Image Title

Search Results for Google Glass:

Breaking Analysis: Databricks faces critical strategic decisions…here’s why


 

>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Spark became a top level Apache project in 2014, and then shortly thereafter, burst onto the big data scene. Spark, along with the cloud, transformed and in many ways, disrupted the big data market. Databricks optimized its tech stack for Spark and took advantage of the cloud to really cleverly deliver a managed service that has become a leading AI and data platform among data scientists and data engineers. However, emerging customer data requirements are shifting into a direction that will cause modern data platform players generally and Databricks, specifically, we think, to make some key directional decisions and perhaps even reinvent themselves. Hello and welcome to this week's wikibon theCUBE Insights, powered by ETR. In this Breaking Analysis, we're going to do a deep dive into Databricks. We'll explore its current impressive market momentum. We're going to use some ETR survey data to show that, and then we'll lay out how customer data requirements are changing and what the ideal data platform will look like in the midterm future. We'll then evaluate core elements of the Databricks portfolio against that vision, and then we'll close with some strategic decisions that we think the company faces. And to do so, we welcome in our good friend, George Gilbert, former equities analyst, market analyst, and current Principal at TechAlpha Partners. George, good to see you. Thanks for coming on. >> Good to see you, Dave. >> All right, let me set this up. We're going to start by taking a look at where Databricks sits in the market in terms of how customers perceive the company and what it's momentum looks like. And this chart that we're showing here is data from ETS, the emerging technology survey of private companies. The N is 1,421. What we did is we cut the data on three sectors, analytics, database-data warehouse, and AI/ML. The vertical axis is a measure of customer sentiment, which evaluates an IT decision maker's awareness of the firm and the likelihood of engaging and/or purchase intent. The horizontal axis shows mindshare in the dataset, and we've highlighted Databricks, which has been a consistent high performer in this survey over the last several quarters. And as we, by the way, just as aside as we previously reported, OpenAI, which burst onto the scene this past quarter, leads all names, but Databricks is still prominent. You can see that the ETR shows some open source tools for reference, but as far as firms go, Databricks is very impressively positioned. Now, let's see how they stack up to some mainstream cohorts in the data space, against some bigger companies and sometimes public companies. This chart shows net score on the vertical axis, which is a measure of spending momentum and pervasiveness in the data set is on the horizontal axis. You can see that chart insert in the upper right, that informs how the dots are plotted, and net score against shared N. And that red dotted line at 40% indicates a highly elevated net score, anything above that we think is really, really impressive. And here we're just comparing Databricks with Snowflake, Cloudera, and Oracle. And that squiggly line leading to Databricks shows their path since 2021 by quarter. And you can see it's performing extremely well, maintaining an elevated net score and net range. Now it's comparable in the vertical axis to Snowflake, and it consistently is moving to the right and gaining share. Now, why did we choose to show Cloudera and Oracle? The reason is that Cloudera got the whole big data era started and was disrupted by Spark. And of course the cloud, Spark and Databricks and Oracle in many ways, was the target of early big data players like Cloudera. Take a listen to Cloudera CEO at the time, Mike Olson. This is back in 2010, first year of theCUBE, play the clip. >> Look, back in the day, if you had a data problem, if you needed to run business analytics, you wrote the biggest check you could to Sun Microsystems, and you bought a great big, single box, central server, and any money that was left over, you handed to Oracle for a database licenses and you installed that database on that box, and that was where you went for data. That was your temple of information. >> Okay? So Mike Olson implied that monolithic model was too expensive and inflexible, and Cloudera set out to fix that. But the best laid plans, as they say, George, what do you make of the data that we just shared? >> So where Databricks has really come up out of sort of Cloudera's tailpipe was they took big data processing, made it coherent, made it a managed service so it could run in the cloud. So it relieved customers of the operational burden. Where they're really strong and where their traditional meat and potatoes or bread and butter is the predictive and prescriptive analytics that building and training and serving machine learning models. They've tried to move into traditional business intelligence, the more traditional descriptive and diagnostic analytics, but they're less mature there. So what that means is, the reason you see Databricks and Snowflake kind of side by side is there are many, many accounts that have both Snowflake for business intelligence, Databricks for AI machine learning, where Snowflake, I'm sorry, where Databricks also did really well was in core data engineering, refining the data, the old ETL process, which kind of turned into ELT, where you loaded into the analytic repository in raw form and refine it. And so people have really used both, and each is trying to get into the other. >> Yeah, absolutely. We've reported on this quite a bit. Snowflake, kind of moving into the domain of Databricks and vice versa. And the last bit of ETR evidence that we want to share in terms of the company's momentum comes from ETR's Round Tables. They're run by Erik Bradley, and now former Gartner analyst and George, your colleague back at Gartner, Daren Brabham. And what we're going to show here is some direct quotes of IT pros in those Round Tables. There's a data science head and a CIO as well. Just make a few call outs here, we won't spend too much time on it, but starting at the top, like all of us, we can't talk about Databricks without mentioning Snowflake. Those two get us excited. Second comment zeros in on the flexibility and the robustness of Databricks from a data warehouse perspective. And then the last point is, despite competition from cloud players, Databricks has reinvented itself a couple of times over the year. And George, we're going to lay out today a scenario that perhaps calls for Databricks to do that once again. >> Their big opportunity and their big challenge for every tech company, it's managing a technology transition. The transition that we're talking about is something that's been bubbling up, but it's really epical. First time in 60 years, we're moving from an application-centric view of the world to a data-centric view, because decisions are becoming more important than automating processes. So let me let you sort of develop. >> Yeah, so let's talk about that here. We going to put up some bullets on precisely that point and the changing sort of customer environment. So you got IT stacks are shifting is George just said, from application centric silos to data centric stacks where the priority is shifting from automating processes to automating decision. You know how look at RPA and there's still a lot of automation going on, but from the focus of that application centricity and the data locked into those apps, that's changing. Data has historically been on the outskirts in silos, but organizations, you think of Amazon, think Uber, Airbnb, they're putting data at the core, and logic is increasingly being embedded in the data instead of the reverse. In other words, today, the data's locked inside the app, which is why you need to extract that data is sticking it to a data warehouse. The point, George, is we're putting forth this new vision for how data is going to be used. And you've used this Uber example to underscore the future state. Please explain? >> Okay, so this is hopefully an example everyone can relate to. The idea is first, you're automating things that are happening in the real world and decisions that make those things happen autonomously without humans in the loop all the time. So to use the Uber example on your phone, you call a car, you call a driver. Automatically, the Uber app then looks at what drivers are in the vicinity, what drivers are free, matches one, calculates an ETA to you, calculates a price, calculates an ETA to your destination, and then directs the driver once they're there. The point of this is that that cannot happen in an application-centric world very easily because all these little apps, the drivers, the riders, the routes, the fares, those call on data locked up in many different apps, but they have to sit on a layer that makes it all coherent. >> But George, so if Uber's doing this, doesn't this tech already exist? Isn't there a tech platform that does this already? >> Yes, and the mission of the entire tech industry is to build services that make it possible to compose and operate similar platforms and tools, but with the skills of mainstream developers in mainstream corporations, not the rocket scientists at Uber and Amazon. >> Okay, so we're talking about horizontally scaling across the industry, and actually giving a lot more organizations access to this technology. So by way of review, let's summarize the trend that's going on today in terms of the modern data stack that is propelling the likes of Databricks and Snowflake, which we just showed you in the ETR data and is really is a tailwind form. So the trend is toward this common repository for analytic data, that could be multiple virtual data warehouses inside of Snowflake, but you're in that Snowflake environment or Lakehouses from Databricks or multiple data lakes. And we've talked about what JP Morgan Chase is doing with the data mesh and gluing data lakes together, you've got various public clouds playing in this game, and then the data is annotated to have a common meaning. In other words, there's a semantic layer that enables applications to talk to the data elements and know that they have common and coherent meaning. So George, the good news is this approach is more effective than the legacy monolithic models that Mike Olson was talking about, so what's the problem with this in your view? >> So today's data platforms added immense value 'cause they connected the data that was previously locked up in these monolithic apps or on all these different microservices, and that supported traditional BI and AI/ML use cases. But now if we want to build apps like Uber or Amazon.com, where they've got essentially an autonomously running supply chain and e-commerce app where humans only care and feed it. But the thing is figuring out what to buy, when to buy, where to deploy it, when to ship it. We needed a semantic layer on top of the data. So that, as you were saying, the data that's coming from all those apps, the different apps that's integrated, not just connected, but it means the same. And the issue is whenever you add a new layer to a stack to support new applications, there are implications for the already existing layers, like can they support the new layer and its use cases? So for instance, if you add a semantic layer that embeds app logic with the data rather than vice versa, which we been talking about and that's been the case for 60 years, then the new data layer faces challenges that the way you manage that data, the way you analyze that data, is not supported by today's tools. >> Okay, so actually Alex, bring me up that last slide if you would, I mean, you're basically saying at the bottom here, today's repositories don't really do joins at scale. The future is you're talking about hundreds or thousands or millions of data connections, and today's systems, we're talking about, I don't know, 6, 8, 10 joins and that is the fundamental problem you're saying, is a new data error coming and existing systems won't be able to handle it? >> Yeah, one way of thinking about it is that even though we call them relational databases, when we actually want to do lots of joins or when we want to analyze data from lots of different tables, we created a whole new industry for analytic databases where you sort of mung the data together into fewer tables. So you didn't have to do as many joins because the joins are difficult and slow. And when you're going to arbitrarily join thousands, hundreds of thousands or across millions of elements, you need a new type of database. We have them, they're called graph databases, but to query them, you go back to the prerelational era in terms of their usability. >> Okay, so we're going to come back to that and talk about how you get around that problem. But let's first lay out what the ideal data platform of the future we think looks like. And again, we're going to come back to use this Uber example. In this graphic that George put together, awesome. We got three layers. The application layer is where the data products reside. The example here is drivers, rides, maps, routes, ETA, et cetera. The digital version of what we were talking about in the previous slide, people, places and things. The next layer is the data layer, that breaks down the silos and connects the data elements through semantics and everything is coherent. And then the bottom layers, the legacy operational systems feed that data layer. George, explain what's different here, the graph database element, you talk about the relational query capabilities, and why can't I just throw memory at solving this problem? >> Some of the graph databases do throw memory at the problem and maybe without naming names, some of them live entirely in memory. And what you're dealing with is a prerelational in-memory database system where you navigate between elements, and the issue with that is we've had SQL for 50 years, so we don't have to navigate, we can say what we want without how to get it. That's the core of the problem. >> Okay. So if I may, I just want to drill into this a little bit. So you're talking about the expressiveness of a graph. Alex, if you'd bring that back out, the fourth bullet, expressiveness of a graph database with the relational ease of query. Can you explain what you mean by that? >> Yeah, so graphs are great because when you can describe anything with a graph, that's why they're becoming so popular. Expressive means you can represent anything easily. They're conducive to, you might say, in a world where we now want like the metaverse, like with a 3D world, and I don't mean the Facebook metaverse, I mean like the business metaverse when we want to capture data about everything, but we want it in context, we want to build a set of digital twins that represent everything going on in the world. And Uber is a tiny example of that. Uber built a graph to represent all the drivers and riders and maps and routes. But what you need out of a database isn't just a way to store stuff and update stuff. You need to be able to ask questions of it, you need to be able to query it. And if you go back to prerelational days, you had to know how to find your way to the data. It's sort of like when you give directions to someone and they didn't have a GPS system and a mapping system, you had to give them turn by turn directions. Whereas when you have a GPS and a mapping system, which is like the relational thing, you just say where you want to go, and it spits out the turn by turn directions, which let's say, the car might follow or whoever you're directing would follow. But the point is, it's much easier in a relational database to say, "I just want to get these results. You figure out how to get it." The graph database, they have not taken over the world because in some ways, it's taking a 50 year leap backwards. >> Alright, got it. Okay. Let's take a look at how the current Databricks offerings map to that ideal state that we just laid out. So to do that, we put together this chart that looks at the key elements of the Databricks portfolio, the core capability, the weakness, and the threat that may loom. Start with the Delta Lake, that's the storage layer, which is great for files and tables. It's got true separation of compute and storage, I want you to double click on that George, as independent elements, but it's weaker for the type of low latency ingest that we see coming in the future. And some of the threats highlighted here. AWS could add transactional tables to S3, Iceberg adoption is picking up and could accelerate, that could disrupt Databricks. George, add some color here please? >> Okay, so this is the sort of a classic competitive forces where you want to look at, so what are customers demanding? What's competitive pressure? What are substitutes? Even what your suppliers might be pushing. Here, Delta Lake is at its core, a set of transactional tables that sit on an object store. So think of it in a database system, this is the storage engine. So since S3 has been getting stronger for 15 years, you could see a scenario where they add transactional tables. We have an open source alternative in Iceberg, which Snowflake and others support. But at the same time, Databricks has built an ecosystem out of tools, their own and others, that read and write to Delta tables, that's what makes the Delta Lake and ecosystem. So they have a catalog, the whole machine learning tool chain talks directly to the data here. That was their great advantage because in the past with Snowflake, you had to pull all the data out of the database before the machine learning tools could work with it, that was a major shortcoming. They fixed that. But the point here is that even before we get to the semantic layer, the core foundation is under threat. >> Yep. Got it. Okay. We got a lot of ground to cover. So we're going to take a look at the Spark Execution Engine next. Think of that as the refinery that runs really efficient batch processing. That's kind of what disrupted the DOOp in a large way, but it's not Python friendly and that's an issue because the data science and the data engineering crowd are moving in that direction, and/or they're using DBT. George, we had Tristan Handy on at Supercloud, really interesting discussion that you and I did. Explain why this is an issue for Databricks? >> So once the data lake was in place, what people did was they refined their data batch, and Spark has always had streaming support and it's gotten better. The underlying storage as we've talked about is an issue. But basically they took raw data, then they refined it into tables that were like customers and products and partners. And then they refined that again into what was like gold artifacts, which might be business intelligence metrics or dashboards, which were collections of metrics. But they were running it on the Spark Execution Engine, which it's a Java-based engine or it's running on a Java-based virtual machine, which means all the data scientists and the data engineers who want to work with Python are really working in sort of oil and water. Like if you get an error in Python, you can't tell whether the problems in Python or where it's in Spark. There's just an impedance mismatch between the two. And then at the same time, the whole world is now gravitating towards DBT because it's a very nice and simple way to compose these data processing pipelines, and people are using either SQL in DBT or Python in DBT, and that kind of is a substitute for doing it all in Spark. So it's under threat even before we get to that semantic layer, it so happens that DBT itself is becoming the authoring environment for the semantic layer with business intelligent metrics. But that's again, this is the second element that's under direct substitution and competitive threat. >> Okay, let's now move down to the third element, which is the Photon. Photon is Databricks' BI Lakehouse, which has integration with the Databricks tooling, which is very rich, it's newer. And it's also not well suited for high concurrency and low latency use cases, which we think are going to increasingly become the norm over time. George, the call out threat here is customers want to connect everything to a semantic layer. Explain your thinking here and why this is a potential threat to Databricks? >> Okay, so two issues here. What you were touching on, which is the high concurrency, low latency, when people are running like thousands of dashboards and data is streaming in, that's a problem because SQL data warehouse, the query engine, something like that matures over five to 10 years. It's one of these things, the joke that Andy Jassy makes just in general, he's really talking about Azure, but there's no compression algorithm for experience. The Snowflake guy started more than five years earlier, and for a bunch of reasons, that lead is not something that Databricks can shrink. They'll always be behind. So that's why Snowflake has transactional tables now and we can get into that in another show. But the key point is, so near term, it's struggling to keep up with the use cases that are core to business intelligence, which is highly concurrent, lots of users doing interactive query. But then when you get to a semantic layer, that's when you need to be able to query data that might have thousands or tens of thousands or hundreds of thousands of joins. And that's a SQL query engine, traditional SQL query engine is just not built for that. That's the core problem of traditional relational databases. >> Now this is a quick aside. We always talk about Snowflake and Databricks in sort of the same context. We're not necessarily saying that Snowflake is in a position to tackle all these problems. We'll deal with that separately. So we don't mean to imply that, but we're just sort of laying out some of the things that Snowflake or rather Databricks customers we think, need to be thinking about and having conversations with Databricks about and we hope to have them as well. We'll come back to that in terms of sort of strategic options. But finally, when come back to the table, we have Databricks' AI/ML Tool Chain, which has been an awesome capability for the data science crowd. It's comprehensive, it's a one-stop shop solution, but the kicker here is that it's optimized for supervised model building. And the concern is that foundational models like GPT could cannibalize the current Databricks tooling, but George, can't Databricks, like other software companies, integrate foundation model capabilities into its platform? >> Okay, so the sound bite answer to that is sure, IBM 3270 terminals could call out to a graphical user interface when they're running on the XT terminal, but they're not exactly good citizens in that world. The core issue is Databricks has this wonderful end-to-end tool chain for training, deploying, monitoring, running inference on supervised models. But the paradigm there is the customer builds and trains and deploys each model for each feature or application. In a world of foundation models which are pre-trained and unsupervised, the entire tool chain is different. So it's not like Databricks can junk everything they've done and start over with all their engineers. They have to keep maintaining what they've done in the old world, but they have to build something new that's optimized for the new world. It's a classic technology transition and their mentality appears to be, "Oh, we'll support the new stuff from our old stuff." Which is suboptimal, and as we'll talk about, their biggest patron and the company that put them on the map, Microsoft, really stopped working on their old stuff three years ago so that they could build a new tool chain optimized for this new world. >> Yeah, and so let's sort of close with what we think the options are and decisions that Databricks has for its future architecture. They're smart people. I mean we've had Ali Ghodsi on many times, super impressive. I think they've got to be keenly aware of the limitations, what's going on with foundation models. But at any rate, here in this chart, we lay out sort of three scenarios. One is re-architect the platform by incrementally adopting new technologies. And example might be to layer a graph query engine on top of its stack. They could license key technologies like graph database, they could get aggressive on M&A and buy-in, relational knowledge graphs, semantic technologies, vector database technologies. George, as David Floyer always says, "A lot of ways to skin a cat." We've seen companies like, even think about EMC maintained its relevance through M&A for many, many years. George, give us your thought on each of these strategic options? >> Okay, I find this question the most challenging 'cause remember, I used to be an equity research analyst. I worked for Frank Quattrone, we were one of the top tech shops in the banking industry, although this is 20 years ago. But the M&A team was the top team in the industry and everyone wanted them on their side. And I remember going to meetings with these CEOs, where Frank and the bankers would say, "You want us for your M&A work because we can do better." And they really could do better. But in software, it's not like with EMC in hardware because with hardware, it's easier to connect different boxes. With software, the whole point of a software company is to integrate and architect the components so they fit together and reinforce each other, and that makes M&A harder. You can do it, but it takes a long time to fit the pieces together. Let me give you examples. If they put a graph query engine, let's say something like TinkerPop, on top of, I don't even know if it's possible, but let's say they put it on top of Delta Lake, then you have this graph query engine talking to their storage layer, Delta Lake. But if you want to do analysis, you got to put the data in Photon, which is not really ideal for highly connected data. If you license a graph database, then most of your data is in the Delta Lake and how do you sync it with the graph database? If you do sync it, you've got data in two places, which kind of defeats the purpose of having a unified repository. I find this semantic layer option in number three actually more promising, because that's something that you can layer on top of the storage layer that you have already. You just have to figure out then how to have your query engines talk to that. What I'm trying to highlight is, it's easy as an analyst to say, "You can buy this company or license that technology." But the really hard work is making it all work together and that is where the challenge is. >> Yeah, and well look, I thank you for laying that out. We've seen it, certainly Microsoft and Oracle. I guess you might argue that well, Microsoft had a monopoly in its desktop software and was able to throw off cash for a decade plus while it's stock was going sideways. Oracle had won the database wars and had amazing margins and cash flow to be able to do that. Databricks isn't even gone public yet, but I want to close with some of the players to watch. Alex, if you'd bring that back up, number four here. AWS, we talked about some of their options with S3 and it's not just AWS, it's blob storage, object storage. Microsoft, as you sort of alluded to, was an early go-to market channel for Databricks. We didn't address that really. So maybe in the closing comments we can. Google obviously, Snowflake of course, we're going to dissect their options in future Breaking Analysis. Dbt labs, where do they fit? Bob Muglia's company, Relational.ai, why are these players to watch George, in your opinion? >> So everyone is trying to assemble and integrate the pieces that would make building data applications, data products easy. And the critical part isn't just assembling a bunch of pieces, which is traditionally what AWS did. It's a Unix ethos, which is we give you the tools, you put 'em together, 'cause you then have the maximum choice and maximum power. So what the hyperscalers are doing is they're taking their key value stores, in the case of ASW it's DynamoDB, in the case of Azure it's Cosmos DB, and each are putting a graph query engine on top of those. So they have a unified storage and graph database engine, like all the data would be collected in the key value store. Then you have a graph database, that's how they're going to be presenting a foundation for building these data apps. Dbt labs is putting a semantic layer on top of data lakes and data warehouses and as we'll talk about, I'm sure in the future, that makes it easier to swap out the underlying data platform or swap in new ones for specialized use cases. Snowflake, what they're doing, they're so strong in data management and with their transactional tables, what they're trying to do is take in the operational data that used to be in the province of many state stores like MongoDB and say, "If you manage that data with us, it'll be connected to your analytic data without having to send it through a pipeline." And that's hugely valuable. Relational.ai is the wildcard, 'cause what they're trying to do, it's almost like a holy grail where you're trying to take the expressiveness of connecting all your data in a graph but making it as easy to query as you've always had it in a SQL database or I should say, in a relational database. And if they do that, it's sort of like, it'll be as easy to program these data apps as a spreadsheet was compared to procedural languages, like BASIC or Pascal. That's the implications of Relational.ai. >> Yeah, and again, we talked before, why can't you just throw this all in memory? We're talking in that example of really getting down to differences in how you lay the data out on disk in really, new database architecture, correct? >> Yes. And that's why it's not clear that you could take a data lake or even a Snowflake and why you can't put a relational knowledge graph on those. You could potentially put a graph database, but it'll be compromised because to really do what Relational.ai has done, which is the ease of Relational on top of the power of graph, you actually need to change how you're storing your data on disk or even in memory. So you can't, in other words, it's not like, oh we can add graph support to Snowflake, 'cause if you did that, you'd have to change, or in your data lake, you'd have to change how the data is physically laid out. And then that would break all the tools that talk to that currently. >> What in your estimation, is the timeframe where this becomes critical for a Databricks and potentially Snowflake and others? I mentioned earlier midterm, are we talking three to five years here? Are we talking end of decade? What's your radar say? >> I think something surprising is going on that's going to sort of come up the tailpipe and take everyone by storm. All the hype around business intelligence metrics, which is what we used to put in our dashboards where bookings, billings, revenue, customer, those things, those were the key artifacts that used to live in definitions in your BI tools, and DBT has basically created a standard for defining those so they live in your data pipeline or they're defined in their data pipeline and executed in the data warehouse or data lake in a shared way, so that all tools can use them. This sounds like a digression, it's not. All this stuff about data mesh, data fabric, all that's going on is we need a semantic layer and the business intelligence metrics are defining common semantics for your data. And I think we're going to find by the end of this year, that metrics are how we annotate all our analytic data to start adding common semantics to it. And we're going to find this semantic layer, it's not three to five years off, it's going to be staring us in the face by the end of this year. >> Interesting. And of course SVB today was shut down. We're seeing serious tech headwinds, and oftentimes in these sort of downturns or flat turns, which feels like this could be going on for a while, we emerge with a lot of new players and a lot of new technology. George, we got to leave it there. Thank you to George Gilbert for excellent insights and input for today's episode. I want to thank Alex Myerson who's on production and manages the podcast, of course Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our EIC over at Siliconangle.com, he does some great editing. Remember all these episodes, they're available as podcasts. Wherever you listen, all you got to do is search Breaking Analysis Podcast, we publish each week on wikibon.com and siliconangle.com, or you can email me at David.Vellante@siliconangle.com, or DM me @DVellante. Comment on our LinkedIn post, and please do check out ETR.ai, great survey data, enterprise tech focus, phenomenal. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis.

Published Date : Mar 10 2023

SUMMARY :

bringing you data-driven core elements of the Databricks portfolio and pervasiveness in the data and that was where you went for data. and Cloudera set out to fix that. the reason you see and the robustness of Databricks and their big challenge and the data locked into in the real world and decisions Yes, and the mission of that is propelling the likes that the way you manage that data, is the fundamental problem because the joins are difficult and slow. and connects the data and the issue with that is the fourth bullet, expressiveness and it spits out the and the threat that may loom. because in the past with Snowflake, Think of that as the refinery So once the data lake was in place, George, the call out threat here But the key point is, in sort of the same context. and the company that put One is re-architect the platform and architect the components some of the players to watch. in the case of ASW it's DynamoDB, and why you can't put a relational and executed in the data and manages the podcast, of

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

David FloyerPERSON

0.99+

Mike OlsonPERSON

0.99+

2014DATE

0.99+

George GilbertPERSON

0.99+

Dave VellantePERSON

0.99+

GeorgePERSON

0.99+

Cheryl KnightPERSON

0.99+

Ken SchiffmanPERSON

0.99+

Andy JassyPERSON

0.99+

OracleORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Erik BradleyPERSON

0.99+

DavePERSON

0.99+

UberORGANIZATION

0.99+

thousandsQUANTITY

0.99+

Sun MicrosystemsORGANIZATION

0.99+

50 yearsQUANTITY

0.99+

AWSORGANIZATION

0.99+

Bob MugliaPERSON

0.99+

GartnerORGANIZATION

0.99+

AirbnbORGANIZATION

0.99+

60 yearsQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

Ali GhodsiPERSON

0.99+

2010DATE

0.99+

DatabricksORGANIZATION

0.99+

Kristin MartinPERSON

0.99+

Rob HofPERSON

0.99+

threeQUANTITY

0.99+

15 yearsQUANTITY

0.99+

Databricks'ORGANIZATION

0.99+

two placesQUANTITY

0.99+

BostonLOCATION

0.99+

Tristan HandyPERSON

0.99+

M&AORGANIZATION

0.99+

Frank QuattronePERSON

0.99+

second elementQUANTITY

0.99+

Daren BrabhamPERSON

0.99+

TechAlpha PartnersORGANIZATION

0.99+

third elementQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

50 yearQUANTITY

0.99+

40%QUANTITY

0.99+

ClouderaORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

five yearsQUANTITY

0.99+

Robert Nishihara, Anyscale | AWS Startup Showcase S3 E1


 

(upbeat music) >> Hello everyone. Welcome to theCube's presentation of the "AWS Startup Showcase." The topic this episode is AI and machine learning, top startups building foundational model infrastructure. This is season three, episode one of the ongoing series covering exciting startups from the AWS ecosystem. And this time we're talking about AI and machine learning. I'm your host, John Furrier. I'm excited I'm joined today by Robert Nishihara, who's the co-founder and CEO of a hot startup called Anyscale. He's here to talk about Ray, the open source project, Anyscale's infrastructure for foundation as well. Robert, thank you for joining us today. >> Yeah, thanks so much as well. >> I've been following your company since the founding pre pandemic and you guys really had a great vision scaled up and in a perfect position for this big wave that we all see with ChatGPT and OpenAI that's gone mainstream. Finally, AI has broken out through the ropes and now gone mainstream, so I think you guys are really well positioned. I'm looking forward to to talking with you today. But before we get into it, introduce the core mission for Anyscale. Why do you guys exist? What is the North Star for Anyscale? >> Yeah, like you mentioned, there's a tremendous amount of excitement about AI right now. You know, I think a lot of us believe that AI can transform just every different industry. So one of the things that was clear to us when we started this company was that the amount of compute needed to do AI was just exploding. Like to actually succeed with AI, companies like OpenAI or Google or you know, these companies getting a lot of value from AI, were not just running these machine learning models on their laptops or on a single machine. They were scaling these applications across hundreds or thousands or more machines and GPUs and other resources in the Cloud. And so to actually succeed with AI, and this has been one of the biggest trends in computing, maybe the biggest trend in computing in, you know, in recent history, the amount of compute has been exploding. And so to actually succeed with that AI, to actually build these scalable applications and scale the AI applications, there's a tremendous software engineering lift to build the infrastructure to actually run these scalable applications. And that's very hard to do. So one of the reasons many AI projects and initiatives fail is that, or don't make it to production, is the need for this scale, the infrastructure lift, to actually make it happen. So our goal here with Anyscale and Ray, is to make that easy, is to make scalable computing easy. So that as a developer or as a business, if you want to do AI, if you want to get value out of AI, all you need to know is how to program on your laptop. Like, all you need to know is how to program in Python. And if you can do that, then you're good to go. Then you can do what companies like OpenAI or Google do and get value out of machine learning. >> That programming example of how easy it is with Python reminds me of the early days of Cloud, when infrastructure as code was talked about was, it was just code the infrastructure programmable. That's super important. That's what AI people wanted, first program AI. That's the new trend. And I want to understand, if you don't mind explaining, the relationship that Anyscale has to these foundational models and particular the large language models, also called LLMs, was seen with like OpenAI and ChatGPT. Before you get into the relationship that you have with them, can you explain why the hype around foundational models? Why are people going crazy over foundational models? What is it and why is it so important? >> Yeah, so foundational models and foundation models are incredibly important because they enable businesses and developers to get value out of machine learning, to use machine learning off the shelf with these large models that have been trained on tons of data and that are useful out of the box. And then, of course, you know, as a business or as a developer, you can take those foundational models and repurpose them or fine tune them or adapt them to your specific use case and what you want to achieve. But it's much easier to do that than to train them from scratch. And I think there are three, for people to actually use foundation models, there are three main types of workloads or problems that need to be solved. One is training these foundation models in the first place, like actually creating them. The second is fine tuning them and adapting them to your use case. And the third is serving them and actually deploying them. Okay, so Ray and Anyscale are used for all of these three different workloads. Companies like OpenAI or Cohere that train large language models. Or open source versions like GPTJ are done on top of Ray. There are many startups and other businesses that fine tune, that, you know, don't want to train the large underlying foundation models, but that do want to fine tune them, do want to adapt them to their purposes, and build products around them and serve them, those are also using Ray and Anyscale for that fine tuning and that serving. And so the reason that Ray and Anyscale are important here is that, you know, building and using foundation models requires a huge scale. It requires a lot of data. It requires a lot of compute, GPUs, TPUs, other resources. And to actually take advantage of that and actually build these scalable applications, there's a lot of infrastructure that needs to happen under the hood. And so you can either use Ray and Anyscale to take care of that and manage the infrastructure and solve those infrastructure problems. Or you can build the infrastructure and manage the infrastructure yourself, which you can do, but it's going to slow your team down. It's going to, you know, many of the businesses we work with simply don't want to be in the business of managing infrastructure and building infrastructure. They want to focus on product development and move faster. >> I know you got a keynote presentation we're going to go to in a second, but I think you hit on something I think is the real tipping point, doing it yourself, hard to do. These are things where opportunities are and the Cloud did that with data centers. Turned a data center and made it an API. The heavy lifting went away and went to the Cloud so people could be more creative and build their product. In this case, build their creativity. Is that kind of what's the big deal? Is that kind of a big deal happening that you guys are taking the learnings and making that available so people don't have to do that? >> That's exactly right. So today, if you want to succeed with AI, if you want to use AI in your business, infrastructure work is on the critical path for doing that. To do AI, you have to build infrastructure. You have to figure out how to scale your applications. That's going to change. We're going to get to the point, and you know, with Ray and Anyscale, we're going to remove the infrastructure from the critical path so that as a developer or as a business, all you need to focus on is your application logic, what you want the the program to do, what you want your application to do, how you want the AI to actually interface with the rest of your product. Now the way that will happen is that Ray and Anyscale will still, the infrastructure work will still happen. It'll just be under the hood and taken care of by Ray in Anyscale. And so I think something like this is really necessary for AI to reach its potential, for AI to have the impact and the reach that we think it will, you have to make it easier to do. >> And just for clarification to point out, if you don't mind explaining the relationship of Ray and Anyscale real quick just before we get into the presentation. >> So Ray is an open source project. We created it. We were at Berkeley doing machine learning. We started Ray so that, in order to provide an easy, a simple open source tool for building and running scalable applications. And Anyscale is the managed version of Ray, basically we will run Ray for you in the Cloud, provide a lot of tools around the developer experience and managing the infrastructure and providing more performance and superior infrastructure. >> Awesome. I know you got a presentation on Ray and Anyscale and you guys are positioning as the infrastructure for foundational models. So I'll let you take it away and then when you're done presenting, we'll come back, I'll probably grill you with a few questions and then we'll close it out so take it away. >> Robert: Sounds great. So I'll say a little bit about how companies are using Ray and Anyscale for foundation models. The first thing I want to mention is just why we're doing this in the first place. And the underlying observation, the underlying trend here, and this is a plot from OpenAI, is that the amount of compute needed to do machine learning has been exploding. It's been growing at something like 35 times every 18 months. This is absolutely enormous. And other people have written papers measuring this trend and you get different numbers. But the point is, no matter how you slice and dice it, it' a astronomical rate. Now if you compare that to something we're all familiar with, like Moore's Law, which says that, you know, the processor performance doubles every roughly 18 months, you can see that there's just a tremendous gap between the needs, the compute needs of machine learning applications, and what you can do with a single chip, right. So even if Moore's Law were continuing strong and you know, doing what it used to be doing, even if that were the case, there would still be a tremendous gap between what you can do with the chip and what you need in order to do machine learning. And so given this graph, what we've seen, and what has been clear to us since we started this company, is that doing AI requires scaling. There's no way around it. It's not a nice to have, it's really a requirement. And so that led us to start Ray, which is the open source project that we started to make it easy to build these scalable Python applications and scalable machine learning applications. And since we started the project, it's been adopted by a tremendous number of companies. Companies like OpenAI, which use Ray to train their large models like ChatGPT, companies like Uber, which run all of their deep learning and classical machine learning on top of Ray, companies like Shopify or Spotify or Instacart or Lyft or Netflix, ByteDance, which use Ray for their machine learning infrastructure. Companies like Ant Group, which makes Alipay, you know, they use Ray across the board for fraud detection, for online learning, for detecting money laundering, you know, for graph processing, stream processing. Companies like Amazon, you know, run Ray at a tremendous scale and just petabytes of data every single day. And so the project has seen just enormous adoption since, over the past few years. And one of the most exciting use cases is really providing the infrastructure for building training, fine tuning, and serving foundation models. So I'll say a little bit about, you know, here are some examples of companies using Ray for foundation models. Cohere trains large language models. OpenAI also trains large language models. You can think about the workloads required there are things like supervised pre-training, also reinforcement learning from human feedback. So this is not only the regular supervised learning, but actually more complex reinforcement learning workloads that take human input about what response to a particular question, you know is better than a certain other response. And incorporating that into the learning. There's open source versions as well, like GPTJ also built on top of Ray as well as projects like Alpa coming out of UC Berkeley. So these are some of the examples of exciting projects in organizations, training and creating these large language models and serving them using Ray. Okay, so what actually is Ray? Well, there are two layers to Ray. At the lowest level, there's the core Ray system. This is essentially low level primitives for building scalable Python applications. Things like taking a Python function or a Python class and executing them in the cluster setting. So Ray core is extremely flexible and you can build arbitrary scalable applications on top of Ray. So on top of Ray, on top of the core system, what really gives Ray a lot of its power is this ecosystem of scalable libraries. So on top of the core system you have libraries, scalable libraries for ingesting and pre-processing data, for training your models, for fine tuning those models, for hyper parameter tuning, for doing batch processing and batch inference, for doing model serving and deployment, right. And a lot of the Ray users, the reason they like Ray is that they want to run multiple workloads. They want to train and serve their models, right. They want to load their data and feed that into training. And Ray provides common infrastructure for all of these different workloads. So this is a little overview of what Ray, the different components of Ray. So why do people choose to go with Ray? I think there are three main reasons. The first is the unified nature. The fact that it is common infrastructure for scaling arbitrary workloads, from data ingest to pre-processing to training to inference and serving, right. This also includes the fact that it's future proof. AI is incredibly fast moving. And so many people, many companies that have built their own machine learning infrastructure and standardized on particular workflows for doing machine learning have found that their workflows are too rigid to enable new capabilities. If they want to do reinforcement learning, if they want to use graph neural networks, they don't have a way of doing that with their standard tooling. And so Ray, being future proof and being flexible and general gives them that ability. Another reason people choose Ray in Anyscale is the scalability. This is really our bread and butter. This is the reason, the whole point of Ray, you know, making it easy to go from your laptop to running on thousands of GPUs, making it easy to scale your development workloads and run them in production, making it easy to scale, you know, training to scale data ingest, pre-processing and so on. So scalability and performance, you know, are critical for doing machine learning and that is something that Ray provides out of the box. And lastly, Ray is an open ecosystem. You can run it anywhere. You can run it on any Cloud provider. Google, you know, Google Cloud, AWS, Asure. You can run it on your Kubernetes cluster. You can run it on your laptop. It's extremely portable. And not only that, it's framework agnostic. You can use Ray to scale arbitrary Python workloads. You can use it to scale and it integrates with libraries like TensorFlow or PyTorch or JAX or XG Boost or Hugging Face or PyTorch Lightning, right, or Scikit-learn or just your own arbitrary Python code. It's open source. And in addition to integrating with the rest of the machine learning ecosystem and these machine learning frameworks, you can use Ray along with all of the other tooling in the machine learning ecosystem. That's things like weights and biases or ML flow, right. Or you know, different data platforms like Databricks, you know, Delta Lake or Snowflake or tools for model monitoring for feature stores, all of these integrate with Ray. And that's, you know, Ray provides that kind of flexibility so that you can integrate it into the rest of your workflow. And then Anyscale is the scalable compute platform that's built on top, you know, that provides Ray. So Anyscale is a managed Ray service that runs in the Cloud. And what Anyscale does is it offers the best way to run Ray. And if you think about what you get with Anyscale, there are fundamentally two things. One is about moving faster, accelerating the time to market. And you get that by having the managed service so that as a developer you don't have to worry about managing infrastructure, you don't have to worry about configuring infrastructure. You also, it provides, you know, optimized developer workflows. Things like easily moving from development to production, things like having the observability tooling, the debug ability to actually easily diagnose what's going wrong in a distributed application. So things like the dashboards and the other other kinds of tooling for collaboration, for monitoring and so on. And then on top of that, so that's the first bucket, developer productivity, moving faster, faster experimentation and iteration. The second reason that people choose Anyscale is superior infrastructure. So this is things like, you know, cost deficiency, being able to easily take advantage of spot instances, being able to get higher GPU utilization, things like faster cluster startup times and auto scaling. Things like just overall better performance and faster scheduling. And so these are the kinds of things that Anyscale provides on top of Ray. It's the managed infrastructure. It's fast, it's like the developer productivity and velocity as well as performance. So this is what I wanted to share about Ray in Anyscale. >> John: Awesome. >> Provide that context. But John, I'm curious what you think. >> I love it. I love the, so first of all, it's a platform because that's the platform architecture right there. So just to clarify, this is an Anyscale platform, not- >> That's right. >> Tools. So you got tools in the platform. Okay, that's key. Love that managed service. Just curious, you mentioned Python multiple times, is that because of PyTorch and TensorFlow or Python's the most friendly with machine learning or it's because it's very common amongst all developers? >> That's a great question. Python is the language that people are using to do machine learning. So it's the natural starting point. Now, of course, Ray is actually designed in a language agnostic way and there are companies out there that use Ray to build scalable Java applications. But for the most part right now we're focused on Python and being the best way to build these scalable Python and machine learning applications. But, of course, down the road there always is that potential. >> So if you're slinging Python code out there and you're watching that, you're watching this video, get on Anyscale bus quickly. Also, I just, while you were giving the presentation, I couldn't help, since you mentioned OpenAI, which by the way, congratulations 'cause they've had great scale, I've noticed in their rapid growth 'cause they were the fastest company to the number of users than anyone in the history of the computer industry, so major successor, OpenAI and ChatGPT, huge fan. I'm not a skeptic at all. I think it's just the beginning, so congratulations. But I actually typed into ChatGPT, what are the top three benefits of Anyscale and came up with scalability, flexibility, and ease of use. Obviously, scalability is what you guys are called. >> That's pretty good. >> So that's what they came up with. So they nailed it. Did you have an inside prompt training, buy it there? Only kidding. (Robert laughs) >> Yeah, we hard coded that one. >> But that's the kind of thing that came up really, really quickly if I asked it to write a sales document, it probably will, but this is the future interface. This is why people are getting excited about the foundational models and the large language models because it's allowing the interface with the user, the consumer, to be more human, more natural. And this is clearly will be in every application in the future. >> Absolutely. This is how people are going to interface with software, how they're going to interface with products in the future. It's not just something, you know, not just a chat bot that you talk to. This is going to be how you get things done, right. How you use your web browser or how you use, you know, how you use Photoshop or how you use other products. Like you're not going to spend hours learning all the APIs and how to use them. You're going to talk to it and tell it what you want it to do. And of course, you know, if it doesn't understand it, it's going to ask clarifying questions. You're going to have a conversation and then it'll figure it out. >> This is going to be one of those things, we're going to look back at this time Robert and saying, "Yeah, from that company, that was the beginning of that wave." And just like AWS and Cloud Computing, the folks who got in early really were in position when say the pandemic came. So getting in early is a good thing and that's what everyone's talking about is getting in early and playing around, maybe replatforming or even picking one or few apps to refactor with some staff and managed services. So people are definitely jumping in. So I have to ask you the ROI cost question. You mentioned some of those, Moore's Law versus what's going on in the industry. When you look at that kind of scale, the first thing that jumps out at people is, "Okay, I love it. Let's go play around." But what's it going to cost me? Am I going to be tied to certain GPUs? What's the landscape look like from an operational standpoint, from the customer? Are they locked in and the benefit was flexibility, are you flexible to handle any Cloud? What is the customers, what are they looking at? Basically, that's my question. What's the customer looking at? >> Cost is super important here and many of the companies, I mean, companies are spending a huge amount on their Cloud computing, on AWS, and on doing AI, right. And I think a lot of the advantage of Anyscale, what we can provide here is not only better performance, but cost efficiency. Because if we can run something faster and more efficiently, it can also use less resources and you can lower your Cloud spending, right. We've seen companies go from, you know, 20% GPU utilization with their current setup and the current tools they're using to running on Anyscale and getting more like 95, you know, 100% GPU utilization. That's something like a five x improvement right there. So depending on the kind of application you're running, you know, it's a significant cost savings. We've seen companies that have, you know, processing petabytes of data every single day with Ray going from, you know, getting order of magnitude cost savings by switching from what they were previously doing to running their application on Ray. And when you have applications that are spending, you know, potentially $100 million a year and getting a 10 X cost savings is just absolutely enormous. So these are some of the kinds of- >> Data infrastructure is super important. Again, if the customer, if you're a prospect to this and thinking about going in here, just like the Cloud, you got infrastructure, you got the platform, you got SaaS, same kind of thing's going to go on in AI. So I want to get into that, you know, ROI discussion and some of the impact with your customers that are leveraging the platform. But first I hear you got a demo. >> Robert: Yeah, so let me show you, let me give you a quick run through here. So what I have open here is the Anyscale UI. I've started a little Anyscale Workspace. So Workspaces are the Anyscale concept for interactive developments, right. So here, imagine I'm just, you want to have a familiar experience like you're developing on your laptop. And here I have a terminal. It's not on my laptop. It's actually in the cloud running on Anyscale. And I'm just going to kick this off. This is going to train a large language model, so OPT. And it's doing this on 32 GPUs. We've got a cluster here with a bunch of CPU cores, bunch of memory. And as that's running, and by the way, if I wanted to run this on instead of 32 GPUs, 64, 128, this is just a one line change when I launch the Workspace. And what I can do is I can pull up VS code, right. Remember this is the interactive development experience. I can look at the actual code. Here it's using Ray train to train the torch model. We've got the training loop and we're saying that each worker gets access to one GPU and four CPU cores. And, of course, as I make the model larger, this is using deep speed, as I make the model larger, I could increase the number of GPUs that each worker gets access to, right. And how that is distributed across the cluster. And if I wanted to run on CPUs instead of GPUs or a different, you know, accelerator type, again, this is just a one line change. And here we're using Ray train to train the models, just taking my vanilla PyTorch model using Hugging Face and then scaling that across a bunch of GPUs. And, of course, if I want to look at the dashboard, I can go to the Ray dashboard. There are a bunch of different visualizations I can look at. I can look at the GPU utilization. I can look at, you know, the CPU utilization here where I think we're currently loading the model and running that actual application to start the training. And some of the things that are really convenient here about Anyscale, both I can get that interactive development experience with VS code. You know, I can look at the dashboards. I can monitor what's going on. It feels, I have a terminal, it feels like my laptop, but it's actually running on a large cluster. And I can, with however many GPUs or other resources that I want. And so it's really trying to combine the best of having the familiar experience of programming on your laptop, but with the benefits, you know, being able to take advantage of all the resources in the Cloud to scale. And it's like when, you know, you're talking about cost efficiency. One of the biggest reasons that people waste money, one of the silly reasons for wasting money is just forgetting to turn off your GPUs. And what you can do here is, of course, things will auto terminate if they're idle. But imagine you go to sleep, I have this big cluster. You can turn it off, shut off the cluster, come back tomorrow, restart the Workspace, and you know, your big cluster is back up and all of your code changes are still there. All of your local file edits. It's like you just closed your laptop and came back and opened it up again. And so this is the kind of experience we want to provide for our users. So that's what I wanted to share with you. >> Well, I think that whole, couple of things, lines of code change, single line of code change, that's game changing. And then the cost thing, I mean human error is a big deal. People pass out at their computer. They've been coding all night or they just forget about it. I mean, and then it's just like leaving the lights on or your water running in your house. It's just, at the scale that it is, the numbers will add up. That's a huge deal. So I think, you know, compute back in the old days, there's no compute. Okay, it's just compute sitting there idle. But you know, data cranking the models is doing, that's a big point. >> Another thing I want to add there about cost efficiency is that we make it really easy to use, if you're running on Anyscale, to use spot instances and these preemptable instances that can just be significantly cheaper than the on-demand instances. And so when we see our customers go from what they're doing before to using Anyscale and they go from not using these spot instances 'cause they don't have the infrastructure around it, the fault tolerance to handle the preemption and things like that, to being able to just check a box and use spot instances and save a bunch of money. >> You know, this was my whole, my feature article at Reinvent last year when I met with Adam Selipsky, this next gen Cloud is here. I mean, it's not auto scale, it's infrastructure scale. It's agility. It's flexibility. I think this is where the world needs to go. Almost what DevOps did for Cloud and what you were showing me that demo had this whole SRE vibe. And remember Google had site reliability engines to manage all those servers. This is kind of like an SRE vibe for data at scale. I mean, a similar kind of order of magnitude. I mean, I might be a little bit off base there, but how would you explain it? >> It's a nice analogy. I mean, what we are trying to do here is get to the point where developers don't think about infrastructure. Where developers only think about their application logic. And where businesses can do AI, can succeed with AI, and build these scalable applications, but they don't have to build, you know, an infrastructure team. They don't have to develop that expertise. They don't have to invest years in building their internal machine learning infrastructure. They can just focus on the Python code, on their application logic, and run the stuff out of the box. >> Awesome. Well, I appreciate the time. Before we wrap up here, give a plug for the company. I know you got a couple websites. Again, go, Ray's got its own website. You got Anyscale. You got an event coming up. Give a plug for the company looking to hire. Put a plug in for the company. >> Yeah, absolutely. Thank you. So first of all, you know, we think AI is really going to transform every industry and the opportunity is there, right. We can be the infrastructure that enables all of that to happen, that makes it easy for companies to succeed with AI, and get value out of AI. Now we have, if you're interested in learning more about Ray, Ray has been emerging as the standard way to build scalable applications. Our adoption has been exploding. I mentioned companies like OpenAI using Ray to train their models. But really across the board companies like Netflix and Cruise and Instacart and Lyft and Uber, you know, just among tech companies. It's across every industry. You know, gaming companies, agriculture, you know, farming, robotics, drug discovery, you know, FinTech, we see it across the board. And all of these companies can get value out of AI, can really use AI to improve their businesses. So if you're interested in learning more about Ray and Anyscale, we have our Ray Summit coming up in September. This is going to highlight a lot of the most impressive use cases and stories across the industry. And if your business, if you want to use LLMs, you want to train these LLMs, these large language models, you want to fine tune them with your data, you want to deploy them, serve them, and build applications and products around them, give us a call, talk to us. You know, we can really take the infrastructure piece, you know, off the critical path and make that easy for you. So that's what I would say. And, you know, like you mentioned, we're hiring across the board, you know, engineering, product, go-to-market, and it's an exciting time. >> Robert Nishihara, co-founder and CEO of Anyscale, congratulations on a great company you've built and continuing to iterate on and you got growth ahead of you, you got a tailwind. I mean, the AI wave is here. I think OpenAI and ChatGPT, a customer of yours, have really opened up the mainstream visibility into this new generation of applications, user interface, roll of data, large scale, how to make that programmable so we're going to need that infrastructure. So thanks for coming on this season three, episode one of the ongoing series of the hot startups. In this case, this episode is the top startups building foundational model infrastructure for AI and ML. I'm John Furrier, your host. Thanks for watching. (upbeat music)

Published Date : Mar 9 2023

SUMMARY :

episode one of the ongoing and you guys really had and other resources in the Cloud. and particular the large language and what you want to achieve. and the Cloud did that with data centers. the point, and you know, if you don't mind explaining and managing the infrastructure and you guys are positioning is that the amount of compute needed to do But John, I'm curious what you think. because that's the platform So you got tools in the platform. and being the best way to of the computer industry, Did you have an inside prompt and the large language models and tell it what you want it to do. So I have to ask you and you can lower your So I want to get into that, you know, and you know, your big cluster is back up So I think, you know, the on-demand instances. and what you were showing me that demo and run the stuff out of the box. I know you got a couple websites. and the opportunity is there, right. and you got growth ahead

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Robert NishiharaPERSON

0.99+

JohnPERSON

0.99+

RobertPERSON

0.99+

John FurrierPERSON

0.99+

NetflixORGANIZATION

0.99+

35 timesQUANTITY

0.99+

AmazonORGANIZATION

0.99+

$100 millionQUANTITY

0.99+

UberORGANIZATION

0.99+

AWSORGANIZATION

0.99+

100%QUANTITY

0.99+

GoogleORGANIZATION

0.99+

Ant GroupORGANIZATION

0.99+

firstQUANTITY

0.99+

PythonTITLE

0.99+

20%QUANTITY

0.99+

32 GPUsQUANTITY

0.99+

LyftORGANIZATION

0.99+

hundredsQUANTITY

0.99+

tomorrowDATE

0.99+

AnyscaleORGANIZATION

0.99+

threeQUANTITY

0.99+

128QUANTITY

0.99+

SeptemberDATE

0.99+

todayDATE

0.99+

Moore's LawTITLE

0.99+

Adam SelipskyPERSON

0.99+

PyTorchTITLE

0.99+

RayORGANIZATION

0.99+

second reasonQUANTITY

0.99+

64QUANTITY

0.99+

each workerQUANTITY

0.99+

each workerQUANTITY

0.99+

PhotoshopTITLE

0.99+

UC BerkeleyORGANIZATION

0.99+

JavaTITLE

0.99+

ShopifyORGANIZATION

0.99+

OpenAIORGANIZATION

0.99+

AnyscalePERSON

0.99+

thirdQUANTITY

0.99+

two thingsQUANTITY

0.99+

ByteDanceORGANIZATION

0.99+

SpotifyORGANIZATION

0.99+

OneQUANTITY

0.99+

95QUANTITY

0.99+

AsureORGANIZATION

0.98+

one lineQUANTITY

0.98+

one GPUQUANTITY

0.98+

ChatGPTTITLE

0.98+

TensorFlowTITLE

0.98+

last yearDATE

0.98+

first bucketQUANTITY

0.98+

bothQUANTITY

0.98+

two layersQUANTITY

0.98+

CohereORGANIZATION

0.98+

AlipayORGANIZATION

0.98+

RayPERSON

0.97+

oneQUANTITY

0.97+

InstacartORGANIZATION

0.97+

Rhonda Crate, Boeing | WiDS 2023


 

