ultimate commonality that I've seen across, you know, know, I, you can, you can talk about user experience as much as you want on here. and the same thing with, with what Alice sees in the, in the cruise industry, you know, Alice, So I think, you know, one of our big challenges that we've, you know, we've announced that we do have a relationship So you never know. So we offer full stack observability, which, you know, if you look at the challenges that investments being made that you can show to your business leaders is showing an uptick and the business outcomes you're, That community first attitude, it's something that you I think the Galapagos is the best place to go, and if you haven't done it, Greg, have you ever done the Galapagos? I hope that you both continue to work in harmony together and that we can all see each other

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
GregPERSON

0.99+

ColoradoLOCATION

0.99+

AlicePERSON

0.99+

Royal CaribbeanORGANIZATION

0.99+

2017DATE

0.99+

Savannah PetersonPERSON

0.99+

Alice McElroyPERSON

0.99+

Greg OstrowskiPERSON

0.99+

twoQUANTITY

0.99+

AWSORGANIZATION

0.99+

60%QUANTITY

0.99+

84%QUANTITY

0.99+

GalapagosLOCATION

0.99+

99%QUANTITY

0.99+

Pacifica, CaliforniaLOCATION

0.99+

CovidLOCATION

0.99+

starlinkORGANIZATION

0.99+

bothQUANTITY

0.99+

Cisco App DynamicsORGANIZATION

0.99+

App DynamicsTITLE

0.98+

firstQUANTITY

0.98+

one dayQUANTITY

0.98+

over a decadeQUANTITY

0.98+

50 data centersQUANTITY

0.98+

oneQUANTITY

0.98+

Ro CaribbeanORGANIZATION

0.98+

Royal CRIORGANIZATION

0.97+

over five yearsQUANTITY

0.97+

50 plus data centersQUANTITY

0.97+

todayDATE

0.97+

pandemicEVENT

0.96+

CiscoORGANIZATION

0.96+

Cisco AppDynamicsORGANIZATION

0.94+

a decade agoDATE

0.94+

CaribbeanLOCATION

0.93+

few weeks agoDATE

0.9+

RoyalORGANIZATION

0.88+

App AppDynamicsTITLE

0.87+

AppdynamicsORGANIZATION

0.85+

last few monthsDATE

0.84+

COVIDORGANIZATION

0.83+

first defensible assetQUANTITY

0.76+

last couple of yearsDATE

0.74+

two and a half yearsQUANTITY

0.69+

Cisco AppORGANIZATION

0.64+

last few yearsDATE

0.63+

MiamiLOCATION

0.6+

CaribbeanCOMMERCIAL_ITEM

0.59+

Patrick Bergstrom & Yasmin Rajabi | KubeCon + CloudNativeCon NA 2022


 

>>Good morning and welcome back to the Cube where we are excited to be broadcasting live all week from Detroit to Michigan at Cuban slash cloud Native con. Depending on who you're asking, Lisa, it's day two things are buzzing. How are you feeling? >>Good, excited. Ready for day two, ready to have more great conversations to see how this community is expanding, how it's evolving, and how it's really supporting it itself. >>Yeah, Yeah. This is a very supportive community. Something we talked a lot about. And speaking of community, we've got some very bold and brave folks over here. We've got this CTO and the head of product from Storm Forge, and they are on a mission to automate Kubernetes. Now automatic and Kubernetes are not words that go in the same sentence very often, so please welcome Patrick and Yasmin. Thank you both for being here. Hello. How you doing? >>Thanks for having us. >>Thanks for having us. >>Talk about what you guys are doing. Cause as you said, Kubernetes auto spelling is anything but auto. >>Yeah. >>The, what are some of the challenges? How do you help >>Eliminate this? Yeah, so the mission at Storm Forge is primarily automatic resource configuration and optimization essentially. So we started as a machine learning company first. And it's kind of an interesting story cuz we're one of those startups that has pivoted a few times. And so we were running our machine learning workloads. Most >>Have, I think, >>Right? Yeah. Yeah. We were, we started out running our machine learning workloads and moving them into Kubernetes. And then we weren't quite sure how to correctly adjust and size our containers. And so our ML team, we've got three PhDs and applied mathematics. They said, Well, hang on, we could write an algorithm for that. And so they did. And then, Oh, I love this. Yeah. And then we said, Well holy cow, that's actually really useful. I wonder if other people would like that. And that's kind of where we got our start. >>You solved your own problem and then you built a business >>Around it. Yeah, exactly. >>That is fantastic. Is, is that driving product development at Storm Forge still? That kind of attitude? >>I mean that kind of attitude definitely drives product development, but we're, you know, balancing that with what the users are, the challenges that they have, especially at large scale. We deal with a lot of large enterprises and for us as a startup, we can relate to the problems that come with Kubernetes when you're trying to scale it. But when you're talking about the scale of some of these larger enterprises, it's just a different mentality. So we're trying to balance that of how we take that input into how we build our product. Talk >>About that, like the, the end user input and how you're taking that in, because of course it's only going to be a, you know, more of a symbiotic relationship when that customer feedback is taken and >>Acted on. Yeah, totally. And for us, because we use machine learning, it's a lot of building confidence with our users. So making sure that they understand how we look at the data, how we come up with the recommendations, and actually deploy those changes in their environment. There's a lot of trust that needs to be built there. So being able to go back to our users and say, Okay, we're presenting you this type of data, give us your feedback and building it alongside them has helped a lot in these >>Relationships. Absolutely. You said the word trust, and that's something that we talk about at every >>Show. I was gonna jump on that too. It's >>Not, Yeah, it's not a buzzword. It's not, It shouldn't be. Yeah. It really should be, I wanna say lived and breathed, but that's probably grammatically incorrect. >>We're not a gram show. It's okay darling. Yeah, thank >>You. It should be truly embodied. >>Yeah. And I, I think it's, it's not even unique to just what we do, but across tech in general, right? Like when I talk about SRE and building SRE teams, one of the things I mentioned is you have to build that trust first. And with machine learning, I think it can be really difficult too for a couple different reasons. Like one, it tends to be a black box if it's actually true machine learning. Totally. Which ours is. But the other piece that we run into. Yeah. And the other piece we run into though is, is what I was an executive at United Health Group before I joined Storm Forge. And I would get companies that would come to me and try to sell me machine learning and I would kind of look at it and say, Well no, that's just a basic decision tree. Or like, that's a super basic whole winter forecast, right? Like that's not actually machine learning. And that's one of the things that we actually find ourselves kind of battling a little bit when we talk about what we do in building that trust. >>Talk a little bit about the latest release as you guys had a very active September. Here we are. And towards the, I think end of October. Yeah. What are some of the, the new things that have come out? New integrations, new partnerships. Give us a scoop on that. >>Yeah, well I guess I'll start and then I'll probably hand it over to you. But like the, the big thing for us is we talked about automating Kubernetes in the very beginning, right? Like Kubernetes has got a vpa it's >>A wild sentence anyway. Yeah, yeah. >>It it >>Has. We're not gonna get over at the whole show. Yeah. >>It as a VPA built in, it has an HPA built in and, and when you look at the data and even when you read the documentation from Google, it explicitly says never the two should meet. Right. Because you'll end up thrashing and they'll fight each other. Well the big release we just announced is with our machine learning, we can now do both. And so we vertically scale your pods to the correct up. Yeah. >>Follow status. I love that. >>Yeah, we can, we can scale your pods to the correct size and still allow you to enable the HPA and we'll make recommendations for your scaling points and your thresholds on the HPA as well so that they can work together to really truly maximize your efficiency that without sacrificing your performance and your reliability of the applications that you're running. That >>Sounds like a massive differentiator for >>Storm launch, which I would say it is. Yeah. I think as far as I know, we're the first in the industry that can do this. Yeah. >>And >>From very singularity vibes too. You know, the machines are learning, teaching themselves and doing it all automatically. Yep. Gets me very >>Excited. >>Yeah, absolutely. And from a customer demand perspective, what's the feedback been? Yeah, it's been a few >>Weeks. Yeah, it's been really great actually. And a lot of why we went down this path was user driven because they're doing horizontal scale and they want to be able to vertically size as they're scaling. So if you put yourself in the shoes of someone that's configuring Kubernetes, you're usually guessing on what you're setting your CPU requests and limits do. But horizontal scale makes sense. You're either adding more things or removing more things. And so once they actually are scaled out as a large environment and they have to rethink, how am I gonna resize this now? It's just not possible. It's so many thousands of settings across all the different environments and you're only thinking about CPU memory, You're not thinking about a lot of things. It's just, but once you scale that out, it's a big challenge. So they came to us and said, Okay, you're doing, cuz we were doing vertical scaling before and now we enable vertical and horizontal. And so they came to us and said, I love what you're doing about right sizing, but we wanna be able to do this while also horizontally scaling. And so the way that our software works is we give you the recommendations for what the setting should be and then allow Kubernetes to continue to add and remove replicas as needed. So it's not like we're going in and making changes to Kubernetes, but we make changes to the configuration settings so that it's the most optimal from a resource perspective. >>Efficiency has been a real big theme of the show. Yeah. And it's clear that that's a focus for you. Everyone here wants to do more faster Of course. And innovation, that's the thing to do that sometimes we need partners. You just announced an integration with Datadog. Tell us about that. Yeah, >>Absolutely. Yeah. So the way our platform works is we need data of course, right? So they're, they're a great partner for us and we use them both as an input and an output. So we pull in metrics from Datadog to provide recommendations and we'll actually display all those within the Datadog portal. Cause we have a lot of users that are like, Look, Datadog's my single pane of glass and I hate using that word, but they get all their insights there. They can see their recommendations and then actually go deploy those. Whether they wanna automatically have the recommendations deployed or go in and actually push a button. >>So give me an example of a customer that is using the, the new release and some of the business outcomes they're achieving. I imagine one of the things that you're enabling is just closing that ES skills gap. But from a business level perspective, how are they gaining like competitive advantages to be able to get products to market faster, for example? >>Yeah, so one of the customers that was actually part of our press release and launch and spoke about us at a webinar, they are a SaaS product and deal with really bursty workloads. And so their cloud costs have been growing 40% year over year. And their platform engineering team is basically enabled to provide the automation for developers and in their environment, but also to reduce those costs. So they want to, it's that trade off of resiliency and cost performance. And so they came to us and said, Look, we know we're over provisioned, but we don't know how to tackle that problem without throwing tons of humans at the problem. And so we worked with them and just on a single app found 60% savings and we're working now to kind of deploy that across their entire production workload. But that allows them to then go back and get more out of the, the budget that they already have and they can kind of reallocate that in other areas, >>Right? So there can be chop line and bottom >>Line impact. Yeah. And I, I think there's some really direct impact to the carbon emissions of an organization as well. That's a good point. When you can reduce your compute consumption by 60%. >>I love this. We haven't talked about this at all during the show. Yeah. And I'm really glad that you brought this up. All of the things that power this use energy. Yeah. >>What is it like seven to 8% of all electricity in the world is consumed by data centers. Like it's crazy. Yeah. Yeah. And so like that's wild. Yeah. Yeah. So being able to make a reduction in impact there too, especially with organizations that are trying to sign green pledges and everything else. >>It's hard. Yeah. ESG initiatives are huge. >>Absolut, >>It's >>A whole lot. A lot of companies have ESG initiatives where they can't even go out and do an RFP with a business, Right. If they don't have an actual active starting, impactful ESG program. Yes. Yeah. >>And the RFPs that we have to fill out, we have to tell them how they'll help. >>Yeah. Yes. It's so, yeah, I mean I was really struck when I looked on your website and I saw 54% average cost reduction for Yeah. For your cloud operations. I hadn't even thought about it from a power perspective. Yeah. I mean, imagine if we cut that to 3% of the world's power grid. That is just, that is very compelling. Speaking of compelling and exciting future things, talk to us about what's next? What's got you pumped for 2023 and and what lies >>Ahead? Oh man. Well that seems like a product conversation for sure. >>Well, we're super excited about extending what we do to other platforms, other metrics. So we optimize a lot right now around CPU and memory, but we can also give people insights into, you know, limiting kills, limiting CPU throttling, so extending the metrics. And when you look at hba and horizontal scale today, most of it is done with cpu, but there are some organizations out there that are scaling on custom metrics. So being able to take in more data to provide more recommendations and kind of extend what we can do from an optimization standpoint. >>That's, yeah, that's cool. And what house you most excited on the show floor? Anything? Anything that you've seen? Any keynotes? >>There's, Well, I haven't had a lot of time to go to the keynotes unfortunately, but it's, >>Well, I'm shock you've been busy or something, right? Much your time here. >>I can't imagine why. But no, there's, it's really interesting to see all the vendors that are popping up around Kubernetes focus specifically with security is always something that's really interesting to me. And automating CICD and how they continue to dive into that automation devs, SEC ops continues to be a big thing for a lot of organizations. Yeah. Yeah. >>I I do, I think it's interesting when we marry, Were you guys here last year? >>I was not here. >>No. So at, at the smaller version of this in Los Angeles. Yeah. I, I was really struck because there was still a conversation of whether or not we were all in on Kubernetes as, as kind of a community and a society this year. And I'm curious if you feel this way too. Everyone feels committed. Yeah. Yeah. I I I feel like there's no question that Kubernetes is the tool that we are gonna be using. >>Yeah. I I think so. And I think a lot of that is actually being unlocked by some of these vendors that are being partners and helping people get the most outta Kubernetes, you know, especially at the larger enterprise organizations. Like they want to do it, but the skills gap is a very real problem. Right. And so figuring out, like Jasmine talked about figuring out how do we, you know, optimize or set up the correct settings without throwing thousands of humans at it. Never mind the fact you'll never find a thousand people that wanna do that all day every day. >>I was gonna, It's a fold endeavor for those >>People study, right? Yeah. And, and being able to close some of those gaps, whether it's optimization, security, DevOps, C I C D. As we get more of those partners like I just talked about on the floor, then you see more and more enterprises being more open to leaning into Kubernetes a little bit. >>Yeah. Yeah. We've seen, we've had some great conversations the last day and, and today as well with organizations that are history companies like Ford Motor Companies for >>Example. Yeah. Right. >>Just right behind us. One of their EVs and, and it's, they're becoming technology companies that happen to do cars or home >>Here. I had a nice job with 'em this morning. Yes. With that storyline, honestly. >>Yes. That when we now have such a different lens into these organizations, how they're using technologies, advanced technologies, Kubernetes, et cetera, to really become data companies. Yeah. Because they have to be, well the consumers on the other end expect a Home Depot or a Ford or whomever or your bank Yeah. To know who you are. I want the information right here whenever I need it so I can do the transaction I need and I want you to also deliver me information that is relevant to me. Yeah. Because there, there's no patience anymore. Yeah. >>And we partner with a lot of big FinTech companies and it's, it's very much that. It's like how do we continue to optimize? But then as they look at transitioning off of older organizations and capabilities, whether that's, they have a physical data center that's racked to the gills and they can't do anything about that, so they wanna move to cloud or they're just dipping their toe into even private cloud with Kubernetes in their own instances. A lot of it is how do we do this right? Like how do we lean in and, Yeah. >>Yeah. Well I think you said it really well that the debate seems to be over in terms of do we go in on Kubernetes? That that was a theme that I think we felt that yesterday, even on on day one of the keynotes. The community seems to be just craving more. I think that was another thing that we felt yesterday was all of the contributors and the collaborators, people want to be able to help drive this community forward because it's, it's a flywheel of symbiosis for all of the vendors here. The maintainers and, and really businesses in any industry can benefit. >>Yeah. It's super validating. I mean if you just look at the floor, there's like 20 different booths that talk about cost reporting for Kubernetes. So not only have people moved, but now they're dealing with those challenges at scale. And I think for us it's very validating because there's so many vendors that are looking into the reporting of this and showing you the problem that you have. And then where we can help is, okay, now you know, you have a problem, here's how we can fix it for you. >>Yeah. Yeah. That, that sort of dealing with challenges at scale that you set, I think that's also what we're hearing. Yeah. And seeing and feeling on the show floor. >>Yeah, absolutely. >>What can folks see and, and touch and feel in your booth? >>We have some demos there you can play around with the product. We're giving away a Lego set so we've let >>Gotta gets >>Are right now we're gonna have to get some Lego, We do a swag segment at the end of the day every day. Now we've >>Some cool socks. >>Yep. Socks are hot. Let's, let's actually talk about scale internally as our closing question. What's going on at Storm Forge? If someone's watching right now, they're excited. Are you hiring? We are hiring. Yeah. How can they stalk you? What's the >>School? Absolutely. So you can check us out on Storm forge.io. We're certainly hiring across the engineering organization. We're hiring across the UX a product organization. We're dealing, like I said, we've got some really big customers that we're, we're working through with some really fun challenges. And we're looking to continue to build on what we do and do new innovative things like especially cuz like I said, we are a machine learning organization first. And so for me it's like how do I collect all the data that I can and then let's find out what's interesting in there that we can help people with. Whether that's cpu, memory, custom metrics, like as said, preventing kills, driving availability, reliability, What can we do to, to kind of make a little bit more transparent the stuff that's going on underneath the covers in Kubernetes for the decision makers in these organizations. >>Yes. Transparency is a goal of >>Many. >>Yeah, absolutely. Well, and you mentioned fun. If this conversation is any representation, it would be very fun to be working on both of your teams. We, we have a lot of fun Ya. Patrick, thank you so much for joining. Thanks for having us, Lisa, As usual, thanks for being here with me. My pleasure. And thank you to all of you for turning into the Cubes live show from Detroit. My name's Savannah Peterson and we'll be back in a few.

Published Date : Oct 27 2022

SUMMARY :

How are you feeling? community is expanding, how it's evolving, and how it's really supporting it itself. Forge, and they are on a mission to automate Kubernetes. Talk about what you guys are doing. And so we were running our machine learning workloads. And then we weren't quite sure how to correctly adjust and size our containers. Yeah, exactly. Is, is that driving product development at Storm Forge still? I mean that kind of attitude definitely drives product development, but we're, you know, balancing that with what the users are, So making sure that they understand how we look at the data, You said the word trust, and that's something that we talk about at every It's Yeah. Yeah, thank And that's one of the things that we actually find ourselves kind of battling Talk a little bit about the latest release as you guys had a very active September. But like the, the big thing for us is we talked about automating Yeah, yeah. Yeah. And so we vertically scale your pods to the correct up. I love that. Yeah, we can, we can scale your pods to the correct size and still allow you to enable the HPA Yeah. You know, the machines are learning, teaching themselves and doing it all automatically. And from a customer demand perspective, what's the feedback been? And so they came to us and said, I love what you're doing about right sizing, And innovation, that's the thing to do that sometimes we they're a great partner for us and we use them both as an input and an output. I imagine one of the things that you're And so they came to us and said, Look, we know we're over provisioned, When you can reduce your compute consumption by 60%. And I'm really glad that you brought this up. And so like that's wild. It's hard. Yeah. I mean, imagine if we cut that to 3% of the world's power grid. Well that seems like a product conversation for sure. And when you look at hba and horizontal scale today, most of it is done with cpu, And what house you most excited on the show floor? Much your time here. And automating CICD and how they continue to dive into that automation devs, And I'm curious if you feel this way too. And I think a lot of that is actually being unlocked by some of these vendors that are being partners and DevOps, C I C D. As we get more of those partners like I just talked about on the floor, and today as well with organizations that are history companies like Ford Motor Companies for happen to do cars or home With that storyline, honestly. do the transaction I need and I want you to also deliver me information that is relevant to me. And we partner with a lot of big FinTech companies and it's, it's very much that. I think that was another thing that we felt yesterday was all of the contributors and And I think for us it's very validating because there's so many vendors that And seeing and feeling on the show floor. We have some demos there you can play around with the product. Are right now we're gonna have to get some Lego, We do a swag segment at the end of the day every day. Yeah. And so for me it's like how do I collect all the data And thank you to all of

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
PatrickPERSON

0.99+

DetroitLOCATION

0.99+

FordORGANIZATION

0.99+

Savannah PetersonPERSON

0.99+

MichiganLOCATION

0.99+

40%QUANTITY

0.99+

LisaPERSON

0.99+

DatadogORGANIZATION

0.99+

54%QUANTITY

0.99+

Yasmin RajabiPERSON

0.99+

Storm ForgeORGANIZATION

0.99+

sevenQUANTITY

0.99+

60%QUANTITY

0.99+

YasminPERSON

0.99+

United Health GroupORGANIZATION

0.99+

Patrick BergstromPERSON

0.99+

Los AngelesLOCATION

0.99+

JasminePERSON

0.99+

yesterdayDATE

0.99+

firstQUANTITY

0.99+

last yearDATE

0.99+

20 different boothsQUANTITY

0.99+

3%QUANTITY

0.99+

GoogleORGANIZATION

0.99+

Storm ForgeORGANIZATION

0.99+

SeptemberDATE

0.99+

Home DepotORGANIZATION

0.99+

KubeConEVENT

0.99+

2023DATE

0.99+

bothQUANTITY

0.99+

CloudNativeConEVENT

0.99+

twoQUANTITY

0.98+

LegoORGANIZATION

0.98+

Ford Motor CompaniesORGANIZATION

0.98+

oneQUANTITY

0.98+

KubernetesTITLE

0.98+

day twoQUANTITY

0.97+

this yearDATE

0.97+

8%QUANTITY

0.97+

HPAORGANIZATION

0.96+

single appQUANTITY

0.96+

todayDATE

0.95+

ESGTITLE

0.94+

single paneQUANTITY

0.93+

thousands of humansQUANTITY

0.92+

end of OctoberDATE

0.91+

SREORGANIZATION

0.9+

three PhDsQUANTITY

0.9+

OneQUANTITY

0.89+

NA 2022EVENT

0.87+

thousandsQUANTITY

0.85+

thousand peopleQUANTITY

0.8+

CubesORGANIZATION

0.79+

CubeLOCATION

0.78+

this morningDATE

0.78+

day oneQUANTITY

0.75+

KubernetesORGANIZATION

0.73+

Satish Puranam & Rebecca Riss, Ford | KubeCon + CloudNativeCon NA 2022


 

(bright music) (crowd talking indistinctly in the background) >> Hey guys, welcome back to Detroit, Michigan. theCUBE is live at KubeCon + CloudNativeCon 2022. You might notice something really unique here. Lisa Martin with our newest co-host of theCUBE, Savannah Peterson! Savannah, it's great to see you. >> It's so good to be here with you (laughs). >> I know, I know. We have a great segment coming up. I always love talking couple things, cars, one, two, with companies that have been around for a hundred plus years and how they've actually transformed. >> Oh yeah. >> Ford is here. You have a great story about how you, about Ford. >> Ford brought me to Detroit the first time. I was here at the North American International Auto Show. Some of you may be familiar, and the fine folks from Ford brought me out to commentate just like this, as they were announcing the Ford Bronco. >> Satish: Oh wow. >> Which I am still lusting after. >> You don't have one yet? >> For the record. No, I don't. My next car's got to be an EV. Although, ironically, there's a Ford EV right behind us here on set today. >> I know, I know. >> Which we were both just contemplating before we went live. >> It's really shiny. >> We're going to have to go check it out. >> I have to check it out. Yep, we'll do that. Yeah. Well, please welcome our two guests from Ford, Satish Puranam, is here, The Technical Leader at Cloud and Rebecca Risk, Principal Architect, developer relations. We are so excited to have you guys on the program. >> Clearly. >> Thanks for joining us. (all laugh) >> Thank you for having us. >> I love you're Ford enthusiasts! Yeah, that's awesome. >> I drive a Ford. >> Oh, awesome! Thank you. >> I can only say that's one car company here. >> That's great. >> Yes, yes. >> Great! Thank you a lot. >> Thank you for your business! >> Absolutely. (all laugh) >> So, Satish, talk to us a little bit about- I mean I think of Cloud as a car company but it seems like it's a technology company that makes cars. >> Yes. Talk to us about Ford as a Cloud first, technology driven company, and then we're going to talk about what you're doing with Red Hat and Boston University. >> Yeah, I'm like everything that all these cars that you're seeing, beautiful right behind us it's all built on, around, and with technology, right? So there's so much code goes into these cars these days, it's probably, it's mind boggling to think that probably your iPhones might be having less code as opposed to these cars. Everything from control systems, everything is code. We don't do any more clay models. Everything is done digital, 3D, virtual reality and all that stuff. So all that takes code, all of that takes technology. And we have been in that journey for the last- since 2016 when we started our first mobile app and all that stuff. And of late we have been like, heavily invested in Google. Moving a lot of these experiences, data acquisition systems AI/ML modeling for like all the autonomous cars. It's all technology and like from the day it is conceived, to the day it is marketed, to the day when you show up for a servicing, and hopefully soon how you can buy and you know, provide feedback to us, is all technology that drives all of this stuff. So it's amazing for us to see everything that we go and immerse ourselves in the technology. There is a real life thing that we can see what we all do for it, right? So- >> Yes, we're only sorry that our audience can't actually see the car, >> Yep. >> but we'll get some B-roll for you later on. Rebecca, talk a little bit about your role. Here we are at KubeCon, Savannah and I and John were talking when we went live this morning, that this is huge. That the show floor is massive, a lot bigger than last year. The collaboration and the spirit of the community is not only alive and well, as we heard in the keynote this morning, it's thriving. >> Yeah. >> Talk about developer relations at Ford and what you are helping to drive in your role. >> Yeah, so my team is all about helping developers work faster with different platforms that my team curates and produces, so that our developers don't have to deal with all of the details of setting up their environments to actually code. And we have really great people, kind of the top software developers in the company, are part of my team to produce those products that other people can use, and accelerate their development. And we have a great relationship with the developers in the company and outside with the different vendor relationships that we have, to make sure that we're always producing the next platform with the next tech stack that our developers will want to continue to use to produce the really great products that we are all about making at Ford. >> Let's dig in there a little bit because I'm curious and I suspect you both had something to do with it. How did you approach your Cloud Native transformation and how do you evaluate new technologies for the team? >> It's sometimes- many a times I would say it's like dogfooding and like experimentation. >> Yeah. Isn't anything in innovation a lot of- >> Yeah, a lot of experimentation. We started our, as I said, the Cloud Native journey back in 2016 with Cloud Foundry and things, technologies around that. Soon realized, that there was like a lot of buzz around that time. Twelve-Factor was a thing, Stateless was a thing. And then all those Stateful needs to drive the Stateless. So where do we do that thing? And the next logical iteration was Kubernetes was bursting upon the scene at that time. So we started doing a lot of experimentation. >> Like the Kool-Aid man, burst on the Kubernetes scene- >> Exactly right. >> Through the wall. >> So, the question is like, why can't we do? I think we were like crazy enough to say that Kubernetes people are talking about our serverless or Twelve-Factor on Kubernetes. We are crazy enough to do Stateful on Kubernetes and we've been doing it successfully for five years. So it's a lot about experimentation. I think good chunk of experiments that we do do not yield the results that we get, but many a times, some of them are like Gangbusters. Like, other aspects that we've been doing of late is like partnering with Becky and rest of the organization, right? Because they are the people who are like closest to the developers. We are somewhat behind the scenes doing some things but it is Becky and the rest of the architecture teams who are actually front and center with the customers, right? So it is the collaborative effort that we've been working through past few years that has been really really been useful and coming around and helping us to make some of these products really beautiful. >> Yeah, well you make a lot of beautiful products. I think we've all, I think we've all seen them. Something that I think is really interesting and part of why I was so excited for this interview, and kind of nudged John out, was because you've been- Ford has been investing in technology in a committed way for decades and I don't think most people are aware of that. When I originally came out to Dearborn, I learned that you've had a head of VR who happens to be a female. For what it's worth, Elizabeth, who's been running VR for you for two and a half decades, for 25 years. >> Satish: Yep. >> That is an impressive commitment. What is that like from a culture perspective inside of Ford? What is the attitude around innovation and technology? >> So I've been a long time Ford employee. I just celebrated my 29th year. >> Oh, wow! >> Congratulations! >> Wow, congrats! That's a huge deal. >> Yeah, it's a huge deal. I'm so proud of my career and all that Ford has brought to me and it's just a testament. I have many colleagues like me who've been there for their whole career or have done other things and come to Ford and then spent another 20 years with us because we foster the culture that makes you want to stay. We have development programs to allow you to upscale and change your role and learn new things and play with the new technologies that people are interested in doing and really make an impact to our community of developers at Ford or the company itself and the results that we're delivering. So to have that, you know, culture for so many years that people really love to work. They love to work with the people that they're working with. They love to stay engaged and they love the fact that you can have many different careers within the same umbrella, which we call the "blue oval". And that's really why I've been there for so long. I think I probably had 13 very unique and different jobs along the way. It's as if I left, and you know shopped around my skills elsewhere. But I didn't ever have to leave the company. It's been fabulous. >> The cultural change and adoption of- embracing modern technology- Cloud Native automotive software is impressive because a lot of historied companies, you guys have been there a long time, have challenges with that because it's really hard to get an entire moving, you'll call it the blue oval, to change and adapt- >> Savannah: I love that. >> and be willing to experiment. So that that is impressive. Talk about, you go by Becky, so I'll call you Becky, >> Rebecca/Becky: Yeah. >> The developer culture in terms of the developers really being the center of the nucleus of influencing the direction in which the company's going. I imagine that they probably are fairly influential. >> Yeah, so I had a very- one of the unique positions I held was a culture change for our department, Information Technology in 2016. >> Satish: Yeah. >> As the teacher was involved with moving us to the cloud, I was responsible- >> You are the transformation team! This is beautiful. I love this. We've got the right people on the show. >> Yeah, we do. >> I was responsible for changing the culture to orient our employees to pay attention to what do we want to create for tomorrow? What are the kind of skills we need to trust each other to move quickly. And that was completely unique. >> Satish: Yeah. >> Like I had men in the trenches delivering software before that, and then plucked out because they wanted someone, you know who had authentic experience with our development team to be that voice. And it was such a great investment that Ford continues to do is invest in our culture transformation. Because with each step forward that we do, we have to refine what our priorities are. And you do that through culture transformation and culture management. And that's been, I think really, the key to our successful pivots that we've made over the last six years that we've been able to continue to refine and hone where we really want to go through that culture movement. >> Absolutely. I think if I could add another- >> Please. >> spotlight to it is like the biggest thing about Ford has been among various startup-like culture, right? So the idea is that we encourage people to think outside the box, right? >> Savannah: Or outside the oval? >> Right! (laughs) >> Lisa: Outside the oval, yes! >> Absolutely! Right. >> So the question is like, you can experiment with various things, new technologies and you will get all the leadership support to go along with it. I think that is very important too and like we can be in the trenches and talk about all of these nice little things but who the heck would've thought that, you know Kubernetes was announced in 2015, in late 2016, we have early dev Kubernetes clusters already running. 2017, we are live with workloads on Kubernetes! >> Savannah: Early adopters over here. >> Yeah. >> Yeah. >> I'm like all of this thing doesn't happen without lot of foresight and support from the leadership, but it's also the grassroot efforts that is encouraged all along to be on the front end of all of these things and try different things. Some of them may not work >> Savannah: Right. >> But that's okay. But how do we know we are doing something, if you're not failing? We have to fail in order to do something, right? >> Lisa: I always say- >> So I think that's been a great thing that is encouraged very often and otherwise I would not be doing, I've done a whole bunch of stuff at Ford. Without that kind of ability to support and have an appetite for, some of those things would not have been here at all. >> I always say failure is not a bad F-word. >> Satish: Yep. >> Savannah: I love that. >> But what you're talking about there is kind of like driving this hot wheel of experimentation. You have to have the right culture and the mindset- >> Satish: Absolutely. >> to do that. Try fail, move on, learn, iterate, go. >> Satish: Correct. >> You guys have a great partnership with Red Hat and Boston University. You're speaking about that later today. >> Satish: Yes. >> Unpack that for us. What, from a technical perspective, what are you doing and what's it resulting in? >> Yeah, I think the biggest thing is Becky was talking about as during this transformation journey, is lot has changed in very small amount of time. So we traditionally been like, "Hey, here's a spreadsheet of things I need you to deliver for me" to "Here is a catalog of things, you can get it today and be successful with it". That is frightening to several of our developers. The goal, one of the things that we've been working with Q By Example, Red Hat and all the thing, is that how can we lower the bar for the developers, right? Kubernetes is great. It's also a wall of YAML. >> It's extremely complex, number one complaint. >> The question is how can I zero on? I'm like, if we go back think like when we talk about in cars with human-machine interfaces, which parts do I need to know? Here's the steering wheel, here's the gas pedal, or here's the brake. As long as you know these two, three different things you should be fairly be okay to drive those things, right? So the idea of some of the things with enablementing we are trying to do is like reduce that barrier, right? Reduce- lower the bar so that more people can participate in it. >> One of the ways that you did that was Q By Example, right, QBE? >> Satish: Yes, Yes. >> Can you tell us a little bit more about that as you finish this answer? >> Yeah, I think the biggest thing with Q By Example is like Q By Example gives you the small bite-sized things about Kubernetes, right? >> Savannah: Great place to start. >> But what we wanted to do is that we wanted to reinforce that learning by turning into a real world living example app. We took part info, we said, Hey, what does it look like? How do I make sure that it is highly available? How do I make sure that it is secure? Here is an example YAML of it that you can literally verbatim copy and paste into your editor and click run and then you will get an instant gratification feedback loop >> I was going to say, yeah, they feel like you're learning too! >> Yes. Right. So the idea would be is like, and then instead of giving you just a boring prose text to read, we actually drop links to relevant blog posts saying that, hey you can just go there. And that has been inspirational in terms of like and reinforcing the learning. So that has been where we started working with the Boston University, Red Hat and the community around all of that stuff. >> Talk a little bit about, Becky, about some of the business outcomes. You mentioned things like upskilling the workforce which is really nice to hear that there's such a big focus on it. But I imagine too, there's more participation in the community, but also from an end customer perspective. Obviously, everything Ford's doing is to serve the end customers >> Becky: Right. How does this help the end customer have that experience that they really, these days, demand with patience being something that, I think, is gone because of the pandemic? >> Right? Right. So one of the things that my team does is we create the platforms that help Accelerate developers be successful and it helps educate them more quickly on appropriate use of the platforms and helps them by adopting the platforms to be more secure which inherently lead to the better results for our end customers because their data is secure because the products that they have are well created and they're tested thoroughly. So we catch all those things earlier in the cycle by using these platforms that we help curate and produce. And that's really important because, like you had mentioned, this steep learning curve associated with Kubernetes, right? >> Savannah: Yeah. >> So my team is able to kind of help with that abstraction so that we solve kind of the higher complex problems for them so that developers can move faster and then we focus our education on what's important for them. We use things like Q By Example, as a source instead of creating that content ourselves, right? We are able to point them to that. So it's great that there's that community and we're definitely involved with that. But that's so important to help our developers be successful in moving as quickly as they want and not having 20,000 people solve the same problems. >> Satish: (chuckles) Yeah. >> Each individually- >> Savannah: you don't need to! >> and sometimes differently. >> Savannah: We're stronger together, you know? >> Exactly. >> The water level rises together and Ford is definitely a company that illustrates that by example. >> Yeah, I'm like, we can't make a better round wheel right? >> Yeah! So, we have to build upon what we have already been built ahead of us. And I think a lot of it is also about how can we give back and participate in the community, right? So I think that is paramount for us as like, here we are in Detroit so we're trying to recruit and show people that you know, everything that we do is not just old car and sheet metal >> Savannah: Combustion. >> and everything and right? There's a lot of tech goes and sometimes it is really, really cool to do that. And biggest thing for us is like how can we involve our community of developers sooner, earlier, faster without actually encumbering them and saying that, hey here is a book, go master it. We'll talk two months later. So I think that has been another journey. I think that has been a biggest uphill challenge for us is that how can we actually democratize all of these things for everybody. >> Yeah. Well no one better to try than you I would suspect. >> We can only try and hope everything turns out well, right? >> You know, as long as there's room for the bumpers on the lane for if you fail. >> Exactly. >> It sounds like you're driving the program in the right direction. Closing question for you, what's next? Is electric the future? Is Kubernetes the future? What's Ford all in on right now, looking forward? (crowd murmuring in the background) >> Data is the king, right? >> Savannah: Oh, okay, yes! >> Data is a new currency. We use that for several things to improve the cars improve the quality of autonomous driving Is Level 5 driving here? Maybe will be here soon, we'll see. But we are all working towards it, right? So machine learning, AI feedback. How do you actually post sale experience for example? So all of these are all areas that we are working to. We are, may not be getting like Kubernetes in a car but we are putting Kubernetes in plants. Like you order a Marquis or you order a Bronco, you see that here. Here's where in the assembly line your car is. It's taking pictures. It's actually taking pictures on Kubernetes platform. >> That's pretty cool. >> And it is tweeting for you on the Twitter and the social media platform. So there's a lot of that. So it is real and we are doing it. We need more help. A lot of the community efforts that we are seeing and a lot of the innovation that is happening on the floor here, it's phenomenal. The question is how we can incorporate those things into our workflows. >> Yeah, well you have the right audience for that here. You also have the right attitude, >> Exactly. >> the right appetite, and the right foundation. Becky, last question for you. Top three takeaways from your talk today. If you're talking to the developer community you want to inspire: Come work for us! What would you say? >> If you're ready to invest in yourself and upskill and be part of something that is pretty remarkable, come work for us! We have many, many different technical career paths that you can follow. We invest in our employees. When you master something, it's time for you to move on. We have career growth for you. It's been a wonderful gift to me and my family and I encourage everyone to check us out careers.ford.com or stop by our booth if you're happen to be here in person. >> Satish: Absolutely! >> We have our curated job openings that are specific for this community, available. >> Satish: Absolutely. >> Love it. Perfect close. Nailed pitch there. I'm sure you're all going to check out their job page. (all laugh) >> Exactly! And what you talked about, the developer experience, the customer experience are inextricably linked and you guys are really focused on that. Congratulations on all the work that you've done. We got to go get a selfie with that car girl. >> Yes, we do. >> Absolutely. >> We got to show them, we got to show the audience what it looks like on the inside too. We'll do a little IG video. (Lisa laughs) >> Absolutely. >> We will show you that for our guests and my cohost, Savannah Peterson. Lisa Martin here live in Detroit with theCUBE at KubeCon and CloudNativeCon 2022. The one and only John Furrier, who you know gets FOMO, is going to be back with me next. So stick around. (all laugh) (bright music)

