Image Title

Search Results for Officeof the CTO:

Dominique Bastos, Persistent Systems | International Women's Day 2023


 

(gentle upbeat music) >> Hello, everyone, welcome to theCUBE's coverage of International Women's Day. I'm John Furrier host here in Palo Alto, California. theCUBE's second year covering International Women's Day. It's been a great celebration of all the smart leaders in the world who are making a difference from all kinds of backgrounds, from technology to business and everything in between. Today we've got a great guest, Dominique Bastos, who's the senior Vice President of Cloud at Persistent Systems, formerly with AWS. That's where we first met at re:Invent. Dominique, great to have you on the program here for International Women's Day. Thanks for coming on. >> Thank you John, for having me back on theCUBE. This is an honor, especially given the theme. >> Well, I'm excited to have you on, I consider you one of those typecast personas where you've kind of done a lot of things. You're powerful, you've got great business acumen you're technical, and we're in a world where, you know the world's coming completely digital and 50% of the world is women, 51%, some say. So you got mostly male dominated industry and you have a dual engineering background and that's super impressive as well. Again, technical world, male dominated you're in there in the mix. What inspires you to get these engineering degrees? >> I think even it was more so shifted towards males. When I had the inspiration to go to engineering school I was accused as a young girl of being a tomboy and fiddling around with all my brother's toys versus focusing on my dolls and other kind of stereotypical toys that you would give a girl. I really had a curiosity for building, a curiosity for just breaking things apart and putting them back together. I was very lucky in that my I guess you call it primary school, maybe middle school, had a program for, it was like electronics, that was the class electronics. So building circuit boards and things like that. And I really enjoyed that aspect of building. I think it was more actually going into engineering school. Picking that as a discipline was a little bit, my mom's reaction to when I announced that I wanted to do engineering which was, "No, that's for boys." >> Really. >> And that really, you know, I think she, it came from a good place in trying to protect me from what she has experienced herself in terms of how women are received in those spaces. So I kind of shrugged it off and thought "Okay, well I'm definitely now going to do this." >> (laughs) If I was told not to, you're going to do it. >> I was told not to, that's all I needed to hear. And also, I think my passion was to design cars and I figured if I enroll in an industrial engineering program I could focus on ergonomic design and ultimately, you know have a career doing something that I'm passionate about. So yeah, so my inspiration was kind of a little bit of don't do this, a lot of curiosity. I'm also a very analytical person. I've been, and I don't know what the science is around left right brain to be honest, but been told that I'm a very much a logical person versus a feeler. So I don't know if that's good or bad. >> Straight shooter. What were your engineering degrees if you don't mind sharing? >> So I did industrial engineering and so I did a dual degree, industrial engineering and robotics. At the time it was like a manufacturing robotics program. It was very, very cool because we got to, I mean now looking back, the evolution of robotics is just insane. But you, you know, programmed a robotic arm to pick things up. I actually crashed the Civil Engineering School's Concrete Canoe Building Competition where you literally have to design a concrete canoe and do all the load testing and the strength testing of the materials and basically then, you know you go against other universities to race the canoe in a body of water. We did that at, in Alabama and in Georgia. So I was lucky to experience that two times. It was a lot of fun. >> But you knew, so you knew, deep down, you were technical you had a nerd vibe you were geeking out on math, tech, robotics. What happened next? I mean, what were some of the challenges you faced? How did you progress forward? Did you have any blockers and roadblocks in front of you and how did you handle those? >> Yeah, I mean I had, I had a very eye-opening experience with, in my freshman year of engineering school. I kind of went in gung-ho with zero hesitation, all the confidence in the world, 'cause I was always a very big nerd academically, I hate admitting this but myself and somebody else got most intellectual, voted by the students in high school. It's like, you don't want to be voted most intellectual when you're in high school. >> Now it's a big deal. (laughs) >> Yeah, you want to be voted like popular or anything like that? No, I was a nerd, but in engineering school, it's a, it was very humbling. That whole confidence that I had. I experienced prof, ooh, I don't want to name the school. Everybody can google it though, but, so anyway so I had experience with some professors that actually looked at me and said, "You're in the wrong program. This is difficult." I, and I think I've shared this before in other forums where, you know, my thermodynamic teacher basically told me "Cheerleading's down the hall," and it it was a very shocking thing to hear because it really made me wonder like, what am I up against here? Is this what it's going to be like going forward? And I decided not to pay attention to that. I think at the moment when you hear something like that you just, you absorb it and you also don't know how to react. And I decided immediately to just walk right past him and sit down front center in the class. In my head I was cursing him, of course, 'cause I mean, let's be real. And I was like, I'm going to show this bleep bleep. And proceeded to basically set the curve class crushed it and was back to be the teacher's assistant. So I think that was one. >> But you became his teacher assistant after, or another one? >> Yeah, I gave him a mini speech. I said, do not do this. You, you could, you could have broken me and if you would've done this to somebody who wasn't as steadfast in her goals or whatever, I was really focused like I'm doing this, I would've backed out potentially and said, you know this isn't something I want to experience on the daily. So I think that was actually a good experience because it gave me an opportunity to understand what I was up against but also double down in how I was going to deal with it. >> Nice to slay the misogynistic teachers who typecast people. Now you had a very technical career but also you had a great career at AWS on the business side you've handled 'em all of the big accounts, I won't say the names, but like we're talking about monster accounts, sales and now basically it's not really selling, you're managing a big account, it's like a big business. It's a business development thing. Technical to business transition, how do you handle that? Was that something you were natural for? Obviously you, you stared down the naysayers out of the gate in college and then in business, did that continue and how did you drive through that? >> So I think even when I was coming out of university I knew that I wanted to have a balance between the engineering program and business. A lot of my colleagues went on to do their PEs so continue to get their masters basically in engineering or their PhDs in engineering. I didn't really have an interest for that. I did international business and finance as my MBA because I wanted to explore the ability of taking what I had learned in engineering school and applying it to building businesses. I mean, at the time I didn't have it in my head that I would want to do startups but I definitely knew that I wanted to get a feel for what are they learning in business school that I missed out in engineering school. So I think that helped me when I transitioned, well when I applied, I was asked to come apply at AWS and I kind of went, no I'm going to, the DNA is going to be rejected. >> You thought, you thought you'd be rejected from AWS. >> I thought I'd be, yeah, because I have very much a startup founder kind of disruptive personality. And to me, when I first saw AWS at the stage early 2016 I saw it as a corporation. Even though from a techie standpoint, I was like, these people are insane. This is amazing what they're building. But I didn't know what the cultural vibe would feel like. I had been with GE at the beginning of my career for almost three years. So I kind of equated AWS Amazon to GE given the size because in between, I had done startups. So when I went to AWS I think initially, and I do have to kind of shout out, you know Todd Weatherby basically was the worldwide leader for ProServe and it was being built, he built it and I went into ProServe to help from that standpoint. >> John: ProServe, Professional services >> Professional services, right. To help these big enterprise customers. And specifically my first customer was an amazing experience in taking, basically the company revolves around strategic selling, right? It's not like you take a salesperson with a conventional schooling that salespeople would have and plug them into AWS in 2016. It was very much a consultative strategic approach. And for me, having a technical background and loving to solve problems for customers, working with the team, I would say, it was a dream team that I joined. And also the ability to come to the table with a technical background, knowing how to interact with senior executives to help them envision where they want to go, and then to bring a team along with you to make that happen. I mean, that was like magical for me. I loved that experience. >> So you like the culture, I mean, Andy Jassy, I've interviewed many times, always talked about builders and been a builder mentality. You mentioned that earlier at the top of this interview you've always building things, curious and you mentioned potentially your confidence might have been shaken. So you, you had the confidence. So being a builder, you know, being curious and having confidence seems to be what your superpower is. A lot of people talk about the confidence angle. How important is that and how important is that for encouraging more women to get into tech? Because I still hear that all the time. Not that they don't have confidence, but there's so many signals that potentially could shake confidence in industry >> Yeah, that's actually a really good point that you're making. A lot of signals that women get could shake their confidence and that needs to be, I mean, it's easy to say that it should be innate. I mean that's kind of like textbook, "Oh it has to come from within." Of course it does. But also, you know, we need to understand that in a population where 50% of the population is women but only 7% of the positions in tech, and I don't know the most current number in tech leadership, is women, and probably a smaller percentage in the C-suite. When you're looking at a woman who's wanting to go up the trajectory in a tech company and then there's a subconscious understanding that there's a limit to how far you'll go, your confidence, you know, in even subconsciously gets shaken a little bit because despite your best efforts, you're already seeing the cap. I would say that we need to coach girls to speak confidently to navigate conflict versus running away from it, to own your own success and be secure in what you bring to the table. And then I think a very important thing is to celebrate each other and the wins that we see for women in tech, in the industry. >> That's awesome. What's, the, in your opinion, the, you look at that, the challenges for this next generation women, and women in general, what are some of the challenges for them and that they need to overcome today? I mean, obviously the world's changed for the better. Still not there. I mean the numbers one in four women, Rachel Thornton came on, former CMO of AWS, she's at MessageBird now. They had a study where only one in four women go to the executive board level. And so there's still, still numbers are bad and then the numbers still got to get up, up big time. That's, and the industry's working on that, but it's changed. But today, what are some of the challenges for this current generation and the next generation of women and how can we and the industry meet, we being us, women in the industry, be strong role models for them? >> Well, I think the challenge is one of how many women are there in the pipeline and what are we doing to retain them and how are we offering up the opportunities to fill. As you know, as Rachel said and I haven't had an opportunity to see her, in how are we giving them this opportunity to take up those seats in the C-suite right, in these leadership roles. And I think this is a little bit exacerbated with the pandemic in that, you know when everything shut down when people were going back to deal with family and work at the same time, for better or for worse the brunt of it fell on probably, you know the maternal type caregiver within the family unit. You know, I've been, I raised my daughter alone and for me, even without the pandemic it was a struggle constantly to balance the risk that I was willing to take to show up for those positions versus investing even more of that time raising a child, right? Nevermind the unconscious bias or cultural kind of expectations that you get from the male counterparts where there's zero understanding of what a mom might go through at home to then show up to a meeting, you know fully fresh and ready to kind of spit out some wisdom. It's like, you know, your kid just freaking lost their whatever and you know, they, so you have to sort a bunch of things out. I think the challenge that women are still facing and will we have to keep working at it is making sure that there's a good pipeline. A good amount of young ladies of people taking interest in tech. And then as they're, you know, going through the funnel at stages in their career, we're providing the mentoring we're, there's representation, right? To what they're aspiring to. We're celebrating their interest in the field, right? And, and I think also we're doing things to retain them, because again, the pandemic affected everybody. I think women specifically and I don't know the statistics but I was reading something about this were the ones to tend to kind of pull it back and say well now I need to be home with, you know you name how many kids and pets and the aging parents, people that got sick to take on that position. In addition to the career aspirations that they might have. We need to make it easier basically. >> I think that's a great call out and I appreciate you bringing that up about family and being a single mom. And by the way, you're savage warrior to doing that. It's amazing. You got to, I know you have a daughter in computer science at Stanford, I want to get to that in a second. But that empathy and I mentioned Rachel Thornton, who's the CMO MessageBird and former CMO of AWS. Her thing right now to your point is mentoring and sponsorship is very key. And her company and the video that's on the site here people should look at that and reference that. They talk a lot about that empathy of people's situation whether it's a single mom, family life, men and women but mainly women because they're the ones who people aren't having a lot of empathy for in that situation, as you called it out. This is huge. And I think remote work has opened up this whole aperture of everyone has to have a view into how people are coming to the table at work. So, you know, props are bringing that up, and I recommend everyone look at check out Rachel Thornton. So how do you balance that, that home life and talk about your daughter's journey because sounds like she's nerding out at Stanford 'cause you know Stanford's called Nerd Nation, that's their motto, so you must be proud. >> I am so proud, I'm so proud. And I will say, I have to admit, because I did encounter so many obstacles and so many hurdles in my journey, it's almost like I forgot that I should set that aside and not worry about my daughter. My hope for her was for her to kind of be artistic and a painter or go into something more lighthearted and fun because I just wanted to think, I guess my mom had the same idea, right? She, always been very driven. She, I want to say that I got very lucky that she picked me to be her mom. Biologically I'm her mom, but I told her she was like a little star that fell from the sky and I, and ended up with me. I think for me, balancing being a single mom and a career where I'm leading and mentoring and making big decisions that affect people's lives as well. You have to take the best of everything you get from each of those roles. And I think that the best way is play to your strengths, right? So having been kind of a nerd and very organized person and all about, you know, systems for effectiveness, I mean, industrial engineering, parenting for me was, I'm going to make it sound super annoying and horrible, but (laughs) >> It's funny, you know, Dave Vellante and I when we started SiliconANGLE and theCUBE years ago, one of the things we were all like sports lovers. So we liked sports and we are like we looked at the people in tech as tech athletes and except there's no men and women teams, it's one team. It's all one thing. So, you know, I consider you a tech athlete you're hard charging strong and professional and smart and beautiful and brilliant, all those good things. >> Thank you. >> Now this game is changing and okay, and you've done startups, and you've done corporate jobs, now you're in a new role. What's the current tech landscape from a, you know I won't say athletic per standpoint but as people who are smart. You have all kinds of different skill sets. You have the startup warriors, you have the folks who like to be in the middle of the corporate world grow up through corporate, climb the corporate ladder. You have investors, you have, you know, creatives. What have you enjoyed most and where do you see all the action? >> I mean, I think what I've enjoyed the most has been being able to bring all of the things that I feel I'm strong at and bring it together to apply that to whatever the problem is at hand, right? So kind of like, you know if you look at a renaissance man who can kind of pop in anywhere and, oh, he's good at, you know sports and he's good at reading and, or she's good at this or, take all of those strengths and somehow bring them together to deal with the issue at hand, versus breaking up your mindset into this is textbook what I learned and this is how business should be done and I'm going to draw these hard lines between personal life and work life, or between how you do selling and how you do engineering. So I think my, the thing that I loved, really loved about AWS was a lot of leaders saw something in me that I potentially didn't see, which was, yeah you might be great at running that big account but we need help over here doing go to market for a new product launch and boom, there you go. Now I'm in a different org helping solve that problem and getting something launched. And I think if you don't box yourself in to I'm only good at this, or, you know put a label on yourself as being the rockstar in that. It leaves room for opportunities to present themselves but also it leaves room within your own mind to see yourself as somebody capable of doing anything. Right, I don't know if I answered the question accurately. >> No, that's good, no, that's awesome. I love the sharing, Yeah, great, great share there. Question is, what do you see, what do you currently during now you're building a business of Persistent for the cloud, obviously AWS and Persistent's a leader global system integrator around the world, thousands and thousands of customers from what we know and been reporting on theCUBE, what's next for you? Where do you see yourself going? Obviously you're going to knock this out of the park. Where do you see yourself as you kind of look at the continuing journey of your mission, personal, professional what's on your mind? Where do you see yourself going next? >> Well, I think, you know, again, going back to not boxing yourself in. This role is an amazing one where I have an opportunity to take all the pieces of my career in tech and apply them to building a business within a business. And that involves all the goodness of coaching and mentoring and strategizing. And I'm loving it. I'm loving the opportunity to work with such great leaders. Persistent itself is very, very good at providing opportunities, very diverse opportunities. We just had a huge Semicolon; Hackathon. Some of the winners were females. The turnout was amazing in the CTO's office. We have very strong women leading the charge for innovation. I think to answer your question about the future and where I may see myself going next, I think now that my job, well they say the job is never done. But now that Chloe's kind of settled into Stanford and kind of doing her own thing, I have always had a passion to continue leading in a way that brings me to, into the fold a lot more. So maybe, you know, maybe in a VC firm partner mode or another, you know CEO role in a startup, or my own startup. I mean, I never, I don't know right now I'm super happy but you never know, you know where your drive might go. And I also want to be able to very deliberately be in a role where I can continue to mentor and support up and coming women in tech. >> Well, you got the smarts but you got really the building mentality, the curiosity and the confidence really sets you up nicely. Dominique great story, great inspiration. You're a role model for many women, young girls out there and women in tech and in celebration. It's a great day and thank you for sharing that story and all the good nuggets there. Appreciate you coming on theCUBE, and it's been my pleasure. Thanks for coming on. >> Thank you, John. Thank you so much for having me. >> Okay, theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE here in Palo Alto getting all the content, check out the other interviews some amazing stories, lessons learned, and some, you know some funny stories and some serious stories. So have some fun and enjoy the rest of the videos here for International Women's Days, thanks for watching. (gentle inspirational music)