(gentle music) >> Hey! Welcome back to theCUBE's coverage of WiDS 2023, the eighth Annual Women In Data Science Conference. I'm your host, Lisa Martin. We are at Stanford University, as you know we are every year, having some wonderful conversations with some very inspiring women and men in data science and technical roles. I'm very pleased to introduce Tracy Zhang, my co-host, who is in the Data Journalism program at Stanford. And Tracy and I are pleased to welcome our next guest, Rhonda Crate, Principal Data Scientist at Boeing. Great to have you on the program, Rhonda. >> Tracy: Welcome. >> Hey, thanks for having me. >> Were you always interested in data science or STEM from the time you were young? >> No, actually. I was always interested in archeology and anthropology. >> That's right, we were talking about that, anthropology. Interesting. >> We saw the anthropology background, not even a bachelor's degree, but also a master's degree in anthropology. >> So you were committed for a while. >> I was, I was. I actually started college as a fine arts major, but I always wanted to be an archeologist. So at the last minute, 11 credits in, left to switch to anthropology. And then when I did my master's, I focused a little bit more on quantitative research methods and then I got my Stat Degree. >> Interesting. Talk about some of the data science projects that you're working on. When I think of Boeing, I always think of aircraft. But you are doing a lot of really cool things in IT, data analytics. Talk about some of those intriguing data science projects that you're working on. >> Yeah. So when I first started at Boeing, I worked in information technology and data analytics. And Boeing, at the time, had cored up data science in there. And so we worked as a function across the enterprise working on anything from shared services to user experience in IT products, to airplane programs. So, it has a wide range. I worked on environment health and safety projects for a long time as well. So looking at ergonomics and how people actually put parts onto airplanes, along with things like scheduling and production line, part failures, software testing. Yeah, there's a wide spectrum of things. >> But I think that's so fantastic. We've been talking, Tracy, today about just what we often see at WiDS, which is this breadth of diversity in people's background. You talked about anthropology, archeology, you're doing data science. But also all of the different opportunities that you've had at Boeing. To see so many facets of that organization. I always think that breadth of thought diversity can be hugely impactful. >> Yeah. So I will say my anthropology degree has actually worked to my benefit. I'm a huge proponent of integrating liberal arts and sciences together. And it actually helps me. I'm in the Technical Fellowship program at Boeing, so we have different career paths. So you can go into management, you can be a regular employee, or you can go into the Fellowship program. So right now I'm an Associate Technical Fellow. And part of how I got into the Fellowship program was that diversity in my background, what made me different, what made me stand out on projects. Even applying a human aspect to things like ergonomics, as silly as that sounds, but how does a person actually interact in the space along with, here are the actual measurements coming off of whatever system it is that you're working on. So, I think there's a lot of opportunities, especially in safety as well, which is a big initiative for Boeing right now, as you can imagine. >> Tracy: Yeah, definitely. >> I can't go into too specifics. >> No, 'cause we were like, I think a theme for today that kind of we brought up in in all of our talk is how data is about people, how data is about how people understand the world and how these data can make impact on people's lives. So yeah, I think it's great that you brought this up, and I'm very happy that your anthropology background can tap into that and help in your day-to-day data work too. >> Yeah. And currently, right now, I actually switched over to Strategic Workforce Planning. So it's more how we understand our workforce, how we work towards retaining the talent, how do we get the right talent in our space, and making sure overall that we offer a culture and work environment that is great for our employees to come to. >> That culture is so important. You know, I was looking at some anitab.org stats from 2022 and you know, we always talk about the number of women in technical roles. For a long time it's been hovering around that 25% range. The data from anitab.org showed from '22, it's now 27.6%. So, a little increase. But one of the biggest challenges still, and Tracy and I and our other co-host, Hannah, have been talking about this, is attrition. Attrition more than doubled last year. What are some of the things that Boeing is doing on the retention side, because that is so important especially as, you know, there's this pipeline leakage of women leaving technical roles. Tell us about what Boeing's, how they're invested. >> Yeah, sure. We actually have a publicly available Global Diversity Report that anybody can go and look at and see our statistics for our organization. Right now, off the top of my head, I think we're hovering at about 24% in the US for women in our company. It has been a male majority company for many years. We've invested heavily in increasing the number of women in roles. One interesting thing about this year that came out is that even though with the great resignation and those types of things, the attrition level between men and women were actually pretty close to being equal, which is like the first time in our history. Usually it tends on more women leaving. >> Lisa: That's a good sign. >> Right. >> Yes, that's a good sign. >> And we've actually focused on hiring and bringing in more women and diversity in our company. >> Yeah, some of the stats too from anitab.org talked about the increase, and I have to scroll back and find my notes, the increase in 51% more women being hired in 2022 than 2021 for technical roles. So the data, pun intended, is showing us. I mean, the data is there to show the impact that having females in executive leadership positions make from a revenue perspective. >> Tracy: Definitely. >> Companies are more profitable when there's women at the head, or at least in senior leadership roles. But we're seeing some positive trends, especially in terms of representation of women technologists. One of the things though that I found interesting, and I'm curious to get your thoughts on this, Rhonda, is that the representation of women technologists is growing in all areas, except interns. >> Rhonda: Hmm. >> So I think, we've got to go downstream. You teach, I have to go back to my notes on you, did my due diligence, R programming classes through Boeings Ed Wells program, this is for WSU College of Arts and Sciences, talk about what you teach and how do you think that intern kind of glut could be solved? >> Yeah. So, they're actually two separate programs. So I teach a data analytics course at Washington State University as an Adjunct Professor. And then the Ed Wells program is a SPEEA, which is an Aerospace Union, focused on bringing up more technology and skills to the actual workforce itself. So it's kind of a couple different audiences. One is more seasoned employees, right? The other one is our undergraduates. I teach a Capstone class, so it's a great way to introduce students to what it's actually like to work on an industry project. We partner with Google and Microsoft and Boeing on those. The idea is also that maybe those companies have openings for the students when they're done. Since it's Senior Capstone, there's not a lot of opportunities for internships. But the opportunities to actually get hired increase a little bit. In regards to Boeing, we've actually invested a lot in hiring more women interns. I think the number was 40%, but you'd have to double check. >> Lisa: That's great, that's fantastic. >> Tracy: That's way above average, I think. >> That's a good point. Yeah, it is above average. >> Double check on that. That's all from my memory. >> Is this your first WiDS, or have you been before? >> I did virtually last year. >> Okay. One of the things that I love, I love covering this event every year. theCUBE's been covering it since it's inception in 2015. But it's just the inspiration, the vibe here at Stanford is so positive. WiDS is a movement. It's not an initiative, an organization. There are going to be, I think annually this year, there will be 200 different events. Obviously today we're live on International Women's Day. 60 plus countries, 100,000 plus people involved. So, this is such a positive environment for women and men, because we need everybody, underrepresented minorities, to be able to understand the implication that data has across our lives. If we think about stripping away titles in industries, everybody is a consumer, not everybody, most of mobile devices. And we have this expectation, I was in Barcelona last week at a Mobile World Congress, we have this expectation that we're going to be connected 24/7. I can get whatever I want wherever I am in the world, and that's all data driven. And the average person that isn't involved in data science wouldn't understand that. At the same time, they have expectations that depend on organizations like Boeing being data driven so that they can get that experience that they expect in their consumer lives in any aspect of their lives. And that's one of the things I find so interesting and inspiring about data science. What are some of the things that keep you motivated to continue pursuing this? >> Yeah I will say along those lines, I think it's great to invest in K-12 programs for Data Literacy. I know one of my mentors and directors of the Data Analytics program, Dr. Nairanjana Dasgupta, we're really familiar with each other. So, she runs a WSU program for K-12 Data Literacy. It's also something that we strive for at Boeing, and we have an internal Data Literacy program because, believe it or not, most people are in business. And there's a lot of disconnect between interpreting and understanding data. For me, what kind of drives me to continue data science is that connection between people and data and how we use it to improve our world, which is partly why I work at Boeing too 'cause I feel that they produce products that people need like satellites and airplanes, >> Absolutely. >> and everything. >> Well, it's tangible, it's relatable. We can understand it. Can you do me a quick favor and define data literacy for anyone that might not understand what that means? >> Yeah, so it's just being able to understand elements of data, whether that's a bar chart or even in a sentence, like how to read a statistic and interpret a statistic in a sentence, for example. >> Very cool. >> Yeah. And sounds like Boeing's doing a great job in these programs, and also trying to hire more women. So yeah, I wanted to ask, do you think there's something that Boeing needs to work on? Or where do you see yourself working on say the next five years? >> Yeah, I think as a company, we always think that there's always room for improvement. >> It never, never stops. >> Tracy: Definitely. (laughs) >> I know workforce strategy is an area that they're currently really heavily investing in, along with safety. How do we build safer products for people? How do we help inform the public about things like Covid transmission in airports? For example, we had the Confident Traveler Initiative which was a big push that we had, and we had to be able to inform people about data models around Covid, right? So yeah, I would say our future is more about an investment in our people and in our culture from my perspective >> That's so important. One of the hardest things to change especially for a legacy organization like Boeing, is culture. You know, when I talk with CEO's or CIO's or COO's about what's your company's vision, what's your strategy? Especially those companies that are on that digital journey that have no choice these days. Everybody expects to have a digital experience, whether you're transacting an an Uber ride, you're buying groceries, or you're traveling by air. That culture sounds like Boeing is really focused on that. And that's impressive because that's one of the hardest things to morph and mold, but it's so essential. You know, as we look around the room here at WiDS it's obviously mostly females, but we're talking about women, underrepresented minorities. We're talking about men as well who are mentors and sponsors to us. I'd love to get your advice to your younger self. What would you tell yourself in terms of where you are now to become a leader in the technology field? >> Yeah, I mean, it's kind of an interesting question because I always try to think, live with no regrets to an extent. >> Lisa: I like that. >> But, there's lots of failures along the way. (Tracy laughing) I don't know if I would tell myself anything different because honestly, if I did, I wouldn't be where I am. >> Lisa: Good for you. >> I started out in fine arts, and I didn't end up there. >> That's good. >> Such a good point, yeah. >> We've been talking about that and I find that a lot at events like WiDS, is women have these zigzaggy patterns. I studied biology, I have a master's in molecular biology, I'm in media and marketing. We talked about transportable skills. There's a case I made many years ago when I got into tech about, well in science you learn the art of interpreting esoteric data and creating a story from it. And that's a transportable skill. But I always say, you mentioned failure, I always say failure is not a bad F word. It allows us to kind of zig and zag and learn along the way. And I think that really fosters thought diversity. And in data science, that is one of the things we absolutely need to have is that diversity and thought. You know, we talk about AI models being biased, we need the data and we need the diverse brains to help ensure that the biases are identified, extracted, and removed. Speaking of AI, I've been geeking out with ChatGPT. So, I'm on it yesterday and I ask it, "What's hot in data science?" And I was like, is it going to get that? What's hot? And it did it, it came back with trends. I think if I ask anything, "What's hot?", I should be to Paris Hilton, but I didn't. And so I was geeking out. One of the things I learned recently that I thought was so super cool is the CTO of OpenAI is a woman, Mira Murati, which I didn't know until over the weekend. Because I always think if I had to name top females in tech, who would they be? And I always default to Sheryl Sandberg, Carly Fiorina, Susan Wojcicki running YouTube. Who are some of the people in your history, in your current, that are really inspiring to you? Men, women, indifferent. >> Sure. I think Boeing is one of the companies where you actually do see a lot of women in leadership roles. I think we're one of the top companies with a number of women executives, actually. Susan Doniz, who's our Chief Information Officer, I believe she's actually slotted to speak at a WiDS event come fall. >> Lisa: Cool. >> So that will be exciting. Susan's actually relatively newer to Boeing in some ways. A Boeing time skill is like three years is still kind of new. (laughs) But she's been around for a while and she's done a lot of inspiring things, I think, for women in the organization. She does a lot with Latino communities and things like that as well. For me personally, you know, when I started at Boeing Ahmad Yaghoobi was one of my mentors and my Technical Lead. He came from Iran during a lot of hard times in the 1980s. His brother actually wrote a memoir, (laughs) which is just a fun, interesting fact. >> Tracy: Oh my God! >> Lisa: Wow! >> And so, I kind of gravitate to people that I can learn from that's not in my sphere, that might make me uncomfortable. >> And you probably don't even think about how many people you're influencing along the way. >> No. >> We just keep going and learning from our mentors and probably lose sight of, "I wonder how many people actually admire me?" And I'm sure there are many that admire you, Rhonda, for what you've done, going from anthropology to archeology. You mentioned before we went live you were really interested in photography. Keep going and really gathering all that breadth 'cause it's only making you more inspiring to people like us. >> Exactly. >> We thank you so much for joining us on the program and sharing a little bit about you and what brought you to WiDS. Thank you so much, Rhonda. >> Yeah, thank you. >> Tracy: Thank you so much for being here. >> Lisa: Yeah. >> Alright. >> For our guests, and for Tracy Zhang, this is Lisa Martin live at Stanford University covering the eighth Annual Women In Data Science Conference. Stick around. Next guest will be here in just a second. (gentle music)

Published Date : Mar 8 2023

SUMMARY :

Great to have you on the program, Rhonda. I was always interested in That's right, we were talking We saw the anthropology background, So at the last minute, 11 credits in, Talk about some of the And Boeing, at the time, had But also all of the I'm in the Technical that you brought this up, and making sure overall that we offer about the number of women at about 24% in the US more women and diversity in our company. I mean, the data is is that the representation and how do you think for the students when they're done. Lisa: That's great, Tracy: That's That's a good point. That's all from my memory. One of the things that I love, I think it's great to for anyone that might not being able to understand that Boeing needs to work on? we always think that there's Tracy: Definitely. the public about things One of the hardest things to change I always try to think, live along the way. I started out in fine arts, And I always default to Sheryl I believe she's actually slotted to speak So that will be exciting. to people that I can learn And you probably don't even think about from anthropology to archeology. and what brought you to WiDS. Tracy: Thank you so covering the eighth Annual Women

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TracyPERSON

0.99+

Nairanjana DasguptaPERSON

0.99+

BoeingORGANIZATION

0.99+

Tracy ZhangPERSON

0.99+

RhondaPERSON

0.99+

LisaPERSON

0.99+

GoogleORGANIZATION

0.99+

Mira MuratiPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

Susan WojcickiPERSON

0.99+

Rhonda CratePERSON

0.99+

Susan DonizPERSON

0.99+

SusanPERSON

0.99+

Sheryl SandbergPERSON

0.99+

HannahPERSON

0.99+

27.6%QUANTITY

0.99+

2015DATE

0.99+

BarcelonaLOCATION

0.99+

WSU College of Arts and SciencesORGANIZATION

0.99+

40%QUANTITY

0.99+

2022DATE

0.99+

yesterdayDATE

0.99+

IranLOCATION

0.99+

last weekDATE

0.99+

International Women's DayEVENT

0.99+

11 creditsQUANTITY

0.99+

oneQUANTITY

0.99+

2021DATE

0.99+

last yearDATE

0.99+

51%QUANTITY

0.99+

Washington State UniversityORGANIZATION

0.99+

firstQUANTITY

0.99+

three yearsQUANTITY

0.99+

Ahmad YaghoobiPERSON

0.99+

200 different eventsQUANTITY

0.99+

Carly FiorinaPERSON

0.99+

60 plus countriesQUANTITY

0.99+

1980sDATE

0.99+

USLOCATION

0.99+

YouTubeORGANIZATION

0.99+

100,000 plus peopleQUANTITY

0.99+

first timeQUANTITY

0.99+

'22DATE

0.98+

eighth Annual Women In Data Science ConferenceEVENT

0.98+

OneQUANTITY

0.98+

todayDATE

0.98+

two separate programsQUANTITY

0.98+

Stanford UniversityORGANIZATION

0.98+

eighth Annual Women In Data Science ConferenceEVENT

0.98+

Global Diversity ReportTITLE

0.98+

this yearDATE

0.98+

Myriam Fayad & Alexandre Lapene, TotalEnergies | WiDS 2023


 

(upbeat music) >> Hey, girls and guys. Welcome back to theCUBE. We are live at Stanford University, covering the 8th Annual Women in Data Science Conference. One of my favorite events. Lisa Martin here. Got a couple of guests from Total Energies. We're going to be talking all things data science, and I think you're going to find this pretty interesting and inspirational. Please welcome Alexandre Lapene, Tech Advisor Data Science at Total Energy. It's great to have you. >> Thank you. >> And Myriam Fayad is here as well, product and value manager at Total Energies. Great to have you guys on theCUBE today. Thank you for your time. >> Thank you for - >> Thank you for receiving us. >> Give the audience, Alexandre, we'll start with you, a little bit about Total Energies, so they understand the industry, and what it is that you guys are doing. >> Yeah, sure, sure. So Total Energies, is a former Total, so we changed name two years ago. So we are a multi-energy company now, working over 130 countries in the world, and more than 100,000 employees. >> Lisa: Oh, wow, big ... >> So we're a quite big company, and if you look at our new logo, you will see there are like seven colors. That's the seven energy that we basically that our business. So you will see the red for the oil, the blue for the gas, because we still have, I mean, a lot of oil and gas, but you will see other color, like blue for hydrogen. >> Lisa: Okay. >> Green for gas, for biogas. >> Lisa: Yeah. >> And a lot of other solar and wind. So we're definitely multi-energy company now. >> Excellent, and you're both from Paris? I'm jealous, I was supposed to go. I'm not going to be there next month. Myriam, talk a little bit about yourself. I'd love to know a little bit about your role. You're also a WiDS ambassador this year. >> Myriam: Yes. >> Lisa: Which is outstanding, but give us a little bit of your background. >> Yes, so today I'm a product manager at the Total Energies' Digital Factory. And at the Digital Factory, our role is to develop digital solutions for all of the businesses of Total Energies. And as a background, I did engineering school. So, and before that I, I would say, I wasn't really aware of, I had never asked myself if being a woman could stop me from being, from doing what I want to do in the professional career. But when I started my engineering school, I started seeing that women are becoming, I would say, increasingly rare in the environment >> Lisa: Yes. >> that, where I was evolving. >> Lisa: Yes. >> So that's why I was, I started to think about, about such initiatives. And then when I started working in the tech field, that conferred me that women are really rare in the tech field and data science field. So, and at Total Energies, I met ambassadors of, of the WiDS initiatives. And that's how I, I decided to be a WiDS Ambassador, too. So our role is to organize events locally in the countries where we work to raise awareness about the importance of having women in the tech and data fields. And also to talk about the WiDS initiative more globally. >> One of my favorite things about WiDS is it's this global movement, it started back in 2015. theCUBE has been covering it since then. I think I've been covering it for theCUBE since 2017. It's always a great day full of really positive messages. One of the things that we talk a lot about when we're focusing on the Q1 Women in Tech, or women in technical roles is you can't be what you can't see. We need to be able to see these role models, but also it, we're not just talking about women, we're talking about underrepresented minorities, we're talking about men like you, Alexander. Talk to us a little bit about what your thoughts are about being at a Women and Data Science Conference and your sponsorship, I'm sure, of many women in Total, and other industries that appreciate having you as a guide. >> Yeah, yeah, sure. First I'm very happy because I'm back to Stanford. So I did my PhD, postdoc, sorry, with Margot, I mean, back in 20, in 2010, so like last decade. >> Lisa: Yeah, yep. >> I'm a film mechanics person, so I didn't start as data scientist, but yeah, WiDS is always, I mean, this great event as you describe it, I mean, to see, I mean it's growing every year. I mean, it's fantastic. And it's very, I mean, I mean, it's always also good as a man, I mean, to, to be in the, in the situation of most of the women in data science conferences. And when Margo, she asked at the beginning of the conference, "Okay, how many men do we have? Okay, can you stand up?" >> Lisa: Yes. I saw that >> It was very interesting because - >> Lisa: I could count on one hand. >> What, like 10 or ... >> Lisa: Yeah. >> Maximum. >> Lisa: Yeah. >> And, and I mean, you feel that, I mean, I mean you could feel what what it is to to be a woman in the field and - >> Lisa: Absolutely. >> Alexandre: That's ... >> And you, sounds like you experienced it. I experienced the same thing. But one of the things that fascinates me about data science is all of the different real world problems it's helping to solve. Like, I keep saying this, we're, we're in California, I'm a native Californian, and we've been in an extreme drought for years. Well, we're getting a ton of rain and snow this year. Climate change. >> Guests: Yeah. We're not used to driving in the rain. We are not very good at it either. But the, just thinking about data science as a facilitator of its understanding climate change better; to be able to make better decisions, predictions, drive better outcomes, or things like, police violence or healthcare inequities. I think the power of data science to help unlock a lot of the unknown is so great. And, and we need that thought diversity. Miriam, you're talking about being in engineering. Talk to me a little bit about what projects interest you with respect to data science, and how you are involved in really creating more diversity and thought. >> Hmm. In fact, at Total Energies in addition to being an energy company we're also a data company in the sense that we produce a lot of data in our activities. For example with the sensors on the fuel on the platforms. >> Lisa: Yes. >> Or on the wind turbines, solar panels and even data related to our clients. So what, what is really exciting about being, working in the data science field at Total Energies is that we really feel the impact of of the project that we're working on. And we really work with the business to understand their problems. >> Lisa: Yeah. >> Or their issues and try to translate it to a technical problem and to solve it with the data that we have. So that's really exciting, to feel the impact of the projects we're working on. So, to take an example, maybe, we know that one of the challenges of the energy transition is the storage of of energy coming from renewable power. >> Yes. >> So I'm working currently on a project to improve the process of creating larger batteries that will help store this energy, by collecting the data, and helping the business to improve the process of creating these batteries. To make it more reliable, and with a better quality. So this is a really interesting project we're working on. >> Amazing, amazing project. And, you know, it's, it's fun I think to think of all of the different people, communities, countries, that are impacted by what you're doing. Everyone, everyone knows about data. Sometimes we think about it as we're paying we're always paying for a lot of data on our phone or "data rates may apply" but we may not be thinking about all of the real world impact that data science is making in our lives. We have this expectation in our personal lives that we're connected 24/7. >> Myriam: Yeah. >> I can get whatever I want from my phone wherever I am in the world. And that's all data driven. And we expect that if I'm dealing with Total Energies, or a retailer, or a car dealer that they're going to have the data, the data to have a personal conversation, conversation with me. We have this expectation. I don't think a lot of people that aren't in data science or technology really realize the impact of data all around their lives. Alexander, talk about some of the interesting data science projects that you're working on. >> There's one that I'm working right now, so I stake advisor. I mean, I'm not the one directly working on it. >> Lisa: Okay. >> But we have, you know, we, we are from the digital factory where we, we make digital products. >> Lisa: Okay. >> And we have different squads. I mean, it's a group of different people with different skills. And one of, one of the, this squad, they're, they're working on the on, on the project that is about safety. We have a lot of site, work site on over the world where we deploy solar panels on on parkings, on, on buildings everywhere. >> Lisa: Okay. Yeah. >> And there's, I mean, a huge, I mean, but I mean, we, we have a lot of, of worker and in term of safety we want to make sure that the, they work safely and, and we want to prevent accidents. So what we, what we do is we, we develop some computer vision approach to help them at improving, you know, the, the, the way they work. I mean the, the basic things is, is detecting, detecting some equipment like the, the the mean the, the vest and so on. But we, we, we, we are working, we're working to really extend that to more concrete recommendation. And that's one a very exciting project. >> Lisa: Yeah. >> Because it's very concrete. >> Yeah. >> And also, I, I'm coming from the R&D of the company and that's one, that's one of this project that started in R&D and is now into the Digital Factory. And it will become a real product deployed over the world on, on our assets. So that's very great. >> The influence and the impact that data can have on every business always is something that, we could talk about that for a very long time. >> Yeah. >> But one of the things I want to address is there, I'm not sure if you're familiar with AnitaB.org the Grace Hopper Institute? It's here in the States and they do this great event every year. It's very pro-women in technology and technical roles. They do a lot of, of survey of, of studies. So they have data demonstrating where are we with respect to women in technical roles. And we've been talking about it for years. It's been, for a while hovering around 25% of technical roles are held by women. I noticed in the AnitaB.org research findings from 2022, It's up to 27.6% I believe. So we're seeing those numbers slowly go up. But one of the things that's a challenge is attrition; of women getting in the roles and then leaving. Miryam, as a woman in, in technology. What inspires you to continue doing what you're doing and to elevate your career in data science? >> What motivates me, is that data science, we really have to look at it as a mean to solve a problem and not a, a fine, a goal in itself. So the fact that we can apply data science to so many fields and so many different projects. So here, for example we took examples of more industrial, maybe, applications. But for example, recently I worked on, on a study, on a data science study to understand what to, to analyze Google reviews of our clients on the service stations and to see what are the the topics that, that are really important to them. So we really have a, a large range of topics, and a diversity of topics that are really interesting, so. >> And that's so important, the diversity of topics alone. There's, I think we're just scratching the surface. We're just at the very beginning of what data science can empower for our daily lives. For businesses, small businesses, large businesses. I'd love to get your perspective as our only male on the show today, Alexandre, you have that elite title. The theme of International Women's Day this year which is today, March 8th, is "Embrace equity." >> Alexandre: Yes. >> Lisa: What is that, when you hear that theme as as a male in technology, as a male in the, in a role where you can actually elevate women and really bring in that thought diversity, what is embracing equity, what does it look like to you? >> To me, it, it's really, I mean, because we, we always talk about how we can, you know, I mean improve, but actually we are fixing a problem, an issue. I mean, it's such a reality. I mean, and the, the reality and and I mean, and force in, in the company. And that's, I think in Total Energy, we, we still have, I mean things, I mean, we, we haven't reached our objective but we're working hard and especially at the Digital Factory to, to, to improve on that. And for example, we have 40% of our women in tech. >> Lisa: 40? >> 40% of our tech people that are women. >> Lisa: Wow, that's fantastic! >> Yeah. That's, that's ... >> You're way ahead of, of the global average. >> Alexandre: Yeah. Yeah. >> That outstanding. >> We're quite proud of that. >> You should be. >> But we, we still, we still know that we, we have at least 10% >> Lisa: Yes. because it's not 50. The target is, the target is to 50 or more. And, and, but I want to insist on the fact that we have, we are correcting an issue. We are fixing an issue. We're not trying to improve something. I mean, that, that's important to have that in mind. >> Lisa: It is. Absolutely. >> Yeah. >> Miryam, I'd love to get your advice to your younger self, before you studied engineering. Obviously you had an interest when you were younger. What advice would you give to young Miriam now, looking back at what you've accomplished and being one of our female, visible females, in a technical role? What do you, what would you say to your younger self? >> Maybe I would say to continue as I started. So as I was saying at the beginning of the interview, when I was at high school, I have never felt like being a woman could stop me from doing anything. >> Lisa: Yeah. Yeah. >> So maybe to continue thinking this way, and yeah. And to, to stay here for, to, to continue this way. Yeah. >> Lisa: That's excellent. Sounds like you have the confidence. >> Mm. Yeah. >> And that's something that, that a lot of people ... I struggled with it when I was younger, have the confidence, "Can I do this?" >> Alexandre: Yeah. >> "Should I do this?" >> Myriam: Yeah. >> And you kind of went, "Why not?" >> Myriam: Yes. >> Which is, that is such a great message to get out to our audience and to everybody else's. Just, "I'm interested in this. I find it fascinating. Why not me?" >> Myriam: Yeah. >> Right? >> Alexandre: Yeah, true. >> And by bringing out, I think, role models as we do here at the conference, it's a, it's a way to to help young girls to be inspired and yeah. >> Alexandre: Yeah. >> We need to have women in leadership positions that we can see, because there's a saying here that we say a lot in the States, which is: "You can't be what you can't see." >> Alexandre: Yeah, that's true. >> And so we need more women and, and men supporting women and underrepresented minorities. And the great thing about WiDS is it does just that. So we thank you so much for your involvement in WiDS, Ambassador, our only male on the program today, Alexander, we thank you. >> I'm very proud of it. >> Awesome to hear that Total Energies has about 40% of females in technical roles and you're on that path to 50% or more. We, we look forward to watching that journey and we thank you so much for joining us on the show today. >> Alexandre: Thank you. >> Myriam: Thank you. >> Lisa: All right. For my guests, I'm Lisa Martin. You're watching theCUBE Live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. We'll be back after a short break, so stick around. (upbeat music)

Published Date : Mar 8 2023

SUMMARY :

covering the 8th Annual Women Great to have you guys on theCUBE today. and what it is that you guys are doing. So we are a multi-energy company now, That's the seven energy that we basically And a lot of other solar and wind. I'm not going to be there next month. bit of your background. for all of the businesses of the WiDS initiatives. One of the things that we talk a lot about I'm back to Stanford. of most of the women in of the different real world problems And, and we need that thought diversity. in the sense that we produce a lot of the project that we're working on. the data that we have. and helping the business all of the real world impact have the data, the data to I mean, I'm not the one But we have, you know, we, on the project that is about safety. and in term of safety we and is now into the Digital Factory. The influence and the I noticed in the AnitaB.org So the fact that we can apply data science as our only male on the show today, and I mean, and force in, in the company. of the global average. on the fact that we have, Lisa: It is. Miryam, I'd love to get your beginning of the interview, So maybe to continue Sounds like you have the confidence. And that's something that, and to everybody else's. here at the conference, We need to have women So we thank you so much for and we thank you so much for of the eighth Annual Women

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
MiriamPERSON

0.99+

Myriam FayadPERSON

0.99+

AlexanderPERSON

0.99+

AlexandrePERSON

0.99+

MyriamPERSON

0.99+

Lisa MartinPERSON

0.99+

Total EnergiesORGANIZATION

0.99+

LisaPERSON

0.99+

MiryamPERSON

0.99+

MargoPERSON

0.99+

Alexandre LapenePERSON

0.99+

2010DATE

0.99+

ParisLOCATION

0.99+

2022DATE

0.99+

2015DATE

0.99+

Grace Hopper InstituteORGANIZATION

0.99+

Total EnergyORGANIZATION

0.99+

40QUANTITY

0.99+

50%QUANTITY

0.99+

CaliforniaLOCATION

0.99+

50QUANTITY

0.99+

40%QUANTITY

0.99+

next monthDATE

0.99+

MargotPERSON

0.99+

more than 100,000 employeesQUANTITY

0.99+

two years agoDATE

0.99+

TotalEnergiesORGANIZATION

0.99+

todayDATE

0.99+

AnitaB.orgORGANIZATION

0.99+

bothQUANTITY

0.99+

10QUANTITY

0.99+

FirstQUANTITY

0.99+

8th Annual Women in Data Science ConferenceEVENT

0.99+

International Women's DayEVENT

0.99+

Stanford UniversityORGANIZATION

0.98+

TotalORGANIZATION

0.98+

2017DATE

0.98+

over 130 countriesQUANTITY

0.98+

GoogleORGANIZATION

0.98+

OneQUANTITY

0.98+

seven colorsQUANTITY

0.98+

Nancy Wang & Kate Watts | International Women's Day


 

>> Hello everyone. Welcome to theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE been profiling the leaders in the technology world, women in technology from developers to the boardroom, everything in between. We have two great guests promoting in from Malaysia. Nancy Wang is the general manager, also CUBE alumni from AWS Data Protection, and founder and board chair of Advancing Women in Tech, awit.org. And of course Kate Watts who's the executive director of Advancing Women in Tech.org. So it's awit.org. Nancy, Kate, thanks for coming all the way across remotely from Malaysia. >> Of course, we're coming to you as fast as our internet bandwidth will allow us. And you know, I'm just thrilled today that you get to see a whole nother aspect of my life, right? Because typically we talk about AWS, and here we're talking about a topic near and dear to my heart. >> Well, Nancy, I love the fact that you're spending a lot of time taking the empowerment to go out and help the industries and helping with the advancement of women in tech. Kate, the executive director it's a 501C3, it's nonprofit, dedicating to accelerating the careers of women in groups in tech. Can you talk about the organization? >> Yes, I can. So Advancing Women in Tech was founded in 2017 in order to fix some of the pathway problems that we're seeing on the rise to leadership in the industry. And so we specifically focus on supporting mid-level women in technical roles, get into higher positions. We do that in a few different ways through mentorship programs through building technical skills and by connecting people to a supportive community. So you have your peer network and then a vertical sort of relationships to help you navigate the next steps in your career. So to date we've served about 40,000 individuals globally and we're just looking to expand our reach and impact and be able to better support women in the industry. >> Nancy, talk about the creation, the origination story. How'd this all come together? Obviously the momentum, everyone in the industry's been focused on this for a long time. Where did AWIT come from? Advancing Women in Technology, that's the acronym. Advancing Women in Technology.org, where'd it come from? What's the origination story? >> Yeah, so AWIT really originated from this desire that I had, to Kate's point around, well if you look around right and you know, don't take my word for it, right? Look at stats, look at news reports, or just frankly go on your LinkedIn and see how many women in underrepresented groups are in senior technical leadership roles right out in the companies whose names we all know. And so that was my case back in 2016. And so when I first got the idea and back then I was actually at Google, just another large tech company in the valley, right? It was about how do we get more role models, how we get more, for example, women into leadership roles so they can bring up the next generation, right? And so this is actually part of a longer speech that I'm about to give on Wednesday and part of the US State Department speaker program. In fact, that's why Kate and I are here in Malaysia right now is working with over 200 women entrepreneurs from all over in Southeast Asia, including Malaysia Philippines, Vietnam, Borneo, you know, so many countries where having more women entrepreneurs can help raise the GDP right, and that fits within our overall mission of getting more women into top leadership roles in tech. >> You know, I was talking about Teresa Carlson she came on the program as well for this year this next season we're going to do. And she mentioned the decision between the US progress and international. And she's saying as much as it's still bad numbers, it's worse than outside the United States and needs to get better. Can you comment on the global aspect? You brought that up. I think it's super important to highlight that it's just not one area, it's a global evolution. >> Absolutely, so let me start, and I'd love to actually have Kate talk about our current programs and all of the international groups that we're working with. So as Teresa aptly mentioned there is so much work to be done not just outside the US and North Americas where typically tech nonprofits will focus, but rather if you think about the one to end model, right? For example when I was doing the product market fit workshop for the US State Department I had women dialing in from rice fields, right? So let me just pause there for a moment. They were holding their cell phones up near towers near trees just so that they can get a few minutes of time with me to do a workshop and how to accelerate their business. So if you don't call that the desire to propel oneself or accelerate oneself, not sure what is, right. And so it's really that passion that drove me to spend the next week and a half here working with local entrepreneurs working with policy makers so we can take advantage and really leverage that passion that people have, right? To accelerate more business globally. And so that's why, you know Kate will be leading our contingent with the United Nations Women Group, right? That is focused on women's economic empowerment because that's super important, right? One aspect can be sure, getting more directors, you know vice presidents into companies like Google and Amazon. But another is also how do you encourage more women around the world to start businesses, right? To reach economic and freedom independence, right? To overcome some of the maybe social barriers to becoming a leader in their own country. >> Yes, and if I think about our own programs and our model of being very intentional about supporting the learning development and skills of women and members of underrepresented groups we focused very much on providing global access to a number of our programs. For instance, our product management certification on Coursera or engineering management our upcoming women founders accelerator. We provide both access that you can get from anywhere. And then also very intentional programming that connects people into the networks to be able to further their networks and what they've learned through the skills online, so. >> Yeah, and something Kate just told me recently is these courses that Kate's mentioning, right? She was instrumental in working with the American Council on Education and so that our learners can actually get up to six college credits for taking these courses on product management engineering management, on cloud product management. And most recently we had our first organic one of our very first organic testimonials was from a woman's tech bootcamp in Nigeria, right? So if you think about the worldwide impact of these upskilling courses where frankly in the US we might take for granted right around the world as I mentioned, there are women dialing in from rice patties from other, you know, for example, outside the, you know corporate buildings in order to access this content. >> Can you think about the idea of, oh sorry, go ahead. >> Go ahead, no, go ahead Kate. >> I was going to say, if you can't see it, you can't become it. And so we are very intentional about ensuring that we have we're spotlighting the expertise of women and we are broadcasting that everywhere so that anybody coming up can gain the skills and the networks to be able to succeed in this industry. >> We'll make sure we get those links so we can promote them. Obviously we feel the same way getting the word out. I think a couple things I'd like to ask you guys cause I think you hit a great point. One is the economic advantage the numbers prove that diverse teams perform better number one, that's clear. So good point there. But I want to get your thoughts on the entrepreneurial equation. You mentioned founders and startups and there's also different makeups in different countries. It's not like the big corporations sometimes it's smaller business in certain areas the different cultures have different business sizes and business types. How do you guys see that factoring in outside the United States, say the big tech companies? Okay, yeah. The easy lower the access to get in education than stay with them, in other countries is it the same or is it more diverse in terms of business? >> So what really actually got us started with the US State Department was around our work with women founders. And I love for Kate to actually share her experience working with AWS startups in that capacity. But frankly, you know, we looked at the content and the mentor programs that were providing women who wanted to be executives, you know, quickly realize a lot of those same skills such as finding customers, right? Scaling your product and building channels can also apply to women founders, not just executives. And so early supporters of our efforts from firms such as Moderna up in Seattle, Emergence Ventures, Decibel Ventures in, you know, the Bay Area and a few others that we're working with right now. Right, they believed in the mission and really helped us scale out what is now our existing platform and offerings for women founders. >> Those are great firms by the way. And they also are very founder friendly and also understand the global workforce. I mean, that's a whole nother dimension. Okay, what's your reaction to all that? >> Yes, we have been very intentional about taking the product expertise and the learnings of women and in our network, we first worked with AWS startups to support the development of the curriculum for the recent accelerator for women founders that was held last spring. And so we're able to support 25 founders and also brought in the expertise of about 20 or 30 women from Advancing Women in Tech to be able to be the lead instructors and mentors for that. And so we have really realized that with this network and this individual sort of focus on product expertise building strong teams, we can take that information and bring it to folks everywhere. And so there is very much the intentionality of allowing founders allowing individuals to take the lessons and bring it to their individual circumstances and the cultures in which they are operating. But the product sense is a skill that we can support the development of and we're proud to do so. >> That's awesome. Nancy, I want to ask you some never really talk about data storage and AWS cloud greatness and goodness, here's different and you also work full-time at AWS and you're the founder or the chairman of this great organization. How do you balance both and do you get, they're getting behind you on this, Amazon is getting behind you on this. >> Well, as I say it's always easier to negotiate on the way in. But jokes aside, I have to say the leadership has been tremendously supportive. If you think about, for example, my leaders Wayne Duso who's also been on the show multiple times, Bill Vaas who's also been on the show multiple times, you know they're both founders and also operators entrepreneurs at heart. So they understand that it is important, right? For all of us, it's really incumbent on all of us who are in positions to do so, to create a pathway for more people to be in leadership roles for more people to be successful entrepreneurs. So, no, I mean if you just looked at LinkedIn they're always uploading my vote so they reach to more audiences. And frankly they're rooting for us back home in the US while we're in Malaysia this week. >> That's awesome. And I think that's a good culture to have that empowerment and I think that's very healthy. What's next for you guys? What's on the agenda? Take us through the activities. I know that you got a ton of things happening. You got your event out there, which is why you're out there. There's a bunch of other activities. I think you guys call it the Advancing Women in Tech week. >> Yes, this week we are having a week of programming that you can check out at Advancing Women in Tech.org. That is spotlighting the expertise of a number of women in our space. So it is three days of programming Tuesday, Wednesday and Thursday if you are in the US so the seventh through the ninth, but available globally. We are also going to be in New York next week for the event at the UN and are looking to continue to support our mentorship programs and also our work supporting women founders throughout the year. >> All right. I have to ask you guys if you don't mind get a little market data so you can share with us here at theCUBE. What are you hearing this year that's different in the conversation space around the topics, the interests? Obviously I've seen massive amounts of global acceleration around conversations, more video, things like this more stories are scaling, a lot more LinkedIn activity. It just seems like it's a lot different this year. Can you guys share any kind of current trends you're seeing relative to the conversations and topics being discussed across the the community? >> Well, I think from a needle moving perspective, right? I think due to the efforts of wonderful organizations including the Q for spotlighting all of these awesome women, right? Trailblazing women and the nonprofits the government entities that we work with there's definitely more emphasis on creating access and creating pathways. So that's probably one thing that you're seeing is more women, more investors posting about their activities. Number two, from a global trend perspective, right? The rise of women in security. I noticed that on your agenda today, you had Lena Smart who's a good friend of mine chief information security officer at MongoDB, right? She and I are actually quite involved in helping founders especially early stage founders in the security space. And so globally from a pure technical perspective, right? There's right more increasing regulations around data privacy, data sovereignty, right? For example, India's in a few weeks about to get their first data protection regulation there locally. So all of that is giving rise to yet another wave of opportunity and we want women founders uniquely positioned to take advantage of that opportunity. >> I love it. Kate, reaction to that? I mean founders, more pathways it sounds like a neural network, it sounds like AI enabled. >> Yes, and speaking of AI, with the rise of that we are also hearing from many community members the importance of continuing to build their skills upskill learn to be able to keep up with the latest trends. There's a lot of people wondering what does this mean for my own career? And so they're turning to organizations like Advancing Women in Tech to find communities to both learn the latest information, but also build their networks so that they are able to move forward regardless of what the industry does. >> I love the work you guys are doing. It's so impressive. I think the economic angle is new it's more amplified this year. It's always kind of been there and continues to be. What do you guys hope for by next year this time what do you hope to see different from a needle moving perspective, to use your word Nancy, for next year? What's the visual output in your mind? >> I want to see real effort made towards 50-50 representation in all tech leadership roles. And I'd like to see that happen by 2050. >> Kate, anything on your end? >> I love that. I'm going to go a little bit more touchy-feely. I want everybody in our space to understand that the skills that they build and that the networks they have carry with them regardless of wherever they go. And so to be able to really lean in and learn and continue to develop the career that you want to have. So whether that be at a large organization or within your own business, that you've got the potential to move forward on that within you. >> Nancy, Kate, thank you so much for your contribution. I'll give you the final word. Put a plug in for the organization. What are you guys looking for? Any kind of PSA you want to share with the folks watching? >> Absolutely, so if you're in a position to be a mentor, join as a mentor, right? Help elevate and accelerate the next generation of women leaders. If you're an investor help us invest in more women started companies, right? Women founded startups and lastly, if you are women looking to accelerate your career, come join our community. We have resources, we have mentors and who we have investors who are willing to come in on the ground floor and help you accelerate your business. >> Great work. Thank you so much for participating in our International Women's Day 23 program and we'd look to keep this going quarterly. We'll see you next year, next time. Thanks for coming on. Appreciate it. >> Thanks so much John. >> Thank you. >> Okay, women leaders here. >> Nancy: Thanks for having us >> All over the world, coming together for a great celebration but really highlighting the accomplishments, the pathways the investment, the mentoring, everything in between. It's theCUBE. Bring as much as we can. I'm John Furrier, your host. Thanks for watching.

Published Date : Mar 7 2023

SUMMARY :

in the technology world, that you get to see a whole nother aspect of time taking the empowerment to go on the rise to leadership in the industry. in the industry's been focused of the US State Department And she mentioned the decision and all of the international into the networks to be able to further in the US we might take for Can you think about the and the networks to be able The easy lower the access to get and the mentor programs Those are great firms by the way. and also brought in the or the chairman of this in the US while we're I know that you got a of programming that you can check I have to ask you guys if you don't mind founders in the security space. Kate, reaction to that? of continuing to build their skills I love the work you guys are doing. And I'd like to see that happen by 2050. and that the networks Any kind of PSA you want to and accelerate the next Thank you so much for participating All over the world,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
KatePERSON

0.99+

NancyPERSON

0.99+

TeresaPERSON

0.99+

Bill VaasPERSON

0.99+

AmazonORGANIZATION

0.99+

Teresa CarlsonPERSON

0.99+

JohnPERSON

0.99+

MalaysiaLOCATION

0.99+

Kate WattsPERSON

0.99+

NigeriaLOCATION

0.99+

Nancy WangPERSON

0.99+

Wayne DusoPERSON

0.99+

AWSORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

ModernaORGANIZATION

0.99+

WednesdayDATE

0.99+

American Council on EducationORGANIZATION

0.99+

John FurrierPERSON

0.99+

Lena SmartPERSON

0.99+

2017DATE

0.99+

VietnamLOCATION

0.99+

BorneoLOCATION

0.99+

Emergence VenturesORGANIZATION

0.99+

New YorkLOCATION

0.99+

2016DATE

0.99+

United Nations Women GroupORGANIZATION

0.99+

Decibel VenturesORGANIZATION

0.99+

USLOCATION

0.99+

United StatesLOCATION

0.99+

Southeast AsiaLOCATION

0.99+

LinkedInORGANIZATION

0.99+

2050DATE

0.99+

MongoDBORGANIZATION

0.99+

US State DepartmentORGANIZATION

0.99+

next yearDATE

0.99+

International Women's DayEVENT

0.99+

25 foundersQUANTITY

0.99+

SeattleLOCATION

0.99+

North AmericasLOCATION

0.99+

AWS Data ProtectionORGANIZATION

0.99+

CUBEORGANIZATION

0.99+

three daysQUANTITY

0.99+

seventhQUANTITY

0.99+

Bay AreaLOCATION

0.99+

bothQUANTITY

0.99+

todayDATE

0.99+

next weekDATE

0.99+

30 womenQUANTITY

0.98+

One aspectQUANTITY

0.98+

ThursdayDATE

0.98+

this yearDATE

0.98+

about 40,000 individualsQUANTITY

0.98+

this yearDATE

0.98+

last springDATE

0.98+

this weekDATE

0.98+

TuesdayDATE

0.98+

Lena Smart & Tara Hernandez, MongoDB | International Women's Day


 

(upbeat music) >> Hello and welcome to theCube's coverage of International Women's Day. I'm John Furrier, your host of "theCUBE." We've got great two remote guests coming into our Palo Alto Studios, some tech athletes, as we say, people that've been in the trenches, years of experience, Lena Smart, CISO at MongoDB, Cube alumni, and Tara Hernandez, VP of Developer Productivity at MongoDB as well. Thanks for coming in to this program and supporting our efforts today. Thanks so much. >> Thanks for having us. >> Yeah, everyone talk about the journey in tech, where it all started. Before we get there, talk about what you guys are doing at MongoDB specifically. MongoDB is kind of gone the next level as a platform. You have your own ecosystem, lot of developers, very technical crowd, but it's changing the business transformation. What do you guys do at Mongo? We'll start with you, Lena. >> So I'm the CISO, so all security goes through me. I like to say, well, I don't like to say, I'm described as the ones throat to choke. So anything to do with security basically starts and ends with me. We do have a fantastic Cloud engineering security team and a product security team, and they don't report directly to me, but obviously we have very close relationships. I like to keep that kind of church and state separate and I know I've spoken about that before. And we just recently set up a physical security team with an amazing gentleman who left the FBI and he came to join us after 26 years for the agency. So, really starting to look at the physical aspects of what we offer as well. >> I interviewed a CISO the other day and she said, "Every day is day zero for me." Kind of goofing on the Amazon Day one thing, but Tara, go ahead. Tara, go ahead. What's your role there, developer productivity? What are you focusing on? >> Sure. Developer productivity is kind of the latest description for things that we've described over the years as, you know, DevOps oriented engineering or platform engineering or build and release engineering development infrastructure. It's all part and parcel, which is how do we actually get our code from developer to customer, you know, and all the mechanics that go into that. It's been something I discovered from my first job way back in the early '90s at Borland. And the art has just evolved enormously ever since, so. >> Yeah, this is a very great conversation both of you guys, right in the middle of all the action and data infrastructures changing, exploding, and involving big time AI and data tsunami and security never stops. Well, let's get into, we'll talk about that later, but let's get into what motivated you guys to pursue a career in tech and what were some of the challenges that you faced along the way? >> I'll go first. The fact of the matter was I intended to be a double major in history and literature when I went off to university, but I was informed that I had to do a math or a science degree or else the university would not be paid for. At the time, UC Santa Cruz had a policy that called Open Access Computing. This is, you know, the late '80s, early '90s. And anybody at the university could get an email account and that was unusual at the time if you were, those of us who remember, you used to have to pay for that CompuServe or AOL or, there's another one, I forget what it was called, but if a student at Santa Cruz could have an email account. And because of that email account, I met people who were computer science majors and I'm like, "Okay, I'll try that." That seems good. And it was a little bit of a struggle for me, a lot I won't lie, but I can't complain with how it ended up. And certainly once I found my niche, which was development infrastructure, I found my true love and I've been doing it for almost 30 years now. >> Awesome. Great story. Can't wait to ask a few questions on that. We'll go back to that late '80s, early '90s. Lena, your journey, how you got into it. >> So slightly different start. I did not go to university. I had to leave school when I was 16, got a job, had to help support my family. Worked a bunch of various jobs till I was about 21 and then computers became more, I think, I wouldn't say they were ubiquitous, but they were certainly out there. And I'd also been saving up every penny I could earn to buy my own computer and bought an Amstrad 1640, 20 meg hard drive. It rocked. And kind of took that apart, put it back together again, and thought that could be money in this. And so basically just teaching myself about computers any job that I got. 'Cause most of my jobs were like clerical work and secretary at that point. But any job that had a computer in front of that, I would make it my business to go find the guy who did computing 'cause it was always a guy. And I would say, you know, I want to learn how these work. Let, you know, show me. And, you know, I would take my lunch hour and after work and anytime I could with these people and they were very kind with their time and I just kept learning, so yep. >> Yeah, those early days remind me of the inflection point we're going through now. This major C change coming. Back then, if you had a computer, you had to kind of be your own internal engineer to fix things. Remember back on the systems revolution, late '80s, Tara, when, you know, your career started, those were major inflection points. Now we're seeing a similar wave right now, security, infrastructure. It feels like it's going to a whole nother level. At Mongo, you guys certainly see this as well, with this AI surge coming in. A lot more action is coming in. And so there's a lot of parallels between these inflection points. How do you guys see this next wave of change? Obviously, the AI stuff's blowing everyone away. Oh, new user interface. It's been called the browser moment, the mobile iPhone moment, kind of for this generation. There's a lot of people out there who are watching that are young in their careers, what's your take on this? How would you talk to those folks around how important this wave is? >> It, you know, it's funny, I've been having this conversation quite a bit recently in part because, you know, to me AI in a lot of ways is very similar to, you know, back in the '90s when we were talking about bringing in the worldwide web to the forefront of the world, right. And we tended to think in terms of all the optimistic benefits that would come of it. You know, free passing of information, availability to anyone, anywhere. You just needed an internet connection, which back then of course meant a modem. >> John: Not everyone had though. >> Exactly. But what we found in the subsequent years is that human beings are what they are and we bring ourselves to whatever platforms that are there, right. And so, you know, as much as it was amazing to have this freely available HTML based internet experience, it also meant that the negatives came to the forefront quite quickly. And there were ramifications of that. And so to me, when I look at AI, we're already seeing the ramifications to that. Yes, are there these amazing, optimistic, wonderful things that can be done? Yes. >> Yeah. >> But we're also human and the bad stuff's going to come out too. And how do we- >> Yeah. >> How do we as an industry, as a community, you know, understand and mitigate those ramifications so that we can benefit more from the positive than the negative. So it is interesting that it comes kind of full circle in really interesting ways. >> Yeah. The underbelly takes place first, gets it in the early adopter mode. Normally industries with, you know, money involved arbitrage, no standards. But we've seen this movie before. Is there hope, Lena, that we can have a more secure environment? >> I would hope so. (Lena laughs) Although depressingly, we've been in this well for 30 years now and we're, at the end of the day, still telling people not to click links on emails. So yeah, that kind of still keeps me awake at night a wee bit. The whole thing about AI, I mean, it's, obviously I am not an expert by any stretch of the imagination in AI. I did read (indistinct) book recently about AI and that was kind of interesting. And I'm just trying to teach myself as much as I can about it to the extent of even buying the "Dummies Guide to AI." Just because, it's actually not a dummies guide. It's actually fairly interesting, but I'm always thinking about it from a security standpoint. So it's kind of my worst nightmare and the best thing that could ever happen in the same dream. You know, you've got this technology where I can ask it a question and you know, it spits out generally a reasonable answer. And my team are working on with Mark Porter our CTO and his team on almost like an incubation of AI link. What would it look like from MongoDB? What's the legal ramifications? 'Cause there will be legal ramifications even though it's the wild, wild west just now, I think. Regulation's going to catch up to us pretty quickly, I would think. >> John: Yeah, yeah. >> And so I think, you know, as long as companies have a seat at the table and governments perhaps don't become too dictatorial over this, then hopefully we'll be in a good place. But we'll see. I think it's a really interest, there's that curse, we're living in interesting times. I think that's where we are. >> It's interesting just to stay on this tech trend for a minute. The standards bodies are different now. Back in the old days there were, you know, IEEE standards, ITF standards. >> Tara: TPC. >> The developers are the new standard. I mean, now you're seeing open source completely different where it was in the '90s to here beginning, that was gen one, some say gen two, but I say gen one, now we're exploding with open source. You have kind of developers setting the standards. If developers like it in droves, it becomes defacto, which then kind of rolls into implementation. >> Yeah, I mean I think if you don't have developer input, and this is why I love working with Tara and her team so much is 'cause they get it. If we don't have input from developers, it's not going to get used. There's going to be ways of of working around it, especially when it comes to security. If they don't, you know, if you're a developer and you're sat at your screen and you don't want to do that particular thing, you're going to find a way around it. You're a smart person. >> Yeah. >> So. >> Developers on the front lines now versus, even back in the '90s, they're like, "Okay, consider the dev's, got a QA team." Everything was Waterfall, now it's Cloud, and developers are on the front lines of everything. Tara, I mean, this is where the standards are being met. What's your reaction to that? >> Well, I think it's outstanding. I mean, you know, like I was at Netscape and part of the crowd that released the browser as open source and we founded mozilla.org, right. And that was, you know, in many ways kind of the birth of the modern open source movement beyond what we used to have, what was basically free software foundation was sort of the only game in town. And I think it is so incredibly valuable. I want to emphasize, you know, and pile onto what Lena was saying, it's not just that the developers are having input on a sort of company by company basis. Open source to me is like a checks and balance, where it allows us as a broader community to be able to agree on and enforce certain standards in order to try and keep the technology platforms as accessible as possible. I think Kubernetes is a great example of that, right. If we didn't have Kubernetes, that would've really changed the nature of how we think about container orchestration. But even before that, Linux, right. Linux allowed us as an industry to end the Unix Wars and as someone who was on the front lines of that as well and having to support 42 different operating systems with our product, you know, that was a huge win. And it allowed us to stop arguing about operating systems and start arguing about software or not arguing, but developing it in positive ways. So with, you know, with Kubernetes, with container orchestration, we all agree, okay, that's just how we're going to orchestrate. Now we can build up this huge ecosystem, everybody gets taken along, right. And now it changes the game for what we're defining as business differentials, right. And so when we talk about crypto, that's a little bit harder, but certainly with AI, right, you know, what are the checks and balances that as an industry and as the developers around this, that we can in, you know, enforce to make sure that no one company or no one body is able to overly control how these things are managed, how it's defined. And I think that is only for the benefit in the industry as a whole, particularly when we think about the only other option is it gets regulated in ways that do not involve the people who actually know the details of what they're talking about. >> Regulated and or thrown away or bankrupt or- >> Driven underground. >> Yeah. >> Which would be even worse actually. >> Yeah, that's a really interesting, the checks and balances. I love that call out. And I was just talking with another interview part of the series around women being represented in the 51% ratio. Software is for everybody. So that we believe that open source movement around the collective intelligence of the participants in the industry and independent of gender, this is going to be the next wave. You're starting to see these videos really have impact because there are a lot more leaders now at the table in companies developing software systems and with AI, the aperture increases for applications. And this is the new dynamic. What's your guys view on this dynamic? How does this go forward in a positive way? Is there a certain trajectory you see? For women in the industry? >> I mean, I think some of the states are trying to, again, from the government angle, some of the states are trying to force women into the boardroom, for example, California, which can be no bad thing, but I don't know, sometimes I feel a bit iffy about all this kind of forced- >> John: Yeah. >> You know, making, I don't even know how to say it properly so you can cut this part of the interview. (John laughs) >> Tara: Well, and I think that they're >> I'll say it's not organic. >> No, and I think they're already pulling it out, right. It's already been challenged so they're in the process- >> Well, this is the open source angle, Tara, you are getting at it. The change agent is open, right? So to me, the history of the proven model is openness drives transparency drives progress. >> No, it's- >> If you believe that to be true, this could have another impact. >> Yeah, it's so interesting, right. Because if you look at McKinsey Consulting or Boston Consulting or some of the other, I'm blocking on all of the names. There has been a decade or more of research that shows that a non homogeneous employee base, be it gender or ethnicity or whatever, generates more revenue, right? There's dollar signs that can be attached to this, but it's not enough for all companies to want to invest in that way. And it's not enough for all, you know, venture firms or investment firms to grant that seed money or do those seed rounds. I think it's getting better very slowly, but socialization is a much harder thing to overcome over time. Particularly, when you're not just talking about one country like the United States in our case, but around the world. You know, tech centers now exist all over the world, including places that even 10 years ago we might not have expected like Nairobi, right. Which I think is amazing, but you have to factor in the cultural implications of that as well, right. So yes, the openness is important and we have, it's important that we have those voices, but I don't think it's a panacea solution, right. It's just one more piece. I think honestly that one of the most important opportunities has been with Cloud computing and Cloud's been around for a while. So why would I say that? It's because if you think about like everybody holds up the Steve Jobs, Steve Wozniak, back in the '70s, or Sergey and Larry for Google, you know, you had to have access to enough credit card limit to go to Fry's and buy your servers and then access to somebody like Susan Wojcicki to borrow the garage or whatever. But there was still a certain amount of upfrontness that you had to be able to commit to, whereas now, and we've, I think, seen a really good evidence of this being able to lease server resources by the second and have development platforms that you can do on your phone. I mean, for a while I think Africa, that the majority of development happened on mobile devices because there wasn't a sufficient supply chain of laptops yet. And that's no longer true now as far as I know. But like the power that that enables for people who would otherwise be underrepresented in our industry instantly opens it up, right? And so to me that's I think probably the biggest opportunity that we've seen from an industry on how to make more availability in underrepresented representation for entrepreneurship. >> Yeah. >> Something like AI, I think that's actually going to take us backwards if we're not careful. >> Yeah. >> Because of we're reinforcing that socialization. >> Well, also the bias. A lot of people commenting on the biases of the large language inherently built in are also problem. Lena, I want you to weigh on this too, because I think the skills question comes up here and I've been advocating that you don't need the pedigree, college pedigree, to get into a certain jobs, you mentioned Cloud computing. I mean, it's been around for you think a long time, but not really, really think about it. The ability to level up, okay, if you're going to join something new and half the jobs in cybersecurity are created in the past year, right? So, you have this what used to be a barrier, your degree, your pedigree, your certification would take years, would be a blocker. Now that's gone. >> Lena: Yeah, it's the opposite. >> That's, in fact, psychology. >> I think so, but the people who I, by and large, who I interview for jobs, they have, I think security people and also I work with our compliance folks and I can't forget them, but let's talk about security just now. I've always found a particular kind of mindset with security folks. We're very curious, not very good at following rules a lot of the time, and we'd love to teach others. I mean, that's one of the big things stem from the start of my career. People were always interested in teaching and I was interested in learning. So it was perfect. And I think also having, you know, strong women leaders at MongoDB allows other underrepresented groups to actually apply to the company 'cause they see that we're kind of talking the talk. And that's been important. I think it's really important. You know, you've got Tara and I on here today. There's obviously other senior women at MongoDB that you can talk to as well. There's a bunch of us. There's not a whole ton of us, but there's a bunch of us. And it's good. It's definitely growing. I've been there for four years now and I've seen a growth in women in senior leadership positions. And I think having that kind of track record of getting really good quality underrepresented candidates to not just interview, but come and join us, it's seen. And it's seen in the industry and people take notice and they're like, "Oh, okay, well if that person's working, you know, if Tara Hernandez is working there, I'm going to apply for that." And that in itself I think can really, you know, reap the rewards. But it's getting started. It's like how do you get your first strong female into that position or your first strong underrepresented person into that position? It's hard. I get it. If it was easy, we would've sold already. >> It's like anything. I want to see people like me, my friends in there. Am I going to be alone? Am I going to be of a group? It's a group psychology. Why wouldn't? So getting it out there is key. Is there skills that you think that people should pay attention to? One's come up as curiosity, learning. What are some of the best practices for folks trying to get into the tech field or that's in the tech field and advancing through? What advice are you guys- >> I mean, yeah, definitely, what I say to my team is within my budget, we try and give every at least one training course a year. And there's so much free stuff out there as well. But, you know, keep learning. And even if it's not right in your wheelhouse, don't pick about it. Don't, you know, take a look at what else could be out there that could interest you and then go for it. You know, what does it take you few minutes each night to read a book on something that might change your entire career? You know, be enthusiastic about the opportunities out there. And there's so many opportunities in security. Just so many. >> Tara, what's your advice for folks out there? Tons of stuff to taste, taste test, try things. >> Absolutely. I mean, I always say, you know, my primary qualifications for people, I'm looking for them to be smart and motivated, right. Because the industry changes so quickly. What we're doing now versus what we did even last year versus five years ago, you know, is completely different though themes are certainly the same. You know, we still have to code and we still have to compile that code or package the code and ship the code so, you know, how well can we adapt to these new things instead of creating floppy disks, which was my first job. Five and a quarters, even. The big ones. >> That's old school, OG. There it is. Well done. >> And now it's, you know, containers, you know, (indistinct) image containers. And so, you know, I've gotten a lot of really great success hiring boot campers, you know, career transitioners. Because they bring a lot experience in addition to the technical skills. I think the most important thing is to experiment and figuring out what do you like, because, you know, maybe you are really into security or maybe you're really into like deep level coding and you want to go back, you know, try to go to school to get a degree where you would actually want that level of learning. Or maybe you're a front end engineer, you want to be full stacked. Like there's so many different things, data science, right. Maybe you want to go learn R right. You know, I think it's like figure out what you like because once you find that, that in turn is going to energize you 'cause you're going to feel motivated. I think the worst thing you could do is try to force yourself to learn something that you really could not care less about. That's just the worst. You're going in handicapped. >> Yeah and there's choices now versus when we were breaking into the business. It was like, okay, you software engineer. They call it software engineering, that's all it was. You were that or you were in sales. Like, you know, some sort of systems engineer or sales and now it's,- >> I had never heard of my job when I was in school, right. I didn't even know it was a possibility. But there's so many different types of technical roles, you know, absolutely. >> It's so exciting. I wish I was young again. >> One of the- >> Me too. (Lena laughs) >> I don't. I like the age I am. So one of the things that I did to kind of harness that curiosity is we've set up a security champions programs. About 120, I guess, volunteers globally. And these are people from all different backgrounds and all genders, diversity groups, underrepresented groups, we feel are now represented within this champions program. And people basically give up about an hour or two of their time each week, with their supervisors permission, and we basically teach them different things about security. And we've now had seven full-time people move from different areas within MongoDB into my team as a result of that program. So, you know, monetarily and time, yeah, saved us both. But also we're showing people that there is a path, you know, if you start off in Tara's team, for example, doing X, you join the champions program, you're like, "You know, I'd really like to get into red teaming. That would be so cool." If it fits, then we make that happen. And that has been really important for me, especially to give, you know, the women in the underrepresented groups within MongoDB just that window into something they might never have seen otherwise. >> That's a great common fit is fit matters. Also that getting access to what you fit is also access to either mentoring or sponsorship or some sort of, at least some navigation. Like what's out there and not being afraid to like, you know, just ask. >> Yeah, we just actually kicked off our big mentor program last week, so I'm the executive sponsor of that. I know Tara is part of it, which is fantastic. >> We'll put a plug in for it. Go ahead. >> Yeah, no, it's amazing. There's, gosh, I don't even know the numbers anymore, but there's a lot of people involved in this and so much so that we've had to set up mentoring groups rather than one-on-one. And I think it was 45% of the mentors are actually male, which is quite incredible for a program called Mentor Her. And then what we want to do in the future is actually create a program called Mentor Them so that it's not, you know, not just on the female and so that we can live other groups represented and, you know, kind of break down those groups a wee bit more and have some more granularity in the offering. >> Tara, talk about mentoring and sponsorship. Open source has been there for a long time. People help each other. It's community-oriented. What's your view of how to work with mentors and sponsors if someone's moving through ranks? >> You know, one of the things that was really interesting, unfortunately, in some of the earliest open source communities is there was a lot of pervasive misogyny to be perfectly honest. >> Yeah. >> And one of the important adaptations that we made as an open source community was the idea, an introduction of code of conducts. And so when I'm talking to women who are thinking about expanding their skills, I encourage them to join open source communities to have opportunity, even if they're not getting paid for it, you know, to develop their skills to work with people to get those code reviews, right. I'm like, "Whatever you join, make sure they have a code of conduct and a good leadership team. It's very important." And there are plenty, right. And then that idea has come into, you know, conferences now. So now conferences have codes of contact, if there are any good, and maybe not all of them, but most of them, right. And the ideas of expanding that idea of intentional healthy culture. >> John: Yeah. >> As a business goal and business differentiator. I mean, I won't lie, when I was recruited to come to MongoDB, the culture that I was able to discern through talking to people, in addition to seeing that there was actually women in senior leadership roles like Lena, like Kayla Nelson, that was a huge win. And so it just builds on momentum. And so now, you know, those of us who are in that are now representing. And so that kind of reinforces, but it's all ties together, right. As the open source world goes, particularly for a company like MongoDB, which has an open source product, you know, and our community builds. You know, it's a good thing to be mindful of for us, how we interact with the community and you know, because that could also become an opportunity for recruiting. >> John: Yeah. >> Right. So we, in addition to people who might become advocates on Mongo's behalf in their own company as a solution for themselves, so. >> You guys had great successful company and great leadership there. I mean, I can't tell you how many times someone's told me "MongoDB doesn't scale. It's going to be dead next year." I mean, I was going back 10 years. It's like, just keeps getting better and better. You guys do a great job. So it's so fun to see the success of developers. Really appreciate you guys coming on the program. Final question, what are you guys excited about to end the segment? We'll give you guys the last word. Lena will start with you and Tara, you can wrap us up. What are you excited about? >> I'm excited to see what this year brings. I think with ChatGPT and its copycats, I think it'll be a very interesting year when it comes to AI and always in the lookout for the authentic deep fakes that we see coming out. So just trying to make people aware that this is a real thing. It's not just pretend. And then of course, our old friend ransomware, let's see where that's going to go. >> John: Yeah. >> And let's see where we get to and just genuine hygiene and housekeeping when it comes to security. >> Excellent. Tara. >> Ah, well for us, you know, we're always constantly trying to up our game from a security perspective in the software development life cycle. But also, you know, what can we do? You know, one interesting application of AI that maybe Google doesn't like to talk about is it is really cool as an addendum to search and you know, how we might incorporate that as far as our learning environment and developer productivity, and how can we enable our developers to be more efficient, productive in their day-to-day work. So, I don't know, there's all kinds of opportunities that we're looking at for how we might improve that process here at MongoDB and then maybe be able to share it with the world. One of the things I love about working at MongoDB is we get to use our own products, right. And so being able to have this interesting document database in order to put information and then maybe apply some sort of AI to get it out again, is something that we may well be looking at, if not this year, then certainly in the coming year. >> Awesome. Lena Smart, the chief information security officer. Tara Hernandez, vice president developer of productivity from MongoDB. Thank you so much for sharing here on International Women's Day. We're going to do this quarterly every year. We're going to do it and then we're going to do quarterly updates. Thank you so much for being part of this program. >> Thank you. >> Thanks for having us. >> Okay, this is theCube's coverage of International Women's Day. I'm John Furrier, your host. Thanks for watching. (upbeat music)