Published Date : Oct 27 2022

SUMMARY :

it's great to see you. It's so good to be We have a great segment coming up. You have a great story Some of you may be For the record. Which we were both just I have to check it out. Thanks for joining us. I love you're Ford Thank you. I can only say that's Thank you a lot. (all laugh) So, Satish, talk to Talk to us about Ford as a Cloud first, to the day when you show of the community is not and what you are helping don't have to deal with all of the details something to do with it. a times I would say it's in innovation a lot of- a lot of buzz around that time. So it is the collaborative Something that I think is What is the attitude around So I've been a long time Ford employee. That's a huge deal. So to have that, you know, culture So that that is impressive. of influencing the direction one of the unique positions You are the transformation What are the kind of skills we need that Ford continues to do is I think Absolutely! So the question is that is encouraged all along to be on the We have to fail in order Without that kind of ability to support I always say failure and the mindset- to do that. You're speaking about that later today. what are you doing and and all the thing, is that It's extremely complex, So the idea of some of the things it that you can literally and the community around in the community, but also from is gone because of the pandemic? So one of the things so that we solve kind of a company that illustrates and show people that really cool to do that. try than you I would suspect. for the bumpers on the in the right direction. areas that we are working to. and a lot of the innovation You also have the right attitude, and the right foundation. that you can follow. that are specific for to check out their job page. and you guys are really focused on that. We got to show them, we is going to be back with me next.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ElizabethPERSON

0.99+

RebeccaPERSON

0.99+

2016DATE

0.99+

SatishPERSON

0.99+

Lisa MartinPERSON

0.99+

BeckyPERSON

0.99+

13QUANTITY

0.99+

FordORGANIZATION

0.99+

LisaPERSON

0.99+

Savannah PetersonPERSON

0.99+

Red HatORGANIZATION

0.99+

SavannahPERSON

0.99+

2015DATE

0.99+

DetroitLOCATION

0.99+

John FurrierPERSON

0.99+

Rebecca RiskPERSON

0.99+

JohnPERSON

0.99+

Satish PuranamPERSON

0.99+

Rebecca RissPERSON

0.99+

Boston UniversityORGANIZATION

0.99+

25 yearsQUANTITY

0.99+

five yearsQUANTITY

0.99+

2017DATE

0.99+

two guestsQUANTITY

0.99+

iPhonesCOMMERCIAL_ITEM

0.99+

careers.ford.comOTHER

0.99+

last yearDATE

0.99+

29th yearQUANTITY

0.99+

20,000 peopleQUANTITY

0.99+

KubeConEVENT

0.99+

Detroit, MichiganLOCATION

0.99+

twoQUANTITY

0.99+

20 yearsQUANTITY

0.99+

GoogleORGANIZATION

0.99+

two months laterDATE

0.99+

OneQUANTITY

0.99+

EachQUANTITY

0.98+

CloudORGANIZATION

0.98+

late 2016DATE

0.98+

KubernetesTITLE

0.98+

Sarah Nicastro & Roel Rentmeesters | IFS Unleashed 2022


 

(upbeat music) >> Welcome back to theCUBE, everyone. This is Lisa Martin, live in Miami. I'm at IFS Unleashed 2022. We've had a great day talking with IFS executives, customers, partners. We're going to be having another great conversation next. I have two guests here on set with me, Sarah Nicastro joins us, the founder Future Field of Service, and VP of Customer Engagement at IFS, and Roel Rentmeeters, the VP of Digital Transformation at Munters. Welcome to the program. >> Thanks for having us. >> So, here we are surrounded by about 1500 or so people. The buzz in here is, people are ready to come back. They're just ready to come back, have these conversations with their peers and their colleagues at IFS which is great to to see and to feel, right? Sarah, let's start with you, your role, founder Future of Field Service. Talk to me about what that is and what the genesis was. >> Yeah, absolutely. So, a lot of what I do is actually what you're doing and interviewing folks, creating content. I was in the media before I joined IFS, almost four years ago in service specifically. So service, you've probably heard a lot today about moment of service. Service is a huge focus area for IFS and Future of field service is thought leadership resource that IFS allowed me to come on board and create, not only for customers, but for the broader service community. So, I write articles related to service trends host a weekly podcast. Over time with the company as I got to engage with more and more customers, and there's so much value in them connecting with one another. You see that here, like you said, people are so excited to be together, but fostering those connections within our customer community, allowing them to get to know each other, share our best practices, as well as making sure that we're bringing the voice of customer always into IFS. So, that's what I do on the customer engagement side. >> I love it. The voice of the customer is invaluable. And of all the conversations that I've had today, it's so clear how strategic and strong the relationships are that IFS has with its customers. Roel, talk to us a little bit about Munters, you're a customer and talk about the relationship that you've established with IFS and the team. >> Yeah, with pleasure. So, Munters is a Swedish company. We are a global leader in sustainable air treatment solutions. So, think about deunification, cooling, but in big industrial applications. I am the VP of digital services or digital transformation. Prior to that, until very recently, I was a VP of services. And we started that standardization roadmap five years ago, six years ago. We work very closely with IFS. We're implementing a new apps version as an ERP for Munters. And so that servitization moving from additional services to outcome-based services has the digital aspect. So, my move is a natural flow with that. >> How long has Munters been in business? >> It's founded in 1955. >> Oh wow. >> It's a Swedish company, quite traditional still in their manufacturing and delivering services. But the shift is there. >> Talk to me about that shift and how IFS has been an accelerant of that. It's challenging for legacy businesses to evolve and transform. Obviously in this day and age, you don't have a choice. But talk to us about the digital transformation of the business so that you can deliver more to your customers and how IFS has been foundational to that. >> Yeah. So, so that servitization roadmap eventually it is something that our customers want. We captured it. Customers want remote management, they want connected devices, but that alone will not bring you servitization. You need to have your strong foundation in the back with a good process, a good system that can support that process. And that's where IFS came in for us. We are a long time IFS user, so, we are on the eighth version in Europe of app eight, but we are doing a new implementation to 10, and this way, a global implementation with clean data that needs to be cleansed, new processes, end to end processes. And so IFS is our partner to support us in this roadmap along with other developments and things IFS is doing, think about remote management, something we've implemented during COVID and that perfectly aligns with that road towards servitization. >> Yeah, I was just going to say Roel and I were on a panel discussion earlier today with two other customers, and all different industries, but when we said what is the focus of the business they all said servitization or outcomes based services. Me too. Me too, me too, right? So, it's a journey that a lot of our customers are on looking at how they differentiate through service, how they move away from being a provider of products or things, and someone that their customers can trust to provide peace of mind, uptime, outcomes, experiences, things like that. >> It's all about outcomes. And we're hearing more and more about servitization. It's not a new concept. The term is somewhat newer to some of these conversations. But we're seeing a lot of businesses especially in light of COVID pivot in that direction and they need a partner that they can trust like IFS to help them get there. Sarah, let's talk more about customer engagement. What are some of the different facets that need to be considered? You guys, IFS has expertise in five verticals which I love the vertical specialization there. But talk to us about some of those facets that make customer engagement successful. >> Yeah, so I think you're absolutely right. So we have our five industries that we focus heavily on, and that is where most of our customer engagement has and does reside, right? So each industry has its own group of customers that get together weigh in on how IFS is innovating, what they need from the company and their respective industries, etc. What I'm focused on, and probably a lot of it is just based on my background. I mentioned on the panel there was a lot of head nods and me-too, me-too. That's because there are also elements of innovation and change that are happening across industries that our customers care a lot about. So what I'm working on at the moment is introducing sort of another layer of customer engagement where we're also fostering those cross industry more innovation-centered conversations so that we can not only better understand what our customers are focused on there, but also allow them to connect and learn from one another. >> I love that. There's so much power and potential. Roel, talk to us about that from your perspective, the opportunity. You mentioned, Sarah, the panel that you guys were on earlier today, but talk to us about the opportunity that IFS is giving you to engage with your peers in other industries, but also for you to learn and get takeaways from them. That's got to be pretty unique from a technology partner perspective. >> That definitely is. And the Future of Field Service, it's one of those four where I think we share so much knowledge, not just while we are sitting together and having our talks with Sarah, also individually we connected with each other. Companies that are also Swedish based like Tetra Park, etc, So, there's kind of bonds that we can see. But it's true, we are learning from each other also because some are maybe a bit more advanced than others in this area. So we can learn, not just around how they do their processes, how they find technicians on the market which is very scarce today and very difficult. How do you retain them? But also, what are you experiencing during your implementation?? What is your partner that are... What are pitfalls that you have discovered since you were there? Would you go to cloud or would you still wait in APP 10? So we share that knowledge to each other and we learn a lot from each other, which is something I like. I also like the fact that IFS is a very customer-centric company, as we mentioned before, the fact that you have changed advisory boards where the voice of the customer is going to be important, where you can feed back or IFS feeds back trends and things they see going forward where we can also say, but, "Would it not be better that the user interface for a technician who just wants to do this and this and this is simpler than what you offer today. So, it's a win-win situation for both of us. >> It's a collaboration. >> Yeah, I like it. >> It should be. And I'm really passionate about what what I do, but to be on sessions with a group of customers and have them say, "I'm going to call you later because I want to know more about how you did this, or can we connect?" And to see those connections happen, it's great to have events like this and they have been on hold, but ideally happen every year or year and a half. But to keep those connections going continuously is really important to me. >> Well, the innovations that IFS can span from just those connections alone is infinite, right? I mean, your mind can wander with all of the different things that can come out of that. Sarah, talk a little bit more about... We often talk about the voice of the customer. It's incredibly powerful. I always think it's the most objective opinion, but one of the things that I think I was learning earlier today is it's not just about the voice of the customer. It's taking the insights from those customers into the company, into the development of the technologies to then be able to fuel customer-driven changes. Talk about that as a one of the focuses that IFS has. >> Yeah, I mean, not only we, but our customers are talking a lot more about outside in innovation, right? An inside out model does not work today. And so, that's really what the focus is. And there's so many parallels between what we're focused on, what our customers are focused on, right? And so, I think voice of the customer, it's always good to have a quantitative measure where you're doing surveys, you're understanding what is your NBS, how do your customers feel, are they satisfied, etc? But it's also very important to have more of a qualitative or more intimate forum to have those deeper discussions to really get into some of the details that, to Roel's point, can then influence. Okay, well, we haven't quite thought about it that way. The more you have those discussions, the more you can notice what those common challenges or opportunities are so that when you are putting effort into our own evolution and modernization, we can make sure that's geared toward the the impact our customers need. >> Right. That's critical. It's all about outcomes. Customers need to move faster and faster and faster these days, right? I think one of the things that was in very short supply during the pandemic was patients and tolerance. And I don't know that it's going to come back. I think we are... >> I've never had it personally. (Lisa and Sarah laugh) >> I had a little bit of it, but I think the consumerization of tech, we expect these experiences in our professional world to be as easy as going on Amazon and buying whatever we want. We also want the brands to know enough about us where it's not creepy, but make it personalized to some degree, have that intimate relationship with me that's good enough to get me the outcome that I'm looking for. We all have that in our personal lives, but it flows into our business lives as well. So you're dealing with customers that probably have gotten more demanding as a result. >> I think you're absolutely right. And at the same time, not all customers want to go into that entire outcome-based direction. So, but what I like about it is, if you can do outcome-based service, you can also accommodate those customers and the service they want without having the outcome, think about as a lay based service or those kind of things because your organization and your systems and your processes are ready to do this. It's actually part of it. So, that voice of the customer is for us important enough to know it's not one thing that we should create. It's not one service offering. It depends on what kind of customers you are. Look at data center customers for which we do a lot of cooling, they are scared to hell that that thing would be brought down because it would endanger their entire data center. They don't want to connect, but they want to have certain data that they can see inside their environment and that they can pass on to us. So, you need to accommodate all those things. So, your voice of customer is extremely important. >> You mentioned, Lisa, that we've been talking about servitization for quite a while, right? And it's because it involves so many layers of change within a business, right? And so, it's really more of a journey, a continuum. And to Roel's point, companies need to be able to address what their customers need at different points. Some may want to remain on a CapEx model and some may want to move to an outcomes model. We also need to be able to address what our customers need on a bit of a continuum, which is what we're working toward with IFS cloud, is being able to meet people where they are and give them what they need that can grow with them as they grow with their customers. >> And that's absolutely essential for a good partnership and that makes for those moments of service to happen at the end of the day to that end user, whether it's an airline or whatnot. IFS cloud, and we have a couple minutes left, but IFS cloud was launched only 18 months ago and I was in the keynote this morning and Christian was actually here on the show with me too, 400,000 plus users in 18 months, that's growing pretty quickly. What's been some of the feedback from the customer side, and we'll get your perspective, Roel, as well? >> I don't have cloud yet, so we are implementing APP 10. Why? Because we signed up with IFS two years ago. At that time it was not yet there. And we think now let's first do this and then we can move to cloud. But it's not that we will not move to cloud. It's something we will do eventually. I like the fact that IFS thinks of having everything in one rather than having the different pieces, which made it also for me personally very difficult to make a choice. Do I go for the standalone version of the field service, or do I take the one that is embedded in the ERP? What is the difference between those two? Is there functionalities that I'm going to miss if I choose one or the other? So, the fact that it will be all together, it makes it easier also to add on later on like customer service or the customer ports or all those kind of things. So, I like that concept. So, I'm very curious to hear from peers here that have done the implementation like the Tetre Pack, how's it going? What is their feeling? I'm very curious. >> Well, I imagine at this kind of event, you're going to learn just that. >> Yep. (Lisa chuckles) >> You were going to say something, Sarah. >> Yeah, I was just going to say, I think it's a really good point that you mentioned with all of the things we're used to in our consumer lives, we want simplicity. Having complex technology stacks is at odds with delivering simplicity to the customer, right? And so, so that's the goal really. I was just in a session before this with Yotin who's on the journey to Evergreen with IFS cloud. And it's really the idea of eliminating some of the manual effort that exists in maintaining a system, making it a lot easier and faster for organizations to adopt innovation that comes out and give them more agility really in focusing on meeting their customer needs instead of focusing on managing their technology. >> Absolutely. Nobody wants to be doing that. Thank you so much, both of you for joining me on the program today, talking about what IFS is doing, the Future of Field Service, how you're partnering, truly partnering with customers. It's impressive. We talked to a lot of vendors and a lot of customers and I definitely am seeing some unique differentiation here. So, thank you so much for sharing your insights with me today. >> Thanks, Lisa. >> Thank you. >> Appreciate it. For my guests, I'm Lisa Martin. You've been watching theCUBE live from Miami. We've been here all day. We thank you so much for watching. We will see you next time. (soft music)

Published Date : Oct 12 2022

SUMMARY :

We're going to be having Talk to me about what that that IFS allowed me to and talk about the relationship And so that servitization But the shift is there. But talk to us about the that needs to be cleansed, and someone that their customers can trust that need to be considered? and that is where most of to engage with your peers that the user interface for a technician going to call you later but one of the things that so that when you are putting effort And I don't know that (Lisa and Sarah laugh) to be as easy as going on Amazon that they can pass on to us. We also need to be able to the day to that end user, that I'm going to miss you're going to learn just that. (Lisa chuckles) And it's really the idea of eliminating We talked to a lot of vendors We thank you so much for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SarahPERSON

0.99+

Lisa MartinPERSON

0.99+

MiamiLOCATION

0.99+

LisaPERSON

0.99+

MuntersORGANIZATION

0.99+

Sarah NicastroPERSON

0.99+

EuropeLOCATION

0.99+

IFSORGANIZATION

0.99+

RoelPERSON

0.99+

five industriesQUANTITY

0.99+

twoQUANTITY

0.99+

NBSORGANIZATION

0.99+

1955DATE

0.99+

two guestsQUANTITY

0.99+

five years agoDATE

0.99+

AmazonORGANIZATION

0.99+

firstQUANTITY

0.99+

six years agoDATE

0.99+

bothQUANTITY

0.99+

APP 10TITLE

0.99+

IFS cloudTITLE

0.99+

Tetra ParkORGANIZATION

0.99+

two other customersQUANTITY

0.98+

each industryQUANTITY

0.98+

todayDATE

0.98+

five verticalsQUANTITY

0.98+

YotinPERSON

0.98+

18 monthsQUANTITY

0.98+

18 months agoDATE

0.98+

IFSTITLE

0.98+

two years agoDATE

0.98+

pandemicEVENT

0.98+

fourQUANTITY

0.98+

ChristianPERSON

0.97+

Future of field serviceORGANIZATION

0.97+

oneQUANTITY

0.97+

400,000 plus usersQUANTITY

0.97+

Roel RentmeestersPERSON

0.97+

about 1500QUANTITY

0.96+

earlier todayDATE

0.96+

one serviceQUANTITY

0.95+

Future of Field ServiceORGANIZATION

0.95+

2022DATE

0.94+

eighth versionQUANTITY

0.94+

four years agoDATE

0.9+

FutureORGANIZATION

0.9+

couple minutesQUANTITY

0.87+

Horizon3.ai Signal | Horizon3.ai Partner Program Expands Internationally


 