Published Date : Mar 9 2023

SUMMARY :

Dominique, great to have you on Thank you John, for and 50% of the world is I guess you call it primary And that really, you know, (laughs) If I was told not design and ultimately, you know if you don't mind sharing? and do all the load testing the challenges you faced? I kind of went in gung-ho Now it's a big deal. and you also don't know how to react. and if you would've done this to somebody Was that something you were natural for? and applying it to building businesses. You thought, you thought and I do have to kind And also the ability to come to the table Because I still hear that all the time. and that needs to be, I mean, That's, and the industry's to be home with, you know and I appreciate you bringing that up and all about, you know, It's funny, you know, and where do you see all the action? And I think if you don't box yourself in I love the sharing, Yeah, I think to answer your and all the good nuggets there. Thank you so much for having me. learned, and some, you know

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Rachel ThorntonPERSON

0.99+

RachelPERSON

0.99+

Todd WeatherbyPERSON

0.99+

GeorgiaLOCATION

0.99+

GEORGANIZATION

0.99+

Dominique BastosPERSON

0.99+

AWSORGANIZATION

0.99+

JohnPERSON

0.99+

AlabamaLOCATION

0.99+

Dave VellantePERSON

0.99+

Andy JassyPERSON

0.99+

2016DATE

0.99+

John FurrierPERSON

0.99+

DominiquePERSON

0.99+

Palo AltoLOCATION

0.99+

50%QUANTITY

0.99+

thousandsQUANTITY

0.99+

ChloePERSON

0.99+

two timesQUANTITY

0.99+

International Women's DaysEVENT

0.99+

International Women's DayEVENT

0.99+

51%QUANTITY

0.99+

oneQUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

PersistentORGANIZATION

0.99+

ProServeORGANIZATION

0.99+

StanfordORGANIZATION

0.99+

Persistent SystemsORGANIZATION

0.99+

MessageBirdORGANIZATION

0.99+

second yearQUANTITY

0.99+

7%QUANTITY

0.99+

early 2016DATE

0.98+

one teamQUANTITY

0.98+

firstQUANTITY

0.98+

theCUBEORGANIZATION

0.98+

singleQUANTITY

0.98+

Civil Engineering SchoolORGANIZATION

0.98+

four womenQUANTITY

0.98+

todayDATE

0.97+

TodayDATE

0.97+

eachQUANTITY

0.97+

pandemicEVENT

0.97+

first customerQUANTITY

0.97+

International Women's Day 2023EVENT

0.95+

single momQUANTITY

0.95+

AmazonORGANIZATION

0.94+

CloudORGANIZATION

0.88+

one thingQUANTITY

0.87+

almost three yearsQUANTITY

0.87+

zero understandingQUANTITY

0.86+

Concrete Canoe Building CompetitionEVENT

0.86+

Nerd NationORGANIZATION

0.84+

zeroQUANTITY

0.84+

secondQUANTITY

0.8+

CTOORGANIZATION

0.76+

SiliconANGLEORGANIZATION

0.74+

Opening Panel | Generative AI: Hype or Reality | AWS Startup Showcase S3 E1


 