Published Date : Mar 6 2023

SUMMARY :

Thanks for coming in to this program MongoDB is kind of gone the I'm described as the ones throat to choke. Kind of goofing on the you know, and all the challenges that you faced the time if you were, We'll go back to that you know, I want to learn how these work. Tara, when, you know, your career started, you know, to me AI in a lot And so, you know, and the bad stuff's going to come out too. you know, understand you know, money involved and you know, it spits out And so I think, you know, you know, IEEE standards, ITF standards. The developers are the new standard. and you don't want to do and developers are on the And that was, you know, in many ways of the participants I don't even know how to say it properly No, and I think they're of the proven model is If you believe that that you can do on your phone. going to take us backwards Because of we're and half the jobs in cybersecurity And I think also having, you know, I going to be of a group? You know, what does it take you Tons of stuff to taste, you know, my primary There it is. And now it's, you know, containers, Like, you know, some sort you know, absolutely. I (Lena laughs) especially to give, you know, Also that getting access to so I'm the executive sponsor of that. We'll put a plug in for it. and so that we can live to work with mentors You know, one of the things And one of the important and you know, because So we, in addition to people and Tara, you can wrap us up. and always in the lookout for it comes to security. addendum to search and you know, We're going to do it and then we're I'm John Furrier, your host.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Susan WojcickiPERSON

0.99+

Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

JimPERSON

0.99+

JasonPERSON

0.99+

Tara HernandezPERSON

0.99+

David FloyerPERSON

0.99+

DavePERSON

0.99+

Lena SmartPERSON

0.99+

John TroyerPERSON

0.99+

Mark PorterPERSON

0.99+

MellanoxORGANIZATION

0.99+

Kevin DeierlingPERSON

0.99+

Marty LansPERSON

0.99+

TaraPERSON

0.99+

JohnPERSON

0.99+

AWSORGANIZATION

0.99+

Jim JacksonPERSON

0.99+

Jason NewtonPERSON

0.99+

IBMORGANIZATION

0.99+

Daniel HernandezPERSON

0.99+

Dave WinokurPERSON

0.99+

DanielPERSON

0.99+

LenaPERSON

0.99+

Meg WhitmanPERSON

0.99+

TelcoORGANIZATION

0.99+

Julie SweetPERSON

0.99+

MartyPERSON

0.99+

Yaron HavivPERSON

0.99+

AmazonORGANIZATION

0.99+

Western DigitalORGANIZATION

0.99+

Kayla NelsonPERSON

0.99+

Mike PiechPERSON

0.99+

JeffPERSON

0.99+

Dave VolantePERSON

0.99+

John WallsPERSON

0.99+

Keith TownsendPERSON

0.99+

fiveQUANTITY

0.99+

IrelandLOCATION

0.99+

AntonioPERSON

0.99+

Daniel LauryPERSON

0.99+

Jeff FrickPERSON

0.99+

MicrosoftORGANIZATION

0.99+

sixQUANTITY

0.99+

Todd KerryPERSON

0.99+

John FurrierPERSON

0.99+

$20QUANTITY

0.99+

MikePERSON

0.99+

January 30thDATE

0.99+

MegPERSON

0.99+

Mark LittlePERSON

0.99+

Luke CerneyPERSON

0.99+

PeterPERSON

0.99+

Jeff BasilPERSON

0.99+

Stu MinimanPERSON

0.99+

DanPERSON

0.99+

10QUANTITY

0.99+

AllanPERSON

0.99+

40 gigQUANTITY

0.99+

Adam Wenchel, Arthur.ai | CUBE Conversation


 

(bright upbeat music) >> Hello and welcome to this Cube Conversation. I'm John Furrier, host of theCUBE. We've got a great conversation featuring Arthur AI. I'm your host. I'm excited to have Adam Wenchel who's the Co-Founder and CEO. Thanks for joining us today, appreciate it. >> Yeah, thanks for having me on, John, looking forward to the conversation. >> I got to say, it's been an exciting world in AI or artificial intelligence. Just an explosion of interest kind of in the mainstream with the language models, which people don't really get, but they're seeing the benefits of some of the hype around OpenAI. Which kind of wakes everyone up to, "Oh, I get it now." And then of course the pessimism comes in, all the skeptics are out there. But this breakthrough in generative AI field is just awesome, it's really a shift, it's a wave. We've been calling it probably the biggest inflection point, then the others combined of what this can do from a surge standpoint, applications. I mean, all aspects of what we used to know is the computing industry, software industry, hardware, is completely going to get turbo. So we're totally obviously bullish on this thing. So, this is really interesting. So my first question is, I got to ask you, what's you guys taking? 'Cause you've been doing this, you're in it, and now all of a sudden you're at the beach where the big waves are. What's the explosion of interest is there? What are you seeing right now? >> Yeah, I mean, it's amazing, so for starters, I've been in AI for over 20 years and just seeing this amount of excitement and the growth, and like you said, the inflection point we've hit in the last six months has just been amazing. And, you know, what we're seeing is like people are getting applications into production using LLMs. I mean, really all this excitement just started a few months ago, with ChatGPT and other breakthroughs and the amount of activity and the amount of new systems that we're seeing hitting production already so soon after that is just unlike anything we've ever seen. So it's pretty awesome. And, you know, these language models are just, they could be applied in so many different business contexts and that it's just the amount of value that's being created is again, like unprecedented compared to anything. >> Adam, you know, you've been in this for a while, so it's an interesting point you're bringing up, and this is a good point. I was talking with my friend John Markoff, former New York Times journalist and he was talking about, there's been a lot of work been done on ethics. So there's been, it's not like it's new. It's like been, there's a lot of stuff that's been baking over many, many years and, you know, decades. So now everyone wakes up in the season, so I think that is a key point I want to get into some of your observations. But before we get into it, I want you to explain for the folks watching, just so we can kind of get a definition on the record. What's an LLM, what's a foundational model and what's generative ai? Can you just quickly explain the three things there? >> Yeah, absolutely. So an LLM or a large language model, it's just a large, they would imply a large language model that's been trained on a huge amount of data typically pulled from the internet. And it's a general purpose language model that can be built on top for all sorts of different things, that includes traditional NLP tasks like document classification and sentiment understanding. But the thing that's gotten people really excited is it's used for generative tasks. So, you know, asking it to summarize documents or asking it to answer questions. And these aren't new techniques, they've been around for a while, but what's changed is just this new class of models that's based on new architectures. They're just so much more capable that they've gone from sort of science projects to something that's actually incredibly useful in the real world. And there's a number of companies that are making them accessible to everyone so that you can build on top of them. So that's the other big thing is, this kind of access to these models that can power generative tasks has been democratized in the last few months and it's just opening up all these new possibilities. And then the third one you mentioned foundation models is sort of a broader term for the category that includes LLMs, but it's not just language models that are included. So we've actually seen this for a while in the computer vision world. So people have been building on top of computer vision models, pre-trained computer vision models for a while for image classification, object detection, that's something we've had customers doing for three or four years already. And so, you know, like you said, there are antecedents to like, everything that's happened, it's not entirely new, but it does feel like a step change. >> Yeah, I did ask ChatGPT to give me a riveting introduction to you and it gave me an interesting read. If we have time, I'll read it. It's kind of, it's fun, you get a kick out of it. "Ladies and gentlemen, today we're a privileged "to have Adam Wenchel, Founder of Arthur who's going to talk "about the exciting world of artificial intelligence." And then it goes on with some really riveting sentences. So if we have time, I'll share that, it's kind of funny. It was good. >> Okay. >> So anyway, this is what people see and this is why I think it's exciting 'cause I think people are going to start refactoring what they do. And I've been saying this on theCUBE now for about a couple months is that, you know, there's a scene in "Moneyball" where Billy Beane sits down with the Red Sox owner and the Red Sox owner says, "If people aren't rebuilding their teams on your model, "they're going to be dinosaurs." And it reminds me of what's happening right now. And I think everyone that I talk to in the business sphere is looking at this and they're connecting the dots and just saying, if we don't rebuild our business with this new wave, they're going to be out of business because there's so much efficiency, there's so much automation, not like DevOps automation, but like the generative tasks that will free up the intellect of people. Like just the simple things like do an intro or do this for me, write some code, write a countermeasure to a hack. I mean, this is kind of what people are doing. And you mentioned computer vision, again, another huge field where 5G things are coming on, it's going to accelerate. What do you say to people when they kind of are leaning towards that, I need to rethink my business? >> Yeah, it's 100% accurate and what's been amazing to watch the last few months is the speed at which, and the urgency that companies like Microsoft and Google or others are actually racing to, to do that rethinking of their business. And you know, those teams, those companies which are large and haven't always been the fastest moving companies are working around the clock. And the pace at which they're rolling out LLMs across their suite of products is just phenomenal to watch. And it's not just the big, the large tech companies as well, I mean, we're seeing the number of startups, like we get, every week a couple of new startups get in touch with us for help with their LLMs and you know, there's just a huge amount of venture capital flowing into it right now because everyone realizes the opportunities for transforming like legal and healthcare and content creation in all these different areas is just wide open. And so there's a massive gold rush going on right now, which is amazing. >> And the cloud scale, obviously horizontal scalability of the cloud brings us to another level. We've been seeing data infrastructure since the Hadoop days where big data was coined. Now you're seeing this kind of take fruit, now you have vertical specialization where data shines, large language models all of a set up perfectly for kind of this piece. And you know, as you mentioned, you've been doing it for a long time. Let's take a step back and I want to get into how you started the company, what drove you to start it? Because you know, as an entrepreneur you're probably saw this opportunity before other people like, "Hey, this is finally it, it's here." Can you share the origination story of what you guys came up with, how you started it, what was the motivation and take us through that origination story. >> Yeah, absolutely. So as I mentioned, I've been doing AI for many years. I started my career at DARPA, but it wasn't really until 2015, 2016, my previous company was acquired by Capital One. Then I started working there and shortly after I joined, I was asked to start their AI team and scale it up. And for the first time I was actually doing it, had production models that we were working with, that was at scale, right? And so there was hundreds of millions of dollars of business revenue and certainly a big group of customers who were impacted by the way these models acted. And so it got me hyper-aware of these issues of when you get models into production, it, you know. So I think people who are earlier in the AI maturity look at that as a finish line, but it's really just the beginning and there's this constant drive to make them better, make sure they're not degrading, make sure you can explain what they're doing, if they're impacting people, making sure they're not biased. And so at that time, there really weren't any tools to exist to do this, there wasn't open source, there wasn't anything. And so after a few years there, I really started talking to other people in the industry and there was a really clear theme that this needed to be addressed. And so, I joined with my Co-Founder John Dickerson, who was on the faculty in University of Maryland and he'd been doing a lot of research in these areas. And so we ended up joining up together and starting Arthur. >> Awesome. Well, let's get into what you guys do. Can you explain the value proposition? What are people using you for now? Where's the action? What's the customers look like? What do prospects look like? Obviously you mentioned production, this has been the theme. It's not like people woke up one day and said, "Hey, I'm going to put stuff into production." This has kind of been happening. There's been companies that have been doing this at scale and then yet there's a whole follower model coming on mainstream enterprise and businesses. So there's kind of the early adopters are there now in production. What do you guys do? I mean, 'cause I think about just driving the car off the lot is not, you got to manage operations. I mean, that's a big thing. So what do you guys do? Talk about the value proposition and how you guys make money? >> Yeah, so what we do is, listen, when you go to validate ahead of deploying these models in production, starts at that point, right? So you want to make sure that if you're going to be upgrading a model, if you're going to replacing one that's currently in production, that you've proven that it's going to perform well, that it's going to be perform ethically and that you can explain what it's doing. And then when you launch it into production, traditionally data scientists would spend 25, 30% of their time just manually checking in on their model day-to-day babysitting as we call it, just to make sure that the data hasn't drifted, the model performance hasn't degraded, that a programmer did make a change in an upstream data system. You know, there's all sorts of reasons why the world changes and that can have a real adverse effect on these models. And so what we do is bring the same kind of automation that you have for other kinds of, let's say infrastructure monitoring, application monitoring, we bring that to your AI systems. And that way if there ever is an issue, it's not like weeks or months till you find it and you find it before it has an effect on your P&L and your balance sheet, which is too often before they had tools like Arthur, that was the way they were detected. >> You know, I was talking to Swami at Amazon who I've known for a long time for 13 years and been on theCUBE multiple times and you know, I watched Amazon try to pick up that sting with stage maker about six years ago and so much has happened since then. And he and I were talking about this wave, and I kind of brought up this analogy to how when cloud started, it was, Hey, I don't need a data center. 'Cause when I did my startup that time when Amazon, one of my startups at that time, my choice was put a box in the colo, get all the configuration before I could write over the line of code. So the cloud became the benefit for that and you can stand up stuff quickly and then it grew from there. Here it's kind of the same dynamic, you don't want to have to provision a large language model or do all this heavy lifting. So that seeing companies coming out there saying, you can get started faster, there's like a new way to get it going. So it's kind of like the same vibe of limiting that heavy lifting. >> Absolutely. >> How do you look at that because this seems to be a wave that's going to be coming in and how do you guys help companies who are going to move quickly and start developing? >> Yeah, so I think in the race to this kind of gold rush mentality, race to get these models into production, there's starting to see more sort of examples and evidence that there are a lot of risks that go along with it. Either your model says things, your system says things that are just wrong, you know, whether it's hallucination or just making things up, there's lots of examples. If you go on Twitter and the news, you can read about those, as well as sort of times when there could be toxic content coming out of things like that. And so there's a lot of risks there that you need to think about and be thoughtful about when you're deploying these systems. But you know, you need to balance that with the business imperative of getting these things into production and really transforming your business. And so that's where we help people, we say go ahead, put them in production, but just make sure you have the right guardrails in place so that you can do it in a smart way that's going to reflect well on you and your company. >> Let's frame the challenge for the companies now that you have, obviously there's the people who doing large scale production and then you have companies maybe like as small as us who have large linguistic databases or transcripts for example, right? So what are customers doing and why are they deploying AI right now? And is it a speed game, is it a cost game? Why have some companies been able to deploy AI at such faster rates than others? And what's a best practice to onboard new customers? >> Yeah, absolutely. So I mean, we're seeing across a bunch of different verticals, there are leaders who have really kind of started to solve this puzzle about getting AI models into production quickly and being able to iterate on them quickly. And I think those are the ones that realize that imperative that you mentioned earlier about how transformational this technology is. And you know, a lot of times, even like the CEOs or the boards are very personally kind of driving this sense of urgency around it. And so, you know, that creates a lot of movement, right? And so those companies have put in place really smart infrastructure and rails so that people can, data scientists aren't encumbered by having to like hunt down data, get access to it. They're not encumbered by having to stand up new platforms every time they want to deploy an AI system, but that stuff is already in place. There's a really nice ecosystem of products out there, including Arthur, that you can tap into. Compared to five or six years ago when I was building at a top 10 US bank, at that point you really had to build almost everything yourself and that's not the case now. And so it's really nice to have things like, you know, you mentioned AWS SageMaker and a whole host of other tools that can really accelerate things. >> What's your profile customer? Is it someone who already has a team or can people who are learning just dial into the service? What's the persona? What's the pitch, if you will, how do you align with that customer value proposition? Do people have to be built out with a team and in play or is it pre-production or can you start with people who are just getting going? >> Yeah, people do start using it pre-production for validation, but I think a lot of our customers do have a team going and they're starting to put, either close to putting something into production or about to, it's everything from large enterprises that have really sort of complicated, they have dozens of models running all over doing all sorts of use cases to tech startups that are very focused on a single problem, but that's like the lifeblood of the company and so they need to guarantee that it works well. And you know, we make it really easy to get started, especially if you're using one of the common model development platforms, you can just kind of turn key, get going and make sure that you have a nice feedback loop. So then when your models are out there, it's pointing out, areas where it's performing well, areas where it's performing less well, giving you that feedback so that you can make improvements, whether it's in training data or futurization work or algorithm selection. There's a number of, you know, depending on the symptoms, there's a number of things you can do to increase performance over time and we help guide people on that journey. >> So Adam, I have to ask, since you have such a great customer base and they're smart and they got teams and you're on the front end, I mean, early adopters is kind of an overused word, but they're killing it. They're putting stuff in the production's, not like it's a test, it's not like it's early. So as the next wave comes of fast followers, how do you see that coming online? What's your vision for that? How do you see companies that are like just waking up out of the frozen, you know, freeze of like old IT to like, okay, they got cloud, but they're not yet there. What do you see in the market? I see you're in the front end now with the top people really nailing AI and working hard. What's the- >> Yeah, I think a lot of these tools are becoming, or every year they get easier, more accessible, easier to use. And so, you know, even for that kind of like, as the market broadens, it takes less and less of a lift to put these systems in place. And the thing is, every business is unique, they have their own kind of data and so you can use these foundation models which have just been trained on generic data. They're a great starting point, a great accelerant, but then, in most cases you're either going to want to create a model or fine tune a model using data that's really kind of comes from your particular customers, the people you serve and so that it really reflects that and takes that into account. And so I do think that these, like the size of that market is expanding and its broadening as these tools just become easier to use and also the knowledge about how to build these systems becomes more widespread. >> Talk about your customer base you have now, what's the makeup, what size are they? Give a taste a little bit of a customer base you got there, what's they look like? I'll say Capital One, we know very well while you were at there, they were large scale, lot of data from fraud detection to all kinds of cool stuff. What do your customers now look like? >> Yeah, so we have a variety, but I would say one area we're really strong, we have several of the top 10 US banks, that's not surprising, that's a strength for us, but we also have Fortune 100 customers in healthcare, in manufacturing, in retail, in semiconductor and electronics. So what we find is like in any sort of these major verticals, there's typically, you know, one, two, three kind of companies that are really leading the charge and are the ones that, you know, in our opinion, those are the ones that for the next multiple decades are going to be the leaders, the ones that really kind of lead the charge on this AI transformation. And so we're very fortunate to be working with some of those. And then we have a number of startups as well who we love working with just because they're really pushing the boundaries technologically and so they provide great feedback and make sure that we're continuing to innovate and staying abreast of everything that's going on. >> You know, these early markups, even when the hyperscalers were coming online, they had to build everything themselves. That's the new, they're like the alphas out there building it. This is going to be a big wave again as that fast follower comes in. And so when you look at the scale, what advice would you give folks out there right now who want to tee it up and what's your secret sauce that will help them get there? >> Yeah, I think that the secret to teeing it up is just dive in and start like the, I think these are, there's not really a secret. I think it's amazing how accessible these are. I mean, there's all sorts of ways to access LLMs either via either API access or downloadable in some cases. And so, you know, go ahead and get started. And then our secret sauce really is the way that we provide that performance analysis of what's going on, right? So we can tell you in a very actionable way, like, hey, here's where your model is doing good things, here's where it's doing bad things. Here's something you want to take a look at, here's some potential remedies for it. We can help guide you through that. And that way when you're putting it out there, A, you're avoiding a lot of the common pitfalls that people see and B, you're able to really kind of make it better in a much faster way with that tight feedback loop. >> It's interesting, we've been kind of riffing on this supercloud idea because it was just different name than multicloud and you see apps like Snowflake built on top of AWS without even spending any CapEx, you just ride that cloud wave. This next AI, super AI wave is coming. I don't want to call AIOps because I think there's a different distinction. If you, MLOps and AIOps seem a little bit old, almost a few years back, how do you view that because everyone's is like, "Is this AIOps?" And like, "No, not kind of, but not really." How would you, you know, when someone says, just shoots off the hip, "Hey Adam, aren't you doing AIOps?" Do you say, yes we are, do you say, yes, but we do differently because it's doesn't seem like it's the same old AIOps. What's your- >> Yeah, it's a good question. AIOps has been a term that was co-opted for other things and MLOps also has people have used it for different meanings. So I like the term just AI infrastructure, I think it kind of like describes it really well and succinctly. >> But you guys are doing the ops. I mean that's the kind of ironic thing, it's like the next level, it's like NextGen ops, but it's not, you don't want to be put in that bucket. >> Yeah, no, it's very operationally focused platform that we have, I mean, it fires alerts, people can action off them. If you're familiar with like the way people run security operations centers or network operations centers, we do that for data science, right? So think of it as a DSOC, a Data Science Operations Center where all your models, you might have hundreds of models running across your organization, you may have five, but as problems are detected, alerts can be fired and you can actually work the case, make sure they're resolved, escalate them as necessary. And so there is a very strong operational aspect to it, you're right. >> You know, one of the things I think is interesting is, is that, if you don't mind commenting on it, is that the aspect of scale is huge and it feels like that was made up and now you have scale and production. What's your reaction to that when people say, how does scale impact this? >> Yeah, scale is huge for some of, you know, I think, I think look, the highest leverage business areas to apply these to, are generally going to be the ones at the biggest scale, right? And I think that's one of the advantages we have. Several of us come from enterprise backgrounds and we're used to doing things enterprise grade at scale and so, you know, we're seeing more and more companies, I think they started out deploying AI and sort of, you know, important but not necessarily like the crown jewel area of their business, but now they're deploying AI right in the heart of things and yeah, the scale that some of our companies are operating at is pretty impressive. >> John: Well, super exciting, great to have you on and congratulations. I got a final question for you, just random. What are you most excited about right now? Because I mean, you got to be pretty pumped right now with the way the world is going and again, I think this is just the beginning. What's your personal view? How do you feel right now? >> Yeah, the thing I'm really excited about for the next couple years now, you touched on it a little bit earlier, but is a sort of convergence of AI and AI systems with sort of turning into AI native businesses. And so, as you sort of do more, get good further along this transformation curve with AI, it turns out that like the better the performance of your AI systems, the better the performance of your business. Because these models are really starting to underpin all these key areas that cumulatively drive your P&L. And so one of the things that we work a lot with our customers is to do is just understand, you know, take these really esoteric data science notions and performance and tie them to all their business KPIs so that way you really are, it's kind of like the operating system for running your AI native business. And we're starting to see more and more companies get farther along that maturity curve and starting to think that way, which is really exciting. >> I love the AI native. I haven't heard any startup yet say AI first, although we kind of use the term, but I guarantee that's going to come in all the pitch decks, we're an AI first company, it's going to be great run. Adam, congratulations on your success to you and the team. Hey, if we do a few more interviews, we'll get the linguistics down. We can have bots just interact with you directly and ask you, have an interview directly. >> That sounds good, I'm going to go hang out on the beach, right? So, sounds good. >> Thanks for coming on, really appreciate the conversation. Super exciting, really important area and you guys doing great work. Thanks for coming on. >> Adam: Yeah, thanks John. >> Again, this is Cube Conversation. I'm John Furrier here in Palo Alto, AI going next gen. This is legit, this is going to a whole nother level that's going to open up huge opportunities for startups, that's going to use opportunities for investors and the value to the users and the experience will come in, in ways I think no one will ever see. So keep an eye out for more coverage on siliconangle.com and theCUBE.net, thanks for watching. (bright upbeat music)

Published Date : Mar 3 2023

SUMMARY :

I'm excited to have Adam Wenchel looking forward to the conversation. kind of in the mainstream and that it's just the amount Adam, you know, you've so that you can build on top of them. to give me a riveting introduction to you And you mentioned computer vision, again, And you know, those teams, And you know, as you mentioned, of when you get models into off the lot is not, you and that you can explain what it's doing. So it's kind of like the same vibe so that you can do it in a smart way And so, you know, that creates and make sure that you out of the frozen, you know, and so you can use these foundation models a customer base you got there, that are really leading the And so when you look at the scale, And so, you know, go how do you view that So I like the term just AI infrastructure, I mean that's the kind of ironic thing, and you can actually work the case, is that the aspect of and so, you know, we're seeing exciting, great to have you on so that way you really are, success to you and the team. out on the beach, right? and you guys doing great work. and the value to the users and

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
John MarkoffPERSON

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Adam WenchelPERSON

0.99+

JohnPERSON

0.99+

Red SoxORGANIZATION

0.99+

John DickersonPERSON

0.99+

AmazonORGANIZATION

0.99+

AdamPERSON

0.99+

John FurrierPERSON

0.99+

Palo AltoLOCATION

0.99+

2015DATE

0.99+

Capital OneORGANIZATION

0.99+

fiveQUANTITY

0.99+

100%QUANTITY

0.99+

2016DATE

0.99+

13 yearsQUANTITY

0.99+

SnowflakeTITLE

0.99+

threeQUANTITY

0.99+

first questionQUANTITY

0.99+

twoQUANTITY

0.99+

fiveDATE

0.99+

todayDATE

0.99+

oneQUANTITY

0.99+

four yearsQUANTITY

0.99+

Billy BeanePERSON

0.99+

over 20 yearsQUANTITY

0.99+

DARPAORGANIZATION

0.99+

third oneQUANTITY

0.98+

AWSORGANIZATION

0.98+

siliconangle.comOTHER

0.98+

University of MarylandORGANIZATION

0.97+

first timeQUANTITY

0.97+

USLOCATION

0.97+

firstQUANTITY

0.96+

six years agoDATE

0.96+

New York TimesORGANIZATION

0.96+

ChatGPTORGANIZATION

0.96+

SwamiPERSON

0.95+

ChatGPTTITLE

0.95+

hundreds of modelsQUANTITY

0.95+

25, 30%QUANTITY

0.95+

single problemQUANTITY

0.95+

hundreds of millions of dollarsQUANTITY

0.95+

10QUANTITY

0.94+

MoneyballTITLE

0.94+

waveEVENT

0.91+

three thingsQUANTITY

0.9+

AIOpsTITLE

0.9+

last six monthsDATE

0.89+

few months agoDATE

0.88+

bigEVENT

0.86+

next couple yearsDATE

0.86+

DevOpsTITLE

0.85+

ArthurPERSON

0.85+

CUBEORGANIZATION

0.83+

dozens of modelsQUANTITY

0.8+

a few years backDATE

0.8+

six years agoDATE

0.78+

theCUBEORGANIZATION

0.76+

SageMakerTITLE

0.75+

decadesQUANTITY

0.75+

TwitterORGANIZATION

0.74+

MLOpsTITLE

0.74+

supercloudORGANIZATION

0.73+

super AI waveEVENT

0.73+

a couple monthsQUANTITY

0.72+

ArthurORGANIZATION

0.72+

100 customersQUANTITY

0.71+

Cube ConversationEVENT

0.69+

theCUBE.netOTHER

0.67+

Prem Balasubramanian and Manoj Narayanan | Hitachi Vantara: Build Your Cloud Center of Excellence


 

(Upbeat music playing) >> Hey everyone, thanks for joining us today. Welcome to this event of Building your Cloud Center of Excellence with Hitachi Vantara. I'm your host, Lisa Martin. I've got a couple of guests here with me next to talk about redefining cloud operations and application modernization for customers. Please welcome Prem Balasubramanian the SVP and CTO at Hitachi Vantara, and Manoj Narayanan is here as well, the Managing Director of Technology at GTCR. Guys, thank you so much for joining me today. Excited to have this conversation about redefining CloudOps with you. >> Pleasure to be here. >> Pleasure to be here >> Prem, let's go ahead and start with you. You have done well over a thousand cloud engagements in your career. I'd love to get your point of view on how the complexity around cloud operations and management has evolved in the last, say, three to four years. >> It's a great question, Lisa before we understand the complexity around the management itself, the cloud has evolved over the last decade significantly from being a backend infrastructure or infrastructure as a service for many companies to become the business for many companies. If you think about a lot of these cloud bond companies cloud is where their entire workload and their business wants. With that, as a background for this conversation if you think about the cloud operations, there was a lot of there was a lot of lift and shift happening in the market where people lifted their workloads or applications and moved them onto the cloud where they treated cloud significantly as an infrastructure. And the way they started to manage it was again, the same format they were managing there on-prem infrastructure and they call it I&O, Infrastructure and Operations. That's kind of the way traditionally cloud is managed. In the last few years, we are seeing a significant shift around thinking of cloud more as a workload rather than as just an infrastructure. And what I mean by workload is in the cloud, everything is now code. So you are codifying your infrastructure. Your application is already code and your data is also codified as data services. With now that context apply the way you think about managing the cloud has to significantly change and many companies are moving towards trying to change their models to look at this complex environment as opposed to treating it like a simple infrastructure that is sitting somewhere else. So that's one of the biggest changes and shifts that are causing a lot of complexity and headache for actually a lot of customers for managing environments. The second critical aspect is even that, even exasperates the situation is multicloud environments. Now, there are companies that have got it right with things about right cloud for the right workload. So there are companies that I reach out and I talk with. They've got their office applications and emails and stuff running on Microsoft 365 which can be on the Azure cloud whereas they're running their engineering applications the ones that they build and leverage for their end customers on Amazon. And to some extent they've got it right but still they have a multiple cloud that they have to go after and maintain. This becomes complex when you have two clouds for the same type of workload. When I have to host applications for my end customers on Amazon as well as Azure, Azure as well as Google then, I get into security issues that I have to be consistent across all three. I get into talent because I need to have people that focus on Amazon as well as Azure, as well as Google which means I need so much more workforce, I need so many so much more skills that I need to build, right? That's becoming the second issue. The third one is around data costs. Can I make these clouds talk to each other? Then you get into the ingress egress cost and that creates some complexity. So bringing all of this together and managing is really become becoming more complex for our customers. And obviously as a part of this we will talk about some of the, some of the ideas that we can bring for in managing such complex environments but this is what we are seeing in terms of why the complexity has become a lot more in the last few years. >> Right. A lot of complexity in the last few years. Manoj, let's bring you into the conversation now. Before we dig into your cloud environment give the audience a little bit of an overview of GTCR. What kind of company are you? What do you guys do? >> Definitely Lisa. GTCR is a Chicago based private equity firm. We've been in the market for more than 40 years and what we do is we invest in companies across different sectors and then we manage the company drive it to increase the value and then over a period of time, sell it to future buyers. So in a nutshell, we got a large portfolio of companies that we need to manage and make sure that they perform to expectations. And my role within GTCR is from a technology viewpoint so where I work with all the companies their technology leadership to make sure that we are getting the best out of technology and technology today drives everything. So how can technology be a good compliment to the business itself? So, my role is to play that intermediary role to make sure that there is synergy between the investment thesis and the technology lures that we can pull and also work with partners like Hitachi to make sure that it is done in an optimal manner. >> I like that you said, you know, technology needs to really compliment the business and vice versa. So Manoj, let's get into the cloud operations environment at GTCR. Talk to me about what the experience has been the last couple of years. Give us an idea of some of the challenges that you were facing with existing cloud ops and and the solution that you're using from Hitachi Vantara. >> A a absolutely. In fact, in fact Prem phrased it really well, one of the key things that we're facing is the workload management. So there's so many choices there, so much complexities. We have these companies buying more companies there is organic growth that is happening. So the variables that we have to deal with are very high in such a scenario to make sure that the workload management of each of the companies are done in an optimal manner is becoming an increasing concern. So, so that's one area where any help we can get anything we can try to make sure it is done better becomes a huge value at each. A second aspect is a financial transparency. We need to know where the money is going where the money is coming in from, what is the scale especially in the cloud environment. We are talking about an auto scale ecosystem. Having that financial transparency and the metrics associated with that, it, these these become very, very critical to ensure that we have a successful presence in the multicloud environment. >> Talk a little bit about the solution that you're using with Hitachi and, and the challenges that it is eradicated. >> Yeah, so it end of the day, right, we we need to focus on our core competence. So, so we have got a very strong technology leadership team. We've got a very strong presence in the respective domains of each of the portfolio companies. But where Hitachi comes in and HAR comes in as a solution is that they allow us to excel in focusing on our core business and then make sure that we are able to take care of workload management or financial transparency. All of that is taken off the table from us and and Hitachi manages it for us, right? So it's such a perfectly compliment relationship where they act as two partners and HARC is a solution that is extremely useful in driving that. And, and and I'm anticipating that it'll become more important with time as the complexity of cloud and cloud associate workloads are only becoming more challenging to manage and not less. >> Right? That's the thing that complexity is there and it's also increasing Prem, you talked about the complexities that are existent today with respect to cloud operations the things that have happened over the last couple of years. What are some of your tips, Prem for the audience, like the the top two or three things that you would say on cloud operations that that people need to understand so that they can manage that complexity and allow their business to be driven and complimented by technology? >> Yeah, a big great question again, Lisa, right? And I think Manoj alluded to a few of these things as well. The first one is in the new world of the cloud I think think of migration, modernization and management as a single continuum to the cloud. Now there is no lift and shift and there is no way somebody else separately manages it, right? If you do not lift and shift the right applications the right way onto the cloud, you are going to deal with the complexity of managing it and you'll end up spending more money time and effort in managing it. So that's number one. Migration, modernization, management of cloud work growth is a single continuum and it's not three separate activities, right? That's number one. And the, the second is cost. Cost traditionally has been an afterthought, right? People move the workload to the cloud. And I think, again, like I said, I'll refer back to what Manoj said once we move it to the cloud and then we put all these fancy engineering capability around self-provisioning, every developer can go and ask for what he or she wants and they get an environment immediately spun up so on and so forth. Suddenly the CIO wakes up to a bill that is significantly larger than what he or she expected right? And, and this is this is become a bit common nowadays, right? The the challenge is because we think cost in the cloud as an afterthought. But consider this example in, in previous world you buy hard, well, you put it in your data center you have already amortized the cost as a CapEx. So you can write an application throw it onto the infrastructure and the application continues to use the infrastructure until you hit a ceiling, you don't care about the money you spent. But if I write a line of code that is inefficient today and I deploy it on the cloud from minute one, I am paying for the inefficiency. So if I realize it after six months, I've already spent the money. So financial discipline, especially when managing the cloud is now is no more an afterthought. It is as much something that you have to include in your engineering practice as much as any other DevOps practices, right? Those are my top two tips, Lisa, from my standpoint, think about cloud, think about cloud work, cloud workloads. And the last one again, and you will see you will hear me saying this again and again, get into the mindset of everything is code. You don't have a touch and feel infrastructure anymore. So you don't really need to have foot on the ground to go manage that infrastructure. It's codified. So your code should be managing it, but think of how it happens, right? That's where we, we are going as an evolution >> Everything is code. That's great advice, great tips for the audience there. Manoj, I'll bring you back into the conversation. You know, we, we can talk about skills gaps on on in many different facets of technology the SRE role, relatively new, skillset. We're hearing, hearing a lot about it. SRE led DevSecOps is probably even more so of a new skillset. If I'm an IT leader or an application leader how do I ensure that I have the right skillset within my organization to be able to manage my cloud operations to, to dial down that complexity so that I can really operate successfully as a business? >> Yeah. And so unfortunately there is no perfect answer, right? It's such a, such a scarce skillset that a, any day any of the portfolio company CTOs if I go and talk and say, Hey here's a great SRE team member, they'll be more than willing to fight with each of to get the person in right? It's just that scarce of a skillset. So, so a few things we need to look at it. One is, how can I build it within, right? So nobody gets born as an SRE, you, you make a person an SRE. So how do you inculcate that culture? So like Prem said earlier, right? Everything is software. So how do we make sure that everybody inculcates that as part of their operating philosophy be they part of the operations team or the development team or the testing team they need to understand that that is a common guideline and common objective that we are driving towards. So, so that skillset and that associated training needs to be driven from within the organization. And that in my mind is the fastest way to make sure that that role gets propagated across organization. That is one. The second thing is rely on the right partners. So it's not going to be possible for us, to get all of these roles built in-house. So instead prioritize what roles need to be done from within the organization and what roles can we rely on our partners to drive it for us. So that becomes an important consideration for us to look at as well. >> Absolutely. That partnership angle is incredibly important from, from the, the beginning really kind of weaving these companies together on this journey to to redefine cloud operations and build that, as we talked about at the beginning of the conversation really building a cloud center of excellence that allows the organization to be competitive, successful and and really deliver what the end user is, is expecting. I want to ask - Sorry Lisa, - go ahead. >> May I add something to it, I think? >> Sure. >> Yeah. One of the, one of the common things that I tell customers when we talk about SRE and to manages point is don't think of SRE as a skillset which is the common way today the industry tries to solve the problem. SRE is a mindset, right? Everybody in >> Well well said, yeah >> That, so everybody in a company should think of him or her as a cycle liability engineer. And everybody has a role in it, right? Even if you take the new process layout from SRE there are individuals that are responsible to whom we can go to when there is a problem directly as opposed to going through the traditional ways of AI talk to L one and L one contras all. They go to L two and then L three. So we, we, we are trying to move away from an issue escalation model to what we call as a a issue routing or a incident routing model, right? Move away from incident escalation to an incident routing model. So you get to route to the right folks. So again, to sum it up, SRE should not be solved as a skillset set because there is not enough people in the market to solve it that way. If you start solving it as a mindset I think companies can get a handhold of it. >> I love that. I've actually never heard that before, but it it makes perfect sense to think about the SRE as a mindset rather than a skillset that will allow organizations to be much more successful. Prem I wanted to get your thoughts as enterprises are are innovating, they're moving more products and services to the as a service model. Talk about how the dev teams the ops teams are working together to build and run reliable, cost efficient services. Are they working better together? >> Again, a a very polarizing question because some customers are getting it right many customers aren't, there is still a big wall between development and operations, right? Even when you think about DevOps as a terminology the fundamental principle was to make sure dev and ops works together. But what many companies have achieved today, honestly is automating the operations for development. For example, as a developer, I can check in code and my code will appear in production without any friction, right? There is automated testing, automated provisioning and it gets promoted to production, but after production, it goes back into the 20 year old model of operating the code, right? So there is more work that needs to be done for Devon and Ops to come closer and work together. And one of the ways that we think this is achievable is not by doing radical org changes, but more by focusing on a product-oriented single backlog approach across development and operations. Which is, again, there is change management involved but I think that's a way to start embracing the culture of dev ops coming together much better now, again SRE principles as we double click and understand it more and Google has done a very good job playing it out for the world. As you think about SRE principle, there are ways and means in that process of how to think about a single backlog. And in HARC, Hitachi Application Reliability Centers we've really got a way to look at prioritizing the backlog. And what I mean by that is dev teams try to work on backlog that come from product managers on features. The SRE and the operations team try to put backlog into the say sorry, try to put features into the same backlog for improving stability, availability and financials financial optimization of your code. And there are ways when you look at your SLOs and error budgets to really coach the product teams to prioritize your backlog based on what's important for you. So if you understand your spending more money then you reduce your product features going in and implement the financial optimization that came from your operations team, right? So you now have the ability to throttle these parameters and that's where SRE becomes a mindset and a principle as opposed to a skillset because this is not an individual telling you to do. This is the company that is, is embarking on how to prioritize my backlog beyond just user features. >> Right. Great point. Last question for both of you is the same talk kind of take away things that you want me to remember. If I am at an IT leader at, at an organization and I am planning on redefining CloudOps for my company Manoj will start with you and then Prem to you what are the top two things that you want me to walk away with understanding how to do that successfully? >> Yeah, so I'll, I'll go back to basics. So the two things I would say need to be taken care of is, one is customer experience. So all the things that I do end of the day is it improving the customer experience or not? So that's a first metric. The second thing is anything that I do is there an ROI by doing that incremental step or not? Otherwise we might get lost in the technology with surgery, the new tech, et cetera. But end of the day, if the customers are not happy if there is no ROI, everything else you just can't do much on top of that >> Now it's all about the customer experience. Right? That's so true. Prem what are your thoughts, the the top things that I need to be taking away if I am a a leader planning to redefine my cloud eye company? >> Absolutely. And I think from a, from a company standpoint I think Manoj summarized it extremely well, right? There is this ROI and there is this customer experience from my end, again, I'll, I'll suggest two two more things as a takeaway, right? One, cloud cost is not an afterthought. It's essential for us to think about it upfront. Number two, do not delink migration modernization and operations. They are one stream. If you migrate a long, wrong workload onto the cloud you're going to be stuck with it for a long time. And an example of a wrong workload, Lisa for everybody that that is listening to this is if my cost per transaction profile doesn't change and I am not improving my revenue per transaction for a piece of code that's going run in production it's better off running in a data center where my cost is CapEx than amortized and I have control over when I want to upgrade as opposed to putting it on a cloud and continuing to pay unless it gives me more dividends towards improvement. But that's a simple example of when we think about what should I migrate and how will it cost pain when I want to manage it in the longer run. But that's, that's something that I'll leave the audience and you with as a takeaway. >> Excellent. Guys, thank you so much for talking to me today about what Hitachi Vantara and GTCR are doing together how you've really dialed down those complexities enabling the business and the technology folks to really live harmoniously. We appreciate your insights and your perspectives on building a cloud center of excellence. Thank you both for joining me. >> Thank you. >> For my guests, I'm Lisa. Martin, you're watching this event building Your Cloud Center of Excellence with Hitachi Vantara. Thanks for watching. (Upbeat music playing) (Upbeat music playing) (Upbeat music playing) (Upbeat music playing)

Published Date : Mar 2 2023

SUMMARY :

the SVP and CTO at Hitachi Vantara, in the last, say, three to four years. apply the way you think in the last few years. and the technology lures that we can pull and the solution that you're that the workload management the solution that you're using All of that is taken off the table from us and allow their business to be driven have foot on the ground to have the right skillset And that in my mind is the that allows the organization to be and to manages point is don't of AI talk to L one and L one contras all. Talk about how the dev teams The SRE and the operations team that you want me to remember. But end of the day, if the I need to be taking away that I'll leave the audience and the technology folks to building Your Cloud Center of Excellence

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
HitachiORGANIZATION

0.99+

GTCRORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

Prem BalasubramanianPERSON

0.99+

HARCORGANIZATION

0.99+

LisaPERSON

0.99+

Manoj NarayananPERSON

0.99+

GoogleORGANIZATION

0.99+

ChicagoLOCATION

0.99+

AmazonORGANIZATION

0.99+

Hitachi VantaraORGANIZATION

0.99+

two partnersQUANTITY

0.99+

threeQUANTITY

0.99+

second issueQUANTITY

0.99+

bothQUANTITY

0.99+

more than 40 yearsQUANTITY

0.99+

ManojORGANIZATION

0.99+

eachQUANTITY

0.99+

third oneQUANTITY

0.99+

SREORGANIZATION

0.99+

todayDATE

0.99+

first metricQUANTITY

0.99+

one streamQUANTITY

0.99+

PremPERSON

0.99+

secondQUANTITY

0.99+

OneQUANTITY

0.99+

MartinPERSON

0.99+

oneQUANTITY

0.98+

twoQUANTITY

0.98+

first oneQUANTITY

0.98+

four yearsQUANTITY

0.98+

second thingQUANTITY

0.98+

second aspectQUANTITY

0.98+

three thingsQUANTITY

0.98+

ManojPERSON

0.98+

DevonORGANIZATION

0.97+

one areaQUANTITY

0.97+

two thingsQUANTITY

0.96+

Hitachi Application Reliability CentersORGANIZATION

0.96+

singleQUANTITY

0.95+

L twoOTHER

0.95+

single backlogQUANTITY

0.93+

two tipsQUANTITY

0.93+

three separate activitiesQUANTITY

0.92+

SRETITLE

0.91+

20 year oldQUANTITY

0.91+

CloudOpsTITLE

0.9+

L threeOTHER

0.9+

last decadeDATE

0.9+

second critical aspectQUANTITY

0.89+

yearsDATE

0.89+

MicrosoftORGANIZATION

0.89+

last couple of yearsDATE

0.88+

AzureTITLE

0.88+

Shahid Ahmed, NTT | MWC Barcelona 2023


 