hello I'm John Furrier with thecube and welcome to this special presentation of the cube and Horizon 3.ai they're announcing a global partner first approach expanding their successful pen testing product Net Zero you're going to hear from leading experts in their staff their CEO positioning themselves for a successful Channel distribution expansion internationally in Europe Middle East Africa and Asia Pacific in this Cube special presentation you'll hear about the expansion the expanse partner program giving Partners a unique opportunity to offer Net Zero to their customers Innovation and Pen testing is going International with Horizon 3.ai enjoy the program [Music] welcome back everyone to the cube and Horizon 3.ai special presentation I'm John Furrier host of thecube we're here with Jennifer Lee head of Channel sales at Horizon 3.ai Jennifer welcome to the cube thanks for coming on great well thank you for having me so big news around Horizon 3.aa driving Channel first commitment you guys are expanding the channel partner program to include all kinds of new rewards incentives training programs help educate you know Partners really drive more recurring Revenue certainly cloud and Cloud scale has done that you got a great product that fits into that kind of Channel model great Services you can wrap around it good stuff so let's get into it what are you guys doing what are what are you guys doing with this news why is this so important yeah for sure so um yeah we like you said we recently expanded our Channel partner program um the driving force behind it was really just um to align our like you said our Channel first commitment um and creating awareness around the importance of our partner ecosystems um so that's it's really how we go to market is is through the channel and a great International Focus I've talked with the CEO so you know about the solution and he broke down all the action on why it's important on the product side but why now on the go to market change what's the what's the why behind this big this news on the channel yeah for sure so um we are doing this now really to align our business strategy which is built on the concept of enabling our partners to create a high value high margin business on top of our platform and so um we offer a solution called node zero it provides autonomous pen testing as a service and it allows organizations to continuously verify their security posture um so we our company vision we have this tagline that states that our pen testing enables organizations to see themselves Through The Eyes of an attacker and um we use the like the attacker's perspective to identify exploitable weaknesses and vulnerabilities so we created this partner program from a perspective of the partner so the partner's perspective and we've built It Through The Eyes of our partner right so we're prioritizing really what the partner is looking for and uh will ensure like Mutual success for us yeah the partners always want to get in front of the customers and bring new stuff to them pen tests have traditionally been really expensive uh and so bringing it down in one to a service level that's one affordable and has flexibility to it allows a lot of capability so I imagine people getting excited by it so I have to ask you about the program What specifically are you guys doing can you share any details around what it means for the partners what they get what's in it for them can you just break down some of the mechanics and mechanisms or or details yeah yep um you know we're really looking to create business alignment um and like I said establish Mutual success with our partners so we've got two um two key elements that we were really focused on um that we bring to the partners so the opportunity the profit margin expansion is one of them and um a way for our partners to really differentiate themselves and stay relevant in the market so um we've restructured our discount model really um you know highlighting profitability and maximizing profitability and uh this includes our deal registration we've we've created deal registration program we've increased discount for partners who take part in our partner certification uh trainings and we've we have some other partner incentives uh that we we've created that that's going to help out there we've we put this all so we've recently Gone live with our partner portal um it's a Consolidated experience for our partners where they can access our our sales tools and we really view our partners as an extension of our sales and Technical teams and so we've extended all of our our training material that we use internally we've made it available to our partners through our partner portal um we've um I'm trying I'm thinking now back what else is in that partner portal here we've got our partner certification information so all the content that's delivered during that training can be found in the portal we've got deal registration uh um co-branded marketing materials pipeline management and so um this this portal gives our partners a One-Stop place to to go to find all that information um and then just really quickly on the second part of that that I mentioned is our technology really is um really disruptive to the market so you know like you said autonomous pen testing it's um it's still it's well it's still still relatively new topic uh for security practitioners and um it's proven to be really disruptive so um that on top of um just well recently we found an article that um that mentioned by markets and markets that reports that the global pen testing markets really expanding and so it's expected to grow to like 2.7 billion um by 2027. so the Market's there right the Market's expanding it's growing and so for our partners it's just really allows them to grow their revenue um across their customer base expand their customer base and offering this High profit margin while you know getting in early to Market on this just disruptive technology big Market a lot of opportunities to make some money people love to put more margin on on those deals especially when you can bring a great solution that everyone knows is hard to do so I think that's going to provide a lot of value is there is there a type of partner that you guys see emerging or you aligning with you mentioned the alignment with the partners I can see how that the training and the incentives are all there sounds like it's all going well is there a type of partner that's resonating the most or is there categories of partners that can take advantage of this yeah absolutely so we work with all different kinds of Partners we work with our traditional resale Partners um we've worked we're working with systems integrators we have a really strong MSP mssp program um we've got Consulting partners and the Consulting Partners especially with the ones that offer pen test services so we they use us as a as we act as a force multiplier just really offering them profit margin expansion um opportunity there we've got some technology partner partners that we really work with for co-cell opportunities and then we've got our Cloud Partners um you'd mentioned that earlier and so we are in AWS Marketplace so our ccpo partners we're part of the ISP accelerate program um so we we're doing a lot there with our Cloud partners and um of course we uh we go to market with uh distribution Partners as well gotta love the opportunity for more margin expansion every kind of partner wants to put more gross profit on their deals is there a certification involved I have to ask is there like do you get do people get certified or is it just you get trained is it self-paced training is it in person how are you guys doing the whole training certification thing because is that is that a requirement yeah absolutely so we do offer a certification program and um it's been very popular this includes a a seller's portion and an operator portion and and so um this is at no cost to our partners and um we operate both virtually it's it's law it's virtually but live it's not self-paced and we also have in person um you know sessions as well and we also can customize these to any partners that have a large group of people and we can just we can do one in person or virtual just specifically for that partner well any kind of incentive opportunities and marketing opportunities everyone loves to get the uh get the deals just kind of rolling in leads from what we can see if our early reporting this looks like a hot product price wise service level wise what incentive do you guys thinking about and and Joint marketing you mentioned co-sell earlier in pipeline so I was kind of kind of honing in on that piece sure and yes and then to follow along with our partner certification program we do incentivize our partners there if they have a certain number certified their discount increases so that's part of it we have our deal registration program that increases discount as well um and then we do have some um some partner incentives that are wrapped around meeting setting and um moving moving opportunities along to uh proof of value gotta love the education driving value I have to ask you so you've been around the industry you've seen the channel relationships out there you're seeing companies old school new school you know uh Horizon 3.ai is kind of like that new school very cloud specific a lot of Leverage with we mentioned AWS and all the clouds um why is the company so hot right now why did you join them and what's why are people attracted to this company what's the what's the attraction what's the vibe what do you what do you see and what what do you use what did you see in in this company well this is just you know like I said it's very disruptive um it's really in high demand right now and um and and just because because it's new to Market and uh a newer technology so we are we can collaborate with a manual pen tester um we can you know we can allow our customers to run their pen test um with with no specialty teams and um and and then so we and like you know like I said we can allow our partners can actually build businesses profitable businesses so we can they can use our product to increase their services revenue and um and build their business model you know around around our services what's interesting about the pen test thing is that it's very expensive and time consuming the people who do them are very talented people that could be working on really bigger things in the in absolutely customers so bringing this into the channel allows them if you look at the price Delta between a pen test and then what you guys are offering I mean that's a huge margin Gap between street price of say today's pen test and what you guys offer when you show people that they follow do they say too good to be true I mean what are some of the things that people say when you kind of show them that are they like scratch their head like come on what's the what's the catch here right so the cost savings is a huge is huge for us um and then also you know like I said working as a force multiplier with a pen testing company that offers the services and so they can they can do their their annual manual pen tests that may be required around compliance regulations and then we can we can act as the continuous verification of their security um um you know that that they can run um weekly and so it's just um you know it's just an addition to to what they're offering already and an expansion so Jennifer thanks for coming on thecube really appreciate you uh coming on sharing the insights on the channel uh what's next what can we expect from the channel group what are you thinking what's going on right so we're really looking to expand our our Channel um footprint and um very strategically uh we've got um we've got some big plans um for for Horizon 3.ai awesome well thanks for coming on really appreciate it you're watching thecube the leader in high tech Enterprise coverage [Music] [Music] hello and welcome to the Cube's special presentation with Horizon 3.ai with Raina Richter vice president of emea Europe Middle East and Africa and Asia Pacific APAC for Horizon 3 today welcome to this special Cube presentation thanks for joining us thank you for the invitation so Horizon 3 a guy driving Global expansion big international news with a partner first approach you guys are expanding internationally let's get into it you guys are driving this new expanse partner program to new heights tell us about it what are you seeing in the momentum why the expansion what's all the news about well I would say uh yeah in in international we have I would say a similar similar situation like in the US um there is a global shortage of well-educated penetration testers on the one hand side on the other side um we have a raising demand of uh network and infrastructure security and with our approach of an uh autonomous penetration testing I I believe we are totally on top of the game um especially as we have also now uh starting with an international instance that means for example if a customer in Europe is using uh our service node zero he will be connected to a node zero instance which is located inside the European Union and therefore he has doesn't have to worry about the conflict between the European the gdpr regulations versus the US Cloud act and I would say there we have a total good package for our partners that they can provide differentiators to their customers you know we've had great conversations here on thecube with the CEO and the founder of the company around the leverage of the cloud and how successful that's been for the company and honestly I can just Connect the Dots here but I'd like you to weigh in more on how that translates into the go to market here because you got great Cloud scale with with the security product you guys are having success with great leverage there I've seen a lot of success there what's the momentum on the channel partner program internationally why is it so important to you is it just the regional segmentation is it the economics why the momentum well there are it's there are multiple issues first of all there is a raising demand in penetration testing um and don't forget that uh in international we have a much higher level in number a number or percentage in SMB and mid-market customers so these customers typically most of them even didn't have a pen test done once a year so for them pen testing was just too expensive now with our offering together with our partners we can provide different uh ways how customers could get an autonomous pen testing done more than once a year with even lower costs than they had with with a traditional manual paint test so and that is because we have our uh Consulting plus package which is for typically pain testers they can go out and can do a much faster much quicker and their pain test at many customers once in after each other so they can do more pain tests on a lower more attractive price on the other side there are others what even the same ones who are providing um node zero as an mssp service so they can go after s p customers saying okay well you only have a couple of hundred uh IP addresses no worries we have the perfect package for you and then you have let's say the mid Market let's say the thousands and more employees then they might even have an annual subscription very traditional but for all of them it's all the same the customer or the service provider doesn't need a piece of Hardware they only need to install a small piece of a Docker container and that's it and that makes it so so smooth to go in and say okay Mr customer we just put in this this virtual attacker into your network and that's it and and all the rest is done and within within three clicks they are they can act like a pen tester with 20 years of experience and that's going to be very Channel friendly and partner friendly I can almost imagine so I have to ask you and thank you for calling the break calling out that breakdown and and segmentation that was good that was very helpful for me to understand but I want to follow up if you don't mind um what type of partners are you seeing the most traction with and why well I would say at the beginning typically you have the the innovators the early adapters typically Boutique size of Partners they start because they they are always looking for Innovation and those are the ones you they start in the beginning so we have a wide range of Partners having mostly even um managed by the owner of the company so uh they immediately understand okay there is the value and they can change their offering they're changing their offering in terms of penetration testing because they can do more pen tests and they can then add other ones or we have those ones who offer 10 tests services but they did not have their own pen testers so they had to go out on the open market and Source paint testing experts um to get the pen test at a particular customer done and now with node zero they're totally independent they can't go out and say okay Mr customer here's the here's the service that's it we turn it on and within an hour you're up and running totally yeah and those pen tests are usually expensive and hard to do now it's right in line with the sales delivery pretty interesting for a partner absolutely but on the other hand side we are not killing the pain testers business we do something we're providing with no tiers I would call something like the foundation work the foundational work of having an an ongoing penetration testing of the infrastructure the operating system and the pen testers by themselves they can concentrate in the future on things like application pen testing for example so those Services which we we're not touching so we're not killing the paint tester Market we're just taking away the ongoing um let's say foundation work call it that way yeah yeah that was one of my questions I was going to ask is there's a lot of interest in this autonomous pen testing one because it's expensive to do because those skills are required are in need and they're expensive so you kind of cover the entry level and the blockers that are in there I've seen people say to me this pen test becomes a blocker for getting things done so there's been a lot of interest in the autonomous pen testing and for organizations to have that posture and it's an overseas issue too because now you have that that ongoing thing so can you explain that particular benefit for an organization to have that continuously verifying an organization's posture yep certainly so I would say um typically you are you you have to do your patches you have to bring in new versions of operating systems of different Services of uh um operating systems of some components and and they are always bringing new vulnerabilities the difference here is that with node zero we are telling the customer or the partner package we're telling them which are the executable vulnerabilities because previously they might have had um a vulnerability scanner so this vulnerability scanner brought up hundreds or even thousands of cves but didn't say anything about which of them are vulnerable really executable and then you need an expert digging in one cve after the other finding out is it is it really executable yes or no and that is where you need highly paid experts which we have a shortage so with notes here now we can say okay we tell you exactly which ones are the ones you should work on because those are the ones which are executable we rank them accordingly to the risk level how easily they can be used and by a sudden and then the good thing is convert it or indifference to the traditional penetration test they don't have to wait for a year for the next pain test to find out if the fixing was effective they weren't just the next scan and say Yes closed vulnerability is gone the time is really valuable and if you're doing any devops Cloud native you're always pushing new things so pen test ongoing pen testing is actually a benefit just in general as a kind of hygiene so really really interesting solution really bring that global scale is going to be a new new coverage area for us for sure I have to ask you if you don't mind answering what particular region are you focused on or plan to Target for this next phase of growth well at this moment we are concentrating on the countries inside the European Union Plus the United Kingdom um but we are and they are of course logically I'm based into Frankfurt area that means we cover more or less the countries just around so it's like the total dark region Germany Switzerland Austria plus the Netherlands but we also already have Partners in the nordics like in Finland or in Sweden um so it's it's it it's rapidly we have Partners already in the UK and it's rapidly growing so I'm for example we are now starting with some activities in Singapore um um and also in the in the Middle East area um very important we uh depending on let's say the the way how to do business currently we try to concentrate on those countries where we can have um let's say um at least English as an accepted business language great is there any particular region you're having the most success with right now is it sounds like European Union's um kind of first wave what's them yes that's the first definitely that's the first wave and now we're also getting the uh the European instance up and running it's clearly our commitment also to the market saying okay we know there are certain dedicated uh requirements and we take care of this and and we're just launching it we're building up this one uh the instance um in the AWS uh service center here in Frankfurt also with some dedicated Hardware internet in a data center in Frankfurt where we have with the date six by the way uh the highest internet interconnection bandwidth on the planet so we have very short latency to wherever you are on on the globe that's a great that's a great call outfit benefit too I was going to ask that what are some of the benefits your partners are seeing in emea and Asia Pacific well I would say um the the benefits is for them it's clearly they can they can uh talk with customers and can offer customers penetration testing which they before and even didn't think about because it penetrates penetration testing in a traditional way was simply too expensive for them too complex the preparation time was too long um they didn't have even have the capacity uh to um to support a pain an external pain tester now with this service you can go in and say even if they Mr customer we can do a test with you in a couple of minutes within we have installed the docker container within 10 minutes we have the pen test started that's it and then we just wait and and I would say that is we'll we are we are seeing so many aha moments then now because on the partner side when they see node zero the first time working it's like this wow that is great and then they work out to customers and and show it to their typically at the beginning mostly the friendly customers like wow that's great I need that and and I would say um the feedback from the partners is that is a service where I do not have to evangelize the customer everybody understands penetration testing I don't have to say describe what it is they understand the customer understanding immediately yes penetration testing good about that I know I should do it but uh too complex too expensive now with the name is for example as an mssp service provided from one of our partners but it's getting easy yeah it's great and it's great great benefit there I mean I gotta say I'm a huge fan of what you guys are doing I like this continuous automation that's a major benefit to anyone doing devops or any kind of modern application development this is just a godsend for them this is really good and like you said the pen testers that are doing it they were kind of coming down from their expertise to kind of do things that should have been automated they get to focus on the bigger ticket items that's a really big point so we free them we free the pain testers for the higher level elements of the penetration testing segment and that is typically the application testing which is currently far away from being automated yeah and that's where the most critical workloads are and I think this is the nice balance congratulations on the international expansion of the program and thanks for coming on this special presentation really I really appreciate it thank you you're welcome okay this is thecube special presentation you know check out pen test automation International expansion Horizon 3 dot AI uh really Innovative solution in our next segment Chris Hill sector head for strategic accounts will discuss the power of Horizon 3.ai and Splunk in action you're watching the cube the leader in high tech Enterprise coverage foreign [Music] [Music] welcome back everyone to the cube and Horizon 3.ai special presentation I'm John Furrier host of thecube we're with Chris Hill sector head for strategic accounts and federal at Horizon 3.ai a great Innovative company Chris great to see you thanks for coming on thecube yeah like I said uh you know great to meet you John long time listener first time caller so excited to be here with you guys yeah we were talking before camera you had Splunk back in 2013 and I think 2012 was our first splunk.com and boy man you know talk about being in the right place at the right time now we're at another inflection point and Splunk continues to be relevant um and continuing to have that data driving Security in that interplay and your CEO former CTO of his plug as well at Horizon who's been on before really Innovative product you guys have but you know yeah don't wait for a breach to find out if you're logging the right data this is the topic of this thread Splunk is very much part of this new international expansion announcement uh with you guys tell us what are some of the challenges that you see where this is relevant for the Splunk and Horizon AI as you guys expand uh node zero out internationally yeah well so across so you know my role uh within Splunk it was uh working with our most strategic accounts and so I looked back to 2013 and I think about the sales process like working with with our small customers you know it was um it was still very siled back then like I was selling to an I.T team that was either using this for it operations um we generally would always even say yeah although we do security we weren't really designed for it we're a log management tool and we I'm sure you remember back then John we were like sort of stepping into the security space and and the public sector domain that I was in you know security was 70 of what we did when I look back to sort of uh the transformation that I was witnessing in that digital transformation um you know when I look at like 2019 to today you look at how uh the IT team and the security teams are being have been forced to break down those barriers that they used to sort of be silent away would not commute communicate one you know the security guys would be like oh this is my box I.T you're not allowed in today you can't get away with that and I think that the value that we bring to you know and of course Splunk has been a huge leader in that space and continues to do Innovation across the board but I think what we've we're seeing in the space and I was talking with Patrick Coughlin the SVP of uh security markets about this is that you know what we've been able to do with Splunk is build a purpose-built solution that allows Splunk to eat more data so Splunk itself is ulk know it's an ingest engine right the great reason people bought it was you could build these really fast dashboards and grab intelligence out of it but without data it doesn't do anything right so how do you drive and how do you bring more data in and most importantly from a customer perspective how do you bring the right data in and so if you think about what node zero and what we're doing in a horizon 3 is that sure we do pen testing but because we're an autonomous pen testing tool we do it continuously so this whole thought I'd be like oh crud like my customers oh yeah we got a pen test coming up it's gonna be six weeks the week oh yeah you know and everyone's gonna sit on their hands call me back in two months Chris we'll talk to you then right not not a real efficient way to test your environment and shoot we saw that with Uber this week right um you know and that's a case where we could have helped oh just right we could explain the Uber thing because it was a contractor just give a quick highlight of what happened so you can connect the doctor yeah no problem so um it was uh I got I think it was yeah one of those uh you know games where they would try and test an environment um and with the uh pen tester did was he kept on calling them MFA guys being like I need to reset my password we need to set my right password and eventually the um the customer service guy said okay I'm resetting it once he had reset and bypassed the multi-factor authentication he then was able to get in and get access to the building area that he was in or I think not the domain but he was able to gain access to a partial part of that Network he then paralleled over to what I would assume is like a VA VMware or some virtual machine that had notes that had all of the credentials for logging into various domains and So within minutes they had access and that's the sort of stuff that we do you know a lot of these tools like um you know you think about the cacophony of tools that are out there in a GTA architect architecture right I'm gonna get like a z-scale or I'm going to have uh octum and I have a Splunk I've been into the solar system I mean I don't mean to name names we have crowdstriker or Sentinel one in there it's just it's a cacophony of things that don't work together they weren't designed work together and so we have seen so many times in our business through our customer support and just working with customers when we do their pen tests that there will be 5 000 servers out there three are misconfigured those three misconfigurations will create the open door because remember the hacker only needs to be right once the defender needs to be right all the time and that's the challenge and so that's what I'm really passionate about what we're doing uh here at Horizon three I see this my digital transformation migration and security going on which uh we're at the tip of the spear it's why I joined sey Hall coming on this journey uh and just super excited about where the path's going and super excited about the relationship with Splunk I get into more details on some of the specifics of that but um you know well you're nailing I mean we've been doing a lot of things on super cloud and this next gen environment we're calling it next gen you're really seeing devops obviously devsecops has already won the it role has moved to the developer shift left is an indicator of that it's one of the many examples higher velocity code software supply chain you hear these things that means that it is now in the developer hands it is replaced by the new Ops data Ops teams and security where there's a lot of horizontal thinking to your point about access there's no more perimeter huge 100 right is really right on things one time you know to get in there once you're in then you can hang out move around move laterally big problem okay so we get that now the challenges for these teams as they are transitioning organizationally how do they figure out what to do okay this is the next step they already have Splunk so now they're kind of in transition while protecting for a hundred percent ratio of success so how would you look at that and describe the challenge is what do they do what is it what are the teams facing with their data and what's next what are they what are they what action do they take so let's use some vernacular that folks will know so if I think about devsecops right we both know what that means that I'm going to build security into the app it normally talks about sec devops right how am I building security around the perimeter of what's going inside my ecosystem and what are they doing and so if you think about what we're able to do with somebody like Splunk is we can pen test the entire environment from Soup To Nuts right so I'm going to test the end points through to its I'm going to look for misconfigurations I'm going to I'm going to look for um uh credential exposed credentials you know I'm going to look for anything I can in the environment again I'm going to do it at light speed and and what what we're doing for that SEC devops space is to you know did you detect that we were in your environment so did we alert Splunk or the Sim that there's someone in the environment laterally moving around did they more importantly did they log us into their environment and when do they detect that log to trigger that log did they alert on us and then finally most importantly for every CSO out there is going to be did they stop us and so that's how we we do this and I think you when speaking with um stay Hall before you know we've come up with this um boils but we call it fine fix verifying so what we do is we go in is we act as the attacker right we act in a production environment so we're not going to be we're a passive attacker but we will go in on credentialed on agents but we have to assume to have an assumed breach model which means we're going to put a Docker container in your environment and then we're going to fingerprint the environment so we're going to go out and do an asset survey now that's something that's not something that Splunk does super well you know so can Splunk see all the assets do the same assets marry up we're going to log all that data and think and then put load that into this long Sim or the smoke logging tools just to have it in Enterprise right that's an immediate future ad that they've got um and then we've got the fix so once we've completed our pen test um we are then going to generate a report and we can talk about these in a little bit later but the reports will show an executive summary the assets that we found which would be your asset Discovery aspect of that a fix report and the fixed report I think is probably the most important one it will go down and identify what we did how we did it and then how to fix that and then from that the pen tester or the organization should fix those then they go back and run another test and then they validate like a change detection environment to see hey did those fixes taste play take place and you know snehaw when he was the CTO of jsoc he shared with me a number of times about it's like man there would be 15 more items on next week's punch sheet that we didn't know about and it's and it has to do with how we you know how they were uh prioritizing the cves and whatnot because they would take all CBDs it was critical or non-critical and it's like we are able to create context in that environment that feeds better information into Splunk and whatnot that brings that brings up the efficiency for Splunk specifically the teams out there by the way the burnout thing is real I mean this whole I just finished my list and I got 15 more or whatever the list just can keeps growing how did node zero specifically help Splunk teams be more efficient like that's the question I want to get at because this seems like a very scale way for Splunk customers and teams service teams to be more so the question is how does node zero help make Splunk specifically their service teams be more efficient so so today in our early interactions we're building customers we've seen are five things um and I'll start with sort of identifying the blind spots right so kind of what I just talked about with you did we detect did we log did we alert did they stop node zero right and so I would I put that you know a more Layman's third grade term and if I was going to beat a fifth grader at this game would be we can be the sparring partner for a Splunk Enterprise customer a Splunk Essentials customer someone using Splunk soar or even just an Enterprise Splunk customer that may be a small shop with three people and just wants to know where am I exposed so by creating and generating these reports and then having um the API that actually generates the dashboard they can take all of these events that we've logged and log them in and then where that then comes in is number two is how do we prioritize those logs right so how do we create visibility to logs that that um are have critical impacts and again as I mentioned earlier not all cves are high impact regard and also not all or low right so if you daisy chain a bunch of low cves together boom I've got a mission critical AP uh CPE that needs to be fixed now such as a credential moving to an NT box that's got a text file with a bunch of passwords on it that would be very bad um and then third would be uh verifying that you have all of the hosts so one of the things that splunk's not particularly great at and they'll literate themselves they don't do asset Discovery so dude what assets do we see and what are they logging from that um and then for from um for every event that they are able to identify one of the cool things that we can do is actually create this low code no code environment so they could let you know Splunk customers can use Splunk sword to actually triage events and prioritize that event so where they're being routed within it to optimize the Sox team time to Market or time to triage any given event obviously reducing MTR and then finally I think one of the neatest things that we'll be seeing us develop is um our ability to build glass cables so behind me you'll see one of our triage events and how we build uh a Lockheed Martin kill chain on that with a glass table which is very familiar to the community we're going to have the ability and not too distant future to allow people to search observe on those iocs and if people aren't familiar with it ioc it's an instant of a compromise so that's a vector that we want to drill into and of course who's better at Drilling in the data and smoke yeah this is a critter this is an awesome Synergy there I mean I can see a Splunk customer going man this just gives me so much more capability action actionability and also real understanding and I think this is what I want to dig into if you don't mind understanding that critical impact okay is kind of where I see this coming got the data data ingest now data's data but the question is what not to log you know where are things misconfigured these are critical questions so can you talk about what it means to understand critical impact yeah so I think you know going back to the things that I just spoke about a lot of those cves where you'll see um uh low low low and then you daisy chain together and they're suddenly like oh this is high now but then your other impact of like if you're if you're a Splunk customer you know and I had it I had several of them I had one customer that you know terabytes of McAfee data being brought in and it was like all right there's a lot of other data that you probably also want to bring but they could only afford wanted to do certain data sets because that's and they didn't know how to prioritize or filter those data sets and so we provide that opportunity to say hey these are the critical ones to bring in but there's also the ones that you don't necessarily need to bring in because low cve in this case really does mean low cve like an ILO server would be one that um that's the print server uh where the uh your admin credentials are on on like a printer and so there will be credentials on that that's something that a hacker might go in to look at so although the cve on it is low is if you daisy chain with somebody that's able to get into that you might say Ah that's high and we would then potentially rank it giving our AI logic to say that's a moderate so put it on the scale and we prioritize those versus uh of all of these scanners just going to give you a bunch of CDs and good luck and translating that if I if I can and tell me if I'm wrong that kind of speaks to that whole lateral movement that's it challenge right print serve a great example looks stupid low end who's going to want to deal with the print server oh but it's connected into a critical system there's a path is that kind of what you're getting at yeah I use Daisy Chain I think that's from the community they came from uh but it's just a lateral movement it's exactly what they're doing in those low level low critical lateral movements is where the hackers are getting in right so that's the beauty thing about the uh the Uber example is that who would have thought you know I've got my monthly Factor authentication going in a human made a mistake we can't we can't not expect humans to make mistakes we're fallible right the reality is is once they were in the environment they could have protected themselves by running enough pen tests to know that they had certain uh exposed credentials that would have stopped the breach and they did not had not done that in their environment and I'm not poking yeah but it's an interesting Trend though I mean it's obvious if sometimes those low end items are also not protected well so it's easy to get at from a hacker standpoint but also the people in charge of them can be fished easily or spearfished because they're not paying attention because they don't have to no one ever told them hey be careful yeah for the community that I came from John that's exactly how they they would uh meet you at a uh an International Event um introduce themselves as a graduate student these are National actor States uh would you mind reviewing my thesis on such and such and I was at Adobe at the time that I was working on this instead of having to get the PDF they opened the PDF and whoever that customer was launches and I don't know if you remember back in like 2008 time frame there was a lot of issues around IP being by a nation state being stolen from the United States and that's exactly how they did it and John that's or LinkedIn hey I want to get a joke we want to hire you double the salary oh I'm gonna click on that for sure you know yeah right exactly yeah the one thing I would say to you is like uh when we look at like sort of you know because I think we did 10 000 pen tests last year is it's probably over that now you know we have these sort of top 10 ways that we think and find people coming into the environment the funniest thing is that only one of them is a cve related vulnerability like uh you know you guys know what they are right so it's it but it's it's like two percent of the attacks are occurring through the cves but yeah there's all that attention spent to that and very little attention spent to this pen testing side which is sort of this continuous threat you know monitoring space and and this vulnerability space where I think we play a such an important role and I'm so excited to be a part of the tip of the spear on this one yeah I'm old enough to know the movie sneakers which I loved as a you know watching that movie you know professional hackers are testing testing always testing the environment I love this I got to ask you as we kind of wrap up here Chris if you don't mind the the benefits to Professional Services from this Alliance big news Splunk and you guys work well together we see that clearly what are what other benefits do Professional Services teams see from the Splunk and Horizon 3.ai Alliance so if you're I think for from our our from both of our uh Partners uh as we bring these guys together and many of them already are the same partner right uh is that uh first off the licensing model is probably one of the key areas that we really excel at so if you're an end user you can buy uh for the Enterprise by the number of IP addresses you're using um but uh if you're a partner working with this there's solution ways that you can go in and we'll license as to msps and what that business model on msps looks like but the unique thing that we do here is this C plus license and so the Consulting plus license allows like a uh somebody a small to mid-sized to some very large uh you know Fortune 100 uh consulting firms use this uh by buying into a license called um Consulting plus where they can have unlimited uh access to as many IPS as they want but you can only run one test at a time and as you can imagine when we're going and hacking passwords and um checking hashes and decrypting hashes that can take a while so but for the right customer it's it's a perfect tool and so I I'm so excited about our ability to go to market with uh our partners so that we understand ourselves understand how not to just sell to or not tell just to sell through but we know how to sell with them as a good vendor partner I think that that's one thing that we've done a really good job building bring it into the market yeah I think also the Splunk has had great success how they've enabled uh partners and Professional Services absolutely you know the services that layer on top of Splunk are multi-fold tons of great benefits so you guys Vector right into that ride that way with friction and and the cool thing is that in you know in one of our reports which could be totally customized uh with someone else's logo we're going to generate you know so I I used to work in another organization it wasn't Splunk but we we did uh you know pen testing as for for customers and my pen testers would come on site they'd do the engagement and they would leave and then another release someone would be oh shoot we got another sector that was breached and they'd call you back you know four weeks later and so by August our entire pen testings teams would be sold out and it would be like well even in March maybe and they're like no no I gotta breach now and and and then when they do go in they go through do the pen test and they hand over a PDF and they pack on the back and say there's where your problems are you need to fix it and the reality is that what we're going to generate completely autonomously with no human interaction is we're going to go and find all the permutations of anything we found and the fix for those permutations and then once you've fixed everything you just go back and run another pen test it's you know for what people pay for one pen test they can have a tool that does that every every Pat patch on Tuesday and that's on Wednesday you know triage throughout the week green yellow red I wanted to see the colors show me green green is good right not red and one CIO doesn't want who doesn't want that dashboard right it's it's exactly it and we can help bring I think that you know I'm really excited about helping drive this with the Splunk team because they get that they understand that it's the green yellow red dashboard and and how do we help them find more green uh so that the other guys are in red yeah and get in the data and do the right thing and be efficient with how you use the data know what to look at so many things to pay attention to you know the combination of both and then go to market strategy real brilliant congratulations Chris thanks for coming on and sharing um this news with the detail around the Splunk in action around the alliance thanks for sharing John my pleasure thanks look forward to seeing you soon all right great we'll follow up and do another segment on devops and I.T and security teams as the new new Ops but and super cloud a bunch of other stuff so thanks for coming on and our next segment the CEO of horizon 3.aa will break down all the new news for us here on thecube you're watching thecube the leader in high tech Enterprise coverage [Music] yeah the partner program for us has been fantastic you know I think prior to that you know as most organizations most uh uh most Farmers most mssps might not necessarily have a a bench at all for penetration testing uh maybe they subcontract this work out or maybe they do it themselves but trying to staff that kind of position can be incredibly difficult for us this was a differentiator a a new a new partner a new partnership that allowed us to uh not only perform services for our customers but be able to provide a product by which that they can do it themselves so we work with our customers in a variety of ways some of them want more routine testing and perform this themselves but we're also a certified service provider of horizon 3 being able to perform uh penetration tests uh help review the the data provide color provide analysis for our customers in a broader sense right not necessarily the the black and white elements of you know what was uh what's critical what's high what's medium what's low what you need to fix but are there systemic issues this has allowed us to onboard new customers this has allowed us to migrate some penetration testing services to us from from competitors in the marketplace But ultimately this is occurring because the the product and the outcome are special they're unique and they're effective our customers like what they're seeing they like the routineness of it many of them you know again like doing this themselves you know being able to kind of pen test themselves parts of their networks um and the the new use cases right I'm a large organization I have eight to ten Acquisitions per year wouldn't it be great to have a tool to be able to perform a penetration test both internal and external of that acquisition before we integrate the two companies and maybe bringing on some risk it's a very effective partnership uh one that really is uh kind of taken our our Engineers our account Executives by storm um you know this this is a a partnership that's been very valuable to us [Music] a key part of the value and business model at Horizon 3 is enabling Partners to leverage node zero to make more revenue for themselves our goal is that for sixty percent of our Revenue this year will be originated by partners and that 95 of our Revenue next year will be originated by partners and so a key to that strategy is making us an integral part of your business models as a partner a key quote from one of our partners is that we enable every one of their business units to generate Revenue so let's talk about that in a little bit more detail first is that if you have a pen test Consulting business take Deloitte as an example what was six weeks of human labor at Deloitte per pen test has been cut down to four days of Labor using node zero to conduct reconnaissance find all the juicy interesting areas of the of the Enterprise that are exploitable and being able to go assess the entire organization and then all of those details get served up to the human to be able to look at understand and determine where to probe deeper so what you see in that pen test Consulting business is that node zero becomes a force multiplier where those Consulting teams were able to cover way more accounts and way more IPS within those accounts with the same or fewer consultants and so that directly leads to profit margin expansion for the Penn testing business itself because node 0 is a force multiplier the second business model here is if you're an mssp as an mssp you're already making money providing defensive cyber security operations for a large volume of customers and so what they do is they'll license node zero and use us as an upsell to their mssb business to start to deliver either continuous red teaming continuous verification or purple teaming as a service and so in that particular business model they've got an additional line of Revenue where they can increase the spend of their existing customers by bolting on node 0 as a purple team as a service offering the third business model or customer type is if you're an I.T services provider so as an I.T services provider you make money installing and configuring security products like Splunk or crowdstrike or hemio you also make money reselling those products and you also make money generating follow-on services to continue to harden your customer environments and so for them what what those it service providers will do is use us to verify that they've installed Splunk correctly improved to their customer that Splunk was installed correctly or crowdstrike was installed correctly using our results and then use our results to drive follow-on services and revenue and then finally we've got the value-added reseller which is just a straight up reseller because of how fast our sales Cycles are these vars are able to typically go from cold email to deal close in six to eight weeks at Horizon 3 at least a single sales engineer is able to run 30 to 50 pocs concurrently because our pocs are very lightweight and don't require any on-prem customization or heavy pre-sales post sales activity so as a result we're able to have a few amount of sellers driving a lot of Revenue and volume for us well the same thing applies to bars there isn't a lot of effort to sell the product or prove its value so vars are able to sell a lot more Horizon 3 node zero product without having to build up a huge specialist sales organization so what I'm going to do is talk through uh scenario three here as an I.T service provider and just how powerful node zero can be in driving additional Revenue so in here think of for every one dollar of node zero license purchased by the IT service provider to do their business it'll generate ten dollars of additional revenue for that partner so in this example kidney group uses node 0 to verify that they have installed and deployed Splunk correctly so Kitty group is a Splunk partner they they sell it services to install configure deploy and maintain Splunk and as they deploy Splunk they're going to use node 0 to attack the environment and make sure that the right logs and alerts and monitoring are being handled within the Splunk deployment so it's a way of doing QA or verifying that Splunk has been configured correctly and that's going to be internally used by kidney group to prove the quality of their services that they've just delivered then what they're going to do is they're going to show and leave behind that node zero Report with their client and that creates a resell opportunity for for kidney group to resell node 0 to their client because their client is seeing the reports and the results and saying wow this is pretty amazing and those reports can be co-branded where it's a pen testing report branded with kidney group but it says powered by Horizon three under it from there kidney group is able to take the fixed actions report that's automatically generated with every pen test through node zero and they're able to use that as the starting point for a statement of work to sell follow-on services to fix all of the problems that node zero identified fixing l11r misconfigurations fixing or patching VMware or updating credentials policies and so on so what happens is node 0 has found a bunch of problems the client often lacks the capacity to fix and so kidney group can use that lack of capacity by the client as a follow-on sales opportunity for follow-on services and finally based on the findings from node zero kidney group can look at that report and say to the customer you know customer if you bought crowdstrike you'd be able to uh prevent node Zero from attacking and succeeding in the way that it did for if you bought humano or if you bought Palo Alto networks or if you bought uh some privileged access management solution because of what node 0 was able to do with credential harvesting and attacks and so as a result kidney group is able to resell other security products within their portfolio crowdstrike Falcon humano Polito networks demisto Phantom and so on based on the gaps that were identified by node zero and that pen test and what that creates is another feedback loop where kidney group will then go use node 0 to verify that crowdstrike product has actually been installed and configured correctly and then this becomes the cycle of using node 0 to verify a deployment using that verification to drive a bunch of follow-on services and resell opportunities which then further drives more usage of the product now the way that we licensed is that it's a usage-based license licensing model so that the partner will grow their node zero Consulting plus license as they grow their business so for example if you're a kidney group then week one you've got you're going to use node zero to verify your Splunk install in week two if you have a pen testing business you're going to go off and use node zero to be a force multiplier for your pen testing uh client opportunity and then if you have an mssp business then in week three you're going to use node zero to go execute a purple team mssp offering for your clients so not necessarily a kidney group but if you're a Deloitte or ATT these larger companies and you've got multiple lines of business if you're Optive for instance you all you have to do is buy one Consulting plus license and you're going to be able to run as many pen tests as you want sequentially so now you can buy a single license and use that one license to meet your week one client commitments and then meet your week two and then meet your week three and as you grow your business you start to run multiple pen tests concurrently so in week one you've got to do a Splunk verify uh verify Splunk install and you've got to run a pen test and you've got to do a purple team opportunity you just simply expand the number of Consulting plus licenses from one license to three licenses and so now as you systematically grow your business you're able to grow your node zero capacity with you giving you predictable cogs predictable margins and once again 10x additional Revenue opportunity for that investment in the node zero Consulting plus license my name is Saint I'm the co-founder and CEO here at Horizon 3. I'm going to talk to you today about why it's important to look at your Enterprise Through The Eyes of an attacker the challenge I had when I was a CIO in banking the CTO at Splunk and serving within the Department of Defense is that I had no idea I was Secure until the bad guys had showed up am I logging the right data am I fixing the right vulnerabilities are my security tools that I've paid millions of dollars for actually working together to defend me and the answer is I don't know does my team actually know how to respond to a breach in the middle of an incident I don't know I've got to wait for the bad guys to show up and so the challenge I had was how do we proactively verify our security posture I tried a variety of techniques the first was the use of vulnerability scanners and the challenge with vulnerability scanners is being vulnerable doesn't mean you're exploitable I might have a hundred thousand findings from my scanner of which maybe five or ten can actually be exploited in my environment the other big problem with scanners is that they can't chain weaknesses together from machine to machine so if you've got a thousand machines in your environment or more what a vulnerability scanner will do is tell you you have a problem on machine one and separately a problem on machine two but what they can tell you is that an attacker could use a load from machine one plus a low from machine two to equal to critical in your environment and what attackers do in their tactics is they chain together misconfigurations dangerous product defaults harvested credentials and exploitable vulnerabilities into attack paths across different machines so to address the attack pads across different machines I tried layering in consulting-based pen testing and the issue is when you've got thousands of hosts or hundreds of thousands of hosts in your environment human-based pen testing simply doesn't scale to test an infrastructure of that size moreover when they actually do execute a pen test and you get the report oftentimes you lack the expertise within your team to quickly retest to verify that you've actually fixed the problem and so what happens is you end up with these pen test reports that are incomplete snapshots and quickly going stale and then to mitigate that problem I tried using breach and attack simulation tools and the struggle with these tools is one I had to install credentialed agents everywhere two I had to write my own custom attack scripts that I didn't have much talent for but also I had to maintain as my environment changed and then three these types of tools were not safe to run against production systems which was the the majority of my attack surface so that's why we went off to start Horizon 3. so Tony and I met when we were in Special Operations together and the challenge we wanted to solve was how do we do infrastructure security testing at scale by giving the the power of a 20-year pen testing veteran into the hands of an I.T admin a network engineer in just three clicks and the whole idea is we enable these fixers The Blue Team to be able to run node Zero Hour pen testing product to quickly find problems in their environment that blue team will then then go off and fix the issues that were found and then they can quickly rerun the attack to verify that they fixed the problem and the whole idea is delivering this without requiring custom scripts be developed without requiring credential agents be installed and without requiring the use of external third-party consulting services or Professional Services self-service pen testing to quickly Drive find fix verify there are three primary use cases that our customers use us for the first is the sock manager that uses us to verify that their security tools are actually effective to verify that they're logging the right data in Splunk or in their Sim to verify that their managed security services provider is able to quickly detect and respond to an attack and hold them accountable for their slas or that the sock understands how to quickly detect and respond and measuring and verifying that or that the variety of tools that you have in your stack most organizations have 130 plus cyber security tools none of which are designed to work together are actually working together the second primary use case is proactively hardening and verifying your systems this is when the I that it admin that network engineer they're able to run self-service pen tests to verify that their Cisco environment is installed in hardened and configured correctly or that their credential policies are set up right or that their vcenter or web sphere or kubernetes environments are actually designed to be secure and what this allows the it admins and network Engineers to do is shift from running one or two pen tests a year to 30 40 or more pen tests a month and you can actually wire those pen tests into your devops process or into your detection engineering and the change management processes to automatically trigger pen tests every time there's a change in your environment the third primary use case is for those organizations lucky enough to have their own internal red team they'll use node zero to do reconnaissance and exploitation at scale and then use the output as a starting point for the humans to step in and focus on the really hard juicy stuff that gets them on stage at Defcon and so these are the three primary use cases and what we'll do is zoom into the find fix verify Loop because what I've found in my experience is find fix verify is the future operating model for cyber security organizations and what I mean here is in the find using continuous pen testing what you want to enable is on-demand self-service pen tests you want those pen tests to find attack pads at scale spanning your on-prem infrastructure your Cloud infrastructure and your perimeter because attackers don't only state in one place they will find ways to chain together a perimeter breach a credential from your on-prem to gain access to your cloud or some other permutation and then the third part in continuous pen testing is attackers don't focus on critical vulnerabilities anymore they know we've built vulnerability Management Programs to reduce those vulnerabilities so attackers have adapted and what they do is chain together misconfigurations in your infrastructure and software and applications with dangerous product defaults with exploitable vulnerabilities and through the collection of credentials through a mix of techniques at scale once you've found those problems the next question is what do you do about it well you want to be able to prioritize fixing problems that are actually exploitable in your environment that truly matter meaning they're going to lead to domain compromise or domain user compromise or access your sensitive data the second thing you want to fix is making sure you understand what risk your crown jewels data is exposed to where is your crown jewels data is in the cloud is it on-prem has it been copied to a share drive that you weren't aware of if a domain user was compromised could they access that crown jewels data you want to be able to use the attacker's perspective to secure the critical data you have in your infrastructure and then finally as you fix these problems you want to quickly remediate and retest that you've actually fixed the issue and this fine fix verify cycle becomes that accelerator that drives purple team culture the third part here is verify and what you want to be able to do in the verify step is verify that your security tools and processes in people can effectively detect and respond to a breach you want to be able to integrate that into your detection engineering processes so that you know you're catching the right security rules or that you've deployed the right configurations you also want to make sure that your environment is adhering to the best practices around systems hardening in cyber resilience and finally you want to be able to prove your security posture over a time to your board to your leadership into your regulators so what I'll do now is zoom into each of these three steps so when we zoom in to find here's the first example using node 0 and autonomous pen testing and what an attacker will do is find a way to break through the perimeter in this example it's very easy to misconfigure kubernetes to allow an attacker to gain remote code execution into your on-prem kubernetes environment and break through the perimeter and from there what the attacker is going to do is conduct Network reconnaissance and then find ways to gain code execution on other machines in the environment and as they get code execution they start to dump credentials collect a bunch of ntlm hashes crack those hashes using open source and dark web available data as part of those attacks and then reuse those credentials to log in and laterally maneuver throughout the environment and then as they loudly maneuver they can reuse those credentials and use credential spraying techniques and so on to compromise your business email to log in as admin into your cloud and this is a very common attack and rarely is a CV actually needed to execute this attack often it's just a misconfiguration in kubernetes with a bad credential policy or password policy combined with bad practices of credential reuse across the organization here's another example of an internal pen test and this is from an actual customer they had 5 000 hosts within their environment they had EDR and uba tools installed and they initiated in an internal pen test on a single machine from that single initial access point node zero enumerated the network conducted reconnaissance and found five thousand hosts were accessible what node 0 will do under the covers is organize all of that reconnaissance data into a knowledge graph that we call the Cyber terrain map and that cyber Terrain map becomes the key data structure that we use to efficiently maneuver and attack and compromise your environment so what node zero will do is they'll try to find ways to get code execution reuse credentials and so on in this customer example they had Fortinet installed as their EDR but node 0 was still able to get code execution on a Windows machine from there it was able to successfully dump credentials including sensitive credentials from the lsas process on the Windows box and then reuse those credentials to log in as domain admin in the network and once an attacker becomes domain admin they have the keys to the kingdom they can do anything they want so what happened here well it turns out Fortinet was misconfigured on three out of 5000 machines bad automation the customer had no idea this had happened they would have had to wait for an attacker to show up to realize that it was misconfigured the second thing is well why didn't Fortinet stop the credential pivot in the lateral movement and it turned out the customer didn't buy the right modules or turn on the right services within that particular product and we see this not only with Ford in it but we see this with Trend Micro and all the other defensive tools where it's very easy to miss a checkbox in the configuration that will do things like prevent credential dumping the next story I'll tell you is attackers don't have to hack in they log in so another infrastructure pen test a typical technique attackers will take is man in the middle uh attacks that will collect hashes so in this case what an attacker will do is leverage a tool or technique called responder to collect ntlm hashes that are being passed around the network and there's a variety of reasons why these hashes are passed around and it's a pretty common misconfiguration but as an attacker collects those hashes then they start to apply techniques to crack those hashes so they'll pass the hash and from there they will use open source intelligence common password structures and patterns and other types of techniques to try to crack those hashes into clear text passwords so here node 0 automatically collected hashes it automatically passed the hashes to crack those credentials and then from there it starts to take the domain user user ID passwords that it's collected and tries to access different services and systems in your Enterprise in this case node 0 is able to successfully gain access to the Office 365 email environment because three employees didn't have MFA configured so now what happens is node 0 has a placement and access in the business email system which sets up the conditions for fraud lateral phishing and other techniques but what's especially insightful here is that 80 of the hashes that were collected in this pen test were cracked in 15 minutes or less 80 percent 26 of the user accounts had a password that followed a pretty obvious pattern first initial last initial and four random digits the other thing that was interesting is 10 percent of service accounts had their user ID the same as their password so VMware admin VMware admin web sphere admin web Square admin so on and so forth and so attackers don't have to hack in they just log in with credentials that they've collected the next story here is becoming WS AWS admin so in this example once again internal pen test node zero gets initial access it discovers 2 000 hosts are network reachable from that environment if fingerprints and organizes all of that data into a cyber Terrain map from there it it fingerprints that hpilo the integrated lights out service was running on a subset of hosts hpilo is a service that is often not instrumented or observed by security teams nor is it easy to patch as a result attackers know this and immediately go after those types of services so in this case that ILO service was exploitable and were able to get code execution on it ILO stores all the user IDs and passwords in clear text in a particular set of processes so once we gain code execution we were able to dump all of the credentials and then from there laterally maneuver to log in to the windows box next door as admin and then on that admin box we're able to gain access to the share drives and we found a credentials file saved on a share Drive from there it turned out that credentials file was the AWS admin credentials file giving us full admin authority to their AWS accounts not a single security alert was triggered in this attack because the customer wasn't observing the ILO service and every step thereafter was a valid login in the environment and so what do you do step one patch the server step two delete the credentials file from the share drive and then step three is get better instrumentation on privileged access users and login the final story I'll tell is a typical pattern that we see across the board with that combines the various techniques I've described together where an attacker is going to go off and use open source intelligence to find all of the employees that work at your company from there they're going to look up those employees on dark web breach databases and other forms of information and then use that as a starting point to password spray to compromise a domain user all it takes is one employee to reuse a breached password for their Corporate email or all it takes is a single employee to have a weak password that's easily guessable all it takes is one and once the attacker is able to gain domain user access in most shops domain user is also the local admin on their laptop and once your local admin you can dump Sam and get local admin until M hashes you can use that to reuse credentials again local admin on neighboring machines and attackers will start to rinse and repeat then eventually they're able to get to a point where they can dump lsas or by unhooking the anti-virus defeating the EDR or finding a misconfigured EDR as we've talked about earlier to compromise the domain and what's consistent is that the fundamentals are broken at these shops they have poor password policies they don't have least access privilege implemented active directory groups are too permissive where domain admin or domain user is also the local admin uh AV or EDR Solutions are misconfigured or easily unhooked and so on and what we found in 10 000 pen tests is that user Behavior analytics tools never caught us in that lateral movement in part because those tools require pristine logging data in order to work and also it becomes very difficult to find that Baseline of normal usage versus abnormal usage of credential login another interesting Insight is there were several Marquee brand name mssps that were defending our customers environment and for them it took seven hours to detect and respond to the pen test seven hours the pen test was over in less than two hours and so what you had was an egregious violation of the service level agreements that that mssp had in place and the customer was able to use us to get service credit and drive accountability of their sock and of their provider the third interesting thing is in one case it took us seven minutes to become domain admin in a bank that bank had every Gucci security tool you could buy yet in 7 minutes and 19 seconds node zero started as an unauthenticated member of the network and was able to escalate privileges through chaining and misconfigurations in lateral movement and so on to become domain admin if it's seven minutes today we should assume it'll be less than a minute a year or two from now making it very difficult for humans to be able to detect and respond to that type of Blitzkrieg attack so that's in the find it's not just about finding problems though the bulk of the effort should be what to do about it the fix and the verify so as you find those problems back to kubernetes as an example we will show you the path here is the kill chain we took to compromise that environment we'll show you the impact here is the impact or here's the the proof of exploitation that we were able to use to be able to compromise it and there's the actual command that we executed so you could copy and paste that command and compromise that cubelet yourself if you want and then the impact is we got code execution and we'll actually show you here is the impact this is a critical here's why it enabled perimeter breach affected applications will tell you the specific IPS where you've got the problem how it maps to the miter attack framework and then we'll tell you exactly how to fix it we'll also show you what this problem enabled so you can accurately prioritize why this is important or why it's not important the next part is accurate prioritization the hardest part of my job as a CIO was deciding what not to fix so if you take SMB signing not required as an example by default that CVSs score is a one out of 10. but this misconfiguration is not a cve it's a misconfig enable an attacker to gain access to 19 credentials including one domain admin two local admins and access to a ton of data because of that context this is really a 10 out of 10. you better fix this as soon as possible however of the seven occurrences that we found it's only a critical in three out of the seven and these are the three specific machines and we'll tell you the exact way to fix it and you better fix these as soon as possible for these four machines over here these didn't allow us to do anything of consequence so that because the hardest part is deciding what not to fix you can justifiably choose not to fix these four issues right now and just add them to your backlog and surge your team to fix these three as quickly as possible and then once you fix these three you don't have to re-run the entire pen test you can select these three and then one click verify and run a very narrowly scoped pen test that is only testing this specific issue and what that creates is a much faster cycle of finding and fixing problems the other part of fixing is verifying that you don't have sensitive data at risk so once we become a domain user we're able to use those domain user credentials and try to gain access to databases file shares S3 buckets git repos and so on and help you understand what sensitive data you have at risk so in this example a green checkbox means we logged in as a valid domain user we're able to get read write access on the database this is how many records we could have accessed and we don't actually look at the values in the database but we'll show you the schema so you can quickly characterize that pii data was at risk here and we'll do that for your file shares and other sources of data so now you can accurately articulate the data you have at risk and prioritize cleaning that data up especially data that will lead to a fine or a big news issue so that's the find that's the fix now we're going to talk about the verify the key part in verify is embracing and integrating with detection engineering practices so when you think about your layers of security tools you've got lots of tools in place on average 130 tools at any given customer but these tools were not designed to work together so when you run a pen test what you want to do is say did you detect us did you log us did you alert on us did you stop us and from there what you want to see is okay what are the techniques that are commonly used to defeat an environment to actually compromise if you look at the top 10 techniques we use and there's far more than just these 10 but these are the most often executed nine out of ten have nothing to do with cves it has to do with misconfigurations dangerous product defaults bad credential policies and it's how we chain those together to become a domain admin or compromise a host so what what customers will do is every single attacker command we executed is provided to you as an attackivity log so you can actually see every single attacker command we ran the time stamp it was executed the hosts it executed on and how it Maps the minor attack tactics so our customers will have are these attacker logs on one screen and then they'll go look into Splunk or exabeam or Sentinel one or crowdstrike and say did you detect us did you log us did you alert on us or not and to make that even easier if you take this example hey Splunk what logs did you see at this time on the VMware host because that's when node 0 is able to dump credentials and that allows you to identify and fix your logging blind spots to make that easier we've got app integration so this is an actual Splunk app in the Splunk App Store and what you can come is inside the Splunk console itself you can fire up the Horizon 3 node 0 app all of the pen test results are here so that you can see all of the results in one place and you don't have to jump out of the tool and what you'll show you as I skip forward is hey there's a pen test here are the critical issues that we've identified for that weaker default issue here are the exact commands we executed and then we will automatically query into Splunk all all terms on between these times on that endpoint that relate to this attack so you can now quickly within the Splunk environment itself figure out that you're missing logs or that you're appropriately catching this issue and that becomes incredibly important in that detection engineering cycle that I mentioned earlier so how do our customers end up using us they shift from running one pen test a year to 30 40 pen tests a month oftentimes wiring us into their deployment automation to automatically run pen tests the other part that they'll do is as they run more pen tests they find more issues but eventually they hit this inflection point where they're able to rapidly clean up their environment and that inflection point is because the red and the blue teams start working together in a purple team culture and now they're working together to proactively harden their environment the other thing our customers will do is run us from different perspectives they'll first start running an RFC 1918 scope to see once the attacker gained initial access in a part of the network that had wide access what could they do and then from there they'll run us within a specific Network segment okay from within that segment could the attacker break out and gain access to another segment then they'll run us from their work from home environment could they Traverse the VPN and do something damaging and once they're in could they Traverse the VPN and get into my cloud then they'll break in from the outside all of these perspectives are available to you in Horizon 3 and node zero as a single SKU and you can run as many pen tests as you want if you run a phishing campaign and find that an intern in the finance department had the worst phishing behavior you can then inject their credentials and actually show the end-to-end story of how an attacker fished gained credentials of an intern and use that to gain access to sensitive financial data so what our customers end up doing is running multiple attacks from multiple perspectives and looking at those results over time I'll leave you two things one is what is the AI in Horizon 3 AI those knowledge graphs are the heart and soul of everything that we do and we use machine learning reinforcement techniques reinforcement learning techniques Markov decision models and so on to be able to efficiently maneuver and analyze the paths in those really large graphs we also use context-based scoring to prioritize weaknesses and we're also able to drive collective intelligence across all of the operations so the more pen tests we run the smarter we get and all of that is based on our knowledge graph analytics infrastructure that we have finally I'll leave you with this was my decision criteria when I was a buyer for my security testing strategy what I cared about was coverage I wanted to be able to assess my on-prem cloud perimeter and work from home and be safe to run in production I want to be able to do that as often as I wanted I want to be able to run pen tests in hours or days not weeks or months so I could accelerate that fine fix verify loop I wanted my it admins and network Engineers with limited offensive experience to be able to run a pen test in a few clicks through a self-service experience and not have to install agent and not have to write custom scripts and finally I didn't want to get nickeled and dimed on having to buy different types of attack modules or different types of attacks I wanted a single annual subscription that allowed me to run any type of attack as often as I wanted so I could look at my Trends in directions over time so I hope you found this talk valuable uh we're easy to find and I look forward to seeing seeing you use a product and letting our results do the talking when you look at uh you know kind of the way no our pen testing algorithms work is we dynamically select uh how to compromise an environment based on what we've discovered and the goal is to become a domain admin compromise a host compromise domain users find ways to encrypt data steal sensitive data and so on but when you look at the the top 10 techniques that we ended up uh using to compromise environments the first nine have nothing to do with cves and that's the reality cves are yes a vector but less than two percent of cves are actually used in a compromise oftentimes it's some sort of credential collection credential cracking uh credential pivoting and using that to become an admin and then uh compromising environments from that point on so I'll leave this up for you to kind of read through and you'll have the slides available for you but I found it very insightful that organizations and ourselves when I was a GE included invested heavily in just standard vulnerability Management Programs when I was at DOD that's all disa cared about asking us about was our our kind of our cve posture but the attackers have adapted to not rely on cves to get in because they know that organizations are actively looking at and patching those cves and instead they're chaining together credentials from one place with misconfigurations and dangerous product defaults in another to take over an environment a concrete example is by default vcenter backups are not encrypted and so as if an attacker finds vcenter what they'll do is find the backup location and there are specific V sender MTD files where the admin credentials are parsippled in the binaries so you can actually as an attacker find the right MTD file parse out the binary and now you've got the admin credentials for the vcenter environment and now start to log in as admin there's a bad habit by signal officers and Signal practitioners in the in the Army and elsewhere where the the VM notes section of a virtual image has the password for the VM well those VM notes are not stored encrypted and attackers know this and they're able to go off and find the VMS that are unencrypted find the note section and pull out the passwords for those images and then reuse those credentials across the board so I'll pause here and uh you know Patrick love you get some some commentary on on these techniques and other things that you've seen and what we'll do in the last say 10 to 15 minutes is uh is rolled through a little bit more on what do you do about it yeah yeah no I love it I think um I think this is pretty exhaustive what I like about what you've done here is uh you know we've seen we've seen double-digit increases in the number of organizations that are reporting actual breaches year over year for the last um for the last three years and it's often we kind of in the Zeitgeist we pegged that on ransomware which of course is like incredibly important and very top of mind um but what I like about what you have here is you know we're reminding the audience that the the attack surface area the vectors the matter um you know has to be more comprehensive than just thinking about ransomware scenarios yeah right on um so let's build on this when you think about your defense in depth you've got multiple security controls that you've purchased and integrated and you've got that redundancy if a control fails but the reality is that these security tools aren't designed to work together so when you run a pen test what you want to ask yourself is did you detect node zero did you log node zero did you alert on node zero and did you stop node zero and when you think about how to do that every single attacker command executed by node zero is available in an attacker log so you can now see you know at the bottom here vcenter um exploit at that time on that IP how it aligns to minor attack what you want to be able to do is go figure out did your security tools catch this or not and that becomes very important in using the attacker's perspective to improve your defensive security controls and so the way we've tried to make this easier back to like my my my the you know I bleed Green in many ways still from my smoke background is you want to be able to and what our customers do is hey we'll look at the attacker logs on one screen and they'll look at what did Splunk see or Miss in another screen and then they'll use that to figure out what their logging blind spots are and what that where that becomes really interesting is we've actually built out an integration into Splunk where there's a Splunk app you can download off of Splunk base and you'll get all of the pen test results right there in the Splunk console and from that Splunk console you're gonna be able to see these are all the pen tests that were run these are the issues that were found um so you can look at that particular pen test here are all of the weaknesses that were identified for that particular pen test and how they categorize out for each of those weaknesses you can click on any one of them that are critical in this case and then we'll tell you for that weakness and this is where where the the punch line comes in so I'll pause the video here for that weakness these are the commands that were executed on these endpoints at this time and then we'll actually query Splunk for that um for that IP address or containing that IP and these are the source types that surface any sort of activity so what we try to do is help you as quickly and efficiently as possible identify the logging blind spots in your Splunk environment based on the attacker's perspective so as this video kind of plays through you can see it Patrick I'd love to get your thoughts um just seeing so many Splunk deployments and the effectiveness of those deployments and and how this is going to help really Elevate the effectiveness of all of your Splunk customers yeah I'm super excited about this I mean I think this these kinds of purpose-built integration snail really move the needle for our customers I mean at the end of the day when I think about the power of Splunk I think about a product I was first introduced to 12 years ago that was an on-prem piece of software you know and at the time it sold on sort of Perpetual and term licenses but one made it special was that it could it could it could eat data at a speed that nothing else that I'd have ever seen you can ingest massively scalable amounts of data uh did cool things like schema on read which facilitated that there was this language called SPL that you could nerd out about uh and you went to a conference once a year and you talked about all the cool things you were splunking right but now as we think about the next phase of our growth um we live in a heterogeneous environment where our customers have so many different tools and data sources that are ever expanding and as you look at the as you look at the role of the ciso it's mind-blowing to me the amount of sources Services apps that are coming into the ciso span of let's just call it a span of influence in the last three years uh you know we're seeing things like infrastructure service level visibility application performance monitoring stuff that just never made sense for the security team to have visibility into you um at least not at the size and scale which we're demanding today um and and that's different and this isn't this is why it's so important that we have these joint purpose-built Integrations that um really provide more prescription to our customers about how do they walk on that Journey towards maturity what does zero to one look like what does one to two look like whereas you know 10 years ago customers were happy with platforms today they want integration they want Solutions and they want to drive outcomes and I think this is a great example of how together we are stepping to the evolving nature of the market and also the ever-evolving nature of the threat landscape and what I would say is the maturing needs of the customer in that environment yeah for sure I think especially if if we all anticipate budget pressure over the next 18 months due to the economy and elsewhere while the security budgets are not going to ever I don't think they're going to get cut they're not going to grow as fast and there's a lot more pressure on organizations to extract more value from their existing Investments as well as extracting more value and more impact from their existing teams and so security Effectiveness Fierce prioritization and automation I think become the three key themes of security uh over the next 18 months so I'll do very quickly is run through a few other use cases um every host that we identified in the pen test were able to score and say this host allowed us to do something significant therefore it's it's really critical you should be increasing your logging here hey these hosts down here we couldn't really do anything as an attacker so if you do have to make trade-offs you can make some trade-offs of your logging resolution at the lower end in order to increase logging resolution on the upper end so you've got that level of of um justification for where to increase or or adjust your logging resolution another example is every host we've discovered as an attacker we Expose and you can export and we want to make sure is every host we found as an attacker is being ingested from a Splunk standpoint a big issue I had as a CIO and user of Splunk and other tools is I had no idea if there were Rogue Raspberry Pi's on the network or if a new box was installed and whether Splunk was installed on it or not so now you can quickly start to correlate what hosts did we see and how does that reconcile with what you're logging from uh finally or second to last use case here on the Splunk integration side is for every single problem we've found we give multiple options for how to fix it this becomes a great way to prioritize what fixed actions to automate in your soar platform and what we want to get to eventually is being able to automatically trigger soar actions to fix well-known problems like automatically invalidating passwords for for poor poor passwords in our credentials amongst a whole bunch of other things we could go off and do and then finally if there is a well-known kill chain or attack path one of the things I really wish I could have done when I was a Splunk customer was take this type of kill chain that actually shows a path to domain admin that I'm sincerely worried about and use it as a glass table over which I could start to layer possible indicators of compromise and now you've got a great starting point for glass tables and iocs for actual kill chains that we know are exploitable in your environment and that becomes some super cool Integrations that we've got on the roadmap between us and the Splunk security side of the house so what I'll leave with actually Patrick before I do that you know um love to get your comments and then I'll I'll kind of leave with one last slide on this wartime security mindset uh pending you know assuming there's no other questions no I love it I mean I think this kind of um it's kind of glass table's approach to how do you how do you sort of visualize these workflows and then use things like sore and orchestration and automation to operationalize them is exactly where we see all of our customers going and getting away from I think an over engineered approach to soar with where it has to be super technical heavy with you know python programmers and getting more to this visual view of workflow creation um that really demystifies the power of Automation and also democratizes it so you don't have to have these programming languages in your resume in order to start really moving the needle on workflow creation policy enforcement and ultimately driving automation coverage across more and more of the workflows that your team is seeing yeah I think that between us being able to visualize the actual kill chain or attack path with you know think of a of uh the soar Market I think going towards this no code low code um you know configurable sore versus coded sore that's going to really be a game changer in improve or giving security teams a force multiplier so what I'll leave you with is this peacetime mindset of security no longer is sustainable we really have to get out of checking the box and then waiting for the bad guys to show up to verify that security tools are are working or not and the reason why we've got to really do that quickly is there are over a thousand companies that withdrew from the Russian economy over the past uh nine months due to the Ukrainian War there you should expect every one of them to be punished by the Russians for leaving and punished from a cyber standpoint and this is no longer about financial extortion that is ransomware this is about punishing and destroying companies and you can punish any one of these companies by going after them directly or by going after their suppliers and their Distributors so suddenly your attack surface is no more no longer just your own Enterprise it's how you bring your goods to Market and it's how you get your goods created because while I may not be able to disrupt your ability to harvest fruit if I can get those trucks stuck at the border I can increase spoilage and have the same effect and what we should expect to see is this idea of cyber-enabled economic Warfare where if we issue a sanction like Banning the Russians from traveling there is a cyber-enabled counter punch which is corrupt and destroy the American Airlines database that is below the threshold of War that's not going to trigger the 82nd Airborne to be mobilized but it's going to achieve the right effect ban the sale of luxury goods disrupt the supply chain and create shortages banned Russian oil and gas attack refineries to call a 10x spike in gas prices three days before the election this is the future and therefore I think what we have to do is shift towards a wartime mindset which is don't trust your security posture verify it see yourself Through The Eyes of the attacker build that incident response muscle memory and drive better collaboration between the red and the blue teams your suppliers and Distributors and your information uh sharing organization they have in place and what's really valuable for me as a Splunk customer was when a router crashes at that moment you don't know if it's due to an I.T Administration problem or an attacker and what you want to have are different people asking different questions of the same data and you want to have that integrated triage process of an I.T lens to that problem a security lens to that problem and then from there figuring out is is this an IT workflow to execute or a security incident to execute and you want to have all of that as an integrated team integrated process integrated technology stack and this is something that I very care I cared very deeply about as both a Splunk customer and a Splunk CTO that I see time and time again across the board so Patrick I'll leave you with the last word the final three minutes here and I don't see any open questions so please take us home oh man see how you think we spent hours and hours prepping for this together that that last uh uh 40 seconds of your talk track is probably one of the things I'm most passionate about in this industry right now uh and I think nist has done some really interesting work here around building cyber resilient organizations that have that has really I think helped help the industry see that um incidents can come from adverse conditions you know stress is uh uh performance taxations in the infrastructure service or app layer and they can come from malicious compromises uh Insider threats external threat actors and the more that we look at this from the perspective of of a broader cyber resilience Mission uh in a wartime mindset uh I I think we're going to be much better off and and will you talk about with operationally minded ice hacks information sharing intelligence sharing becomes so important in these wartime uh um situations and you know we know not all ice acts are created equal but we're also seeing a lot of um more ad hoc information sharing groups popping up so look I think I think you framed it really really well I love the concept of wartime mindset and um I I like the idea of applying a cyber resilience lens like if you have one more layer on top of that bottom right cake you know I think the it lens and the security lens they roll up to this concept of cyber resilience and I think this has done some great work there for us yeah you're you're spot on and that that is app and that's gonna I think be the the next um terrain that that uh that you're gonna see vendors try to get after but that I think Splunk is best position to win okay that's a wrap for this special Cube presentation you heard all about the global expansion of horizon 3.ai's partner program for their Partners have a unique opportunity to take advantage of their node zero product uh International go to Market expansion North America channel Partnerships and just overall relationships with companies like Splunk to make things more comprehensive in this disruptive cyber security world we live in and hope you enjoyed this program all the videos are available on thecube.net as well as check out Horizon 3 dot AI for their pen test Automation and ultimately their defense system that they use for testing always the environment that you're in great Innovative product and I hope you enjoyed the program again I'm John Furrier host of the cube thanks for watching