(light airy music) >> Hello, everyone, welcome to theCUBE's presentation of the AWS Startup Showcase, AI and machine learning. "Top Startups Building Generative AI on AWS." This is season three, episode one of the ongoing series covering the exciting startups from the AWS ecosystem, talking about AI machine learning. We have three great guests Bratin Saha, VP, Vice President of Machine Learning and AI Services at Amazon Web Services. Tom Mason, the CTO of Stability AI, and Aidan Gomez, CEO and co-founder of Cohere. Two practitioners doing startups and AWS. Gentlemen, thank you for opening up this session, this episode. Thanks for coming on. >> Thank you. >> Thank you. >> Thank you. >> So the topic is hype versus reality. So I think we're all on the reality is great, hype is great, but the reality's here. I want to get into it. Generative AI's got all the momentum, it's going mainstream, it's kind of come out of the behind the ropes, it's now mainstream. We saw the success of ChatGPT, opens up everyone's eyes, but there's so much more going on. Let's jump in and get your early perspectives on what should people be talking about right now? What are you guys working on? We'll start with AWS. What's the big focus right now for you guys as you come into this market that's highly active, highly hyped up, but people see value right out of the gate? >> You know, we have been working on generative AI for some time. In fact, last year we released Code Whisperer, which is about using generative AI for software development and a number of customers are using it and getting real value out of it. So generative AI is now something that's mainstream that can be used by enterprise users. And we have also been partnering with a number of other companies. So, you know, stability.ai, we've been partnering with them a lot. We want to be partnering with other companies as well. In seeing how we do three things, you know, first is providing the most efficient infrastructure for generative AI. And that is where, you know, things like Trainium, things like Inferentia, things like SageMaker come in. And then next is the set of models and then the third is the kind of applications like Code Whisperer and so on. So, you know, it's early days yet, but clearly there's a lot of amazing capabilities that will come out and something that, you know, our customers are starting to pay a lot of attention to. >> Tom, talk about your company and what your focus is and why the Amazon Web Services relationship's important for you? >> So yeah, we're primarily committed to making incredible open source foundation models and obviously stable effusions been our kind of first big model there, which we trained all on AWS. We've been working with them over the last year and a half to develop, obviously a big cluster, and bring all that compute to training these models at scale, which has been a really successful partnership. And we're excited to take it further this year as we develop commercial strategy of the business and build out, you know, the ability for enterprise customers to come and get all the value from these models that we think they can get. So we're really excited about the future. We got hugely exciting pipeline for this year with new modalities and video models and wonderful things and trying to solve images for once and for all and get the kind of general value and value proposition correct for customers. So it's a really exciting time and very honored to be part of it. >> It's great to see some of your customers doing so well out there. Congratulations to your team. Appreciate that. Aidan, let's get into what you guys do. What does Cohere do? What are you excited about right now? >> Yeah, so Cohere builds large language models, which are the backbone of applications like ChatGPT and GPT-3. We're extremely focused on solving the issues with adoption for enterprise. So it's great that you can make a super flashy demo for consumers, but it takes a lot to actually get it into billion user products and large global enterprises. So about six months ago, we released our command models, which are some of the best that exist for large language models. And in December, we released our multilingual text understanding models and that's on over a hundred different languages and it's trained on, you know, authentic data directly from native speakers. And so we're super excited to continue pushing this into enterprise and solving those barriers for adoption, making this transformation a reality. >> Just real quick, while I got you there on the new products coming out. Where are we in the progress? People see some of the new stuff out there right now. There's so much more headroom. Can you just scope out in your mind what that looks like? Like from a headroom standpoint? Okay, we see ChatGPT. "Oh yeah, it writes my papers for me, does some homework for me." I mean okay, yawn, maybe people say that, (Aidan chuckles) people excited or people are blown away. I mean, it's helped theCUBE out, it helps me, you know, feed up a little bit from my write-ups but it's not always perfect. >> Yeah, at the moment it's like a writing assistant, right? And it's still super early in the technologies trajectory. I think it's fascinating and it's interesting but its impact is still really limited. I think in the next year, like within the next eight months, we're going to see some major changes. You've already seen the very first hints of that with stuff like Bing Chat, where you augment these dialogue models with an external knowledge base. So now the models can be kept up to date to the millisecond, right? Because they can search the web and they can see events that happened a millisecond ago. But that's still limited in the sense that when you ask the question, what can these models actually do? Well they can just write text back at you. That's the extent of what they can do. And so the real project, the real effort, that I think we're all working towards is actually taking action. So what happens when you give these models the ability to use tools, to use APIs? What can they do when they can actually affect change out in the real world, beyond just streaming text back at the user? I think that's the really exciting piece. >> Okay, so I wanted to tee that up early in the segment 'cause I want to get into the customer applications. We're seeing early adopters come in, using the technology because they have a lot of data, they have a lot of large language model opportunities and then there's a big fast follower wave coming behind it. I call that the people who are going to jump in the pool early and get into it. They might not be advanced. Can you guys share what customer applications are being used with large language and vision models today and how they're using it to transform on the early adopter side, and how is that a tell sign of what's to come? >> You know, one of the things we have been seeing both with the text models that Aidan talked about as well as the vision models that stability.ai does, Tom, is customers are really using it to change the way you interact with information. You know, one example of a customer that we have, is someone who's kind of using that to query customer conversations and ask questions like, you know, "What was the customer issue? How did we solve it?" And trying to get those kinds of insights that was previously much harder to do. And then of course software is a big area. You know, generating software, making that, you know, just deploying it in production. Those have been really big areas that we have seen customers start to do. You know, looking at documentation, like instead of you know, searching for stuff and so on, you know, you just have an interactive way, in which you can just look at the documentation for a product. You know, all of this goes to where we need to take the technology. One of which is, you know, the models have to be there but they have to work reliably in a production setting at scale, with privacy, with security, and you know, making sure all of this is happening, is going to be really key. That is what, you know, we at AWS are looking to do, which is work with partners like stability and others and in the open source and really take all of these and make them available at scale to customers, where they work reliably. >> Tom, Aidan, what's your thoughts on this? Where are customers landing on this first use cases or set of low-hanging fruit use cases or applications? >> Yeah, so I think like the first group of adopters that really found product market fit were the copywriting companies. So one great example of that is HyperWrite. Another one is Jasper. And so for Cohere, that's the tip of the iceberg, like there's a very long tail of usage from a bunch of different applications. HyperWrite is one of our customers, they help beat writer's block by drafting blog posts, emails, and marketing copy. We also have a global audio streaming platform, which is using us the power of search engine that can comb through podcast transcripts, in a bunch of different languages. Then a global apparel brand, which is using us to transform how they interact with their customers through a virtual assistant, two dozen global news outlets who are using us for news summarization. So really like, these large language models, they can be deployed all over the place into every single industry sector, language is everywhere. It's hard to think of any company on Earth that doesn't use language. So it's, very, very- >> We're doing it right now. We got the language coming in. >> Exactly. >> We'll transcribe this puppy. All right. Tom, on your side, what do you see the- >> Yeah, we're seeing some amazing applications of it and you know, I guess that's partly been, because of the growth in the open source community and some of these applications have come from there that are then triggering this secondary wave of innovation, which is coming a lot from, you know, controllability and explainability of the model. But we've got companies like, you know, Jasper, which Aidan mentioned, who are using stable diffusion for image generation in block creation, content creation. We've got Lensa, you know, which exploded, and is built on top of stable diffusion for fine tuning so people can bring themselves and their pets and you know, everything into the models. So we've now got fine tuned stable diffusion at scale, which is democratized, you know, that process, which is really fun to see your Lensa, you know, exploded. You know, I think it was the largest growing app in the App Store at one point. And lots of other examples like NightCafe and Lexica and Playground. So seeing lots of cool applications. >> So much applications, we'll probably be a customer for all you guys. We'll definitely talk after. But the challenges are there for people adopting, they want to get into what you guys see as the challenges that turn into opportunities. How do you see the customers adopting generative AI applications? For example, we have massive amounts of transcripts, timed up to all the videos. I don't even know what to do. Do I just, do I code my API there. So, everyone has this problem, every vertical has these use cases. What are the challenges for people getting into this and adopting these applications? Is it figuring out what to do first? Or is it a technical setup? Do they stand up stuff, they just go to Amazon? What do you guys see as the challenges? >> I think, you know, the first thing is coming up with where you think you're going to reimagine your customer experience by using generative AI. You know, we talked about Ada, and Tom talked about a number of these ones and you know, you pick up one or two of these, to get that robust. And then once you have them, you know, we have models and we'll have more models on AWS, these large language models that Aidan was talking about. Then you go in and start using these models and testing them out and seeing whether they fit in use case or not. In many situations, like you said, John, our customers want to say, "You know, I know you've trained these models on a lot of publicly available data, but I want to be able to customize it for my use cases. Because, you know, there's some knowledge that I have created and I want to be able to use that." And then in many cases, and I think Aidan mentioned this. You know, you need these models to be up to date. Like you can't have it staying. And in those cases, you augmented with a knowledge base, you know you have to make sure that these models are not hallucinating. And so you need to be able to do the right kind of responsible AI checks. So, you know, you start with a particular use case, and there are a lot of them. Then, you know, you can come to AWS, and then look at one of the many models we have and you know, we are going to have more models for other modalities as well. And then, you know, play around with the models. We have a playground kind of thing where you can test these models on some data and then you can probably, you will probably want to bring your own data, customize it to your own needs, do some of the testing to make sure that the model is giving the right output and then just deploy it. And you know, we have a lot of tools. >> Yeah. >> To make this easy for our customers. >> How should people think about large language models? Because do they think about it as something that they tap into with their IP or their data? Or is it a large language model that they apply into their system? Is the interface that way? What's the interaction look like? >> In many situations, you can use these models out of the box. But in typical, in most of the other situations, you will want to customize it with your own data or with your own expectations. So the typical use case would be, you know, these are models are exposed through APIs. So the typical use case would be, you know you're using these APIs a little bit for testing and getting familiar and then there will be an API that will allow you to train this model further on your data. So you use that AI, you know, make sure you augmented the knowledge base. So then you use those APIs to customize the model and then just deploy it in an application. You know, like Tom was mentioning, a number of companies that are using these models. So once you have it, then you know, you again, use an endpoint API and use it in an application. >> All right, I love the example. I want to ask Tom and Aidan, because like most my experience with Amazon Web Service in 2007, I would stand up in EC2, put my code on there, play around, if it didn't work out, I'd shut it down. Is that a similar dynamic we're going to see with the machine learning where developers just kind of log in and stand up infrastructure and play around and then have a cloud-like experience? >> So I can go first. So I mean, we obviously, with AWS working really closely with the SageMaker team, do fantastic platform there for ML training and inference. And you know, going back to your point earlier, you know, where the data is, is hugely important for companies. Many companies bringing their models to their data in AWS on-premise for them is hugely important. Having the models to be, you know, open sources, makes them explainable and transparent to the adopters of those models. So, you know, we are really excited to work with the SageMaker team over the coming year to bring companies to that platform and make the most of our models. >> Aidan, what's your take on developers? Do they just need to have a team in place, if we want to interface with you guys? Let's say, can they start learning? What do they got to do to set up? >> Yeah, so I think for Cohere, our product makes it much, much easier to people, for people to get started and start building, it solves a lot of the productionization problems. But of course with SageMaker, like Tom was saying, I think that lowers a barrier even further because it solves problems like data privacy. So I want to underline what Bratin was saying earlier around when you're fine tuning or when you're using these models, you don't want your data being incorporated into someone else's model. You don't want it being used for training elsewhere. And so the ability to solve for enterprises, that data privacy and that security guarantee has been hugely important for Cohere, and that's very easy to do through SageMaker. >> Yeah. >> But the barriers for using this technology are coming down super quickly. And so for developers, it's just becoming completely intuitive. I love this, there's this quote from Andrej Karpathy. He was saying like, "It really wasn't on my 2022 list of things to happen that English would become, you know, the most popular programming language." And so the barrier is coming down- >> Yeah. >> Super quickly and it's exciting to see. >> It's going to be awesome for all the companies here, and then we'll do more, we're probably going to see explosion of startups, already seeing that, the maps, ecosystem maps, the landscape maps are happening. So this is happening and I'm convinced it's not yesterday's chat bot, it's not yesterday's AI Ops. It's a whole another ballgame. So I have to ask you guys for the final question before we kick off the company's showcasing here. How do you guys gauge success of generative AI applications? Is there a lens to look through and say, okay, how do I see success? It could be just getting a win or is it a bigger picture? Bratin we'll start with you. How do you gauge success for generative AI? >> You know, ultimately it's about bringing business value to our customers. And making sure that those customers are able to reimagine their experiences by using generative AI. Now the way to get their ease, of course to deploy those models in a safe, effective manner, and ensuring that all of the robustness and the security guarantees and the privacy guarantees are all there. And we want to make sure that this transitions from something that's great demos to actual at scale products, which means making them work reliably all of the time not just some of the time. >> Tom, what's your gauge for success? >> Look, I think this, we're seeing a completely new form of ways to interact with data, to make data intelligent, and directly to bring in new revenue streams into business. So if businesses can use our models to leverage that and generate completely new revenue streams and ultimately bring incredible new value to their customers, then that's fantastic. And we hope we can power that revolution. >> Aidan, what's your take? >> Yeah, reiterating Bratin and Tom's point, I think that value in the enterprise and value in market is like a huge, you know, it's the goal that we're striving towards. I also think that, you know, the value to consumers and actual users and the transformation of the surface area of technology to create experiences like ChatGPT that are magical and it's the first time in human history we've been able to talk to something compelling that's not a human. I think that in itself is just extraordinary and so exciting to see. >> It really brings up a whole another category of markets. B2B, B2C, it's B2D, business to developer. Because I think this is kind of the big trend the consumers have to win. The developers coding the apps, it's a whole another sea change. Reminds me everyone use the "Moneyball" movie as example during the big data wave. Then you know, the value of data. There's a scene in "Moneyball" at the end, where Billy Beane's getting the offer from the Red Sox, then the owner says to the Red Sox, "If every team's not rebuilding their teams based upon your model, there'll be dinosaurs." I think that's the same with AI here. Every company will have to need to think about their business model and how they operate with AI. So it'll be a great run. >> Completely Agree >> It'll be a great run. >> Yeah. >> Aidan, Tom, thank you so much for sharing about your experiences at your companies and congratulations on your success and it's just the beginning. And Bratin, thanks for coming on representing AWS. And thank you, appreciate for what you do. Thank you. >> Thank you, John. Thank you, Aidan. >> Thank you John. >> Thanks so much. >> Okay, let's kick off season three, episode one. I'm John Furrier, your host. Thanks for watching. (light airy music)