(inspirational music) >> theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (uplifting electronic music) (crowd chattering in background) >> Hi everybody. We're back at the Fira in Barcelona. Winding up our four day wall-to-wall coverage of MWC23 theCUBE has been thrilled to cover the telco transformation. Dave Vellante with Dave Nicholson. Really excited to have NTT on. Shahid Ahmed is the Group EVP of New Ventures and Innovation at NTT in from Chicago. Welcome to Barcelona. Welcome to theCUBE. >> Thank you for having me over. >> So, really interesting title. You have, you know, people might not know NTT you know, huge Japan telco but a lot of other businesses, explain your business. >> So we do a lot of things. Most of us are known for our Docomo business in Japan. We have one of the largest wireless cellular carriers in the world. We serve most of Japan. Outside of Japan, we are B2B systems, integration, professional services company. So we offer managed services. We have data centers, we have undersea cables. We offer all kinds of outsourcing services. So we're a big company. >> So there's a narrative out there that says, you know, 5G, it's a lot of hype, not a lot of adoption. Nobody's ever going to make money at 5G. You have a different point of view, I understand. You're like leaning into 5G and you've actually got some traction there. Explain that. >> So 5G can be viewed from two lenses. One is just you and I using our cell phones and we get 5G coverage over it. And the other one is for businesses to use 5G, and we call that private 5G or enterprise grade 5G. Two very separate distinct things, but it is 5G in the end. Now the big debate here in Europe and US is how to monetize 5G. As a consumer, you and I are not going to pay extra for 5G. I mean, I haven't. I just expect the carrier to offer faster, cheaper services. And so would I pay extra? Not really. I just want a reliable network from my carrier. >> Paid up for the good camera though, didn't you? >> I did. (Dave and Dave laughing) >> I'm waiting for four cameras now. >> So the carriers are in this little bit of a pickle at the moment because they've just spent billions of dollars, not only on spectrum but the infrastructure needed to upgrade to 5G, yet nobody's willing to pay extra for that 5G service. >> Oh, right. >> So what do they do? And one idea is to look at enterprises, companies, industrial companies, manufacturing companies who want to build their own 5G networks to support their own use cases. And these use cases could be anything from automating the surveyor belt to cameras with 5G in it to AGVs. These are little carts running around warehouses picking up products and goods, but they have to be connected all the time. Wifi doesn't work all the time there. And so those businesses are willing to pay for 5G. So your question is, is there a business case for 5G? Yes. I don't think it's in the consumer side. I think it's in the business side. And that's where NTT is finding success. >> So you said, you know, how they going to make money, right? You very well described the telco dilemma. We heard earlier this week, you know, well, we could tax the OTT vendors, like Netflix of course shot back and said, "Well, we spent a lot of money on content. We're driving a lot of value. Why don't you help us pay for the content development?" Which is incredibly expensive. I think I heard we're going to tax the developers for API calls on the network. I'm not sure how well that's going to work out. Look at Twitter, you know, we'll see. And then yeah, there's the B2B piece. What's your take on, we heard the Orange CEO say, "We need help." You know, maybe implying we're going to tax the OTT vendors, but we're for net neutrality, which seems like it's completely counter-posed. What's your take on, you know, fair share in the network? >> Look, we've seen this debate unfold in the US for the last 10 years. >> Yeah. >> Tom Wheeler, the FCC chairman started that debate and he made great progress and open internet and net neutrality. The thing is that if you create a lane, a tollway, where some companies have to pay toll and others don't have to, you create an environment where the innovation could be stifled. Content providers may not appear on the scene anymore. And with everything happening around AI, we may see that backfire. So creating a toll for rich companies to be able to pay that toll and get on a faster speed internet, that may work some places may backfire in others. >> It's, you know, you're bringing up a great point. It's one of those sort of unintended consequences. You got to be be careful because the little guy gets crushed in that environment, and then what? Right? Then you stifle innovation. So, okay, so you're a fan of net neutrality. You think the balance that the US model, for a change, maybe the US got it right instead of like GDPR, who sort of informed the US on privacy, maybe the opposite on net neutrality. >> I think so. I mean, look, the way the US, particularly the FCC and the FTC has mandated these rules and regulation. I think it's a nice balance. FTC is all looking at big tech at the moment, but- >> Lena Khan wants to break up big tech. I mean for, you know, you big tech, boom, break 'em up, right? So, but that's, you know- >> That's a whole different story. >> Yeah. Right. We could talk about that too, if you want. >> Right. But I think that we have a balanced approach, a measured approach. Asking the content providers or the developers to pay for your innovative creative application that's on your phone, you know, that's asking for too much in my opinion. >> You know, I think you're right though. Government did do a good job with net neutrality in the US and, I mean, I'm just going to go my high horse for a second, so forgive me. >> Go for it. >> Market forces have always done a better job at adjudicating, you know, competition. Now, if a company's a monopoly, in my view they should be, you know, regulated, or at least penalized. Yeah, but generally speaking, you know the attack on big tech, I think is perhaps misplaced. I sat through, and the reason it's relevant to Mobile World Congress or MWC, is I sat through a Nokia presentation this week and they were talking about Bell Labs when United States broke up, you know, the US telcos, >> Yeah. >> Bell Labs was a gem in the US and now it's owned by Nokia. >> Yeah. >> Right? And so you got to be careful about, you know what you wish for with breaking up big tech. You got AI, you've got, you know, competition with China- >> Yeah, but the upside to breaking up Ma Bell was not just the baby Bells and maybe the stranded orphan asset of Bell Labs, but I would argue it led to innovation. I'm old enough to remember- >> I would say it made the US less competitive. >> I know. >> You were in junior high school, but I remember as an adult, having a rotary dial phone and having to pay for that access, and there was no such- >> Yeah, but they all came back together. The baby Bells are all, they got all acquired. And the cable company, it was no different. So I don't know, do you have a perspective of this? Because you know this better than I do. >> Well, I think look at Nokia, just they announced a whole new branding strategy and new brand. >> I like the brand. >> Yeah. And- >> It looks cool. >> But guess what? It's B2B oriented. >> (laughs) Yeah. >> It's no longer consumer, >> Right, yeah. >> because they felt that Nokia brand phone was sort of misleading towards a lot of business to business work that they do. And so they've oriented themselves to B2B. Look, my point is, the carriers and the service providers, network operators, and look, I'm a network operator, too, in Japan. We need to innovate ourselves. Nobody's stopping us from coming up with a content strategy. Nobody's stopping a carrier from building a interesting, new, over-the-top app. In fact, we have better control over that because we are closer to the customer. We need to innovate, we need to be more creative. I don't think taxing the little developer that's building a very innovative application is going to help in the long run. >> NTT Japan, what do they have a content play? I, sorry, I'm not familiar with it. Are they strong in content, or competitive like Netflix-like, or? >> We have relationships with them, and you remember i-mode? >> Yeah. Oh yeah, sure. >> Remember in the old days. I mean, that was a big hit. >> Yeah, yeah, you're right. >> Right? I mean, that was actually the original app marketplace. >> Right. >> And the application store. So, of course we've evolved from that and we should, and this is an evolution and we should look at it more positively instead of looking at ways to regulate it. We should let it prosper and let it see where- >> But why do you think that telcos generally have failed at content? I mean, AT&T is sort of the exception that proves the rule. I mean, they got some great properties, obviously, CNN and HBO, but generally it's viewed as a challenging asset and others have had to diversify or, you know, sell the assets. Why do you think that telcos have had such trouble there? >> Well, Comcast owns also a lot of content. >> Yeah. Yeah, absolutely. >> And I think, I think that is definitely a strategy that should be explored here in Europe. And I think that has been underexplored. I, in my opinion, I believe that every large carrier must have some sort of content strategy at some point, or else you are a pipe. >> Yeah. You lose touch with a customer. >> Yeah. And by the way, being a dump pipe is okay. >> No, it's a lucrative business. >> It's a good business. You just have to focus. And if you start to do a lot of ancillary things around it then you start to see the margins erode. But if you just focus on being a pipe, I think that's a very good business and it's very lucrative. Everybody wants bandwidth. There's insatiable demand for bandwidth all the time. >> Enjoy the monopoly, I say. >> Yeah, well, capital is like an organism in and of itself. It's going to seek a place where it can insert itself and grow. Do you think that the questions around fair share right now are having people wait in the wings to see what's going to happen? Because especially if I'm on the small end of creating content, creating services, and there's possibly a death blow to my fixed costs that could be coming down the line, I'm going to hold back and wait. Do you think that the answer is let's solve this sooner than later? What are your thoughts? >> I think in Europe the opinion has been always to go after the big tech. I mean, we've seen a lot of moves either through antitrust, or other means. >> Or the guillotine! >> That's right. (all chuckle) A guillotine. Yes. And I've heard those directly. I think, look, in the end, EU has to decide what's right for their constituents, the countries they operate, and the economy. Frankly, with where the economy is, you got recession, inflation pressures, a war, and who knows what else might come down the pipe. I would be very careful in messing with this equilibrium in this economy. Until at least we have gone through this inflation and recessionary pressure and see what happens. >> I, again, I think I come back to markets, ultimately, will adjudicate. I think what we're seeing with chatGPT is like a Netscape moment in some ways. And I can't predict what's going to happen, but I can predict that it's going to change the world. And there's going to be new disruptors that come about. That just, I don't think Amazon, Google, Facebook, Apple are going to rule the world forever. They're just, I guarantee they're not, you know. They'll make it through. But there's going to be some new companies. I think it might be open AI, might not be. Give us a plug for NTT at the show. What do you guys got going here? Really appreciate you coming on. >> Thank you. So, you know, we're showing off our private 5G network for enterprises, for businesses. We see this as a huge opportunities. If you look around here you've got Rohde & Schwarz, that's the industrial company. You got Airbus here. All the big industrial companies are here. Automotive companies and private 5G. 5G inside a factory, inside a hospital, a warehouse, a mining operation. That's where the dollars are. >> Is it a meaningful business for you today? >> It is. We just started this business only a couple of years ago. We're seeing amazing growth and I think there's a lot of good opportunities there. >> Shahid Ahmed, thanks so much for coming to theCUBE. It was great to have you. Really a pleasure. >> Thanks for having me over. Great questions. >> Oh, you're welcome. All right. For David Nicholson, Dave Vellante. We'll be back, right after this short break, from the Fira in Barcelona, MWC23. You're watching theCUBE. (uplifting electronic music)

Published Date : Mar 2 2023

SUMMARY :

that drive human progress. Shahid Ahmed is the Group EVP You have, you know, We have one of the largest there that says, you know, I just expect the carrier to I did. So the carriers are in but they have to be We heard earlier this week, you know, in the US for the last 10 years. appear on the scene anymore. You got to be be careful because I mean, look, the way the I mean for, you know, you We could talk about that too, if you want. or the developers to pay and, I mean, I'm just going to at adjudicating, you know, competition. US and now it's owned by Nokia. And so you got to be Yeah, but the upside the US less competitive. And the cable company, Well, I think look at Nokia, just But guess what? and the service providers, I, sorry, I'm not familiar with it. Remember in the old days. I mean, that was actually And the application store. I mean, AT&T is sort of the also a lot of content. And I think that has been underexplored. And if you start to do a lot that could be coming down the line, I think in Europe the and the economy. And there's going to be new that's the industrial company. and I think there's a lot much for coming to theCUBE. Thanks for having me over. from the Fira in Barcelona, MWC23.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AmazonORGANIZATION

0.99+

Dave NicholsonPERSON

0.99+

David NicholsonPERSON

0.99+

FCCORGANIZATION

0.99+

AppleORGANIZATION

0.99+

ComcastORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

FacebookORGANIZATION

0.99+

Tom WheelerPERSON

0.99+

Dave VellantePERSON

0.99+

CNNORGANIZATION

0.99+

EuropeLOCATION

0.99+

NokiaORGANIZATION

0.99+

Lena KhanPERSON

0.99+

HBOORGANIZATION

0.99+

JapanLOCATION

0.99+

Shahid AhmedPERSON

0.99+

FTCORGANIZATION

0.99+

ChicagoLOCATION

0.99+

NetflixORGANIZATION

0.99+

USLOCATION

0.99+

NTTORGANIZATION

0.99+

Bell LabsORGANIZATION

0.99+

AT&TORGANIZATION

0.99+

EUORGANIZATION

0.99+

AirbusORGANIZATION

0.99+

DavePERSON

0.99+

OrangeORGANIZATION

0.99+

BarcelonaLOCATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

TwitterORGANIZATION

0.99+

DocomoORGANIZATION

0.99+

MWC23EVENT

0.99+

OneQUANTITY

0.98+

four dayQUANTITY

0.98+

earlier this weekDATE

0.98+

billions of dollarsQUANTITY

0.98+

this weekDATE

0.98+

two lensesQUANTITY

0.98+

one ideaQUANTITY

0.98+

telcoORGANIZATION

0.98+

GDPRTITLE

0.97+

USORGANIZATION

0.97+

Mobile World CongressEVENT

0.97+

telcosORGANIZATION

0.97+

United StatesLOCATION

0.96+

NTT JapanORGANIZATION

0.95+

oneQUANTITY

0.95+

MWCEVENT

0.95+

todayDATE

0.94+

FiraLOCATION

0.93+

Barcelona,LOCATION

0.91+

5GORGANIZATION

0.91+

four camerasQUANTITY

0.9+

Two very separate distinct thingsQUANTITY

0.89+

Rohde & SchwarzORGANIZATION

0.89+

last 10 yearsDATE

0.88+

NetscapeORGANIZATION

0.88+

couple of years agoDATE

0.88+

theCUBEORGANIZATION

0.85+

New Ventures and InnovationORGANIZATION

0.73+

Ma BellORGANIZATION

0.71+

John Kreisa, Couchbase | MWC Barcelona 2023


 

>> Narrator: TheCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music intro) (logo background tingles) >> Hi everybody, welcome back to day three of MWC23, my name is Dave Vellante and we're here live at the Theater of Barcelona, Lisa Martin, David Nicholson, John Furrier's in our studio in Palo Alto. Lot of buzz at the show, the Mobile World Daily Today, front page, Netflix chief hits back in fair share row, Greg Peters, the co-CEO of Netflix, talking about how, "Hey, you guys want to tax us, the telcos want to tax us, well, maybe you should help us pay for some of the content. Your margins are higher, you have a monopoly, you know, we're delivering all this value, you're bundling Netflix in, from a lot of ISPs so hold on, you know, pump the brakes on that tax," so that's the big news. Lockheed Martin, FOSS issues, AI guidelines, says, "AI's not going to take over your job anytime soon." Although I would say, your job's going to be AI-powered for the next five years. We're going to talk about data, we've been talking about the disaggregation of the telco stack, part of that stack is a data layer. John Kreisa is here, the CMO of Couchbase, John, you know, we've talked about all week, the disaggregation of the telco stacks, they got, you know, Silicon and operating systems that are, you know, real time OS, highly reliable, you know, compute infrastructure all the way up through a telemetry stack, et cetera. And that's a proprietary block that's really exploding, it's like the big bang, like we saw in the enterprise 20 years ago and we haven't had much discussion about that data layer, sort of that horizontal data layer, that's the market you play in. You know, Couchbase obviously has a lot of telco customers- >> John: That's right. >> We've seen, you know, Snowflake and others launch telco businesses. What are you seeing when you talk to customers at the show? What are they doing with that data layer? >> Yeah, so they're building applications to drive and power unique experiences for their users, but of course, it all starts with where the data is. So they're building mobile applications where they're stretching it out to the edge and you have to move the data to the edge, you have to have that capability to deliver that highly interactive experience to their customers or for their own internal use cases out to that edge, so seeing a lot of that with Couchbase and with our customers in telco. >> So what do the telcos want to do with data? I mean, they've got the telemetry data- >> John: Yeah. >> Now they frequently complain about the over-the-top providers that have used that data, again like Netflix, to identify customer demand for content and they're mopping that up in a big way, you know, certainly Amazon and shopping Google and ads, you know, they're all using that network. But what do the telcos do today and what do they want to do in the future? They're all talking about monetization, how do they monetize that data? >> Yeah, well, by taking that data, there's insight to be had, right? So by usage patterns and what's happening, just as you said, so they can deliver a better experience. It's all about getting that edge, if you will, on their competition and so taking that data, using it in a smart way, gives them that edge to deliver a better service and then grow their business. >> We're seeing a lot of action at the edge and, you know, the edge can be a Home Depot or a Lowe's store, but it also could be the far edge, could be a, you know, an oil drilling, an oil rig, it could be a racetrack, you know, certainly hospitals and certain, you know, situations. So let's think about that edge, where there's maybe not a lot of connectivity, there might be private networks going in, in the future- >> John: That's right. >> Private 5G networks. What's the data flow look like there? Do you guys have any customers doing those types of use cases? >> Yeah, absolutely. >> And what are they doing with the data? >> Yeah, absolutely, we've got customers all across, so telco and transportation, all kinds of service delivery and healthcare, for example, we've got customers who are delivering healthcare out at the edge where they have a remote location, they're able to deliver healthcare, but as you said, there's not always connectivity, so they need to have the applications, need to continue to run and then sync back once they have that connectivity. So it's really having the ability to deliver a service, reliably and then know that that will be synced back to some central server when they have connectivity- >> So the processing might occur where the data- >> Compute at the edge. >> How do you sync back? What is that technology? >> Yeah, so there's, so within, so Couchbase and Couchbase's case, we have an autonomous sync capability that brings it back to the cloud once they get back to whether it's a private network that they want to run over, or if they're doing it over a public, you know, wifi network, once it determines that there's connectivity and, it can be peer-to-peer sync, so different edge apps communicating with each other and then ultimately communicating back to a central server. >> I mean, the other theme here, of course, I call it the software-defined telco, right? But you got to have, you got to run on something, got to have hardware. So you see companies like AWS putting Outposts, out to the edge, Outposts, you know, doesn't really run a lot of database to mind, I mean, it runs RDS, you know, maybe they're going to eventually work with companies like... I mean, you're a partner of AWS- >> John: We are. >> Right? So do you see that kind of cloud infrastructure that's moving to the edge? Do you see that as an opportunity for companies like Couchbase? >> Yeah, we do. We see customers wanting to push more and more of that compute out to the edge and so partnering with AWS gives us that opportunity and we are certified on Outpost and- >> Oh, you are? >> We are, yeah. >> Okay. >> Absolutely. >> When did that, go down? >> That was last year, but probably early last year- >> So I can run Couchbase at the edge, on Outpost? >> Yeah, that's right. >> I mean, you know, Outpost adoption has been slow, we've reported on that, but are you seeing any traction there? Are you seeing any nibbles? >> Starting to see some interest, yeah, absolutely. And again, it has to be for the right use case, but again, for service delivery, things like healthcare and in transportation, you know, they're starting to see where they want to have that compute, be very close to where the actions happen. >> And you can run on, in the data center, right? >> That's right. >> You can run in the cloud, you know, you see HPE with GreenLake, you see Dell with Apex, that's essentially their Outposts. >> Yeah. >> They're saying, "Hey, we're going to take our whole infrastructure and make it as a service." >> Yeah, yeah. >> Right? And so you can participate in those environments- >> We do. >> And then so you've got now, you know, we call it supercloud, you've got the on-prem, you've got the, you can run in the public cloud, you can run at the edge and you want that consistent experience- >> That's right. >> You know, from a data layer- >> That's right. >> So is that really the strategy for a data company is taking or should be taking, that horizontal layer across all those use cases? >> You do need to think holistically about it, because you need to be able to deliver as a, you know, as a provider, wherever the customer wants to be able to consume that application. So you do have to think about any of the public clouds or private networks and all the way to the edge. >> What's different John, about the telco business versus the traditional enterprise? >> Well, I mean, there's scale, I mean, one thing they're dealing with, particularly for end user-facing apps, you're dealing at a very very high scale and the expectation that you're going to deliver a very interactive experience. So I'd say one thing in particular that we are focusing on, is making sure we deliver that highly interactive experience but it's the scale of the number of users and customers that they have, and the expectation that your application's always going to work. >> Speaking of applications, I mean, it seems like that's where the innovation is going to come from. We saw yesterday, GSMA announced, I think eight APIs telco APIs, you know, we were talking on theCUBE, one of the analysts was like, "Eight, that's nothing," you know, "What do these guys know about developers?" But you know, as Daniel Royston said, "Eight's better than zero." >> Right? >> So okay, so we're starting there, but the point being, it's all about the apps, that's where the innovation's going to come from- >> That's right. >> So what are you seeing there, in terms of building on top of the data app? >> Right, well you have to provide, I mean, have to provide the APIs and the access because it is really, the rubber meets the road, with the developers and giving them the ability to create those really rich applications where they want and create the experiences and innovate and change the way that they're giving those experiences. >> Yeah, so what's your relationship with developers at Couchbase? >> John: Yeah. >> I mean, talk about that a little bit- >> Yeah, yeah, so we have a great relationship with developers, something we've been investing more and more in, in terms of things like developer relations teams and community, Couchbase started in open source, continue to be based on open source projects and of course, those are very developer centric. So we provide all the consistent APIs for developers to create those applications, whether it's something on Couchbase Lite, which is our kind of edge-based database, or how they can sync that data back and we actually automate a lot of that syncing which is a very difficult developer task which lends them to one of the developer- >> What I'm trying to figure out is, what's the telco developer look like? Is that a developer that comes from the enterprise and somebody comes from the blockchain world, or AI or, you know, there really doesn't seem to be a lot of developer talk here, but there's a huge opportunity. >> Yeah, yeah. >> And, you know, I feel like, the telcos kind of remind me of, you know, a traditional legacy company trying to get into the developer world, you know, even Oracle, okay, they bought Sun, they got Java, so I guess they have developers, but you know, IBM for years tried with Bluemix, they had to end up buying Red Hat, really, and that gave them the developer community. >> Yep. >> EMC used to have a thing called EMC Code, which was a, you know, good effort, but eh. And then, you know, VMware always trying to do that, but, so as you move up the stack obviously, you have greater developer affinity. Where do you think the telco developer's going to come from? How's that going to evolve? >> Yeah, it's interesting, and I think they're... To kind of get to your first question, I think they're fairly traditional enterprise developers and when we break that down, we look at it in terms of what the developer persona is, are they a front-end developer? Like they're writing that front-end app, they don't care so much about the infrastructure behind or are they a full stack developer and they're really involved in the entire application development lifecycle? Or are they living at the backend and they're really wanting to just focus in on that data layer? So we lend towards all of those different personas and we think about them in terms of the APIs that we create, so that's really what the developers are for telcos is, there's a combination of those front-end and full stack developers and so for them to continue to innovate they need to appeal to those developers and that's technology, like Couchbase, is what helps them do that. >> Yeah and you think about the Apples, you know, the app store model or Apple sort of says, "Okay, here's a developer kit, go create." >> John: Yeah. >> "And then if it's successful, you're going to be successful and we're going to take a vig," okay, good model. >> John: Yeah. >> I think I'm hearing, and maybe I misunderstood this, but I think it was the CEO or chairman of Ericsson on the day one keynotes, was saying, "We are going to monetize the, essentially the telemetry data, you know, through APIs, we're going to charge for that," you know, maybe that's not the best approach, I don't know, I think there's got to be some innovation on top. >> John: Yeah. >> Now maybe some of these greenfield telcos are going to do like, you take like a dish networks, what they're doing, they're really trying to drive development layers. So I think it's like this wild west open, you know, community that's got to be formed and right now it's very unclear to me, do you have any insights there? >> I think it is more, like you said, Wild West, I think there's no emerging standard per se for across those different company types and sort of different pieces of the industry. So consequently, it does need to form some more standards in order to really help it grow and I think you're right, you have to have the right APIs and the right access in order to properly monetize, you have to attract those developers or you're not going to be able to monetize properly. >> Do you think that if, in thinking about your business and you know, you've always sold to telcos, but now it's like there's this transformation going on in telcos, will that become an increasingly larger piece of your business or maybe even a more important piece of your business? Or it's kind of be steady state because it's such a slow moving industry? >> No, it is a big and increasing piece of our business, I think telcos like other enterprises, want to continue to innovate and so they look to, you know, technologies like, Couchbase document database that allows them to have more flexibility and deliver the speed that they need to deliver those kinds of applications. So we see a lot of migration off of traditional legacy infrastructure in order to build that new age interface and new age experience that they want to deliver. >> A lot of buzz in Silicon Valley about open AI and Chat GPT- >> Yeah. >> You know, what's your take on all that? >> Yeah, we're looking at it, I think it's exciting technology, I think there's a lot of applications that are kind of, a little, sort of innovate traditional interfaces, so for example, you can train Chat GPT to create code, sample code for Couchbase, right? You can go and get it to give you that sample app which gets you a headstart or you can actually get it to do a better job of, you know, sorting through your documentation, like Chat GPT can do a better job of helping you get access. So it improves the experience overall for developers, so we're excited about, you know, what the prospect of that is. >> So you're playing around with it, like everybody is- >> Yeah. >> And potentially- >> Looking at use cases- >> Ways tO integrate, yeah. >> Hundred percent. >> So are we. John, thanks for coming on theCUBE. Always great to see you, my friend. >> Great, thanks very much. >> All right, you're welcome. All right, keep it right there, theCUBE will be back live from Barcelona at the theater. SiliconANGLE's continuous coverage of MWC23. Go to siliconangle.com for all the news, theCUBE.net is where all the videos are, keep it right there. (cheerful upbeat music outro)

Published Date : Mar 1 2023

SUMMARY :

that drive human progress. that's the market you play in. We've seen, you know, and you have to move the data to the edge, you know, certainly Amazon that edge, if you will, it could be a racetrack, you know, Do you guys have any customers the applications, need to over a public, you know, out to the edge, Outposts, you know, of that compute out to the edge in transportation, you know, You can run in the cloud, you know, and make it as a service." to deliver as a, you know, and the expectation that But you know, as Daniel Royston said, and change the way that they're continue to be based on open or AI or, you know, there developer world, you know, And then, you know, VMware and so for them to continue to innovate about the Apples, you know, and we're going to take data, you know, through APIs, are going to do like, you and the right access in and so they look to, you know, so we're excited about, you know, yeah. Always great to see you, Go to siliconangle.com for all the news,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

JohnPERSON

0.99+

Greg PetersPERSON

0.99+

Daniel RoystonPERSON

0.99+

Lisa MartinPERSON

0.99+

AWSORGANIZATION

0.99+

EricssonORGANIZATION

0.99+

David NicholsonPERSON

0.99+

Palo AltoLOCATION

0.99+

John KreisaPERSON

0.99+

IBMORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

NetflixORGANIZATION

0.99+

last yearDATE

0.99+

Silicon ValleyLOCATION

0.99+

GSMAORGANIZATION

0.99+

JavaTITLE

0.99+

LoweORGANIZATION

0.99+

first questionQUANTITY

0.99+

Lockheed MartinORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

OracleORGANIZATION

0.99+

telcosORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

DellORGANIZATION

0.99+

yesterdayDATE

0.99+

EightQUANTITY

0.99+

oneQUANTITY

0.99+

Chat GPTTITLE

0.99+

Hundred percentQUANTITY

0.99+

AppleORGANIZATION

0.99+

telcoORGANIZATION

0.98+

CouchbaseORGANIZATION

0.98+

John FurrierPERSON

0.98+

siliconangle.comOTHER

0.98+

ApexORGANIZATION

0.98+

Home DepotORGANIZATION

0.98+

early last yearDATE

0.98+

BarcelonaLOCATION

0.98+

20 years agoDATE

0.98+

MWC23EVENT

0.97+

BluemixORGANIZATION

0.96+

SunORGANIZATION

0.96+

SiliconANGLEORGANIZATION

0.96+

theCUBEORGANIZATION

0.95+

GreenLakeORGANIZATION

0.94+

ApplesORGANIZATION

0.94+

SnowflakeORGANIZATION

0.93+

OutpostORGANIZATION

0.93+

VMwareORGANIZATION

0.93+

zeroQUANTITY

0.93+

EMCORGANIZATION

0.91+

day threeQUANTITY

0.9+

todayDATE

0.89+

Mobile World Daily TodayTITLE

0.88+

Wild WestORGANIZATION

0.88+

theCUBE.netOTHER

0.87+

app storeTITLE

0.86+

one thingQUANTITY

0.86+

EMC CodeTITLE

0.86+

CouchbaseTITLE

0.85+

Danielle Royston, TelcoDR | MWC Barcelona 2023


 

>> Announcer: theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (upbeat music) >> Hi everybody. Welcome back to Barcelona. We're here at the Fira Live, theCUBE's ongoing coverage of day two of MWC 23. Back in 2021 was my first Mobile World Congress. And you know what? It was actually quite an experience because there was nobody there. I talked to my friend, who's now my co-host, Chris Lewis about what to expect. He said, Dave, I don't think a lot of people are going to be there, but Danielle Royston is here and she's the CEO of Totoge. And that year when Erickson tapped out of its space she took out 60,000 square feet and built out Cloud City. If it weren't for Cloud City, there would've been no Mobile World Congress in June and July of 2021. DR is back. Great to see you. Thanks for coming on. >> It's great to see you. >> Chris. Awesome to see you. >> Yeah, Chris. Yep. >> Good to be back. Yep. >> You guys remember the narrative back then. There was this lady running around this crazy lady that I met at at Google Cloud next saying >> Yeah. Yeah. >> the cloud's going to take over Telco. And everybody's like, well, this lady's nuts. The cloud's been leaning in, you know? >> Yeah. >> So what do you think, I mean, what's changed since since you first caused all those ripples? >> I mean, I have to say that I think that I caused a lot of change in the industry. I was talking to leaders over at AWS yesterday and they were like, we've never seen someone push like you have and change so much in a short period of time. And Telco moves slow. It's known for that. And they're like, you are pushing buttons and you're getting people to change and thank you and keep going. And so it's been great. It's awesome. >> Yeah. I mean, it was interesting, Chris, we heard on the keynotes we had Microsoft, Satya came in, Thomas Curian came in. There was no AWS. And now I asked CMO of GSMA about that. She goes, hey, we got a great relationship with it, AWS. >> Danielle: Yeah. >> But why do you think they weren't here? >> Well, they, I mean, they are here. >> Mean, not here. Why do you think they weren't profiled? >> They weren't on the keynote stage. >> But, you know, at AWS, a lot of the times they want to be the main thing. They want to be the main part of the show. They don't like sharing the limelight. I think they just didn't want be on the stage with the Google CLoud guys and the these other guys, what they're doing they're building out, they're doing so much stuff. As Danielle said, with Telcos change in the ecosystem which is what's happening with cloud. Cloud's making the Telcos think about what the next move is, how they fit in with the way other people do business. Right? So Telcos never used to have to listen to anybody. They only listened to themselves and they dictated the way things were done. They're very successful and made a lot of money but they're now having to open up they're having to leverage the cloud they're having to leverage the services that (indistinct words) and people out provide and they're changing the way they work. >> So, okay in 2021, we talked a lot about the cloud as a potential disruptor, and your whole premise was, look you got to lean into the cloud, or you're screwed. >> Danielle: Yeah. >> But the flip side of that is, if they lean into the cloud too much, they might be screwed. >> Danielle: Yeah. >> So what's that equilibrium? Have they been able to find it? Are you working with just the disruptors or how's that? >> No I think they're finding it right. So my talk at MWC 21 was all about the cloud is a double-edged sword, right? There's two sides to it, and you definitely need to proceed through it with caution, but also I don't know that you have a choice, right? I mean, the multicloud, you know is there another industry that spends more on CapEx than Telco? >> No. >> Right. The hyperscalers are doing it right. They spend, you know, easily approaching over a $100 billion in CapEx that rivals this industry. And so when you have a player like that an industry driving, you know and investing so much Telco, you're always complaining how everyone's riding your coattails. This is the opportunity to write someone else's coattails. So jump on, right? I think you don't have a choice especially if other Telco competitors are using hyperscalers and you don't, they're going to be left behind. >> So you advise these companies all the time, but >> I mean, the issue is they're all they're all using all the hyperscalers, right? So they're the multi, the multiple relationships. And as Danielle said, the multi-layer of relationship they're using the hyperscalers to change their own internal operational environments to become more IT-centric to move to that software centric Telco. And they're also then with the hyperscalers going to market in different ways sometimes with them, sometimes competing with them. What what it means from an analyst point of view is you're suddenly changing the dynamic of a market where we used to have nicely well defined markets previously. Now they're, everyone's in it together, you know, it's great. And, and it's making people change the way they think about services. What I, what I really hope it changes more than anything else is the way the customers at the end of the, at the end of the supply, the value chain think this is what we can get hold of this stuff. Now we can go into the network through the cloud and we can get those APIs. We can draw on the mechanisms we need to to run our personal lives, to run our business lives. And frankly, society as a whole. It's really exciting. >> Then your premise is basically you were saying they should ride on the top over the top of the cloud vendor. >> Yeah. Right? >> No. Okay. But don't they lose the, all the data if they do that? >> I don't know. I mean, I think the hyperscalers are not going to take their data, right? I mean, that would be a really really bad business move if Google Cloud and Azure and and AWS start to take over that, that data. >> But they can't take it. >> They can't. >> From regulate, from sovereignty and regulation. >> They can't because of regulation, but also just like business, right? If they started taking their data and like no enterprises would use them. So I think, I think the data is safe. I think you, obviously every country is different. You got to understand the different rules and regulations for data privacy and, and how you keep it. But I think as we look at the long term, right and we always talk about 10 and 20 years there's going to be a hyperscaler region in every country right? And there will be a way for every Telco to use it. I think their data will be safe. And I think it just, you're going to be able to stand on on the shoulders of someone else for once and use the building blocks of software that these guys provide to make better experiences for subscribers. >> You guys got to explain this to me because when I say data I'm not talking about, you know, personal information. I'm talking about all the telemetry, you know, all the all the, you know the plumbing. >> Danielle: Yeah. >> Data, which is- >> It will increasingly be shared because you need to share it in order to deliver the services in the streamline efficient way that needs to be deliver. >> Did I hear the CEO of Ericsson Wright where basically he said, we're going to charge developers for access to that data through APIs. >> What the Ericsson have done, obviously with the Vage acquisition is they want to get into APIs. So the idea is you're exposing features, quality policy on demand type features for example, or even pulling we still use that a lot of SMS, right? So pulling those out using those APIs. So it will be charged in some way. Whether- >> Man: Like Twitter's charging me for APIs, now I API calls, you >> Know what it is? I think it's Twilio. >> Man: Oh, okay. >> Right. >> Man: No, no, that's sure. >> There's no reason why telcos couldn't provide a Twilio like service itself. >> It's a horizontal play though right? >> Danielle: Correct because developers need to be charged by the API. >> But doesn't there need to be an industry standard to do that as- >> Well. I think that's what they just announced. >> Industry standard. >> Danielle: I think they just announced that. Yeah. Right now I haven't looked at that API set, right? >> There's like eight of them. >> There's eight of them. Twilio has, it's a start you got to start somewhere Dave. (crosstalk) >> And there's all, the TM forum is all the other standard >> Right? Eight is better than zero- >> Right? >> Haven't got plenty. >> I mean for an industry that didn't really understand APIs as a feature, as a product as a service, right? For Mats Granryd, the deputy general of GSMA to stand on the keynote stage and say we partnered and we're unveiling, right. Pay by the use APIs. I was for it. I was like, that is insane. >> I liked his keynote actually, because I thought he was going to talk about how many attendees and how much economic benefiting >> Danielle: We're super diverse. >> He said, I would usually talk about that and you know greening in the network by what you did talk about a little bit. But, but that's, that surprised me. >> Yeah. >> But I've seen in the enterprise this is not my space as, you know, you guys don't live this but I've seen Oracle try to get developers. IBM had to pay $35 billion trying to get for Red Hat to get developers, right? EMC used to have a thing called EMC code, failed. >> I mean they got to do something, right? So 4G they didn't really make the business case the ROI on the investment in the network. Here we are with 5G, same discussion is having where's the use case? How are we going to monetize and make the ROI on this massive investment? And now they're starting to talk about 6G. Same fricking problem is going to happen again. And so I think they need to start experimenting with new ideas. I don't know if it's going to work. I don't know if this new a API network gateway theme that Mats talked about yesterday will work. But they need to start unbundling that unlimited plan. They need to start charging people who are using the network more, more money. Those who are using it less, less. They need to figure this out. This is a crisis for them. >> Yeah our own CEO, I mean she basically said, Hey, I'm for net neutrality, but I want to be able to charge the people that are using it more and more >> To make a return on, on a capital. >> I mean it costs billions of dollars to build these networks, right? And they're valuable. We use them and we talked about this in Cloud City 21, right? The ability to start building better metaverses. And I know that's a buzzword and everyone hates it, but it's true. Like we're working from home. We need- there's got to be a better experience in Zoom in 2D, right? And you need a great network for that metaverse to be awesome. >> You do. But Danielle, you don't need cellular for doing that, do you? So the fixed network is as important. >> Sure. >> And we're at mobile worlds. But actually what we beginning to hear and Crystal Bren did say this exactly, it's about the comp the access is sort of irrelevant. Fixed is better because it's more the cost the return on investment is better from fiber. Mobile we're going to change every so many years because we're a new generation. But we need to get the mechanism in place to deliver that. I actually don't agree that we should everyone should pay differently for what they use. It's a universal service. We need it as individuals. We need to make it sustainable for every user. Let's just not go for the biggest user. It's not, it's not the way to build it. It won't work if you do that you'll crash the system if you do that. And, and the other thing which I disagree on it's not about standing on the shoulders and benefiting from what- It's about cooperating across all levels. The hyperscalers want to work with the telcos as much as the telcos want to work with the hyperscalers. There's a lot of synergy there. There's a lot of ways they can work together. It's not one or the other. >> But I think you're saying let the cloud guys do the heavy lifting and I'm - >> Yeah. >> Not at all. >> And so you don't think so because I feel like the telcos are really good at pipes. They've always been good at pipes. They're engineers. >> Danielle: Yeah. >> Are they hanging on to the to the connectivity or should they let that go and well and go toward the developer. >> I mean AWS had two announcements on the 21st a week before MWC. And one was that telco network builder. This is literally being able to deploy a network capability at AWS with keystrokes. >> As a managed service. >> Danielle: Correct. >> Yeah. >> And so I don't know how the telco world I felt the shock waves, right? I was like, whoa, that seems really big. Because they're taking something that previously was like bread and butter. This is what differentiates each telco and now they've standardized it and made it super easy so anyone can do it. Now do I think the five nines of super crazy hardcore network criteria will be built on AWS this way? Probably not, but no >> It's not, it's not end twin. So you can't, no. >> Right. But private networks could be built with this pretty easily, right? And so telcos that don't have as much funding, right. Smaller, more experiments. I think it's going to change the way we think about building networks in telcos >> And those smaller telcos I think are going to be more developer friendly. >> Danielle: Yeah. >> They're going to have business models that invite those developers in. And that's, it's the disruption's going to come from the ISVs and the workloads that are on top of that. >> Well certainly what Dish is trying to do, right? Dish is trying to build a- they launched it reinvent a developer experience. >> Dave: Yeah. >> Right. Built around their network and you know, again I don't know, they were not part of this group that designed these eight APIs but I'm sure they're looking with great intent on what does this mean for them. They'll probably adopt them because they want people to consume the network as APIs. That's their whole thing that Mark Roanne is trying to do. >> Okay, and then they're doing open ran. But is it- they're not really cons- They're not as concerned as Rakuten with the reliability and is that the right play? >> In this discussion? Open RAN is not an issue. It really is irrelevant. It's relevant for the longer term future of the industry by dis aggregating and being able to share, especially ran sharing, for example, in the short term in rural environments. But we'll see some of that happening and it will change, but it will also influence the way the other, the existing ran providers build their services and offer their value. Look you got to remember in the relationship between the equipment providers and the telcos are very dramatically. Whether it's Ericson, NOKIA, Samsung, Huawei, whoever. So those relations really, and the managed services element to that depends on what skills people have in-house within the telco and what service they're trying to deliver. So there's never one size fits all in this industry. >> You're very balanced in your analysis and I appreciate that. >> I try to be. >> But I am not. (chuckles) >> So when Dr went off, this is my question. When Dr went off a couple years ago on the cloud's going to take over the world, you were skeptical. You gave a approach. Have you? >> I still am. >> Have you moderated your thoughts on that or- >> I believe the telecom industry is is a very strong industry. It's my industry of course I love it. But the relationship it is developing much different relationships with the ecosystem players around it. You mentioned developers, you mentioned the cloud players the equipment guys are changing there's so many moving parts to build the telco of the future that every country needs a very strong telco environment to be able to support the site as a whole. People individuals so- >> Well I think two years ago we were talking about should they or shouldn't they, and now it's an inevitability. >> I don't think we were Danielle. >> All using the hyperscalers. >> We were always going to need to transform the telcos from the conservative environments in which they developed. And they've had control of everything in order to reduce if they get no extra revenue at all, reducing the cost they've got to go on a cloud migration path to do that. >> Amenable. >> Has it been harder than you thought? >> It's been easier than I thought. >> You think it's gone faster than >> It's gone way faster than I thought. I mean pushing on this flywheel I thought for sure it would take five to 10 years it is moving. I mean the maths comp thing the AWS announcements last week they're putting in hyperscalers in Saudi Arabia which is probably one of the most sort of data private places in the world. It's happening really fast. >> What Azure's doing? >> I feel like I can't even go to sleep. Because I got to keep up with it. It's crazy. >> Guys. >> This is awesome. >> So awesome having you back on. >> Yeah. >> Chris, thanks for co-hosting. Appreciate you stay here. >> Yep. >> Danielle, amazing. We'll see you. >> See you soon. >> A lot of action here. We're going to come out >> Great. >> Check out your venue. >> Yeah the Togi buses that are outside. >> The big buses. You got a great setup there. We're going to see you on Wednesday. Thanks again. >> Awesome. Thanks. >> All right. Keep it right there. We'll be back to wrap up day two from MWC 23 on theCUBE. (upbeat music)

Published Date : Feb 28 2023

SUMMARY :

coverage is made possible I talked to my friend, who's Awesome to see you. Yep. Good to be back. the narrative back then. the cloud's going to take over Telco. I mean, I have to say that And now I asked CMO of GSMA about that. Why do you think they weren't profiled? on the stage with the Google CLoud guys talked a lot about the cloud But the flip side of that is, I mean, the multicloud, you know This is the opportunity to I mean, the issue is they're all over the top of the cloud vendor. the data if they do that? and AWS start to take But I think as we look I'm talking about all the in the streamline efficient Did I hear the CEO of Ericsson Wright So the idea is you're exposing I think it's Twilio. There's no reason why telcos need to be charged by the API. what they just announced. Danielle: I think got to start somewhere Dave. of GSMA to stand on the greening in the network But I've seen in the enterprise I mean they got to do something, right? of dollars to build these networks, right? So the fixed network is as important. Fixed is better because it's more the cost because I feel like the telcos Are they hanging on to the This is literally being able to I felt the shock waves, right? So you can't, no. I think it's going to going to be more developer friendly. And that's, it's the is trying to do, right? consume the network as APIs. is that the right play? It's relevant for the longer and I appreciate that. But I am not. on the cloud's going to take I believe the telecom industry is Well I think two years at all, reducing the cost I mean the maths comp thing Because I got to keep up with it. Appreciate you stay here. We'll see you. We're going to come out We're going to see you on Wednesday. We'll be back to wrap up day

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DaniellePERSON

0.99+

TelcoORGANIZATION

0.99+

ChrisPERSON

0.99+

Chris LewisPERSON

0.99+

EricssonORGANIZATION

0.99+

DavePERSON

0.99+

IBMORGANIZATION

0.99+

HuaweiORGANIZATION

0.99+

SamsungORGANIZATION

0.99+

Mark RoannePERSON

0.99+

AWSORGANIZATION

0.99+

WednesdayDATE

0.99+

Thomas CurianPERSON

0.99+

fiveQUANTITY

0.99+

Danielle RoystonPERSON

0.99+

Saudi ArabiaLOCATION

0.99+

eightQUANTITY

0.99+

TelcosORGANIZATION

0.99+

$35 billionQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

GSMAORGANIZATION

0.99+

EricsonORGANIZATION

0.99+

EMCORGANIZATION

0.99+

60,000 square feetQUANTITY

0.99+

TwitterORGANIZATION

0.99+

JuneDATE

0.99+

Mats GranrydPERSON

0.99+

yesterdayDATE

0.99+

OracleORGANIZATION

0.99+

NOKIAORGANIZATION

0.99+

EightQUANTITY

0.99+

last weekDATE

0.99+

BarcelonaLOCATION

0.99+

2021DATE

0.99+

Dell TechnologiesORGANIZATION

0.99+

two years agoDATE

0.99+

CapExORGANIZATION

0.99+

TotogeORGANIZATION

0.99+

two sidesQUANTITY

0.99+

Mobile World CongressEVENT

0.99+

MWC 23EVENT

0.99+

Crystal BrenPERSON

0.99+

10 yearsQUANTITY

0.98+

eachQUANTITY

0.98+

SatyaPERSON

0.98+

two announcementsQUANTITY

0.98+

Ericsson WrightORGANIZATION

0.98+

DishORGANIZATION

0.98+

billions of dollarsQUANTITY

0.98+

MatsPERSON

0.98+

20 yearsQUANTITY

0.98+

day twoQUANTITY

0.98+

firstQUANTITY

0.98+

TwilioORGANIZATION

0.97+

telcosORGANIZATION

0.97+

Red HatTITLE

0.97+

theCUBEORGANIZATION

0.96+

Dave Duggal, EnterpriseWeb & Azhar Sayeed, Red Hat | MWC Barcelona 2023


 

>> theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (ambient music) >> Lisa: Hey everyone, welcome back to Barcelona, Spain. It's theCUBE Live at MWC 23. Lisa Martin with Dave Vellante. This is day two of four days of cube coverage but you know that, because you've already been watching yesterday and today. We're going to have a great conversation next with EnterpriseWeb and Red Hat. We've had great conversations the last day and a half about the Telco industry, the challenges, the opportunities. We're going to unpack that from this lens. Please welcome Dave Duggal, founder and CEO of EnterpriseWeb and Azhar Sayeed is here, Senior Director Solution Architecture at Red Hat. >> Guys, it's great to have you on the program. >> Yes. >> Thank you Lisa, >> Great being here with you. >> Dave let's go ahead and start with you. Give the audience an overview of EnterpriseWeb. What kind of business is it? What's the business model? What do you guys do? >> Okay so, EnterpriseWeb is reinventing middleware, right? So the historic middleware was to build vertically integrated stacks, right? And those stacks are now such becoming the rate limiters for interoperability for so the end-to-end solutions that everybody's looking for, right? Red Hat's talking about the unified platform. You guys are talking about Supercloud, EnterpriseWeb addresses that we've built middleware based on serverless architecture, so lightweight, low latency, high performance middleware. And we're working with the world's biggest, we sell through channels and we work through partners like Red Hat Intel, Fortnet, Keysight, Tech Mahindra. So working with some of the biggest players that have recognized the value of our innovation, to deliver transformation to the Telecom industry. >> So what are you guys doing together? Is this, is this an OpenShift play? >> Is it? >> Yeah. >> Yeah, so we've got two projects right her on the floor at MWC throughout the various partners, where EnterpriseWeb is actually providing an application layer, sorry application middleware over Red Hat's, OpenShift and we're essentially generating operators so Red Hat operators, so that all our vendors, and, sorry vendors that we onboard into our catalog can be deployed easily through the OpenShift platform. And we allow those, those vendors to be flexibly composed into network services. So the real challenge for operators historically is that they, they have challenges onboarding the vendors. It takes a long time. Each one of them is a snowflake. They, you know, even though there's standards they don't all observe or follow the same standards. So we make it easier using models, right? For, in a model driven process to on boards or streamline that onboarding process, compose functions into services deploy those services seamlessly through Red Hat's OpenShift, and then manage the, the lifecycle, like the quality of service and the SLAs for those services. >> So Red Hat obviously has pretty prominent Telco business has for a while. Red Hat OpenStack actually is is pretty popular within the Telco business. People thought, "Oh, OpenStack, that's dead." Actually, no, it's actually doing quite well. We see it all over the place where for whatever reason people want to build their own cloud. And, and so, so what's happening in the industry because you have the traditional Telcos we heard in the keynotes that kind of typical narrative about, you know, we can't let the over the top vendors do this again. We're, we're going to be Apifi everything, we're going to monetize this time around, not just with connectivity but the, but the fact is they really don't have a developer community. >> Yes. >> Yet anyway. >> Then you have these disruptors over here that are saying "Yeah, we're going to enable ISVs." How do you see it? What's the landscape look like? Help us understand, you know, what the horses on the track are doing. >> Sure. I think what has happened, Dave, is that the conversation has moved a little bit from where they were just looking at IS infrastructure service with virtual machines and OpenStack, as you mentioned, to how do we move up the value chain and look at different applications. And therein comes the rub, right? You have applications with different requirements, IT network that have various different requirements that are there. So as you start to build those cloud platform, as you start to modernize those set of applications, you then start to look at microservices and how you build them. You need the ability to orchestrate them. So some of those problem statements have moved from not just refactoring those applications, but actually now to how do you reliably deploy, manage in a multicloud multi cluster way. So this conversation around Supercloud or this conversation around multicloud is very >> You could say Supercloud. That's okay >> (Dave Duggal and Azhar laughs) >> It's absolutely very real though. The reason why it's very real is, if you look at transformations around Telco, there are two things that are happening. One, Telco IT, they're looking at partnerships with hybrid cloud, I mean with public cloud players to build a hybrid environment. They're also building their own Telco Cloud environment for their network functions. Now, in both of those spaces, they end up operating two to three different environments themselves. Now how do you create a level of abstraction across those? How do you manage that particular infrastructure? And then how do you orchestrate all of those different workloads? Those are the type of problems that they're actually beginning to solve. So they've moved on from really just putting that virtualizing their application, putting it on OpenStack to now really seriously looking at "How do I build a service?" "How do I leverage the catalog that's available both in my private and public and build an overall service process?" >> And by the way what you just described as hybrid cloud and multicloud is, you know Supercloud is what multicloud should have been. And what, what it originally became is "I run on this cloud and I run on this cloud" and "I run on this cloud and I have a hybrid." And, and Supercloud is meant to create a common experience across those clouds. >> Dave Duggal: Right? >> Thanks to, you know, Supercloud middleware. >> Yeah. >> Right? And, and so that's what you guys do. >> Yeah, exactly. Exactly. Dave, I mean, even the name EnterpriseWeb, you know we started from looking from the application layer down. If you look at it, the last 10 years we've looked from the infrastructure up, right? And now everybody's looking northbound saying "You know what, actually, if I look from the infrastructure up the only thing I'll ever build is silos, right?" And those silos get in the way of the interoperability and the agility the businesses want. So we take the perspective as high level abstractions, common tools, so that if I'm a CXO, I can look down on my environments, right? When I'm really not, I honestly, if I'm an, if I'm a CEO I don't really care or CXO, I don't really care so much about my infrastructure to be honest. I care about my applications and their behavior. I care about my SLAs and my quality of service, right? Those are the things I care about. So I really want an EnterpriseWeb, right? Something that helps me connect all my distributed applications all across all of the environments. So I can have one place a consistency layer that speaks a common language. We know that there's a lot of heterogeneity down all those layers and a lot of complexity down those layers. But the business doesn't care. They don't want to care, right? They want to actually take their applications deploy them where they're the most performant where they're getting the best cost, right? The lowest and maybe sustainability concerns, all those. They want to address those problems, meet their SLAs meet their quality service. And you know what, if it's running on Amazon, great. If it's running on Google Cloud platform, great. If it, you know, we're doing one project right here that we're demonstrating here is with with Amazon Tech Mahindra and OpenShift, where we took a disaggregated 5G core, right? So this is like sort of latest telecom, you know net networking software, right? We're deploying pulling elements of that network across core, across Amazon EKS, OpenShift on Red Hat ROSA, as well as just OpenShift for cloud. And we, through a single pane of deployment and management, we deployed the elements of the 5G core across them and then connected them in an end-to-end process. That's Telco Supercloud. >> Dave Vellante: So that's an O-RAN deployment. >> Yeah that's >> So, the big advantage of that, pardon me, Dave but the big advantage of that is the customer really doesn't care where the components are being served from for them. It's a 5G capability. It happens to sit in different locations. And that's, it's, it's about how do you abstract and how do you manage all those different workloads in a cohesive way? And that's exactly what EnterpriseWeb is bringing to the table. And what we do is we abstract the underlying infrastructure which is the cloud layer. So if, because AWS operating environment is different then private cloud operating environment then Azure environment, you have the networking is set up is different in each one of them. If there is a way you can abstract all of that and present it in a common operating model it becomes a lot easier than for anybody to be able to consume. >> And what a lot of customers tell me is the way they deal with multicloud complexity is they go with mono cloud, right? And so they'll lose out on some of the best services >> Absolutely >> If best of, so that's not >> that's not ideal, but at the end of the day, agree, developers don't want to muck with all the plumbing >> Dave Duggal: Yep. >> They want to write code. >> Azhar: Correct. >> So like I come back to are the traditional Telcos leaning in on a way that they're going to enable ISVs and developers to write on top of those platforms? Or are there sort of new entrance and disruptors? And I know, I know the answer is both >> Dave Duggal: Yep. >> but I feel as though the Telcos still haven't, traditional Telcos haven't tuned in to that developer affinity, but you guys sell to them. >> What, what are you seeing? >> Yeah, so >> What we have seen is there are Telcos fall into several categories there. If you look at the most mature ones, you know they are very eager to move up the value chain. There are some smaller very nimble ones that have actually doing, they're actually doing something really interesting. For example, they've provided sandbox environments to developers to say "Go develop your applications to the sandbox environment." We'll use that to build an net service with you. I can give you some interesting examples across the globe that, where that is happening, right? In AsiaPac, particularly in Australia, ANZ region. There are a couple of providers who have who have done this, but in, in, in a very interesting way. But the challenges to them, why it's not completely open or public yet is primarily because they haven't figured out how to exactly monetize that. And, and that's the reason why. So in the absence of that, what will happen is they they have to rely on the ISV ecosystem to be able to build those capabilities which they can then bring it on as part of the catalog. But in Latin America, I was talking to one of the providers and they said, "Well look we have a public cloud, we have our own public cloud, right?" What we want do is use that to offer localized services not just bring everything in from the top >> But, but we heard from Ericson's CEO they're basically going to monetize it by what I call "gouge", the developers >> (Azhar laughs) >> access to the network telemetry as opposed to saying, "Hey, here's an open platform development on top of it and it will maybe create something like an app store and we'll take a piece of the action." >> So ours, >> to be is a better model. >> Yeah. So that's perfect. Our second project that we're showing here is with Intel, right? So Intel came to us cause they are a reputation for doing advanced automation solutions. They gave us carte blanche in their labs. So this is Intel Network Builders they said pick your partners. And we went with the Red Hat, Fort Net, Keysite this company KX doing AIML. But to address your DevX, here's Intel explicitly wants to get closer to the developers by exposing their APIs, open APIs over their infrastructure. Just like Red Hat has APIs, right? And so they can expose them northbound to developers so developers can leverage and tune their applications, right? But the challenge there is what Intel is doing at the low level network infrastructure, right? Is fundamentally complex, right? What you want is an abstraction layer where develop and this gets to, to your point Dave where you just said like "The developers just want to get their job done." or really they want to focus on the business logic and accelerate that service delivery, right? So the idea here is an EnterpriseWeb they can literally declaratively compose their services, express their intent. "I want this to run optimized for low latency. I want this to run optimized for energy consumption." Right? And that's all they say, right? That's a very high level statement. And then the run time translates it between all the elements that are participating in that service to realize the developer's intent, right? No hands, right? Zero touch, right? So that's now a movement in telecom. So you're right, it's taking a while because these are pretty fundamental shifts, right? But it's intent based networking, right? So it's almost two parts, right? One is you have to have the open APIs, right? So that the infrastructure has to expose its capabilities. Then you need abstractions over the top that make it simple for developers to take, you know, make use of them. >> See, one of the demonstrations we are doing is around AIOps. And I've had literally here on this floor, two conversations around what I call as network as a platform. Although it sounds like a cliche term, that's exactly what Dave was describing in terms of exposing APIs from the infrastructure and utilizing them. So once you get that data, then now you can do analytics and do machine learning to be able to build models and figure out how you can orchestrate better how you can monetize better, how can how you can utilize better, right? So all of those things become important. It's just not about internal optimization but it's also about how do you expose it to third party ecosystem to translate that into better delivery mechanisms or IOT capability and so on. >> But if they're going to charge me for every API call in the network I'm going to go broke (team laughs) >> And I'm going to get really pissed. I mean, I feel like, I'm just running down, Oracle. IBM tried it. Oracle, okay, they got Java, but they don't they don't have developer jobs. VMware, okay? They got Aria. EMC used to have a thing called code. IBM had to buy Red Hat to get to the developer community. (Lisa laughs) >> So I feel like the telcos don't today have those developer shops. So, so they have to partner. [Azhar] Yes. >> With guys like you and then be more open and and let a zillion flowers bloom or else they're going to get disrupted in a big way and they're going to it's going to be a repeat of the over, over the top in, in in a different model that I can't predict. >> Yeah. >> Absolutely true. I mean, look, they cannot be in the connectivity business. Telcos cannot be just in the connectivity business. It's, I think so, you know, >> Dave Vellante: You had a fry a frozen hand (Dave Daggul laughs) >> off that, you know. >> Well, you know, think about they almost have to go become over the top on themselves, right? That's what the cloud guys are doing, right? >> Yeah. >> They're riding over their backbone that by taking a creating a high level abstraction, they in turn abstract away the infrastructure underneath them, right? And that's really the end game >> Right? >> Dave Vellante: Yeah. >> Is because now, >> they're over the top it's their network, it's their infrastructure, right? They don't want to become bid pipes. >> Yep. >> Now you, they can take OpenShift, run that in any cloud. >> Yep. >> Right? >> You can run that in hybrid cloud, enterprise web can do the application layer configuration and management. And together we're running, you know, OSI layers one through seven, east to west, north to south. We're running across the the RAN, the core and the transport. And that is telco super cloud, my friend. >> Yeah. Well, >> (Dave Duggal laughs) >> I'm dominating the conversation cause I love talking super cloud. >> I knew you would. >> So speaking of super superpowers, when you're in customer or prospective customer conversations with providers and they've got, obviously they're they're in this transformative state right now. How, what do you describe as the superpower between Red Hat and EnterpriseWeb in terms of really helping these Telcos transforms. But at the end of the day, the connectivity's there the end user gets what they want, which is I want this to work wherever I am. >> Yeah, yeah. That's a great question, Lisa. So I think the way you could look at it is most software has, has been evolved to be specialized, right? So in Telcos' no different, right? We have this in the enterprise, right? All these specialized stacks, all these components that they wire together in the, in you think of Telco as a sort of a super set of enterprise problems, right? They have all those problems like magnified manyfold, right? And so you have specialized, let's say orchestrators and other tools for every Telco domain for every Telco layer. Now you have a zoo of orchestrators, right? None of them were designed to work together, right? They all speak a specific language, let's say quote unquote for doing a specific purpose. But everything that's interesting in the 21st century is across layers and across domains, right? If a siloed static application, those are dead, right? Nobody's doing those anymore. Even developers don't do those developers are doing composition today. They're not doing, nobody wants to hear about a 6 million lines of code, right? They want to hear, "How did you take these five things and bring 'em together for productive use?" >> Lisa: Right. How did you deliver faster for my enterprise? How did you save me money? How did you create business value? And that's what we're doing together. >> I mean, just to add on to Dave, I was talking to one of the providers, they have more than 30,000 nodes in their infrastructure. When I say no to your servers running, you know, Kubernetes,running open stack, running different components. If try managing that in one single entity, if you will. Not possible. You got to fragment, you got to segment in some way. Now the question is, if you are not exposing that particular infrastructure and the appropriate KPIs and appropriate things, you will not be able to efficiently utilize that across the board. So you need almost a construct that creates like a manager of managers, a hierarchical structure, which would allow you to be more intelligent in terms of how you place those, how you manage that. And so when you ask the question about what's the secret sauce between the two, well this is exactly where EnterpriseWeb brings in that capability to analyze information, be more intelligent about it. And what we do is provide an abstraction of the cloud layer so that they can, you know, then do the right job in terms of making sure that it's appropriate and it's consistent. >> Consistency is key. Guys, thank you so much. It's been a pleasure really digging through EnterpriseWeb. >> Thank you. >> What you're doing >> with Red Hat. How you're helping the organization transform and Supercloud, we can't forget Supercloud. (Dave Vellante laughs) >> Fight Supercloud. Guys, thank you so much for your time. >> Thank you so much Lisa. >> Thank you. >> Thank you guys. >> Very nice. >> Lisa: We really appreciate it. >> For our guests and for Dave Vellante, I'm Lisa Martin. You're watching theCUBE, the leader in live tech coverage coming to you live from MWC 23. We'll be back after a short break.