Published Date : Sep 28 2022

SUMMARY :

that's the sort of stuff that we do you

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Patrick CoughlinPERSON

0.99+

Jennifer LeePERSON

0.99+

ChrisPERSON

0.99+

TonyPERSON

0.99+

2013DATE

0.99+

Raina RichterPERSON

0.99+

SingaporeLOCATION

0.99+

EuropeLOCATION

0.99+

PatrickPERSON

0.99+

FrankfurtLOCATION

0.99+

JohnPERSON

0.99+

20-yearQUANTITY

0.99+

hundredsQUANTITY

0.99+

AWSORGANIZATION

0.99+

20 yearsQUANTITY

0.99+

seven minutesQUANTITY

0.99+

95QUANTITY

0.99+

FordORGANIZATION

0.99+

2.7 billionQUANTITY

0.99+

MarchDATE

0.99+

FinlandLOCATION

0.99+

seven hoursQUANTITY

0.99+

sixty percentQUANTITY

0.99+

John FurrierPERSON

0.99+

SwedenLOCATION

0.99+

John FurrierPERSON

0.99+

six weeksQUANTITY

0.99+

seven hoursQUANTITY

0.99+

19 credentialsQUANTITY

0.99+

ten dollarsQUANTITY

0.99+

JenniferPERSON

0.99+

5 000 hostsQUANTITY

0.99+

Horizon 3TITLE

0.99+

WednesdayDATE

0.99+

30QUANTITY

0.99+

eightQUANTITY

0.99+

Asia PacificLOCATION

0.99+

American AirlinesORGANIZATION

0.99+

DeloitteORGANIZATION

0.99+

three licensesQUANTITY

0.99+

two companiesQUANTITY

0.99+

2019DATE

0.99+

European UnionORGANIZATION

0.99+

sixQUANTITY

0.99+

seven occurrencesQUANTITY

0.99+

70QUANTITY

0.99+

three peopleQUANTITY

0.99+

Horizon 3.aiTITLE

0.99+

ATTORGANIZATION

0.99+

Net ZeroORGANIZATION

0.99+

SplunkORGANIZATION

0.99+

UberORGANIZATION

0.99+

fiveQUANTITY

0.99+

less than two percentQUANTITY

0.99+

less than two hoursQUANTITY

0.99+

2012DATE

0.99+

UKLOCATION

0.99+

AdobeORGANIZATION

0.99+

four issuesQUANTITY

0.99+

Department of DefenseORGANIZATION

0.99+

next yearDATE

0.99+

three stepsQUANTITY

0.99+

node 0TITLE

0.99+

15 minutesQUANTITY

0.99+

hundred percentQUANTITY

0.99+

node zeroTITLE

0.99+

10xQUANTITY

0.99+

last yearDATE

0.99+

7 minutesQUANTITY

0.99+

one licenseQUANTITY

0.99+

second thingQUANTITY

0.99+

thousands of hostsQUANTITY

0.99+

five thousand hostsQUANTITY

0.99+

next weekDATE

0.99+

Said Ouissal, Zededa | VMware Explore 2022


 

>>Hey, everyone. Welcome back to San Francisco. Lisa Martin and John furrier live on the floor at VMware Explorer, 2022. This is our third day of wall to wall coverage on the cube. But you know that cuz you've been here the whole time. We're pleased to welcome up. First timer to the cubes we saw is here. The CEO and founder of ZDA. Saed welcome to the program. >>Thank you for having me >>Talk to me a little bit about what ZDA does in edge. >>Sure. So ZDA is a company purely focused in edge computing. I started a company about five years ago, go after edge. So what we do is we help customers with orchestrating their edge, helping them to deploy secure monitor application services and devices at the edge. >>What's the business model for you guys. We get that out there. So the targeting the edge, which is everything from telco to whatever. Yeah. What's the business model. Yeah. >>Maybe before we go there, let's talk about edge itself. Cuz edge is complex. There's a lot of companies. I call 'em lens company nowadays, if you're not a cloud company, you're probably an edge company at this point. So we are focusing something called the distributed edge. So distributed edge. When you start putting tiny servers in environments like factory floors, solar farms, wind farms, even inside machines or well sites, et cetera. And a question that people always ask me, like why, why would you want to put, you know, servers there on servers supposed to be in a data center in the cloud? And the answer to the question actually is data gravity. So traditionally wherever the data gets created is where your applications live. But as we're connecting more and more devices to the edge of the network, we basically customers now are required to push the applications to the edge cause they can't go all the data to the cloud. So basically that's where we focus on people call it the far edge as well. You know, that's the term we've heard in the past as well. And what we do in our business model is provide customers a, a software as a service solution where they can basically deploy and monitor these applications at these highly distributed environments. >>Data, gravity comes up a lot and I want you to take a minute to explain the definition as it is today. And people have used that term, you know, with big data, going back to 2010 leads when we covering the Hadoop wave, which ended up becoming, you know, data, data, bricks, and snowflake now, but, but a lots changed, but what does it mean to be data gravity? It means that staying local, it's just what specifically describe and, and define what data gravity is. >>Yeah. So for me, data gravity is where you need to process the data, right? It's where the data usually gets created. So if you think about a web app, where does the data get created? Where people click on buttons, they, they interface with it. They, they upload content to it, et cetera. So that's where the data gravity therefore is therefore that's where you do your analytics. That's where you do your visualization processing, machine learning and all of those pieces. So it's really where that data gets created is where the data gravity in my view says, >>What are some of the challenges that data and opportunities that data gravity presents to customers? >>Well, obviously I think every enterprise in this day is trying to take data and make it a competitive advantage, right? Like faster decisions, better decisions, outcompete your competition by, you know, being first with a product or being first with a product with the future, et cetera. So, so I think, you know, if you're not a data driven enterprise by now, then I think the future may be a little bit bleak. >>Okay. So you're targeting the market distributed edge business model, SAS technology, secret sauce. What's that piece. >>Yeah. So that's, that's what the interesting part comes in. I think, you know, if you kind of look at the data center in the cloud, we've had these virtualization and orchestration stacks create, I mean, we're here in VMware Explorer. And as an example, what we basically, what we saw is that the edge is so unique and so different than what we've seen in the data center, in the cloud that we needed to build a complete brand new purpose-built illustration and virtualization solution. So that's really what we, we set off to do. So there's two components that we do. One end is we built a purpose-built edge operating system for the edge and we actually open sourced it. And the reason we opensource it, we said, Hey, you know, edge is so diverse. You know, depending on the environment you're running in a machine or in a vehicle or in a well site, you have different hardware, different networks, different applications you need to enable. >>And we will never be able to support all of them ourselves. As a matter of fact, we actually think there's a need for standardization at the edge. We need to kind of cut through all these silos that have been created traditionally from the embedded way of thinking. So we created basically an open source project in the Linux foundation in LFS, which is a sister organization through the CNCF it's called project Eve. And the idea is to create the Android of the edge, basically what Android became for mobile computing, an a common operating system. So you build one app. You can run in any phone in the world that runs Android, build an architecture. You build one app. You can run in any Eve powered node in the world, >>So distributed edge and you get the tech here, get the secret sauce. We'll get more into that in a second, but I wanna just tie one kick quick point and get your clarification on edge is becoming much more about the physical side too. I mean, absolutely. So when you talk about Android, you're making the reference of a phone. I get that's metaphor to what you're doing at the edge, wind farms, factories, alarms, light bulbs, buildings. I mean, that's what you're talking about, right? Yes. We're getting down to that very, >>Very physical, dark distributed locations. >>We're gonna come back to the CISO CSO. We're gonna come back to the CISO versus CSO question because is the CISO or CIO or who runs that anyway? So that's true. What's the important thing that's happening because that sounds like old OT world, like yes. Operating technology, not it information technology, is it a complete reset of those worlds or is it a collision? >>It's a great question. So what we're seeing is first of all, there is already compute in these environments, industrial PCs of existed well beyond, you know, an industrial automation has been done for many, many decades. The point is that that stuff has been done. Collect data has been collected, but never connected, right? So with edge computing, we're connecting now this data from an industrial machine and industrial process to the cloud, right? And one of the problems is it's data that comes of that industrial process too much to upload to the cloud. So I gotta analyze, analyze it locally. So one of the, the things we saw early on in edge is there's a lot of brownfield. Most of our customers today actually have applications running on windows and they would love to make in Linux and containers and Kubernetes, but it took them 20, 30 years to build those apps. And they basically are the money makers of the enterprise. So they are in a, in a transitionary phase and they need something that can take them from the brown to the Greenfield. So to your point, you gotta support all of these types of unique brownfield applications. >>So you're, you're saying I don't really care if this is a customer, how you get the data, you wanna start new start fresh. That's cool. But if you wanna take your old data, you'll >>Take that. Yeah. You don't wanna rebuild the whole machine. You're >>Just, they can life cycle it out on their own timetable. Yeah. >>So we had to learn, first of all, how do we take and lift and shift windows based industrial application and make it run at the edge on, on our architecture. Right? And then the second step is how do we then Sen off that data that this application is generating and do we fuse it with cloud native capability? Like, >>So your cloud, so your staff is your open source that you're giving to the Linux foundation as part of that Eve project that's available to everybody. So they can, they can look at the code, which is great by the way. Yeah. So people wanna do that. Yeah. Your self source, I'm assuming, is your hardened version with support? >>Well, we took what we took, what the open source companies did, opensource companies traditionally have sold, you know, basically a support model around the open source. We actually saw another problem. Customers has like, okay, now I have this node running and I can, you know, do this data analytics, but what if I have 15 or 20,000 of these node? And they're all around the world in remote locations on satellite links or wireless connectivity, how do I orchestrate them? So we actually build an orchestration service for these nodes running this open source >>Software. So that's a key secret sauce right there. >>That is the business model that taking open store and a lot. >>And you're taking your own code that you have. Okay. Got it. Cool. And then the customer's customer piece is, is key. So that's the final piece, I guess who's using it. >>Yeah. Well, and, >>And, and one of the business outcomes that they're achieving. Oh >>Yeah. Well, so maybe start with that first. I mean, we are deployed in customers in all and gas, for instance, helping them with the transition to renewable energy, right? So basically we, we have customers for instance, that deploy us in the, how they drill Wells is one use case and doing that better, faster, and cheaper and, and less environmental impacting. But we also have customers that use us in wind farms. We have, and solar farms, like we, one of the leading solar energy companies in the world is using us to bring down the cost of power by predicting failures ahead of time, for >>Instance. And when you're working with customers to create the optimal solution at the distributed edge, who are you working with in, within an organization? Yeah. >>It's usually a mix of OT and it people. Okay. So the OT people typically they're >>Arm wrestling, well, or they're getting along, actually, >>I think they're getting along very well. Okay, good. But they also agree that they have to have swim lanes. The it folks, obviously their job is to make sure, you know, everything is secure. Everything is according to the compliance it's, it's, you know, the, the best TCO on the infrastructure, those type of things, the OT guy, they, they, or girl, they care about the application. They care about the services. They care about the support new business. So how can you create a model that too can coexist? And if you do that, they get along really well. >>You know, we had an event called Supercloud and@theurlsupercloud.world, if you're watching check it out, it's our version of what we think multicloud will merge into including edge cuz edge is just another node in the, in the, in the network. As far as we're concerned, hybrid is the steady state. That's distributed computing on premise, private cloud, public cloud. We know what that looks like. People love that things are happening. Edge is like a whole nother new area. That's blossoming and with disruption, yeah. There's a lot of existing market and incumbents that need to be disrupted. And there's also a new capabilities that are coming that we don't yet see. So we're seeing it with the super cloud idea that these new kinds of clouds are emerging. Like there could be an edge cloud. Yeah. Why isn't there a security cloud, whereas the financial services cloud, whereas the insurance cloud, whereas the, so these become super clouds where the CapEx could be done by the Amazon, whatnot you've been following them is edge cloud. Can you make that a cloud? Is that what you guys are trying to do? And if so, what does that look like? Cause we we're adding a new track to our super cloud site. I mentioned on edge specifically, we're trying to figure out you and if you share your opinion, it'd be great. Can the E can edge clouds exist and be run by companies? Yeah. Or is that what you guys are trying to do? >>I, I, I mean, I think first of all, there is no edge without cloud, right? So when I meet any customer who says, Hey, we're gonna do edge without cloud. Then I'm like, you're probably not gonna do edge computing. Right. And, and the way we built the company and the way we think about it, it's about extending the cloud experience all the way into these embedded distributed environments. That's really, I think what customers are looking for, cuz customers love the simplicity of the cloud. They love the ease of use agility, all of that greatness. And they're like, Hey, I want that. But not in a, you know, in an Amazon or Azure data center. I want that in my factories. I want that in my wealth sites, in my vehicles. And that's really what I think the future >>Is gonna. And how long have you guys been around? What's the, what's the history of the company because you might actually be that cloud. Yeah. And are you on AWS or Azure? You're building your own. What's the, >>Yeah. Yeah. So >>Take it through the, the architecture because yeah, yeah, sure. You're a modern startup. I mean you gotta, and the edges you're going after you gotta be geared up. Yeah. To win that. Yeah. >>So, so the company's about five years old. So we, when we started focusing on edge, people didn't necessarily talk as much about edge. We kind of identified the it's like, you know, how do you find a black hole in, in the universe? Cuz you can't see it, but you sort of look around that's why you in it. And so we were like looking at it, like there's something gonna happen here at the edge of the network, because everybody's saying we're connecting these vice upload the data to the cloud's never gonna work. My background is networking. I worked at companies like Juniper and Ericsson ran several products there. So I know how the internet networks have built. And it was very Evan to me. It's not gonna be possible. My co-founders come from open source companies like pivotal and Cloudera. My auto co-founder was a, an engineer at sun Microsystems built the first network stack in the solar is operating system. So a lot of experience that kind of came together to build this. >>Yeah. Cloudera is a big day. That's where the cube started by the way. Yeah. >>Yeah. So, so we, we, we have, I think a good view on the stack, the cloud stack and therefore a good view of what the ed stack needs to look like. And then I think, you know, to answer your other question, our orchestration service runs in the cloud. We have, we actually are multi-cloud company. So we offer customers choice where they want to orchestrate the node from the nodes themself, never sit in a data center. They always highly embedded. We have customers are putting machines or inside these factory lines, et cetera. Are >>You running your SAS on Amazon web services or which >>Cloud we're running it on several clouds, including Amazon, all of, pretty much the cloud. So some customers say, Hey, I'd prefer to be on the Amazon set. And others customers say, I wanna be on Azure set. >>And you leverage their CapEx on that side. Yes. On behalf of yeah. >>Yeah. We, yes. Yes. But the majority of the customer data and, and all the data that the nodes process, the customer send it to their clouds. They don't send it to us. We don't get a copy of the camera feed analytics or the machine data. We actually decouple those though. So basically the, the team production data go straight to the customer's cloud and that's why they love us. >>And they choose that they can control their own desktop. >>Yeah. So we separate the management plane from the data plane at the edge. Yeah. >>That's a good call >>Actually. Yeah. That was another very important part of the architecture early on. Cause customers don't want us to see their, you know, highly confidential production data and we don't wanna have it either. So >>We had a great chat with Chris Wolf who works with kit culvert about control plane, data, plane. So that seems to be the trend data, plane customers want full yeah. Management of that. Yeah. Control plane. Maybe give multiple >>Versions. Yeah. Yeah. So our cloud consumption what the data we stories about the apps, their behavior, the networking, the security, all of that. That's what we store in our cloud. And then customers can access that and monitor. But the actual machine that I go somewhere else >>Here we are at VMware. Explore. Talk a little bit about the VMware relationship. You just had some big news the other day. >>Yeah. So two days ago we actually made a big announcement with VMware. So we signed an OEM agreement with VMware. So we're part now of VMware's edge compute stack. So VMware customers, as they start using the recently announced edge compute stack 2.0, that was announced here. Basically it's powered by Edda technology. So it's a really exciting partnership as part of this, we actually building integrations with the VMware organization products. So that's basically now extending to more, you know, other groups inside VMware. >>So what's the value in it for VMware customers. >>Yeah. So I think the, the, the benefit of, of VMware customers, I think cus VMware customers want that multi-cloud multi edge orchestration experience. So they wanna be able to deploy workloads in the cloud. They wanna deploy the workloads in the data center. And of course also at the edge. So by us integrating in that vision customers now can have that unified experience from cloud to edge and anywhere in between. >>What's the big vision that you see happening at the edge. I mean, a lot of the VMware customers here, they're classic it that have evolved into ops now, dev ops. Now you've got second data ops coming. The edge is gonna right around the corner for them. They're dealing with it now, probably just kicking the tires, towing the water kind of thing. Where do you see the vision going? Cuz now, no matter what happens with VMware, the Broadcom, this wave is still here. You got AWS, got Azure, got Google cloud, you got Oracle, Alibaba internationally. And the cloud native surges here. How do you see that disrupting the existing edge? Because let's face it the O some of those OT players, a little bit old and antiquated, a little bit outdated. I mean, I was talking to a telco person. They, they puked the word open source. I mean, these people are so dogmatic on, on their architecture. Yeah. They're gonna get disrupted. It's a matter of time. Yeah. Where's the new guard come in. How do you see the configuration changing in the landscape? Because some people will cross over to the right side of the street here. Yeah. Some won't yeah. Open circle. Dominate cloud native will be key. Yeah. >>Well, I mean, I think, again, let's, let's take an example of a vertical that's heavily disrupted now as the automotive market, right? The, so look at Tesla and look at all these companies, they built, they built software first cars, right? Software, first delivery of capabilities and everything else. And the, and the incumbents. They have only two options, right? Either they try to respond by adopting open source cloud, native technologies. Like the, these new entrants have done and really, you know, compete with them at that level, or they can become commodity. Right. So, and I think that's the customers we're seeing the smart customers go like, we need to compete with these guys. We need to figure out how to take this technology in. And they need partners like us and partners like VMware for them. >>Do you see customers becoming cloud super cloud players? If they continue to keep leveraging the CapEx of the clouds and focus all their operational capital on top line revenue, generating activities. >>Yeah. I, so I think the CapEx model of the cloud is a great benefit of the cloud, but I think that is not, what's the longer term future of the cloud. I think the op the cloud operating model is the future. Like the agility, the ability imagine embedded software that, you know, you do an over the year update to fix a bug, but it's very hard to make a, an embedded device smarter over time. And then imagine if you can run cloud native software, you can roll out every two weeks new features and make that thing smarter, intelligent, and continue to help you in your business. That I think is what cloud did ultimately. And I think that is what really these customers are gonna need at their edge. >>Well, we talked about the value within it for customers with the VMware partnership, but what are some of your expectations? Obviously, this is a pretty powerful partnership for you guys. Yeah. What are some of the things that you're expecting that this is gonna drive? Yeah, >>So we, we, we have always operated at the more OT layer, distributed organizations in retail, energy, industrial automotive. Those are the verticals we, so we've developed. I think a lot of experience there, what, what we're seeing as we talk to those customers is they obviously have it organizations and the it organizations, Hey, that's great. You're looking at its computing, but how do we tie this into the existing investments we made with VMware? And how do we kind of take that also to this new environment? And I think that's the expectation I have is that I think we will be able to, to talk to the it folks and say, Hey, you can actually talk to the OT person. And both of you will speak the same language. You probably will both standardize on the same architecture and you'll be together deploying and enabling this new agility at the edge. >>What are some of the next things coming up for ZDA and the team? >>Well, so we've had a really amazing few quarters. We just close a series B round. So we've raised the companies raised over 55 million so far, we're growing very rapidly. We opened up no new international offices. I would say the, the early customers that we started deploying, wait a while back, they're now going into mass scale deployment. So we have now deployments underway in, you know, the 10 to hundred thousands of nodes at certain customers and in amazing environments. And so, so for us, it's continuing to prove the product in more and more verticals. Our, our product is really built for the largest of the largest. So, you know, for the size of the company, we are, we have a high concentration of fortune 500 global 500 customers, and some of them even invested in our rounds recently. So we we've been really, you know, honored with that support. Well, congratulations. Good stuff, edges popping. All right. Thank you. >>Thank you so much for joining us, talking about what you're doing in distributed edge. What's in it for customers, the VMware partnership, and by the way, congratulations on >>That too. Thank you. Thank you so much. Nice to meet you. Thank >>You. All right. Nice to meet you as well for our guest and John furrier. I'm Lisa Martin. You're watching the cube live from VMware Explorer, 22, John and I will be right back with our next guest.

Published Date : Sep 1 2022

SUMMARY :

But you know that cuz you've been here the whole time. So what we do is we help customers with orchestrating What's the business model for you guys. And the answer to the question actually And people have used that term, you know, with big data, going back to 2010 leads when we covering the Hadoop So that's where the data gravity therefore is therefore that's where you do your analytics. so I think, you know, if you're not a data driven enterprise by now, then I think the future may be a little bit bleak. What's that piece. And the reason we opensource it, And the idea is to create the Android of the edge, basically what Android became for mobile computing, So when you talk about Android, you're making the reference of a phone. So that's true. So one of the, the things we saw early But if you wanna take your old data, you'll You're Just, they can life cycle it out on their own timetable. So we had to learn, first of all, how do we take and lift and shift windows based industrial application So they can, they can look at the code, which is great by the way. So we actually build an orchestration service for these nodes running this open source So that's a key secret sauce right there. So that's the final piece, I guess who's using it. And, and one of the business outcomes that they're achieving. I mean, we are deployed in customers in all and gas, edge, who are you working with in, within an organization? So the OT people typically they're So how can you create a model that too can coexist? Or is that what you guys are trying to do? And, and the way we built the company and And are you on AWS or Azure? I mean you gotta, and the edges you're going after you gotta be We kind of identified the it's like, you know, how do you find a black hole in, That's where the cube started by the way. And then I think, you know, to answer your other question, So some customers say, And you leverage their CapEx on that side. the team production data go straight to the customer's cloud and that's why they love us. you know, highly confidential production data and we don't wanna have it either. So that seems to be the trend data, plane customers want full yeah. But the actual machine that I go somewhere else You just had some big news the other day. So that's basically now extending to more, you know, other groups inside VMware. And of course also at the edge. What's the big vision that you see happening at the edge. Like the, these new entrants have done and really, you know, compete with them at that level, Do you see customers becoming cloud super cloud players? that thing smarter, intelligent, and continue to help you in your business. What are some of the things that you're expecting that this is gonna drive? And I think that's the expectation I have is that I think we will be able to, to talk to the it folks and say, So we we've been really, you know, honored with that support. Thank you so much for joining us, talking about what you're doing in distributed edge. Thank you so much. Nice to meet you as well for our guest and John furrier.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

AmazonORGANIZATION

0.99+

EricssonORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

JuniperORGANIZATION

0.99+

San FranciscoLOCATION

0.99+

Chris WolfPERSON

0.99+

TeslaORGANIZATION

0.99+

AlibabaORGANIZATION

0.99+

2010DATE

0.99+

OracleORGANIZATION

0.99+

15QUANTITY

0.99+

AndroidTITLE

0.99+

20QUANTITY

0.99+

FirstQUANTITY

0.99+

AWSORGANIZATION

0.99+

ZededaPERSON

0.99+

JohnPERSON

0.99+

bothQUANTITY

0.99+

two componentsQUANTITY

0.99+

10QUANTITY

0.99+

second stepQUANTITY

0.99+

third dayQUANTITY

0.99+

sun MicrosystemsORGANIZATION

0.99+

oneQUANTITY

0.99+

CNCFORGANIZATION

0.99+

20,000QUANTITY

0.99+

LinuxTITLE

0.99+

CapExORGANIZATION

0.99+

windowsTITLE

0.99+

ClouderaORGANIZATION

0.99+

John furrierPERSON

0.99+

two days agoDATE

0.98+

telcoORGANIZATION

0.98+

over 55 millionQUANTITY

0.98+

firstQUANTITY

0.98+

two optionsQUANTITY

0.98+

one appQUANTITY

0.98+

500 customersQUANTITY

0.98+

todayDATE

0.98+

One endQUANTITY

0.98+

Hadoop waveEVENT

0.98+

BroadcomORGANIZATION

0.97+

KubernetesTITLE

0.97+

first networkQUANTITY

0.96+

LFSORGANIZATION

0.96+

multicloudORGANIZATION

0.95+

VMware ExplorerTITLE

0.95+

first carsQUANTITY

0.93+

one use caseQUANTITY

0.91+

OuissalPERSON

0.9+

about five years oldQUANTITY

0.9+

2022DATE

0.89+

ZDAORGANIZATION

0.88+

pivotalORGANIZATION

0.87+

about five years agoDATE

0.87+

series B roundOTHER

0.86+

hundred thousandsQUANTITY

0.85+

30 yearsQUANTITY

0.81+

Purnima Padmanabhan | VMware Explore 2022


 