Published Date : Mar 9 2023

SUMMARY :

of the AWS Startup Showcase, of the behind the ropes, and something that, you know, and build out, you know, Aidan, let's get into what you guys do. and it's trained on, you know, it helps me, you know, the ability to use tools, to use APIs? I call that the people and you know, making sure the first group of adopters We got the language coming in. Tom, on your side, what do you see the- and you know, everything into the models. they want to get into what you guys see and you know, you pick for our customers. then you know, you again, All right, I love the example. and make the most of our models. And so the ability to And so the barrier is coming down- and it's exciting to see. So I have to ask you guys and ensuring that all of the robustness and directly to bring in new and it's the first time in human history the consumers have to win. and it's just the beginning. I'm John Furrier, your host.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

TomPERSON

0.99+

Tom MasonPERSON

0.99+

AidanPERSON

0.99+

Red SoxORGANIZATION

0.99+

AWSORGANIZATION

0.99+

Andrej KarpathyPERSON

0.99+

Bratin SahaPERSON

0.99+

DecemberDATE

0.99+

2007DATE

0.99+

John FurrierPERSON

0.99+

Aidan GomezPERSON

0.99+

AmazonORGANIZATION

0.99+

Amazon Web ServicesORGANIZATION

0.99+

Billy BeanePERSON

0.99+

BratinPERSON

0.99+

MoneyballTITLE

0.99+

oneQUANTITY

0.99+

AdaPERSON

0.99+

last yearDATE

0.99+

twoQUANTITY

0.99+

EarthLOCATION

0.99+

yesterdayDATE

0.99+

Two practitionersQUANTITY

0.99+

Amazon Web ServicesORGANIZATION

0.99+

ChatGPTTITLE

0.99+

next yearDATE

0.99+

Code WhispererTITLE

0.99+

thirdQUANTITY

0.99+

this yearDATE

0.99+

App StoreTITLE

0.99+

first timeQUANTITY

0.98+

firstQUANTITY

0.98+

InferentiaTITLE

0.98+

EC2TITLE

0.98+

GPT-3TITLE

0.98+

bothQUANTITY

0.98+

LensaTITLE

0.98+

SageMakerORGANIZATION

0.98+

three thingsQUANTITY

0.97+

CohereORGANIZATION

0.96+

over a hundred different languagesQUANTITY

0.96+

EnglishOTHER

0.96+

one exampleQUANTITY

0.96+

about six months agoDATE

0.96+

OneQUANTITY

0.96+

first useQUANTITY

0.96+

SageMakerTITLE

0.96+

Bing ChatTITLE

0.95+

one pointQUANTITY

0.95+

TrainiumTITLE

0.95+

LexicaTITLE

0.94+

PlaygroundTITLE

0.94+

three great guestsQUANTITY

0.93+

HyperWriteTITLE

0.92+

Gabriela de Queiroz, Microsoft | WiDS 2023


 

(upbeat music) >> Welcome back to theCUBE's coverage of Women in Data Science 2023 live from Stanford University. This is Lisa Martin. My co-host is Tracy Yuan. We're excited to be having great conversations all day but you know, 'cause you've been watching. We've been interviewing some very inspiring women and some men as well, talking about all of the amazing applications of data science. You're not going to want to miss this next conversation. Our guest is Gabriela de Queiroz, Principal Cloud Advocate Manager of Microsoft. Welcome, Gabriela. We're excited to have you. >> Thank you very much. I'm so excited to be talking to you. >> Yeah, you're on theCUBE. >> Yeah, finally. (Lisa laughing) Like a dream come true. (laughs) >> I know and we love that. We're so thrilled to have you. So you have a ton of experience in the data space. I was doing some research on you. You've worked in software, financial advertisement, health. Talk to us a little bit about you. What's your background in? >> So I was trained in statistics. So I'm a statistician and then I worked in epidemiology. I worked with air pollution and public health. So I was a researcher before moving into the industry. So as I was talking today, the weekly paths, it's exactly who I am. I went back and forth and back and forth and stopped and tried something else until I figured out that I want to do data science and that I want to do different things because with data science we can... The beauty of data science is that you can move across domains. So I worked in healthcare, financial, and then different technology companies. >> Well the nice thing, one of the exciting things that data science, that I geek out about and Tracy knows 'cause we've been talking about this all day, it's just all the different, to your point, diverse, pun intended, applications of data science. You know, this morning we were talking about, we had the VP of data science from Meta as a keynote. She came to theCUBE talking and really kind of explaining from a content perspective, from a monetization perspective, and of course so many people in the world are users of Facebook. It makes it tangible. But we also heard today conversations about the applications of data science in police violence, in climate change. We're in California, we're expecting a massive rainstorm and we don't know what to do when it rains or snows. But climate change is real. Everyone's talking about it, and there's data science at its foundation. That's one of the things that I love. But you also have a lot of experience building diverse teams. Talk a little bit about that. You've created some very sophisticated data science solutions. Talk about your recommendation to others to build diverse teams. What's in it for them? And maybe share some data science project or two that you really found inspirational. >> Yeah, absolutely. So I do love building teams. Every time I'm given the task of building teams, I feel the luckiest person in the world because you have the option to pick like different backgrounds and all the diverse set of like people that you can find. I don't think it's easy, like people say, yeah, it's very hard. You have to be intentional. You have to go from the very first part when you are writing the job description through the interview process. So you have to be very intentional in every step. And you have to think through when you are doing that. And I love, like my last team, we had like 10 people and we were so diverse. Like just talking about languages. We had like 15 languages inside a team. So how beautiful it is. Like all different backgrounds, like myself as a statistician, but we had people from engineering background, biology, languages, and so on. So it's, yeah, like every time thinking about building a team, if you wanted your team to be diverse, you need to be intentional. >> I'm so glad you brought up that intention point because that is the fundamental requirement really is to build it with intention. >> Exactly, and I love to hear like how there's different languages. So like I'm assuming, or like different backgrounds, I'm assuming everybody just zig zags their way into the team and now you're all women in data science and I think that's so precious. >> Exactly. And not only woman, right. >> Tracy: Not only woman, you're right. >> The team was diverse not only in terms of like gender, but like background, ethnicity, and spoken languages, and language that they use to program and backgrounds. Like as I mentioned, not everybody did the statistics in school or computer science. And it was like one of my best teams was when we had this combination also like things that I'm good at the other person is not as good and we have this knowledge sharing all the time. Every day I would feel like I'm learning something. In a small talk or if I was reviewing something, there was always something new because of like the richness of the diverse set of people that were in your team. >> Well what you've done is so impressive, because not only have you been intentional with it, but you sound like the hallmark of a great leader of someone who hires and builds teams to fill gaps. They don't have to know less than I do for me to be the leader. They have to have different skills, different areas of expertise. That is really, honestly Gabriela, that's the hallmark of a great leader. And that's not easy to come by. So tell me, who were some of your mentors and sponsors along the way that maybe influenced you in that direction? Or is that just who you are? >> That's a great question. And I joke that I want to be the role model that I never had, right. So growing up, I didn't have anyone that I could see other than my mom probably or my sister. But there was no one that I could see, I want to become that person one day. And once I was tracing my path, I started to see people looking at me and like, you inspire me so much, and I'm like, oh wow, this is amazing and I want to do do this over and over and over again. So I want to be that person to inspire others. And no matter, like I'll be like a VP, CEO, whoever, you know, I want to be, I want to keep inspiring people because that's so valuable. >> Lisa: Oh, that's huge. >> And I feel like when we grow professionally and then go to the next level, we sometimes we lose that, you know, thing that's essential. And I think also like, it's part of who I am as I was building and all my experiences as I was going through, I became what I mentioned is unique person that I think we all are unique somehow. >> You're a rockstar. Isn't she a rockstar? >> You dropping quotes out. >> I'm loving this. I'm like, I've inspired Gabriela. (Gabriela laughing) >> Oh my God. But yeah, 'cause we were asking our other guests about the same question, like, who are your role models? And then we're talking about how like it's very important for women to see that there is a representation, that there is someone they look up to and they want to be. And so that like, it motivates them to stay in this field and to start in this field to begin with. So yeah, I think like you are definitely filling a void and for all these women who dream to be in data science. And I think that's just amazing. >> And you're a founder too. In 2012, you founded R Ladies. Talk a little bit about that. This is present in more than 200 cities in 55 plus countries. Talk about R Ladies and maybe the catalyst to launch it. >> Yes, so you always start, so I'm from Brazil, I always talk about this because it's such, again, I grew up over there. So I was there my whole life and then I moved to here, Silicon Valley. And when I moved to San Francisco, like the doors opened. So many things happening in the city. That was back in 2012. Data science was exploding. And I found out something about Meetup.com, it's a website that you can join and go in all these events. And I was going to this event and I joke that it was kind of like going to the Disneyland, where you don't know if I should go that direction or the other direction. >> Yeah, yeah. >> And I was like, should I go and learn about data visualization? Should I go and learn about SQL or should I go and learn about Hadoop, right? So I would go every day to those meetups. And I was a student back then, so you know, the budget was very restricted as a student. So we don't have much to spend. And then they would serve dinner and you would learn for free. And then I got to a point where I was like, hey, they are doing all of this as a volunteer. Like they are running this meetup and events for free. And I felt like it's a cycle. I need to do something, right. I'm taking all this in. I'm having this huge opportunity to be here. I want to give back. So that's what how everything started. I was like, no, I have to think about something. I need to think about something that I can give back. And I was using R back then and I'm like how about I do something with R. I love R, I'm so passionate about R, what about if I create a community around R but not a regular community, because by going to this events, I felt that as a Latina and as a woman, I was always in the corner and I was not being able to participate and to, you know, be myself and to network and ask questions. I would be in the corner. So I said to myself, what about if I do something where everybody feel included, where everybody can participate, can share, can ask questions without judgment? So that's how R ladies all came together. >> That's awesome. >> Talk about intentions, like you have to, you had that go in mind, but yeah, I wanted to dive a little bit into R. So could you please talk more about where did the passion for R come from, and like how did the special connection between you and R the language, like born, how did that come from? >> It was not a love at first sight. >> No. >> Not at all. Not at all. Because that was back in Brazil. So all the documentation were in English, all the tutorials, only two. We had like very few tutorials. It was not like nowadays that we have so many tutorials and courses. There were like two tutorials, other documentation in English. So it's was hard for me like as someone that didn't know much English to go through the language and then to learn to program was not easy task. But then as I was going through the language and learning and reading books and finding the people behind the language, I don't know how I felt in love. And then when I came to to San Francisco, I saw some of like the main contributors who are speaking in person and I'm like, wow, they are like humans. I don't know, it was like, I have no idea why I had this love. But I think the the people and then the community was the thing that kept me with the R language. >> Yeah, the community factors is so important. And it's so, at WIDS it's so palpable. I mean I literally walk in the door, every WIDS I've done, I think I've been doing them for theCUBE since 2017. theCUBE has been here since the beginning in 2015 with our co-founders. But you walk in, you get this sense of belonging. And this sense of I can do anything, why not? Why not me? Look at her up there, and now look at you speaking in the technical talk today on theCUBE. So inspiring. One of the things that I always think is you can't be what you can't see. We need to be able to see more people that look like you and sound like you and like me and like you as well. And WIDS gives us that opportunity, which is fantastic, but it's also helping to move the needle, really. And I was looking at some of the Anitab.org stats just yesterday about 2022. And they're showing, you know, the percentage of females in technical roles has been hovering around 25% for a while. It's a little higher now. I think it's 27.6 according to any to Anitab. We're seeing more women hired in roles. But what are the challenges, and I would love to get your advice on this, for those that might be in this situation is attrition, women who are leaving roles. What would your advice be to a woman who might be trying to navigate family and work and career ladder to stay in that role and keep pushing forward? >> I'll go back to the community. If you don't have a community around you, it's so hard to navigate. >> That's a great point. >> You are lonely. There is no one that you can bounce ideas off, that you can share what you are feeling or like that you can learn as well. So sometimes you feel like you are the only person that is going through that problem or like, you maybe have a family or you are planning to have a family and you have to make a decision. But you've never seen anyone going through this. So when you have a community, you see people like you, right. So that's where we were saying about having different people and people like you so they can share as well. And you feel like, oh yeah, so they went through this, they succeed. I can also go through this and succeed. So I think the attrition problem is still big problem. And I'm sure will be worse now with everything that is happening in Tech with layoffs. >> Yes and the great resignation. >> Yeah. >> We are going back, you know, a few steps, like a lot of like advancements that we did. I feel like we are going back unfortunately, but I always tell this, make sure that you have a community. Make sure that you have a mentor. Make sure that you have someone or some people, not only one mentor, different mentors, that can support you through this trajectory. Because it's not easy. But there are a lot of us out there. >> There really are. And that's a great point. I love everything about the community. It's all about that network effect and feeling like you belong- >> That's all WIDS is about. >> Yeah. >> Yes. Absolutely. >> Like coming over here, it's like seeing the old friends again. It's like I'm so glad that I'm coming because I'm all my old friends that I only see like maybe once a year. >> Tracy: Reunion. >> Yeah, exactly. And I feel like that our tank get, you know- >> Lisa: Replenished. >> Exactly. For the rest of the year. >> Yes. >> Oh, that's precious. >> I love that. >> I agree with that. I think one of the things that when I say, you know, you can't see, I think, well, how many females in technology would I be able to recognize? And of course you can be female technology working in the healthcare sector or working in finance or manufacturing, but, you know, we need to be able to have more that we can see and identify. And one of the things that I recently found out, I was telling Tracy this earlier that I geeked out about was finding out that the CTO of Open AI, ChatGPT, is a female. I'm like, (gasps) why aren't we talking about this more? She was profiled on Fast Company. I've seen a few pieces on her, Mira Murati. But we're hearing so much about ChatJTP being... ChatGPT, I always get that wrong, about being like, likening it to the launch of the iPhone, which revolutionized mobile and connectivity. And here we have a female in the technical role. Let's put her on a pedestal because that is hugely inspiring. >> Exactly, like let's bring everybody to the front. >> Yes. >> Right. >> And let's have them talk to us because like, you didn't know. I didn't know probably about this, right. You didn't know. Like, we don't know about this. It's kind of like we are hidden. We need to give them the spotlight. Every woman to give the spotlight, so they can keep aspiring the new generation. >> Or Susan Wojcicki who ran, how long does she run YouTube? All the YouTube influencers that probably have no idea who are influential for whatever they're doing on YouTube in different social platforms that don't realize, do you realize there was a female behind the helm that for a long time that turned it into what it is today? That's outstanding. Why aren't we talking about this more? >> How about Megan Smith, was the first CTO on the Obama administration. >> That's right. I knew it had to do with Obama. Couldn't remember. Yes. Let's let's find more pedestals. But organizations like WIDS, your involvement as a speaker, showing more people you can be this because you can see it, >> Yeah, exactly. is the right direction that will help hopefully bring us back to some of the pre-pandemic levels, and keep moving forward because there's so much potential with data science that can impact everyone's lives. I always think, you know, we have this expectation that we have our mobile phone and we can get whatever we want wherever we are in the world and whatever time of day it is. And that's all data driven. The regular average person that's not in tech thinks about data as a, well I'm paying for it. What's all these data charges? But it's powering the world. It's powering those experiences that we all want as consumers or in our business lives or we expect to be able to do a transaction, whether it's something in a CRM system or an Uber transaction like that, and have the app respond, maybe even know me a little bit better than I know myself. And that's all data. So I think we're just at the precipice of the massive impact that data science will make in our lives. And luckily we have leaders like you who can help navigate us along this path. >> Thank you. >> What advice for, last question for you is advice for those in the audience who might be nervous or maybe lack a little bit of confidence to go I really like data science, or I really like engineering, but I don't see a lot of me out there. What would you say to them? >> Especially for people who are from like a non-linear track where like going onto that track. >> Yeah, I would say keep going. Keep going. I don't think it's easy. It's not easy. But keep going because the more you go the more, again, you advance and there are opportunities out there. Sometimes it takes a little bit, but just keep going. Keep going and following your dreams, that you get there, right. So again, data science, such a broad field that doesn't require you to come from a specific background. And I think the beauty of data science exactly is this is like the combination, the most successful data science teams are the teams that have all these different backgrounds. So if you think that we as data scientists, we started programming when we were nine, that's not true, right. You can be 30, 40, shifting careers, starting to program right now. It doesn't matter. Like you get there no matter how old you are. And no matter what's your background. >> There's no limit. >> There was no limits. >> I love that, Gabriela, >> Thank so much. for inspiring. I know you inspired me. I'm pretty sure you probably inspired Tracy with your story. And sometimes like what you just said, you have to be your own mentor and that's okay. Because eventually you're going to turn into a mentor for many, many others and sounds like you're already paving that path and we so appreciate it. You are now officially a CUBE alumni. >> Yes. Thank you. >> Yay. We've loved having you. Thank you so much for your time. >> Thank you. Thank you. >> For our guest and for Tracy's Yuan, this is Lisa Martin. We are live at WIDS 23, the eighth annual Women in Data Science Conference at Stanford. Stick around. Our next guest joins us in just a few minutes. (upbeat music)