Published Date : Feb 28 2023

SUMMARY :

that drive human progress. the challenges, the opportunities. have you on the program. What's the business model? So the historic middleware So the real challenge for happening in the industry What's the landscape look like? You need the ability to orchestrate them. You could say Supercloud. And then how do you orchestrate all And by the way Thanks to, you know, And, and so that's what you guys do. even the name EnterpriseWeb, you know that's an O-RAN deployment. of that is the customer but you guys sell to them. on the ISV ecosystem to be able take a piece of the action." So that the infrastructure has and figure out how you And I'm going to get So, so they have to partner. the over, over the top in, in in the connectivity business. They don't want to become bid pipes. OpenShift, run that in any cloud. And together we're running, you know, I'm dominating the conversation the end user gets what they want, which is And so you have specialized, How did you create business value? You got to fragment, you got to segment Guys, thank you so much. and Supercloud, we Guys, thank you so much for your time. to you live from MWC 23.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

LisaPERSON

0.99+

Dave DuggalPERSON

0.99+

Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

IBMORGANIZATION

0.99+

TelcosORGANIZATION

0.99+

TelcoORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

FortnetORGANIZATION

0.99+

KeysightORGANIZATION

0.99+

EnterpriseWebORGANIZATION

0.99+

OracleORGANIZATION

0.99+

twoQUANTITY

0.99+

AWSORGANIZATION

0.99+

21st centuryDATE

0.99+

AmazonORGANIZATION

0.99+

two projectsQUANTITY

0.99+

Telcos'ORGANIZATION

0.99+

Latin AmericaLOCATION

0.99+

EMCORGANIZATION

0.99+

Dave DaggulPERSON

0.99+

Dell TechnologiesORGANIZATION

0.99+

second projectQUANTITY

0.99+

oneQUANTITY

0.99+

IntelORGANIZATION

0.99+

todayDATE

0.99+

Fort NetORGANIZATION

0.99+

Barcelona, SpainLOCATION

0.99+

telcoORGANIZATION

0.99+

more than 30,000 nodesQUANTITY

0.99+

two thingsQUANTITY

0.99+

bothQUANTITY

0.99+

OpenShiftTITLE

0.99+

JavaTITLE

0.99+

threeQUANTITY

0.99+

KXORGANIZATION

0.99+

Azhar SayeedPERSON

0.98+

OneQUANTITY

0.98+

Tech MahindraORGANIZATION

0.98+

two conversationsQUANTITY

0.98+

yesterdayDATE

0.98+

five thingsQUANTITY

0.98+

telcosORGANIZATION

0.97+

four daysQUANTITY

0.97+

AzharPERSON

0.97+

SiliconANGLE News | Google Targets Cloud-Native Network Transformation


 

(intense music) >> Hello, I'm John Furrier with "SiliconANGLE News" and the host of theCUBE here in Palo Alto, with coverage of MWC 2023. theCUBE is onsite in Barcelona, four days of wall to wall coverage. Here is a news update from MWC and in the news here is Google. Google Cloud targets cloud native network transformation for all the carriers or cloud service providers, and the communication service providers. They announced three new products to help communications service providers, also known as CSPs, build, deploy and operate hybrid cloud native networks, as well as collect and manage network data. The new products, when combined with Unified Cloud, enables the CSPs to improve customer experience, artificial intelligence, and data analytics. This is a big move, because 70% of communication service providers are expected to adopt cloud native network functions by the end of this year, making it a big, big wave. One of the key features of Google's products is the telecom network automation. This cloud service accelerates CSPs network and edge deployments through the use of Kubernetes based cloud native automation tools. It's managed by a cloud version of open source Nephio, project that Google founded in 2022. Of course, other key product announcements with Google, the Telecom Data Fabric, a tool that helps CSPs generate insights. That's the data driven piece, to target and optimize their network performance and reliability, works by simplifying the collection, normalization, correlation through an adaptive framework. This is kind of where AI shines. Finally, Google has telecom subscriber insights, a powerful AI tool that enables CSPs to extract insights from existing data sources in a privacy safe environment. Let's see if this is better than Bing search, we'll see. But CSPs are moving to the cloud across all channels. This is a really important trend, as cloud native scale, AI, data, configuration, automation all come to the edge of the network. That's an update from "SiliconANGLE News". Check out the coverage on siliconangle.com. Of course, thecube.net, four days, Dave Vellante and Lisa Martin are there. I'm here in Palo Alto. Thanks for watching. (slow music) (upbeat music)

Published Date : Feb 28 2023

SUMMARY :

and the host of theCUBE here in Palo Alto,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

Dave VellantePERSON

0.99+

Palo AltoLOCATION

0.99+

BarcelonaLOCATION

0.99+

70%QUANTITY

0.99+

2022DATE

0.99+

John FurrierPERSON

0.99+

GoogleORGANIZATION

0.99+

siliconangle.comOTHER

0.99+

thecube.netOTHER

0.98+

end of this yearDATE

0.98+

four daysQUANTITY

0.97+

MWC 2023EVENT

0.96+

OneQUANTITY

0.92+

three new productsQUANTITY

0.89+

SiliconANGLE NewsORGANIZATION

0.88+

theCUBEORGANIZATION

0.8+

BingORGANIZATION

0.75+

NephioTITLE

0.66+

MWCEVENT

0.65+

bigEVENT

0.63+

KubernetesTITLE

0.62+

Google CloudTITLE

0.57+

Unified CloudTITLE

0.45+

SiliconANGLE News | Google Showcases Updates for Android and Wearable Technology at MWC


 

(Introductory music) >> Hello everyone, welcome to theCUBE's coverage of Mobile World Congress (MWC) and also SiliconANGLEs news coverage. Welcome to SiliconANGLEs news update for MWC. I'm John Furrier, host of theCUBE and reporter with SiliconANGLE News Today. Google showcasing new updates for Android and wearables at MWC. Kind of going after the old Apple-like functionality. Google has announced some new updates for Android and wearables at MWC and Barcelona. The new features are aimed at enhancing user productivity, connectivity and overall enjoyment across various devices for Chromebooks and all their Android devices. This is their answer to be Apple-like. New features include updates to Google Keep, audio enhancements, instant pairing of Chromebooks, headphones, new emojis, smartphones, more wallet options, and greater accessibility options. These features designed to bridge the gap between different devices that people use together often such as watches and phones or laptops or headphones. Fast Pair, another feature which allows new Bluetooth headphones to be connected to a Chromebook with just one tap. If the headphones are already set up with Android phone, the Chromebook will automatically connect to them with no additional setup. And finally, Google Keep taking notes for you that app - very cool. New features include widgets for Android screens, making it easier for users to make to-do lists from their mobile devices and Smartwatches phones. So that's the big news there. And it's really about Apple-like functionality and they have added things to their meat, which is new backgrounds and then filters that's kind of a Zoom clone. So here you got Android, Google adding stuff to their wallet. They are really stepping up their game and they want to be more mobile in at a telecom conference like this. They can see them upping their game to try to compete with Apple. And that's the update from from Google, Android and Chromebook updates. Stay tuned for more coverage. Check out SiliconANGLE.com for our special report on Mobile World Congress and Barcelona. Got theCUBE team - Dave Vellante, Lisa Martin, the whole gang is there for four days of live coverage. Check that out on theCUBE.net (closing music)

Published Date : Feb 28 2023

SUMMARY :

and they have added things to their meat,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

John FurrierPERSON

0.99+

AppleORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

AndroidTITLE

0.99+

theCUBEORGANIZATION

0.99+

ChromebookCOMMERCIAL_ITEM

0.98+

Mobile World CongressEVENT

0.98+

ChromebooksCOMMERCIAL_ITEM

0.98+

four daysQUANTITY

0.98+

SiliconANGLEsORGANIZATION

0.97+

MWCEVENT

0.97+

theCUBE.netOTHER

0.96+

BarcelonaLOCATION

0.95+

GoogleEVENT

0.91+

oneQUANTITY

0.87+

SiliconANGLEORGANIZATION

0.77+

SiliconANGLE NewsORGANIZATION

0.74+

Google KeepTITLE

0.71+

TodayDATE

0.68+

SiliconANGLE.comORGANIZATION

0.48+

GoogleTITLE

0.46+

Prem Balasubramanian and Manoj Narayanan | Hitachi Vantara: Build Your Cloud Center of Excellence


 

(Upbeat music playing) >> Hey everyone, thanks for joining us today. Welcome to this event of Building your Cloud Center of Excellence with Hitachi Vantara. I'm your host, Lisa Martin. I've got a couple of guests here with me next to talk about redefining cloud operations and application modernization for customers. Please welcome Prem Balasubramanian the SVP and CTO at Hitachi Vantara, and Manoj Narayanan is here as well, the Managing Director of Technology at GTCR. Guys, thank you so much for joining me today. Excited to have this conversation about redefining CloudOps with you. >> Pleasure to be here. >> Pleasure to be here >> Prem, let's go ahead and start with you. You have done well over a thousand cloud engagements in your career. I'd love to get your point of view on how the complexity around cloud operations and management has evolved in the last, say, three to four years. >> It's a great question, Lisa before we understand the complexity around the management itself, the cloud has evolved over the last decade significantly from being a backend infrastructure or infrastructure as a service for many companies to become the business for many companies. If you think about a lot of these cloud bond companies cloud is where their entire workload and their business wants. With that, as a background for this conversation if you think about the cloud operations, there was a lot of there was a lot of lift and shift happening in the market where people lifted their workloads or applications and moved them onto the cloud where they treated cloud significantly as an infrastructure. And the way they started to manage it was again, the same format they were managing there on-prem infrastructure and they call it I&O, Infrastructure and Operations. That's kind of the way traditionally cloud is managed. In the last few years, we are seeing a significant shift around thinking of cloud more as a workload rather than as just an infrastructure. And what I mean by workload is in the cloud, everything is now code. So you are codifying your infrastructure. Your application is already code and your data is also codified as data services. With now that context apply the way you think about managing the cloud has to significantly change and many companies are moving towards trying to change their models to look at this complex environment as opposed to treating it like a simple infrastructure that is sitting somewhere else. So that's one of the biggest changes and shifts that are causing a lot of complexity and headache for actually a lot of customers for managing environments. The second critical aspect is even that, even exasperates the situation is multicloud environments. Now, there are companies that have got it right with things about right cloud for the right workload. So there are companies that I reach out and I talk with. They've got their office applications and emails and stuff running on Microsoft 365 which can be on the Azure cloud whereas they're running their engineering applications the ones that they build and leverage for their end customers on Amazon. And to some extent they've got it right but still they have a multiple cloud that they have to go after and maintain. This becomes complex when you have two clouds for the same type of workload. When I have to host applications for my end customers on Amazon as well as Azure, Azure as well as Google then, I get into security issues that I have to be consistent across all three. I get into talent because I need to have people that focus on Amazon as well as Azure, as well as Google which means I need so much more workforce, I need so many so much more skills that I need to build, right? That's becoming the second issue. The third one is around data costs. Can I make these clouds talk to each other? Then you get into the ingress egress cost and that creates some complexity. So bringing all of this together and managing is really become becoming more complex for our customers. And obviously as a part of this we will talk about some of the, some of the ideas that we can bring for in managing such complex environments but this is what we are seeing in terms of why the complexity has become a lot more in the last few years. >> Right. A lot of complexity in the last few years. Manoj, let's bring you into the conversation now. Before we dig into your cloud environment give the audience a little bit of an overview of GTCR. What kind of company are you? What do you guys do? >> Definitely Lisa. GTCR is a Chicago based private equity firm. We've been in the market for more than 40 years and what we do is we invest in companies across different sectors and then we manage the company drive it to increase the value and then over a period of time, sell it to future buyers. So in a nutshell, we got a large portfolio of companies that we need to manage and make sure that they perform to expectations. And my role within GTCR is from a technology viewpoint so where I work with all the companies their technology leadership to make sure that we are getting the best out of technology and technology today drives everything. So how can technology be a good compliment to the business itself? So, my role is to play that intermediary role to make sure that there is synergy between the investment thesis and the technology lures that we can pull and also work with partners like Hitachi to make sure that it is done in an optimal manner. >> I like that you said, you know, technology needs to really compliment the business and vice versa. So Manoj, let's get into the cloud operations environment at GTCR. Talk to me about what the experience has been the last couple of years. Give us an idea of some of the challenges that you were facing with existing cloud ops and and the solution that you're using from Hitachi Vantara. >> A a absolutely. In fact, in fact Prem phrased it really well, one of the key things that we're facing is the workload management. So there's so many choices there, so much complexities. We have these companies buying more companies there is organic growth that is happening. So the variables that we have to deal with are very high in such a scenario to make sure that the workload management of each of the companies are done in an optimal manner is becoming an increasing concern. So, so that's one area where any help we can get anything we can try to make sure it is done better becomes a huge value at each. A second aspect is a financial transparency. We need to know where the money is going where the money is coming in from, what is the scale especially in the cloud environment. We are talking about an auto scale ecosystem. Having that financial transparency and the metrics associated with that, it, these these become very, very critical to ensure that we have a successful presence in the multicloud environment. >> Talk a little bit about the solution that you're using with Hitachi and, and the challenges that it is eradicated. >> Yeah, so it end of the day, right, we we need to focus on our core competence. So, so we have got a very strong technology leadership team. We've got a very strong presence in the respective domains of each of the portfolio companies. But where Hitachi comes in and HAR comes in as a solution is that they allow us to excel in focusing on our core business and then make sure that we are able to take care of workload management or financial transparency. All of that is taken off the table from us and and Hitachi manages it for us, right? So it's such a perfectly compliment relationship where they act as two partners and HARC is a solution that is extremely useful in driving that. And, and and I'm anticipating that it'll become more important with time as the complexity of cloud and cloud associate workloads are only becoming more challenging to manage and not less. >> Right? That's the thing that complexity is there and it's also increasing Prem, you talked about the complexities that are existent today with respect to cloud operations the things that have happened over the last couple of years. What are some of your tips, Prem for the audience, like the the top two or three things that you would say on cloud operations that that people need to understand so that they can manage that complexity and allow their business to be driven and complimented by technology? >> Yeah, a big great question again, Lisa, right? And I think Manoj alluded to a few of these things as well. The first one is in the new world of the cloud I think think of migration, modernization and management as a single continuum to the cloud. Now there is no lift and shift and there is no way somebody else separately manages it, right? If you do not lift and shift the right applications the right way onto the cloud, you are going to deal with the complexity of managing it and you'll end up spending more money time and effort in managing it. So that's number one. Migration, modernization, management of cloud work growth is a single continuum and it's not three separate activities, right? That's number one. And the, the second is cost. Cost traditionally has been an afterthought, right? People move the workload to the cloud. And I think, again, like I said, I'll refer back to what Manoj said once we move it to the cloud and then we put all these fancy engineering capability around self-provisioning, every developer can go and ask for what he or she wants and they get an environment immediately spun up so on and so forth. Suddenly the CIO wakes up to a bill that is significantly larger than what he or she expected right? And, and this is this is become a bit common nowadays, right? The the challenge is because we think cost in the cloud as an afterthought. But consider this example in, in previous world you buy hard, well, you put it in your data center you have already amortized the cost as a CapEx. So you can write an application throw it onto the infrastructure and the application continues to use the infrastructure until you hit a ceiling, you don't care about the money you spent. But if I write a line of code that is inefficient today and I deploy it on the cloud from minute one, I am paying for the inefficiency. So if I realize it after six months, I've already spent the money. So financial discipline, especially when managing the cloud is now is no more an afterthought. It is as much something that you have to include in your engineering practice as much as any other DevOps practices, right? Those are my top two tips, Lisa, from my standpoint, think about cloud, think about cloud work, cloud workloads. And the last one again, and you will see you will hear me saying this again and again, get into the mindset of everything is code. You don't have a touch and feel infrastructure anymore. So you don't really need to have foot on the ground to go manage that infrastructure. It's codified. So your code should be managing it, but think of how it happens, right? That's where we, we are going as an evolution >> Everything is code. That's great advice, great tips for the audience there. Manoj, I'll bring you back into the conversation. You know, we, we can talk about skills gaps on on in many different facets of technology the SRE role, relatively new, skillset. We're hearing, hearing a lot about it. SRE led DevSecOps is probably even more so of a new skillset. If I'm an IT leader or an application leader how do I ensure that I have the right skillset within my organization to be able to manage my cloud operations to, to dial down that complexity so that I can really operate successfully as a business? >> Yeah. And so unfortunately there is no perfect answer, right? It's such a, such a scarce skillset that a, any day any of the portfolio company CTOs if I go and talk and say, Hey here's a great SRE team member, they'll be more than willing to fight with each of to get the person in right? It's just that scarce of a skillset. So, so a few things we need to look at it. One is, how can I build it within, right? So nobody gets born as an SRE, you, you make a person an SRE. So how do you inculcate that culture? So like Prem said earlier, right? Everything is software. So how do we make sure that everybody inculcates that as part of their operating philosophy be they part of the operations team or the development team or the testing team they need to understand that that is a common guideline and common objective that we are driving towards. So, so that skillset and that associated training needs to be driven from within the organization. And that in my mind is the fastest way to make sure that that role gets propagated across organization. That is one. The second thing is rely on the right partners. So it's not going to be possible for us, to get all of these roles built in-house. So instead prioritize what roles need to be done from within the organization and what roles can we rely on our partners to drive it for us. So that becomes an important consideration for us to look at as well. >> Absolutely. That partnership angle is incredibly important from, from the, the beginning really kind of weaving these companies together on this journey to to redefine cloud operations and build that, as we talked about at the beginning of the conversation really building a cloud center of excellence that allows the organization to be competitive, successful and and really deliver what the end user is, is expecting. I want to ask - Sorry Lisa, - go ahead. >> May I add something to it, I think? >> Sure. >> Yeah. One of the, one of the common things that I tell customers when we talk about SRE and to manages point is don't think of SRE as a skillset which is the common way today the industry tries to solve the problem. SRE is a mindset, right? Everybody in >> Well well said, yeah >> That, so everybody in a company should think of him or her as a cycle liability engineer. And everybody has a role in it, right? Even if you take the new process layout from SRE there are individuals that are responsible to whom we can go to when there is a problem directly as opposed to going through the traditional ways of AI talk to L one and L one contras all. They go to L two and then L three. So we, we, we are trying to move away from an issue escalation model to what we call as a a issue routing or a incident routing model, right? Move away from incident escalation to an incident routing model. So you get to route to the right folks. So again, to sum it up, SRE should not be solved as a skillset set because there is not enough people in the market to solve it that way. If you start solving it as a mindset I think companies can get a handhold of it. >> I love that. I've actually never heard that before, but it it makes perfect sense to think about the SRE as a mindset rather than a skillset that will allow organizations to be much more successful. Prem I wanted to get your thoughts as enterprises are are innovating, they're moving more products and services to the as a service model. Talk about how the dev teams the ops teams are working together to build and run reliable, cost efficient services. Are they working better together? >> Again, a a very polarizing question because some customers are getting it right many customers aren't, there is still a big wall between development and operations, right? Even when you think about DevOps as a terminology the fundamental principle was to make sure dev and ops works together. But what many companies have achieved today, honestly is automating the operations for development. For example, as a developer, I can check in code and my code will appear in production without any friction, right? There is automated testing, automated provisioning and it gets promoted to production, but after production, it goes back into the 20 year old model of operating the code, right? So there is more work that needs to be done for Devon and Ops to come closer and work together. And one of the ways that we think this is achievable is not by doing radical org changes, but more by focusing on a product-oriented single backlog approach across development and operations. Which is, again, there is change management involved but I think that's a way to start embracing the culture of dev ops coming together much better now, again SRE principles as we double click and understand it more and Google has done a very good job playing it out for the world. As you think about SRE principle, there are ways and means in that process of how to think about a single backlog. And in HARC, Hitachi Application Reliability Centers we've really got a way to look at prioritizing the backlog. And what I mean by that is dev teams try to work on backlog that come from product managers on features. The SRE and the operations team try to put backlog into the say sorry, try to put features into the same backlog for improving stability, availability and financials financial optimization of your code. And there are ways when you look at your SLOs and error budgets to really coach the product teams to prioritize your backlog based on what's important for you. So if you understand your spending more money then you reduce your product features going in and implement the financial optimization that came from your operations team, right? So you now have the ability to throttle these parameters and that's where SRE becomes a mindset and a principle as opposed to a skillset because this is not an individual telling you to do. This is the company that is, is embarking on how to prioritize my backlog beyond just user features. >> Right. Great point. Last question for both of you is the same talk kind of take away things that you want me to remember. If I am at an IT leader at, at an organization and I am planning on redefining CloudOps for my company Manoj will start with you and then Prem to you what are the top two things that you want me to walk away with understanding how to do that successfully? >> Yeah, so I'll, I'll go back to basics. So the two things I would say need to be taken care of is, one is customer experience. So all the things that I do end of the day is it improving the customer experience or not? So that's a first metric. The second thing is anything that I do is there an ROI by doing that incremental step or not? Otherwise we might get lost in the technology with surgery, the new tech, et cetera. But end of the day, if the customers are not happy if there is no ROI, everything else you just can't do much on top of that >> Now it's all about the customer experience. Right? That's so true. Prem what are your thoughts, the the top things that I need to be taking away if I am a a leader planning to redefine my cloud eye company? >> Absolutely. And I think from a, from a company standpoint I think Manoj summarized it extremely well, right? There is this ROI and there is this customer experience from my end, again, I'll, I'll suggest two two more things as a takeaway, right? One, cloud cost is not an afterthought. It's essential for us to think about it upfront. Number two, do not delink migration modernization and operations. They are one stream. If you migrate a long, wrong workload onto the cloud you're going to be stuck with it for a long time. And an example of a wrong workload, Lisa for everybody that that is listening to this is if my cost per transaction profile doesn't change and I am not improving my revenue per transaction for a piece of code that's going run in production it's better off running in a data center where my cost is CapEx than amortized and I have control over when I want to upgrade as opposed to putting it on a cloud and continuing to pay unless it gives me more dividends towards improvement. But that's a simple example of when we think about what should I migrate and how will it cost pain when I want to manage it in the longer run. But that's, that's something that I'll leave the audience and you with as a takeaway. >> Excellent. Guys, thank you so much for talking to me today about what Hitachi Vantara and GTCR are doing together how you've really dialed down those complexities enabling the business and the technology folks to really live harmoniously. We appreciate your insights and your perspectives on building a cloud center of excellence. Thank you both for joining me. >> Thank you. >> For my guests, I'm Lisa. Martin, you're watching this event building Your Cloud Center of Excellence with Hitachi Vantara. Thanks for watching. (Upbeat music playing) (Upbeat music playing) (Upbeat music playing) (Upbeat music playing)

Published Date : Feb 27 2023

SUMMARY :

the SVP and CTO at Hitachi Vantara, in the last, say, three to four years. apply the way you think in the last few years. and the technology lures that we can pull and the solution that you're that the workload management the solution that you're using All of that is taken off the table from us and allow their business to be driven have foot on the ground to have the right skillset And that in my mind is the that allows the organization to be and to manages point is don't of AI talk to L one and L one contras all. Talk about how the dev teams The SRE and the operations team that you want me to remember. But end of the day, if the I need to be taking away that I'll leave the audience and the technology folks to building Your Cloud Center of Excellence

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
HitachiORGANIZATION

0.99+

GTCRORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

Prem BalasubramanianPERSON

0.99+

HARCORGANIZATION

0.99+

LisaPERSON

0.99+

Manoj NarayananPERSON

0.99+

GoogleORGANIZATION

0.99+

ChicagoLOCATION

0.99+

AmazonORGANIZATION

0.99+

Hitachi VantaraORGANIZATION

0.99+

two partnersQUANTITY

0.99+

threeQUANTITY

0.99+

second issueQUANTITY

0.99+

bothQUANTITY

0.99+

more than 40 yearsQUANTITY

0.99+

ManojORGANIZATION

0.99+

eachQUANTITY

0.99+

third oneQUANTITY

0.99+

SREORGANIZATION

0.99+

todayDATE

0.99+

first metricQUANTITY

0.99+

one streamQUANTITY

0.99+

PremPERSON

0.99+

secondQUANTITY

0.99+

OneQUANTITY

0.99+

MartinPERSON

0.99+

oneQUANTITY

0.98+

twoQUANTITY

0.98+

first oneQUANTITY

0.98+

four yearsQUANTITY

0.98+

second thingQUANTITY

0.98+

second aspectQUANTITY

0.98+

three thingsQUANTITY

0.98+

ManojPERSON

0.98+

DevonORGANIZATION

0.97+

one areaQUANTITY

0.97+

two thingsQUANTITY

0.96+

Hitachi Application Reliability CentersORGANIZATION

0.96+

singleQUANTITY

0.95+

L twoOTHER

0.95+

single backlogQUANTITY

0.93+

two tipsQUANTITY

0.93+

three separate activitiesQUANTITY

0.92+

SRETITLE

0.91+

20 year oldQUANTITY

0.91+

CloudOpsTITLE

0.9+

L threeOTHER

0.9+

last decadeDATE

0.9+

second critical aspectQUANTITY

0.89+

yearsDATE

0.89+

MicrosoftORGANIZATION

0.89+

last couple of yearsDATE

0.88+

AzureTITLE

0.88+

CUBE Analysis of Day 1 of MWC Barcelona 2023 | MWC Barcelona 2023


 

>> Announcer: theCUBE's live coverage is made possible by funding from Dell Technologies creating technologies that drive human progress. (upbeat music) >> Hey everyone, welcome back to theCube's first day of coverage of MWC 23 from Barcelona, Spain. Lisa Martin here with Dave Vellante and Dave Nicholson. I'm literally in between two Daves. We've had a great first day of coverage of the event. There's been lots of conversations, Dave, on disaggregation, on the change of mobility. I want to be able to get your perspectives from both of you on what you saw on the show floor, what you saw and heard from our guests today. So we'll start with you, Dave V. What were some of the things that were our takeaways from day one for you? >> Well, the big takeaway is the event itself. On day one, you get a feel for what this show is like. Now that we're back, face-to-face kind of pretty much full face-to-face. A lot of excitement here. 2000 plus exhibitors, I mean, planes, trains, automobiles, VR, AI, servers, software, I mean everything. I mean, everybody is here. So it's a really comprehensive show. It's not just about mobile. That's why they changed the name from Mobile World Congress. I think the other thing is from the keynotes this morning, I mean, you heard, there's a lot of, you know, action around the telcos and the transformation, but in a lot of ways they're sort of protecting their existing past from the future. And so they have to be careful about how fast they move. But at the same time if they don't move fast, they're going to get disrupted. We heard some complaints, essentially, you know, veiled complaints that the over the top guys aren't paying their fair share and Telco should be able to charge them more. We heard the chairman of Ericsson talk about how we can't let the OTTs do that again. We're going to charge directly for access through APIs to our network, to our data. We heard from Chris Lewis. Yeah. They've only got, or maybe it was San Ji Choha, how they've only got eight APIs. So, you know the developers are the ones who are going to actually build out the innovation at the edge. The telcos are going to provide the connectivity and the infrastructure companies like Dell as well. But it's really to me all about the developers. And that's where the action's going to be. And it's going to be interesting to see how the developers respond to, you know, the gun to the head. If you want access, you're going to have to pay for it. Now maybe there's so much money to be made that they'll go for it, but I feel like there's maybe a different model. And I think some of the emerging telcos are going to say, you know what, here developers, here's a platform, have at it. We're not going to charge you for all the data until you succeed. Then we're going to figure out a monetization model. >> Right. A lot of opportunity for the developer. That skillset is certainly one that's in demand here. And certainly the transformation of the telecom industry is, there's a lot of conundrums that I was hearing going on today, kind of chicken and egg scenarios. But Dave, you had a chance to walk around the show floor. We were here interviewing all day. What were some of the things that you saw that really stuck out to you? >> I think I was struck by how much attention was being paid to private 5G networks. You sort of read between the lines and it appears as though people kind of accept that the big incumbent telecom players are going to be slower to move. And this idea of things like open RAN where you're leveraging open protocols in a stack to deliver more agility and more value. So it sort of goes back to the generalized IT discussion of moving to cloud for agility. It appears as though a lot of players realize that the wild wild west, the real opportunity, is in the private sphere. So it's really interesting to see how that works, how 5G implemented into an environment with wifi how that actually works. It's really interesting. >> So it's, obviously when you talk to companies like Dell, I haven't hit HPE yet. I'm going to go over there and check out their booth. They got an analyst thing going on but it's really early days for them. I mean, they started in this business by taking an X86 box, putting a name on it, you know, that sounded like it was edged, throwing it over, you know, the wall. That's sort of how they all started in this business. And now they're, you know, but they knew they had to form partnerships. They had to build purpose-built systems. Now with 16 G out, you're seeing that. And so it's still really early days, talking about O RAN, open RAN, the open RAN alliance. You know, it's just, I mean, not even, the game hasn't even barely started yet but we heard from Dish today. They're trying to roll out a massive 5G network. Rakuten is really focused on sort of open RAN that's more reliable, you know, or as reliable as the existing networks but not as nearly as huge a scale as Dish. So it's going to take a decade for this to evolve. >> Which is surprising to the average consumer to hear that. Because as far as we know 5G has been around for a long time. We've been talking about 5G, implementing 5G, you sort of assume it's ubiquitous but the reality is it is just the beginning. >> Yeah. And you know, it's got a fake 5G too, right? I mean you see it on your phone and you're like, what's the difference here? And it's, you know, just, >> Dave N.: What does it really mean? >> Right. And so I think your point about private is interesting, the conversation Dave that we had earlier, I had throughout, hey I don't think it's a replacement for wifi. And you said, "well, why not?" I guess it comes down to economics. I mean if you can get the private network priced close enough then you're right. Why wouldn't it replace wifi? Now you got wifi six coming in. So that's a, you know, and WiFi's flexible, it's cheap, it's good for homes, good for offices, but these private networks are going to be like kickass, right? They're going to be designed to run whatever, warehouses and robots, and energy drilling facilities. And so, you know the economics I don't think are there today but maybe they can be at volume. >> Maybe at some point you sort of think of today's science experiment becoming the enterprise-grade solution in the future. I had a chance to have some conversations with folks around the show. And I think, and what I was surprised by was I was reminded, frankly, I wasn't surprised. I was reminded that when we start talking about 5G, we're talking about spectrum that is managed by government entities. Of course all broadcast, all spectrum, is managed in one way or another. But in particular, you can't simply put a SIM in every device now because there are a lot of regulatory hurdles that have to take place. So typically what these things look like today is 5G backhaul to the network, communication from that box to wifi. That's a huge improvement already. So yeah, my question about whether, you know, why not put a SIM in everything? Maybe eventually, but I think, but there are other things that I was not aware of that are standing in the way. >> Your point about spectrum's an interesting one though because private networks, you're going to be able to leverage that spectrum in different ways, and tune it essentially, use different parts of the spectrum, make it programmable so that you can apply it to that specific use case, right? So it's going to be a lot more flexible, you know, because I presume the needs spectrum needs of a hospital are going to be different than, you know, an agribusiness are going to be different than a drilling, you know, unit, offshore drilling unit. And so the ability to have the flexibility to use the spectrum in different ways and apply it to that use case, I think is going to be powerful. But I suspect it's going to be expensive initially. I think the other thing we talked about is public policy and regulation, and it's San Ji Choha brought up the point, is telcos have been highly regulated. They don't just do something and ask for permission, you know, they have to work within the confines of that regulated environment. And there's a lot of these greenfield companies and private networks that don't necessarily have to follow those rules. So that's a potential disruptive force. So at the same time, the telcos are spending what'd we hear, a billion, a trillion and a half over the next seven years? Building out 5G networks. So they got to figure out, you know how to get a payback on that. They'll get it I think on connectivity, 'cause they have a monopoly but they want more. They're greedy. They see the over, they see the Netflixes of the world and the Googles and the Amazons mopping up services and they want a piece of that action but they've never really been good at it. >> Well, I've got a question for both of you. I mean, what do you think the odds are that by the time the Shangri La of fully deployed 5G happens that we have so much data going through it that effectively it feels exactly the same as 3G? What are the odds? >> That's a good point. Well, the thing that gets me about 5G is there's so much of it on, if I go to the consumer side when we're all consumers in our daily lives so much of it's marketing hype. And, you know all the messaging about that, when it's really early innings yet they're talking about 6G. What does actual fully deployed 5G look like? What is that going to enable a hospital to achieve or an oil refinery out in the middle of the ocean? That's something that interests me is what's next for that? Are we going to hear that at this event? >> I mean, walking around, you see a fair amount of discussion of, you know, the internet of things. Edge devices, the increase in connectivity. And again, what I was surprised by was that there's very little talk about a sim card in every one of those devices at this point. It's like, no, no, no, we got wifi to handle all that but aggregating it back into a central network that's leveraging 5G. That's really interesting. That's really interesting. >> I think you, the odds of your, to go back to your question, I think the odds are even money, that by the time it's all built out there's going to be so much data and so much new capability it's going to work similarly at similar speeds as we see in the networks today. You're just going to be able to do so many more things. You know, and your video's going to look better, the graphics are going to look better. But I think over the course of history, this is what's happening. I mean, even when you go back to dial up, if you were in an AOL chat room in 1996, it was, you know, yeah it took a while. You're like, (screeches) (Lisa laughs) the modem and everything else, but once you were in there- >> Once you're there, 2400 baud. >> It was basically real time. And so you could talk to your friends and, you know, little chat room but that's all you could do. You know, if you wanted to watch a video, forget it, right? And then, you know, early days of streaming video, stop, start, stop, start, you know, look at Amazon Prime when it first started, Prime Video was not that great. It's sort of catching up to Netflix. But, so I think your point, that question is really prescient because more data, more capability, more apps means same speed. >> Well, you know, you've used the phrase over the top. And so just just so we're clear so we're talking about the same thing. Typically we're talking about, you've got, you have network providers. Outside of that, you know, Netflix, internet connection, I don't need Comcast, right? Perfect example. Well, what about the over the top that's coming from direct satellite communications with devices. There are times when I don't have a signal on my, happens to be an Apple iPhone, when I get a little SOS satellite logo because I can communicate under very limited circumstances now directly to the satellite for very limited text messaging purposes. Here at the show, I think it might be a Motorola device. It's a dongle that allows any mobile device to leverage direct satellite communication. Again, for texting back to the 2,400 baud modem, you know, days, 1200 even, 300 even, go back far enough. What's that going to look like? Is that too far in the future to think that eventually it's all going to be over the top? It's all going to be handset to satellite and we don't need these RANs anymore. It's all going to be satellite networks. >> Dave V.: I think you're going to see- >> Little too science fiction-y? (laughs) >> No, I, no, I think it's a good question and I think you're going to see fragments. I think you're going to see fragmentation of private networks. I think you're going to see fragmentation of satellites. I think you're going to see legacy incumbents kind of hanging on, you know, the cable companies. I think that's coming. I think by 2030 it'll, the picture will be much more clear. The question is, and I think it's come down to the innovation on top, which platform is going to be the most developer friendly? Right, and you know, I've not heard anything from the big carriers that they're going to be developer friendly. I've heard "we have proprietary data that we're going to charge access for and developers are going to have to pay for that." But I haven't heard them saying "Developers, developers, developers!" You know, Steve Bomber running around, like bend over backwards for developers, they're asking the developers to bend over. And so if a network can, let's say the satellite network is more developer friendly, you know, you're going to see more innovation there potentially. You know, or if a dish network says, "You know what? We're going after developers, we're going after innovation. We're not going to gouge them for all this network data. Rather we're going to make the platform open or maybe we're going to do an app store-like model where we take a piece of the action after they succeed." You know, take it out of the backend, like a Silicon Valley VC as opposed to an East Coast VC. They're not going to get you in the front end. (Lisa laughs) >> Well, you can see the sort of disruptive forces at play between open RAN and the legacy, call it proprietary stack, right? But what is the, you know, if that's sort of a horizontal disruptive model, what's the vertically disruptive model? Is it private networks coming in? Is it a private 5G network that comes in that says, "We're starting from the ground up, everything is containerized. We're going to go find people at KubeCon who are, who understand how to orchestrate with Kubernetes and use containers in microservices, and we're going to have this little 5G network that's going to deliver capabilities that you can't get from the big boys." Is there a way to monetize that? Is there a way for them to be disrupted, be disruptive, or are these private 5G networks that everybody's talking about just relegated to industrial use cases where you're just squeezing better economics out of wireless communication amongst all your devices in your factory? >> That's an interesting question. I mean, there are a lot of those smart factory industrial use cases. I mean, it's basically industry 4.0 use cases. But yeah, I don't count the cloud guys out. You know, everybody says, "oh, the narrative is, well, the latency of the cloud." Well, not if the cloud is at the edge. If you take a local zone and put storage, compute, and data right next to each other and the cloud model with the cloud APIs, and then you got an asynchronous, you know, connection back. I think that's a reasonable model. I think the cloud guys figured out developers, right? Pretty well. Certainly Microsoft and, and Amazon and Google, they know developers. I don't see any reason why they can't bring their model to the edge. So, and that's really disruptive to the legacy telco guys, you know? So they have to be careful. >> One step closer to my dream of eliminating the word "cloud" from IT lexicon. (Lisa laughs) I contend that it has always been IT, and it will always be IT. And this whole idea of cloud, what is cloud? If AWS, for example, is delivering hardware to the edge where it needs to be, is that cloud? Do we go back to the idea that cloud is an operational model and not a question of physical location? I hope we get to that point. >> Well, what's Apex and GreenLake? Apex is, you know, Dell's as a service. GreenLake is- >> HPE. >> HPE's as a service. That's outposts. >> Dave N.: Right. >> Yeah. >> That's their outpost. >> Yeah. >> Well AWS's position used to be, you know, to use them as a proxy for hyperscale cloud. We'll just, we'll grow in a very straight trajectory forever on the back of net new stuff. Forget about the old stuff. As James T. Kirk said of the Klingons, "let them die." (Lisa laughs) As far as the cloud providers were concerned just, yeah, let, let that old stuff go away. Well then they found out, there came a point in time where they realized there's a lot of friction and stickiness associated with that. So they had to deal with the reality of hybridity, if that's the word, the hybrid nature of things. So what are they doing? They're pushing stuff out to the edge, so... >> With the same operating model. >> With the same operating model. >> Similar. I mean, it's limited, right? >> So you see- >> You can't run a lot of database on outpost, you can run RES- >> You see this clash of Titans where some may have written off traditional IT infrastructure vendors, might have been written off as part of the past. Whereas hyperscale cloud providers represent the future. It seems here at this show they're coming head to head and competing evenly. >> And this is where I think a company like Dell or HPE or Cisco has some advantages in that they're not going to compete with the telcos, but the hyperscalers will. >> Lisa: Right. >> Right. You know, and they're already, Google's, how much undersea cable does Google own? A lot. Probably more than anybody. >> Well, we heard from Google and Microsoft this morning in the keynote. It'd be interesting to see if we hear from AWS and then over the next couple of days. But guys, clearly there is, this is a great wrap of day one. And the crazy thing is this is only day one. We've got three more days of coverage, more news, more information to break down and unpack on theCUBE. Look forward to doing that with you guys over the next three days. Thank you for sharing what you saw on the show floor, what you heard from our guests today as we had about 10 interviews. Appreciate your insights and your perspectives and can't wait for tomorrow. >> Right on. >> All right. For Dave Vellante and Dave Nicholson, I'm Lisa Martin. You're watching theCUBE's day one wrap from MWC 23. We'll see you tomorrow. (relaxing music)

Published Date : Feb 27 2023

SUMMARY :

that drive human progress. of coverage of the event. are going to say, you know what, of the telecom industry is, are going to be slower to move. And now they're, you know, Which is surprising to the I mean you see it on your phone I guess it comes down to economics. I had a chance to have some conversations And so the ability to have the flexibility I mean, what do you think the odds are What is that going to of discussion of, you know, the graphics are going to look better. And then, you know, early the 2,400 baud modem, you know, days, They're not going to get you that you can't get from the big boys." to the legacy telco guys, you know? dream of eliminating the word Apex is, you know, Dell's as a service. That's outposts. So they had to deal with I mean, it's limited, right? they're coming head to going to compete with the telcos, You know, and they're already, Google's, And the crazy thing is We'll see you tomorrow.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TelcoORGANIZATION

0.99+

Dave NicholsonPERSON

0.99+

Lisa MartinPERSON

0.99+

Dave NicholsonPERSON

0.99+

DellORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

Dave VellantePERSON

0.99+

ComcastORGANIZATION

0.99+

Steve BomberPERSON

0.99+

GoogleORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

Chris LewisPERSON

0.99+

AWSORGANIZATION

0.99+

James T. KirkPERSON

0.99+

LisaPERSON

0.99+

1996DATE

0.99+

EricssonORGANIZATION

0.99+

MotorolaORGANIZATION

0.99+

AmazonsORGANIZATION

0.99+

HPEORGANIZATION

0.99+

NetflixORGANIZATION

0.99+

Dave V.PERSON

0.99+

Dave N.PERSON

0.99+

1200QUANTITY

0.99+

twoQUANTITY

0.99+

tomorrowDATE

0.99+

first dayQUANTITY

0.99+

Dell TechnologiesORGANIZATION

0.99+

Barcelona, SpainLOCATION

0.99+

RakutenORGANIZATION

0.99+

2,400 baudQUANTITY

0.99+

telcosORGANIZATION

0.99+

bothQUANTITY

0.99+

2400 baudQUANTITY

0.99+

todayDATE

0.99+

ApexORGANIZATION

0.99+

San Ji ChohaORGANIZATION

0.99+

AOLORGANIZATION

0.99+

Silicon ValleyLOCATION

0.99+

300QUANTITY

0.99+

GooglesORGANIZATION

0.98+

2030DATE

0.98+

GreenLakeORGANIZATION

0.98+

iPhoneCOMMERCIAL_ITEM

0.98+

MWC 23EVENT

0.98+

day oneQUANTITY

0.98+

MWC 23EVENT

0.98+

X86COMMERCIAL_ITEM

0.97+

eight APIsQUANTITY

0.97+

OneQUANTITY

0.96+

2023DATE

0.96+

DishORGANIZATION

0.96+

PrimeCOMMERCIAL_ITEM

0.95+

this morningDATE

0.95+

Day 1QUANTITY

0.95+

a billion, a trillion and a halfQUANTITY

0.94+

Prime VideoCOMMERCIAL_ITEM

0.94+

three more daysQUANTITY

0.94+

AppleORGANIZATION

0.93+

firstQUANTITY

0.92+

Chris Falloon, Dell Technologies | MWC Barcelona 2023


 