>>Welcome back everyone to the cubes live coverage here in San Francisco for VMware Explorer. I'm John farer, Dave LAN two days of Wal three days of Wal Walker. Two sets live events got PERA, had Metabo, senior vice president and general manager of cloud management at VMware. I got it. Right. Thanks for coming on the queue. >>You got it right. Good to >>Be here. We're all smiles. Cause we were talking about your history. You once worked at loud cloud and we were reminiscent about how cloud was before cloud was even cloud. Exactly. And how, how hard it was. >>And >>It's still hard. Complexity is a big deal. And one of the segments we want to talk to you about is the announcement around aria and you see cloud manage a big part of this direction to multi-cloud yes. To tame the complexity. And you know, we were quoting Andy Grove on the cube, let chaos rain, and then rain in the chaos. Exactly. Okay. A very famous quote in tech and the theme here is cloud chaos. Yes. And so we're starting to see signs of raining in that chaos or solving complexity. And every major inflection point has this moment where yes, it gets so hard and then it kicks up to the right and grows and link gets solved. So we feel like we're in that moment. >>I couldn't agree more. And in fact, the way I say is our, our, our tagline is we make the complexity of managing cloud invisible so that you can focus on building your business apps. And you're right about the inflection point. Every time a new technology hits, you have some point of adoption and then it becomes insanely successful. And that's when the complexity hits, then you go and tame the complexity till the next technology hits. Right? That's what happens. It's happened with virtualization. Then it has happened with cloud then with containerization and now the next one will hit. And so with aria, we said, we have to fundamentally change the problem, right? We are constantly running a race of TAing, this complexity. So very excited about this announcement with which we're doing with aria. And we said, imagine if I could have a view of my environment and all the dependencies, I don't need to know everything, just the environment and its dependencies. Then I can now start solving problems and answering questions that I was unable to before. And newer technologies can keep coming and piling on, but I'll always be able to answer that, help >>Our audience understand Ari, a great name and, and what's new. Your Heka what's new from, you know, it's not just V V realize with a new name what's what's new specifically. >>Yeah. Please. No. >>Explain some people. Well, >>There's some commentary on snarky comments, but it's a product it's not a rebrand of something >>Else. It's right. It's not explain that. It's not a, yeah. So what we did is let, let me start off. Why, why we started aria? So we said, okay, native public managing environments, native public cloud environments and cloud native applications is a different ballgame, more Emeral workloads, very large scale, highly fragmented data. So we looked at that problem rounds up and said, we need to have a management solution that solves that problem focused on native public cloud and cloud native apps and the core to solving that problem was you can't just solve it for one cloud or you can't solve it for one discipline. When I say discipline, when you think about management, what do you manage? You're managing to optimize cost. You're managing to optimize performance. You're managing to optimize your security and you're managing to speed up the delivery. That is it. And so we said, we'll have a new look to this management. And what we have done with aria is we have introduced a brand new platform, which we call aria hub powered by aria graph, which allows you to deliver this man on this management challenges, by creating a map of your environment, a near real time map of your environment. And then we are able to, once we know what an application looks like and how it maps to the infrastructure, we can go and query other subsystems to tell you, what is the cost of an application? What is the performance of an application? Creating a common understanding >>This now it's a new architecture. >>I just wanted to get that out there. It's federated >>New graph database. >>Yes. It's a new architecture federated, a platform that not only gives you a map of your environment, but it federates into other sources to pull that data together. Right now, one of the data sources that it federates into is of course also we realize, yeah, yeah. Cloud health, >>You plug and >>Cloud observability. You plug everything into it. Yeah. And as part of the announcement, we didn't just announce a platform. We also announced a set of crosscutting solutions cuz we said, okay, what is the power of the platform? The big thing is it removes the swivel share management. It allows you to answer questions you couldn't answer before. And so >>Swivel share meaning going from one app to another one app logging in exactly >>Credentials in credentials. And you don't have a common understanding of app across those. So now you hire people who do integration buses, right? All kinds of cloud. So the three new end to end solutions we are announcing also in, along with the platform, these are brand new. One is something called aria guardrails. So when I have development environments today, for example, my, I do development on public cloud as well as private cloud. I have thousands of accounts, each one with its own security rules, each one with its own policies. After I initially deploy the account, it becomes a nightmare to manage that. So what aria guardrails allows you to do is set up these multi-cloud environments with the right policies. And not only is it about one time provisioning, but it is maintaining them on >>A run basis. And those credentials are also risk. Cuz you have a password on the dark web, that's exposed on one and you've got to change it. And, and there's so many things going on exactly on security, which brings me up to the point of, you know, we were talking, we're gonna see Tom later on security. We heard earlier, why wasn't security in the keynote? Oh, it's table stakes. That's what Z has said. But we're like, okay, I get that. So let's just say that security is table stakes. There's a big trend towards security as a state of something at a, at a given time. And that CSOs and CSOs are going to defensible. Yes. Meaning being defensible all the time. Yes. As an ongoing thing, which is not just running a pen test once a week. Yes. Like multiple testing, real testing. Not simulation. Yes. To be secure. Yes. So it's not about being secure. It's about having security, but defense ability is the action now not yeah. Yeah. >>Can >>You does that, how does that fit into this? Because this seems to like be in this wheelhouse of management. >>No, I think you're bringing a very important point, which is the security as a post. The fact item is no longer. Right? Right. You want to bake in security. This is a shift left of security that we talk about when you're building an application and you are deploying code in your test, you wanna say, Hey, what is the security? Is it secure? Is it meeting my guardrail? Then when you deploy it from an operations perspective, also it is a security concern. It's not just a security team's concern now. So is my configuration right? Is my configuration secure? Has, is it drifting? It's never a snapshot in time. It's constantly, you have to look at it. Is it drifting? And that is exactly what we are doing also with aria. So >>That's part of the solution you're talking about in the guardrails within being >>Able to maintain the secure configuration right now, as I said, there's always a security discipline. Yeah. Which is you are done by security teams, but you also want operations teams and development teams to enforce security in their respective practices. And that's what Ari allows you to do. >>So the question on multi-cloud comes in, okay. So this is all good. By the way, we love that shift left again, very developer. And I would argue actually we are argue on the cube. That dev ops is the development environment for cloud native. So the it operational once called ops is now in dev just saying he is, and then data ops and security ops are now the new it because that's where the hard problems are. So how do you look at the data side of it as well as security in your view of multi-cloud because you know, hybrid cloud, I can see the steady state between, you know, on premises and cloud, if it's operating cloudlike but now you're starting to look at spanning clouds. Yes. Yes. Not full spanning workloads. That's not there yet, but certainly people have multiple clouds. Yeah. But when you data seems to be the first thing spanning not necessarily the app itself, but how do you guys view that multi-cloud aspect of what you're managing? I mean, how you look at that? >>I think there are different angles to it. Right? You can look at it from the data angle and you look at it on how the, how protected a data is for us. When you look at management discipline, it is all from the perspective of configurations. Okay. If I have configured my environment correctly, then you should not be able to do something that destroys or the data. Right. So getting the configuration right. When you're developing that, getting the configuration right. When you're provisioning the app and then getting the configuration, right. Even when you're doing day two and ongoing operations, that is what we bring to the table. And to some extent, that aria visibility, that I was talking about an Ary graph, a near real time view of the configuration state and its dependencies is very critical. So now I can ask questions. Is there a misconfiguration, by the way, the answer is yes, they, yeah. >>That is a lot by the way, too, right? Yeah. >>Which, which exposes me. And then you can say, Hey, is there user activity associated with that misconfigured? Good object. Now suddenly you have go, go to a red alert. So not only something misconfigured, but there is user activity associated with the misconfigured data. You know, this is something that I have. This >>Is where AI sings beautifully because beautifully, once you have the configuration baseline done, yes. It's like securing the S3 bucket, which is like a knee has to be a like brushing your teeth. It's gotta be a habit. Exactly. It's like, you just don't even think about, you just don't leave an S3 bucket. >>It's gotta be simplified because you're, we're asking the devs now to be security pros, correct. Secure the run time, secure the paths, you know, secure the containers. And so they need help. This is not what they wake up in the morning passionate about. Right. >>But that is where the guardrails comes in. Totally. Yeah. So a a developer, why should they care? They should just say, look, I'm developing for the credit card industry. I need a PCI compliant environment. And then let us take care of defining that environment, deploying that environment, managing that environment on an ongoing basis, they should be building code. Yeah. Right. But there is a change also, which is in the past, these were like two different islands and two different views with aria graft. We also have created this unified API that a developer could query or an ops could query to create a common understanding of the environment. So you're not looking at, you know, the elephant won the trunk and the other one, the tail you're looking at it in a common way. >>Can you talk about the collaboration between tan zoo and aria portfolios? Because obviously the VMware customers are investing in tan zoo. A lot of stuff's coming outta the oven. We heard some Dave heard some stuff from Chris Wolf and he's gonna come on tomorrow. And Raghu was hinting at some other stuff. That's not yet public, but you know, this things happening, >>Things happening, lot of >>Things, you know, you know, announcements happened years ago last year. Now some fruit's coming off the tree, this is a hot product aria. It makes a lot of sense for the customers. Where's the cloud native stuff, kicking, connecting in. What's the give us the overview what's connection >>Is lots and lots of connections. So you have a beautiful Kubernetes environment and a cloud native platform. You have accelerated app development. Now you're building more apps, more microservices based apps, more fragmented data, more information. So think of aria as an envelope around all of this. So wherever you are, whether you are building an application, deploying an application, managing an application, retiring an application through that life cycle, we can bring that management. So what we are doing with Tansu is with the platform, develop and platform. Now we can hook in management with a common perspective earlier in the life cycle. I don't have to wait for it to go to production to start saying, is it secure? Is it configured? How is it performing? What is my cost trade off as a developer, I've decided to, to fix a latency issue, I'm gonna add a new region or I'm gonna scale out a particular tier. Do I know how much it'll cost me? Can I give you that right at your fingertips, potentially even within the development platform and within the ID, that's the power, right? So bringing Ary, >>Not a lot of heavy lifting on the develop. So it's pretty much almost like a query to a database or >>As simple API that they can just query as part of their development process. Yeah. So by bringing aria and Tansu and really aria en developing Tansu right. You're able to bring that power >>Developer. I just always smile because you, I remember we, we have a group called the cloud. AATI the early OG found cloud. >>AATI >>The early days of cloud. When we were talking about infrastructure as code yes. Way back when, and finally it's actually happening. So what you're describing is infrastructure's code because now there's more complexity happening under the hard and top and you know, service are being turned on and off automatically. Yes. And sometimes you might not even know what's going on. Exactly. If you have guard rail, >>But you have to discover the state, know something has turned on, understand the implication and then synthesize, synthesize it down to the insight for the user. >>You know, a lot of people have been complaining about other older companies. Like Splunks the world who have great logging technology for gen one cloud, but now these new logging logging becomes a problem. Can you talk about how you guys are handling that? Give confidence or yeah. Explain that there's everything's gonna be logged properly. Yeah. >>So, so really look, there are three disciplines that we have management. Discipl like, ultimately there are thousands of names, but it boils down to you're managing the cost. You're managing the security, you're managing the performance of your applications. That is it. Right. So what we found is when you think of these disciplines as siloed load solutions, you can't ask a simple question as what is my cost performance trade off. You can't ask a simple question as, Hey, I'm improving performance. How, what is the implication of security? And that's when you start building complex solutions that say, okay, let me collect log from here. Let me collect this from here. Then let me correlate and normalize an application definition and tell you something and then put it in a spreadsheet and put it in a spreadsheet finally for manual work. Exactly. So one of the pillars is about managing performance. >>We have very powerful capabilities today in our portfolio. Tansu observability, which is part of aria portfolio. We realize log, which is part of aria portfolio, networks, insights, and operations. So with the common, when you, when you have a common language, we have a common language. We understand each other. Similarly with Ary graph and aria hub, we have creating this common language. So once we create a common language, all the various observability and log solutions have a meaning. They have relevance. And so we are able to take the noise from all these systems and synthesize it down to what we call business insights. And that's what is one of the big announcement as part of aria, awesome take data, which we have lots of and convert it to information. >>Give us the bumper sticker on why VMware. >>Well, I I'll tell you, when you talk about various public clouds, each public cloud has their native solutions. I've got control tower, I've got cloud wash, cloud trail, different solutions, and some of the hyperscalers are also expanding their solutions to other cloud. I think VMware in a way, from a multi-cloud perspective, we are in a wonderfully neutral position. Not only do we have a wealth of technology and assets that we can bring to the game, but we can also do it evenly across all clouds. So, so look at something like cost. Do you trust one of the hyperscalers to tell you that what is the cost comparison between them and another hyperscaler? That is where the VMware value comes in? >>I think people just try to hear what the cost of one cloud. Exactly, exactly. That is often people make money doing that is a job. No, >>No, definitely. Even a single cloud. What is the cost? >>It's a cloud economist out there and we know who he is. Corey Corey, a friend of the cube. He does it for his living. So help people figure out their bill. Exactly. Just on one cloud. >>Exactly. It's one cloud. So being able, we have the unique position where, and the right sets of technologies and experiences to bring that solution to bear across multicloud. Right. Great. >>What's your vision real quick. One minute left. What's your vision for the group? What are you investing in? What's your goals? What are you trying to do? Ask you the products. New. Gonna roll that out. What's what's the plan. I >>Really, again, the biggest one, the, the, the tagline I talked about, right. I, I, I want to, you know, I'm telling customers, managing stuff is boring. Don't waste your time on it. Let us take care of it. Right? So make the cloud complexity invisible so that you can focus on building your applications and everything that we do in the business unit is targeted towards that one goal. It is not about doing more features, more capabilities. It's are you solving customers questions? And we start from question down, >>Be thank you for spending your valuable time here in the cube, explaining the new news. Appreciate it. All right. Get lunch. After the short breaks, stay more with the cube live here in San Francisco for VMware Explorer, 22. I'm John that's. Dave. >>Thank you.

Published Date : Aug 31 2022

SUMMARY :

Thanks for coming on the queue. You got it right. Cause we were talking about your history. And one of the segments we want to talk And that's when the complexity hits, then you go and Your Heka what's new from, you know, it's not just V V realize with a new name what's what's No. Well, core to solving that problem was you can't just solve it for one cloud or you can't I just wanted to get that out there. that not only gives you a map of your environment, but it federates into other sources to pull And as part of the announcement, So what aria guardrails allows you to do is set up these multi-cloud And that CSOs and CSOs are going to Because this seems to like be in this wheelhouse of management. And that is exactly what we are doing also with aria. And that's what Ari allows you to do. I can see the steady state between, you know, on premises and cloud, if it's operating cloudlike but So getting the configuration right. That is a lot by the way, too, right? And then you can say, Hey, is there user activity associated It's like securing the S3 bucket, which is like a knee has to be a like brushing your teeth. secure the paths, you know, secure the containers. look, I'm developing for the credit card industry. That's not yet public, but you know, this things happening, Things, you know, you know, announcements happened years ago last year. So you have a beautiful Kubernetes environment and a cloud Not a lot of heavy lifting on the develop. So by bringing aria and Tansu and really aria en developing Tansu right. AATI the early OG And sometimes you might not even know what's going on. But you have to discover the state, know something has turned on, understand the implication and Can you talk about how you guys are handling that? So what we found is when you think And so we are able to take the noise from all these systems and trust one of the hyperscalers to tell you that what is the cost comparison between them and I think people just try to hear what the cost of one cloud. What is the cost? Corey Corey, a friend of the cube. and the right sets of technologies and experiences to bring that solution to bear across multicloud. What are you investing in? So make the cloud complexity invisible so that you can focus on building your applications Be thank you for spending your valuable time here in the cube, explaining the new news.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Chris WolfPERSON

0.99+

John farerPERSON

0.99+

DavePERSON

0.99+

San FranciscoLOCATION

0.99+

Andy GrovePERSON

0.99+

Purnima PadmanabhanPERSON

0.99+

VMwareORGANIZATION

0.99+

Corey CoreyPERSON

0.99+

AATIORGANIZATION

0.99+

One minuteQUANTITY

0.99+

Two setsQUANTITY

0.99+

RaghuPERSON

0.99+

oneQUANTITY

0.99+

two different islandsQUANTITY

0.99+

JohnPERSON

0.98+

one cloudQUANTITY

0.98+

two daysQUANTITY

0.98+

three disciplinesQUANTITY

0.98+

MetaboPERSON

0.98+

OneQUANTITY

0.98+

one appQUANTITY

0.98+

years agoDATE

0.98+

TansuORGANIZATION

0.97+

once a weekQUANTITY

0.97+

single cloudQUANTITY

0.97+

each oneQUANTITY

0.97+

tomorrowDATE

0.97+

TomPERSON

0.96+

eachQUANTITY

0.96+

one goalQUANTITY

0.96+

two different viewsQUANTITY

0.96+

S3COMMERCIAL_ITEM

0.96+

AriPERSON

0.95+

Dave LANPERSON

0.95+

last yearDATE

0.94+

three daysQUANTITY

0.94+

thousands of namesQUANTITY

0.94+

first thingQUANTITY

0.94+

todayDATE

0.93+

ariaORGANIZATION

0.92+

thousands of accountsQUANTITY

0.92+

one timeQUANTITY

0.92+

day twoQUANTITY

0.92+

one disciplineQUANTITY

0.9+

VMware ExplorerORGANIZATION

0.9+

gen oneQUANTITY

0.88+

Wal WalkerEVENT

0.88+

ariaTITLE

0.81+

22OTHER

0.76+

TansuTITLE

0.75+

three new endQUANTITY

0.73+

AriORGANIZATION

0.73+

VMware ExploreTITLE

0.69+

SplunksORGANIZATION

0.65+

Ary graphTITLE

0.64+

PERAORGANIZATION

0.58+

ZPERSON

0.57+

segmentsQUANTITY

0.51+

2022DATE

0.49+

ExplorerTITLE

0.49+

KubernetesTITLE

0.46+

ariaPERSON

0.45+

WalEVENT

0.45+

Supercloud – Real or Hype? | Supercloud22


 

>>Okay, welcome back everyone to super cloud 22 here in our live studio performance. You're on stage in Palo Alto. I'm Sean fur. You're host with the queue with Dave ante. My co it's got a great industry ecosystem panel to discuss whether it's realer hype, David MC Janet CEO of Hashi Corp, hugely successful company as will LA forest field CTO, Colu and Victoria over yourgo from VMware guys. Thanks for coming on the queue. Appreciate it. Thanks for having us. So realer, hype, super cloud David. >>Well, I think it depends on the definition. >>Okay. How do you define super cloud start there? So I think we have a, >>I think we have a, like an inherently pragmatic view of super cloud of the idea of super cloud as you talk about it, which is, you know, for those of us that have been in the infrastructure world for a long time, we know there are really only six or seven categories of infrastructure. There's sort of the infrastructure security, networking databases, middleware, and, and, and, and really the message queuing aspects. And I think our view is that if the steady state of the world is multi-cloud, what you've seen is sort of some modicum of standardization across those different elements, you know, take, you know, take confluent. You know, I, I worked in the middleware world years ago, MQ series, and typical multicast was how you did message queuing. Well, you don't do that anymore. All the different cloud providers have their own message, queuing tech, there's, Google pub sub, and the equivalents across the different, different clouds. Kafka has provided a consistent way to do that. And they're not trying to project that. You can run everything connected. They're saying, Hey, you should standardize on Kafka for message cuing is that way you can have operational consistency. So I think to me, that's more how we think about it is sort of, there is sort of layer by layer of sort of de facto standardization for the lingo Franco. >>So a streaming super cloud is how you would think of it, or no, I just, or a component of >>Cloud that could be a super cloud. >>I just, I just think that there are like, if I'm gonna build an application message, queuing is gonna be a necessary element of it. I'm gonna use Kafka, not, you know, a native pub sub engine on one of the clouds, because operationally that's just the only way I can do it. So I think that's more, our view's much more pragmatic rather than trying to create like a single platform that you can run everywhere and deal with the networking realities of like network, you know, hops missing across those different worlds and have that be our responsibility. It's much more around, Hey, let's standardize each layer, operational >>Standardized layer that you can use to build a super cloud if that's in your, your intent or, yeah. Okay. >>And it reminds me of the web services days. You kind of go throwback there. I mean, we're kind of living the next gen of web services, the dream of that next level, because DevOps dev SecOps now is now gone mainstream. That's the big challenge we're hearing devs are doing great. Yep. But the ops teams and screen, they gotta go faster. This seems to be a core, I won't say blocker, but more of a drag to the innovation. >>Well, I I'll just get off, I'll hand it off to, to you guys. But I think the idea that like, you know, if I'm gonna have an app that's running on Amazon that needs to connect to a database that's running on, on the private data center, that's essentially the SOA notion, you know, w large that we're all trying to solve 20 years ago, but is much more complicated because you're brokering different identity models, different networking models. They're just much more complex. So that's where the ops bit is the constraint, you know, for me to build that app, not that complicated for the ops person to let it see traffic is another thing altogether. I think that's, that's the break point for so much of what looks easier to a developer is the operational reality of how you do that. And the good news is those are actually really well solved problems. They're just not broadly understood. >>Well, what's your take, you talk to customers all the time, field CTO, confluent, really doing well, streaming data. I mean, everyone's doing it now. They have to, yeah. These are new things that pop up that need solutions. You guys step up and doing more. What's your take on super cloud? >>Well, I mean, the way we address it honestly is we don't, it's gonna be honest. We don't think about super cloud much less is the fact that SAS is really being pushed down. Like if we rely on seven years ago and you took a look at SAS, like it was obvious if you were gonna build a product for an end consumer or business user, you'd do SAS. You'd be crazy not to. Right. But seven years ago, if you look at your average software company producing something for a developer that people building those apps, chances are you had an open source model. Yeah. Or, you know, self-managed, I think with the success of a lot of the companies that are here today, you know, snowflake data, bricks, Colu, it's, it's obvious that SaaS is the way to deliver software to the developers as well. And as such, because our product is provided that way to the developers across the clouds. That's, that's how they have a unifying data layer, right. They don't necessarily, you know, developers like many people don't necessarily wanna deal with the infrastructure. They just wanna consume cloud data services. Right. So that's how we help our customers span cloud. >>So we evenly that SAS was gonna be either built on a single cloud or in the case of service. Now they built their own cloud. Right. So increasingly we're seeing opportunities to build a Salesforce as well across clouds tap different, different, different services. So, so how does that evolve? Do you, some clouds have, you know, better capabilities in other clouds. So how does that all get sort of adjudicated, do you, do you devolve to the lowest common denominator? Or can you take the best of all of each? >>The whole point to that I think is that when you move from the business user and the personal consumer to the developer, you, you can no longer be on a cloud, right. There has to be locality to where applications are being developed. So we can't just deploy on a single cloud and have people send their data to that cloud. We have to be where the developer is. And our job is to make the most of each, an individual cloud to provide the same experience to them. Right. So yes, we're using the capabilities of each cloud, but we're hiding that to the developer. They don't shouldn't need to know or care. Right. >>Okay. And you're hiding that with the abstraction layer. We talked about this before Victoria, and that, that layer has what, some intelligence that has metadata knowledge that can adjudicate what, what, the best, where the best, you know, service is, or function of latency or data sovereignty. How do you see that? >>Well, I think as the, you need to instrument these applications so that you, you, you can get that data and then make the intelligent decision of where, where, where this, the deploy application. I think what Dave said is, is right. You know, the level of super cloud that they talking about is the standardization across messaging. And, and are you what's happening within the application, right? So you don't, you are not too dependent on the underlying, but then the application say that it takes the form of a, of a microservice, right. And you deploy that. There has to be a way for operator to say, okay, I see all these microservices running across clouds, and I can factor out how they're performing, how I, I, life lifecycle managed and all that. And so I think there is, there is, to me, there's the next level of the super cloud is how you factor this out. So an operator can actually keep up with the developers and make sense of all that and manage it. Like >>You guys that's time. Like its also like that's what Datadog does. So Datadog basically in allows you to instrument all those services, on-prem private data center, you know, all the different clouds to have a consistent view. I think that that's not a good example of a vendor that's created a, a sort of a level of standardization across a layer. And I think that's, that's more how we think about it. I think the notion of like a developer building an application, they can deploy and not have to worry where it exists. Yeah. Is more of a PAs kind of construct, you know, things like cloud Foundry have done a great job of, of doing that. But underneath that there's still infrastructure. There's still security. There's still networking underneath it. And I think that's where, you know, things like confluent and perhaps at the infrastructure layer have standardized, but >>You have off the shelf PAs, if I can call it that. Yeah. Kind of plain. And then, and then you have PAs and I think about, you mentioned snowflake, snowflake is with snow park, seems to be developing a PAs layer that's purpose built for their specific purpose of sharing data and governing data across multiple clouds call super paths. Is, is that a prerequisite of a super cloud you're building blocks. I'm hearing yeah. For super cloud. Is that a prerequisite for super cloud? That's different than PAs of 10 years ago. No, but I, >>But I think this is, there's just different layers. So it's like, I don't know how that the, the snowflake offering is built built, but I would guess it's probably built on Terraform and vault and cons underneath it. Cuz those are the ingredients with respect to how you would build a composite application that runs across multiple. And >>That's how Oracle that town that's how Oracle with the Microsoft announcement. They just, they just made if you saw that that was built on Terraform. Right. But, but they would claim that they, they did some special things within their past that were purpose built for, for sure. Low latency, for example, they're not gonna build that on, you know, open shift as an, as an example, they're gonna, you know, do their own little, you know, >>For sure, for sure. So I think what you're, you're pointing at and what Victoria was talking about is, Hey, can a vendor provided consistent experience across the application layer across these multiple clouds? And I would say, sure, just like, you know, you might build a mobile banking application that has a front end on Amazon in the back end running on vSphere on your private data center. Sure. But the ingredients you use to do that have to be, they can't be the cloud native aspects for how you do that. How do you think about, you know, the connectivity of, of like networking between that thing to this thing? Is it different on Amazon? Is it different on Azure? Is it different on, on Google? And so the, the, the, the companies that we all serve, that's what they're building, they're building composited applications. Snowflake is just an example of a company that we serve this building >>Composite. And, but, but, but don't those don't, you have to hide the complexity of that, those, those cloud native primitives that's your job, right. Is to actually it creates simplicity across clouds. Is it not? >>Why? Go ahead. You. >>Yeah, absolutely. I mean that in fact is what we're doing for developers that need to do event streaming, right. That need to process this data in real time. Now we're, we're doing the sort of things that Victoria was just talking about, like underneath the covers, of course, you know, we're using Kubernetes and we're managing the differences between the clouds, but we're hiding the, that, and we've become sort of a defacto standard across the cloud. So if I'm developing an app in any of those cloud, and I think we all know, and you were mentioning earlier every significant company's multi-cloud now all the large enterprises, I just got back from Brazil and like every single one of 'em have multiple clouds and on-prem right. So they need something that can span those. >>What's the challenge there. If you talk to those customers, because we're seeing the same thing, they have multiple clouds. Yeah. But it was kind of by default or they had some use case, either.net developers there with Azure, they'll do whatever cloud. And it kind of seems specialty relative to the cloud native that they're on what problems do they have because the complexity to run infrastructure risk code across clouds is hard. Right? So the trade up between native cloud and have better integration to complexity of multiple clouds seems to be a topic around super cloud. What are you seeing for, for issues that they might have or concerns? >>Yeah. I mean, honestly it is, it is hard to actually, so here's the thing that I think is kind of interesting though, by the way, is that I, I think we tend to, you know, if you're, if you're from a technical background, you tend to think of multicloud as a problem for the it organization. Like how do we solve this? How do we save money? But actually it's a business problem now, too, because every single one of these companies that have multiple clouds, they want to integrate their data, their products across these, and it it's inhibiting their innovation. It's hard to do, but that's where something like, you know, Hatchie Corp comes in right. Is to help solve that. So you can instrument it. It has to happen at each of these layers. And I suppose if it does happen at every single layer, then voila, we organically have something that amounts to Supercloud. Right. >>I love how you guys are representing each other's firms. And, but, but, and they also correct me if I'm a very similar, your customers want to, it is very similar, but your customers want to monetize, right. They want bring their tools, their software, their particular IP and their data and create, you know, every, every company's a software company, as you know, Andreesen says every company's becoming a cloud company to, to monetize in, in the future. Is that, is that a reasonable premise of super cloud? >>Yeah. I think, think everyone's trying to build composite applications to, to generate revenue. Like that's, that's why they're building applications. So yeah. One, 100%. I'm just gonna make it point cuz we see it as well. Like it's actually quite different by geography weirdly. So if you go to like different geographies, you see actually different cloud providers, more represented than others. So like in north America, Amazon's pretty dominant Japan. Amazon's pretty dominant. You go to Southeast Asia actually. It's not necessarily that way. Like it might be Google for, for whatever reason more hourly Bob. So this notion of multi's just the reality of one's everybody's dealing with. But yeah, I think everyone, everyone goes through the same process. What we've observed, they kind of go, there's like there's cloud V one and there's cloud V two. Yeah. Cloud V one is sort of the very tactical let's go build something on cloud cloud V two is like, whoa, whoa, whoa, whoa. And I have some stuff on Amazon, some stuff on Azure, some stuff on, on vSphere and I need some operational consistency. How do I think about zero trust across that way in a consistent way. And that's where this conversation comes into being. It's sort of, it's not like the first version of cloud it's actually when people step back and say, Hey, Hey, I wanna build composite applications to monetize. How am I gonna do that in an industrialized way? And that's the problem that you were for. It's >>Not, it's not as, it's not a no brainer like it was with cloud, go to the cloud, write an app. You're good here. It's architectural systems thinking, you gotta think about regions. What's the latency, you know, >>It's step back and go. Like, how are we gonna do this, this exactly. Like it's wanted to do one app, but how we do this at scale >>Zero trust is a great example. I mean, Amazon kind of had, was forced to get into the zero trust, you know, discussion that, that wasn't, you know, even a term that they used and now sort of, they're starting to talk about it, but within their domain. And so how do you do zero trust trust across cost to your point? >>I, I wonder if we're limiting our conversation too much to the, the very technical set of developers, cuz I'm thinking back at again, my example of C plus plus libraries C plus plus libraries makes it easier. And then visual BA visual basic. Right. And right now we don't have enough developers to build the software that we want to build. And so I want, and we are like now debating, oh, can we, do we hide that AI API from Google versus that SQL server API from, from Microsoft. I wonder at some point who cares? Right. You know, we, I think if we want to get really economy scale, we need to get to a level of abstraction for developers that really allows them to say, I don't need, for most of most of the procedural application that I need to build as a developer, as a, as a procedural developer, I don't care about this. Some, some propeller had, has done that for me. I just like plug it in my ID and, and I use it. And so I don't, I don't know how far we are from that, but if we don't get to that level, it fits me that we never gonna get really the, the economy or the cost of building application to the level. >>I was gonna ask you in the previous segment about low code, no code expanding the number of developers out there and you talking about propel heads. That's, that's what you guys all do. Yeah. You're the technical geniuses, right. To solve that problem so that, so you can have low code development is that I >>Don't think we have the right here. Cause I, we, we are still, you know, trying to solve that problem at that level. But, but >>That problem has to be solved first, right before we can address what you're talking about. >>Yeah. I, I worked very closely with one of my biggest mentors was Adam Bosworth that built, you know, all the APIs for visual basics and, and the SQL API to visual basic and all that stuff. And he always was on that front. In fact that his last job was at my, at AWS building that no code environment. So I'm a little detached from that. It just hit me as we were discussing this. It's like, maybe we're just like >>Creating, but I would, I would argue that you kind of gotta separate the two layers. So you think about the application platform layer that a developer interfaces to, you know, Victoria and I worked together years ago and one of the products we created was cloud Foundry, right? So this is the idea of like just, you know, CF push, just push this app artifact and I don't care. That's how you get the developer community written large to adopt something complicated by hiding all the complexity. And I think that that is one model. Yeah. Turns out Kubernetes is actually become a peer to that and perhaps become more popular. And that's what folks like Tanza are trying to do. But there's another layer underneath that, which is the infrastructure that supports it. Right? Yeah. Cause that's only needs to run on something. And I think that's, that's the separation we have to do. Yes. We're talking a little bit about the plumbing, but you know, we just easily be talking about the app layer. You need, both of them. Our point of view is you need to standardize at this layer just like you need standardize at this layer. >>Well, this is, this is infrastructure. This is DevOps V two >>Dev >>Ops. Yeah. And this is where I think the ops piece with open source, I would argue that open source is blooming more than ever. So I think there's plenty of developers coming. The automation question becomes interesting because I think what we're seeing is shift left is proving that there's app developers out there that wanna stay in their pipelining. They don't want to get in under the hood. They just want infrastructure as code, but then you got supply chain software issues there. We talked about the Docker on big time. So developers at the top, I think are gonna be fine. The question is what's the blocker. What's holding them back. And I don't see the devs piece Victoria as much. What do you guys think? Is it, is the, is the blocker ops or is it the developer experience? That's the blocker. >>It's both. There are enough people truthfully. >>That's true. Yeah. I mean, I think I sort of view the developer as sort of the engine of the digital innovation. So, you know, if you talk about creative destruction, that's, that was the economic equivalent of softwares, eating the world. The developers are the ones that are doing that innovation. It's absolutely essential that you make it super easy for them to consume. Right. So I think, you know, they're nerds, they want to deal with infrastructure to some degree, but I think they understand the value of getting a bag of Legos that they can construct something new around. And I think that's the key because honestly, I mean, no code may help for some things. Maybe I'm just old >>School, >>But I, I went through this before with like Delphy and there were some other ones and, and I hated it. Like I just wanted a code. Yeah. Right. So I think making them more efficient is, is absolutely good. >>But I think what, where you're going with that question is that the, the developers, they tend to stay ahead. They, they just, they're just gear, you know, wired that way. Right. So I think right now where there is a big bottleneck in developers, I think the operation team needs to catch up. Cuz I, I talk to these, these, these people like our customers all the time and I see them still stuck in the old world. Right. Gimme a bunch of VMs and I'll, I know how to manage well that world, you know, although as lag is gonna be there forever, so managing mainframe. But so if they, the world is all about microservices and containers and if the operation team doesn't get on top of it and the security team that then that they're gonna be a bottleneck. >>Okay. I want to ask you guys if the, if the companies can get through that knothole of having their ops teams and the dev teams work well together, what's the benefits of a Supercloud. How do you see the, the outcome if you kind of architect it, right? You think the big picture you zoom as saying what's the end game look like for Supercloud? Is that >>What I would >>Say? Or what's the Nirvana >>To me Nirvana is that you don't care. You just don't don't care. You know, you just think when you running building application, let's go back to the on-prem days. You don't care if it runs on HP or Dell or, you know, I'm gonna make some enemies here with my old, old family, but you know, you don't really care, right. What you want is the application is up and running and people can use it. Right. And so I think that Nirvana is that, you know, there is some, some computing power out there, some pass layer that allows me to deploy, build application. And I just like build code and I deploy it and I get value at a reasonable cost. I think one of the things that the super cloud for as far as we're concerned is cost. How do you manage monitor the cost across all this cloud? >>Make sure that you don't, the economics don't get outta whack. Right? How many companies we know that have gone to the cloud only to realize that holy crap, now I, I got the bill and, and you know, I, as a vendor, when I was in my previous company, you know, we had a whole team figuring out how to lower our cost on the one hyperscaler that we were using. So these are, you know, the, once you have in the super cloud, you don't care just you, you, you go with the path of least the best economics is. >>So what about the open versus closed debate will you were mentioning that we had snowflake here and data bricks is both ends of the spectrum. Yeah. You guys are building open standards across clouds. Clearly even the CLO, the walled gardens are using O open standards, but historically de facto standards have emerged and solved these problems. So the super cloud as a defacto standard, versus what data bricks is trying to do super cloud kind of as an, as an open platform, what are you, what are your thoughts on that? Can you actually have an, an open set of standards that can be a super cloud for a specific purpose, or will it just be built on open source technologies? >>Well, I mean, I, I think open source continues to be an important part of innovation, but I will say from a business model perspective, like the days, like when we started off, we were an open source company. I think that's really done in my opinion, because if you wanna be successful nowadays, you need to provide a cloud native SAS oriented product. It doesn't matter. What's running underneath the covers could be commercial closed source, open source. They just wanna service and they want to use it quite frankly. Now it's nice to have open source cuz the developers can download it and run on their laptop. But I, I can imagine in 10 years time actually, and you see most companies that are in the cloud providing SAS, you know, free $500 credit, they may not even be doing that. They'll just, you know, go whatever cloud provider that their company is telling them to use. They'll spin up their SAS product, they'll start playing with it. And that's how adoption will grow. Right? >>Yeah. I, I think, I mean my personal view is that it's, that it's infrastructure is pervasive enough. It exists at the bottom of everything that the standards emerge out of open source in my view. And you think about how something like Terraform is built, just, just pick one of the layers there's Terraform core. And then there's a plugin for everything you integrate with all of those are open source. There are over 2000 of these. We don't build them. Right. That's and it's the same way that drove Linux standardization years ago, like someone had to build the drivers for every piece of hardware in the world. The market does not do that twice. The market does that once. And so I, I I'm deeply convicted that opensource is the only way that this works at the infrastructure layer, because everybody relies on it at the application layer, you may have different kinds of databases. You may have different kind of runtime environments. And that's just the nature of it. You can't to have two different ways of doing network, >>Right? Because the stakes are so high, basically. >>Yeah. Cuz there's, there's an infinite number of the surface areas are so large. So I actually worked in product development years ago for middleware. And the biggest challenge was how do you keep the adapter ecosystem up to date to integrate with everything in the world? And the only way to do it in our view is through open source. And I think that's a fundamental philosophical view that it we're just, you know, grounded in. I think when people are making infrastructure decisions that span 20 years at the customer base, this is what they think about. They go which standard it will emerge based on the model of the vendor. And I don't think my personal view is, is it's not possible to do in a, in >>A, do you think that's a defacto standard kind of psychological perspective or is there actual material work being done or both in >>There it's, it's, it's a network effect thing. Right? So, so, you know, before Google releases a new service service on Google cloud, as part of the release checklist is does it support Terraform? They do that work, not us. Why? Because every one of their customers uses Terraform to interface with them and that's how it works. So see, so the philosophical view of, of the customers, okay, what am I making a standardize on for this layer for the next 30 years? It's kind of a no brainer. Philosophically. >>I tend, >>I think the standards are organically created based upon adoption. I mean, for instance, Terraform, we have a provider we're again, we're at the data layer that we created for you. So like, I don't think there's a board out there. I mean there are that creating standards. I think those days are kind of done to be honest, >>The, the Terraform provider for vSphere has been downloaded five and a half million times this year. Yeah. Right. Like, so, I >>Mean, these are unifying moments. This are like the de facto standards are really important process in these structural changes. I think that's something that we're looking at here at Supercloud is what's next? What has to unify look what Kubernetes has done? I mean, that's essentially the easy thing to orchestra, but people get behind it. So I see this is a big part of this next, the two. Totally. What do you guys see that's needed? What's the rallying unification point? Is it the past layer? Is it more infrastructure? I guess that's the question we're trying to, >>I think every layer will need that open source or a major traction from one of the proprietary vendor. But I, I agree with David, it's gonna be open source for the most part, but you know, going back to the original question of the whole panel, if I may, if this is reality of hype, look at the roster of companies that are presenting or participating today, these are all companies that have some sort of multi-cloud cross cloud, super cloud play. They're either public have real revenue or about to go public. So the answer to the question. Yeah, it's real. Yeah. >>And so, and there's more too, we had couldn't fit him in, but we, >>We chose super cloud on purpose cuz it kind of fun, John and I kind came up with it and, and but, but do you think it's, it hurts the industry to have this, try to put forth this new term or is it helpful to actually try to push the industry to define this new term? Or should it just be multi-cloud 2.0, >>I mean, conceptually it's different than multi-cloud right. I mean, in my opinion, right? So in that, in that respect, it has value, right? Because it's talking about something greater than just multi-cloud everyone's got multi-cloud well, >>To me multi-cloud is the, the problem I should say the opportunity. Yeah. Super cloud or we call it cross cloud is the solution to that channel. Let's >>Not call again. And we're debating that we're debating that in our cloud already panel where we're talking about is multi-cloud a problem yet that needs to get solved or is it not yet ready for a market to your point? Is it, are we, are we in the front end of coming into the true problem set, >>Give you definitely answer to that. The answer is yes. If you look at the customers that are there, they won, they have gone through the euphoria phase. They're all like, holy something, what, what are we gonna do about this? Right. >>And, but they don't know what to do. >>Yeah. And the more advanced ones as the vendor look at the end of the day, markets are created by vendors that build ed that customers wanna buy. Yeah. Because they get value >>And it's nuance. David, we were sort talking about before, but Goldman Sachs has announced they're analysis software vendor, right? Capital one is a software vendor. I've been really interested Liberty what Cerner does with what Oracle does with Cerner and in terms of them becoming super cloud vendors and monetizing that to me is that is their digital transformation. Do you guys, do you guys see that in the customer base? Am I way too far out of my, of my skis there or >>I think it's two different things. I think, I think basically it's the idea of building applications. If they monetize yeah. There and Cerner's gonna build those. And you know, I think about like, you know, IOT companies that sell that sell or, or you think people that sell like, you know, thermostats, they sell an application that monetizes those thermostats. Some of that runs on Amazon. Some of that runs a private data center. So they're basically in composite applications and monetize monetizing them for the particular vertical. I think that's what we ation every day. That's what, >>Yeah. You can, you can argue. That's not, not anything new, but what's new is they're doing that on the cloud and taking across multiple clouds. Multiple. Exactly. That's what makes >>Edge. And I think what we all participate in is, Hey, in order to do that, you need to drive standardization of how you do provisioning, how you do networking, how you do security to underpin those applications. I think that's what we're all >>Talking about, guys. It's great stuff. And I really appreciate you taking the time outta your day to help us continue the conversation to put out in the open. We wanna keep it out in the open. So in the last minute we have left, let's go down the line from a hash core perspective, confluent and VMware. What's your position on super cloud? What's the outcome that you would like to see from your standpoint, going out five years, what's it look like they will start with you? >>I just think people like sort under understanding that there is a layer by layer of view of how to interact across cloud, to provide operational consistency and decomposing it that way. Thinking about that way is the best way to enable people to build and run apps. >>We wanna help our customers work with their data in real time, regardless of where they're on primer in the cloud and super cloud can enable them to build applications that do that more effectively. That's that's great for us >>For tour you. >>I, my Niana for us is customers don't care, just that's computing out there. And it's a, it's a, it's a tool that allows me to grow my business and we make it all, all the differences and all the, the challenges, you know, >>Disappear, dial up, compute utility infrastructure, ISN >>Code. I open up the thought there's this water coming out? Yeah, I don't care. I got how I got here. I don't wanna care. Well, >>Thank you guys so much and congratulations on all your success in the marketplace, both of you guys and VMware and your new journey, and it's gonna be great to watch. Thanks for participating. Really appreciate it. Thank you, sir. Okay. This is super cloud 22, our events, a pilot. We're gonna get it out there in the open. We're gonna get the data we're gonna share with everyone out in the open on Silicon angle.com in the cube.net. We'll be back with more live coverage here in Palo Alto. After this short break.