Published Date : Mar 8 2023

SUMMARY :

but you know, 'cause you've been watching. I'm so excited to be talking to you. Like a dream come true. So you have a ton of is that you can move across domains. But you also have a lot of like people that you can find. because that is the Exactly, and I love to hear And not only woman, right. that I'm good at the other Or is that just who you are? And I joke that I want And I feel like when You're a rockstar. I'm loving this. So yeah, I think like you the catalyst to launch it. And I was going to this event And I was like, and like how did the special I saw some of like the main more people that look like you If you don't have a community around you, There is no one that you Make sure that you have a mentor. and feeling like you belong- it's like seeing the old friends again. And I feel like that For the rest of the year. And of course you can be everybody to the front. you didn't know. do you realize there was on the Obama administration. because you can see it, I always think, you know, What would you say to them? are from like a non-linear track that doesn't require you to I know you inspired me. you so much for your time. Thank you. the eighth annual Women

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Tracy YuanPERSON

0.99+

Megan SmithPERSON

0.99+

Gabriela de QueirozPERSON

0.99+

Susan WojcickiPERSON

0.99+

GabrielaPERSON

0.99+

Lisa MartinPERSON

0.99+

BrazilLOCATION

0.99+

2015DATE

0.99+

2012DATE

0.99+

San FranciscoLOCATION

0.99+

San FranciscoLOCATION

0.99+

TracyPERSON

0.99+

ObamaPERSON

0.99+

LisaPERSON

0.99+

Mira MuratiPERSON

0.99+

MicrosoftORGANIZATION

0.99+

CaliforniaLOCATION

0.99+

Silicon ValleyLOCATION

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

UberORGANIZATION

0.99+

27.6QUANTITY

0.99+

twoQUANTITY

0.99+

30QUANTITY

0.99+

40QUANTITY

0.99+

15 languagesQUANTITY

0.99+

R LadiesORGANIZATION

0.99+

two tutorialsQUANTITY

0.99+

AnitabORGANIZATION

0.99+

10 peopleQUANTITY

0.99+

oneQUANTITY

0.99+

YouTubeORGANIZATION

0.99+

todayDATE

0.99+

55 plus countriesQUANTITY

0.99+

first partQUANTITY

0.99+

more than 200 citiesQUANTITY

0.99+

firstQUANTITY

0.98+

nineQUANTITY

0.98+

SQLTITLE

0.98+

theCUBEORGANIZATION

0.98+

WIDS 23EVENT

0.98+

Stanford UniversityORGANIZATION

0.98+

2017DATE

0.98+

CUBEORGANIZATION

0.97+

StanfordLOCATION

0.97+

Women in Data ScienceTITLE

0.97+

around 25%QUANTITY

0.96+

DisneylandLOCATION

0.96+

EnglishOTHER

0.96+

one mentorQUANTITY

0.96+

Women in Data Science ConferenceEVENT

0.96+

once a yearQUANTITY

0.95+

WIDSORGANIZATION

0.92+

this morningDATE

0.91+

Meetup.comORGANIZATION

0.91+

FacebookORGANIZATION

0.9+

HadoopTITLE

0.89+

WiDS 2023EVENT

0.88+

Anitab.orgORGANIZATION

0.87+

ChatJTPTITLE

0.86+

OneQUANTITY

0.86+

one dayQUANTITY

0.85+

ChatGPTTITLE

0.84+

pandemicEVENT

0.81+

Fast CompanyORGANIZATION

0.78+

CTOPERSON

0.76+

OpenORGANIZATION

0.76+

Shir Meir Lador, Intuit | WiDS 2023


 