(bright gentle music) >> Announcer: TheCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (bright gentle music) >> Hey, everyone. Good to see you. Lisa Martin here with Dave Vellante. This is theCUBE's coverage, day one of MWC 23 from Barcelona, and we're having a great day so far. The theme of this conference, Dave, is velocity. I feel like we've been shot out of a cannon of CUBE content already on day one. We've been talking with... Today's ecosystem day. We've been talking about the ecosystem, the importance of open ecosystem, and why. And we're going to be unpacking that a little bit more next. >> You know, Lisa, what used to be Mobile World Congress and is now MWC, it was never really intended to be sort of a consumer show, but with the ascendancy of smartphones. It kind of... They sucked all the air out of the room. >> Lisa: Yeah. >> But really, we're seeing the enterprise come really into focus now as the telco stack disaggregates, and enterprise is complicated. >> Enterprise is complicated, telecom is complicated. We have a guest here to unpack that with us. Chris Falloon joins us the Senior Managing Director of telecom practice at Dell. Chris, welcome to theCUBE. >> Thanks very much for having me. >> So you've been in the telecom industry for a long time. Talk about some of the things that you've witnessed over the last couple of decades and really help us understand the complexity that is telecom. >> Yeah. Well, nothing, nothing more complex. Look, I got... I was privileged to start my career in telco 20 years ago in Canada working with other telecoms globally. And so I got a good picture of how they operate, what's important to them. But I was... It's come full circle for me. I got into IT and come all the way back now to helping telcos figure out how to operate. And so it's been a great journey. >> What are some of the- >> Dave: You kno- >> Oh sorry, Dave. >> Dave: Please, go ahead. >> I was just going to say unpack some of the complexity that we see now. Obviously, we think telecom, we... And you talked about the consumerization... We have this expectation that we can get anything on our mobile devices 24/7 from any part of the world, but there's a lot of complexity in the industry as it's evolving. What are some of the complexities and how is Dell helping address that? >> Look, I think the transformation from traditional monolithic architectures to cloud-based architectures is maybe the most... The single largest complex transformation any industry's done in the last 20 years. And it's not just a technology transformation, it's critically an operational transformation. And so I think that's really at the heart of it is we've seen a real shift this year. From conversations last year were around how this stuff gets turned on, "Can it work?", "Does it work?", to a conversation around "How does it work?", "How do I operationalize it?", "What are the implications to my teams?". And so we've got teams struggling with knowledge and competency gaps. We've got people figuring out how to get this stuff working at scale. >> Yeah, so I mean, you think about Telcos, you know, a lot of engineers, but a lot of the stuff is done kind of, I call it, in the basement. >> Yeah. >> Kind of hidden, right? And they make it work, right? And that transformation that you're talking about toward this more agile, open ecosystem, moving fast, cloud-native, new services coming in, new monetization models. That does require a different operating model. How similar, given your background in both, you know, IT and Telco, how similar is it to the transformation that occurred in IT in terms of the operation- Operating model, which some companies are still going through? >> Look, I think we're privileged actually to be able to do this 10 years after IT went through it. And there's a lot of patterns that are definitely the same. There's no question there's differences. The applications are far different, the timing and and issues in the RAN are far different, and the distributed size of these deployments is different. But the learnings around how to deploy cloud-native technology, how to organize around these platforms, and back to the operationalization, how to deploy them and operate them at scale, it took IT a decade to figure that out. And hopefully, with the learnings that we've got from that we can rush through it here in a few years or less. >> One of the other big differences, of course, is public policy and regulation, right? You don't really have that so much in the IT world. >> Chris: Right. >> Sometimes you have no regulation. >> Lisa: Yeah. >> You know, Google, Facebook, do whatever you want and we'll figure it out 20 years later. How much of a factor is that in terms of the complexity and are the new Greenfield players... Are they bound by similar sort of restrictions or can they move faster? What's the dynamic there? >> Look, there's no question that Greenfield is faster than Brownfield. Doesn't matter whether that's telco or IT. >> Dave: Yeah, yeah, sure. >> I think the... I think we're at a place in history where we're watching some of the early movers testing some of these theories. But I would tell you just... Again, just in the last few days leading up to this event talking with our customers and our partners, it's clear that even the first movers are struggling with the operational complexity of these platforms. And as a... You know, I think Dell's position in IT for the last decade as a platform systems integrator is very much going to continue to play out in the... In... We're being asked to play that role here as we try to bring some of the cloud-native operating competencies to the to the table. >> Hmm. >> And where are you having customer conversations these days? Is it at... Is it at the IT level? Is it higher sense tel... Networking is essential for any business in any organization to be able to deliver what the end user is demanding. >> Of course. Look, I... We've seen a real shift as I mentioned from the technology proof points to the operational proof points. How do we... How do we make sure that not only the business case is valid, but that we can maintain these new changes in these new operating models at scale at the right operating cost? And those are very healthy conversations because the success of this transformation to cloud architecture and edge computing and everything else is predicated on the idea that we can get cloud running at scale in the network. But I think the... It's very much use case driven and we're going to see... We're finally seeing some edge use cases that are driving consumption of those edge use cases, for sure. >> You know, I said earlier, I was in the keynotes and it took 45 minutes to get to the topic of security. >> Hmm. >> It was I think the third or fourth, or even fifth speaker. Finally, 45 minutes in, mention security. And I think that's because security's kind of a given in this world. It's a hardened environment. >> Chris: Yep. >> But that security model changes as well. The cloud brings a shared responsibility model. If it's multicloud, which it is, then it's shared responsibility across multiple clouds. >> Chris: Yeah. >> You know, you've got now developers who are being asked to be responsible for security. So that's another part of the complexity. We're kind of unpacking complexity here, aren't we? >> Chris: That's right. >> Just throwing more things in the cake. >> Look, I... Security is... It's an indication of this shift from what to how, very much includes security. And I think we're seeing security come to the forefront. Dell has a... We, you know, our philosophy is intrinsic security at all levels of the deployment. Everything from the infrastructure all the way through to the delivery and the management. >> Chris: And through the supply chain. >> And through supply chain. All the way through to the delivery of our technology integrated with other people's technology to ensure that the security's intrinsic in those deployments. And those integrations, as we're getting more and more involved in zero-touch deployments and helping carriers stand up these cloud platforms at scale, one of the ways to make sure that it's done repeatably and securely is to integrate those things at the factory or have your, you know, have your infrastructure partner take accountability for doing some of that pre-Day Zero. >> Well, the lab announcement that you guys have is... I've wrote about this. That pretty key, I think, because if you can certify in the lab... That's only other big differences. We talk a lot about the similarities between, you know, enterprise tech of the nineties and the disaggregation of the enterprise stack. But you didn't have so-called converged infrastructure back then. And even when you had converged infrastructure, it was like a skew that was bolted on. Now, you've got engineered systems. You're starting with engineered systems, but you've got to have a lab, so that the ecosystem and you've got self-certification. Those, I think, are key investments that... If you're thinking why Dell... A comp... You need a company like Dell who's got the resources to make those investments and actually kind of force that through. >> Chris: Yeah. >> Dave: Yeah. >> That's right. I think we're... You know, the value of the la... Again, the learnings from these last 10 years of integration is just... That understanding what the major blockers are should provide us with an accelerated roadmap for solving some of these problems as we encounter them over the next year or two in telecoms, no question. >> There's always regional differences in telecom, right? In the United States, you know, years ago, decades ago, sort of, you know, blew apart the telco industry. I would argue, many would I think as well, that that actually made the US less competitive. You got... Certainly have, you know, national interests around the world, across the European continent, certainly in APAC as well. How do you see that of, of... What are you hearing from those different regions? How do you see that affecting the adoption of some of the new technologies that you guys are promoting? >> Yeah, look, there's leaders... There's leaders and laggards in every market, I would say. I think we've been at this now, trying to stand up some of these cloud infrastructures and cloud RAN projects and virtual RAN projects. We've been at that now long enough to know that there's not so much regional patterns as there are patterns of companies that believe deeply that these architectures are going to lead to the right type of innovation and allow them to, you know, to build new markets and new sources of revenue. And those that are deeply committed to that structure are the ones willing to lean in and sort of blaze a path, right? So I would say that pattern is definitely emerged. I don't... We don't see... The larger the organization, certainly the larger the carrier, the deeper their resources on engineering and their ability to pivot and train those resources to become cloud-capable. That's a factor. We see a lot of conversations. Dell's got a very large Day 2 managed services business on the IT side. And, and as we pivot those Day 2 managed services, practices into managing cloud platforms and edge cloud platforms, I think it's the companies that don't have the depth or the skill or the experience are the ones that are that are asking us for the help there, for sure. >> How much has Dell been able to leverage? I mean, in the telecom systems business, I see, you know, a lot of new faces at Dell, a lot of folks like yourself that have telco experience. How about the services business? Were you able to sort of realign your existing folks or is it similar, you had to bring in people from the industry? >> It's both actually. So the... In services, it's critical because they... The org... The industry desperately needs systems integration across the board. And I think if we can convince the industry to treat telco clouds as a horizontal platform, then the idea of a platform integrator is a, you know, is definitely... It's valued. And in fact, it's required, I think, for the success of these projects. The services team at Dell is comprised of the folks who obviously run the pieces of the services business that are really no different in their construct. Building telco clouds is not that different from building IT clouds, so the elements are the same. Those teams are... Those teams persist. But definitely, the apps are different, and the support is different, and the requirements for uptime and availability are different. And so we've brought in services specialists to sort of... Just to create the glue between the customers and our existing sales depth. >> Do you have a favorite customer story that really articulates the value of what Dell is able to deliver in telecom with the inherent complexities that we talked about? >> Yeah. Look, it's not that well-known, but you know, the Day Zero Zero-Touch deployment factory integration capabilities that Dell has, we've been deploying that in IT for years. And, you know, we're... We've got a couple of projects globally now where we're not only designing and testing the stack in our labs and with our partners, but we're loading that stack in a known good architecture into third party and Dell hardware in a factory integration setting and shipping it to site with really nothing left to do but connect power and connectivity. And so from an engineering standpoint, the complexity of deploying cloud into thousands of data centers, we have examples of that that are being shipped continent by continent and and being deployed in a... In days and weeks as opposed to months. And so I think the... Taking some of the pain out of deployment and taking some of the... Building some repeatability into those deployments is a very big deal. Those are... Those are great, great projects. The next stage of that, of course, is helping them get to a place where the operations of those platforms is just as easy as the deployment. >> What's going to be different? Go to head... Look ahead to 2030. Let's go backwards from there. What's the world going to be like? What do people need to know in terms of what's coming? >> That's a great question. If... I think if I... If I could see that far ahead, I wouldn't probably be sitting here. (Chris and Lisa laughs) >> Dave: Yeah, but you have wisdom. >> Yeah. >> You know, the experience. >> If we play back... If we play back what's happened in the data centers, you know, in the IT data centers and you mentioned the, you know, the disaggregated systems shift that happened a decade ago. You know, those... Once the applications rearchitected to cloud-native architectures and could take advantage of the platform changes... Once the resiliency is built into the application instead of into the platforms, these things become more and more touchless. And I think the real double digit payback on this shift to cloud-native, we haven't begun to talk about it yet because we haven't... We're not anywhere close to the level of automation that can be achieved once we get to true cloud-native and microservices-based application architecture. That's a big shift and it's going to take a while. It took companies like SAP and others almost a decade to get that done. I think it'll happen faster here, but it's going to take us some time. >> Some of the things that you've heard... This is only day one of the conference, but anything that you've heard today or that you're looking forward to hearing in terms of how telecom is evolving and kind of playing catch-up? >> Yeah, look, I... We really believe this is the year that the edge use cases come alive. I think we're... We're... We've been... Almost every conversation I've been in, we've been asked, you know, sort of where's the... "Where are these use cases that are driving actual deployments and revenue?" and that sort of... And I think carriers are very much interested in trying to figure out customer edge, very much trying to figure out their own edge. Dell, of course, has both of those edges in mind. We've got a very large enterprise edge business unit, as well as our telco BU. And so, that's... I think this is the year we really start to figure out where those... We're seeing good deployments now in production at scale, and I think this is the year that starts to really take shape. >> Well, and it seems like... Just in hearing some of the carriers talk, they want to avoid what happened with the over-the-top vendors, okay. And they want to monetize the data that they have about the network. Looks like they want to charge for API access. >> Chris: Yep. >> 'Kay, developers are going to love that, right? Especially at the volumes that we're seeing here. But I feel like there's a, you know, potential blind spot of disruption coming, you know, like the over-the-top vendors, you know, that created all this innovation. I could see developers... Whether it's at the edge or new services, that customers really want to buy, they really value. Different than, "Hey, I own this data and you need it. I'm going to charge ya for it." versus "Hey, I'm going to create something that's really compelling." You know, an analog would be Netflix or other services that you get with maybe it's private wireless that can do some things. And, you know, that to me is the interesting opportunity here that I feel like is a blind spot for traditional telcos. 'Cause they've kind of got that mindset of, "Okay, you know, we're going to monetize. Let's do it." But they don't have that creativity mindset yet, you know? >> This industry has been given an opportunity to monetize almost every major transformation in technology, and many of them have slipped through our fingers, right? And this one is different because it's inextricably tied to the network. And I think the, you know... If... You mentioned mobile phones earlier I mean, I think what we saw in innovation in mobile was that we had no idea what was going to happen at the edge of that edge until someone created it. And so you have to have those in operating environments have to show up before the developers will spend the time to test them out and figure out what works. And so I... We haven't begun to believe, even understand I don't think, what's coming once we figure out a way to get ultra low latency, reliable connectivity at the edge. >> And I think developers have that open canvas and they're going to paint- >> That's right. >> What that edge looks like. And that's what... I mean, I kind of get concerned about... You know, to me the way to deal with developers, you give 'em a platform. Say, "Go create." >> Chris: That's right. >> As opposed to "Okay, pay to get access.", which you're going to have to, but I mean, there's other third parties that are going to fund that. I get it. >> Chris: Yeah. >> But there's a big open field that is going to get plowed here. >> Yes. >> And it's going to throw off some, you know, serious benefits to consumers. >> Yeah, and that's what we all want. We have that expectation that- >> Chris: Absolutely. >> It's going to... There's going to be a... With them... It's going to be, "What's in it for me?", right? >> "What's in it for me?" Yeah, that's right. >> Absolutely. >> Chris: That's right. >> Chris, I was going to say thank you so much. You want to add one more thing? >> Chris: No, I'm good. Thank you. >> I was just going to thank you so much for stopping by and talking to us about Dell's presence in telecom, how you're helping customers manage the complexity and the opportunities that really are there. We appreciate your insights and your time. >> Thanks so much, I really appreciate it. >> Dave: Thank you. >> Lisa: All right, our pleasure. >> Thanks, guys. >> For our guest and Dave Vellante, I'm Lisa Martin. You're watching "theCUBE" live in Barcelona at MWC 23. Dave and I will be right back with our next guest. (bright gentle music)

Published Date : Feb 27 2023

SUMMARY :

that drive human progress. We've been talking about the ecosystem, They sucked all the air out of the room. as the telco stack disaggregates, the Senior Managing Director Talk about some of the all the way back now What are some of the complexities "What are the implications to my teams?". but a lot of the stuff is done kind of, is it to the transformation But the learnings around how to deploy One of the other big and are the new Greenfield players... question that Greenfield it's clear that even the first movers Is it at the IT level? that not only the business case is valid, get to the topic of security. And I think that's because But that security So that's another part of the complexity. at all levels of the deployment. All the way through to the delivery so that the ecosystem and You know, the value of the la... of some of the new technologies that don't have the depth I mean, in the telecom systems business, the industry to treat telco and testing the stack What's the world going to be like? If I could see that far ahead, of the platform changes... Some of the things that you've heard... that the edge use cases come alive. Just in hearing some of the carriers talk, like the over-the-top vendors, you know, And I think the, you know... You know, to me the way that are going to fund that. that is going to get plowed here. And it's going to We have that expectation that- There's going to be a... "What's in it for me?" Chris, I was going to Chris: No, I'm good. and the opportunities our pleasure. Dave and I will be right

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ChrisPERSON

0.99+

TelcoORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Chris FalloonPERSON

0.99+

TelcosORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

GreenfieldORGANIZATION

0.99+

DellORGANIZATION

0.99+

CanadaLOCATION

0.99+

BrownfieldORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

LisaPERSON

0.99+

BarcelonaLOCATION

0.99+

FacebookORGANIZATION

0.99+

thirdQUANTITY

0.99+

45 minutesQUANTITY

0.99+

last yearDATE

0.99+

KayPERSON

0.99+

fourthQUANTITY

0.99+

NetflixORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

theCUBETITLE

0.99+

2030DATE

0.99+

todayDATE

0.99+

thousandsQUANTITY

0.99+

MWC 23EVENT

0.99+

Mobile World CongressEVENT

0.99+

bothQUANTITY

0.99+

United StatesLOCATION

0.98+

MWCEVENT

0.98+

20 years laterDATE

0.98+

telcoORGANIZATION

0.98+

decades agoDATE

0.98+

theCUBEORGANIZATION

0.98+

EuropeanLOCATION

0.98+

TodayDATE

0.97+

a decade agoDATE

0.97+

SAPORGANIZATION

0.95+

MWC 23LOCATION

0.95+

day oneQUANTITY

0.94+

last decadeDATE

0.94+

ninetiesDATE

0.94+

fifth speakerQUANTITY

0.93+

this yearDATE

0.93+

singleQUANTITY

0.92+

OneQUANTITY

0.92+

20 years agoDATE

0.91+

oneQUANTITY

0.91+

Keynote Analysis with Sarbjeet Johal & Chris Lewis | MWC Barcelona 2023


 

(upbeat instrumental music) >> TheCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (uplifting instrumental music) >> Hey everyone. Welcome to Barcelona, Spain. It's theCUBE Live at MWC '23. I'm Lisa Martin, Dave Vellante, our co-founder, our co-CEO of theCUBE, you know him, you love him. He's here as my co-host. Dave, we have a great couple of guests here to break down day one keynote. Lots of meat. I can't wait to be part of this conversation. Chris Lewis joins us, the founder and MD of Lewis Insight. And Sarbjeet Johal, one of you know him as well. He's a Cube contributor, cloud architect. Guys, welcome to the program. Thank you so much for joining Dave and me today. >> Lovely to be here. >> Thank you. >> Chris, I want to start with you. You have covered all aspects of global telecoms industries over 30 years working as an analyst. Talk about the evolution of the telecom industry that you've witnessed, and what were some of the things you heard in the keynote that excite you about the direction it's going? >> Well, as ever, MWC, there's no lack of glitz and glamour, but it's the underlying issues of the industry that are really at stake here. There's not a lot of new revenue coming into the telecom providers, but there's a lot of adjustment, readjustment of the underlying operational environment. And also, really importantly, what came out of the keynotes is the willingness and the necessity to really engage with the API community, with the developer community, people who traditionally, telecoms would never have even touched. So they're sorting out their own house, they're cleaning their own stables, getting the cost base down, but they're also now realizing they've got to engage with all the other parties. There's a lot of cloud providers here, there's a lot of other people from outside so they're realizing they cannot do it all themselves. It's quite a tough lesson for a very conservative, inward looking industry, right? So should we be spending all this money and all this glitz and glamour of MWC and all be here, or should would be out there really building for the future and making sure the services are right for yours and my needs in a business and personal lives? So a lot of new changes, a lot of realization of what's going on outside, but underlying it, we've just got to get this right this time. >> And it feels like that monetization is front and center. You mentioned developers, we've got to work with developers, but I'm hearing the latest keynote from the Ericsson CEOs, we're going to monetize through those APIs, we're going to charge the developers. I mean, first of all, Chris, am I getting that right? And Sarbjeet, as somebody who's close to the developer community, is that the right way to build bridges? But Chris, are we getting that right? >> Well, let's take the first steps first. So, Ericsson, of course, acquired Vonage, which is a massive API business so they want to make money. They expect to make money by bringing that into the mainstream telecom community. Now, whether it's the developers who pay for it, or let's face it, we are moving into a situation as the telco moves into a techco model where the techco means they're going to be selling bits of the technology to developer guys and to other application developers. So when he says he needs to charge other people for it, it's the way in which people reach in and will take going through those open APIs like the open gateway announced today, but also the way they'll reach in and take things like network slicing. So we're opening up the telecom community, the treasure chest, if you like, where developers' applications and other third parties can come in and take those chunks of technology and build them into their services. This is a complete change from the old telecom industry where everybody used to come and you say, "all right, this is my product, you've got to buy it and you're going to pay me a lot of money for it." So we are looking at a more flexible environment where the other parties can take those chunks. And we know we want collectivity built into our financial applications, into our government applications, everything, into the future of the metaverse, whatever it may be. But it requires that change in attitude of the telcos. And they do need more money 'cause they've said, the baseline of revenue is pretty static, there's not a lot of growth in there so they're looking for new revenues. It's in a B2B2X time model. And it's probably the middle man's going to pay for it rather than the customer. >> But the techco model, Sarbjeet, it looks like the telcos are getting their money on their way in. The techco company model's to get them on their way out like the app store. Go build something of value, build some kind of app or data product, and then when it takes off, we'll take a piece of the action. What are your thoughts from a developer perspective about how the telcos are approaching it? >> Yeah, I think before we came here, like I said, I did some tweets on this, that we talk about all kind of developers, like there's game developers and front end, back end, and they're all talking about like what they're building on top of cloud, but nowhere you will hear the term "telco developer," there's no API from telcos given to the developers to build IoT solutions on top of it because telco as an IoT, I think is a good sort of hand in hand there. And edge computing as well. The glimmer of hope, if you will, for telcos is the edge computing, I believe. And even in edge, I predicted, I said that many times that cloud players will dominate that market with the private 5G. You know that story, right? >> We're going to talk about that. (laughs) >> The key is this, that if you see in general where the population lives, in metros, right? That's where the world population is like flocking to and we have cloud providers covering the local zones with local like heavy duty presence from the big cloud providers and then these telcos are getting sidetracked by that. Even the V2X in cars moving the autonomous cars and all that, even in that space, telcos are getting sidetracked in many ways. What telcos have to do is to join the forces, build some standards, if not standards, some consortium sort of. They're trying to do that with the open gateway here, they have only eight APIs. And it's 2023, eight APIs is nothing, right? (laughs) So they should have started this 10 years back, I think. So, yeah, I think to entice the developers, developers need the employability, we need to train them, we need to show them some light that hey, you can build a lot on top of it. If you tell developers they can develop two things or five things, nobody will come. >> So, Chris, the cloud will dominate the edge. So A, do you buy it? B, the telcos obviously are acting like that might happen. >> Do you know I love people when they've got their heads in the clouds. (all laugh) And you're right in so many ways, but if you flip it around and think about how the customers think about this, business customers and consumers, they don't care about all this background shenanigans going on, do they? >> Lisa: No. >> So I think one of the problems we have is that this is a new territory and whether you call it the edge or whatever you call it, what we need there is we need connectivity, we need security, we need storage, we need compute, we need analytics, and we need applications. And are any of those more important than the others? It's the collective that actually drives the real value there. So we need all those things together. And of course, the people who represented at this show, whether it's the cloud guys, the telcos, the Nokia, the Ericssons of this world, they all own little bits of that. So that's why they're all talking partnerships because they need the combination, they cannot do it on their own. The cloud guys can't do it on their own. >> Well, the cloud guys own all of those things that you just talked about though. (all laugh) >> Well, they don't own the last bit of connectivity, do they? They don't own the access. >> Right, exactly. That's the one thing they don't own. So, okay, we're back to pipes, right? We're back to charging for connectivity- >> Pipes are very valuable things, right? >> Yeah, for sure. >> Never underestimate pipes. I don't know about where you live, plumbers make a lot of money where I live- >> I don't underestimate them but I'm saying can the telcos charge for more than that or are the cloud guys going to mop up the storage, the analytics, the compute, and the apps? >> They may mop it up, but I think what the telcos are doing and we've seen a lot of it here already, is they are working with all those major cloud guys already. So is it an unequal relationship? The cloud guys are global, massive global scale, the telcos are fundamentally national operators. >> Yep. >> Some have a little bit of regional, nobody has global scale. So who stitches it all together? >> Dave: Keep your friends close and your enemies closer. >> Absolutely. >> I know that saying never gets old. It's true. Well, Sarbjeet, one of the things that you tweeted about, I didn't get to see the keynote but I was looking at your tweets. 46% of telcos think they won't make it to the next decade. That's a big number. Did that surprise you? >> No, actually it didn't surprise me because the competition is like closing in on them and the telcos are competing with telcos as well and the telcos are competing with cloud providers on the other side, right? So the smaller ones are getting squeezed. It's the bigger players, they can hook up the newer platforms, I think they will survive. It's like that part is like any other industry, if you will. But the key is here, I think why the pain points were sort of described on the main stage is that they're crying out loud to tell the big tech cloud providers that "hey, you pay your fair share," like we talked, right? You are not paying, you're generating so much content which reverses our networks and you are not paying for it. So they are not able to recoup the cost of laying down their networks. By the way, one thing actually I want to mention is that they said the cloud needs earth. The cloud and earth, it's like there's no physical need to cloud, you know that, right? So like, I think it's the other way around. I think the earth needs the cloud because I'm a cloud guy. (Sarbjeet and Lisa laugh) >> I think you need each other, right? >> I think so too. >> They need each other. When they said cloud needs earth, right? I think they're still in denial that the cloud is a big force. They have to partner. When you can't compete with somebody, what do you do? Partner with them. >> Chris, this is your world. Are they in denial? >> No, I think they're waking up to the pragmatism of the situation. >> Yeah. >> They're building... As we said, most of the telcos, you find have relationships with the cloud guys, I think you're right about the industry. I mean, do you think what's happened since US was '96, the big telecom act when we started breaking up all the big telcos and we had lots of competition came in, we're seeing the signs that we might start to aggregate them back up together again. So it's been an interesting experiment for like 30 years, hasn't it too? >> It made the US less competitive, I would argue, but carry on. >> Yes, I think it's true. And Europe is maybe too competitive and therefore, it's not driven the investment needed. And by the way, it's not just mobile, it's fixed as well. You saw the Orange CEO was talking about the her investment and the massive fiber investments way ahead of many other countries, way ahead of the UK or Germany. We need that fiber in the ground to carry all your cloud traffic to do this. So there is a scale issue, there is a competition issue, but the telcos are very much aware of it. They need the cloud, by the way, to improve their operational environments as well, to change that whole old IT environment to deliver you and I better service. So no, it absolutely is changing. And they're getting scale, but they're fundamentally offering the basic product, you call it pipes, I'll just say they're offering broadband to you and I and the business community. But they're stepping on dangerous ground, I think, when saying they want to charge the over the top guys for all the traffic they use. Those over the top guys now build a lot of the global networks, the backbone submarine network. They're putting a lot of money into it, and by giving us endless data for our individual usage, that cat is out the bag, I think to a large extent. >> Yeah. And Orange CEO basically said that, that they're not paying their fair share. I'm for net neutrality but the governments are going to have to fund this unless you let us charge the OTT. >> Well, I mean, we could of course renationalize. Where would that take us? (Dave laughs) That would make MWC very interesting next year, wouldn't it? To renationalize it. So, no, I think you've got to be careful what we wish for here. Creating the absolute clear product that is required to underpin all of these activities, whether it's IoT or whether it's cloud delivery or whether it's just our own communication stuff, delivering that absolutely ubiquitously high quality for business and for consumer is what we have to do. And telcos have been too conservative in the past. >> I think they need to get together and create standards around... I think they have a big opportunity. We know that the clouds are being built in silos, right? So there's Azure stack, there's AWS and there's Google. And those are three main ones and a few others, right? So that we are fighting... On the cloud side, what we are fighting is the multicloud. How do we consume that multicloud without having standards? So if these people get together and create some standards around IoT and edge computing sort of area, people will flock to them to say, "we will use you guys, your API, we don't care behind the scenes if you use AWS or Google Cloud or Azure, we will come to you." So market, actually is looking for that solution. I think it's an opportunity for these guys, for telcos. But the problem with telcos is they're nationalized, as you said Chris versus the cloud guys are still kind of national in a way, but they're global corporations. And some of the telcos are global corporations as well, BT covers so many countries and TD covers so many... DT is in US as well, so they're all over the place. >> But you know what's interesting is that the TM forum, which is one of the industry associations, they've had an open digital architecture framework for quite some years now. Google had joined that some years ago, Azure in there, AWS just joined it a couple of weeks ago. So when people said this morning, why isn't AWS on the keynote? They don't like sharing the limelight, do they? But they're getting very much in bed with the telco. So I think you'll see the marriage. And in fact, there's a really interesting statement, if you look at the IoT you mentioned, Bosch and Nokia have been working together 'cause they said, the problem we've got, you've got a connectivity network on one hand, you've got the sensor network on the other hand, you're trying to merge them together, it's a nightmare. So we are finally seeing those sort of groups talking to each other. So I think the standards are coming, the cooperation is coming, partnerships are coming, but it means that the telco can't dominate the sector like it used to. It's got to play ball with everybody else. >> I think they have to work with the regulators as well to loosen the regulation. Or you said before we started this segment, you used Chris, the analogy of sports, right? In sports, when you're playing fiercely, you commit the fouls and then ask for ref to blow the whistle. You're now looking at the ref all the time. The telcos are looking at the ref all the time. >> Dave: Yeah, can I do this? Can I do that? Is this a fair move? >> They should be looking for the space in front of the opposition. >> Yeah, they should be just on attack mode and commit these fouls, if you will, and then ask for forgiveness then- >> What do you make of that AWS not you there- >> Well, Chris just made a great point that they don't like to share the limelight 'cause I thought it was very obvious that we had Google Cloud, we had Microsoft there on day one of this 80,000 person event. A lot of people back from COVID and they weren't there. But Chris, you brought up a great point that kind of made me think, maybe you're right. Maybe they're in the afternoon keynote, they want their own time- >> You think GSMA invited them? >> I imagine so. You'd have to ask GSMA. >> I would think so. >> Get Max on here and ask that. >> I'm going to ask them, I will. >> But no, and they don't like it because I think the misconception, by the way, is that everyone says, "oh, it's AWS, it's Google Cloud and it's Azure." They're not all the same business by any stretch of the imagination. AWS has been doing loads of great work, they've been launching private network stuff over the last couple of weeks. Really interesting. Google's been playing catch up. We know that they came in readily late to the market. And Azure, they've all got slightly different angles on it. So perhaps it just wasn't right for AWS and the way they wanted to pitch things so they don't have to be there, do they? >> That's a good point. >> But the industry needs them there, that's the number one cloud. >> Dave, they're there working with the industry. >> Yeah, of course. >> They don't have to be on the keynote stage. And in fact, you think about this show and you mentioned the 80,000 people, the activity going on around in all these massive areas they're in, it's fantastic. That's where the business is done. The business isn't done up on the keynote stage. >> That's why there's the glitz and the glamour, Chris. (all laugh) >> Yeah. It's not glitz, it's espresso. It's not glamour anymore, it's just espresso. >> We need the espresso. >> Yeah. >> I think another thing is that it's interesting how an average European sees the tech market and an average North American, especially you from US, you have to see the market. Here, people are more like process oriented and they want the rules of the road already established before they can take a step- >> Chris: That's because it's your pension in the North American- >> Exactly. So unions are there and the more employee rights and everything, you can't fire people easily here or in Germany or most of the Europe is like that with the exception of UK. >> Well, but it's like I said, that Silicone Valley gets their money on the way out, you know? And that's how they do it, that's how they think it. And they don't... They ask for forgiveness. I think the east coast is more close to Europe, but in the EU, highly regulated, really focused on lifetime employment, things like that. >> But Dave, the issue is the telecom industry is brilliant, right? We keep paying every month whatever we do with it. >> It's a great business, to your point- >> It's a brilliant business model. >> Dave: It's fantastic. >> So it's about then getting the structure right behind it. And you know, we've seen a lot of stratification where people are selling off towers, Orange haven't sold their towers off, they made a big point about that. Others are selling their towers off. Some people are selling off their underlying network, Telecom Italia talking about KKR buying the whole underlying network. It's like what do you want to be in control of? It's a great business. >> But that's why they complain so much is that they're having to sell their assets because of the onerous CapEx requirements, right? >> Yeah, they've had it good, right? And dare I say, perhaps they've not planned well enough for the future. >> They're trying to protect their past from the future. I mean, that's... >> Actually, look at the... Every "n" number of years, there's a new faster network. They have to dig the ground, they have to put the fiber, they have to put this. Now, there are so many booths showing 6G now, we are not even done with 5G yet, now the next 6G you know, like then- >> 10G's coming- >> 10G, that's a different market. (Dave laughs) >> Actually, they're bogged down by the innovation, I think. >> And the generational thing is really important because we're planning for 6G in all sorts of good ways but actually what we use in our daily lives, we've gone through the barrier, we've got enough to do that. So 4G gives us enough, the fiber in the ground or even old copper gives us enough. So the question is, what are we willing to pay for more than that basic connectivity? And the answer to your point, Dave, is not a lot, right? So therefore, that's why the emphasis is on the business market on that B2B and B2B2X. >> But we'll pay for Netflix all day long. >> All day long. (all laugh) >> The one thing Chris, I don't know, I want to know your viewpoints and we have talked in the past as well, there's absence of think tanks in tech, right? So we have think tanks on the foreign policy and economic policy in every country, and we have global think tanks, but tech is becoming a huge part of the economy, global economy as well as national economies, right? But we don't have think tanks on like policy around tech. For example, this 4G is good for a lot of use cases. Then 5G is good for smaller number of use cases. And then 6G will be like, fewer people need 6G for example. Why can't we have sort of those kind of entities dictating those kind of like, okay, is this a wiser way to go about it? >> Lina Khan wants to. She wants to break up big tech- >> You're too young to remember but the IT used to have a show every four years in Geneva, there were standards around there. So I think there are bodies. I think the balance of power obviously has gone from the telecom to the west coast to the IT markets. And it's changing the balance about, it moves more quickly, right? Telecoms has never moved quickly enough. I think there is hope by the way, that telecoms now that we are moving to more softwarized environment, and God forbid, we're moving into CICD in the telecom world, right? Which is a massive change, but I think there's hopes for it to change. The mentality is changing, the culture is changing, but to change those old structured organizations from the British telecom or the France telecom into the modern world, it's a hell of a long journey. It's not an overnight journey at all. >> Well, of course the theme of the event is velocity. >> Yeah, I know that. >> And it's been interesting sitting here with the three of you talking about from a historic perspective, how slow and molasseslike telecom has been. They don't have a choice anymore. As consumers, we have this expectation we're going to get anything we want on our mobile device, 24 by seven. We don't care about how the sausage is made, we just want the end result. So do you really think, and we're only on day one guys... And Chris we'll start with you. Is the theme really velocity? Is it disruption? Are they able to move faster? >> Actually, I think invisibility is the real answer. (Lisa laughs) We want communication to be invisible, right? >> Absolutely. >> We want it to work. When we switch our phones on, we want it to work and we want to... Well, they're not even phones anymore, are they really? I mean that's the... So no, velocity, we've got... There is momentum in the industry, there's no doubt about that. The cloud guys coming in, making telecoms think about the way they run their own business, where they meet, that collision point on the edges you talked about Sarbjeet. We do have velocity, we've got momentum. There's so many interested parties. The way I think of this is that the telecom industry used to be inward looking, just design its own technology and then expect everyone else to dance to our tune. We're now flipping that 180 degrees and we are now having to work with all the different outside forces shaping us. Whether it's devices, whether it's smart cities, governments, the hosting guys, the Equinoxis, all these things. So everyone wants a piece of this telecom world so we've got to make ourselves more open. That's why you get in a more open environment. >> But you did... I just want to bring back a point you made during COVID, which was when everybody switched to work from home, started using their landlines again, telcos had to respond and nothing broke. I mean, it was pretty amazing. >> Chris: It did a good job. >> It was kind of invisible. So, props to the telcos for making that happen. >> They did a great job. >> So it really did. Now, okay, what have you done for me lately? So now they've got to deal with the future and they're talking monetization. But to me, monetization is all about data and not necessarily just the network data. Yeah, they can sell that 'cause they own that but what kind of incremental value are they going to create for the consumers that... >> Yeah, actually that's a problem. I think the problem is that they have been strangled by the regulation for a long time and they cannot look at their data. It's a lot more similar to the FinTech world, right? I used to work at Visa. And then Visa, we did trillion dollars in transactions in '96. Like we moved so much money around, but we couldn't look at these things, right? So yeah, I think regulation is a problem that holds you back, it's the antithesis of velocity, it slows you down. >> But data means everything, doesn't it? I mean, it means everything and nothing. So I think the challenge here is what data do the telcos have that is useful, valuable to me, right? So in the home environment, the fact that my broadband provider says, oh, by the way, you've got 20 gadgets on that network and 20 on that one... That's great, tell me what's on there. I probably don't know what's taking all my valuable bandwidth up. So I think there's security wrapped around that, telling me the way I'm using it if I'm getting the best out of my service. >> You pay for that? >> No, I'm saying they don't do it yet. I think- >> But would you pay for that? >> I think I would, yeah. >> Would you pay a lot for that? I would expect it to be there as part of my dashboard for my monthly fee. They're already charging me enough. >> Well, that's fine, but you pay a lot more in North America than I do in Europe, right? >> Yeah, no, that's true. >> You're really overpaying over there, right? >> Way overpaying. >> So, actually everybody's looking at these devices, right? So this is a radio operated device basically, right? And then why couldn't they benefit from this? This is like we need to like double click on this like 10 times to find out why telcos failed to leverage this device, right? But I think the problem is their reliance on regulations and their being close to the national sort of governments and local bodies and authorities, right? And in some countries, these telcos are totally controlled in very authoritarian ways, right? It's not like open, like in the west, most of the west. Like the world is bigger than five, six countries and we know that, right? But we end up talking about the major economies most of the time. >> Dave: Always. >> Chris: We have a topic we want to hit on. >> We do have a topic. Our last topic, Chris, it's for you. You guys have done an amazing job for the last 25 minutes talking about the industry, where it's going, the evolution. But Chris, you're registered blind throughout your career. You're a leading user of assertive technologies. Talk about diversity, equity, inclusion, accessibility, some of the things you're doing there. >> Well, we should have had 25 minutes on that and five minutes on- (all laugh) >> Lisa: You'll have to come back. >> Really interesting. So I've been looking at it. You're quite right, I've been using accessible technology on my iPhone and on my laptop for 10, 20 years now. It's amazing. And what I'm trying to get across to the industry is to think about inclusive design from day one. When you're designing an app or you're designing a service, make sure you... And telecom's a great example. In fact, there's quite a lot of sign language around here this week. If you look at all the events written, good to see that coming in. Obviously, no use to me whatsoever, but good for the hearing impaired, which by the way is the biggest category of disability in the world. Biggest chunk is hearing impaired, then vision impaired, and then cognitive and then physical. And therefore, whenever you're designing any service, my call to arms to people is think about how that's going to be used and how a blind person might use it or how a deaf person or someone with physical issues or any cognitive issues might use it. And a great example, the GSMA and I have been talking about the app they use for getting into the venue here. I downloaded it. I got the app downloaded and I'm calling my guys going, where's my badge? And he said, "it's top left." And because I work with a screen reader, they hadn't tagged it properly so I couldn't actually open my badge on my own. Now, they changed it overnight so it worked this morning, which is fantastic work by Trevor and the team. But it's those things that if you don't build it in from scratch, you really frustrate a whole group of users. And if you think about it, people with disabilities are excluded from so many services if they can't see the screen or they can't hear it. But it's also the elderly community who don't find it easy to get access to things. Smart speakers have been a real blessing in that respect 'cause you can now talk to that thing and it starts talking back to you. And then there's the people who can't afford it so we need to come down market. This event is about launching these thousand dollars plus devices. Come on, we need below a hundred dollars devices to get to the real mass market and get the next billion people in and then to educate people how to use it. And I think to go back to your previous point, I think governments are starting to realize how important this is about building the community within the countries. You've got some massive projects like NEOM in Saudi Arabia. If you have a look at that, if you get a chance, a fantastic development in the desert where they're building a new city from scratch and they're building it so anyone and everyone can get access to it. So in the past, it was all done very much by individual disability. So I used to use some very expensive, clunky blind tech stuff. I'm now using mostly mainstream. But my call to answer to say is, make sure when you develop an app, it's accessible, anyone can use it, you can talk to it, you can get whatever access you need and it will make all of our lives better. So as we age and hearing starts to go and sight starts to go and dexterity starts to go, then those things become very useful for everybody. >> That's a great point and what a great champion they have in you. Chris, Sarbjeet, Dave, thank you so much for kicking things off, analyzing day one keynote, the ecosystem day, talking about what velocity actually means, where we really are. We're going to have to have you guys back 'cause as you know, we can keep going, but we are out of time. But thank you. >> Pleasure. >> We had a very spirited, lively conversation. >> Thanks, Dave. >> Thank you very much. >> For our guests and for Dave Vellante, I'm Lisa Martin, you're watching theCUBE live in Barcelona, Spain at MWC '23. We'll be back after a short break. See you soon. (uplifting instrumental music)

Published Date : Feb 27 2023

SUMMARY :

that drive human progress. the founder and MD of Lewis Insight. of the telecom industry and making sure the services are right is that the right way to build bridges? the treasure chest, if you like, But the techco model, Sarbjeet, is the edge computing, I believe. We're going to talk from the big cloud providers So, Chris, the cloud heads in the clouds. And of course, the people Well, the cloud guys They don't own the access. That's the one thing they don't own. I don't know about where you live, the telcos are fundamentally Some have a little bit of regional, Dave: Keep your friends Well, Sarbjeet, one of the and the telcos are competing that the cloud is a big force. Are they in denial? to the pragmatism of the situation. the big telecom act It made the US less We need that fiber in the ground but the governments are conservative in the past. We know that the clouds are but it means that the telco at the ref all the time. in front of the opposition. that we had Google Cloud, You'd have to ask GSMA. and the way they wanted to pitch things But the industry needs them there, Dave, they're there be on the keynote stage. glitz and the glamour, Chris. It's not glitz, it's espresso. sees the tech market and the more employee but in the EU, highly regulated, the issue is the telecom buying the whole underlying network. And dare I say, I mean, that's... now the next 6G you know, like then- 10G, that's a different market. down by the innovation, I think. And the answer to your point, (all laugh) on the foreign policy Lina Khan wants to. And it's changing the balance about, Well, of course the theme Is the theme really velocity? invisibility is the real answer. is that the telecom industry But you did... So, props to the telcos and not necessarily just the network data. it's the antithesis of So in the home environment, No, I'm saying they don't do it yet. Would you pay a lot for that? most of the time. topic we want to hit on. some of the things you're doing there. So in the past, We're going to have to have you guys back We had a very spirited, See you soon.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
NokiaORGANIZATION

0.99+

ChrisPERSON

0.99+

Lisa MartinPERSON

0.99+

Chris LewisPERSON

0.99+

DavePERSON

0.99+

EuropeLOCATION

0.99+

Dave VellantePERSON

0.99+

Lina KhanPERSON

0.99+

LisaPERSON

0.99+

BoschORGANIZATION

0.99+

GermanyLOCATION

0.99+

EricssonORGANIZATION

0.99+

Telecom ItaliaORGANIZATION

0.99+

SarbjeetPERSON

0.99+

AWSORGANIZATION

0.99+

KKRORGANIZATION

0.99+

20 gadgetsQUANTITY

0.99+

GenevaLOCATION

0.99+

25 minutesQUANTITY

0.99+

10 timesQUANTITY

0.99+

Saudi ArabiaLOCATION

0.99+

USLOCATION

0.99+

GoogleORGANIZATION

0.99+

Sarbjeet JohalPERSON

0.99+

TrevorPERSON

0.99+

OrangeORGANIZATION

0.99+

180 degreesQUANTITY

0.99+

30 yearsQUANTITY

0.99+

five minutesQUANTITY

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

EricssonsORGANIZATION

0.99+

North AmericaLOCATION

0.99+

telcoORGANIZATION

0.99+

20QUANTITY

0.99+

46%QUANTITY

0.99+

threeQUANTITY

0.99+

Dell TechnologiesORGANIZATION

0.99+

next yearDATE

0.99+

Barcelona, SpainLOCATION

0.99+

'96DATE

0.99+

GSMAORGANIZATION

0.99+

telcosORGANIZATION

0.99+

VisaORGANIZATION

0.99+

trillion dollarsQUANTITY

0.99+

thousand dollarsQUANTITY

0.99+

Breaking Analysis: MWC 2023 goes beyond consumer & deep into enterprise tech


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> While never really meant to be a consumer tech event, the rapid ascendancy of smartphones sucked much of the air out of Mobile World Congress over the years, now MWC. And while the device manufacturers continue to have a major presence at the show, the maturity of intelligent devices, longer life cycles, and the disaggregation of the network stack, have put enterprise technologies front and center in the telco business. Semiconductor manufacturers, network equipment players, infrastructure companies, cloud vendors, software providers, and a spate of startups are eyeing the trillion dollar plus communications industry as one of the next big things to watch this decade. Hello, and welcome to this week's Wikibon CUBE Insights, powered by ETR. In this Breaking Analysis, we bring you part two of our ongoing coverage of MWC '23, with some new data on enterprise players specifically in large telco environments, a brief glimpse at some of the pre-announcement news and corresponding themes ahead of MWC, and some of the key announcement areas we'll be watching at the show on theCUBE. Now, last week we shared some ETR data that showed how traditional enterprise tech players were performing, specifically within the telecoms vertical. Here's a new look at that data from ETR, which isolates the same companies, but cuts the data for what ETR calls large telco. The N in this cut is 196, down from 288 last week when we included all company sizes in the dataset. Now remember the two dimensions here, on the y-axis is net score, or spending momentum, and on the x-axis is pervasiveness in the data set. The table insert in the upper left informs how the dots and companies are plotted, and that red dotted line, the horizontal line at 40%, that indicates a highly elevated net score. Now while the data are not dramatically different in terms of relative positioning, there are a couple of changes at the margin. So just going down the list and focusing on net score. Azure is comparable, but slightly lower in this sector in the large telco than it was overall. Google Cloud comes in at number two, and basically swapped places with AWS, which drops slightly in the large telco relative to overall telco. Snowflake is also slightly down by one percentage point, but maintains its position. Remember Snowflake, overall, its net score is much, much higher when measuring across all verticals. Snowflake comes down in telco, and relative to overall, a little bit down in large telco, but it's making some moves to attack this market that we'll talk about in a moment. Next are Red Hat OpenStack and Databricks. About the same in large tech telco as they were an overall telco. Then there's Dell next that has a big presence at MWC and is getting serious about driving 16G adoption, and new servers, and edge servers, and other partnerships. Cisco and Red Hat OpenShift basically swapped spots when moving from all telco to large telco, as Cisco drops and Red Hat bumps up a bit. And VMware dropped about four percentage points in large telco. Accenture moved up dramatically, about nine percentage points in big telco, large telco relative to all telco. HPE dropped a couple of percentage points. Oracle stayed about the same. And IBM surprisingly dropped by about five points. So look, I understand not a ton of change in terms of spending momentum in the large sector versus telco overall, but some deltas. The bottom line for enterprise players is one, they're just getting started in this new disruption journey that they're on as the stack disaggregates. Two, all these players have experience in delivering horizontal solutions, but now working with partners and identifying big problems to be solved, and three, many of these companies are generally not the fastest moving firms relative to smaller disruptive disruptors. Now, cloud has been an exception in fairness. But the good news for the legacy infrastructure and IT companies is that the telco transformation and the 5G buildout is going to take years. So it's moving at a pace that is very favorable to many of these companies. Okay, so looking at just some of the pre-announcement highlights that have hit the wire this week, I want to give you a glimpse of the diversity of innovation that is occurring in the telecommunication space. You got semiconductor manufacturers, device makers, network equipment players, carriers, cloud vendors, enterprise tech companies, software companies, startups. Now we've included, you'll see in this list, we've included OpeRAN, that logo, because there's so much buzz around the topic and we're going to come back to that. But suffice it to say, there's no way we can cover all the announcements from the 2000 plus exhibitors at the show. So we're going to cherry pick here and make a few call outs. Hewlett Packard Enterprise announced an acquisition of an Italian private cellular network company called AthoNet. Zeus Kerravala wrote about it on SiliconANGLE if you want more details. Now interestingly, HPE has a partnership with Solana, which also does private 5G. But according to Zeus, Solona is more of an out-of-the-box solution, whereas AthoNet is designed for the core and requires more integration. And as you'll see in a moment, there's going to be a lot of talk at the show about private network. There's going to be a lot of news there from other competitors, and we're going to be watching that closely. And while many are concerned about the P5G, private 5G, encroaching on wifi, Kerravala doesn't see it that way. Rather, he feels that these private networks are really designed for more industrial, and you know mission critical environments, like factories, and warehouses that are run by robots, et cetera. 'Cause these can justify the increased expense of private networks. Whereas wifi remains a very low cost and flexible option for, you know, whatever offices and homes. Now, over to Dell. Dell announced its intent to go hard after opening up the telco network with the announcement that in the second half of this year it's going to begin shipping its infrastructure blocks for Red Hat. Remember it's like kind of the converged infrastructure for telco with a more open ecosystem and sort of more flexible, you know, more mature engineered system. Dell has also announced a range of PowerEdge servers for a variety of use cases. A big wide line bringing forth its 16G portfolio and aiming squarely at the telco space. Dell also announced, here we go, a private wireless offering with airspan, and Expedo, and a solution with AthoNet, the company HPE announced it was purchasing. So I guess Dell and HPE are now partnering up in the private wireless space, and yes, hell is freezing over folks. We'll see where that relationship goes in the mid- to long-term. Dell also announced new lab and certification capabilities, which we said last week was going to be critical for the further adoption of open ecosystem technology. So props to Dell for, you know, putting real emphasis and investment in that. AWS also made a number of announcements in this space including private wireless solutions and associated managed services. AWS named Deutsche Telekom, Orange, T-Mobile, Telefonica, and some others as partners. And AWS announced the stepped up partnership, specifically with T-Mobile, to bring AWS services to T-Mobile's network portfolio. Snowflake, back to Snowflake, announced its telecom data cloud. Remember we showed the data earlier, it's Snowflake not as strong in the telco sector, but they're continuing to move toward this go-to market alignment within key industries, realigning their go-to market by vertical. It also announced that AT&T, and a number of other partners, are collaborating to break down data silos specifically in telco. Look, essentially, this is Snowflake taking its core value prop to the telco vertical and forming key partnerships that resonate in the space. So think simplification, breaking down silos, data sharing, eventually data monetization. Samsung previewed its future capability to allow smartphones to access satellite services, something Apple has previously done. AMD, Intel, Marvell, Qualcomm, are all in the act, all the semiconductor players. Qualcomm for example, announced along with Telefonica, and Erickson, a 5G millimeter network that will be showcased in Spain at the event this coming week using Qualcomm Snapdragon chipset platform, based on none other than Arm technology. Of course, Arm we said is going to dominate the edge, and is is clearly doing so. It's got the volume advantage over, you know, traditional Intel, you know, X86 architectures. And it's no surprise that Microsoft is touting its open AI relationship. You're going to hear a lot of AI talk at this conference as is AI is now, you know, is the now topic. All right, we could go on and on and on. There's just so much going on at Mobile World Congress or MWC, that we just wanted to give you a glimpse of some of the highlights that we've been watching. Which brings us to the key topics and issues that we'll be exploring at MWC next week. We touched on some of this last week. A big topic of conversation will of course be, you know, 5G. Is it ever going to become real? Is it, is anybody ever going to make money at 5G? There's so much excitement around and anticipation around 5G. It has not lived up to the hype, but that's because the rollout, as we've previous reported, is going to take years. And part of that rollout is going to rely on the disaggregation of the hardened telco stack, as we reported last week and in previous Breaking Analysis episodes. OpenRAN is a big component of that evolution. You know, as our RAN intelligent controllers, RICs, which essentially the brain of OpenRAN, if you will. Now as we build out 5G networks at massive scale and accommodate unprecedented volumes of data and apply compute-hungry AI to all this data, the issue of energy efficiency is going to be front and center. It has to be. Not only is it a, you know, hot political issue, the reality is that improving power efficiency is compulsory or the whole vision of telco's future is going to come crashing down. So chip manufacturers, equipment makers, cloud providers, everybody is going to be doubling down and clicking on this topic. Let's talk about AI. AI as we said, it is the hot topic right now, but it is happening not only in consumer, with things like ChatGPT. And think about the theme of this Breaking Analysis in the enterprise, AI in the enterprise cannot be ChatGPT. It cannot be error prone the way ChatGPT is. It has to be clean, reliable, governed, accurate. It's got to be ethical. It's got to be trusted. Okay, we're going to have Zeus Kerravala on the show next week and definitely want to get his take on private networks and how they're going to impact wifi. You know, will private networks cannibalize wifi? If not, why not? He wrote about this again on SiliconANGLE if you want more details, and we're going to unpack that on theCUBE this week. And finally, as always we'll be following the data flows to understand where and how telcos, cloud players, startups, software companies, disruptors, legacy companies, end customers, how are they going to make money from new data opportunities? 'Cause we often say in theCUBE, don't ever bet against data. All right, that's a wrap for today. Remember theCUBE is going to be on location at MWC 2023 next week. We got a great set. We're in the walkway in between halls four and five, right in Congress Square, stand CS-60. Look for us, we got a full schedule. If you got a great story or you have news, stop by. We're going to try to get you on the program. I'll be there with Lisa Martin, co-hosting, David Nicholson as well, and the entire CUBE crew, so don't forget to come by and see us. I want to thank Alex Myerson, who's on production and manages the podcast, and Ken Schiffman, as well, in our Boston studio. Kristen Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at SiliconANGLE.com. He does some great editing. Thank you. All right, remember all these episodes they are available as podcasts wherever you listen. All you got to do is search Breaking Analysis podcasts. I publish each week on Wikibon.com and SiliconANGLE.com. All the video content is available on demand at theCUBE.net, or you can email me directly if you want to get in touch David.Vellante@SiliconANGLE.com or DM me @DVellante, or comment on our LinkedIn posts. And please do check out ETR.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. We'll see you next week at Mobile World Congress '23, MWC '23, or next time on Breaking Analysis. (bright music)

Published Date : Feb 25 2023

SUMMARY :

bringing you data-driven in the mid- to long-term.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
David NicholsonPERSON

0.99+

Lisa MartinPERSON

0.99+

Alex MyersonPERSON

0.99+

OrangeORGANIZATION

0.99+

QualcommORGANIZATION

0.99+

HPEORGANIZATION

0.99+

TelefonicaORGANIZATION

0.99+

Kristen MartinPERSON

0.99+

AWSORGANIZATION

0.99+

Dave VellantePERSON

0.99+

AMDORGANIZATION

0.99+

SpainLOCATION

0.99+

T-MobileORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

Deutsche TelekomORGANIZATION

0.99+

Hewlett Packard EnterpriseORGANIZATION

0.99+

IBMORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

MarvellORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

SamsungORGANIZATION

0.99+

AppleORGANIZATION

0.99+

AT&TORGANIZATION

0.99+

DellORGANIZATION

0.99+

IntelORGANIZATION

0.99+

Rob HofPERSON

0.99+

Palo AltoLOCATION

0.99+

OracleORGANIZATION

0.99+

40%QUANTITY

0.99+

last weekDATE

0.99+

AthoNetORGANIZATION

0.99+

EricksonORGANIZATION

0.99+

Congress SquareLOCATION

0.99+

AccentureORGANIZATION

0.99+

next weekDATE

0.99+

Mobile World CongressEVENT

0.99+

SolanaORGANIZATION

0.99+

BostonLOCATION

0.99+

two dimensionsQUANTITY

0.99+

ETRORGANIZATION

0.99+

MWC '23EVENT

0.99+

MWCEVENT

0.99+

288QUANTITY

0.98+

todayDATE

0.98+

this weekDATE

0.98+

SolonaORGANIZATION

0.98+

David.Vellante@SiliconANGLE.comOTHER

0.98+

telcoORGANIZATION

0.98+

TwoQUANTITY

0.98+

each weekQUANTITY

0.97+

Zeus KerravalaPERSON

0.97+

MWC 2023EVENT

0.97+

about five pointsQUANTITY

0.97+

theCUBE.netOTHER

0.97+

Red HatORGANIZATION

0.97+

SnowflakeTITLE

0.96+

oneQUANTITY

0.96+

DatabricksORGANIZATION

0.96+

threeQUANTITY

0.96+

theCUBE StudiosORGANIZATION

0.96+

SiliconANGLE News | Beyond the Buzz: A deep dive into the impact of AI


 