Published Date : Aug 9 2022

SUMMARY :

Thanks for coming on the queue. So I think we have a, So I think to me, that's more how we think about it is sort of, there is sort of layer by layer of it. I'm gonna use Kafka, not, you know, a native pub sub engine on one of the clouds, Standardized layer that you can use to build a super cloud if that's in your, your intent or, yeah. And it reminds me of the web services days. But I think the idea that like, you know, I mean, everyone's doing it now. a lot of the companies that are here today, you know, snowflake data, bricks, Or can you take the make the most of each, an individual cloud to provide the same experience to them. what, what, the best, where the best, you know, service is, or function of latency And so I think there is, there is, to me, there's the next level of the super cloud is how you factor this And I think that's where, you know, things like confluent and perhaps And then, and then you have PAs and I think about, it. Cuz those are the ingredients with respect to how you would build a composite application that runs across multiple. as an example, they're gonna, you know, do their own little, you know, And I would say, sure, just like, you know, you might build a mobile banking application that has a front end And, but, but, but don't those don't, you have to hide the complexity of that, those, Why? just talking about, like underneath the covers, of course, you know, we're using Kubernetes and we're managing the differences between And it kind of seems specialty relative to the cloud native that It's hard to do, but that's where something like, you know, Hatchie Corp comes in right. and create, you know, every, every company's a software company, as you know, Andreesen says every company's becoming a cloud And that's the problem that you were for. you know, Like it's wanted to do one app, but how we do this at scale you know, discussion that, that wasn't, you know, even a term that they used and now sort of, they're starting to talk about I don't need, for most of most of the procedural application that I need to build as a I was gonna ask you in the previous segment about low code, no code expanding the number of developers out there and you talking Cause I, we, we are still, you know, trying to solve that problem at that level. you know, all the APIs for visual basics and, and the We're talking a little bit about the plumbing, but you know, Well, this is, this is infrastructure. And I don't see the devs There are enough people truthfully. So I think, you know, they're nerds, they want to deal with infrastructure to some degree, So I think making them more efficient is, I know how to manage well that world, you know, although as lag is gonna be there forever, the outcome if you kind of architect it, right? And so I think that Nirvana is that, you know, there is some, some computing power out only to realize that holy crap, now I, I got the bill and, and you know, So what about the open versus closed debate will you were mentioning that we had snowflake here and data bricks I think that's really done in my opinion, because if you wanna be successful nowadays, And you think about how something like Terraform is built, just, just pick one of the layers there's Terraform Because the stakes are so high, basically. And the biggest challenge was how do you keep the adapter ecosystem up to date to integrate with everything in So, so, you know, before Google releases I think the standards are organically created based upon adoption. The, the Terraform provider for vSphere has been downloaded five and a half million times this year. I mean, that's essentially the easy thing to orchestra, but you know, going back to the original question of the whole panel, if I may, but do you think it's, it hurts the industry to have this, try to put forth this new term or is it I mean, conceptually it's different than multi-cloud right. Super cloud or we call it cross cloud is the solution to that channel. that needs to get solved or is it not yet ready for a market to your point? If you look at the customers that are there, that build ed that customers wanna buy. Do you guys, do you guys see that in the customer base? And you know, I think about like, you know, IOT companies that That's what makes in order to do that, you need to drive standardization of how you do provisioning, how you do networking, And I really appreciate you taking the time outta your day to help us continue the I just think people like sort under understanding that there is a layer by layer of view super cloud can enable them to build applications that do that more effectively. you know, I don't wanna care. Thank you guys so much and congratulations on all your success in the marketplace, both of you guys and VMware and your new

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

DavePERSON

0.99+

Adam BosworthPERSON

0.99+

AmazonORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

20 yearsQUANTITY

0.99+

DellORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

JohnPERSON

0.99+

OracleORGANIZATION

0.99+

CernerORGANIZATION

0.99+

Hatchie CorpORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

north AmericaLOCATION

0.99+

Hashi CorpORGANIZATION

0.99+

BrazilLOCATION

0.99+

AWSORGANIZATION

0.99+

HPORGANIZATION

0.99+

Southeast AsiaLOCATION

0.99+

bothQUANTITY

0.99+

cube.netOTHER

0.99+

five yearsQUANTITY

0.99+

$500QUANTITY

0.99+

DatadogORGANIZATION

0.99+

100%QUANTITY

0.99+

twoQUANTITY

0.99+

Sean furPERSON

0.99+

twiceQUANTITY

0.99+

VictoriaPERSON

0.99+

each layerQUANTITY

0.99+

C plus plusTITLE

0.99+

KafkaTITLE

0.99+

two layersQUANTITY

0.99+

Silicon angle.comOTHER

0.99+

TerraformORGANIZATION

0.99+

JapanLOCATION

0.99+

SASORGANIZATION

0.99+

sixQUANTITY

0.99+

LibertyORGANIZATION

0.99+

LinuxTITLE

0.98+

each cloudQUANTITY

0.98+

seven years agoDATE

0.98+

SupercloudORGANIZATION

0.98+

oneQUANTITY

0.98+

five and a half million timesQUANTITY

0.98+

10 years agoDATE

0.98+

vSphereTITLE

0.98+

one modelQUANTITY

0.98+

eachQUANTITY

0.97+

10 yearsQUANTITY

0.97+

first versionQUANTITY

0.97+

SQLTITLE

0.96+

one appQUANTITY

0.96+

VMwareORGANIZATION

0.96+

cloud V twoTITLE

0.96+

single cloudQUANTITY

0.96+

single platformQUANTITY

0.95+

todayDATE

0.95+

20 years agoDATE

0.95+

Steve Mullaney, Aviatrix | AWS re:Inforce 2022


 

>>We're back in Boston, the Cube's coverage of AWS reinforced 2022. My name is Dave ante. Steve Malanney is here as the CEO of Aviatrix longtime cube alum sort of collaborator on super cloud. Yeah. Uh, which we have an event, uh, August 9th, which you guys are participating in. So, um, thank you for that. And, yep. Welcome to the cube. >>Yeah. Thank you so great to be here as >>Always back in Boston. Yeah. I'd say good show. Not, not like blow me away. We were AWS, um, summit in New York city three weeks ago. I >>Took, heard it took three hours to get in >>Out control. I heard, well, there were some people two I, maybe three <laugh>, but there was, they expected like maybe nine, 10,000, 19,000 showed up. Now it's a free event. Yeah. 19,000 people. >>Oh, I didn't know it >>Was that many. It was unbelievable. I mean, it was packed. Yeah. You know, so it's a little light here and I think it's cuz you know, everybody's down the Cape, >>There are down the Cape, Rhode Island that's after the fourth. The thing is that we were talking about this. The quality of people are pretty good though. Yeah. Right. This is there's no looky lose it's everybody. That's doing stuff in cloud. They're moving in. This is no longer, Hey, what's this thing called cloud. Right. I remember three, four years ago at AWS. You'd get a lot of that, that kind of stuff. Some the summit meetings and things like that. Now it's, we're a full on deployment mode even >>Here in 2019, the conversation was like, so there's this shared responsibility model and we may have to make sure you understand. I mean, nobody's questioning that today. Yeah. It's more really hardcore best practices and you know how to apply tools. Yeah. You know, dos and don't and so it's a much more sophisticated narrative, I think. Yeah. >>Well, I mean, that's one of the things that Aviatrix does is our whole thing is architecturally. I would say, where does network security belong in the network? It shouldn't be a bolt on it. Shouldn't be something that you add on. It should be something that actually gets integrated into the fabric of the network. So you shouldn't be able to point to network security. It's like, can you point to the network? It's everywhere. Point to air it's everywhere. Network security should be integrated in the fabric and that wasn't done. On-prem that way you steered traffic to this thing called a firewall. But in the cloud, that's not the right architectural way. It it's a choke point. Uh, operationally adds tremendous amount of complexity, which is the whole reason we're going to cloud in the first place is for that agility and the ability to operationally swipe the card and get our developers running to put in these choke points is completely the wrong architecture. So conversations we're having with customers is integrate that security into the fabric of the network. And you get rid of all those, all those operational >>Issues. So explain that how you're not a, a checkpoint, but if you funnel everything into one sort of place >>In the, so we are a networking company, uh, it is uh, cloud networking company. So we, we were born in the cloud cloud native. We, we are not some on-prem networking solution that was jammed in the cloud, uh, wrapped >>In stack wrapped >>In, you know, or like that. No, no, no. And looking for wires, right? That's VM series from Palo. It doesn't even know it's in the cloud. Right. It's looking for wires. Um, and of course multicloud, cuz you know, Larry E said now, could you believe that on stage with sat, Nadela talking about multi-cloud now you really know we've crossed over to this is a, this is a thing, whoever would've thought you'd see that. But anyway, so we're networking. We're cloud networking, of course it's multi-cloud networking and we're gonna integrate these intelligent services into the fabric. And one of those is, is networking. So what happens is you should do security everywhere. So the place to do it is at every single point in the network that you can make a decision and you embed it and actually embed it into the network. So it's that when you're making a decision of does that traffic need to go somewhere or not, you're doing a little bit of security everywhere. And so what, it looks like a giant firewall effectively, but it's actually distributed in software through every single point in a network. >>Can I call it a mesh? >>It's kind of a mesh you can think of. Yeah, it's a fabric. >>Okay. It's >>A, it's a fabric that these advanced services, including security are integrated into that fabric. >>So you've been in networking much of >>Your career career, >>37 years. All your career. Right? So yay. Cisco Palo Alto. Nicera probably missing one or two, but so what do you do with all blue coat? Blue coat? What do you do with all that stuff? That's out there that >>Symantics. >>Yes. <laugh> keep going. >>Yeah, I think that's it. That's >>All I got. Okay. So what do you do with all that stuff? That's that's out there, you rip and replace it. You, >>So in the cloud you mean yeah. >>All this infrastructure that's out there. What is that? Well, you >>Don't have it in the right. And so right now what's happening is people, look, you can't change too many things. If you're a human, you know, they always tell you don't change a job, get married and have a kid or something all in the same year. Like they just, just do one of 'em cuz you it's too much. When people move to the cloud, what they do is they tend to take what they do on Preem and they say, look, I'm gonna change one thing. We're gonna go to the cloud, everything else. I'm gonna keep the same. Cuz I don't wanna change three things. So they kind of lift and shift their same mentality. They take their firewalls, their next gen fire. I want them, they take all the things that they currently do. And they say, I'm gonna try to do that in the cloud. >>It's not really the right way to do it. But sometimes for people that are on-prem people, that's the way to get started and I'll screw it up and not screw it up and, and not change too many things. And look, I'm just used to that. And, and then I'll, then I'll go to change things, to be more cloud native, then I'll realize I can get rid of this and get rid of that and do that. But, but that's where people are. The first thing is bring these things over. We help them do that, right? From a networking perspective, I'll make it easier to bring your old security stuff in. But in parallel to that, we start adding things into the fabric and what's gonna happen is eventually we start adding all these things and things that you can't do separately. We start doing anomaly detection. We start doing behavioral analysis. Why? Because the entire network, we are the data plan. We see everything. And so we can start doing things that a standalone device can't do because not all the traffic steered to them. It can only control what's steered to you. And then eventually what's happening is people look at that device. And then they look at us and then they look at the device and they look at us and they go, why do I have both of this? And we go, I don't know. >>You don't need it. >>Well, can I get rid of that other thing? That's a tool. >>Sure. And there's not a trade off. There's not a trade off. You >>Don't have to. No. Now people rid belts and suspenders. Yeah. Cause it's just, who has, who has enough? Who has too much security buddy? They're gonna, they're gonna do belt suspenders. You know anything they can do. But eventually what will happened is they'll look at what we do and they'll go, that's good enough. That happened to me. When I was at Palo Alto networks, we inserted as a firewall. They kept their existing firewall. They had all these other devices and eventually all those went away and you just had a NextGen >>Firewall just through attrition, >>Through Atian. You're like, you're looking, you go, well, that platform is doing all these functions. Same. Thing's gonna happen to us. The platform of networking's gonna do all your network security devices. So any tool or agent or external, you know, device that you have to steer traffic to ISS gonna go away. You're not gonna need it. >>And, and you talking multi-cloud obviously, >>And then don't wanna do the same thing. Whether man Azure, you know the same. >>Yeah. >>Same, same experie architecture, same experience, same set of services. True. Multi-cloud native. Like you, that's what you want. And oh, by the way, skill, gap, skill shortage is a real thing. And it's getting worse. Cause now with the recession, you think you're gonna be able to add more people. Nope. You're gonna have less people. How do I do this? Any multicloud world with security and all this kind of stuff. You have to put the intelligence in the software, not on your people. Right? >>So speaking of recession. Yep. As a CEO of a well funded company, that's got some momentum. How are you approaching it? Do you have like, did you bring in the war time? Conig I mean, you've been through, you know, downturns before. This is you are you >>I'm on war time already. >>Okay. So yeah. Tell me more about how you you're kind of approaching this >>So recession down. So didn't change what we were doing one bit, because I run it that way from the very beginning. So I've been around 30 years, that's >>Told me he he's like me. You know what he said? >>Yeah. Or maybe >>I'm like, I want be D cuz he said, you know, people talk about, you know, only do things that are absolutely necessary during times like this. I always do things that are only, >>That's all I >>Do necessary. Why would you ever do things that aren't necessary? >><laugh> you'd be surprised. Most companies don't. Yeah. Uh, recession's very good for people like snowflake and for us because we run that way anyway. Mm-hmm <affirmative> um, I, I constantly make decisions that we have to go and dip there's people that aren't right for the business. I move 'em out. Like I don't wait for some like Sequoia stupid rest in peace. The world's ending fire all your people that has no impact on me because I already operated that way. So we, we kind of operate that way and we are, we are like sat Nadel even came out and kind of said, I don't wanna say cloud is recession proof, but it kind of is, is we are so look, our top customer spends 5 million a year. Nothing. We haven't even started yet. David that's minuscule. We're not macro. We're micro 5 million a year for these big enterprises is nothing right. SA Nadel is now starting to count people who do billion dollar agreements with him billion over a period of number of years. Like that's the, the scale we have not even >>Gun billion dollar >>Agreements. We haven't even under begun to understand the scope of what's happening in the cloud. Right. And so yeah, the recession's happening. I don't know. I guess it's impacting somebody. It's not impacting me. It's actually accelerating things because it's a flight to quality and customers go and say, I can't get gear on on-prem anyway, cuz of the, uh, shortage, you know, the, uh, uh, get chips. Um, and that's not the right thing. So guess what the recession says, I'm gonna stop spending more money there and I'm gonna put it into the cloud. >>All right. So you opened up Pandora's box, man. I wanna ask you about your sort of management philosophy. When you come into a company to take, to go lead a company like that. Yeah. How, what, what's your approach to assess the team? Who do you, who do you decide? How do you decide who to keep on the bus? Who to throw off the bus put in the right seats. So how long does that take you? >>Doesn't take long. When I join, we were 30, 30, 8 people. We're now 525. Um, and my view on everything and I I've never met Frank Lubin, but I guarantee you, he has the same philosophy. You have a one year contract me included next year, the board might come to me and say, you were the right CEO for this year. You're not next year. Ben Horowitz taught me that it's a one year contract. There's no multi-year contract. So everybody in the company, including the CEO has a one year >>Contract. So you would say that to the board. Hey, if you can find somebody better, >>If, and, and you know what, I'll be the first one to pull myself, fire myself and say, we're, we're replacing me with somebody better right now. There isn't anybody better. So it's me. So, okay, next year maybe there's somebody better. Or we hit a certain point where I'm not the right guy. I'll I'll, I'll pull myself out as the CEO, but also internally the same thing just because you're the right guy this year. And we hire people for the, what you need to do this year. We're not gonna, we don't hire, oh, like this is the mistake. A lot of companies make, well, we wanna be a billion dollars in sales. So we're gonna go hire some loser from HPE. Who's worked at a company for a billion dollars. And by the way has no idea how they became a billion dollars, right. In revenue or billions of dollars. >>But we're gonna go hire 'em because they must know more than we do. And what every single time you bring them in what you realize, they're idiots. They have no idea how we got to that. And so you, you don't pre-hire for where you want to be. You hire for where you are that year. And then if it's not right, and then if it's not right, you'd be really nice to them. Have great severance packages, be, be respectful for people and be honest with them. I guarantee you Frank, Salman's not, if you're not just have this conversation with a sales guy before I came into here, very straight conversation, Northeast hockey player mentality. We're straight. If you're not working out or I don't think you're doing things right. You're gonna know. And so it's a one year, it's a one year contract. That's what you do. So you don't have time. You don't the luxury of >>Time. So, so that's probably the hardest part of, of any leadership job is, and people don't like confrontation. They like to put it off, but you don't run away from it. It's >>All in a confrontation, right? That's what relationships have built. Why do war buddies hang out with each other? Cuz they've gone through hell, right? It's in the confrontation. And it's, it's actually with customers too, right? If there's an issue, you don't run from it. You actually bring it up in a very straightforward manner and say, Hey, we got a problem, right? They respect you. You respect them, blah, blah, blah. And then you come out of it and go, you know, you have to fight like, look with your wife. You have to fight. If you don't fight, it's not a relationship you've gotta see in that, in that tension is where the relationship's >>Built. See, I should go home and have a fight tonight. You gotta have a fight with your wife. <laugh> you know, you mentioned Satia and Nadella and Larry Ellison. Interesting point. I wanna come back to that. What Oracle did is actually pretty interesting, do we? For their use case? Yeah. You know, it's not your thing. It's like low latency database across clouds. Yeah. Who would ever thought that? But >>We love it. We love it because it drives multi-cloud it drives. Um, and, and, and I actually think we're gonna have multi-cloud applications that are gonna start happening. Um, right now you don't, you have developers that, that, that kind of will use one cloud. But as we start developing and you call it the super cloud, right. When that starts really happening, the infrastructure's gonna allow that networking and network security is that bottom layer that Aviatrix helps once that gets all handled. The app, people are gonna say, so there's no friction. So maybe I can use autonomous database here. I can use this service from GCP. I can use that service and, and put it all into one app. So where's the app run. It's a multicloud app. Doesn't exist today. >>No, that doesn't happen today. >>It's it's happen. It's gonna happen. >>But that's kind of what the vision was. No, seven, eight years ago of what >>It's >>Gonna, that would be, you know, the original premise of hybrid. Right? Right. Um, I think Chuck Hollis, the guy was at EMC at the time he wrote this piece on, he called it private cloud, but he was really describing hybrid cloud application and running in both places that never happened. But it's starting to, I mean, the infrastructure is getting put in place to enable that, I guess is what you're saying. >>Yep. >>Yeah. >>Cool. And multicloud is, is becoming not just four plus one is a lot of enterprises it's becoming plus one, meaning you're gonna have more and more. And then there won't be infrastructure clouds like AWS and so forth, but it's gonna be industry clouds. Right? You've you've talked about that again, back to super clouds. You're gonna have Goldman Sachs creating clouds and you're gonna have AI companies creating clouds. You're gonna have clouds at the edge, you know, for edge computing and all these things all need to be networked with network security integrated. And you mentioned fact >>Aviatrix you mentioned Ben Horowitz, that's mark Andreesen. All, all companies are software companies. All companies are becoming cloud companies. Yeah. Or, or they're missing missing opportunities or they might get disrupted. >>Yeah. Every single company I talk to now, you know, whether you're Heineken, they don't think of themselves as a beer company anymore. We are the most technologically, you know, advanced brewer in the world. Like they all think they're a technology company. Now, whether you're making trucks, whether you're making sneakers, whether you're making beer, you're now a technology company, every single company in >>The world, we are too, we're we're building a media cloud. You're you know, John's, it's a technology company laying that out and yeah. That's we got developers doing that. That's our, that's our future. Yep. You know? Cool. Hey, thanks for coming on, man. Thank you. Great to see you. Thank you for watching. Keep it right there. We'll be back right after this short break. It keeps coverage. AWS reinforced 20, 22 from Boston. Keep it right there. >>You tired? How many interviewed.

Published Date : Jul 27 2022

SUMMARY :

So, um, thank you for that. I I heard, well, there were some people two I, maybe three <laugh>, but there was, You know, so it's a little light here and I think it's cuz you know, There are down the Cape, Rhode Island that's after the fourth. and you know how to apply tools. So you shouldn't be able to point to network security. So explain that how you're not a, a checkpoint, but if you funnel everything into one sort of place So we, we were born in the cloud cloud native. So the place to do it is at every single point in the network that you can make a decision and It's kind of a mesh you can think of. probably missing one or two, but so what do you do with all blue coat? That's That's that's out there, you rip and replace it. Well, you And so right now what's happening is people, look, you can't change too many things. we start adding all these things and things that you can't do separately. Well, can I get rid of that other thing? You They had all these other devices and eventually all those went away and you just So any tool or agent or external, you know, Whether man Azure, you know the same. you think you're gonna be able to add more people. This is you are you Tell me more about how you you're kind of approaching this So didn't change what we were doing one bit, because I run it that way from You know what he said? I'm like, I want be D cuz he said, you know, people talk about, you know, only do things that are absolutely necessary Why would you ever do things that aren't necessary? that we have to go and dip there's people that aren't right for the business. cuz of the, uh, shortage, you know, the, uh, uh, get chips. I wanna ask you about your sort of management philosophy. So everybody in the So you would say that to the board. And we hire people for the, what you need to do this year. And what every single time you bring them in what you realize, They like to put it off, but you don't run away from it. And then you come out of it and go, you know, you have to fight like, look with your wife. <laugh> you know, you mentioned Satia But as we start developing and you call it the super cloud, It's it's happen. But that's kind of what the vision was. Gonna, that would be, you know, the original premise of hybrid. You're gonna have clouds at the edge, you know, for edge computing and all these things all need to be networked Aviatrix you mentioned Ben Horowitz, that's mark Andreesen. We are the most technologically, you know, advanced brewer in the world. You're you know, John's, it's a technology company laying that out and yeah. You tired?

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Steve MullaneyPERSON

0.99+

Steve MalanneyPERSON

0.99+

Ben HorowitzPERSON

0.99+

DavidPERSON

0.99+

Chuck HollisPERSON

0.99+

30QUANTITY

0.99+

Larry EPERSON

0.99+

BostonLOCATION

0.99+

Frank LubinPERSON

0.99+

Larry EllisonPERSON

0.99+

one yearQUANTITY

0.99+

NadellaPERSON

0.99+

SatiaPERSON

0.99+

August 9thDATE

0.99+

SalmanPERSON

0.99+

FrankPERSON

0.99+

oneQUANTITY

0.99+

2019DATE

0.99+

OracleORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

three hoursQUANTITY

0.99+

next yearDATE

0.99+

AviatrixORGANIZATION

0.99+

twoQUANTITY

0.99+

AWSORGANIZATION

0.99+

NadelaPERSON

0.99+

next yearDATE

0.99+

EMCORGANIZATION

0.99+

nineQUANTITY

0.99+

bothQUANTITY

0.99+

37 yearsQUANTITY

0.99+

10,000QUANTITY

0.99+

PandoraORGANIZATION

0.99+

19,000 peopleQUANTITY

0.99+

HeinekenORGANIZATION

0.99+

billionQUANTITY

0.99+

DavePERSON

0.99+

one appQUANTITY

0.98+

threeDATE

0.98+

todayDATE

0.98+

firstQUANTITY

0.98+

billion dollarQUANTITY

0.98+

tonightDATE

0.98+

this yearDATE

0.98+

three weeks agoDATE

0.98+

JohnPERSON

0.98+

four years agoDATE

0.98+

Cisco Palo AltoORGANIZATION

0.98+

8 peopleQUANTITY

0.98+

2022DATE

0.98+

sevenDATE

0.97+

5 million a yearQUANTITY

0.97+

GCPORGANIZATION

0.97+

New York cityLOCATION

0.96+

5 million a yearQUANTITY

0.96+

billion dollarsQUANTITY

0.96+

threeQUANTITY

0.96+

billions of dollarsQUANTITY

0.95+

both placesQUANTITY

0.94+

525QUANTITY

0.94+

around 30 yearsQUANTITY

0.94+

NextGenORGANIZATION

0.94+

fourthQUANTITY

0.93+

ConigPERSON

0.93+

first thingQUANTITY

0.92+

Cape, Rhode IslandLOCATION

0.92+

one cloudQUANTITY

0.91+

20QUANTITY

0.9+

22QUANTITY

0.9+

fourQUANTITY

0.89+

Will Kapcio, HackerOne & Sean Ryan, HackerOne | AWS re:Inforce 2022


 

(theme music) >> Okay, welcome back everyone, theCUBE's live coverage here in Boston, Massachusetts for AWS re:Inforce '22. Big show for ground security, Amazon re:Invent's coming up. That's the big event of all time for AWS. re:MARS was another one, re:Inforce, the re:Shows, they call them, theCUBE's got you covered. I'm John Furrier, host of theCUBE with Dave Vellante, who's in an analyst session right now. He'll be back shortly. We've got 2 great guests from an amazing company, HackerOne, been on theCUBE many times, (mumbles) Marten Mickos, of course, a big time, (mumbles) We got two great guests. Sean Ryan, Sr. Principal Product Marketing Manager Will Kapcio, Senior Sales Engineer. Gents, welcome to theCUBE. >> Thanks for having us John. >> So Marten's been on many times, he's such a character. He's such a legend. >> Yeah. >> Your company has had great traction, great community, just this phenomenal example of community meets technology and problem solver. >> Yeah. >> He's been part of that organization. Here at re:Inforce they're just kind of getting wind of it now, right? You hear an open, teamwork, breaking down the silos, a big theme is this whole idea of open community, but yet be hardcore with the security. It's been a big part of the re:Inforce. What do you guys think of the show so far? >> Loving it. Partly too, we're both local here in the Boston area. So the commute was pretty nice. (everyone laughs) And the heat wave broke the other day so that's wonderful, but yeah, great show. It's good to be back in person doing this kind of stuff and just, it's really lively. You get a lot of good energy. We've had a bunch of people stopping by trying to learn what we're all about and so, it's really fun. Great show so far. >> And you guys have a great company. Take a minute to explain for the folks who may not know HackerOne. Tell them what you guys do real quick in one minute. >> Okay, the quick elevator pitch. (chuckles) So really we're making the internet safer using a community of ethical hackers. And so our platform enables that so we can skill match the best talent that's out there around the world to help find all the vulnerabilities that your company needs to discover. So you can plug those holes and keep yourself safe. >> So in an era of a talent gap, Will, you know the technologies out there, but sometimes the skills are not there. So you guys can feel the void kind of a crowdsourced vibe, right? >> Yeah, exactly. If you're trying to build a security program, and apply defense in depth, we offer a terrific way to engage additional security talent either because you can't hire enough or your team is simply overloaded, too much to do, so. >> Hackers like to be a little bit, white hat hackers like to be independent, might want some flexibility in their schedule, live around the world. >> Yes. No question for hackers that do it full time, that do it part-time and then everything in between. >> Well, you guys are in the middle here with some real products. So talk about what's going on here. How vulnerable are the surface areas in organizations that you're seeing? >> Yeah, probably more so than you would think. So we ran a survey earlier this year, 800 security and IT professionals across North America and Europe. And one of the findings from that survey was that nearly a third, actually over a third, 37% of the attack surfaces, not secured. Some of it's not even known. They don't know what they don't know. They just have this entire area. And you can imagine, I mean there's a lot of reasons you know, real legitimate reasons that this happens. One of those really being that we don't know what we don't know. We haven't scanned our attack surface. >> And also it's about a decade of no perimeter anymore. >> Yes. >> Welcome to the cloud. >> For sure. Absolutely. And people are moving quick, right? You know, the Cloud perfect example. Cloud people are building new applications on top of these new underlying configurations happening on a constant basis. Acquisitions, you know, that's just a fast moving thing. Nobody can keep track of it. There's a lot of different skill sets you need you know. And yeah, skill shortage out there too. As we talked about. >> What's the attacker solution you guys have? You guys have this HackerOne attack resistance component, what's that about? >> That's right. So that is to solve what we call the attack resistance gap. So that area that's not protected, hasn't been secured, on top of just not knowing what those assets are, or how vulnerable they are. The other thing that happens is people are sort of doing status quo testing, or they're not able to keep up with effective testing. So scanners are great. They can catch common vulnerabilities, but they're not going to catch those really hard to find vulnerabilities. The thing that the really sophisticated attackers are going to go after. >> Yeah. >> So we use... This large community that we have of ethical hackers around the world to be able to skill match them and get them doing bug bounties, doing pen tests, really bulletproofing the organization, and helping them risk-rank what they find. >> Yeah. >> Triage these, do the retesting, you know, get it very secure. So that's how we do it on a high level. Will, you might have a-- >> Yeah. I mean there's a tremendous amount of automation out there, right? But you can't quite at least not yet replace critical thinking. >> Yeah. >> From smart security minds. So HackerOne has a number of solutions where we can apply those minds in different ways at different parts of the software life cycle at different cadences, to fit our customers' needs, to fit their security needs, and make sure that there's more complete human coverage throughout their software lifecycle, and not just automation. >> Yeah. I think that's a great point, Will and Sean, because you think about open source is like not only grown significantly, it's like's it is the software industry. If you believe that, which I do. Open source is there it's all software free. The integration is creating a DevOps movement that's going the whole level. So Devs are doing great. They're pumping out codes. In fact, I heard a quote here on theCUBE earlier this morning from the CTO Sequence Security that said: "Shift left but shield right." So shifting left is build your security into the code, but still you got to have a shield. You guys have this shielding capability with your attack module management service. So you now you got the Devs thinking: "I got to get better security native" So but they're pumping out so much code. >> Yep. >> There's more use cases, so there's going to be code reviews needed for stuff that she said, "What is this? We got to code review new stuff. A developer created something." >> Yes. >> I mean, that's what happened. That's what's going on everywhere, right? >> Exactly. We often hear that for every 100 developers, you've got one security professional. (John laughs) You know, talk about skill shortage that's just not sustainable. How are you going to keep up with that? >> Yeah. >> So-- >> Your phone is ringing off the hook. There's no phones anymore, but like technically-- >> Yeah, yeah, exactly. So, you know, yeah, you need to go external find some experts who can help you figure that out, and keep up with that cadence, you know keeps going and going. >> So, HackerOne. I love the ethical thing. I mean, you know, I'm a big fan. Everyone who watches theCUBE knows I'm a big fan of Marten and your company, but it's not just bug bounties that you do. That's just people think of, they see that in the news. "Oh, I made a million dollars from saving Microsoft teams from being exploited" or something like that, or weird things big numbers. But you do more than that. There's code reviews, there's assessments, like a variety of different things, right? >> Yes, exactly. Exactly. >> What are the hottest areas? >> Yeah, I mean, that's exactly why we coined the term, Attack Resistance Management really is to help describe all those areas that we cover, so you're right, bug bounty is our flagship product. It's what we're best known for. And it's a terrific solution. But on top of that, we're able to layer things like vulnerability disclosure, pen testing and code review. >> Pen test is actually really important-- >> Attack surface management, you know, a whole suite of complimentary offerings to help you engage these hackers in new and interesting ways. >> Yeah. >> The bug bounty is very popular because it's fun. >> Yeah. >> I mean if your going to work on something... It's fun for the hackers but the white hat hackers, the companies they can see where's my bugs it's the fear of missing out and the fear of getting screwed over. That's the biggest driver, right, you Know-- >> Yes, definitely and we now have a product called assets. So this is attack surface management. And what we're able to do with that is bring that in leverage the ethical hackers to risk-rank. What's your assets out there? How vulnerable are these? What's critical? Feed that in, and then you know, as Will was saying we've got all kinds of different testing options. Sometimes bug bounty continuous that works. Sometimes you want pen test, you know, you want it bound. >> Well, the thing about the thing about the pen test, well the soccer report, Amazon's got soccer reports but pen test is a moving train. >> Yeah >> Cause if you're pushing new code, you got to pen test it all the time. It's not a one and done. >> Exactly. >> You got to keep it running. Just one and run, right? >> You can't do the old school penetration test once a year, big monolithic thing. You know, this is just a check the box for compliances like, no, you need to be focusing this on the assets that you're releasing, which are constantly changing. And doing ongoing smaller cadences of pen testing. >> I had someone at a conference had a few cocktails in them, confessed to me, that they forged a pen test report. >> Oh man. >> Wow! (everyone laughs) >> Because he's like, "Oh! It was three months ago. Don't Worry about it." Like, but a lot can happen in three months. No, this is reality, they are like, "I can't turn it around fast enough" They had an Apsec review... >> Yeah. >> In their company and... >> And that's it. >> I mean, I'm not saying everyone's doing bad behavior, but like people can look the other way that creates more vulnerabilities. >> It can happen. And even just that time space. Let's say you're only doing a pen test once a year or once every two years. That's a long time. It's a lot of dwell time, you can have an attacker inside mulling around your network. >> All right. So we get a big service here. This one, AWS, we're here at re:Inforce the trend that you see Amazon getting closer to the ecosystem, lot more integration. How are you guys taking HackerOne's attack surface area product management software, closer to Amazon? What's going involved? Because at the end of the day they're enabling a lot of value and their partners are growing and becoming platforms within of themselves. What is the connection with Amazon? Keeping those apps running? How do you guys do that? >> Yeah. So we've got a specific assessment type for AWS. So... On the one hand, we're bringing in the right group of ethical hack hackers who are AWS certified. They have the right skillset, we're matching them. We've got the right assessment type for them to be able to track against and find the right vulnerabilities, report on those. So this is our pen test offering geared particularly towards the AWS platform. And then we also have an AWS security hub integration. So if customers are using the AWS security hub, we can plug into that, feed that information. And that gets more to it, the defense and depth for your AWS. >> And you guys verify all the ethical hackers? Everything's verified? >> Oh yes, absolutely. Fully. >> Yep. So they're verified for their pen testing experience, and skills and of course their AWS skills in particular. And their work experience, making sure that it's long enough that it's good, background check, the whole nine, so. >> How far has Amazon come from your perspective, over the past few years with the security partnerships? I mean their services have grown every year. I mean, every Amazon re:Invent, thousands of new announcements, new services. I mean if they update the DNS server, it's a new thing. Right? So like everything's happening. >> Yeah. >> What's different now? >> It's great to see. I mean, you look around at how many different types of security solutions there are here how many different types of partners, and it just shows you that defense in depth again, it's a really critical thing. Been a wonderful partner for us. I mean that, they're a big fan of us. They tell us that all the time. >> Yeah, 'cause the customers use you. >> Cause they're customers too. Right. Exactly. Exactly. But no, it's, it's been great. So we're looking at, we've got some things on the roadmap, some continued integrations that we look forward to doing with AWS, but you know, again it's a great powerful platform. It gives customers a lot of freedom, but with that freedom comes the responsibility that's needed to actually-- >> Will, what's your take? We hear hybrid security keys, management systems, announced today, encrypt everything, don't have over permissive environments. Obviously they're talking about more platform and that type of stuff >> Absolutely. My take would be, I think our own partnership with the AWS security team is great evidence that they're thinking about the right things. We worked within conjunction with them to develop our pen test methodology. So that combined for proprietary HackerOne platform data and findings across all of our customers that are common issues found in AWS environments with their own knowledge and their own experiences from the AWS security team directly. So it's a pretty powerful checklist that we're able to run through on some of these customers and make sure that all of the most common miss-configurations and such are covered. >> Yeah. They're highly motivated to do that. 'Cause they get blamed for the S3 buckets being kept open. It's not even their fault. >> Right. (crosstalk) >> We got hack over in Amazon. Amazon's terrible! >> Yeah. You know, one of the things we like to talk about is the fact that, you know, cloud is really about automation, right? >> Yeah. >> Yep. >> But you can't automate that human ingenuity the skills that come with an actual human who has the experience and the know how to fix these things. >> It's a lot going on in Amazon. It's always been kind of like, you just described earlier in theCUBE. An erector set, not Lego blocks yet, but still kind of, you still got to build it. It's getting better in the Lego model, but there are challenges in protecting cloud, Will. I mean this is a big part of protecting cloud platforms like AWS. What are some of those challenges? >> I think some of the challenges are the ephemeral nature of the cloud can really result in developers, and you know really business units across an organization spinning up assets that IT or security don't know about. And so that's where things like HackerOne assets in those attack surface management style solutions come into play, trying to identify those assets proactively and make sure that they're receiving some sort of attention from the security team whether it's automated or manual or ideally both. >> You guys got a good solution. So how about the partnership? We got one minute left. Talk about your partnership with AWS. You guys are certified in their security group, with their team and marketplace, right? Talk about some of those things. >> Yeah, we've been in marketplace over a year. We've had that the specific solution that I mentioned the App Pen test for AWS in place and integrated with security hub for some time now. There's some other stats that we could probably share around the ethical hackers that we have working on that. We have a number of certified AWS hackers, who again they have the right skill set for AWS, and they've been a great partner. We are very focused on continuing to work with them, and build out some new offerings going forward. >> Well, you guys have done a great job. Will, tell your team congratulations on the tech side, on the product side, very strong community. You guys had a lot of success. Congratulations! And thanks for sharing on theCUBE, appreciate it. >> Thanks for having us John. >> Thank you for your time-- We're here at re:Inforce where all the access tab is open, it's team oriented, we got cloud scale, data, encryption on everything. Big news coming out of re:Inforce, well, theCUBE's got it covered here. I'm John Furrier, your host. Thanks for watching. We'll be right back with more coverage after this short break. (theme music)

Published Date : Jul 26 2022

SUMMARY :

That's the big event of all time for AWS. So Marten's been on many and problem solver. It's been a big part of the re:Inforce. So the commute was pretty nice. And you guys have a great company. So you can plug those holes So you guys can feel the void either because you can't hire enough Hackers like to be a that do it full time, that do it part-time Well, you guys are in the middle here 37% of the attack surfaces, not secured. decade of no perimeter anymore. You know, the Cloud perfect example. So that is to solve what we around the world to be do the retesting, But you can't quite and make sure that there's So you now you got the Devs thinking: We got to code review new stuff. I mean, that's what happened. How are you going to keep up with that? Your phone is ringing off the hook. So, you know, yeah, bounties that you do. Exactly. really is to help describe to help you engage these hackers The bug bounty is very and the fear of getting screwed over. bring that in leverage the Well, the thing about the you got to pen test it all the time. You got to keep it running. You can't do the old school confessed to me, that they Like, but a lot can but like people can look the other way And even just that time space. the trend that you see and find the right vulnerabilities, Oh yes, absolutely. check, the whole nine, so. over the past few years with and it just shows you that on the roadmap, some and that type of stuff and make sure that all of the most common motivated to do that. Right. We got hack over in Amazon. you know, cloud is really the skills that come with an actual human It's getting better in the Lego model, and you know really business units So how about the partnership? We've had that the specific solution congratulations on the tech side, all the access tab is open,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