(gentle upbeat music) >> Hey, friends of theCUBE. It's Lisa Martin live at Stanford University covering the Eighth Annual Women In Data Science. But you've been a Cube fan for a long time. So you know that we've been here since the beginning of WiDS, which is 2015. We always loved to come and cover this event. We learned great things about data science, about women leaders, underrepresented minorities. And this year we have a special component. We've got two grad students from Stanford's Master's program and Data Journalism joining. One of my them is here with me, Hannah Freitag, my co-host. Great to have you. And we are pleased to welcome from Intuit for the first time, Shir Meir Lador Group Manager at Data Science. Shir, it's great to have you. Thank you for joining us. >> Thank you for having me. >> And I was just secrets girl talking with my boss of theCUBE who informed me that you're in great company. Intuit's Chief Technology Officer, Marianna Tessel is an alumni of theCUBE. She was on at our Supercloud event in January. So welcome back into it. >> Thank you very much. We're happy to be with you. >> Tell us a little bit about what you're doing. You're a data science group manager as I mentioned, but also you've had you've done some cool things I want to share with the audience. You're the co-founder of the PyData Tel Aviv Meetups the co-host of the unsupervised podcast about data science in Israel. You give talks, about machine learning, about data science. Tell us a little bit about your background. Were you always interested in STEM studies from the time you were small? >> So I was always interested in mathematics when I was small, I went to this special program for youth going to university. So I did my test in mathematics earlier and studied in university some courses. And that's when I understood I want to do something in that field. And then when I got to go to university, I went to electrical engineering when I found out about algorithms and how interested it is to be able to find solutions to problems, to difficult problems with math. And this is how I found my way into machine learning. >> Very cool. There's so much, we love talking about machine learning and AI on theCUBE. There's so much potential. Of course, we have to have data. One of the things that I love about WiDS and Hannah and I and our co-host Tracy, have been talking about this all day is the impact of data in everyone's life. If you break it down, I was at Mobile World Congress last week, all about connectivity telecom, and of course we have these expectation that we're going to be connected 24/7 from wherever we are in the world and we can do whatever we want. I can do an Uber transaction, I can watch Netflix, I can do a bank transaction. It all is powered by data. And data science is, some of the great applications of it is what it's being applied to. Things like climate change or police violence or health inequities. Talk about some of the data science projects that you're working on at Intuit. I'm an intuit user myself, but talk to me about some of those things. Give the audience really a feel for what you're doing. >> So if you are a Intuit product user, you probably use TurboTax. >> I do >> In the past. So for those who are not familiar, TurboTax help customers submit their taxes. Basically my group is in charge of getting all the information automatically from your documents, the documents that you upload to TurboTax. We extract that information to accelerate your tax submission to make it less work for our customers. So- >> Thank you. >> Yeah, and this is why I'm so proud to be working at this team because our focus is really to help our customers to simplify all the you know, financial heavy lifting with taxes and also with small businesses. We also do a lot of work in extracting information from small business documents like bill, receipts, different bank statements. Yeah, so this is really exciting for me, the opportunity to work to apply data science and machine learning to solution that actually help people. Yeah >> Yeah, in the past years there have been more and more digital products emerging that needs some sort of data security. And how did your team, or has your team developed in the past years with more and more products or companies offering digital services? >> Yeah, so can you clarify the question again? Sorry. >> Yeah, have you seen that you have more customers? Like has your team expanded in the past years with more digital companies starting that need kind of data security? >> Well, definitely. I think, you know, since I joined Intuit, I joined like five and a half years ago back when I was in Tel Aviv. I recently moved to the Bay Area. So when I joined, there were like a dozens of data scientists and machine learning engineers on Intuit. And now there are a few hundreds. So we've definitely grown with the year and there are so many new places we can apply machine learning to help our customers. So this is amazing, so much we can do with machine learning to get more money in the pocket of our customers and make them do less work. >> I like both of those. More money in my pocket and less work. That's awesome. >> Exactly. >> So keep going Intuit. But one of the things that is so cool is just the the abstraction of the complexity that Intuit's doing. I upload documents or it scans my receipts. I was just in Barcelona last week all these receipts and conversion euros to dollars and it takes that complexity away from the end user who doesn't know all that's going on in the background, but you're making people's lives simpler. Unfortunately, we all have to pay taxes, most of us should. And of course we're in tax season right now. And so it's really cool what you're doing with ML and data science to make fundamental processes to people's lives easier and just a little bit less complicated. >> Definitely. And I think that's what's also really amazing about Intuit it, is how it combines human in the loop as well as AI. Because in some of the tax situation it's very complicated maybe to do it yourself. And then there's an option to work with an expert online that goes on a video with you and helps you do your taxes. And the expert's work is also accelerated by AI because we build tools for those experts to do the work more efficiently. >> And that's what it's all about is you know, using data to be more efficient, to be faster, to be smarter, but also to make complicated processes in our daily lives, in our business lives just a little bit easier. One of the things I've been geeking out about recently is ChatGPT. I was using it yesterday. I was telling everyone I was asking it what's hot in data science and I didn't know would it know what hot is and it did, it gave me trends. But one of the things that I was so, and Hannah knows I've been telling this all day, I was so excited to learn over the weekend that the the CTO of OpenAI is a female. I didn't know that. And I thought why are we not putting her on a pedestal? Because people are likening ChatGPT to like the launch of the iPhone. I mean revolutionary. And here we have what I think is exciting for all of us females, whether you're in tech or not, is another role model. Because really ultimately what WiDS is great at doing is showcasing women in technical roles. Because I always say you can't be what you can't see. We need to be able to see more role models, female role role models, underrepresented minorities of course men, because a lot of my sponsors and mentors are men, but we need more women that we can look up to and see ah, she's doing this, why can't I? Talk to me about how you stay the course in data science. What excites you about the potential, the opportunities based on what you've already accomplished what inspires you to continue and be one of those females that we say oh my God, I could be like Shir. >> I think that what inspires me the most is the endless opportunities that we have. I think we haven't even started tapping into everything that we can do with generative AI, for example. There's so much that can be done to further help you know, people make more money and do less work because there's still so much work that we do that we don't need to. You know, this is with Intuit, but also there are so many other use cases like I heard today you know, with the talk about the police. So that was really exciting how you can apply machine learning and data to actually help people, to help people that been through wrongful things. So I was really moved by that. And I'm also really excited about all the medical applications that we can have with data. >> Yeah, yeah. It's true that data science is so diverse in terms of what fields it can cover but it's equally important to have diverse teams and have like equity and inclusion in your teams. Where is Intuit at promoting women, non-binary minorities in your teams to progress data science? >> Yeah, so I have so much to say on this. >> Good. >> But in my work in Tel Aviv, I had the opportunity to start with Intuit women in data science branch in Tel Aviv. So that's why I'm super excited to be here today for that because basically this is the original conference, but as you know, there are branches all over the world and I got the opportunity to lead the Tel Aviv branch with Israel since 2018. And we've been through already this year it's going to be it's next week, it's going to be the sixth conference. And every year our number of submission to make talk in the conference doubled itself. >> Nice. >> We started with 20 submission, then 50, then 100. This year we have over 200 submissions of females to give talk at the conference. >> Ah, that's fantastic. >> And beyond the fact that there's so much traction, I also feel the great impact it has on the community in Israel because one of the reason we started WiDS was that when I was going to conferences I was seeing so little women on stage in all the technical conferences. You know, kind of the reason why I guess you know, Margaret and team started the WiDS conference. So I saw the same thing in Israel and I was always frustrated. I was organizing PyData Meetups as you mentioned and I was always having such a hard time to get female speakers to talk. I was trying to role model, but that's not enough, you know. We need more. So once we started WiDS and people saw you know, so many examples on the stage and also you know females got opportunity to talk in a place for that. Then it also started spreading and you can see more and more female speakers across other conferences, which are not women in data science. So I think just the fact that Intuits started this conference back in Israel and also in Bangalore and also the support Intuit does for WiDS in Stanford here, it shows how much WiDS values are aligned with our values. Yeah, and I think that to chauffeur that I think we have over 35% females in the data science and machine learning engineering roles, which is pretty amazing I think compared to the industry. >> Way above average. Yeah, absolutely. I was just, we've been talking about some of the AnitaB.org stats from 2022 showing that 'cause usually if we look at the industry to you point, over the last, I don't know, probably five, 10 years we're seeing the number of female technologists around like a quarter, 25% or so. 2022 data from AnitaB.org showed that that number is now 27.6%. So it's very slowly- >> It's very slowly increasing. >> Going in the right direction. >> Too slow. >> And that representation of women technologists increase at every level, except intern, which I thought was really interesting. And I wonder is there a covid relation there? >> I don't know. >> What do we need to do to start opening up the the top of the pipeline, the funnel to go downstream to find kids like you when you were younger and always interested in engineering and things like that. But the good news is that the hiring we've seen improvements, but it sounds like Intuit is way ahead of the curve there with 35% women in data science or technical roles. And what's always nice and refreshing that we've talked, Hannah about this too is seeing companies actually put action into initiatives. It's one thing for a company to say we're going to have you know, 50% females in our organization by 2030. It's a whole other ball game to actually create a strategy, execute on it, and share progress. So kudos to Intuit for what it's doing because that is more companies need to adopt that same sort of philosophy. And that's really cultural. >> Yeah. >> At an organization and culture can be hard to change, but it sounds like you guys kind of have it dialed in. >> I think we definitely do. That's why I really like working and Intuit. And I think that a lot of it is with the role modeling, diversity and inclusion, and by having women leaders. When you see a woman in leadership position, as a woman it makes you want to come work at this place. And as an evidence, when I build the team I started in Israel at Intuit, I have over 50% women in my team. >> Nice. >> Yeah, because when you have a woman in the interviewers panel, it's much easier, it's more inclusive. That's why we always try to have at least you know, one woman and also other minorities represented in our interviews panel. Yeah, and I think that in general it's very important as a leader to kind of know your own biases and trying to have defined standard and rubrics in how you evaluate people to avoid for those biases. So all of that inclusiveness and leadership really helps to get more diversity in your teams. >> It's critical. That thought diversity is so critical, especially if we talk about AI and we're almost out of time, I just wanted to bring up, you brought up a great point about the diversity and equity. With respect to data science and AI, we know in AI there's biases in data. We need to have more inclusivity, more representation to help start shifting that so the biases start to be dialed down and I think a conference like WiDS and it sounds like someone like you and what you've already done so far in the work that you're doing having so many females raise their hands to want to do talks at events is a good situation. It's a good scenario and hopefully it will continue to move the needle on the percentage of females in technical roles. So we thank you Shir for your time sharing with us your story, what you're doing, how Intuit and WiDS are working together. It sounds like there's great alignment there and I think we're at the tip of the iceberg with what we can do with data science and inclusion and equity. So we appreciate all of your insights and your time. >> Thank you very much. >> All right. >> I enjoyed very, very much >> Good. We hope, we aim to please. Thank you for our guests and for Hannah Freitag. This is Lisa Martin coming to you live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. Stick around, next guest will be here in just a minute.

Published Date : Mar 8 2023

SUMMARY :

Shir, it's great to have you. And I was just secrets girl talking We're happy to be with you. from the time you were small? and how interested it is to be able and of course we have these expectation So if you are a Intuit product user, the documents that you upload to TurboTax. the opportunity to work Yeah, in the past years Yeah, so can you I recently moved to the Bay Area. I like both of those. and data science to make and helps you do your taxes. Talk to me about how you stay done to further help you know, to have diverse teams I had the opportunity to start of females to give talk at the conference. Yeah, and I think that to chauffeur that the industry to you point, And I wonder is there the funnel to go downstream but it sounds like you guys I build the team I started to have at least you know, so the biases start to be dialed down This is Lisa Martin coming to you live

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Hannah FreitagPERSON

0.99+

Lisa MartinPERSON

0.99+

Marianna TesselPERSON

0.99+

IsraelLOCATION

0.99+

BangaloreLOCATION

0.99+

27.6%QUANTITY

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

MargaretPERSON

0.99+

Shir Meir LadorPERSON

0.99+

HannahPERSON

0.99+

Bay AreaLOCATION

0.99+

IntuitORGANIZATION

0.99+

Tel AvivLOCATION

0.99+

last weekDATE

0.99+

UberORGANIZATION

0.99+

BarcelonaLOCATION

0.99+

JanuaryDATE

0.99+

ShirPERSON

0.99+

20 submissionQUANTITY

0.99+

50QUANTITY

0.99+

TracyPERSON

0.99+

2030DATE

0.99+

100QUANTITY

0.99+

35%QUANTITY

0.99+

50%QUANTITY

0.99+

yesterdayDATE

0.99+

2015DATE

0.99+

fiveQUANTITY

0.99+

this yearDATE

0.99+

next weekDATE

0.99+

bothQUANTITY

0.99+

2022DATE

0.99+

sixth conferenceQUANTITY

0.99+

IntuitsORGANIZATION

0.99+

todayDATE

0.99+

OpenAIORGANIZATION

0.99+

This yearDATE

0.99+

StanfordORGANIZATION

0.98+

oneQUANTITY

0.98+

WiDSEVENT

0.98+

2018DATE

0.98+

over 200 submissionsQUANTITY

0.98+

Eighth Annual Women In Data ScienceEVENT

0.98+

eighth Annual Women in Data Science ConferenceEVENT

0.98+

theCUBEORGANIZATION

0.98+

TurboTaxTITLE

0.98+

OneQUANTITY

0.98+

over 50%QUANTITY

0.98+

over 35%QUANTITY

0.97+

five and a half years ago backDATE

0.97+

Stanford UniversityORGANIZATION

0.97+

first timeQUANTITY

0.97+

NetflixORGANIZATION

0.96+

one womanQUANTITY

0.96+

Mobile World CongressEVENT

0.94+

one thingQUANTITY

0.94+

AnitaB.orgORGANIZATION

0.93+

25%QUANTITY

0.92+

PyData MeetupsEVENT

0.9+

Rhonda Crate, Boeing | WiDS 2023


 