(upbeat music) >> Hello, everyone, welcome to theCUBE. I'm John Furrier, the host of theCUBE in Palo Alto, California. Also it's SiliconANGLE News. Got two great guests here to talk about AI, the impact of the future of the internet, the applications, the people. Amr Awadallah, the founder and CEO, Ed Alban is the CEO of Vectara, a new startup that emerged out of the original Cloudera, I would say, 'cause Amr's known, famous for the Cloudera founding, which was really the beginning of the big data movement. And now as AI goes mainstream, there's so much to talk about, so much to go on. And plus the new company is one of the, now what I call the wave, this next big wave, I call it the fifth wave in the industry. You know, you had PCs, you had the internet, you had mobile. This generative AI thing is real. And you're starting to see startups come out in droves. Amr obviously was founder of Cloudera, Big Data, and now Vectara. And Ed Albanese, you guys have a new company. Welcome to the show. >> Thank you. It's great to be here. >> So great to see you. Now the story is theCUBE started in the Cloudera office. Thanks to you, and your friendly entrepreneurship views that you have. We got to know each other over the years. But Cloudera had Hadoop, which was the beginning of what I call the big data wave, which then became what we now call data lakes, data oceans, and data infrastructure that's developed from that. It's almost interesting to look back 12 plus years, and see that what AI is doing now, right now, is opening up the eyes to the mainstream, and the application's almost mind blowing. You know, Sati Natel called it the Mosaic Moment, didn't say Netscape, he built Netscape (laughing) but called it the Mosaic Moment. You're seeing companies in startups, kind of the alpha geeks running here, because this is the new frontier, and there's real meat on the bone, in terms of like things to do. Why? Why is this happening now? What's is the confluence of the forces happening, that are making this happen? >> Yeah, I mean if you go back to the Cloudera days, with big data, and so on, that was more about data processing. Like how can we process data, so we can extract numbers from it, and do reporting, and maybe take some actions, like this is a fraud transaction, or this is not. And in the meanwhile, many of the researchers working in the neural network, and deep neural network space, were trying to focus on data understanding, like how can I understand the data, and learn from it, so I can take actual actions, based on the data directly, just like a human does. And we were only good at doing that at the level of somebody who was five years old, or seven years old, all the way until about 2013. And starting in 2013, which is only 10 years ago, a number of key innovations started taking place, and each one added on. It was no major innovation that just took place. It was a couple of really incremental ones, but they added on top of each other, in a very exponentially additive way, that led to, by the end of 2019, we now have models, deep neural network models, that can read and understand human text just like we do. Right? And they can reason about it, and argue with you, and explain it to you. And I think that's what is unlocking this whole new wave of innovation that we're seeing right now. So data understanding would be the essence of it. >> So it's not a Big Bang kind of theory, it's been evolving over time, and I think that the tipping point has been the advancements and other things. I mean look at cloud computing, and look how fast it just crept up on AWS. I mean AWS you back three, five years ago, I was talking to Swami yesterday, and their big news about AI, expanding the Hugging Face's relationship with AWS. And just three, five years ago, there wasn't a model training models out there. But as compute comes out, and you got more horsepower,, these large language models, these foundational models, they're flexible, they're not monolithic silos, they're interacting. There's a whole new, almost fusion of data happening. Do you see that? I mean is that part of this? >> Of course, of course. I mean this wave is building on all the previous waves. We wouldn't be at this point if we did not have hardware that can scale, in a very efficient way. We wouldn't be at this point, if we don't have data that we're collecting about everything we do, that we're able to process in this way. So this, this movement, this motion, this phase we're in, absolutely builds on the shoulders of all the previous phases. For some of the observers from the outside, when they see chatGPT for the first time, for them was like, "Oh my god, this just happened overnight." Like it didn't happen overnight. (laughing) GPT itself, like GPT3, which is what chatGPT is based on, was released a year ahead of chatGPT, and many of us were seeing the power it can provide, and what it can do. I don't know if Ed agrees with that. >> Yeah, Ed? >> I do. Although I would acknowledge that the possibilities now, because of what we've hit from a maturity standpoint, have just opened up in an incredible way, that just wasn't tenable even three years ago. And that's what makes it, it's true that it developed incrementally, in the same way that, you know, the possibilities of a mobile handheld device, you know, in 2006 were there, but when the iPhone came out, the possibilities just exploded. And that's the moment we're in. >> Well, I've had many conversations over the past couple months around this area with chatGPT. John Markoff told me the other day, that he calls it, "The five dollar toy," because it's not that big of a deal, in context to what AI's doing behind the scenes, and all the work that's done on ethics, that's happened over the years, but it has woken up the mainstream, so everyone immediately jumps to ethics. "Does it work? "It's not factual," And everyone who's inside the industry is like, "This is amazing." 'Cause you have two schools of thought there. One's like, people that think this is now the beginning of next gen, this is now we're here, this ain't your grandfather's chatbot, okay?" With NLP, it's got reasoning, it's got other things. >> I'm in that camp for sure. >> Yeah. Well I mean, everyone who knows what's going on is in that camp. And as the naysayers start to get through this, and they go, "Wow, it's not just plagiarizing homework, "it's helping me be better. "Like it could rewrite my memo, "bring the lead to the top." It's so the format of the user interface is interesting, but it's still a data-driven app. >> Absolutely. >> So where does it go from here? 'Cause I'm not even calling this the first ending. This is like pregame, in my opinion. What do you guys see this going, in terms of scratching the surface to what happens next? >> I mean, I'll start with, I just don't see how an application is going to look the same in the next three years. Who's going to want to input data manually, in a form field? Who is going to want, or expect, to have to put in some text in a search box, and then read through 15 different possibilities, and try to figure out which one of them actually most closely resembles the question they asked? You know, I don't see that happening. Who's going to start with an absolute blank sheet of paper, and expect no help? That is not how an application will work in the next three years, and it's going to fundamentally change how people interact and spend time with opening any element on their mobile phone, or on their computer, to get something done. >> Yes. I agree with that. Like every single application, over the next five years, will be rewritten, to fit within this model. So imagine an HR application, I don't want to name companies, but imagine an HR application, and you go into application and you clicking on buttons, because you want to take two weeks of vacation, and menus, and clicking here and there, reasons and managers, versus just telling the system, "I'm taking two weeks of vacation, going to Las Vegas," book it, done. >> Yeah. >> And the system just does it for you. If you weren't completing in your input, in your description, for what you want, then the system asks you back, "Did you mean this? "Did you mean that? "Were you trying to also do this as well?" >> Yeah. >> "What was the reason?" And that will fit it for you, and just do it for you. So I think the user interface that we have with apps, is going to change to be very similar to the user interface that we have with each other. And that's why all these apps will need to evolve. >> I know we don't have a lot of time, 'cause you guys are very busy, but I want to definitely have multiple segments with you guys, on this topic, because there's so much to talk about. There's a lot of parallels going on here. I was talking again with Swami who runs all the AI database at AWS, and I asked him, I go, "This feels a lot like the original AWS. "You don't have to provision a data center." A lot of this heavy lifting on the back end, is these large language models, with these foundational models. So the bottleneck in the past, was the energy, and cost to actually do it. Now you're seeing it being stood up faster. So there's definitely going to be a tsunami of apps. I would see that clearly. What is it? We don't know yet. But also people who are going to leverage the fact that I can get started building value. So I see a startup boom coming, and I see an application tsunami of refactoring things. >> Yes. >> So the replatforming is already kind of happening. >> Yes, >> OpenAI, chatGPT, whatever. So that's going to be a developer environment. I mean if Amazon turns this into an API, or a Microsoft, what you guys are doing. >> We're turning it into API as well. That's part of what we're doing as well, yes. >> This is why this is exciting. Amr, you've lived the big data dream, and and we used to talk, if you didn't have a big data problem, if you weren't full of data, you weren't really getting it. Now people have all the data, and they got to stand this up. >> Yeah. >> So the analogy is again, the mobile, I like the mobile movement, and using mobile as an analogy, most companies were not building for a mobile environment, right? They were just building for the web, and legacy way of doing apps. And as soon as the user expectations shifted, that my expectation now, I need to be able to do my job on this small screen, on the mobile device with a touchscreen. Everybody had to invest in re-architecting, and re-implementing every single app, to fit within that model, and that model of interaction. And we are seeing the exact same thing happen now. And one of the core things we're focused on at Vectara, is how to simplify that for organizations, because a lot of them are overwhelmed by large language models, and ML. >> They don't have the staff. >> Yeah, yeah, yeah. They're understaffed, they don't have the skills. >> But they got developers, they've got DevOps, right? >> Yes. >> So they have the DevSecOps going on. >> Exactly, yes. >> So our goal is to simplify it enough for them that they can start leveraging this technology effectively, within their applications. >> Ed, you're the COO of the company, obviously a startup. You guys are growing. You got great backup, and good team. You've also done a lot of business development, and technical business development in this area. If you look at the landscape right now, and I agree the apps are coming, every company I talk to, that has that jet chatGPT of, you know, epiphany, "Oh my God, look how cool this is. "Like magic." Like okay, it's code, settle down. >> Mm hmm. >> But everyone I talk to is using it in a very horizontal way. I talk to a very senior person, very tech alpha geek, very senior person in the industry, technically. they're using it for log data, they're using it for configuration of routers. And in other areas, they're using it for, every vertical has a use case. So this is horizontally scalable from a use case standpoint. When you hear horizontally scalable, first thing I chose in my mind is cloud, right? >> Mm hmm. >> So cloud, and scalability that way. And the data is very specialized. So now you have this vertical specialization, horizontally scalable, everyone will be refactoring. What do you see, and what are you seeing from customers, that you talk to, and prospects? >> Yeah, I mean put yourself in the shoes of an application developer, who is actually trying to make their application a bit more like magic. And to have that soon-to-be, honestly, expected experience. They've got to think about things like performance, and how efficiently that they can actually execute a query, or a question. They've got to think about cost. Generative isn't cheap, like the inference of it. And so you've got to be thoughtful about how and when you take advantage of it, you can't use it as a, you know, everything looks like a nail, and I've got a hammer, and I'm going to hit everything with it, because that will be wasteful. Developers also need to think about how they're going to take advantage of, but not lose their own data. So there has to be some controls around what they feed into the large language model, if anything. Like, should they fine tune a large language model with their own data? Can they keep it logically separated, but still take advantage of the powers of a large language model? And they've also got to take advantage, and be aware of the fact that when data is generated, that it is a different class of data. It might not fully be their own. >> Yeah. >> And it may not even be fully verified. And so when the logical cycle starts, of someone making a request, the relationship between that request, and the output, those things have to be stored safely, logically, and identified as such. >> Yeah. >> And taken advantage of in an ongoing fashion. So these are mega problems, each one of them independently, that, you know, you can think of it as middleware companies need to take advantage of, and think about, to help the next wave of application development be logical, sensible, and effective. It's not just calling some raw API on the cloud, like openAI, and then just, you know, you get your answer and you're done, because that is a very brute force approach. >> Well also I will point, first of all, I agree with your statement about the apps experience, that's going to be expected, form filling. Great point. The interesting about chatGPT. >> Sorry, it's not just form filling, it's any action you would like to take. >> Yeah. >> Instead of clicking, and dragging, and dropping, and doing it on a menu, or on a touch screen, you just say it, and it's and it happens perfectly. >> Yeah. It's a different interface. And that's why I love that UIUX experiences, that's the people falling out of their chair moment with chatGPT, right? But a lot of the things with chatGPT, if you feed it right, it works great. If you feed it wrong and it goes off the rails, it goes off the rails big. >> Yes, yes. >> So the the Bing catastrophes. >> Yeah. >> And that's an example of garbage in, garbage out, classic old school kind of comp-side phrase that we all use. >> Yep. >> Yes. >> This is about data in injection, right? It reminds me the old SQL days, if you had to, if you can sling some SQL, you were a magician, you know, to get the right answer, it's pretty much there. So you got to feed the AI. >> You do, Some people call this, the early word to describe this as prompt engineering. You know, old school, you know, search, or, you know, engagement with data would be, I'm going to, I have a question or I have a query. New school is, I have, I have to issue it a prompt, because I'm trying to get, you know, an action or a reaction, from the system. And the active engineering, there are a lot of different ways you could do it, all the way from, you know, raw, just I'm going to send you whatever I'm thinking. >> Yeah. >> And you get the unintended outcomes, to more constrained, where I'm going to just use my own data, and I'm going to constrain the initial inputs, the data I already know that's first party, and I trust, to, you know, hyper constrain, where the application is actually, it's looking for certain elements to respond to. >> It's interesting Amr, this is why I love this, because one we are in the media, we're recording this video now, we'll stream it. But we got all your linguistics, we're talking. >> Yes. >> This is data. >> Yep. >> So the data quality becomes now the new intellectual property, because, if you have that prompt source data, it makes data or content, in our case, the original content, intellectual property. >> Absolutely. >> Because that's the value. And that's where you see chatGPT fall down, is because they're trying to scroll the web, and people think it's search. It's not necessarily search, it's giving you something that you wanted. It is a lot of that, I remember in Cloudera, you said, "Ask the right questions." Remember that phrase you guys had, that slogan? >> Mm hmm. And that's prompt engineering. So that's exactly, that's the reinvention of "Ask the right question," is prompt engineering is, if you don't give these models the question in the right way, and very few people know how to frame it in the right way with the right context, then you will get garbage out. Right? That is the garbage in, garbage out. But if you specify the question correctly, and you provide with it the metadata that constrain what that question is going to be acted upon or answered upon, then you'll get much better answers. And that's exactly what we solved Vectara. >> Okay. So before we get into the last couple minutes we have left, I want to make sure we get a plug in for the opportunity, and the profile of Vectara, your new company. Can you guys both share with me what you think the current situation is? So for the folks who are now having those moments of, "Ah, AI's bullshit," or, "It's not real, it's a lot of stuff," from, "Oh my god, this is magic," to, "Okay, this is the future." >> Yes. >> What would you say to that person, if you're at a cocktail party, or in the elevator say, "Calm down, this is the first inning." How do you explain the dynamics going on right now, to someone who's either in the industry, but not in the ropes? How would you explain like, what this wave's about? How would you describe it, and how would you prepare them for how to change their life around this? >> Yeah, so I'll go first and then I'll let Ed go. Efficiency, efficiency is the description. So we figured that a way to be a lot more efficient, a way where you can write a lot more emails, create way more content, create way more presentations. Developers can develop 10 times faster than they normally would. And that is very similar to what happened during the Industrial Revolution. I always like to look at examples from the past, to read what will happen now, and what will happen in the future. So during the Industrial Revolution, it was about efficiency with our hands, right? So I had to make a piece of cloth, like this piece of cloth for this shirt I'm wearing. Our ancestors, they had to spend month taking the cotton, making it into threads, taking the threads, making them into pieces of cloth, and then cutting it. And now a machine makes it just like that, right? And the ancestors now turned from the people that do the thing, to manage the machines that do the thing. And I think the same thing is going to happen now, is our efficiency will be multiplied extremely, as human beings, and we'll be able to do a lot more. And many of us will be able to do things they couldn't do before. So another great example I always like to use is the example of Google Maps, and GPS. Very few of us knew how to drive a car from one location to another, and read a map, and get there correctly. But once that efficiency of an AI, by the way, behind these things is very, very complex AI, that figures out how to do that for us. All of us now became amazing navigators that can go from any point to any point. So that's kind of how I look at the future. >> And that's a great real example of impact. Ed, your take on how you would talk to a friend, or colleague, or anyone who asks like, "How do I make sense of the current situation? "Is it real? "What's in it for me, and what do I do?" I mean every company's rethinking their business right now, around this. What would you say to them? >> You know, I usually like to show, rather than describe. And so, you know, the other day I just got access, I've been using an application for a long time, called Notion, and it's super popular. There's like 30 or 40 million users. And the new version of Notion came out, which has AI embedded within it. And it's AI that allows you primarily to create. So if you could break down the world of AI into find and create, for a minute, just kind of logically separate those two things, find is certainly going to be massively impacted in our experiences as consumers on, you know, Google and Bing, and I can't believe I just said the word Bing in the same sentence as Google, but that's what's happening now (all laughing), because it's a good example of change. >> Yes. >> But also inside the business. But on the crate side, you know, Notion is a wiki product, where you try to, you know, note down things that you are thinking about, or you want to share and memorialize. But sometimes you do need help to get it down fast. And just in the first day of using this new product, like my experience has really fundamentally changed. And I think that anybody who would, you know, anybody say for example, that is using an existing app, I would show them, open up the app. Now imagine the possibility of getting a starting point right off the bat, in five seconds of, instead of having to whole cloth draft this thing, imagine getting a starting point then you can modify and edit, or just dispose of and retry again. And that's the potential for me. I can't imagine a scenario where, in a few years from now, I'm going to be satisfied if I don't have a little bit of help, in the same way that I don't manually spell check every email that I send. I automatically spell check it. I love when I'm getting type ahead support inside of Google, or anything. Doesn't mean I always take it, or when texting. >> That's efficiency too. I mean the cloud was about developers getting stuff up quick. >> Exactly. >> All that heavy lifting is there for you, so you don't have to do it. >> Right? >> And you get to the value faster. >> Exactly. I mean, if history taught us one thing, it's, you have to always embrace efficiency, and if you don't fast enough, you will fall behind. Again, looking at the industrial revolution, the companies that embraced the industrial revolution, they became the leaders in the world, and the ones who did not, they all like. >> Well the AI thing that we got to watch out for, is watching how it goes off the rails. If it doesn't have the right prompt engineering, or data architecture, infrastructure. >> Yes. >> It's a big part. So this comes back down to your startup, real quick, I know we got a couple minutes left. Talk about the company, the motivation, and we'll do a deeper dive on on the company. But what's the motivation? What are you targeting for the market, business model? The tech, let's go. >> Actually, I would like Ed to go first. Go ahead. >> Sure, I mean, we're a developer-first, API-first platform. So the product is oriented around allowing developers who may not be superstars, in being able to either leverage, or choose, or select their own large language models for appropriate use cases. But they that want to be able to instantly add the power of large language models into their application set. We started with search, because we think it's going to be one of the first places that people try to take advantage of large language models, to help find information within an application context. And we've built our own large language models, focused on making it very efficient, and elegant, to find information more quickly. So what a developer can do is, within minutes, go up, register for an account, and get access to a set of APIs, that allow them to send data, to be converted into a format that's easy to understand for large language models, vectors. And then secondarily, they can issue queries, ask questions. And they can ask them very, the questions that can be asked, are very natural language questions. So we're talking about long form sentences, you know, drill down types of questions, and they can get answers that either come back in depending upon the form factor of the user interface, in list form, or summarized form, where summarized equals the opportunity to kind of see a condensed, singular answer. >> All right. I have a. >> Oh okay, go ahead, you go. >> I was just going to say, I'm going to be a customer for you, because I want, my dream was to have a hologram of theCUBE host, me and Dave, and have questions be generated in the metaverse. So you know. (all laughing) >> There'll be no longer any guests here. They'll all be talking to you guys. >> Give a couple bullets, I'll spit out 10 good questions. Publish a story. This brings the automation, I'm sorry to interrupt you. >> No, no. No, no, I was just going to follow on on the same. So another way to look at exactly what Ed described is, we want to offer you chatGPT for your own data, right? So imagine taking all of the recordings of all of the interviews you have done, and having all of the content of that being ingested by a system, where you can now have a conversation with your own data and say, "Oh, last time when I met Amr, "which video games did we talk about? "Which movie or book did we use as an analogy "for how we should be embracing data science, "and big data, which is moneyball," I know you use moneyball all the time. And you start having that conversation. So, now the data doesn't become a passive asset that you just have in your organization. No. It's an active participant that's sitting with you, on the table, helping you make decisions. >> One of my favorite things to do with customers, is to go to their site or application, and show them me using it. So for example, one of the customers I talked to was one of the biggest property management companies in the world, that lets people go and rent homes, and houses, and things like that. And you know, I went and I showed them me searching through reviews, looking for information, and trying different words, and trying to find out like, you know, is this place quiet? Is it comfortable? And then I put all the same data into our platform, and I showed them the world of difference you can have when you start asking that question wholeheartedly, and getting real information that doesn't have anything to do with the words you asked, but is really focused on the meaning. You know, when I asked like, "Is it quiet?" You know, answers would come back like, "The wind whispered through the trees peacefully," and you know, it's like nothing to do with quiet in the literal word sense, but in the meaning sense, everything to do with it. And that that was magical even for them, to see that. >> Well you guys are the front end of this big wave. Congratulations on the startup, Amr. I know you guys got great pedigree in big data, and you've got a great team, and congratulations. Vectara is the name of the company, check 'em out. Again, the startup boom is coming. This will be one of the major waves, generative AI is here. I think we'll look back, and it will be pointed out as a major inflection point in the industry. >> Absolutely. >> There's not a lot of hype behind that. People are are seeing it, experts are. So it's going to be fun, thanks for watching. >> Thanks John. (soft music)

Published Date : Feb 23 2023

SUMMARY :

I call it the fifth wave in the industry. It's great to be here. and the application's almost mind blowing. And in the meanwhile, and you got more horsepower,, of all the previous phases. in the same way that, you know, and all the work that's done on ethics, "bring the lead to the top." in terms of scratching the surface and it's going to fundamentally change and you go into application And the system just does it for you. is going to change to be very So the bottleneck in the past, So the replatforming is So that's going to be a That's part of what and they got to stand this up. And one of the core things don't have the skills. So our goal is to simplify it and I agree the apps are coming, I talk to a very senior And the data is very specialized. and be aware of the fact that request, and the output, some raw API on the cloud, about the apps experience, it's any action you would like to take. you just say it, and it's But a lot of the things with chatGPT, comp-side phrase that we all use. It reminds me the old all the way from, you know, raw, and I'm going to constrain But we got all your So the data quality And that's where you That is the garbage in, garbage out. So for the folks who are and how would you prepare them that do the thing, to manage the current situation? And the new version of Notion came out, But on the crate side, you I mean the cloud was about developers so you don't have to do it. and the ones who did not, they all like. If it doesn't have the So this comes back down to Actually, I would like Ed to go first. factor of the user interface, I have a. generated in the metaverse. They'll all be talking to you guys. This brings the automation, of all of the interviews you have done, one of the customers I talked to Vectara is the name of the So it's going to be fun, Thanks John.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
John MarkoffPERSON

0.99+

2013DATE

0.99+

AWSORGANIZATION

0.99+

Ed AlbanPERSON

0.99+

AmazonORGANIZATION

0.99+

30QUANTITY

0.99+

10 timesQUANTITY

0.99+

2006DATE

0.99+

John FurrierPERSON

0.99+

two weeksQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

DavePERSON

0.99+

Ed AlbanesePERSON

0.99+

JohnPERSON

0.99+

five secondsQUANTITY

0.99+

Las VegasLOCATION

0.99+

EdPERSON

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

10 good questionsQUANTITY

0.99+

SwamiPERSON

0.99+

15 different possibilitiesQUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

VectaraORGANIZATION

0.99+

Amr AwadallahPERSON

0.99+

GoogleORGANIZATION

0.99+

ClouderaORGANIZATION

0.99+

first timeQUANTITY

0.99+

bothQUANTITY

0.99+

end of 2019DATE

0.99+

yesterdayDATE

0.98+

Big DataORGANIZATION

0.98+

40 million usersQUANTITY

0.98+

two thingsQUANTITY

0.98+

two great guestsQUANTITY

0.98+

12 plus yearsQUANTITY

0.98+

oneQUANTITY

0.98+

five dollarQUANTITY

0.98+

NetscapeORGANIZATION

0.98+

five years agoDATE

0.98+

SQLTITLE

0.98+

first inningQUANTITY

0.98+

AmrPERSON

0.97+

two schoolsQUANTITY

0.97+

firstQUANTITY

0.97+

10 years agoDATE

0.97+

OneQUANTITY

0.96+

first dayQUANTITY

0.96+

threeDATE

0.96+

chatGPTTITLE

0.96+

first placesQUANTITY

0.95+

BingORGANIZATION

0.95+

NotionTITLE

0.95+

first thingQUANTITY

0.94+

theCUBEORGANIZATION

0.94+

Beyond the BuzzTITLE

0.94+

Sati NatelPERSON

0.94+

Industrial RevolutionEVENT

0.93+

one locationQUANTITY

0.93+

three years agoDATE

0.93+

single applicationQUANTITY

0.92+

one thingQUANTITY

0.91+

first platformQUANTITY

0.91+

five years oldQUANTITY

0.91+

Manoj Narayanan & Prem Balasubramanian | Build Your Cloud Center of Excellence


 

(Upbeat music playing) >> Hey everyone, thanks for joining us today. Welcome to this event of Building your Cloud Center of Excellence with Hitachi Vantara. I'm your host, Lisa Martin. I've got a couple of guests here with me next to talk about redefining cloud operations and application modernization for customers. Please welcome Param Balasubramanian the SVP and CTO at Hitachi Vantara, and Manoj Narayanan is here as well, the Managing Director of Technology at GTCR. Guys, thank you so much for joining me today. Excited to have this conversation about redefining CloudOps with you. >> Pleasure to be here. >> Pleasure to be here >> Param, let's go ahead and start with you. You have done well over a thousand cloud engagements in your career. I'd love to get your point of view on how the complexity around cloud operations and management has evolved in the last, say, three to four years. >> It's a great question, Lisa before we understand the complexity around the management itself, the cloud has evolved over the last decade significantly from being a backend infrastructure or infrastructure as a service for many companies to become the business for many companies. If you think about a lot of these cloud bond companies cloud is where their entire workload and their business wants. With that, as a background for this conversation if you think about the cloud operations, there was a lot of there was a lot of lift and shift happening in the market where people lifted their workloads or applications and moved them onto the cloud where they treated cloud significantly as an infrastructure. And the way they started to manage it was again, the same format they were managing there on-prem infrastructure and they call it I&O, Infrastructure and Operations. That's kind of the way traditionally cloud is managed. In the last few years, we are seeing a significant shift around thinking of cloud more as a workload rather than as just an infrastructure. And what I mean by workload is in the cloud, everything is now code. So you are codifying your infrastructure. Your application is already code and your data is also codified as data services. With now that context apply the way you think about managing the cloud has to significantly change and many companies are moving towards trying to change their models to look at this complex environment as opposed to treating it like a simple infrastructure that is sitting somewhere else. So that's one of the biggest changes and shifts that are causing a lot of complexity and headache for actually a lot of customers for managing environments. The second critical aspect is even that, even exasperates the situation is multicloud environments. Now, there are companies that have got it right with things about right cloud for the right workload. So there are companies that I reach out and I talk with. They've got their office applications and emails and stuff running on Microsoft 365 which can be on the Azure cloud whereas they're running their engineering applications the ones that they build and leverage for their end customers on Amazon. And to some extent they've got it right but still they have a multiple cloud that they have to go after and maintain. This becomes complex when you have two clouds for the same type of workload. When I have to host applications for my end customers on Amazon as well as Azure, Azure as well as Google then, I get into security issues that I have to be consistent across all three. I get into talent because I need to have people that focus on Amazon as well as Azure, as well as Google which means I need so much more workforce, I need so many so much more skills that I need to build, right? That's becoming the second issue. The third one is around data costs. Can I make these clouds talk to each other? Then you get into the ingress egress cost and that creates some complexity. So bringing all of this together and managing is really become becoming more complex for our customers. And obviously as a part of this we will talk about some of the, some of the ideas that we can bring for in managing such complex environments but this is what we are seeing in terms of why the complexity has become a lot more in the last few years. >> Right. A lot of complexity in the last few years. Manoj, let's bring you into the conversation now. Before we dig into your cloud environment give the audience a little bit of an overview of GTCR. What kind of company are you? What do you guys do? >> Definitely Lisa. GTCR is a Chicago based private equity firm. We've been in the market for more than 40 years and what we do is we invest in companies across different sectors and then we manage the company drive it to increase the value and then over a period of time, sell it to future buyers. So in a nutshell, we got a large portfolio of companies that we need to manage and make sure that they perform to expectations. And my role within GTCR is from a technology viewpoint so where I work with all the companies their technology leadership to make sure that we are getting the best out of technology and technology today drives everything. So how can technology be a good compliment to the business itself? So, my role is to play that intermediary role to make sure that there is synergy between the investment thesis and the technology lures that we can pull and also work with partners like Hitachi to make sure that it is done in an optimal manner. >> I like that you said, you know, technology needs to really compliment the business and vice versa. So Manoj, let's get into the cloud operations environment at GTCR. Talk to me about what the experience has been the last couple of years. Give us an idea of some of the challenges that you were facing with existing cloud ops and and the solution that you're using from Hitachi Vantara. >> A a absolutely. In fact, in fact Param phrased it really well, one of the key things that we're facing is the workload management. So there's so many choices there, so much complexities. We have these companies buying more companies there is organic growth that is happening. So the variables that we have to deal with are very high in such a scenario to make sure that the workload management of each of the companies are done in an optimal manner is becoming an increasing concern. So, so that's one area where any help we can get anything we can try to make sure it is done better becomes a huge value at each. A second aspect is a financial transparency. We need to know where the money is going where the money is coming in from, what is the scale especially in the cloud environment. We are talking about an auto scale ecosystem. Having that financial transparency and the metrics associated with that, it, these these become very, very critical to ensure that we have a successful presence in the multicloud environment. >> Talk a little bit about the solution that you're using with Hitachi and, and the challenges that it is eradicated. >> Yeah, so it end of the day, right, we we need to focus on our core competence. So, so we have got a very strong technology leadership team. We've got a very strong presence in the respective domains of each of the portfolio companies. But where Hitachi comes in and HAR comes in as a solution is that they allow us to excel in focusing on our core business and then make sure that we are able to take care of workload management or financial transparency. All of that is taken off the table from us and and Hitachi manages it for us, right? So it's such a perfectly compliment relationship where they act as two partners and HARC is a solution that is extremely useful in driving that. And, and and I'm anticipating that it'll become more important with time as the complexity of cloud and cloud associate workloads are only becoming more challenging to manage and not less. >> Right? That's the thing that complexity is there and it's also increasing Param, you talked about the complexities that are existent today with respect to cloud operations the things that have happened over the last couple of years. What are some of your tips, Param for the audience, like the the top two or three things that you would say on cloud operations that that people need to understand so that they can manage that complexity and allow their business to be driven and complimented by technology? >> Yeah, a big great question again, Lisa, right? And I think Manoj alluded to a few of these things as well. The first one is in the new world of the cloud I think think of migration, modernization and management as a single continuum to the cloud. Now there is no lift and shift and there is no way somebody else separately manages it, right? If you do not lift and shift the right applications the right way onto the cloud, you are going to deal with the complexity of managing it and you'll end up spending more money time and effort in managing it. So that's number one. Migration, modernization, management of cloud work growth is a single continuum and it's not three separate activities, right? That's number one. And the, the second is cost. Cost traditionally has been an afterthought, right? People move the workload to the cloud. And I think, again, like I said, I'll refer back to what Manoj said once we move it to the cloud and then we put all these fancy engineering capability around self-provisioning, every developer can go and ask for what he or she wants and they get an environment immediately spun up so on and so forth. Suddenly the CIO wakes up to a bill that is significantly larger than what he or she expected right? And, and this is this is become a bit common nowadays, right? The the challenge is because we think cost in the cloud as an afterthought. But consider this example in, in previous world you buy hard, well, you put it in your data center you have already amortized the cost as a CapEx. So you can write an application throw it onto the infrastructure and the application continues to use the infrastructure until you hit a ceiling, you don't care about the money you spent. But if I write a line of code that is inefficient today and I deploy it on the cloud from minute one, I am paying for the inefficiency. So if I realize it after six months, I've already spent the money. So financial discipline, especially when managing the cloud is now is no more an afterthought. It is as much something that you have to include in your engineering practice as much as any other DevOps practices, right? Those are my top two tips, Lisa, from my standpoint, think about cloud, think about cloud work, cloud workloads. And the last one again, and you will see you will hear me saying this again and again, get into the mindset of everything is code. You don't have a touch and feel infrastructure anymore. So you don't really need to have foot on the ground to go manage that infrastructure. It's codified. So your code should be managing it, but think of how it happens, right? That's where we, we are going as an evolution >> Everything is code. That's great advice, great tips for the audience there. Manoj, I'll bring you back into the conversation. You know, we, we can talk about skills gaps on on in many different facets of technology the SRE role, relatively new, skillset. We're hearing, hearing a lot about it. SRE led DevSecOps is probably even more so of a new skillset. If I'm an IT leader or an application leader how do I ensure that I have the right skillset within my organization to be able to manage my cloud operations to, to dial down that complexity so that I can really operate successfully as a business? >> Yeah. And so unfortunately there is no perfect answer, right? It's such a, such a scarce skillset that a, any day any of the portfolio company CTOs if I go and talk and say, Hey here's a great SRE team member, they'll be more than willing to fight with each of to get the person in right? It's just that scarce of a skillset. So, so a few things we need to look at it. One is, how can I build it within, right? So nobody gets born as an SRE, you, you make a person an SRE. So how do you inculcate that culture? So like Param said earlier, right? Everything is software. So how do we make sure that everybody inculcates that as part of their operating philosophy be they part of the operations team or the development team or the testing team they need to understand that that is a common guideline and common objective that we are driving towards. So, so that skillset and that associated training needs to be driven from within the organization. And that in my mind is the fastest way to make sure that that role gets propagated across organization. That is one. The second thing is rely on the right partners. So it's not going to be possible for us, to get all of these roles built in-house. So instead prioritize what roles need to be done from within the organization and what roles can we rely on our partners to drive it for us. So that becomes an important consideration for us to look at as well. >> Absolutely. That partnership angle is incredibly important from, from the, the beginning really kind of weaving these companies together on this journey to to redefine cloud operations and build that, as we talked about at the beginning of the conversation really building a cloud center of excellence that allows the organization to be competitive, successful and and really deliver what the end user is, is expecting. I want to ask - Sorry Lisa, - go ahead. >> May I add something to it, I think? >> Sure. >> Yeah. One of the, one of the common things that I tell customers when we talk about SRE and to manages point is don't think of SRE as a skillset which is the common way today the industry tries to solve the problem. SRE is a mindset, right? Everybody in >> Well well said, yeah >> That, so everybody in a company should think of him or her as a cycle liability engineer. And everybody has a role in it, right? Even if you take the new process layout from SRE there are individuals that are responsible to whom we can go to when there is a problem directly as opposed to going through the traditional ways of AI talk to L one and L one contras all. They go to L two and then L three. So we, we, we are trying to move away from an issue escalation model to what we call as a a issue routing or a incident routing model, right? Move away from incident escalation to an incident routing model. So you get to route to the right folks. So again, to sum it up, SRE should not be solved as a skillset set because there is not enough people in the market to solve it that way. If you start solving it as a mindset I think companies can get a handhold of it. >> I love that. I've actually never heard that before, but it it makes perfect sense to think about the SRE as a mindset rather than a skillset that will allow organizations to be much more successful. Param I wanted to get your thoughts as enterprises are are innovating, they're moving more products and services to the as a service model. Talk about how the dev teams the ops teams are working together to build and run reliable, cost efficient services. Are they working better together? >> Again, a a very polarizing question because some customers are getting it right many customers aren't, there is still a big wall between development and operations, right? Even when you think about DevOps as a terminology the fundamental principle was to make sure dev and ops works together. But what many companies have achieved today, honestly is automating the operations for development. For example, as a developer, I can check in code and my code will appear in production without any friction, right? There is automated testing, automated provisioning and it gets promoted to production, but after production, it goes back into the 20 year old model of operating the code, right? So there is more work that needs to be done for Devon and Ops to come closer and work together. And one of the ways that we think this is achievable is not by doing radical org changes, but more by focusing on a product-oriented single backlog approach across development and operations. Which is, again, there is change management involved but I think that's a way to start embracing the culture of dev ops coming together much better now, again SRE principles as we double click and understand it more and Google has done a very good job playing it out for the world. As you think about SRE principle, there are ways and means in that process of how to think about a single backlog. And in HARC, Hitachi Application Reliability Centers we've really got a way to look at prioritizing the backlog. And what I mean by that is dev teams try to work on backlog that come from product managers on features. The SRE and the operations team try to put backlog into the say sorry, try to put features into the same backlog for improving stability, availability and financials financial optimization of your code. And there are ways when you look at your SLOs and error budgets to really coach the product teams to prioritize your backlog based on what's important for you. So if you understand your spending more money then you reduce your product features going in and implement the financial optimization that came from your operations team, right? So you now have the ability to throttle these parameters and that's where SRE becomes a mindset and a principle as opposed to a skillset because this is not an individual telling you to do. This is the company that is, is embarking on how to prioritize my backlog beyond just user features. >> Right. Great point. Last question for both of you is the same talk kind of take away things that you want me to remember. If I am at an IT leader at, at an organization and I am planning on redefining CloudOps for my company Manoj will start with you and then Param to you what are the top two things that you want me to walk away with understanding how to do that successfully? >> Yeah, so I'll, I'll go back to basics. So the two things I would say need to be taken care of is, one is customer experience. So all the things that I do end of the day is it improving the customer experience or not? So that's a first metric. The second thing is anything that I do is there an ROI by doing that incremental step or not? Otherwise we might get lost in the technology with surgery, the new tech, et cetera. But end of the day, if the customers are not happy if there is no ROI, everything else you just can't do much on top of that >> Now it's all about the customer experience. Right? That's so true. Param what are your thoughts, the the top things that I need to be taking away if I am a a leader planning to redefine my cloud eye company? >> Absolutely. And I think from a, from a company standpoint I think Manoj summarized it extremely well, right? There is this ROI and there is this customer experience from my end, again, I'll, I'll suggest two two more things as a takeaway, right? One, cloud cost is not an afterthought. It's essential for us to think about it upfront. Number two, do not delink migration modernization and operations. They are one stream. If you migrate a long, wrong workload onto the cloud you're going to be stuck with it for a long time. And an example of a wrong workload, Lisa for everybody that that is listening to this is if my cost per transaction profile doesn't change and I am not improving my revenue per transaction for a piece of code that's going run in production it's better off running in a data center where my cost is CapEx than amortized and I have control over when I want to upgrade as opposed to putting it on a cloud and continuing to pay unless it gives me more dividends towards improvement. But that's a simple example of when we think about what should I migrate and how will it cost pain when I want to manage it in the longer run. But that's, that's something that I'll leave the audience and you with as a takeaway. >> Excellent. Guys, thank you so much for talking to me today about what Hitachi Vantara and GTCR are doing together how you've really dialed down those complexities enabling the business and the technology folks to really live harmoniously. We appreciate your insights and your perspectives on building a cloud center of excellence. Thank you both for joining me. >> Thank you. >> For my guests, I'm Lisa. Martin, you're watching this event building Your Cloud Center of Excellence with Hitachi Vantara. Thanks for watching. (Upbeat music playing) (Upbeat music playing) (Upbeat music playing) (Upbeat music playing)

Published Date : Feb 21 2023

SUMMARY :

the SVP and CTO at Hitachi Vantara, in the last, say, three to four years. apply the way you think in the last few years. and the technology lures that we can pull and the solution that you're that the workload management the solution that you're using All of that is taken off the table from us and allow their business to be driven have foot on the ground to have the right skillset And that in my mind is the that allows the organization to be and to manages point is don't of AI talk to L one and L one contras all. Talk about how the dev teams The SRE and the operations team that you want me to remember. But end of the day, if the I need to be taking away that I'll leave the audience and the technology folks to building Your Cloud Center of Excellence

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
HitachiORGANIZATION

0.99+

GTCRORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

LisaPERSON

0.99+

ChicagoLOCATION

0.99+

Hitachi VantaraORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Prem BalasubramanianPERSON

0.99+

HARCORGANIZATION

0.99+

two partnersQUANTITY

0.99+

Manoj NarayananPERSON

0.99+

threeQUANTITY

0.99+

Param BalasubramanianPERSON

0.99+

second issueQUANTITY

0.99+

SREORGANIZATION

0.99+

bothQUANTITY

0.99+

first metricQUANTITY

0.99+

more than 40 yearsQUANTITY

0.99+

one streamQUANTITY

0.99+

eachQUANTITY

0.99+

OneQUANTITY

0.99+

ParamPERSON

0.99+

oneQUANTITY

0.99+

todayDATE

0.99+

secondQUANTITY

0.99+

third oneQUANTITY

0.99+

four yearsQUANTITY

0.98+

second thingQUANTITY

0.98+

twoQUANTITY

0.98+

ManojORGANIZATION

0.98+

second aspectQUANTITY

0.98+

first oneQUANTITY

0.97+

three thingsQUANTITY

0.97+

ManojPERSON

0.97+

singleQUANTITY

0.97+

two thingsQUANTITY

0.96+

DevonORGANIZATION

0.96+

Hitachi Application Reliability CentersORGANIZATION

0.94+

MartinPERSON

0.94+

three separate activitiesQUANTITY

0.92+

one areaQUANTITY

0.92+

single backlogQUANTITY

0.92+

L twoOTHER

0.91+

CloudOpsTITLE

0.9+

L threeOTHER

0.89+

SRETITLE

0.89+

AzureTITLE

0.88+

two tipsQUANTITY

0.88+

last couple of yearsDATE

0.88+

MicrosoftORGANIZATION

0.87+

two more thingsQUANTITY

0.87+

Paola Peraza Calderon & Viraj Parekh, Astronomer | Cube Conversation


 

(soft electronic music) >> Hey everyone, welcome to this CUBE conversation as part of the AWS Startup Showcase, season three, episode one, featuring Astronomer. I'm your host, Lisa Martin. I'm in the CUBE's Palo Alto Studios, and today excited to be joined by a couple of guests, a couple of co-founders from Astronomer. Viraj Parekh is with us, as is Paola Peraza-Calderon. Thanks guys so much for joining us. Excited to dig into Astronomer. >> Thank you so much for having us. >> Yeah, thanks for having us. >> Yeah, and we're going to be talking about the role of data orchestration. Paola, let's go ahead and start with you. Give the audience that understanding, that context about Astronomer and what it is that you guys do. >> Mm-hmm. Yeah, absolutely. So, Astronomer is a, you know, we're a technology and software company for modern data orchestration, as you said, and we're the driving force behind Apache Airflow. The Open Source Workflow Management tool that's since been adopted by thousands and thousands of users, and we'll dig into this a little bit more. But, by data orchestration, we mean data pipeline, so generally speaking, getting data from one place to another, transforming it, running it on a schedule, and overall just building a central system that tangibly connects your entire ecosystem of data services, right. So what, that's Redshift, Snowflake, DVT, et cetera. And so tangibly, we build, we at Astronomer here build products powered by Apache Airflow for data teams and for data practitioners, so that they don't have to. So, we sell to data engineers, data scientists, data admins, and we really spend our time doing three things. So, the first is that we build Astro, our flagship cloud service that we'll talk more on. But here, we're really building experiences that make it easier for data practitioners to author, run, and scale their data pipeline footprint on the cloud. And then, we also contribute to Apache Airflow as an open source project and community. So, we cultivate the community of humans, and we also put out open source developer tools that actually make it easier for individual data practitioners to be productive in their day-to-day jobs, whether or not they actually use our product and and pay us money or not. And then of course, we also have professional services and education and all of these things around our commercial products that enable folks to use our products and use Airflow as effectively as possible. So yeah, super, super happy with everything we've done and hopefully that gives you an idea of where we're starting. >> Awesome, so when you're talking with those, Paola, those data engineers, those data scientists, how do you define data orchestration and what does it mean to them? >> Yeah, yeah, it's a good question. So, you know, if you Google data orchestration you're going to get something about an automated process for organizing silo data and making it accessible for processing and analysis. But, to your question, what does that actually mean, you know? So, if you look at it from a customer's perspective, we can share a little bit about how we at Astronomer actually do data orchestration ourselves and the problems that it solves for us. So, as many other companies out in the world do, we at Astronomer need to monitor how our own customers use our products, right? And so, we have a weekly meeting, for example, that goes through a dashboard and a dashboarding tool called Sigma where we see the number of monthly customers and how they're engaging with our product. But, to actually do that, you know, we have to use data from our application database, for example, that has behavioral data on what they're actually doing in our product. We also have data from third party API tools, like Salesforce and HubSpot, and other ways in which our customer, we actually engage with our customers and their behavior. And so, our data team internally at Astronomer uses a bunch of tools to transform and use that data, right? So, we use FiveTran, for example, to ingest. We use Snowflake as our data warehouse. We use other tools for data transformations. And even, if we at Astronomer don't do this, you can imagine a data team also using tools like, Monte Carlo for data quality, or Hightouch for Reverse ETL, or things like that. And, I think the point here is that data teams, you know, that are building data-driven organizations have a plethora of tooling to both ingest the right data and come up with the right interfaces to transform and actually, interact with that data. And so, that movement and sort of synchronization of data across your ecosystem is exactly what data orchestration is responsible for. Historically, I think, and Raj will talk more about this, historically, schedulers like KRON and Oozie or Control-M have taken a role here, but we think that Apache Airflow has sort of risen over the past few years as the defacto industry standard for writing data pipelines that do tasks, that do data jobs that interact with that ecosystem of tools in your organization. And so, beyond that sort of data pipeline unit, I think where we see it is that data acquisition is not only writing those data pipelines that move your data, but it's also all the things around it, right, so, CI/CD tool and Secrets Management, et cetera. So, a long-winded answer here, but I think that's how we talk about it here at Astronomer and how we're building our products. >> Excellent. Great context, Paola. Thank you. Viraj, let's bring you into the conversation. Every company these days has to be a data company, right? They've got to be a software company- >> Mm-hmm. >> whether it's my bank or my grocery store. So, how are companies actually doing data orchestration today, Viraj? >> Yeah, it's a great question. So, I think one thing to think about is like, on one hand, you know, data orchestration is kind of a new category that we're helping define, but on the other hand, it's something that companies have been doing forever, right? You need to get data moving to use it, you know. You've got it all in place, aggregate it, cleaning it, et cetera. So, when you look at what companies out there are doing, right. Sometimes, if you're a more kind of born in the cloud company, as we say, you'll adopt all these cloud native tooling things your cloud provider gives you. If you're a bank or another sort of institution like that, you know, you're probably juggling an even wider variety of tools. You're thinking about a cloud migration. You might have things like Kron running in one place, Uzi running somewhere else, Informatics running somewhere else, while you're also trying to move all your workloads to the cloud. So, there's quite a large spectrum of what the current state is for companies. And then, kind of like Paola was saying, Apache Airflow started in 2014, and it was actually started by Airbnb, and they put out this blog post that was like, "Hey here's how we use Apache Airflow to orchestrate our data across all their sources." And really since then, right, it's almost been a decade since then, Airflow emerged as the open source standard, and there's companies of all sorts using it. And, it's really used to tie all these tools together, especially as that number of tools increases, companies move to hybrid cloud, hybrid multi-cloud strategies, and so on and so forth. But you know, what we found is that if you go to any company, especially a larger one and you say like, "Hey, how are you doing data orchestration?" They'll probably say something like, "Well, I have five data teams, so I have eight different ways I do data orchestration." Right. This idea of data orchestration's been there but the right way to do it, kind of all the abstractions you need, the way your teams need to work together, and so on and so forth, hasn't really emerged just yet, right? It's such a quick moving space that companies have to combine what they were doing before with what their new business initiatives are today. So, you know, what we really believe here at Astronomer is Airflow is the core of how you solve data orchestration for any sort of use case, but it's not everything. You know, it needs a little more. And, that's really where our commercial product, Astro comes in, where we've built, not only the most tried and tested airflow experience out there. We do employ a majority of the Airflow Core Committers, right? So, we're kind of really deep in the project. We've also built the right things around developer tooling, observability, and reliability for customers to really rely on Astro as the heart of the way they do data orchestration, and kind of think of it as the foundational layer that helps tie together all the different tools, practices and teams large companies have to do today. >> That foundational layer is absolutely critical. You've both mentioned open source software. Paola, I want to go back to you, and just give the audience an understanding of how open source really plays into Astronomer's mission as a company, and into the technologies like Astro. >> Mm-hmm. Yeah, absolutely. I mean, we, so we at Astronomers started using Airflow and actually building our products because Airflow is open source and we were our own customers at the beginning of our company journey. And, I think the open source community is at the core of everything we do. You know, without that open source community and culture, I think, you know, we have less of a business, and so, we're super invested in continuing to cultivate and grow that. And, I think there's a couple sort of concrete ways in which we do this that personally make me really excited to do my own job. You know, for one, we do things like we organize meetups and we sponsor the Airflow Summit and there's these sort of baseline community efforts that I think are really important and that reminds you, hey, there just humans trying to do their jobs and learn and use both our technology and things that are out there and contribute to it. So, making it easier to contribute to Airflow, for example, is another one of our efforts. As Viraj mentioned, we also employ, you know, engineers internally who are on our team whose full-time job is to make the open source project better. Again, regardless of whether or not you're a customer of ours or not, we want to make sure that we continue to cultivate the Airflow project in and of itself. And, we're also building developer tooling that might not be a part of the Apache Open Source project, but is still open source. So, we have repositories in our own sort of GitHub organization, for example, with tools that individual data practitioners, again customers are not, can use to make them be more productive in their day-to-day jobs with Airflow writing Dags for the most common use cases out there. The last thing I'll say is how important I think we've found it to build sort of educational resources and documentation and best practices. Airflow can be complex. It's been around for a long time. There's a lot of really, really rich feature sets. And so, how do we enable folks to actually use those? And that comes in, you know, things like webinars, and best practices, and courses and curriculum that are free and accessible and open to the community are just some of the ways in which I think we're continuing to invest in that open source community over the next year and beyond. >> That's awesome. It sounds like open source is really core, not only to the mission, but really to the heart of the organization. Viraj, I want to go back to you and really try to understand how does Astronomer fit into the wider modern data stack and ecosystem? Like what does that look like for customers? >> Yeah, yeah. So, both in the open source and with our commercial customers, right? Folks everywhere are trying to tie together a huge variety of tools in order to start making sense of their data. And you know, I kind of think of it almost like as like a pyramid, right? At the base level, you need things like data reliability, data, sorry, data freshness, data availability, and so on and so forth, right? You just need your data to be there. (coughs) I'm sorry. You just need your data to be there, and you need to make it predictable when it's going to be there. You need to make sure it's kind of correct at the highest level, some quality checks, and so on and so forth. And oftentimes, that kind of takes the case of ELT or ETL use cases, right? Taking data from somewhere and moving it somewhere else, usually into some sort of analytics destination. And, that's really what businesses can do to just power the core parts of getting insights into how their business is going, right? How much revenue did I had? What's in my pipeline, salesforce, and so on and so forth. Once that kind of base foundation is there and people can get the data they need, how they need it, it really opens up a lot for what customers can do. You know, I think one of the trendier things out there right now is MLOps, and how do companies actually put machine learning into production? Well, when you think about it you kind of have to squint at it, right? Like, machine learning pipelines are really just any other data pipeline. They just have a certain set of needs that might not not be applicable to ELT pipelines. And, when you kind of have a common layer to tie together all the ways data can move through your organization, that's really what we're trying to make it so companies can do. And, that happens in financial services where, you know, we have some customers who take app data coming from their mobile apps, and actually run it through their fraud detection services to make sure that all the activity is not fraudulent. We have customers that will run sports betting models on our platform where they'll take data from a bunch of public APIs around different sporting events that are happening, transform all of that in a way their data scientist can build models with it, and then actually bet on sports based on that output. You know, one of my favorite use cases I like to talk about that we saw in the open source is we had there was one company whose their business was to deliver blood transfusions via drone into remote parts of the world. And, it was really cool because they took all this data from all sorts of places, right? Kind of orchestrated all the aggregation and cleaning and analysis that happened had to happen via airflow and the end product would be a drone being shot out into a real remote part of the world to actually give somebody blood who needed it there. Because it turns out for certain parts of the world, the easiest way to deliver blood to them is via drone and not via some other, some other thing. So, these kind of, all the things people do with the modern data stack is absolutely incredible, right? Like you were saying, every company's trying to be a data-driven company. What really energizes me is knowing that like, for all those best, super great tools out there that power a business, we get to be the connective tissue, or the, almost like the electricity that kind of ropes them all together and makes so people can actually do what they need to do. >> Right. Phenomenal use cases that you just described, Raj. I mean, just the variety alone of what you guys are able to do and impact is so cool. So Paola, when you're with those data engineers, those data scientists, and customer conversations, what's your pitch? Why use Astro? >> Mm-hmm. Yeah, yeah, it's a good question. And honestly, to piggyback off of Viraj, there's so many. I think what keeps me so energized is how mission critical both our product and data orchestration is, and those use cases really are incredible and we work with customers of all shapes and sizes. But, to answer your question, right, so why use Astra? Why use our commercial products? There's so many people using open source, why pay for something more than that? So, you know, the baseline for our business really is that Airflow has grown exponentially over the last five years, and like we said has become an industry standard that we're confident there's a huge opportunity for us as a company and as a team. But, we also strongly believe that being great at running Airflow, you know, doesn't make you a successful company at what you do. What makes you a successful company at what you do is building great products and solving problems and solving pin points of your own customers, right? And, that differentiating value isn't being amazing at running Airflow. That should be our job. And so, we want to abstract those customers from meaning to do things like manage Kubernetes infrastructure that you need to run Airflow, and then hiring someone full-time to go do that. Which can be hard, but again doesn't add differentiating value to your team, or to your product, or to your customers. So, folks to get away from managing that infrastructure sort of a base, a base layer. Folks who are looking for differentiating features that make their team more productive and allows them to spend less time tweaking Airflow configurations and more time working with the data that they're getting from their business. For help, getting, staying up with Airflow releases. There's a ton of, we've actually been pretty quick to come out with new Airflow features and releases, and actually just keeping up with that feature set and working strategically with a partner to help you make the most out of those feature sets is a key part of it. And, really it's, especially if you're an organization who currently is committed to using Airflow, you likely have a lot of Airflow environments across your organization. And, being able to see those Airflow environments in a single place and being able to enable your data practitioners to create Airflow environments with a click of a button, and then use, for example, our command line to develop your Airflow Dags locally and push them up to our product, and use all of the sort of testing and monitoring and observability that we have on top of our product is such a key. It sounds so simple, especially if you use Airflow, but really those things are, you know, baseline value props that we have for the customers that continue to be excited to work with us. And of course, I think we can go beyond that and there's, we have ambitions to add whole, a whole bunch of features and expand into different types of personas. >> Right? >> But really our main value prop is for companies who are committed to Airflow and want to abstract themselves and make use of some of the differentiating features that we now have at Astronomer. >> Got it. Awesome. >> Thank you. One thing, one thing I'll add to that, Paola, and I think you did a good job of saying is because every company's trying to be a data company, companies are at different parts of their journey along that, right? And we want to meet customers where they are, and take them through it to where they want to go. So, on one end you have folks who are like, "Hey, we're just building a data team here. We have a new initiative. We heard about Airflow. How do you help us out?" On the farther end, you know, we have some customers that have been using Airflow for five plus years and they're like, "Hey, this is awesome. We have 10 more teams we want to bring on. How can you help with this? How can we do more stuff in the open source with you? How can we tell our story together?" And, it's all about kind of taking this vast community of data users everywhere, seeing where they're at, and saying like, "Hey, Astro and Airflow can take you to the next place that you want to go." >> Which is incredibly- >> Mm-hmm. >> and you bring up a great point, Viraj, that every company is somewhere in a different place on that journey. And it's, and it's complex. But it sounds to me like a lot of what you're doing is really stripping away a lot of the complexity, really enabling folks to use their data as quickly as possible, so that it's relevant and they can serve up, you know, the right products and services to whoever wants what. Really incredibly important. We're almost out of time, but I'd love to get both of your perspectives on what's next for Astronomer. You give us a a great overview of what the company's doing, the value in it for customers. Paola, from your lens as one of the co-founders, what's next? >> Yeah, I mean, I think we'll continue to, I think cultivate in that open source community. I think we'll continue to build products that are open sourced as part of our ecosystem. I also think that we'll continue to build products that actually make Airflow, and getting started with Airflow, more accessible. So, sort of lowering that barrier to entry to our products, whether that's price wise or infrastructure requirement wise. I think making it easier for folks to get started and get their hands on our product is super important for us this year. And really it's about, I think, you know, for us, it's really about focused execution this year and all of the sort of core principles that we've been talking about. And continuing to invest in all of the things around our product that again, enable teams to use Airflow more effectively and efficiently. >> And that efficiency piece is, everybody needs that. Last question, Viraj, for you. What do you see in terms of the next year for Astronomer and for your role? >> Yeah, you know, I think Paola did a really good job of laying it out. So it's, it's really hard to disagree with her on anything, right? I think executing is definitely the most important thing. My own personal bias on that is I think more than ever it's important to really galvanize the community around airflow. So, we're going to be focusing on that a lot. We want to make it easier for our users to get get our product into their hands, be that open source users or commercial users. And last, but certainly not least, is we're also really excited about Data Lineage and this other open source project in our umbrella called Open Lineage to make it so that there's a standard way for users to get lineage out of different systems that they use. When we think about what's in store for data lineage and needing to audit the way automated decisions are being made. You know, I think that's just such an important thing that companies are really just starting with, and I don't think there's a solution that's emerged that kind of ties it all together. So, we think that as we kind of grow the role of Airflow, right, we can also make it so that we're helping solve, we're helping customers solve their lineage problems all in Astro, which is our kind of the best of both worlds for us. >> Awesome. I can definitely feel and hear the enthusiasm and the passion that you both bring to Astronomer, to your customers, to your team. I love it. We could keep talking more and more, so you're going to have to come back. (laughing) Viraj, Paola, thank you so much for joining me today on this showcase conversation. We really appreciate your insights and all the context that you provided about Astronomer. >> Thank you so much for having us. >> My pleasure. For my guests, I'm Lisa Martin. You're watching this Cube conversation. (soft electronic music)

Published Date : Feb 21 2023

SUMMARY :

to this CUBE conversation Thank you so much and what it is that you guys do. and hopefully that gives you an idea and the problems that it solves for us. to be a data company, right? So, how are companies actually kind of all the abstractions you need, and just give the And that comes in, you of the organization. and analysis that happened that you just described, Raj. that you need to run Airflow, that we now have at Astronomer. Awesome. and I think you did a good job of saying and you bring up a great point, Viraj, and all of the sort of core principles and for your role? and needing to audit the and all the context that you (soft electronic music)

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Viraj ParekhPERSON

0.99+

Lisa MartinPERSON

0.99+

PaolaPERSON

0.99+

VirajPERSON

0.99+

2014DATE

0.99+

AstronomerORGANIZATION

0.99+

Paola Peraza-CalderonPERSON

0.99+

Paola Peraza CalderonPERSON

0.99+

AirflowORGANIZATION

0.99+

AirbnbORGANIZATION

0.99+

five plus yearsQUANTITY

0.99+

AstroORGANIZATION

0.99+

RajPERSON

0.99+

UziORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

firstQUANTITY

0.99+

bothQUANTITY

0.99+

todayDATE

0.99+

KronORGANIZATION

0.99+

10 more teamsQUANTITY

0.98+

AstronomersORGANIZATION

0.98+

AstraORGANIZATION

0.98+

oneQUANTITY

0.98+

AirflowTITLE

0.98+

InformaticsORGANIZATION

0.98+

Monte CarloTITLE

0.98+

this yearDATE

0.98+

HubSpotORGANIZATION

0.98+

one companyQUANTITY

0.97+

AstronomerTITLE

0.97+

next yearDATE

0.97+

ApacheORGANIZATION

0.97+

Airflow SummitEVENT

0.97+

AWSORGANIZATION

0.95+

both worldsQUANTITY

0.93+

KRONORGANIZATION

0.93+

CUBEORGANIZATION

0.92+

MORGANIZATION

0.92+

RedshiftTITLE

0.91+

SnowflakeTITLE

0.91+

five data teamsQUANTITY

0.91+

GitHubORGANIZATION

0.91+

OozieORGANIZATION

0.9+

Data LineageORGANIZATION

0.9+

Luis Ceze, OctoML | Cube Conversation


 