AWSORGANIZATION

0.99+

John FurrierPERSON

0.99+

Sean RyanPERSON

0.99+

AmazonORGANIZATION

0.99+

Marten MickosPERSON

0.99+

MartenPERSON

0.99+

JohnPERSON

0.99+

WillPERSON

0.99+

Will KapcioPERSON

0.99+

BostonLOCATION

0.99+

SeanPERSON

0.99+

North AmericaLOCATION

0.99+

MicrosoftORGANIZATION

0.99+

EuropeLOCATION

0.99+

one minuteQUANTITY

0.99+

Boston, MassachusettsLOCATION

0.99+

three months agoDATE

0.99+

once a yearQUANTITY

0.99+

2 great guestsQUANTITY

0.98+

LegoORGANIZATION

0.98+

OneQUANTITY

0.98+

earlier this yearDATE

0.98+

todayDATE

0.98+

over a yearQUANTITY

0.97+

bothQUANTITY

0.97+

800 security and IT professionalsQUANTITY

0.97+

nineQUANTITY

0.97+

theCUBEORGANIZATION

0.97+

nearly a thirdQUANTITY

0.96+

oneQUANTITY

0.96+

a million dollarsQUANTITY

0.96+

HackerOneORGANIZATION

0.94+

over a third, 37%QUANTITY

0.93+

three monthsQUANTITY

0.93+

two great guestsQUANTITY

0.92+

CTO Sequence SecurityORGANIZATION

0.91+

S3COMMERCIAL_ITEM

0.9+

ApsecORGANIZATION

0.9+

earlier this morningDATE

0.9+

once every two yearsQUANTITY

0.89+

2022DATE

0.86+

HackerOnePERSON

0.86+

InforceORGANIZATION

0.84+

thousands of new announcementsQUANTITY

0.77+

one of the findingsQUANTITY

0.76+

100 developersQUANTITY

0.75+

about a decadeQUANTITY

0.74+

re:ShowsEVENT

0.72+

one security professionalQUANTITY

0.7+

Christian Wiklund, unitQ | AWS Startup Showcase S2 E3


 

(upbeat music) >> Hello, everyone. Welcome to the theCUBE's presentation of the AWS Startup Showcase. The theme, this showcase is MarTech, the emerging cloud scale customer experiences. Season two of episode three, the ongoing series covering the startups, the hot startups, talking about analytics, data, all things MarTech. I'm your host, John Furrier, here joined by Christian Wiklund, founder and CEO of unitQ here, talk about harnessing the power of user feedback to empower marketing. Thanks for joining us today. >> Thank you so much, John. Happy to be here. >> In these new shifts in the market, when you got cloud scale, open source software is completely changing the software business. We know that. There's no longer a software category. It's cloud, integration, data. That's the new normal. That's the new category, right? So as companies are building their products, and want to do a good job, it used to be, you send out surveys, you try to get the product market fit. And if you were smart, you got it right the third, fourth, 10th time. If you were lucky, like some companies, you get it right the first time. But the holy grail is to get it right the first time. And now, this new data acquisition opportunities that you guys in the middle of that can tap customers or prospects or end users to get data before things are shipped, or built, or to iterate on products. This is the customer feedback loop or data, voice of the customer journey. It's a gold mine. And it's you guys, it's your secret weapon. Take us through what this is about now. I mean, it's not just surveys. What's different? >> So yeah, if we go back to why are we building unitQ? Which is we want to build a quality company. Which is basically, how do we enable other companies to build higher quality experiences by tapping into all of the existing data assets? And the one we are in particularly excited about is user feedback. So me and my co-founder, Nik, and we're doing now the second company together. We spent 14 years. So we're like an old married couple. We accept each other, and we don't fight anymore, which is great. We did a consumer company called Skout, which was sold five years ago. And Skout was kind of early in the whole mobile first. I guess, we were actually mobile first company. And when we launched this one, we immediately had the entire world as our marketplace, right? Like any modern company. We launch a product, we have support for many languages. It's multiple platforms. We have Android, iOS, web, big screens, small screens, and that brings some complexities as it relates to staying on top of the quality of the experience because how do I test everything? >> John: Yeah. >> Pre-production. How do I make sure that our Polish Android users are having a good day? And we found at Skout, personally, like I could discover million dollar bugs by just drinking coffee and reading feedback. And we're like, "Well, there's got to be a better way to actually harness the end user feedback. That they are leaving in so many different places." So, you know what, what unitQ does is that we basically aggregate all different sources of user feedback, which can be app store reviews, Reddit posts, Tweets, comments on your Facebook ads. It can be better Business Bureau Reports. We don't like to get to many of those, of course. But really, anything on the public domain that mentions or refers to your product, we want to ingest that data in this machine, and then all the private sources. So you probably have a support system deployed, a Zendesk, or an Intercom. You might have a chatbot like an Ada, or and so forth. And your end user is going to leave a lot of feedback there as well. So we take all of these channels, plug it into the machine, and then we're able to take this qualitative data. Which and I actually think like, when an end user leaves a piece of feedback, it's an act of love. They took time out of the day, and they're going to tell you, "Hey, this is not working for me," or, "Hey, this is working for me," and they're giving you feedback. But how do we package these very messy, multi-channel, multiple languages, all over the place data? How can we distill it into something that's quantifiable? Because I want to be able to monitor these different signals. So I want to turn user feedback into time series. 'Cause with time series, I can now treat this the same way as Datadog treats machine logs. I want to be able to see anomalies, and I want to know when something breaks. So what we do here is that we break down your data in something called quality monitors, which is basically machine learning models that can aggregate the same type of feedback data in this very fine grained and discrete buckets. And we deploy up to a thousand of these quality monitors per product. And so we can get down to the root cause. Let's say, passive reset link is not working. And it's in that root cause, the granularity that we see that companies take action on the data. And I think historically, there has been like the workflow between marketing and support, and engineering and product has been a bit broken. They've been siloed from a data perspective. They've been siloed from a workflow perspective, where support will get a bunch of tickets around some issue in production. And they're trained to copy and paste some examples, and throw it over the wall, file a Jira ticket, and then they don't know what happens. So what we see with the platform we built is that these teams are able to rally around the single source of troop or like, yes, passive recent link seems to have broken. This is not a user error. It's not a fix later, or I can't reproduce. We're looking at the data, and yes, something broke. We need to fix it. >> I mean, the data silos a huge issue. Different channels, omnichannel. Now, there's more and more channels that people are talking in. So that's huge. I want to get to that. But also, you said that it's a labor of love to leave a comment or a feedback. But also, I remember from my early days, breaking into the business at IBM and Hewlett-Packard, where I worked. People who complain are the most loyal customers, if you service them. So it's complaints. >> Christian: Yeah. >> It's leaving feedback. And then, there's also reading between the lines with app errors or potentially what's going on under the covers that people may not be complaining about, but they're leaving maybe gesture data or some sort of digital trail. >> Yeah. >> So this is the confluence of the multitude of data sources. And then you got the siloed locations. >> Siloed locations. >> It's complicated problem. >> It's very complicated. And when you think about, so I started, I came to Bay Area in 2005. My dream was to be a quant analyst on Wall Street, and I ended up in QA at VMware. So I started at VMware in Palo Alto, and didn't have a driver's license. I had to bike around, which was super exciting. And we were shipping box software, right? This was literally a box with a DVD that's been burned, and if that DVD had bugs in it, guess what it'll be very costly to then have to ship out, and everything. So I love the VMware example because the test cycles were long and brutal. It was like a six month deal to get through all these different cases, and they couldn't be any bugs. But then as the industry moved into the cloud, CI/CD, ship at will. And if you look at the modern company, you'll have at least 20 plus integrations into your product. Analytics, add that's the case, authentication, that's the case, and so forth. And these integrations, they morph, and they break. And you have connectivity issues. Is your product working as well on Caltrain, when you're driving up and down, versus wifi? You have language specific bugs that happen. Android is also quite a fragmented market. The binary may not perform as well on that device, or is that device. So how do we make sure that we test everything before we ship? The answer is, we can't. There's no company today that can test everything before the ship. In particular, in consumer. And the epiphany we had at our last company, Skout, was that, "Hey, wait a minute. The end user, they're testing every configuration." They're sitting on the latest device, the oldest device. They're sitting on Japanese language, on Swedish language. >> John: Yeah. >> They are in different code paths because our product executed differently, depending on if you were a paid user, or a freemium user, or if you were certain demographical data. There's so many ways that you would have to test. And PagerDuty actually had a study they came out with recently, where they said 51% of all end user impacting issues are discovered first by the end user, when they serve with a bunch of customers. And again, like the cool part is, they will tell you what's not working. So now, how do we tap into that? >> Yeah. >> So what I'd like to say is, "Hey, your end user is like your ultimate test group, and unitQ is the layer that converts them into your extended test team." Now, the signals they're producing, it's making it through to the different teams in the organization. >> I think that's the script that you guys are flipping. If I could just interject. Because to me, when I hear you talking, I hear, "Okay, you're letting the customers be an input into the product development process." And there's many different pipelines of that development. And that could be whether you're iterating, or geography, releases, all kinds of different pipelines to get to the market. But in the old days, it was like just customer satisfaction. Complain in a call center. >> Christian: Yeah. >> Or I'm complaining, how do I get support? Nothing made itself into the product improvement, except for slow moving, waterfall-based processes. And then, maybe six months later, a small tweak could be improved. >> Yes. >> Here, you're taking direct input from collective intelligence. Okay. >> Is that have input and on timing is very important here, right? So how do you know if the product is working as it should in all these different flavors and configurations right now? How do you know if it's working well? And how do you know if you're improving or not improving over time? And I think the industry, what can we look at, as far as when it relates to quality? So I can look at star ratings, right? So what's the star rating in the app store? Well, star ratings, that's an average over time. So that's something that you may have a lot of issues in production today, and you're going to get dinged on star ratings over the next few months. And then, it brings down the score. NPS is another one, where we're not going to run NPS surveys every day. We're going to run it once a quarter, maybe once a month, if we're really, really aggressive. That's also a snapshot in time. And we need to have the finger on the pulse of product quality today. I need to know if this release is good or not good. I need to know if anything broke. And I think that real time aspect, what we see as stuff sort of bubbles up the stack, and not into production, we see up to a 50% reduction in time to fix these end user impacting issues. And I think, we also need to appreciate when someone takes time out of the day to write an app review, or email support, or write that Reddit post, it's pretty serious. It's not going to be like, "Oh, I don't like the shade of blue on this button." It's going to be something like, "I got double billed," or "Hey, someone took over my account," or, "I can't reset my password anymore. The CAPTCHA, I'm solving it, but I can't get through to the next phase." And we see a lot of these trajectory impacting bugs and quality issues in these work, these flows in the product that you're not testing every day. So if you work at Snapchat, your employees probably going to use Snapchat every day. Are they going to sign up every day? No. Are they going to do passive reset every day? No. And these things are very hard to instrument, lower in the stack. >> Yeah, I think this is, and again, back to these big problems. It's smoke before fire, and you're essentially seeing it early with your process. Can you give an example of how this new focus or new mindset of user feedback data can help customers increase their experience? Can you give some examples, 'cause folks watching and be like, "Okay, I love this value. Sell me on this idea, I'm sold. Okay, I want to tap into my prospects, and my customers, my end users to help me improve my product." 'Cause again, we can measure everything now with data. >> Yeah. We can measure everything. we can even measure quality these days. So when we started this company, I went out to talk to a bunch of friends, who are entrepreneurs, and VCs, and board members, and I asked them this very simple question. So in your board meetings, or on all hands, how do you talk about quality of the product? Do you have a metric? And everyone said, no. Okay. So are you data driven company? Yes, we're very data driven. >> John: Yeah. Go data driven. >> But you're not really sure if quality, how do you compare against competition? Are you doing as good as them, worse, better? Are you improving over time, and how do you measure it? And they're like, "Well, it's kind of like a blind spot of the company." And then you ask, "Well, do you think quality of experience is important?" And they say, "Yeah." "Well, why?" "Well, top of fund and growth. Higher quality products going to spread faster organically, we're going to make better store ratings. We're going to have the storefronts going to look better." And of course, more importantly, they said the different conversion cycles in the product box itself. That if you have bugs and friction, or an interface that's hard to use, then the inputs, the signups, it's not going to convert as well. So you're going to get dinged on retention, engagement, conversion to paid, and so forth. And that's what we've seen with the companies we work with. It is that poor quality acts as a filter function for the entire business, if you're a product led company. So if you think about product led company, where the product is really the centerpiece. And if it performs really, really well, then it allows you to hire more engineers, you can spend more on marketing. Everything is fed by this product at them in the middle, and then quality can make that thing perform worse or better. And we developed a metric actually called the unitQ Score. So if you go to our website, unitq.com, we have indexed the 5,000 largest apps in the world. And we're able to then, on a daily basis, update the score. Because the score is not something you do once a month or once a quarter. It's something that changes continuously. So now, you can get a score between zero and 100. If you get the score 100, that means that our AI doesn't find any quality issues reported in that data set. And if your score is 90, that means that 10% will be a quality issue. So now you can do a lot of fun stuff. You can start benchmarking against competition. So you can see, "Well, I'm Spotify. How do I rank against Deezer, or SoundCloud, or others in my space?" And what we've seen is that as the score goes up, we see this real big impact on KPI, such as conversion, organic growth, retention, ultimately, revenue, right? And so that was very satisfying for us, when we launched it. quality actually still really, really matters. >> Yeah. >> And I think we all agree at test, but how do we make a science out of it? And that's so what we've done. And when we were very lucky early on to get some incredible brands that we work with. So Pinterest is a big customer of ours. We have Spotify. We just signed new bank, Chime. So like we even signed BetterHelp recently, and the world's largest Bible app. So when you look at the types of businesses that we work with, it's truly a universal, very broad field, where if you have a digital exhaust or feedback, I can guarantee you, there are insights in there that are being neglected. >> John: So Chris, I got to. >> So these manual workflows. Yeah, please go ahead. >> I got to ask you, because this is a really great example of this new shift, right? The new shift of leveraging data, flipping the script. Everything's flipping the script here, right? >> Yeah. >> So you're talking about, what the value proposition is? "Hey, board example's a good one. How do you measure quality? There's no KPI for that." So it's almost category creating in its own way. In that, this net new things, it's okay to be new, it's just new. So the question is, if I'm a customer, I buy it. I can see my product teams engaging with this. I can see how it can changes my marketing, and customer experience teams. How do I operationalize this? Okay. So what do I do? So do I reorganize my marketing team? So take me through the impact to the customer that you're seeing. What are they resonating towards? Obviously, getting that data is key, and that's holy gray, we all know that. But what do I got to do to change my environment? What's my operationalization piece of it? >> Yeah, and that's one of the coolest parts I think, and that is, let's start with your user base. We're not going to ask your users to ask your users to do something differently. They're already producing this data every day. They are tweeting about it. They're putting in app produce. They're emailing support. They're engaging with your support chatbot. They're already doing it. And every day that you're not leveraging that data, the data that was produced today is less valuable tomorrow. And in 30 days, I would argue, it's probably useless. >> John: Unless it's same guy commenting. >> Yeah. (Christian and John laughing) The first, we need to make everyone understand. Well, yeah, the data is there, and we don't need to do anything differently with the end user. And then, what we do is we ask the customer to tell us, "Where should we listen in the public domain? So do you want the Reddit post, the Trustpilot? What channels should we listen to?" And then, our machine basically starts ingesting that data. So we have integration with all these different sites. And then, to get access to private data, it'll be, if you're on Zendesk, you have to issue a Zendesk token, right? So you don't need any engineering hours, except your IT person will have to grant us access to the data source. And then, when we go live. We basically build up this taxonomy with the customers. So we don't we don't want to try and impose our view of the world, of how do you describe the product with these buckets, these quality monitors? So we work with the company to then build out this taxonomy. So it's almost like a bespoke solution that we can bootstrap with previous work we've done, where you don't have these very, very fine buckets of where stuff could go wrong. And then what we do is there are different ways to hook this into the workflow. So one is just to use our products. It's a SaaS product as anything else. So you log in, and you can then get this overview of how is quality trending in different markets, on different platforms, different languages, and what is impacting them? What is driving this unitQ Score that's not good enough? And all of these different signals, we can then hook into Jira for instance. We have a Jira integration. We have a PagerDuty integration. We can wake up engineers if certain things break. We also tag tickets in your support system, which is actually quite cool. Where, let's say, you have 200 people, who wrote into support, saying, "I got double billed on Android." It turns out, there are some bugs that double billed them. Well, now we can tag all of these users in Zendesk, and then the support team can then reach out to that segment of users and say, "Hey, we heard that you had this bug with double billing. We're so sorry. We're working on it." And then when we push fix, we can then email the same group again, and maybe give them a little gift card or something, for the thank you. So you can have, even big companies can have that small company experience. So, so it's groups that use us, like at Pinterest, we have 800 accounts. So it's really through marketing has vested interest because they want to know what is impacting the end user. Because brand and product, the lines are basically gone, right? >> John: Yeah. >> So if the product is not working, then my spend into this machine is going to be less efficient. The reputation of our company is going to be worse. And the challenge for marketers before unitQ was, how do I engage with engineering and product? I'm dealing with anecdotal data, and my own experience of like, "Hey, I've never seen these type of complaints before. I think something is going on." >> John: Yeah. >> And then engineering will be like, "Ah, you know, well, I have 5,000 bugs in Jira. Why does this one matter? When did it start? Is this a growing issue?" >> John: You have to replicate the problem, right? >> Replicate it then. >> And then it goes on and on and on. >> And a lot of times, reproducing bugs, it's really hard because it works on my device. Because you don't sit on that device that it happened on. >> Yup. >> So now, when marketing can come with indisputable data, and say, "Hey, something broke here." And we see the same with support. Product engineering, of course, for them, we talk about, "Hey, listen, you you've invested a lot in observability of your stack, haven't you?" "Yeah, yeah, yeah." "So you have a Datadog in the bottom?" "Absolutely." "And you have an APP D on the client?" "Absolutely." "Well, what about the last mile? How the product manifests itself? Shouldn't you monitor that as well using machines?" They're like, "Yeah, that'd be really cool." (John laughs) And we see this. There's no way to instrument everything, lowering the stack to capture these bugs that leak out. So it resonates really well there. And even for the engineers who's going to fix it. >> Yeah. >> I call it like empathy data. >> Yup. >> Where I get assigned a bug to fix. Well, now, I can read all the feedback. I can actually see, and I can see the feedback coming in. >> Yeah. >> Oh, there's users out there, suffering from this bug. And then when I fix it and I deploy the fix, and I see the trend go down to zero, and then I can celebrate it. So that whole feedback loop is (indistinct). >> And that's real time. It's usually missed too. This is the power of user feedback. You guys got a great product, unitQ. Great to have you on. Founder and CEO, Christian Wiklund. Thanks for coming on and sharing, and showcase. >> Thank you, John. For the last 30 seconds, the minute we have left, put a plug in for the company. What are you guys looking for? Give a quick pitch for the company, real quick, for the folks out there. Looking for more people, funding status, number of employees. Give a quick plug. >> Yes. So we raised our A Round from Google, and then we raised our B from Excel that we closed late last year. So we're not raising money. We are hiring across go-to-markets, engineering. And we love to work with people, who are passionate about quality and data. We're always, of course, looking for customers, who are interested in upping their game. And hey, listen, competing with features is really hard because you can copy features very quickly. Competing with content. Content is commodity. You're going to get the same movies more or less on all these different providers. And competing on price, we're not willing to do. You're going to pay 10 bucks a month for music. So how do you compete today? And if your competitor has a better fine tuned piano than your competitor will have better efficiencies, and they're going to retain customers and users better. And you don't want to lose on quality because it is actually a deterministic and fixable problem. So yeah, come talk to us if you want to up the game there. >> Great stuff. The iteration lean startup model, some say took craft out of building the product. But this is now bringing the craftsmanship into the product cycle, when you can get that data from customers and users. >> Yeah. >> Who are going to be happy that you fixed it, that you're listening. >> Yeah. >> And that the product got better. So it's a flywheel of loyalty, quality, brand, all off you can figure it out. It's the holy grail. >> I think it is. It's a gold mine. And every day you're not leveraging this assets, your use of feedback that's there, is a missed opportunity. >> Christian, thanks so much for coming on. Congratulations to you and your startup. You guys back together. The band is back together, up into the right, doing well. >> Yeah. We we'll check in with you later. Thanks for coming on this showcase. Appreciate it. >> Thank you, John. Appreciate it very much. >> Okay. AWS Startup Showcase. This is season two, episode three, the ongoing series. This one's about MarTech, cloud experiences are scaling. I'm John Furrier, your host. Thanks for watching. (upbeat music)

Published Date : Jun 29 2022

SUMMARY :

of the AWS Startup Showcase. Thank you so much, John. But the holy grail is to And the one we are in And so we can get down to the root cause. I mean, the data silos a huge issue. reading between the lines And then you got the siloed locations. And the epiphany we had at And again, like the cool part is, in the organization. But in the old days, it was the product improvement, Here, you're taking direct input And how do you know if you're improving Can you give an example So are you data driven company? And then you ask, And I think we all agree at test, So these manual workflows. I got to ask you, So the question is, if And every day that you're ask the customer to tell us, So if the product is not working, And then engineering will be like, And a lot of times, And even for the engineers Well, now, I can read all the feedback. and I see the trend go down to zero, Great to have you on. the minute we have left, So how do you compete today? of building the product. happy that you fixed it, And that the product got better. And every day you're not Congratulations to you and your startup. We we'll check in with you later. Appreciate it very much. I'm John Furrier, your host.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ChrisPERSON

0.99+

JohnPERSON

0.99+

Christian WiklundPERSON

0.99+

IBMORGANIZATION

0.99+

John FurrierPERSON

0.99+

2005DATE

0.99+

Hewlett-PackardORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

10%QUANTITY

0.99+

six monthQUANTITY

0.99+

thirdQUANTITY

0.99+

fourthQUANTITY

0.99+

PinterestORGANIZATION

0.99+

800 accountsQUANTITY

0.99+

5,000 bugsQUANTITY

0.99+

51%QUANTITY

0.99+

14 yearsQUANTITY

0.99+

Bay AreaLOCATION

0.99+

90QUANTITY

0.99+

AndroidTITLE

0.99+

200 peopleQUANTITY

0.99+

NikPERSON

0.99+

SkoutORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

iOSTITLE

0.99+

ExcelTITLE

0.99+

tomorrowDATE

0.99+

first timeQUANTITY

0.99+

ChristianPERSON

0.99+

todayDATE

0.99+

unitQORGANIZATION

0.99+

5,000 largest appsQUANTITY

0.99+

GoogleORGANIZATION

0.99+

second companyQUANTITY

0.99+

100QUANTITY

0.99+

JiraTITLE

0.99+

SpotifyORGANIZATION

0.99+

BibleTITLE

0.99+

30 daysQUANTITY

0.99+

FacebookORGANIZATION

0.99+

ZendeskORGANIZATION

0.99+

IntercomORGANIZATION

0.98+

ChimeORGANIZATION

0.98+

firstQUANTITY

0.98+

Wall StreetLOCATION

0.98+

once a monthQUANTITY

0.98+

RedditORGANIZATION

0.98+

once a quarterQUANTITY

0.98+

five years agoDATE

0.98+

million dollarQUANTITY

0.97+

first companyQUANTITY

0.97+

six months laterDATE

0.97+

zeroQUANTITY

0.97+

SwedishOTHER

0.97+

JapaneseOTHER

0.97+

late last yearDATE

0.96+

PagerDutyORGANIZATION

0.95+

AWSORGANIZATION

0.95+

10th timeQUANTITY

0.95+

Brad Schlagenhauf & Andy Hochhalter, HPE | HPE Discover 2022


 

>>The cube presents HPE discover 2022 brought to you by HPE. >>Welcome back to the Cube's day one coverage of HPE discover 2022 live from Las Vegas. Lisa Martin, here with Dave ante. We've got a couple of guests here with us next, gonna be talking about industry transformation, please. Welcome, brought off director of global industry and sustainability marketing and Andy Hulk, halter senior director at worldwide industry sales programs, guys from HPE. Thanks for joining us. You bet. >>Thank you for having to >>Be here, >>Industry transformation. That's a big term. It's not a new concept, but we see so much going on. Andy, talk to you about industry transformation, from your perspective, where are customers, how are they capitalizing to really make data a true currency? >>Right? Well, underlying all this is, is the data that is becoming so complex, but at the same time, there's specialization required in each industry with the different applications that the industries are running and our ability to bring that forward and connect all those things is a big trend going on. And as we see that developing over time, um, we're getting more, um, connecting those different applications that are running is becoming more, uh, every day we're doing more of that. >>One more. >>So where do you wanna start? What's your favorite industry to, to transform? Uh, I mean, financial services is, you know, got the right, the whole blockchain thing going on, uh, industry 4.0 and manufacturing, you know, retail, everybody has, uh, you know, an Amazon war room, you know, energy now with EVs and, and solar and everything else and the price of oil. And, and now you throw in inflation and supply chain and you, I mean, it's just, every industry is getting disrupted. I, I wanna make an observation. You guys tell me what you think. Yeah. You know, think about the, the incumbent industries. They, they generally have data at the outskirts. It's all siloed and they're trying to put it at the core and that's a big challenge for them. What are you guys seeing in terms of who is having success with that? Do you have examples? What role do you play? Yeah, we have so much to talk about, right? Yeah. >>Yeah. Let me I'll jump in here. Um, I mean, I think one of the unique ideas is all this interest industries you mentioned, there are all trying to learn from each other, right? If you're a financial institution, you wanna understand what retail is doing because you wanna serve your customers better. Right. You wanna look at, you know, some of these technologies, how they're being applied. Um, you look about like sustainability industries are trying to learn how to do that better from each other. So there's this notion of industry and transformation is it's kind of twofold. It's one. How are these industries almost like entering new markets? I mean, you look at, at all the tech, tech companies out there, they're all getting in into payments, for example. Right. You know, Google pay app. Yeah. Mm-hmm <affirmative> so that's just like one example of where you're seeing the kind of, that, that blurring of lines between industries happening >>Content, uh, Amazon getting into grocery. And so in, in the premises, that data is the enabler. I mean, right. For decades, we've seen a, a, a stack, a vertical stack within an industry where, yeah. Where, whether it's, you know, research and development, manufacturing, sales, and distribute marketing, you were in that industry stuck for life. Right. And now all of a sudden data allows you to traverse industries. Yeah. This dual disruption agenda that you mentioned, right? >>Yeah. It's, it's, it's really, as it's core is because these companies have the ability to take advantage of that data even more. And they're trying to serve their customers even better that that's kind of opening up these new doors for them to, to do that because that's, you know, and again, there's so many good examples out there. Uh, automobile manufacturing are looking towards the gaming industry, you know, to how do they design controls, you know, that kind of stuff is, you know, as example. So you see, you know, all kinds of that. You mentioned also that, you know, everybody's trying to bring the data to the core. I don't, I don't think that's necessarily true. I think you heard earlier today in the keynote, you know, that that companies want to be able to, to take advantage of the data, data, wherever it is. Um, if it's the edge and a factory floor, if it's in a, you know, it's patient data sitting somewhere, you want to, you know, handle it where it is, and there's a cost to doing that, to bring it all >>Together. Yeah. So by the way, I wanna clarify you're absolutely right. The data by its very nature is distributed. Sure. When I say core, I mean, put it at the core of their business. Sure. That's >>What, I mean, >>Fair enough by data first, but your point is really, we're gonna talk about that. Yeah. Because it brings, brings so many other challenges with how you deal with that. But please jump in Lisa. Yeah. >>I was just gonna ask you, Brad, you talk about the blurred lines between industries. Yeah. And talk to us about how is HPE a facilitator of those industries learning from each other. You have such breadth in so many different industries as Dave mentioned, but how are you that enabler, if you will, of allowing them to, to be able to have data be that key. >>Yeah. Yeah. I think, I think it just comes through the experience of working with these customers, um, you know, in these various industries. And then, um, there's so many times where customers come to us and they want us brief and again, they wanna learn for these other industries. So we're an aggregator of that technology. We obviously UN understand the technology with the cloud or, you know, edge or, you know, anything we're doing in with data. So we're using those, you know, those lessons and just applying those out there, um, you know, to those industries. So it's, I think it's just us as an aggregator. >>You, you, how how's the customer experience changing any we heard from home Depot this morning, they were focused on the customer experience and, and their associate experience. Right? Yeah. Bringing those together maybe. >>Well, you know, what we also heard this morning is the different personas, right. That are out there and being that are looking to transform their business. Yeah. And each of those personas is still linked together by the data, but they want to use it in different ways with different applications and the ability to connect all those things. Again, they're learning from each industry. So what home Depot learns about their mobile apps, maybe something that we can deploy in, uh, manufacturing, um, as far as locating things on the floor and connecting the edge data in, bring it in to, and then use that to analyze, use AI models, to do predictive behavior, uh, preventative maintenance, all these things are similar uses of connecting the data, but then applying to the specific industry use case. Yeah. And that pivot of that horizontal use of the data into those specific demands by, uh, at the personas within the, the, the different industries is what we're, we're >>Focused on. Yeah. And the technology is like an accelerate, you know, here. So you're think about like something like 5g, right. 5g is gonna accelerate, you know, a lot of transformation in various industries. Um, throughout that, I mean, tech, you know, the technology alone is not really what the, the, the customer cares about it. They, they care about what do I do with that? What kind of outcome can I get? Right. >>I wanna ask you, Andy, about the customer conversations, you talked about the personas, we've been talking about data democratization for a very long time. Mm-hmm, <affirmative> obviously is a challenging thing to do, but how were you seeing customer conversations, change and evolve, especially over the last couple of years where every L B has to have access to data and be a driver of its value. >>Right. Well, the customer, you know, historically H HP's, uh, background is in infrastructure and we've served industries in the data center for a legacy, right. Mm-hmm <affirmative>, but now they're saying it's more, you know, I've gotta talk to, uh, more people in my business as a data center owner, I've gotta serve these folks, understand their business. And as a supplier, to me, you need to understand them as well. And sometimes help me with that conversation and help me see the things to make those connections that I may not know as a data, you know, as a, as an it professional. Um, and how do we challenge the business to think about different ways of doing things in the industry? So how do we, we think about, um, you know, bringing those connections from other industries in, and, and, uh, uncovering, uh, opportunities or problems anticipating problems in those deployments that they may not have seen by their staying in their swim lane. >>Yeah. You know, I'm, I'm touring on this topic because on the one hand, I think about the, the big data era and, and, and I know a, of, a lot of failures to, to return, you know, the expectations and it wasn't a fail fast. It took a decade, you know, to get there. And part of the failure domain was to your earlier point, Brett, everything was sort of shoved into this centralized location. Yeah. You have this hyper specialized data team, and everybody has to go through them, but organizations I think are now realizing it, like, like your thoughts on this, that data has to go out to the lines of business. It has to be contextualized. People are now talking about building data products and monetizing data. And yeah, that's really, to me what digital transformation is about. So, but generally speaking, most companies are not great at data. They have a lot of data. Yeah. A lot of, lot of data line around insights. I think we heard in the morning keynote are scarce. Right. So what's your vision for how this evolves? >>Yeah. I think, I think, you know, from the data perspective that again, the, at the core is how do I serve my customer better? Right. So, you know, whether that is actual, you know, customer data that you want to sort of up personalized offers for, or, you know, make decisions of, you know, medical decisions for their, you know, for their, you know, better patient outcomes. So if they keep that in mind, then, you know, as far as how it's used by the different lines of business there, you know, that's where we can help facilitate, you know, in many ways. And that's where, you know, cloud becomes a, you know, a really key technology, um, you know, having that flexibility to, to move it around as needed, create the, you know, um, deliver the workload where the customer needs it, that, you know, that sort of idea is, is where we're, we're going with this. >>I think, yeah. I'd, I'd like to give you an example, um, please, in the FSI industry, uh, out here on the floor, we've got a demo on payment systems, right. And we've been doing that, uh, with our nonstop, uh, product and supporting that, uh, in the, in the banking industry for 10 years or more. And it's evolved over time to be one of the, you know, it's a ubiquitous across the, in the support. Yeah. Um, but now we're talking about new regulations with all the global events that are going on, you know, crazy stuff that more pressure on the banks to, to comply with that, um, worries about money laundering and fraud prevention. Well, connecting those, the data from those payment systems into the AI modeling that is now being deployed to do more sophisticated fraud detection and Mon money laundering detection and all of those kinds of things, how you connect those together as an example, what we're seeing, how we get more insights by, uh, by the combination that we can bring together. >>And the insights is critical. Yes. Right. I mean, without it, the data isn't very useful. >>Right, right. Right. And I think even, you know, these, these concepts like swarm learning right. Where you're actually trying to aggregate a lot of those, you know, a lot of that data and, and provide, you know, even a broader data set to, to learn from is even, you know, more beneficial. >>I think the, when you think about the, the principles of this, this decentralized world, that's that it starts with an organization saying, look, we recognize that we can't shove it all into a data warehouse or a data hub or a single data lake. Yeah. We're gonna have all of those. And those are just kind of nodes in the mesh, like it's steel as Youma the GHI term <laugh> and, and, and, and increasingly data as product that can be monetized. We're hearing a lot more about this, and those are organizational yeah. Considerations. I mean, HPE can maybe facilitate that through whiteboard sessions, but, but the, that leads to, in order to, to democratize data, I need self-service infrastructure and I need data that can be shared and governed. I, I don't know about the last one, but you definitely are. Number three self-service infrastructure simplification. Yeah. Your version of cloud. How do you see that, uh, your, your role in that little vision that I just laid out? Do you buy that? >>You wanna take that or, >>Well, I, I think that we have, um, we definitely, because we, we see the data in all these different places and we're, we're trying to be agnostic to, um, you know, where it comes from, who owns it. It's how do you get it together and make it useful? And you don't have to capture it. You don't have to own it, but you may own some of it. You may borrow some of it. You may rent some of it. You may buy it and you may bring it together and they'll use it for the purpose. And then move on to expand into new things that you learn from that you may then monetize, um, in all those different ways. So we have a role of making that platform in a way that you can see it in different ways and use it consistently and repetitively and GRA gain more value of it, and then apply your applications and, you know, all those other things that you do. But that, that bringing together agnostically is a big part of our offering. >>And, and am I, am I not correct? I'm in my thinking on H HP's value is providing that infrastructure, uh, to be able to do just, just that that's your swim lane, if you will. And >>It is, but we're being asked to move up the stack and provide not only the infrastructure now, the platform, the ability to offer that platform, uh, in our HPE GreenLake offering where we're, we now can, you know, have cloud-like services on prem. It doesn't really matter where the data sits, um, and then plug in the applications and even manage those applications for the >>Customers. Okay. So, I mean, I see you as I, as, and Paz, which that up to stack yeah. The ability to, okay. I want whatever Python or open shift, I wanna build applications now on that. Interesting. The management piece is something I, I excluded, um, be because an organization may say, Hey, we need help managing this stuff. Right. But I see that, that I, as in pass, as infrastructure, you're not getting into applications where you're getting, you're not >>No other than letting, letting customers, you actually build on top of that. Right. Right. There's a >>Lot of customer, you're an enabler. >>Absolutely. Yeah. You look at some of the things we're doing with, you know, with our escrow platform and things like that. Right. You know, we're providing that development platform in a, in a really streamlined way of, of, you know, pushing, you know, applications out. I mean, little known fact, right. Is that most banks right now are hiring more developers right now than, than finance people. So all these, all these industries are becoming tech companies and that's, you know, that's the whole launch of the FinTech industry many years ago, and it's, you know, continued to evolve >>And they want to bring AI, they wanna bring data into their applications. And you, HPE I see is an enabler of >>That. Absolutely. Absolutely. >>Give us last question. As we wrap up here, give us the vision, like the next five years, what are some of the industry transformation elements you are forecasting if you have a crystal >>Ball. Yeah, yeah, yeah. I think number one, just an increased focus on personalization and customization. Uh, you know, you look at, you know, personalized offers when you add location based services, things like that, combined 5g, you know, like all this technologies, you're seeing a lot of that custom manufacturing, so those kind of trends are gonna continue. And we know that's, you know, those are the workloads that we gotta, you know, know know is coming, you know, down the pike and, and, and address those. Um, secondly I think AI, right, AI is gonna, is gonna be, you know, it's gonna impact every industry in a big, big way. You know, when like Andy talked right about, you know, fraud detection, uh, you know, manufacturing, robotics, those kind of things. Uh, and then I think, um, you know, lastly, just, just this more convergence, you know, of these industries, right. You know, tech is just, you know, impacting everything in such a big way. And so you're gonna see more of that, that blurring of lines between, between industries. So they jump into jump outta their normal swim lanes. Right, right. >>Be between machine learning and AI, we're gonna see efficiencies by doing things better, with less, uh, deviations and driving, uh, lower cost. And we're gonna see new capabilities come to the forefront and that's gonna be consistent across all industries. And it's gonna be based on the data. Both of those require the models, you know, the data go in and drive their models. Do >>You think any industry is more ripe for disruption? I mean, timeframe wise, you got healthcare, you know, like I always wonder, you know, how is AI gonna help doctors make better diagnoses already is yeah. Will, will AI make the diagnoses? Yeah. You know, retail, I mentioned before, you know, energy, you know, government is changing entertainment, media entertainment is, do you see any industry patterns where one is being disrupted more than the other? >>When we talk to customers, every industry thinks their industry is not going fast enough. And so it's like, you know, I think everybody is just so hyper focused on, you know, what they are involved in and then their domain that, uh, you, you, depending on who you talk to. Yeah. I, you don't, everybody needs to do it faster, you know, more economically, um, and more efficiently. Right. And so >>I think, and they're all being disrupted now, too. Absolutely. It's not only have to do faster, but they've got to, um, transform to keep up with the demands of their >>Customer. Nobody's safe. >>Yeah. And the technology's just gonna continue to accelerate that. And that's the thing. And, and, and the market's becoming, you know, less forgiving as, as we go. So people have to react really, really fast in these markets, you know, and especially with all the other changes going on around us, uh, to, to actually, you know, make that impact. >>Interesting. I'm liking what's in this crystal ball. I'm gonna have to ask you guys for some cons after we wrap here. Absolutely. Thank you so much for joining David, me talking about industry transformation, tremendous amount of, of transformation so far and so much to go. It's exciting to watch. >>Yeah. Appreciate it. >>Have an, we appreciate it for our guests and Dave ante. I, Lisa Martin, you're watching the cube, the leader in live tech coverage. You AP back after a short break.