(gentle music) >> Hey! Welcome back to theCUBE's coverage of WiDS 2023, the eighth Annual Women In Data Science Conference. I'm your host, Lisa Martin. We are at Stanford University, as you know we are every year, having some wonderful conversations with some very inspiring women and men in data science and technical roles. I'm very pleased to introduce Tracy Zhang, my co-host, who is in the Data Journalism program at Stanford. And Tracy and I are pleased to welcome our next guest, Rhonda Crate, Principal Data Scientist at Boeing. Great to have you on the program, Rhonda. >> Tracy: Welcome. >> Hey, thanks for having me. >> Were you always interested in data science or STEM from the time you were young? >> No, actually. I was always interested in archeology and anthropology. >> That's right, we were talking about that, anthropology. Interesting. >> We saw the anthropology background, not even a bachelor's degree, but also a master's degree in anthropology. >> So you were committed for a while. >> I was, I was. I actually started college as a fine arts major, but I always wanted to be an archeologist. So at the last minute, 11 credits in, left to switch to anthropology. And then when I did my master's, I focused a little bit more on quantitative research methods and then I got my Stat Degree. >> Interesting. Talk about some of the data science projects that you're working on. When I think of Boeing, I always think of aircraft. But you are doing a lot of really cool things in IT, data analytics. Talk about some of those intriguing data science projects that you're working on. >> Yeah. So when I first started at Boeing, I worked in information technology and data analytics. And Boeing, at the time, had cored up data science in there. And so we worked as a function across the enterprise working on anything from shared services to user experience in IT products, to airplane programs. So, it has a wide range. I worked on environment health and safety projects for a long time as well. So looking at ergonomics and how people actually put parts onto airplanes, along with things like scheduling and production line, part failures, software testing. Yeah, there's a wide spectrum of things. >> But I think that's so fantastic. We've been talking, Tracy, today about just what we often see at WiDS, which is this breadth of diversity in people's background. You talked about anthropology, archeology, you're doing data science. But also all of the different opportunities that you've had at Boeing. To see so many facets of that organization. I always think that breadth of thought diversity can be hugely impactful. >> Yeah. So I will say my anthropology degree has actually worked to my benefit. I'm a huge proponent of integrating liberal arts and sciences together. And it actually helps me. I'm in the Technical Fellowship program at Boeing, so we have different career paths. So you can go into management, you can be a regular employee, or you can go into the Fellowship program. So right now I'm an Associate Technical Fellow. And part of how I got into the Fellowship program was that diversity in my background, what made me different, what made me stand out on projects. Even applying a human aspect to things like ergonomics, as silly as that sounds, but how does a person actually interact in the space along with, here are the actual measurements coming off of whatever system it is that you're working on. So, I think there's a lot of opportunities, especially in safety as well, which is a big initiative for Boeing right now, as you can imagine. >> Tracy: Yeah, definitely. >> I can't go into too specifics. >> No, 'cause we were like, I think a theme for today that kind of we brought up in in all of our talk is how data is about people, how data is about how people understand the world and how these data can make impact on people's lives. So yeah, I think it's great that you brought this up, and I'm very happy that your anthropology background can tap into that and help in your day-to-day data work too. >> Yeah. And currently, right now, I actually switched over to Strategic Workforce Planning. So it's more how we understand our workforce, how we work towards retaining the talent, how do we get the right talent in our space, and making sure overall that we offer a culture and work environment that is great for our employees to come to. >> That culture is so important. You know, I was looking at some anitab.org stats from 2022 and you know, we always talk about the number of women in technical roles. For a long time it's been hovering around that 25% range. The data from anitab.org showed from '22, it's now 27.6%. So, a little increase. But one of the biggest challenges still, and Tracy and I and our other co-host, Hannah, have been talking about this, is attrition. Attrition more than doubled last year. What are some of the things that Boeing is doing on the retention side, because that is so important especially as, you know, there's this pipeline leakage of women leaving technical roles. Tell us about what Boeing's, how they're invested. >> Yeah, sure. We actually have a publicly available Global Diversity Report that anybody can go and look at and see our statistics for our organization. Right now, off the top of my head, I think we're hovering at about 24% in the US for women in our company. It has been a male majority company for many years. We've invested heavily in increasing the number of women in roles. One interesting thing about this year that came out is that even though with the great resignation and those types of things, the attrition level between men and women were actually pretty close to being equal, which is like the first time in our history. Usually it tends on more women leaving. >> Lisa: That's a good sign. >> Right. >> Yes, that's a good sign. >> And we've actually focused on hiring and bringing in more women and diversity in our company. >> Yeah, some of the stats too from anitab.org talked about the increase, and I have to scroll back and find my notes, the increase in 51% more women being hired in 2022 than 2021 for technical roles. So the data, pun intended, is showing us. I mean, the data is there to show the impact that having females in executive leadership positions make from a revenue perspective. >> Tracy: Definitely. >> Companies are more profitable when there's women at the head, or at least in senior leadership roles. But we're seeing some positive trends, especially in terms of representation of women technologists. One of the things though that I found interesting, and I'm curious to get your thoughts on this, Rhonda, is that the representation of women technologists is growing in all areas, except interns. >> Rhonda: Hmm. >> So I think, we've got to go downstream. You teach, I have to go back to my notes on you, did my due diligence, R programming classes through Boeings Ed Wells program, this is for WSU College of Arts and Sciences, talk about what you teach and how do you think that intern kind of glut could be solved? >> Yeah. So, they're actually two separate programs. So I teach a data analytics course at Washington State University as an Adjunct Professor. And then the Ed Wells program is a SPEEA, which is an Aerospace Union, focused on bringing up more technology and skills to the actual workforce itself. So it's kind of a couple different audiences. One is more seasoned employees, right? The other one is our undergraduates. I teach a Capstone class, so it's a great way to introduce students to what it's actually like to work on an industry project. We partner with Google and Microsoft and Boeing on those. The idea is also that maybe those companies have openings for the students when they're done. Since it's Senior Capstone, there's not a lot of opportunities for internships. But the opportunities to actually get hired increase a little bit. In regards to Boeing, we've actually invested a lot in hiring more women interns. I think the number was 40%, but you'd have to double check. >> Lisa: That's great, that's fantastic. >> Tracy: That's way above average, I think. >> That's a good point. Yeah, it is above average. >> Double check on that. That's all from my memory. >> Is this your first WiDS, or have you been before? >> I did virtually last year. >> Okay. One of the things that I love, I love covering this event every year. theCUBE's been covering it since it's inception in 2015. But it's just the inspiration, the vibe here at Stanford is so positive. WiDS is a movement. It's not an initiative, an organization. There are going to be, I think annually this year, there will be 200 different events. Obviously today we're live on International Women's Day. 60 plus countries, 100,000 plus people involved. So, this is such a positive environment for women and men, because we need everybody, underrepresented minorities, to be able to understand the implication that data has across our lives. If we think about stripping away titles in industries, everybody is a consumer, not everybody, most of mobile devices. And we have this expectation, I was in Barcelona last week at a Mobile World Congress, we have this expectation that we're going to be connected 24/7. I can get whatever I want wherever I am in the world, and that's all data driven. And the average person that isn't involved in data science wouldn't understand that. At the same time, they have expectations that depend on organizations like Boeing being data driven so that they can get that experience that they expect in their consumer lives in any aspect of their lives. And that's one of the things I find so interesting and inspiring about data science. What are some of the things that keep you motivated to continue pursuing this? >> Yeah I will say along those lines, I think it's great to invest in K-12 programs for Data Literacy. I know one of my mentors and directors of the Data Analytics program, Dr. Nairanjana Dasgupta, we're really familiar with each other. So, she runs a WSU program for K-12 Data Literacy. It's also something that we strive for at Boeing, and we have an internal Data Literacy program because, believe it or not, most people are in business. And there's a lot of disconnect between interpreting and understanding data. For me, what kind of drives me to continue data science is that connection between people and data and how we use it to improve our world, which is partly why I work at Boeing too 'cause I feel that they produce products that people need like satellites and airplanes, >> Absolutely. >> and everything. >> Well, it's tangible, it's relatable. We can understand it. Can you do me a quick favor and define data literacy for anyone that might not understand what that means? >> Yeah, so it's just being able to understand elements of data, whether that's a bar chart or even in a sentence, like how to read a statistic and interpret a statistic in a sentence, for example. >> Very cool. >> Yeah. And sounds like Boeing's doing a great job in these programs, and also trying to hire more women. So yeah, I wanted to ask, do you think there's something that Boeing needs to work on? Or where do you see yourself working on say the next five years? >> Yeah, I think as a company, we always think that there's always room for improvement. >> It never, never stops. >> Tracy: Definitely. (laughs) >> I know workforce strategy is an area that they're currently really heavily investing in, along with safety. How do we build safer products for people? How do we help inform the public about things like Covid transmission in airports? For example, we had the Confident Traveler Initiative which was a big push that we had, and we had to be able to inform people about data models around Covid, right? So yeah, I would say our future is more about an investment in our people and in our culture from my perspective >> That's so important. One of the hardest things to change especially for a legacy organization like Boeing, is culture. You know, when I talk with CEO's or CIO's or COO's about what's your company's vision, what's your strategy? Especially those companies that are on that digital journey that have no choice these days. Everybody expects to have a digital experience, whether you're transacting an an Uber ride, you're buying groceries, or you're traveling by air. That culture sounds like Boeing is really focused on that. And that's impressive because that's one of the hardest things to morph and mold, but it's so essential. You know, as we look around the room here at WiDS it's obviously mostly females, but we're talking about women, underrepresented minorities. We're talking about men as well who are mentors and sponsors to us. I'd love to get your advice to your younger self. What would you tell yourself in terms of where you are now to become a leader in the technology field? >> Yeah, I mean, it's kind of an interesting question because I always try to think, live with no regrets to an extent. >> Lisa: I like that. >> But, there's lots of failures along the way. (Tracy laughing) I don't know if I would tell myself anything different because honestly, if I did, I wouldn't be where I am. >> Lisa: Good for you. >> I started out in fine arts, and I didn't end up there. >> That's good. >> Such a good point, yeah. >> We've been talking about that and I find that a lot at events like WiDS, is women have these zigzaggy patterns. I studied biology, I have a master's in molecular biology, I'm in media and marketing. We talked about transportable skills. There's a case I made many years ago when I got into tech about, well in science you learn the art of interpreting esoteric data and creating a story from it. And that's a transportable skill. But I always say, you mentioned failure, I always say failure is not a bad F word. It allows us to kind of zig and zag and learn along the way. And I think that really fosters thought diversity. And in data science, that is one of the things we absolutely need to have is that diversity and thought. You know, we talk about AI models being biased, we need the data and we need the diverse brains to help ensure that the biases are identified, extracted, and removed. Speaking of AI, I've been geeking out with ChatGPT. So, I'm on it yesterday and I ask it, "What's hot in data science?" And I was like, is it going to get that? What's hot? And it did it, it came back with trends. I think if I ask anything, "What's hot?", I should be to Paris Hilton, but I didn't. And so I was geeking out. One of the things I learned recently that I thought was so super cool is the CTO of OpenAI is a woman, Mira Murati, which I didn't know until over the weekend. Because I always think if I had to name top females in tech, who would they be? And I always default to Sheryl Sandberg, Carly Fiorina, Susan Wojcicki running YouTube. Who are some of the people in your history, in your current, that are really inspiring to you? Men, women, indifferent. >> Sure. I think Boeing is one of the companies where you actually do see a lot of women in leadership roles. I think we're one of the top companies with a number of women executives, actually. Susan Doniz, who's our Chief Information Officer, I believe she's actually slotted to speak at a WiDS event come fall. >> Lisa: Cool. >> So that will be exciting. Susan's actually relatively newer to Boeing in some ways. A Boeing time skill is like three years is still kind of new. (laughs) But she's been around for a while and she's done a lot of inspiring things, I think, for women in the organization. She does a lot with Latino communities and things like that as well. For me personally, you know, when I started at Boeing Ahmad Yaghoobi was one of my mentors and my Technical Lead. He came from Iran during a lot of hard times in the 1980s. His brother actually wrote a memoir, (laughs) which is just a fun, interesting fact. >> Tracy: Oh my God! >> Lisa: Wow! >> And so, I kind of gravitate to people that I can learn from that's not in my sphere, that might make me uncomfortable. >> And you probably don't even think about how many people you're influencing along the way. >> No. >> We just keep going and learning from our mentors and probably lose sight of, "I wonder how many people actually admire me?" And I'm sure there are many that admire you, Rhonda, for what you've done, going from anthropology to archeology. You mentioned before we went live you were really interested in photography. Keep going and really gathering all that breadth 'cause it's only making you more inspiring to people like us. >> Exactly. >> We thank you so much for joining us on the program and sharing a little bit about you and what brought you to WiDS. Thank you so much, Rhonda. >> Yeah, thank you. >> Tracy: Thank you so much for being here. >> Lisa: Yeah. >> Alright. >> For our guests, and for Tracy Zhang, this is Lisa Martin live at Stanford University covering the eighth Annual Women In Data Science Conference. Stick around. Next guest will be here in just a second. (gentle music)