(gentle music) >> Hello, everyone. Welcome to this Cube Conversation. I'm John Furrier, host of theCUBE here, in our Palo Alto Studios. We're featuring OctoML. I'm with the CEO, Luis Ceze. Chief Executive Officer, Co-founder of OctoML. I'm John Furrier of theCUBE. Thanks for joining us today. Luis, great to see you. Last time we spoke was at "re:MARS" Amazon's event. Kind of a joint event between (indistinct) and Amazon, kind of put a lot together. Great to see you. >> Great to see you again, John. I really have good memories of that interview. You know, that was definitely a great time. Great to chat with you again. >> The world of ML and AI, machine learning and AI is really hot. Everyone's talking about it. It's really great to see that advance. So I'm looking forward to this conversation but before we get started, introduce who you are in OctoML. >> Sure. I'm Luis Ceze, Co-founder and CEO at OctoML. I'm also professor of Computer Science at University of Washington. You know, OctoML grew out of our efforts on the Apache CVM project, which is a compiler in runtime system that enables folks to run machine learning models in a broad set of harder in the Edge and in the Cloud very efficiently. You know, we grew that project and grew that community, definitely saw there was something to pain point there. And then we built OctoML, OctoML is about three and a half years old now. And the mission, the company is to enable customers to deploy models very efficiently in the Cloud. And make them, you know, run. Do it quickly, run fast, and run at a low cost, which is something that's especially timely right now. >> I like to point out also for the folks 'casue they should know that you're also a professor in the Computer Science department at University of Washington. A great program there. This is a really an inflection point with AI machine learning. The computer science industry has been waiting for decades to advance AI with all this new cloud computing, all the hardware and silicon advancements, GPUs. This is the perfect storm. And you know, this the computer science now we we're seeing an acceleration. Can you share your view, and you're obviously a professor in that department but also, an entrepreneur. This is a great time for computer science. Explain why. >> Absolutely, yeah, no. Just like the confluence of you know, advances in what, you know, computers can do as devices to computer information. Plus, you know, advances in AI that enable applications that you know, we thought it was highly futuristic and now it's just right there today. You know, AI that can generate photo realistic images from descriptions, you know, can write text that's pretty good. Can help augment, you know, human creativity in a really meaningful way. So you see the confluence of capabilities and the creativity of humankind into new applications is just extremely exciting, both from a researcher point of view as well as an entrepreneur point of view, right. >> What should people know about these large language models we're seeing with ChatGPT and how Google has got a lot of work going on that air. There's been a lot of work recently. What's different now about these models, and why are they so popular and effective now? What's the difference between now, and say five years ago, that makes it more- >> Oh, yeah. It's a huge inflection on their capabilities, I always say like emergent behavior, right? So as these models got more complex and our ability to train and deploy them, you know, got to this point... You know, they really crossed a threshold into doing things that are truly surprising, right? In terms of generating, you know, exhalation for things generating tax, summarizing tax, expending tax. And you know, exhibiting what to some may look like reasoning. They're not quite reasoning fundamentally. They're generating tax that looks like they're reasoning, but they do it so well, that it feels like was done by a human, right. So I would say that the biggest changes that, you know, now, they can actually do things that are extremely useful for business in people's lives today. And that wasn't the case five years ago. So that's in the model capabilities and that is being paired with huge advances in computing that enabled this to be... Enables this to be, you know, actually see line of sites to be deployed at scale, right. And that's where we come in, by the way, but yeah. >> Yeah, I want to get into that. And also, you know, the fusion of data integrating data sets at scales. Another one we're seeing a lot of happening now. It's not just some, you know, siloed, pre-built data modeling. It's a lot of agility and a lot of new integration capabilities of data. How is that impacting the dynamics? >> Yeah, absolutely. So I'll say that the ability to either take the data that has that exists in training a model to do something useful with it, and more interestingly I would say, using baseline foundational models and with a little bit of data, turn them into something that can do a specialized task really, really well. Created this really fast proliferation of really impactful applications, right? >> If every company now is looking at this trend and I'm seeing a lot... And I think every company will rebuild their business with machine learning. If they're not already doing it. And the folks that aren't will probably be dinosaurs will be out of business. This is a real business transformation moment where machine learning and AI, as it goes mainstream. I think it's just the beginning. This is where you guys come in, and you guys are poised for handling this frenzy to change business with machine learning models. How do you guys help customers as they look at this, you know, transition to get, you know, concept to production with machine learning? >> Great. Great questions, yeah, so I would say that it's fair to say there's a bunch of models out there that can do useful things right off the box, right? So and also, the ability to create models improved quite a bit. So the challenge now shifted to customers, you know. Everyone is looking to incorporating AI into their applications. So what we do for them is to, first of all, how do you do that quickly, without needing highly specialized, difficult to find engineering? And very importantly, how do you do that at cost that's accessible, right? So all of these fantastic models that we just talked about, they use an amount of computing that's just astronomical compared to anything else we've done in the past. It means the costs that come with it, are also very, very high. So it's important to enable customers to, you know, incorporate AI into their applications, to their use cases in a way that they can do, with the people that they have, and the costs that they can afford, such that they can have, you know, the maximum impacting possibly have. And finally, you know, helping them deal with hardware availability, as you know, even though we made a lot of progress in making computing cheaper and cheaper. Even to this day, you know, you can never get enough. And getting an allocation, getting the right hardware to run these incredibly hungry models is hard. And we help customers deal with, you know, harder availability as well. >> Yeah, for the folks watching as a... If you search YouTube, there's an interview we did last year at "re:MARS," I mentioned that earlier, just a great interview. You talked about this hardware independence, this traction. I want to get into that, because if you look at all the foundation models that are out there right now, that are getting traction, you're seeing two trends. You're seeing proprietary and open source. And obviously, open source always wins in my opinion, but, you know, there's this iPhone moment and android moment that one of your investors John Torrey from Madrona, talked about was is iPhone versus Android moment, you know, one's proprietary hardware and they're very specialized high performance and then open source. This is an important distinction and you guys are hardware independent. What's the... Explain what all this means. >> Yeah. Great set of questions. First of all, yeah. So, you know, OpenAI, and of course, they create ChatGPT and they offer an API to run these models that does amazing things. But customers have to be able to go and send their data over to OpenAI, right? So, and run the model there and get the outputs. Now, there's open source models that can do amazing things as well, right? So they typically open source models, so they don't lag behind, you know, these proprietary closed models by more than say, you know, six months or so, let's say. And it means that enabling customers to take the models that they want and deploy under their control is something that's very valuable, because one, you don't have to expose your data to externally. Two, you can customize the model even more to the things that you wanted to do. And then three, you can run on an infrastructure that can be much more cost effective than having to, you know, pay somebody else's, you know, cost and markup, right? So, and where we help them is essentially help customers, enable customers to take machine learning models, say an open source model, and automate the process of putting them into production, optimize them to run with the right performance, and more importantly, give them the independence to run where they need to run, where they can run best, right? >> Yeah, and also, you know, I point out all the time that, you know, there's never any stopping the innovation of hardware silicon. You're seeing cloud computing more coming in there. So, you know, being hardware independent has some advantages. And if you look at OpenAI, for instance, you mentioned ChatGPT, I think this is interesting because I think everyone is scratching their head, going, "Okay, I need to move to this new generation." What's your pro tip and advice for folks who want to move to, or businesses that want to say move to machine learning? How do they get started? What are some of the considerations they need to think about to deploy these models into production? >> Yeah, great though. Great set of questions. First of all, I mean, I'm sure they're very aware of the kind of things that you want to do with AI, right? So you could be interacting with customers, you know, automating, interacting with customers. It could be, you know, finding issues in production lines. It could be, you know... Generating, you know, making it easier to produce content and so on. Like, you know, customers, users would have an idea what they want to do. You know, from that it can actually determine, what kind of machine learning models would solve the problem that would, you know, fits that use case. But then, that's when the hard thing begins, right? So when you find a model, identify the model that can do the thing that you wanted to do, you need to turn that into a thing that you can deploy. So how do you go from machine learning model that does a thing that you need to do, to a container with the right executor, the artifact they can actually go and deploy, right? So we've seen customers doing that on their own, right? So, and it's got a bit of work, and that's why we are excited about the automation that we can offer and then turn that into a turnkey problem, right? So a turnkey process. >> Luis, talk about the use cases. If I don't mind going and double down on the previous answer. You got existing services, and then there's new AI applications, AI for applications. What are the use cases with existing stuff, and the new applications that are being built? >> Yeah, I mean, existing itself is, for example, how do you do very smart search and auto completion, you know, when you are editing documents, for example. Very, very smart search of documents, summarization of tax, expanding bullets into pros in a way that, you know, don't have to spend as much human time. Just some of the existing applications, right? So some of the new ones are like truly AI native ways of producing content. Like there's a company that, you know, we share investors and love what they're doing called runwayyML, for example. It's sort of like an AI first way of editing and creating visual content, right? So you could say you have a video, you could say make this video look like, it's night as opposed to dark, or remove that dog in the corner. You can do that in a way that you couldn't do otherwise. So there's like definitely AI native use cases. And yet not only in life sciences, you know, there's quite a bit of advances on AI-based, you know, therapies and diagnostics processes that are designed using automated processes. And this is something that I feel like, we were just scratching the surface there. There's huge opportunities there, right? >> Talk about the inference and AI and production kind of angle here, because cost is a huge concern when you look at... And there's a hardware and that flexibility there. So I can see how that could help, but is there a cost freight train that can get out of control here if you don't deploy properly? Talk about the scale problem around cost in AI. >> Yeah, absolutely. So, you know, very quickly. One thing that people tend to think about is the cost is. You know, training has really high dollar amounts it tends over index on that. But what you have to think about is that for every model that's actually useful, you're going to train it once, and then run it a large number of times in inference. That means that over the lifetime of a model, the vast majority of the compute cycles and the cost are going to go to inference. And that's what we address, right? So, and to give you some idea, if you're talking about using large language model today, you know, you can say it's going to cost a couple of cents per, you know, 2,000 words output. If you have a million users active, you know, a day, you know, if you're lucky and you have that, you can, this cost can actually balloon very quickly to millions of dollars a month, just in inferencing costs. You know, assuming you know, that you actually have access to the infrastructure to run it, right? So means that if you don't pay attention to these inference costs and that's definitely going to be a surprise. And affects the economics of the product where this is embedded in, right? So this is something that, you know, if there's quite a bit of attention being put on right now on how do you do search with large language models and you don't pay attention to the economics, you know, you can have a surprise. You have to change the business model there. >> Yeah. I think that's important to call out, because you don't want it to be a runaway cost structure where you architected it wrong and then next thing you know, you got to unwind that. I mean, it's more than technical debt, it's actually real debt, it's real money. So, talk about some of the dynamics with the customers. How are they architecting this? How do they get ahead of that problem? What do you guys do specifically to solve that? >> Yeah, I mean, well, we help customers. So, it's first of all, be hyper aware, you know, understanding what's going to be the cost for them deploying the models into production and showing them the possibilities of how you can deploy the model with different cost structure, right? So that's where, you know, the ability to have hardware independence is so important because once you have hardware independence, after you optimize models, obviously, you have a new, you know, dimension of freedom to choose, you know, what is the right throughput per dollar for you. And then where, and what are the options? And once you make that decision, you want to automate the process of putting into production. So the way we help customers is showing very clearly in their use case, you know, how they can deploy their models in a much more cost-effective way. You know, when the cases... There's a case study that we put out recently, showing a 4x reduction in deployment costs, right? So this is by doing a mix optimization and choosing the right hardware. >> How do you address the concern that someone might say, Luis said, "Hey, you know, I don't want to degrade performance and latency, and I don't want the user experience to suffer." What's the answer there? >> Two things. So first of all, all of the manipulations that we do in the model is to turn the model to efficient code without changing the behavior of the models. We wouldn't degrade the experience of the user by having the model be wrong more often. And we don't change that at all. The model behaves the way it was validated for. And then the second thing is, you know, user experience with respect to latency, it's all about a maximum... Like, you could say, I want a model to run at 50 milliseconds or less. If it's much faster than 15 seconds, you're not going to notice the difference. But if it's lower, you're going to notice a difference. So the key here is that, how do you find a set of options to deploy, that you are not overshooting performance in a way that's going to lead to costs that has no additional benefits. And this provides a huge, a very significant margin of choices, set of choices that you can optimize for cost without degrading customer experience, right. End user experience. >> Yeah, and I also point out the large language models like the ChatGPTs of the world, they're coming out with Dave Moth and I were talking on this breaking analysis around, this being like, over 10X more computational intensive on capabilities. So this hardware independence is a huge thing. So, and also supply chain, some people can't get servers by the way, so, or hardware these days. >> Or even more interestingly, right? So they do not grow in trees, John. Like GPUs is not kind of stuff that you plant an orchard until you have a bunch and then you can increase it, but no, these things, you know, take a while. So, and you can't increase it overnight. So being able to live with those cycles that are available to you is not just important for all for cost, but also important for people to scale and serve more users at, you know, at whatever pace that they come, right? >> You know, it's really great to talk to you, and congratulations on OctaML. Looking forward to the startup showcase, we'll be featuring you guys there. But I want to get your personal opinion as someone in the industry and also, someone who's been in the computer science area for your career. You know, computer science has always been great, and there's more people enrolling in computer science, more diversity than ever before, but there's also more computer science related fields. How is this opening up computer science and where's AI going with the computers, with the science? Can you share your vision on, you know, the aperture, or the landscape of CompSci, or CS students, and opportunities. >> Yeah, no, absolutely. I think it's fair to say that computer has been embedded in pretty much every aspect of human life these days. Human life these days, right? So for everything. And AI has been a counterpart, it been an integral component of computer science for a while. And this medicines that happened in the last 10, 15 years in AI has shown, you know, new application has I think re-energized how people see what computers can do. And you, you know, there is this picture in our department that shows computer science at the center called the flower picture, and then all the different paddles like life sciences, social sciences, and then, you know, mechanical engineering, all these other things that, and I feel like it can replace that center with computer science. I put AI there as well, you see AI, you know touching all these applications. AI in healthcare, diagnostics. AI in discovery in the sciences, right? So, but then also AI doing things that, you know, the humans wouldn't have to do anymore. They can do better things with their brains, right? So it's permitting every single aspect of human life from intellectual endeavor to day-to-day work, right? >> Yeah. And I think the ChatGPT and OpenAI has really kind of created a mainstream view that everyone sees value in it. Like you could be in the data center, you could be in bio, you could be in healthcare. I mean, every industry sees value. So this brings up what I can call the horizontally scalable use constance. And so this opens up the conversation, what's going to change from this? Because if you go horizontally scalable, which is a cloud concept as you know, that's going to create a lot of opportunities and some shifting of how you think about architecture around data, for instance. What's your opinion on what this will do to change the inflection of the role of architecting platforms and the role of data specifically? >> Yeah, so good question. There is a lot in there, by the way, I should have added the previous question, that you can use AI to do better AI as well, which is what we do, and other folks are doing as well. And so the point I wanted to make here is that it's pretty clear that you have a cloud focus component with a nudge focused counterparts. Like you have AI models, but both in the Cloud and in the Edge, right? So the ability of being able to run your AI model where it runs best also has a data advantage to it from say, from a privacy point of view. That's inherently could say, "Hey, I want to run something, you know, locally, strictly locally, such that I don't expose the data to an infrastructure." And you know that the data never leaves you, right? Never leaves the device. Now you can imagine things that's already starting to happen, like you do some forms of training and model customization in the model architecture itself and the system architecture, such that you do this as close to the user as possible. And there's something called federated learning that has been around for some time now that's finally happening is, how do you get a data from butcher places, you do, you know, some common learning and then you send a model to the Edges, and they get refined for the final use in a way that you get the advantage of aggregating data but you don't get the disadvantage of privacy issues and so on. >> It's super exciting. >> And some of the considerations, yeah. >> It's super exciting area around data infrastructure, data science, computer science. Luis, congratulations on your success at OctaML. You're in the middle of it. And the best thing about its businesses are looking at this and really reinventing themselves and if a business isn't thinking about restructuring their business around AI, they're probably will be out of business. So this is a great time to be in the field. So thank you for sharing your insights here in theCUBE. >> Great. Thank you very much, John. Always a pleasure talking to you. Always have a lot of fun. And we both speak really fast, I can tell, you know, so. (both laughing) >> I know. We'll not the transcript available, we'll integrate it into our CubeGPT model that we have Luis. >> That's right. >> Great. >> Great. >> Great to talk to you, thank you, John. Thanks, man, bye. >> Hey, this is theCUBE. I'm John Furrier, here in Palo Alto, Cube Conversation. Thanks for watching. (gentle music)

Published Date : Feb 21 2023

SUMMARY :

Luis, great to see you. Great to chat with you again. introduce who you are in OctoML. And make them, you know, run. And you know, this the Just like the confluence of you know, What's the difference between now, Enables this to be, you know, And also, you know, the fusion of data So I'll say that the ability and you guys are poised for handling Even to this day, you know, and you guys are hardware independent. so they don't lag behind, you know, I point out all the time that, you know, that would, you know, fits that use case. and the new applications in a way that, you know, if you don't deploy properly? So, and to give you some idea, and then next thing you So that's where, you know, Luis said, "Hey, you know, that you can optimize for cost like the ChatGPTs of the world, that are available to you Can you share your vision on, you know, you know, the humans which is a cloud concept as you know, is that it's pretty clear that you have So thank you for sharing your I can tell, you know, so. We'll not the transcript available, Great to talk to you, I'm John Furrier, here in

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

Luis CezePERSON

0.99+

Dave MothPERSON

0.99+

John TorreyPERSON

0.99+

LuisPERSON

0.99+

John FurrierPERSON

0.99+

AmazonORGANIZATION

0.99+

2,000 wordsQUANTITY

0.99+

six monthsQUANTITY

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

GoogleORGANIZATION

0.99+

last yearDATE

0.99+

OctoMLORGANIZATION

0.99+

second thingQUANTITY

0.99+

4xQUANTITY

0.99+

androidTITLE

0.99+

MadronaORGANIZATION

0.99+

Two thingsQUANTITY

0.99+

50 millisecondsQUANTITY

0.99+

YouTubeORGANIZATION

0.99+

five years agoDATE

0.98+

todayDATE

0.98+

bothQUANTITY

0.98+

OctaMLORGANIZATION

0.98+

University of WashingtonORGANIZATION

0.98+

OctoMLPERSON

0.97+

AndroidTITLE

0.97+

firstQUANTITY

0.96+

15 secondsQUANTITY

0.96+

a dayQUANTITY

0.95+

oneQUANTITY

0.95+

FirstQUANTITY

0.95+

ChatGPTTITLE

0.94+

threeQUANTITY

0.93+

over 10XQUANTITY

0.93+

OpenAIORGANIZATION

0.92+

OctoMLTITLE

0.91+

theCUBEORGANIZATION

0.91+

about three and a half yearsQUANTITY

0.91+

OpenAITITLE

0.9+

ApacheORGANIZATION

0.9+

two trendsQUANTITY

0.88+

Palo Alto StudiosLOCATION

0.86+

millions of dollars a monthQUANTITY

0.86+

One thingQUANTITY

0.84+

a million usersQUANTITY

0.83+

TwoQUANTITY

0.83+

Palo Alto,LOCATION

0.82+

CubeGPTCOMMERCIAL_ITEM

0.81+

re:MARSEVENT

0.76+

ChatGPTORGANIZATION

0.75+

decadesQUANTITY

0.72+

single aspectQUANTITY

0.68+

couple of centsQUANTITY

0.66+

runwayyMLTITLE

0.64+

10, 15 yearsQUANTITY

0.6+

CubeTITLE

0.57+

onceQUANTITY

0.52+

lastDATE

0.5+

ConversationEVENT

0.49+

ConversationLOCATION

0.41+

EdgesTITLE

0.38+

ConversationORGANIZATION

0.36+

CubeORGANIZATION

0.36+

Breaking Analysis: MWC 2023 highlights telco transformation & the future of business


 

>> From the Cube Studios in Palo Alto in Boston, bringing you data-driven insights from The Cube and ETR. This is "Breaking Analysis" with Dave Vellante. >> The world's leading telcos are trying to shed the stigma of being monopolies lacking innovation. Telcos have been great at operational efficiency and connectivity and living off of transmission, and the costs and expenses or revenue associated with that transmission. But in a world beyond telephone poles and basic wireless and mobile services, how will telcos modernize and become more agile and monetize new opportunities brought about by 5G and private wireless and a spate of new innovations and infrastructure, cloud data and apps? Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this breaking analysis and ahead of Mobile World Congress or now, MWC23, we explore the evolution of the telco business and how the industry is in many ways, mimicking transformations that took place decades ago in enterprise IT. We'll model some of the traditional enterprise vendors using ETR data and investigate how they're faring in the telecommunications sector, and we'll pose some of the key issues facing the industry this decade. First, let's take a look at what the GSMA has in store for MWC23. GSMA is the host of what used to be called Mobile World Congress. They've set the theme for this year's event as "Velocity" and they've rebranded MWC to reflect the fact that mobile technology is only one part of the story. MWC has become one of the world's premier events highlighting innovations not only in Telco, mobile and 5G, but the collision between cloud, infrastructure, apps, private networks, smart industries, machine intelligence, and AI, and more. MWC comprises an enormous ecosystem of service providers, technology companies, and firms from virtually every industry including sports and entertainment. And as well, GSMA, along with its venue partner at the Fira Barcelona, have placed a major emphasis on sustainability and public and private partnerships. Virtually every industry will be represented at the event because every industry is impacted by the trends and opportunities in this space. GSMA has said it expects 80,000 attendees at MWC this year, not quite back to 2019 levels, but trending in that direction. Of course, attendance from Chinese participants has historically been very high at the show, and obviously the continued travel issues from that region are affecting the overall attendance, but still very strong. And despite these concerns, Huawei, the giant Chinese technology company. has the largest physical presence of any exhibitor at the show. And finally, GSMA estimates that more than $300 million in economic benefit will result from the event which takes place at the end of February and early March. And The Cube will be back at MWC this year with a major presence thanks to our anchor sponsor, Dell Technologies and other supporters of our content program, including Enterprise Web, ArcaOS, VMware, Snowflake, Cisco, AWS, and others. And one of the areas we're interested in exploring is the evolution of the telco stack. It's a topic that's often talked about and one that we've observed taking place in the 1990s when the vertically integrated IBM mainframe monopoly gave way to a disintegrated and horizontal industry structure. And in many ways, the same thing is happening today in telecommunications, which is shown on the left-hand side of this diagram. Historically, telcos have relied on a hardened, integrated, and incredibly reliable, and secure set of hardware and software services that have been fully vetted and tested, and certified, and relied upon for decades. And at the top of that stack on the left are the crown jewels of the telco stack, the operational support systems and the business support systems. For the OSS, we're talking about things like network management, network operations, service delivery, quality of service, fulfillment assurance, and things like that. For the BSS systems, these refer to customer-facing elements of the stack, like revenue, order management, what products they sell, billing, and customer service. And what we're seeing is telcos have been really good at operational efficiency and making money off of transport and connectivity, but they've lacked the innovation in services and applications. They own the pipes and that works well, but others, be the over-the-top content companies, or private network providers and increasingly, cloud providers have been able to bypass the telcos, reach around them, if you will, and drive innovation. And so, the right-most diagram speaks to the need to disaggregate pieces of the stack. And while the similarities to the 1990s in enterprise IT are greater than the differences, there are things that are different. For example, the granularity of hardware infrastructure will not likely be as high where competition occurred back in the 90s at every layer of the value chain with very little infrastructure integration. That of course changed in the 2010s with converged infrastructure and hyper-converged and also software defined. So, that's one difference. And the advent of cloud, containers, microservices, and AI, none of that was really a major factor in the disintegration of legacy IT. And that probably means that disruptors can move even faster than did the likes of Intel and Microsoft, Oracle, Cisco, and the Seagates of the 1990s. As well, while many of the products and services will come from traditional enterprise IT names like Dell, HPE, Cisco, Red Hat, VMware, AWS, Microsoft, Google, et cetera, many of the names are going to be different and come from traditional network equipment providers. These are names like Ericsson and Huawei, and Nokia, and other names, like Wind River, and Rakuten, and Dish Networks. And there are enormous opportunities in data to help telecom companies and their competitors go beyond telemetry data into more advanced analytics and data monetization. There's also going to be an entirely new set of apps based on the workloads and use cases ranging from hospitals, sports arenas, race tracks, shipping ports, you name it. Virtually every vertical will participate in this transformation as the industry evolves its focus toward innovation, agility, and open ecosystems. Now remember, this is not a binary state. There are going to be greenfield companies disrupting the apple cart, but the incumbent telcos are going to have to continue to ensure newer systems work with their legacy infrastructure, in their OSS and BSS existing systems. And as we know, this is not going to be an overnight task. Integration is a difficult thing, transformations, migrations. So that's what makes this all so interesting because others can come in with Greenfield and potentially disrupt. There'll be interesting partnerships and ecosystems will form and coalitions will also form. Now, we mentioned that several traditional enterprise companies are or will be playing in this space. Now, ETR doesn't have a ton of data on specific telecom equipment and software providers, but it does have some interesting data that we cut for this breaking analysis. What we're showing here in this graphic is some of the names that we've followed over the years and how they're faring. Specifically, we did the cut within the telco sector. So the Y-axis here shows net score or spending velocity. And the horizontal axis, that shows the presence or pervasiveness in the data set. And that table insert in the upper left, that informs as to how the dots are plotted. You know, the two columns there, net score and the ends. And that red-dotted line, that horizontal line at 40%, that is an indicator of a highly elevated level. Anything above that, we consider quite outstanding. And what we'll do now is we'll comment on some of the cohorts and share with you how they're doing in telecommunications, and that sector, that vertical relative to their position overall in the data set. Let's start with the public cloud players. They're prominent in every industry. Telcos, telecommunications is no exception and it's quite an interesting cohort here. On the one hand, they can help telecommunication firms modernize and become more agile by eliminating the heavy lifting and you know, all the cloud, you know, value prop, data center costs, and the cloud benefits. At the same time, public cloud players are bringing their services to the edge, building out their own global networks and are a disruptive force to traditional telcos. All right, let's talk about Azure first. Their net score is basically identical to telco relative to its overall average. AWS's net score is higher in telco by just a few percentage points. Google Cloud platform is eight percentage points higher in telco with a 53% net score. So all three hyperscalers have an equal or stronger presence in telco than their average overall. Okay, let's look at the traditional enterprise hardware and software infrastructure cohort. Dell, Cisco, HPE, Red Hat, VMware, and Oracle. We've highlighted in this chart just as sort of indicators or proxies. Dell's net score's 10 percentage points higher in telco than its overall average. Interesting. Cisco's is a bit higher. HPE's is actually lower by about nine percentage points in the ETR survey, and VMware's is lower by about four percentage points. Now, Red Hat is really interesting. OpenStack, as we've previously reported is popular with telcos who want to build out their own private cloud. And the data shows that Red Hat OpenStack's net score is 15 percentage points higher in the telco sector than its overall average. OpenShift, on the other hand, has a net score that's four percentage points lower in telco than its overall average. So this to us talks to the pace of adoption of microservices and containers. You know, it's going to happen, but it's going to happen more slowly. Finally, Oracle's spending momentum is somewhat lower in the sector than its average, despite the firm having a decent telco business. IBM and Accenture, heavy services companies are both lower in this sector than their average. And real quickly, snowflake's net score is much lower by about 12 percentage points relative to its very high average net score of 62%. But we look for them to be a player in this space as telcos need to modernize their analytics stack and share data in a governed manner. Databricks' net score is also much lower than its average by about 13 points. And same, I would expect them to be a player as open architectures and cloud gains steam in telco. All right, let's close out now on what we're going to be talking about at MWC23 and some of the key issues that we'll be unpacking. We've talked about stack disaggregation in this breaking analysis, but the key here will be the pace at which it will reach the operational efficiency and reliability of closed stacks. Telcos, you know, in a large part, they're engineering heavy firms and much of their work takes place, kind of in the basement, in the dark. It's not really a big public hype machine, and they tend to move slowly and cautiously. While they understand the importance of agility, they're going to be careful because, you know, it's in their DNA. And so at the same time, if they don't move fast enough, they're going to get hurt and disrupted by competitors. So that's going to be a topic of conversation, and we'll be looking for proof points. And the other comment I'll make is around integration. Telcos because of their conservatism will benefit from better testing and those firms that can innovate on the testing front and have labs and certifications and innovate at that level, with an ecosystem are going to be in a better position. Because open sometimes means wild west. So the more players like Dell, HPE, Cisco, Red Hat, et cetera, that do that and align with their ecosystems and provide those resources, the faster adoption is going to go. So we'll be looking for, you know, who's actually doing that, Open RAN or Radio Access Networks. That fits in this discussion because O-RAN is an emerging network architecture. It essentially enables the use of open technologies from an ecosystem and over time, look at O-RAN is going to be open, but the questions, you know, a lot of questions remain as to when it will be able to deliver the operational efficiency of traditional RAN. Got some interesting dynamics going on. Rakuten is a company that's working hard on this problem, really focusing on operational efficiency. Then you got Dish Networks. They're also embracing O-RAN. They're coming at it more from service innovation. So that's something that we'll be monitoring and unpacking. We're going to look at cloud as a disruptor. On the one hand, cloud can help drive agility, as we said earlier and optionality, and innovation for incumbent telcos. But the flip side is going to also do the same for startups trying to disrupt and cloud attracts startups. While some of the telcos are actually embracing the cloud, many are being cautious. So that's going to be an interesting topic of discussion. And there's private wireless networks and 5G, and hyperlocal private networks, they're being deployed, you know, at the edge. This idea of open edge is also a really hot topic and this trend is going to accelerate. You know, the importance here is that the use cases are going to be widely varied. The needs of a hospital are going to be different than those of a sports venue are different from a remote drilling location, and energy or a concert venue. Things like real-time AI inference and data flows are going to bring new services and monetization opportunities. And many firms are going to be bypassing traditional telecommunications networks to build these out. Satellites as well, we're going to see, you know, in this decade, you're going to have, you're going to look down at Google Earth and you're going to see real-time. You know, today you see snapshots and so, lots of innovations going in that space. So how is this going to disrupt industries and traditional industry structures? Now, as always, we'll be looking at data angles, right? 'Cause it's in The Cube's DNA to follow the data and what opportunities and risks data brings. The Cube is going to be on location at MWC23 at the end of the month. We got a great set. We're in the walkway between halls four and five, right in Congress Square, it's booths CS60. So we'll have a full, they're called Stan CS60. We have a full schedule. I'm going to be there with Lisa Martin, Dave Nicholson and the entire Cube crew, so don't forget to stop by. All right, that's a wrap. I want to thank Alex Myerson, who's on production and manages the podcast, Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at Silicon Angle, does some great stuff for us. Thank you all. Remember, all these episodes are available as podcasts. Wherever you listen, just search "Breaking Analysis" podcasts I publish each week on wikibon.com and silicon angle.com. And all the video content is available on demand at thecube.net. You can email me directly at david.vellante@silicon angle.com. You can DM me at dvellante or comment on my LinkedIn post. Please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for The Cube Insights powered by ETR. Thanks for watching and we'll see you at Mobile World Congress, and/or at next time on "Breaking Analysis." (bright music) (bright music fades)

Published Date : Feb 18 2023

SUMMARY :

From the Cube Studios and some of the key issues

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Lisa MartinPERSON

0.99+

Dave NicholsonPERSON

0.99+

IBMORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

EricssonORGANIZATION

0.99+

Dave VellantePERSON

0.99+

DellORGANIZATION

0.99+

HuaweiORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

Kristin MartinPERSON

0.99+

Cheryl KnightPERSON

0.99+

AWSORGANIZATION

0.99+

NokiaORGANIZATION

0.99+

RakutenORGANIZATION

0.99+

Rob HofPERSON

0.99+

OracleORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

GSMAORGANIZATION

0.99+

AccentureORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

2019DATE

0.99+

53%QUANTITY

0.99+

Palo AltoLOCATION

0.99+

Wind RiverORGANIZATION

0.99+

HPEORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

more than $300 millionQUANTITY

0.99+

40%QUANTITY

0.99+

TelcosORGANIZATION

0.99+

Congress SquareLOCATION

0.99+

FirstQUANTITY

0.99+

VMwareORGANIZATION

0.99+

TelcoORGANIZATION

0.99+

Dish NetworksORGANIZATION

0.99+

telcoORGANIZATION

0.99+

2010sDATE

0.99+

IntelORGANIZATION

0.99+

david.vellante@silicon angle.comOTHER

0.99+

MWC23EVENT

0.99+

1990sDATE

0.99+

62%QUANTITY

0.99+

Mobile World CongressEVENT

0.99+

two columnsQUANTITY

0.99+

each weekQUANTITY

0.99+

SeagatesORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

todayDATE

0.99+

early MarchDATE

0.99+

bothQUANTITY

0.99+

thecube.netOTHER

0.99+

MWCEVENT

0.99+

ETRORGANIZATION

0.98+

this yearDATE

0.98+

Cube StudiosORGANIZATION

0.98+

one partQUANTITY

0.98+

ChineseOTHER

0.98+

BostonLOCATION

0.98+

decades agoDATE

0.97+

threeQUANTITY

0.97+

90sDATE

0.97+

about 13 pointsQUANTITY

0.97+

Ed Walsh & Thomas Hazel | A New Database Architecture for Supercloud


 

(bright music) >> Hi, everybody, this is Dave Vellante, welcome back to Supercloud 2. Last August, at the first Supercloud event, we invited the broader community to help further define Supercloud, we assessed its viability, and identified the critical elements and deployment models of the concept. The objectives here at Supercloud too are, first of all, to continue to tighten and test the concept, the second is, we want to get real world input from practitioners on the problems that they're facing and the viability of Supercloud in terms of applying it to their business. So on the program, we got companies like Walmart, Sachs, Western Union, Ionis Pharmaceuticals, NASDAQ, and others. And the third thing that we want to do is we want to drill into the intersection of cloud and data to project what the future looks like in the context of Supercloud. So in this segment, we want to explore the concept of data architectures and what's going to be required for Supercloud. And I'm pleased to welcome one of our Supercloud sponsors, ChaosSearch, Ed Walsh is the CEO of the company, with Thomas Hazel, who's the Founder, CTO, and Chief Scientist. Guys, good to see you again, thanks for coming into our Marlborough studio. >> Always great. >> Great to be here. >> Okay, so there's a little debate, I'm going to put you right in the spot. (Ed chuckling) A little debate going on in the community started by Bob Muglia, a former CEO of Snowflake, and he was at Microsoft for a long time, and he looked at the Supercloud definition, said, "I think you need to tighten it up a little bit." So, here's what he came up with. He said, "A Supercloud is a platform that provides a programmatically consistent set of services hosted on heterogeneous cloud providers." So he's calling it a platform, not an architecture, which was kind of interesting. And so presumably the platform owner is going to be responsible for the architecture, but Dr. Nelu Mihai, who's a computer scientist behind the Cloud of Clouds Project, he chimed in and responded with the following. He said, "Cloud is a programming paradigm supporting the entire lifecycle of applications with data and logic natively distributed. Supercloud is an open architecture that integrates heterogeneous clouds in an agnostic manner." So, Ed, words matter. Is this an architecture or is it a platform? >> Put us on the spot. So, I'm sure you have concepts, I would say it's an architectural or design principle. Listen, I look at Supercloud as a mega trend, just like cloud, just like data analytics. And some companies are using the principle, design principles, to literally get dramatically ahead of everyone else. I mean, things you couldn't possibly do if you didn't use cloud principles, right? So I think it's a Supercloud effect, you're able to do things you're not able to. So I think it's more a design principle, but if you do it right, you get dramatic effect as far as customer value. >> So the conversation that we were having with Muglia, and Tristan Handy of dbt Labs, was, I'll set it up as the following, and, Thomas, would love to get your thoughts, if you have a CRM, think about applications today, it's all about forms and codifying business processes, you type a bunch of stuff into Salesforce, and all the salespeople do it, and this machine generates a forecast. What if you have this new type of data app that pulls data from the transaction system, the e-commerce, the supply chain, the partner ecosystem, et cetera, and then, without humans, actually comes up with a plan. That's their vision. And Muglia was saying, in order to do that, you need to rethink data architectures and database architectures specifically, you need to get down to the level of how the data is stored on the disc. What are your thoughts on that? Well, first of all, I'm going to cop out, I think it's actually both. I do think it's a design principle, I think it's not open technology, but open APIs, open access, and you can build a platform on that design principle architecture. Now, I'm a database person, I love solving the database problems. >> I'm waited for you to launch into this. >> Yeah, so I mean, you know, Snowflake is a database, right? It's a distributed database. And we wanted to crack those codes, because, multi-region, multi-cloud, customers wanted access to their data, and their data is in a variety of forms, all these services that you're talked about. And so what I saw as a core principle was cloud object storage, everyone streams their data to cloud object storage. From there we said, well, how about we rethink database architecture, rethink file format, so that we can take each one of these services and bring them together, whether distributively or centrally, such that customers can access and get answers, whether it's operational data, whether it's business data, AKA search, or SQL, complex distributed joins. But we had to rethink the architecture. I like to say we're not a first generation, or a second, we're a third generation distributed database on pure, pure cloud storage, no caching, no SSDs. Why? Because all that availability, the cost of time, is a struggle, and cloud object storage, we think, is the answer. >> So when you're saying no caching, so when I think about how companies are solving some, you know, pretty hairy problems, take MySQL Heatwave, everybody thought Oracle was going to just forget about MySQL, well, they come out with Heatwave. And the way they solve problems, and you see their benchmarks against Amazon, "Oh, we crush everybody," is they put it all in memory. So you said no caching? You're not getting performance through caching? How is that true, and how are you getting performance? >> Well, so five, six years ago, right? When you realize that cloud object storage is going to be everywhere, and it's going to be a core foundational, if you will, fabric, what would you do? Well, a lot of times the second generation say, "We'll take it out of cloud storage, put in SSDs or something, and put into cache." And that adds a lot of time, adds a lot of costs. But I said, what if, what if we could actually make the first read hot, the first read distributed joins and searching? And so what we went out to do was said, we can't cache, because that's adds time, that adds cost. We have to make cloud object storage high performance, like it feels like a caching SSD. That's where our patents are, that's where our technology is, and we've spent many years working towards this. So, to me, if you can crack that code, a lot of these issues we're talking about, multi-region, multicloud, different services, everybody wants to send their data to the data lake, but then they move it out, we said, "Keep it right there." >> You nailed it, the data gravity. So, Bob's right, the data's coming in, and you need to get the data from everywhere, but you need an environment that you can deal with all that different schema, all the different type of technology, but also at scale. Bob's right, you cannot use memory or SSDs to cache that, that doesn't scale, it doesn't scale cost effectively. But if you could, and what you did, is you made object storage, S3 first, but object storage, the only persistence by doing that. And then we get performance, we should talk about it, it's literally, you know, hundreds of terabytes of queries, and it's done in seconds, it's done without memory caching. We have concepts of caching, but the only caching, the only persistence, is actually when we're doing caching, we're just keeping another side-eye track of things on the S3 itself. So we're using, actually, the object storage to be a database, which is kind of where Bob was saying, we agree, but that's what you started at, people thought you were crazy. >> And maybe make it live. Don't think of it as archival or temporary space, make it live, real time streaming, operational data. What we do is make it smart, we see the data coming in, we uniquely index it such that you can get your use cases, that are search, observability, security, or backend operational. But we don't have to have this, I dunno, static, fixed, siloed type of architecture technologies that were traditionally built prior to Supercloud thinking. >> And you don't have to move everything, essentially, you can do it wherever the data lands, whatever cloud across the globe, you're able to bring it together, you get the cost effectiveness, because the only persistence is the cheapest storage persistent layer you can buy. But the key thing is you cracked the code. >> We had to crack the code, right? That was the key thing. >> That's where the plans are. >> And then once you do that, then everything else gets easier to scale, your architecture, across regions, across cloud. >> Now, it's a general purpose database, as Bob was saying, but we use that database to solve a particular issue, which is around operational data, right? So, we agree with Bob's. >> Interesting. So this brings me to this concept of data, Jimata Gan is one of our speakers, you know, we talk about data fabric, which is a NetApp, originally NetApp concept, Gartner's kind of co-opted it. But so, the basic concept is, data lives everywhere, whether it's an S3 bucket, or a SQL database, or a data lake, it's just a node on the data mesh. So in your view, how does this fit in with Supercloud? Ed, you've said that you've built, essentially, an enabler for that, for the data mesh, I think you're an enabler for the Supercloud-like principles. This is a big, chewy opportunity, and it requires, you know, a team approach. There's got to be an ecosystem, there's not going to be one Supercloud to rule them all, so where does the ecosystem fit into the discussion, and where do you fit into the ecosystem? >> Right, so we agree completely, there's not one Supercloud in effect, but we use Supercloud principles to build our platform, and then, you know, the ecosystem's going to be built on leveraging what everyone else's secret powers are, right? So our power, our superpower, based upon what we built is, we deal with, if you're having any scale, or cost effective scale issues, with data, machine generated data, like business observability or security data, we are your force multiplier, we will take that in singularly, just let it, simply put it in your object storage wherever it sits, and we give you uniformity access to that using OpenAPI access, SQL, or you know, Elasticsearch API. So, that's what we do, that's our superpower. So I'll play it into data mesh, that's a perfect, we are a node on a data mesh, but I'll play it in the soup about how, the ecosystem, we see it kind of playing, and we talked about it in just in the last couple days, how we see this kind of possibly. Short term, our superpowers, we deal with this data that's coming at these environments, people, customers, building out observability or security environments, or vendors that are selling their own Supercloud, I do observability, the Datadogs of the world, dot dot dot, the Splunks of the world, dot dot dot, and security. So what we do is we fit in naturally. What we do is a cost effective scale, just land it anywhere in the world, we deal with ingest, and it's a cost effective, an order of magnitude, or two or three order magnitudes more cost effective. Allows them, their customers are asking them to do the impossible, "Give me fast monitoring alerting. I want it snappy, but I want it to keep two years of data, (laughs) and I want it cost effective." It doesn't work. They're good at the fast monitoring alerting, we're good at the long-term retention. And yet there's some gray area between those two, but one to one is actually cheaper, so we would partner. So the first ecosystem plays, who wants to have the ability to, really, all the data's in those same environments, the security observability players, they can literally, just through API, drag our data into their point to grab. We can make it seamless for customers. Right now, we make it helpful to customers. Your Datadog, we make a button, easy go from Datadog to us for logs, save you money. Same thing with Grafana. But you can also look at ecosystem, those same vendors, it used to be a year ago it was, you know, its all about how can you grow, like it's growth at all costs, now it's about cogs. So literally we can go an environment, you supply what your customer wants, but we can help with cogs. And one-on one in a partnership is better than you trying to build on your own. >> Thomas, you were saying you make the first read fast, so you think about Snowflake. Everybody wants to talk about Snowflake and Databricks. So, Snowflake, great, but you got to get the data in there. All right, so that's, can you help with that problem? >> I mean we want simple in, right? And if you have to have structure in, you're not simple. So the idea that you have a simple in, data lake, schema read type philosophy, but schema right type performance. And so what I wanted to do, what we have done, is have that simple lake, and stream that data real time, and those access points of Search or SQL, to go after whatever business case you need, security observability, warehouse integration. But the key thing is, how do I make that click, click, click answer, and do it quickly? And so what we want to do is, that first read has to be fast. Why? 'Cause then you're going to do all this siloing, layers, complexity. If your first read's not fast, you're at a disadvantage, particularly in cost. And nobody says I want less data, but everyone has to, whether they say we're going to shorten the window, we're going to use AI to choose, but in a security moment, when you don't have that answer, you're in trouble. And that's why we are this service, this Supercloud service, if you will, providing access, well-known search, well-known SQL type access, that if you just have one access point, you're at a disadvantage. >> We actually talked about Snowflake and BigQuery, and a different platform, Data Bricks. That's kind of where we see the phase two of ecosystem. One is easy, the low-hanging fruit is observability and security firms. But the next one is, what we do, our super power is dealing with this messy data that schema is changing like night and day. Pipelines are tough, and it's changing all the time, but you want these things fast, and it's big data around the world. That's the next point, just use us alongside, or inside, one of their platforms, and now we get the best of both worlds. Our superpower is keeping this messy data as a streaming, okay, not a batch thing, allow you to do that. So, that's the second one. And then to be honest, the third one, which plays you to Supercloud, it also plays perfectly in the data mesh, is if you really go to the ultimate thing, what we have done is made object storage, S3, GCS, and blob storage, we made it a database. Put, get, complex query with big joins. You know, so back to your original thing, and Muglia teed it up perfectly, we've done that. Now imagine if that's an ecosystem, who would want that? If it's, again, it's uniform available across all the regions, across all the clouds, and it's right next to where you are building a service, or a client's trying, that's where the ecosystem, I think people are going to use Superclouds for their superpowers. We're really good at this, allows that short term. I think the Snowflakes and the Data Bricks are the medium term, you know? And then I think eventually gets to, hey, listen if you can make object storage fast, you can just go after it with simple SQL queries, or elastic. Who would want that? I think that's where people are going to leverage it. It's not going to be one Supercloud, and we leverage the super clouds. >> Our viewpoint is smart object storage can be programmable, and so we agree with Bob, but we're not saying do it here, do it here. This core, fundamental layer across regions, across clouds, that everyone has? Simple in. Right now, it's hard to get data in for access for analysis. So we said, simply, we'll automate the entire process, give you API access across regions, across clouds. And again, how do you do a distributed join that's fast? How do you do a distributed join that doesn't cost you an arm or a leg? And how do you do it at scale? And that's where we've been focused. >> So prior, the cloud object store was a niche. >> Yeah. >> S3 obviously changed that. How standard is, essentially, object store across the different cloud platforms? Is that a problem for you? Is that an easy thing to solve? >> Well, let's talk about it. I mean we've fundamentally, yeah we've extracted it, but fundamentally, cloud object storage, put, get, and list. That's why it's so scalable, 'cause it doesn't have all these other components. That complexity is where we have moved up, and provide direct analytical API access. So because of its simplicity, and costs, and security, and reliability, it can scale naturally. I mean, really, distributed object storage is easy, it's put-get anywhere, now what we've done is we put a layer of intelligence, you know, call it smart object storage, where access is simple. So whether it's multi-region, do a query across, or multicloud, do a query across, or hunting, searching. >> We've had clients doing Amazon and Google, we have some Azure, but we see Amazon and Google more, and it's a consistent service across all of them. Just literally put your data in the bucket of choice, or folder of choice, click a couple buttons, literally click that to say "that's hot," and after that, it's hot, you can see it. But we're not moving data, the data gravity issue, that's the other. That it's already natively flowing to these pools of object storage across different regions and clouds. We don't move it, we index it right there, we're spinning up stateless compute, back to the Supercloud concept. But now that allows us to do all these other things, right? >> And it's no longer just cheap and deep object storage. Right? >> Yeah, we make it the same, like you have an analytic platform regardless of where you're at, you don't have to worry about that. Yeah, we deal with that, we deal with a stateless compute coming up -- >> And make it programmable. Be able to say, "I want this bucket to provide these answers." Right, that's really the hope, the vision. And the complexity to build the entire stack, and then connect them together, we said, the fabric is cloud storage, we just provide the intelligence on top. >> Let's bring it back to the customers, and one of the things we're exploring in Supercloud too is, you know, is Supercloud a solution looking for a problem? Is a multicloud really a problem? I mean, you hear, you know, a lot of the vendor marketing says, "Oh, it's a disaster, because it's all different across the clouds." And I talked to a lot of customers even as part of Supercloud too, they're like, "Well, I solved that problem by just going mono cloud." Well, but then you're not able to take advantage of a lot of the capabilities and the primitives that, you know, like Google's data, or you like Microsoft's simplicity, their RPA, whatever it is. So what are customers telling you, what are their near term problems that they're trying to solve today, and how are they thinking about the future? >> Listen, it's a real problem. I think it started, I think this is a a mega trend, just like cloud. Just, cloud data, and I always add, analytics, are the mega trends. If you're looking at those, if you're not considering using the Supercloud principles, in other words, leveraging what I have, abstracting it out, and getting the most out of that, and then build value on top, I think you're not going to be able to keep up, In fact, no way you're going to keep up with this data volume. It's a geometric challenge, and you're trying to do linear things. So clients aren't necessarily asking, hey, for Supercloud, but they're really saying, I need to have a better mechanism to simplify this and get value across it, and how do you abstract that out to do that? And that's where they're obviously, our conversations are more amazed what we're able to do, and what they're able to do with our platform, because if you think of what we've done, the S3, or GCS, or object storage, is they can't imagine the ingest, they can't imagine how easy, time to glass, one minute, no matter where it lands in the world, querying this in seconds for hundreds of terabytes squared. People are amazed, but that's kind of, so they're not asking for that, but they are amazed. And then when you start talking on it, if you're an enterprise person, you're building a big cloud data platform, or doing data or analytics, if you're not trying to leverage the public clouds, and somehow leverage all of them, and then build on top, then I think you're missing it. So they might not be asking for it, but they're doing it. >> And they're looking for a lens, you mentioned all these different services, how do I bring those together quickly? You know, our viewpoint, our service, is I have all these streams of data, create a lens where they want to go after it via search, go after via SQL, bring them together instantly, no e-tailing out, no define this table, put into this database. We said, let's have a service that creates a lens across all these streams, and then make those connections. I want to take my CRM with my Google AdWords, and maybe my Salesforce, how do I do analysis? Maybe I want to hunt first, maybe I want to join, maybe I want to add another stream to it. And so our viewpoint is, it's so natural to get into these lake platforms and then provide lenses to get that access. >> And they don't want it separate, they don't want something different here, and different there. They want it basically -- >> So this is our industry, right? If something new comes out, remember virtualization came out, "Oh my God, this is so great, it's going to solve all these problems." And all of a sudden it just got to be this big, more complex thing. Same thing with cloud, you know? It started out with S3, and then EC2, and now hundreds and hundreds of different services. So, it's a complex matter for a lot of people, and this creates problems for customers, especially when you got divisions that are using different clouds, and you're saying that the solution, or a solution for the part of the problem, is to really allow the data to stay in place on S3, use that standard, super simple, but then give it what, Ed, you've called superpower a couple of times, to make it fast, make it inexpensive, and allow you to do that across clouds. >> Yeah, yeah. >> I'll give you guys the last word on that. >> No, listen, I think, we think Supercloud allows you to do a lot more. And for us, data, everyone says more data, more problems, more budget issue, everyone knows more data is better, and we show you how to do it cost effectively at scale. And we couldn't have done it without the design principles of we're leveraging the Supercloud to get capabilities, and because we use super, just the object storage, we're able to get these capabilities of ingest, scale, cost effectiveness, and then we built on top of this. In the end, a database is a data platform that allows you to go after everything distributed, and to get one platform for analytics, no matter where it lands, that's where we think the Supercloud concepts are perfect, that's where our clients are seeing it, and we're kind of excited about it. >> Yeah a third generation database, Supercloud database, however we want to phrase it, and make it simple, but provide the value, and make it instant. >> Guys, thanks so much for coming into the studio today, I really thank you for your support of theCUBE, and theCUBE community, it allows us to provide events like this and free content. I really appreciate it. >> Oh, thank you. >> Thank you. >> All right, this is Dave Vellante for John Furrier in theCUBE community, thanks for being with us today. You're watching Supercloud 2, keep it right there for more thought provoking discussions around the future of cloud and data. (bright music)

Published Date : Feb 17 2023

SUMMARY :

And the third thing that we want to do I'm going to put you right but if you do it right, So the conversation that we were having I like to say we're not a and you see their So, to me, if you can crack that code, and you need to get the you can get your use cases, But the key thing is you cracked the code. We had to crack the code, right? And then once you do that, So, we agree with Bob's. and where do you fit into the ecosystem? and we give you uniformity access to that so you think about Snowflake. So the idea that you have are the medium term, you know? and so we agree with Bob, So prior, the cloud that an easy thing to solve? you know, call it smart object storage, and after that, it's hot, you can see it. And it's no longer just you don't have to worry about And the complexity to and one of the things we're and how do you abstract it's so natural to get and different there. and allow you to do that across clouds. I'll give you guys and we show you how to do it but provide the value, I really thank you for around the future of cloud and data.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
WalmartORGANIZATION

0.99+

Dave VellantePERSON

0.99+

NASDAQORGANIZATION

0.99+

Bob MugliaPERSON

0.99+

ThomasPERSON

0.99+

Thomas HazelPERSON

0.99+

Ionis PharmaceuticalsORGANIZATION

0.99+

Western UnionORGANIZATION

0.99+

Ed WalshPERSON

0.99+

BobPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Nelu MihaiPERSON

0.99+

SachsORGANIZATION

0.99+

Tristan HandyPERSON

0.99+

twoQUANTITY

0.99+

AmazonORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

two yearsQUANTITY

0.99+

Supercloud 2TITLE

0.99+

firstQUANTITY

0.99+

Last AugustDATE

0.99+

threeQUANTITY

0.99+

OracleORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

bothQUANTITY

0.99+

dbt LabsORGANIZATION

0.99+

John FurrierPERSON

0.99+

EdPERSON

0.99+

GartnerORGANIZATION

0.99+

Jimata GanPERSON

0.99+

third oneQUANTITY

0.99+

one minuteQUANTITY

0.99+

secondQUANTITY

0.99+

first generationQUANTITY

0.99+

third generationQUANTITY

0.99+

GrafanaORGANIZATION

0.99+

second generationQUANTITY

0.99+

second oneQUANTITY

0.99+

hundreds of terabytesQUANTITY

0.98+

SQLTITLE

0.98+

fiveDATE

0.98+

oneQUANTITY

0.98+

DatabricksORGANIZATION

0.98+

a year agoDATE

0.98+

ChaosSearchORGANIZATION

0.98+

MugliaPERSON

0.98+

MySQLTITLE

0.98+

both worldsQUANTITY

0.98+

third thingQUANTITY

0.97+

MarlboroughLOCATION

0.97+

theCUBEORGANIZATION

0.97+

todayDATE

0.97+

SupercloudORGANIZATION

0.97+

ElasticsearchTITLE

0.96+

NetAppTITLE

0.96+

DatadogORGANIZATION

0.96+

OneQUANTITY

0.96+

EC2TITLE

0.96+

each oneQUANTITY

0.96+

S3TITLE

0.96+

one platformQUANTITY

0.95+

Supercloud 2EVENT

0.95+

first readQUANTITY

0.95+

six years agoDATE

0.95+