Published Date : Jun 28 2022

SUMMARY :

Welcome back to the Cube's day one coverage of HPE discover 2022 live Andy, talk to you about industry transformation, from your perspective, where are customers, that the industries are running and our ability to bring that forward and connect all those things is you know, retail, everybody has, uh, you know, an Amazon war room, you know, You wanna look at, you know, whether it's, you know, research and development, manufacturing, sales, and distribute marketing, you were in that industry if it's in a, you know, it's patient data sitting somewhere, you want to, you know, handle it where it is, When I say core, I mean, put it at the core of their business. Because it brings, brings so many other challenges with how you deal with that. You have such breadth in so many different industries as Dave mentioned, but how are you that enabler, understand the technology with the cloud or, you know, edge or, you know, anything we're doing in with data. Yeah. Well, you know, what we also heard this morning is the different personas, right. Um, throughout that, I mean, tech, you know, the technology alone is not really what the, Mm-hmm, <affirmative> obviously is a challenging thing to do, but how were you seeing customer conversations, I may not know as a data, you know, as a, as an it professional. and, and I know a, of, a lot of failures to, to return, you know, the expectations and make decisions of, you know, medical decisions for their, you know, for their, you know, better patient outcomes. And it's evolved over time to be one of the, you know, And the insights is critical. a lot of those, you know, a lot of that data and, and provide, you know, even a broader data set to, I think the, when you think about the, the principles of this, this decentralized world, to, um, you know, where it comes from, who owns it. uh, to be able to do just, just that that's your swim lane, if you will. offering where we're, we now can, you know, have cloud-like services on prem. But I see that, that I, as in pass, as infrastructure, you're not getting into applications No other than letting, letting customers, you actually build on top of that. of, you know, pushing, you know, applications out. And they want to bring AI, they wanna bring data into their applications. Absolutely. elements you are forecasting if you have a crystal And we know that's, you know, those are the workloads that we gotta, you know, Both of those require the models, you know, you know, energy, you know, government is changing entertainment, And so it's like, you know, I think everybody is just so hyper focused on, It's not only have to do faster, but they've got to, and, and the market's becoming, you know, less forgiving as, as we go. I'm gonna have to ask you guys for some cons after we wrap here. You AP back after

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

DavePERSON

0.99+

Lisa MartinPERSON

0.99+

BradPERSON

0.99+

Andy HulkPERSON

0.99+

Andy HochhalterPERSON

0.99+

AndyPERSON

0.99+

Brad SchlagenhaufPERSON

0.99+

HPEORGANIZATION

0.99+

BrettPERSON

0.99+

LisaPERSON

0.99+

Las VegasLOCATION

0.99+

AmazonORGANIZATION

0.99+

10 yearsQUANTITY

0.99+

PythonTITLE

0.99+

home DepotORGANIZATION

0.99+

eachQUANTITY

0.99+

BothQUANTITY

0.99+

APORGANIZATION

0.98+

oneQUANTITY

0.98+

each industryQUANTITY

0.97+

Dave antePERSON

0.96+

this morningDATE

0.93+

2022DATE

0.92+

H HPORGANIZATION

0.91+

decadesQUANTITY

0.9+

earlier todayDATE

0.86+

one exampleQUANTITY

0.85+

next five yearsDATE

0.83+

firstQUANTITY

0.8+

day oneQUANTITY

0.78+

HPE GreenLakeORGANIZATION

0.76+

OneQUANTITY

0.73+

single dataQUANTITY

0.72+

Google pay appTITLE

0.71+

couple of guestsQUANTITY

0.71+

last coupleDATE

0.65+

PazORGANIZATION

0.62+

5gQUANTITY

0.61+

years agoDATE

0.61+

secondlyQUANTITY

0.6+

YoumaPERSON

0.59+

yearsDATE

0.56+

threeQUANTITY

0.54+

discover 2022COMMERCIAL_ITEM

0.3+

2022COMMERCIAL_ITEM

0.27+

Breaking Analysis: Snowflake Summit 2022...All About Apps & Monetization


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Snowflake Summit 2022 underscored that the ecosystem excitement which was once forming around Hadoop is being reborn, escalated and coalescing around Snowflake's data cloud. What was once seen as a simpler cloud data warehouse and good marketing with the data cloud is evolving rapidly with new workloads of vertical industry focus, data applications, monetization, and more. The question is, will the promise of data be fulfilled this time around, or is it same wine, new bottle? Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this "Breaking Analysis," we'll talk about the event, the announcements that Snowflake made that are of greatest interest, the major themes of the show, what was hype and what was real, the competition, and some concerns that remain in many parts of the ecosystem and pockets of customers. First let's look at the overall event. It was held at Caesars Forum. Not my favorite venue, but I'll tell you it was packed. Fire Marshall Full, as we sometimes say. Nearly 10,000 people attended the event. Here's Snowflake's CMO Denise Persson on theCUBE describing how this event has evolved. >> Yeah, two, three years ago, we were about 1800 people at a Hilton in San Francisco. We had about 40 partners attending. This week we're close to 10,000 attendees here. Almost 10,000 people online as well, and over over 200 partners here on the show floor. >> Now, those numbers from 2019 remind me of the early days of Hadoop World, which was put on by Cloudera but then Cloudera handed off the event to O'Reilly as this article that we've inserted, if you bring back that slide would say. The headline it almost got it right. Hadoop World was a failure, but it didn't have to be. Snowflake has filled the void created by O'Reilly when it first killed Hadoop World, and killed the name and then killed Strata. Now, ironically, the momentum and excitement from Hadoop's early days, it probably could have stayed with Cloudera but the beginning of the end was when they gave the conference over to O'Reilly. We can't imagine Frank Slootman handing the keys to the kingdom to a third party. Serious business was done at this event. I'm talking substantive deals. Salespeople from a host sponsor and the ecosystems that support these events, they love physical. They really don't like virtual because physical belly to belly means relationship building, pipeline, and deals. And that was blatantly obvious at this show. And in fairness, all theCUBE events that we've done year but this one was more vibrant because of its attendance and the action in the ecosystem. Ecosystem is a hallmark of a cloud company, and that's what Snowflake is. We asked Frank Slootman on theCUBE, was this ecosystem evolution by design or did Snowflake just kind of stumble into it? Here's what he said. >> Well, when you are a data clouding, you have data, people want to do things with that data. They don't want just run data operations, populate dashboards, run reports. Pretty soon they want to build applications and after they build applications, they want build businesses on it. So it goes on and on and on. So it drives your development to enable more and more functionality on that data cloud. Didn't start out that way, you know, we were very, very much focused on data operations. Then it becomes application development and then it becomes, hey, we're developing whole businesses on this platform. So similar to what happened to Facebook in many ways. >> So it sounds like it was maybe a little bit of both. The Facebook analogy is interesting because Facebook is a walled garden, as is Snowflake, but when you come into that garden, you have assurances that things are going to work in a very specific way because a set of standards and protocols is being enforced by a steward, i.e. Snowflake. This means things run better inside of Snowflake than if you try to do all the integration yourself. Now, maybe over time, an open source version of that will come out but if you wait for that, you're going to be left behind. That said, Snowflake has made moves to make its platform more accommodating to open source tooling in many of its announcements this week. Now, I'm not going to do a deep dive on the announcements. Matt Sulkins from Monte Carlo wrote a decent summary of the keynotes and a number of analysts like Sanjeev Mohan, Tony Bear and others are posting some deeper analysis on these innovations, and so we'll point to those. I'll say a few things though. Unistore extends the type of data that can live in the Snowflake data cloud. It's enabled by a new feature called hybrid tables, a new table type in Snowflake. One of the big knocks against Snowflake was it couldn't handle and transaction data. Several database companies are creating this notion of a hybrid where both analytic and transactional workloads can live in the same data store. Oracle's doing this for example, with MySQL HeatWave and there are many others. We saw Mongo earlier this month add an analytics capability to its transaction system. Mongo also added sequel, which was kind of interesting. Here's what Constellation Research analyst Doug Henschen said about Snowflake's moves into transaction data. Play the clip. >> Well with Unistore, they're reaching out and trying to bring transactional data in. Hey, don't limit this to analytical information and there's other ways to do that like CDC and streaming but they're very closely tying that again to that marketplace, with the idea of bring your data over here and you can monetize it. Don't just leave it in that transactional database. So another reach to a broader play across a big community that they're building. >> And you're also seeing Snowflake expand its workload types in its unique way and through Snowpark and its stream lit acquisition, enabling Python so that native apps can be built in the data cloud and benefit from all that structure and the features that Snowflake is built in. Hence that Facebook analogy, or maybe the App Store, the Apple App Store as I propose as well. Python support also widens the aperture for machine intelligence workloads. We asked Snowflake senior VP of product, Christian Kleinerman which announcements he thought were the most impactful. And despite the who's your favorite child nature of the question, he did answer. Here's what he said. >> I think the native applications is the one that looks like, eh, I don't know about it on the surface but he has the biggest potential to change everything. That's create an entire ecosystem of solutions for within a company or across companies that I don't know that we know what's possible. >> Snowflake also announced support for Apache Iceberg, which is a new open table format standard that's emerging. So you're seeing Snowflake respond to these concerns about its lack of openness, and they're building optionality into their cloud. They also showed some cost op optimization tools both from Snowflake itself and from the ecosystem, notably Capital One which launched a software business on top of Snowflake focused on optimizing cost and eventually the rollout data management capabilities, and all kinds of features that Snowflake announced that the show around governance, cross cloud, what we call super cloud, a new security workload, and they reemphasize their ability to read non-native on-prem data into Snowflake through partnerships with Dell and Pure and a lot more. Let's hear from some of the analysts that came on theCUBE this week at Snowflake Summit to see what they said about the announcements and their takeaways from the event. This is Dave Menninger, Sanjeev Mohan, and Tony Bear, roll the clip. >> Our research shows that the majority of organizations, the majority of people do not have access to analytics. And so a couple of the things they've announced I think address those or help to address those issues very directly. So Snowpark and support for Python and other languages is a way for organizations to embed analytics into different business processes. And so I think that'll be really beneficial to try and get analytics into more people's hands. And I also think that the native applications as part of the marketplace is another way to get applications into people's hands rather than just analytical tools. Because most people in the organization are not analysts. They're doing some line of business function. They're HR managers, they're marketing people, they're sales people, they're finance people, right? They're not sitting there mucking around in the data, they're doing a job and they need analytics in that job. >> Primarily, I think it is to contract this whole notion that once you move data into Snowflake, it's a proprietary format. So I think that's how it started but it's usually beneficial to the customers, to the users because now if you have large amount of data in paket files you can leave it on S3, but then you using the Apache Iceberg table format in Snowflake, you get all the benefits of Snowflake's optimizer. So for example, you get the micro partitioning, you get the metadata. And in a single query, you can join, you can do select from a Snowflake table union and select from an iceberg table and you can do store procedure, user defined function. So I think what they've done is extremely interesting. Iceberg by itself still does not have multi-table transactional capabilities. So if I'm running a workload, I might be touching 10 different tables. So if I use Apache Iceberg in a raw format, they don't have it, but Snowflake does. So the way I see it is Snowflake is adding more and more capabilities right into the database. So for example, they've gone ahead and added security and privacy. So you can now create policies and do even cell level masking, dynamic masking, but most organizations have more than Snowflake. So what we are starting to see all around here is that there's a whole series of data catalog companies, a bunch of companies that are doing dynamic data masking, security and governance, data observability which is not a space Snowflake has gone into. So there's a whole ecosystem of companies that is mushrooming. Although, you know, so they're using the native capabilities of Snowflake but they are at a level higher. So if you have a data lake and a cloud data warehouse and you have other like relational databases, you can run these cross platform capabilities in that layer. So that way, you know, Snowflake's done a great job of enabling that ecosystem. >> I think it's like the last mile, essentially. In other words, it's like, okay, you have folks that are basically that are very comfortable with Tableau but you do have developers who don't want to have to shell out to a separate tool. And so this is where Snowflake is essentially working to address that constituency. To Sanjeev's point, and I think part of it, this kind of plays into it is what makes this different from the Hadoop era is the fact that all these capabilities, you know, a lot of vendors are taking it very seriously to put this native. Now, obviously Snowflake acquired Streamlit. So we can expect that the Streamlit capabilities are going to be native. >> I want to share a little bit about the higher level thinking at Snowflake, here's a chart from Frank Slootman's keynote. It's his version of the modern data stack, if you will. Now, Snowflake of course, was built on the public cloud. If there were no AWS, there would be no Snowflake. Now, they're all about bringing data and live data and expanding the types of data, including structured, we just heard about that, unstructured, geospatial, and the list is going to continue on and on. Eventually I think it's going to bleed into the edge if we can figure out what to do with that edge data. Executing on new workloads is a big deal. They started with data sharing and they recently added security and they've essentially created a PaaS layer. We call it a SuperPaaS layer, if you will, to attract application developers. Snowflake has a developer-focused event coming up in November and they've extended the marketplace with 1300 native apps listings. And at the top, that's the holy grail, monetization. We always talk about building data products and we saw a lot of that at this event, very, very impressive and unique. Now here's the thing. There's a lot of talk in the press, in the Wall Street and the broader community about consumption-based pricing and concerns over Snowflake's visibility and its forecast and how analytics may be discretionary. But if you're a company building apps in Snowflake and monetizing like Capital One intends to do, and you're now selling in the marketplace, that is not discretionary, unless of course your costs are greater than your revenue for that service, in which case is going to fail anyway. But the point is we're entering a new error where data apps and data products are beginning to be built and Snowflake is attempting to make the data cloud the defacto place as to where you're going to build them. In our view they're well ahead in that journey. Okay, let's talk about some of the bigger themes that we heard at the event. Bringing apps to the data instead of moving the data to the apps, this was a constant refrain and one that certainly makes sense from a physics point of view. But having a single source of data that is discoverable, sharable and governed with increasingly robust ecosystem options, it doesn't have to be moved. Sometimes it may have to be moved if you're going across regions, but that's unique and a differentiator for Snowflake in our view. I mean, I'm yet to see a data ecosystem that is as rich and growing as fast as the Snowflake ecosystem. Monetization, we talked about that, industry clouds, financial services, healthcare, retail, and media, all front and center at the event. My understanding is that Frank Slootman was a major force behind this shift, this development and go to market focus on verticals. It's really an attempt, and he talked about this in his keynote to align with the customer mission ultimately align with their objectives which not surprisingly, are increasingly monetizing with data as a differentiating ingredient. We heard a ton about data mesh, there were numerous presentations about the topic. And I'll say this, if you map the seven pillars Snowflake talks about, Benoit Dageville talked about this in his keynote, but if you map those into Zhamak Dehghani's data mesh framework and the four principles, they align better than most of the data mesh washing that I've seen. The seven pillars, all data, all workloads, global architecture, self-managed, programmable, marketplace and governance. Those are the seven pillars that he talked about in his keynote. All data, well, maybe with hybrid tables that becomes more of a reality. Global architecture means the data is globally distributed. It's not necessarily physically in one place. Self-managed is key. Self-service infrastructure is one of Zhamak's four principles. And then inherent governance. Zhamak talks about computational, what I'll call automated governance, built in. And with all the talk about monetization, that aligns with the second principle which is data as product. So while it's not a pure hit and to its credit, by the way, Snowflake doesn't use data mesh in its messaging anymore. But by the way, its customers do, several customers talked about it. Geico, JPMC, and a number of other customers and partners are using the term and using it pretty closely to the concepts put forth by Zhamak Dehghani. But back to the point, they essentially, Snowflake that is, is building a proprietary system that substantially addresses some, if not many of the goals of data mesh. Okay, back to the list, supercloud, that's our term. We saw lots of examples of clouds on top of clouds that are architected to spin multiple clouds, not just run on individual clouds as separate services. And this includes Snowflake's data cloud itself but a number of ecosystem partners that are headed in a very similar direction. Snowflake still talks about data sharing but now it uses the term collaboration in its high level messaging, which is I think smart. Data sharing is kind of a geeky term. And also this is an attempt by Snowflake to differentiate from everyone else that's saying, hey, we do data sharing too. And finally Snowflake doesn't say data marketplace anymore. It's now marketplace, accounting for its application market. Okay, let's take a quick look at the competitive landscape via this ETR X-Y graph. Vertical access remembers net score or spending momentum and the x-axis is penetration, pervasiveness in the data center. That's what ETR calls overlap. Snowflake continues to lead on the vertical axis. They guide it conservatively last quarter, remember, so I wouldn't be surprised if that lofty height, even though it's well down from its earlier levels but I wouldn't be surprised if it ticks down again a bit in the July survey, which will be in the field shortly. Databricks is a key competitor obviously at a strong spending momentum, as you can see. We didn't draw it here but we usually draw that 40% line or red line at 40%, anything above that is considered elevated. So you can see Databricks is quite elevated. But it doesn't have the market presence of Snowflake. It didn't get to IPO during the bubble and it doesn't have nearly as deep and capable go-to market machinery. Now, they're getting better and they're getting some attention in the market, nonetheless. But as a private company, you just naturally, more people are aware of Snowflake. Some analysts, Tony Bear in particular, believe Mongo and Snowflake are on a bit of a collision course long term. I actually can see his point. You know, I mean, they're both platforms, they're both about data. It's long ways off, but you can see them sort of in a similar path. They talk about kind of similar aspirations and visions even though they're quite in different markets today but they're definitely participating in similar tam. The cloud players are probably the biggest or definitely the biggest partners and probably the biggest competitors to Snowflake. And then there's always Oracle. Doesn't have the spending velocity of the others but it's got strong market presence. It owns a cloud and it knows a thing about data and it definitely is a go-to market machine. Okay, we're going to end on some of the things that we heard in the ecosystem. 'Cause look, we've heard before how particular technology, enterprise data warehouse, data hubs, MDM, data lakes, Hadoop, et cetera. We're going to solve all of our data problems and of course they didn't. And in fact, sometimes they create more problems that allow vendors to push more incremental technology to solve the problems that they created. Like tools and platforms to clean up the no schema on right nature of data lakes or data swamps. But here are some of the things that I heard firsthand from some customers and partners. First thing is, they said to me that they're having a hard time keeping up sometimes with the pace of Snowflake. It reminds me of AWS in 2014, 2015 timeframe. You remember that fire hose of announcements which causes increased complexity for customers and partners. I talked to several customers that said, well, yeah this is all well and good but I still need skilled people to understand all these tools that I'm integrated in the ecosystem, the catalogs, the machine learning observability. A number of customers said, I just can't use one governance tool, I need multiple governance tools and a lot of other technologies as well, and they're concerned that that's going to drive up their cost and their complexity. I heard other concerns from the ecosystem that it used to be sort of clear as to where they could add value you know, when Snowflake was just a better data warehouse. But to point number one, they're either concerned that they'll be left behind or they're concerned that they'll be subsumed. Look, I mean, just like we tell AWS customers and partners, you got to move fast, you got to keep innovating. If you don't, you're going to be left. Either if your customer you're going to be left behind your competitor, or if you're a partner, somebody else is going to get there or AWS is going to solve the problem for you. Okay, and there were a number of skeptical practitioners, really thoughtful and experienced data pros that suggested that they've seen this movie before. That's hence the same wine, new bottle. Well, this time around I certainly hope not given all the energy and investment that is going into this ecosystem. And the fact is Snowflake is unquestionably making it easier to put data to work. They built on AWS so you didn't have to worry about provisioning, compute and storage and networking and scaling. Snowflake is optimizing its platform to take advantage of things like Graviton so you don't have to, and they're doing some of their own optimization tools. The ecosystem is building optimization tools so that's all good. And firm belief is the less expensive it is, the more data will get brought into the data cloud. And they're building a data platform on which their ecosystem can build and run data applications, aka data products without having to worry about all the hard work that needs to get done to make data discoverable, shareable, and governed. And unlike the last 10 years, you don't have to be a keeper and integrate all the animals in the Hadoop zoo. Okay, that's it for today, thanks for watching. Thanks to my colleague, Stephanie Chan who helps research "Breaking Analysis" topics. Sometimes Alex Myerson is on production and manages the podcasts. Kristin Martin and Cheryl Knight help get the word out on social and in our newsletters, and Rob Hof is our editor in chief over at Silicon, and Hailey does some wonderful editing, thanks to all. Remember, all these episodes are available as podcasts wherever you listen. All you got to do is search Breaking Analysis Podcasts. I publish each week on wikibon.com and siliconangle.com and you can email me at David.Vellante@siliconangle.com or DM me @DVellante. If you got something interesting, I'll respond. If you don't, I'm sorry I won't. Or comment on my LinkedIn post. Please check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time. (upbeat music)

Published Date : Jun 18 2022

SUMMARY :

bringing you data driven that the ecosystem excitement here on the show floor. and the action in the ecosystem. Didn't start out that way, you know, One of the big knocks against Snowflake the idea of bring your data of the question, he did answer. is the one that looks like, and from the ecosystem, And so a couple of the So that way, you know, from the Hadoop era is the fact the defacto place as to where

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Frank SlootmanPERSON

0.99+

Frank SlootmanPERSON

0.99+

Doug HenschenPERSON

0.99+

Stephanie ChanPERSON

0.99+

Christian KleinermanPERSON

0.99+

AWSORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Rob HofPERSON

0.99+

Benoit DagevillePERSON

0.99+

2014DATE

0.99+

Matt SulkinsPERSON

0.99+

JPMCORGANIZATION

0.99+

2019DATE

0.99+

Cheryl KnightPERSON

0.99+

Palo AltoLOCATION

0.99+

Denise PerssonPERSON

0.99+

Alex MyersonPERSON

0.99+

Tony BearPERSON

0.99+

Dave MenningerPERSON

0.99+

DellORGANIZATION

0.99+

JulyDATE

0.99+

GeicoORGANIZATION

0.99+

NovemberDATE

0.99+

SnowflakeTITLE

0.99+

40%QUANTITY

0.99+

OracleORGANIZATION

0.99+

App StoreTITLE

0.99+

Capital OneORGANIZATION

0.99+

second principleQUANTITY

0.99+

Sanjeev MohanPERSON

0.99+

SnowflakeORGANIZATION

0.99+

1300 native appsQUANTITY

0.99+

Tony BearPERSON

0.99+

David.Vellante@siliconangle.comOTHER

0.99+

Kristin MartinPERSON

0.99+

MongoORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

Snowflake Summit 2022EVENT

0.99+

FirstQUANTITY

0.99+

twoDATE

0.99+

PythonTITLE

0.99+

10 different tablesQUANTITY

0.99+

FacebookORGANIZATION

0.99+

ETRORGANIZATION

0.99+

bothQUANTITY

0.99+

SnowflakeEVENT

0.98+

one placeQUANTITY

0.98+

each weekQUANTITY

0.98+

O'ReillyORGANIZATION

0.98+

This weekDATE

0.98+

Hadoop WorldEVENT

0.98+

this weekDATE

0.98+

PureORGANIZATION

0.98+

about 40 partnersQUANTITY

0.98+

theCUBEORGANIZATION

0.98+

last quarterDATE

0.98+

OneQUANTITY

0.98+

S3TITLE

0.97+

HadoopLOCATION

0.97+

singleQUANTITY

0.97+

Caesars ForumLOCATION

0.97+

IcebergTITLE

0.97+

single sourceQUANTITY

0.97+

SiliconORGANIZATION

0.97+

Nearly 10,000 peopleQUANTITY

0.97+

Apache IcebergORGANIZATION

0.97+

Matthew Carroll, Immuta | Snowflake Summit 2022


 

(Upbeat music) >> Hey everyone. Welcome back to theCUBE's continuing coverage day two Snowflake Summit '22 live from Caesar's forum in Las Vegas. Lisa Martin here with Dave Vellante, bringing you wall to wall coverage yesterday, today, and tomorrow. We're excited to welcome Matthew Carroll to the program. The CEO of Immuta, we're going to be talking about removing barriers to secure data access security. Matthew, welcome. >> Thank you for having me, appreciate it. >> Talk to the audience a little bit about Immuta you're a Snowflake premier technology partner, but give him an overview of Immuta what you guys do, your vision, all that good stuff. >> Yeah, absolutely, thanks. Yeah, if you think about what Immunta at it's core is, we're a data security platform for the modern data stack, right? So what does that mean? It means that we embed natively into a Snowflake and we enforce policies on data, right? So, the rules to be able to use it, to accelerate data access, right? So, that means connecting to the data very easily controlling it with any regulatory or security policy on it as well as contractual policies, and then being able to audit it. So, that way, any corporation of any size can leverage their data and share that data without risking leaking it or potentially violating a regulation. >> What are some of the key as we look at industry by industry challenges that Immuta is helping those customers address and obviously quickly since everything is accelerating. >> Yeah. And it's, you're seeing it 'cause the big guys like Snowflake are verticalizing, right? You're seeing a lot of industry specific, you know, concepts. With us, if you think of, like, where we live obviously policies on data regulated, right? So healthcare, how do we automate HIPAA compliance? How do we redesign clinical trial management post COVID, right? If you're going to have billions of users and you're collecting that data, pharmaceutical companies can't wait to collect that data. They need to remove those barriers. So, they need to be able to collect it, secure it, and be able to share it. Right? So, double and triple blinded studies being redesigned in the cloud. Government organizations, how do we share security information globally with different countries instantaneously? Right? So these are some of the examples where we're helping organizations transform and be able to kind of accelerate their adoption of data. >> Matt, I don't know if you remember, I mean, I know you remember coming to our office. But we had an interesting conversation and I was telling Lisa. Years ago I wrote a piece of you know, how to build on top of, AWS. You know, there's so much opportunity. And we had a conversation, at our office, theCUBE studios in Marlborough, Massachusetts. And we both, sort of, agreed that there was this new workload emerging. We said, okay, there's AWS, there's Snowflake at the time, we were thinking, and you bring machine learning, at time where we were using data bricks, >> Yeah. >> As the example, of course now it's been a little bit- >> Yeah. Careful. >> More of a battle, right, with those guys. But, and so, you see them going in their different directions, but the premise stands is that there's an ecosystem developing, new workloads developing, on top of the hyper scale infrastructure. And you guys play a part in that. So, describe what you're seeing there 'cause you were right on in that conversation. >> Yeah. Yeah. >> It's nice to be, right. >> Yeah. So when you think of this design pattern, right, is you have a data lake, you have a warehouse, and you have an exchange, right? And this architecture is what you're seeing around you now, is this is every single organization in the world is adopting this design pattern. The challenge that where we fit into kind of a sliver of this is, the way we used to do before is application design, right? And we would build lots of applications, and we would build all of our business logic to enforce security controls and policies inside each app. And you'd go through security and get it approved. In this paradigm, any user could potentially access any data. There's just too many data sources, too many users, and too many things that can go wrong. And to scale that is really hard. So, like, with Immuta, what we've done, versus what everyone else has done is we natively embedded into every single one of those compute partners. So ,Snowflake, data breaks, big query, Redshift, synapse on and on. Natively underneath the covers, so that was BI tools, those data science tools hit Snowflake. They don't have to rewrite any of their code, but we automatically enforce policy without them having to do anything. And then we consistently audit that. I call that the separation of policy from platform. So, just like in the world in big data, when we had to separate compute from storage, in this world, because we're global, right? So we're, we have a distributed workforce and our data needs to abide by all these new security rules and regulations. We provide a flexible framework for them to be able to operate at that scale. And we're the only ones in the world doing it. >> Dave Vellante: See the key there is, I mean, Snowflake is obviously building out its data cloud and the functions that it's building in are quite impressive. >> Yeah. >> Dave Vellante: But you know at some point a customer's going to say, look I have other stuff, whether it's in an Oracle database, or data lake or wherever, and that should just be a node on this global, whatever you want to call it, mesh or fabric. And then if I'm hearing you right, you participate in all of that. >> Correct? Yeah We kind of, we were able to just natively inject into each, and then be able to enforce that policy consistently, right? So, hey, can you access HIPAA data? Who are you? Are you authorized to use this? What's the purpose you want to query this data? Is it for fraud? Is it for marketing? So, what we're trying to do as part of this new design paradigm is ensure that we can automate nearly the entire data access process, but with the confidence and de-risk it, that's kind of the key thing. But the one thing I will mention is I think we talk a lot about the core compute, but I think, especially at this summit, data sharing is everything. Right? And this concept of no copy data sharing, because the data is too big and there's too many sets to share, that's the keys to the kingdom. You got to get your lake and your warehouse set with good policy, so you can effectively share it. >> Yeah, so, I wanted to just to follow up, if I may. So, you'd mentioned separating compute from storage and a lot of VC money poured into that. A lot of VC money poured into cloud database. How do you see, do you see Snowflake differentiating substantially from all the other cloud databases? And how so? >> I think it's the ease of use, right? Apple produces a phone that isn't much different than other competitors. Right? But what they do is, end to end, they provide an experience that's very simple. Right? And so yes. Are there other warehouses? Are there other ways to, you know you heard about their analytic workloads now, you know through unistore, where they're going to be able to process analytical workloads as well as their ad hoc queries. I think other vendors are obviously going to have the same capabilities, but I think the user experience of Snowflake right now is top tier. Right? Is I can, whether I'm a small business, I can load my debt in there and build an app really quickly. Or if I'm a JP Morgan or, you know, a West Farmer's I can move legacy, you know monolithic architectures in there in months. I mean, these are six months transitions. When think about 20 years of work is now being transitioned to the cloud in six months. That's the difference. >> So measuring ease of views and time to value, time to market. >> Yeah. That's it's everything is time to value. No one wants to manage the infrastructure. In the Hudup world, no one wants to have expensive customized engineers that are, you know, keeping up your Hudup infrastructure any longer. Those days are completely over. >> Can you share an example of a joint customer, where really the joint value proposition that Immuta and Snowflake bring, are delivering some pretty substantial outcomes? >> Yeah. I, what we're seeing is and we're obviously highly incentivized to get them in there because it's easier on us, right? Because we can leverage their row and com level security. We can leverage their features that they've built in to provide a better experience to our customers. And so when we talk about large banks, they're trying to move Terra data workloads into Snowflake. When we talk about clinical trial management, they're trying to get away from physical copies of data, and leverage the exchanges of mechanism, so you can manage data contracts, right? So like, you know, when we think of even like a company like Latch, right? Like Latch uses us to be able to oversee all of the consumer data they have. Without like a Snowflake, what ends up happening is they end up having to double down and invest on their own people building out all their own infrastructure. And they don't have the capital to invest in third party tools like us that keep them safe, prevent data leaks, allow them to do more and get more value out of their data, which is what they're good at. >> So TCO reduction I'm hearing. >> Matthew Carroll: Yes, exactly. >> Matt, where are you as a company, you've obviously made a lot of progress since we last talked. Maybe give us the update on you know, the headcount, and fundraising, and- >> Yeah, we're just at about 250 people, which scares me every day, but it's awesome. But yeah, we've just raised 100 million dollars- >> Lisa Martin: Saw that, congratulations. >> Series E, thank you, with night dragon leading it. And night dragon was very tactical as well. We are moving, we found that data governance, I think what you're seeing in the market now is the catalog players are really maturing, and they're starting to add a suite of features around governance, right? So quality control, observability, and just traditional asset management around their data. What we are finding is is that there's a new gap in this space, right? So if you think about legacy it's we had infrastructure security we had the four walls and we protect our four walls. Then we moved to network security. We said, oh, the adversary is inside zero trust. So, let's protect all of our endpoints, right? But now we're seeing is data is the security flaw data could be, anyone could potentially access it in this organization. So how do we protect data? And so what we have matured into is a data security company. What we have found is, there's this next generation of data security products that are missing. And it's this blend between authentication like an, an Okta or an AuthO and auth- I'm sorry, authorization. Like Immuta, where we're authorizing certain access. And we have to pair together, with the modern observability, like a data dog, to provide an a layer above this modern data stack, to protect the data to analyze the users, to look for threats. And so Immuta has transformed with this capital. And we brought Dave DeWalt onto our board because he's a cybersecurity expert, he gives us that understanding of what is it like to sell into this modern cyber environment. So now, we have this platform where we can discover data, analyze it, tag it, understand its risk, secure it to author and enforce policies. And then monitor, the key thing is monitoring. Who is using the data? Why are they using the data? What are the risks to that? In order to enforce the security. So, we are a data security platform now with this raise. >> Okay. That, well, that's a new, you know, vector for you guys. I always saw you as an adjacency, but you're saying smack dab in the heart >> Matthew Carroll: Yes. Yeah. We're jumping right in. What we've seen is there is a massive global gap. Data is no longer just in one country. So it is, how do we automate policy enforcement of regulatory oversight, like GDPR or CCPA, which I think got this whole category going. But then we quickly realized is, well we have data jurisdiction. So, where does that data have to live? Where can I send it to? Because from Europe to us, what's the export treaty? We don't have defined laws anymore. So we needed a flexible framework to handle that. And now what we're seeing is data leaks, upon data leaks, and you know, the Snowflakes and the other cloud compute vendors, the last thing they ever want is a data leak out of their ecosystem. So, the security aspects are now becoming more and more important. It's going to be an insider threat. It's someone that already has access to that and has the rights to it. That's going to be the risk. And there is no pattern for a data scientist. There's no zero trust model for data. So we have to create that. >> How are you, last question, how are you going to be using a 100 million raised in series E funding, which you mentioned, how are you going to be leveraging that investment to turn the volume up on data security? >> Well, and we still have also another 80 million still in the bank from our last raise, so 180 million now, and potentially more soon, we'll kind of throw that out there. But, the first thing is M and A I believe in a recessing market, we're going to see these platforms consolidate. Larger customer of ours are driving us to say, Hey, we need less tools. We need to make this easier. So we can go faster. They're, even in a recessing market, these customers are not going to go slower. They're moving in the cloud as fast as possible, but it needs to be easier, right? It's going back to the mid nineties kind of Lego blocks, right? Like the IBM, the SAP, the Informatica, right? So that's number one. Number two is investing globally. Customer success, engineering, support, 24 by seven support globally. Global infrastructure on cloud, moving to true SaaS everywhere in the world. That's where we're going. So sales, engineering, and customer success globally. And the third is, is doubling down on R and D. That monitor capability, we're going to be building software around. How do we monitor and understand risk of users, third parties. So how do you handle data contracts? How do you handle data use agreements? So those are three areas we're focused on. >> Dave Vellante: How are you scaling go to market at this point? I mean, I presume you are. >> Yeah, well, I think as we're leveraging these types of engagements, so like our partners are the big cloud compute vendors, right? Those data clouds. We're injecting as much as we can into them and helping them get more workloads onto their infrastructure because it benefits us. And then obviously we're working with GSIs and then RSIs to kind of help with this transformation, but we're all in, we're actually deprecating support of legacy connectors. And we're all in on cloud compute. >> How did the pivot to all in on security, how did it affect your product portfolio? I mean, is that more positioning or was there other product extensions that where you had to test product market fit? >> Yeah. This comes out of customer drive. So we've been holding customer advisory boards across Europe, Asia and U.S. And what we just saw was a pattern of some of these largest banks and pharmaceutical companies and insurance companies in the world was, hey we need to understand who is actually on our data. We have a better understanding of our data now, but we don't actually understand why they're using our data. Why are they running these types of queries? Is this machine, you know logic, that we're running on this now, we invested all this money in AI. What's the risk? They just don't know. And so, yeah, it's going to change our product portfolio. We modularized our platform to the street components over the past year, specifically now, so we can start building custom applications on top of it, for specific users like the CSO, like, you know, the legal department, and like third party regulators to come in, as well as as going back to data sharing, to build data use agreements between one or many entities, right? So an SMP global can expose their data to third parties and have one consistent digital contract, no more long memo that you have to read the contract, like, Immuta can automate those data contracts between one or many entities. >> Dave Vellante: And make it a checkbox item. >> It's just a checkbox, but then you can audit it all, right? >> The key thing is this, I always tell people, there's negligence and gross negligence. Negligence, you can go back and fix something, gross negligence you don't have anything to put into controls. Regulators want you to be at least negligent, grossly negligent. They get upset. (laughs) >> Matthew, it sounds like great stuff is going on at Immuta, lots of money in the bank. And it sounds like a very clear and strategic vision and direction. We thank you so much for joining us on theCUBE this morning. >> Thank you so much >> For our guest and Dave Vellante, I'm Lisa Martin, you're watching theCUBE's coverage of day two, Snowflake Summit '22, coming at ya live, from the show floor in Las Vegas. Be right back with our next guest. (Soft music)

Published Date : Jun 15 2022

SUMMARY :

Matthew Carroll to the program. of Immuta what you guys do, your vision, So, the rules to be able to use it, What are some of the key So, they need to be able to collect it, at the time, we were thinking, And you guys play a part in that. of our business logic to Dave Vellante: See the key there is, on this global, whatever you What's the purpose you just to follow up, if I may. they're going to be able to and time to value, time to market. that are, you know, keeping And they don't have the capital to invest Matt, where are you as a company, Yeah, we're just at about 250 people, What are the risks to that? I always saw you That's going to be the risk. but it needs to be easier, right? I mean, I presume you are. and then RSIs to kind of help the CSO, like, you know, Dave Vellante: And Regulators want you to be at Immuta, lots of money in the bank. from the show floor in Las Vegas.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Matthew CarrollPERSON

0.99+

Lisa MartinPERSON

0.99+

Dave VellantePERSON

0.99+

MatthewPERSON

0.99+

IBMORGANIZATION

0.99+

EuropeLOCATION

0.99+

Dave DeWaltPERSON

0.99+

AWSORGANIZATION

0.99+

LisaPERSON

0.99+

Las VegasLOCATION

0.99+

MattPERSON

0.99+

ImmutaORGANIZATION

0.99+

tomorrowDATE

0.99+

100 million dollarsQUANTITY

0.99+

AsiaLOCATION

0.99+

AppleORGANIZATION

0.99+

U.S.LOCATION

0.99+

InformaticaORGANIZATION

0.99+

todayDATE

0.99+

six monthsQUANTITY

0.99+

LatchORGANIZATION

0.99+

100 millionQUANTITY

0.99+

SAPORGANIZATION

0.99+

180 millionQUANTITY

0.99+

HudupORGANIZATION

0.99+

JP MorganORGANIZATION

0.99+

thirdQUANTITY

0.99+

ImmuntaORGANIZATION

0.99+

yesterdayDATE

0.99+

Marlborough, MassachusettsLOCATION

0.99+

theCUBEORGANIZATION

0.99+

one countryQUANTITY

0.98+

each appQUANTITY

0.98+

West FarmerORGANIZATION

0.98+

Snowflake Summit '22EVENT

0.98+

SnowflakeTITLE

0.98+

80 millionQUANTITY

0.98+

oneQUANTITY

0.97+

OracleORGANIZATION

0.97+

bothQUANTITY

0.97+

mid ninetiesDATE

0.96+

GDPRTITLE

0.96+

SnowflakesEVENT

0.96+

day twoQUANTITY

0.95+

HIPAATITLE

0.95+

Snowflake Summit '22EVENT

0.94+

24QUANTITY

0.94+

about 20 yearsQUANTITY

0.93+

first thingQUANTITY

0.93+

this morningDATE

0.93+

past yearDATE

0.92+

sevenQUANTITY

0.92+

SnowflakeORGANIZATION

0.92+

Snowflake Summit 2022EVENT

0.92+

about 250 peopleQUANTITY

0.92+

eachQUANTITY

0.91+

dayQUANTITY

0.87+

doubleQUANTITY

0.87+

SMPORGANIZATION

0.85+

unistoreTITLE

0.84+

tripleQUANTITY

0.84+

SnowflakeEVENT

0.83+

CaesarPERSON

0.82+

three areasQUANTITY

0.82+

GSIsORGANIZATION

0.81+

Years agoDATE

0.8+