Published Date : Mar 8 2023

SUMMARY :

Great to have you on the program, Rhonda. I was always interested in That's right, we were talking We saw the anthropology background, So at the last minute, 11 credits in, Talk about some of the And Boeing, at the time, had But also all of the I'm in the Technical that you brought this up, and making sure overall that we offer about the number of women at about 24% in the US more women and diversity in our company. I mean, the data is is that the representation and how do you think for the students when they're done. Lisa: That's great, Tracy: That's That's a good point. That's all from my memory. One of the things that I love, I think it's great to for anyone that might not being able to understand that Boeing needs to work on? we always think that there's Tracy: Definitely. the public about things One of the hardest things to change I always try to think, live along the way. I started out in fine arts, And I always default to Sheryl I believe she's actually slotted to speak So that will be exciting. to people that I can learn And you probably don't even think about from anthropology to archeology. and what brought you to WiDS. Tracy: Thank you so covering the eighth Annual Women

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TracyPERSON

0.99+

Nairanjana DasguptaPERSON

0.99+

BoeingORGANIZATION

0.99+

Tracy ZhangPERSON

0.99+

RhondaPERSON

0.99+

LisaPERSON

0.99+

GoogleORGANIZATION

0.99+

Mira MuratiPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

Susan WojcickiPERSON

0.99+

Rhonda CratePERSON

0.99+

Susan DonizPERSON

0.99+

SusanPERSON

0.99+

Sheryl SandbergPERSON

0.99+

HannahPERSON

0.99+

27.6%QUANTITY

0.99+

2015DATE

0.99+

BarcelonaLOCATION

0.99+

WSU College of Arts and SciencesORGANIZATION

0.99+

40%QUANTITY

0.99+

2022DATE

0.99+

yesterdayDATE

0.99+

IranLOCATION

0.99+

last weekDATE

0.99+

International Women's DayEVENT

0.99+

11 creditsQUANTITY

0.99+

oneQUANTITY

0.99+

2021DATE

0.99+

last yearDATE

0.99+

51%QUANTITY

0.99+

Washington State UniversityORGANIZATION

0.99+

firstQUANTITY

0.99+

three yearsQUANTITY

0.99+

Ahmad YaghoobiPERSON

0.99+

200 different eventsQUANTITY

0.99+

Carly FiorinaPERSON

0.99+

60 plus countriesQUANTITY

0.99+

1980sDATE

0.99+

USLOCATION

0.99+

YouTubeORGANIZATION

0.99+

100,000 plus peopleQUANTITY

0.99+

first timeQUANTITY

0.99+

'22DATE

0.98+

eighth Annual Women In Data Science ConferenceEVENT

0.98+

OneQUANTITY

0.98+

todayDATE

0.98+

two separate programsQUANTITY

0.98+

Stanford UniversityORGANIZATION

0.98+

eighth Annual Women In Data Science ConferenceEVENT

0.98+

Global Diversity ReportTITLE

0.98+

this yearDATE

0.98+

Keynote Analysis | WiDS 2023


 

(ambient music) >> Good morning, everyone. Lisa Martin with theCUBE, live at the eighth Annual Women in Data Science Conference. This is one of my absolute favorite events of the year. We engage with tons of great inspirational speakers, men and women, and what's happening with WiDS is a global movement. I've got two fabulous co-hosts with me today that you're going to be hearing and meeting. Please welcome Tracy Zhang and Hannah Freitag, who are both from the sata journalism program, master's program, at Stanford. So great to have you guys. >> So excited to be here. >> So data journalism's so interesting. Tracy, tell us a little bit about you, what you're interested in, and then Hannah we'll have you do the same thing. >> Yeah >> Yeah, definitely. I definitely think data journalism is very interesting, and in fact, I think, what is data journalism? Is definitely one of the big questions that we ask during the span of one year, which is the length of our program. And yeah, like you said, I'm in this data journalism master program, and I think coming in I just wanted to pivot from my undergrad studies, which is more like a traditional journalism, into data. We're finding stories through data, so that's why I'm also very excited about meeting these speakers for today because they're all, they have different backgrounds, but they all ended up in data science. So I think they'll be very inspirational and I can't wait to talk to them. >> Data in stories, I love that. Hannah, tell us a little bit about you. >> Yeah, so before coming to Stanford, I was a research assistant at Humboldt University in Berlin, so I was in political science research. And I love to work with data sets and data, but I figured that, for me, I don't want this story to end up in a research paper, which is only very limited in terms of the audience. And I figured, okay, data journalism is the perfect way to tell stories and use data to illustrate anecdotes, but to make it comprehensive and accessible for a broader audience. So then I found this program at Stanford and I was like, okay, that's the perfect transition from political science to journalism, and to use data to tell data-driven stories. So I'm excited to be in this program, I'm excited for the conference today and to hear from these amazing women who work in data science. >> You both brought up great points, and we were chatting earlier that there's a lot of diversity in background. >> Tracy: Definitely. >> Not everyone was in STEM as a young kid or studied computer science. Maybe some are engineering, maybe some are are philosophy or economic, it's so interesting. And what I find year after year at WiDS is it brings in so much thought diversity. And that's what being data-driven really demands. It demands that unbiased approach, that diverse, a spectrum of diverse perspectives, and we definitely get that at WiDS. There's about 350 people in person here, but as I mentioned in the opening, hundreds of thousands will engage throughout the year, tens of thousands probably today at local events going on across the globe. And it just underscores the importance of every organization, whether it's a bank or a grocer, has to be data-driven. We have that expectation as consumers in our consumer lives, and even in our business lives, that I'm going to engage with a business, whatever it is, and they're going to know about me, they're going to deliver me a personalized experience that's relevant to me and my history. And all that is powered by data science, which is I think it's fascinating. >> Yeah, and the great way is if you combine data with people. Because after all, large data sets, they oftentimes consist of stories or data that affects people. And to find these stories or advanced research in whatever fields, maybe in the financial business, or in health, as you mentioned, the variety of fields, it's very powerful, powerful tool to use. >> It's a very power, oh, go ahead Tracy. >> No, definitely. I just wanted to build off of that. It's important to put a face on data. So a dataset without a name is just some numbers, but if there's a story, then I think it means something too. And I think Margot was talking about how data science is about knowing or understanding the past, I think that's very interesting. That's a method for us to know who we are. >> Definitely. There's so many opportunities. I wanted to share some of the statistics from AnitaB.org that I was just looking at from 2022. We always talk at events like WiDS, and some of the other women in tech things, theCUBE is very much pro-women in tech, and has been for a very long, since the beginning of theCUBE. But we've seen the numbers of women technologists historically well below 25%, and we see attrition rates are high. And so we often talk about, well, what can we do? And part of that is raising the awareness. And that's one of the great things about WiDS, especially WiDS happening on International Women's Day, today, March 8th, and around event- >> Tracy: A big holiday. >> Exactly. But one of the nice things I was looking at, the AnitaB.org research, is that representation of tech women is on the rise, still below pre-pandemic levels, but it's actually nearly 27% of women in technical roles. And that's an increase, slow increase, but the needle is moving. We're seeing much more gender diversity across a lot of career levels, which is exciting. But some of the challenges remain. I mean, the representation of women technologists is growing, except at the intern level. And I thought that was really poignant. We need to be opening up that pipeline and going younger. And you'll hear a lot of those conversations today about, what are we doing to reach girls in grade school, 10 year olds, 12 year olds, those in high school? How do we help foster them through their undergrad studies- >> And excite them about science and all these fields, for sure. >> What do you think, Hannah, on that note, and I'll ask you the same question, what do you think can be done? The theme of this year's International Women's Day is Embrace Equity. What do you think can be done on that intern problem to help really dial up the volume on getting those younger kids interested, one, earlier, and two, helping them stay interested? >> Yeah. Yeah, that's a great question. I think it's important to start early, as you said, in school. Back in the day when I went to high school, we had this one day per year where we could explore as girls, explore a STEM job and go into the job for one day and see how it's like to work in a, I dunno, in IT or in data science, so that's a great first step. But as you mentioned, it's important to keep girls and women excited about this field and make them actually pursue this path. So I think conferences or networking is very powerful. Also these days with social media and technology, we have more ability and greater ways to connect. And I think we should even empower ourselves even more to pursue this path if we're interested in data science, and not be like, okay, maybe it's not for me, or maybe as a woman I have less chances. So I think it's very important to connect with other women, and this is what WiDS is great about. >> WiDS is so fantastic for that network effect, as you talked about. It's always such, as I was telling you about before we went live, I've covered five or six WiDS for theCUBE, and it's always such a day of positivity, it's a day of of inclusivity, which is exactly what Embrace Equity is really kind of about. Tracy, talk a little bit about some of the things that you see that will help with that hashtag Embrace Equity kind of pulling it, not just to tech. Because we're talking and we saw Meta was a keynote who's going to come to talk with Hannah and me in a little bit, we see Total Energies on the program today, we see Microsoft, Intuit, Boeing Air Company. What are some of the things you think that can be done to help inspire, say, little Tracy back in the day to become interested in STEM or in technology or in data? What do you think companies can and should be doing to dial up the volume for those youngsters? >> Yeah, 'cause I think somebody was talking about, one of the keynote speakers was talking about how there is a notion that girls just can't be data scientists. girls just can't do science. And I think representation definitely matters. If three year old me see on TV that all the scientists are women, I think I would definitely have the notion that, oh, this might be a career choice for me and I can definitely also be a scientist if I want. So yeah, I think representation definitely matters and that's why conference like this will just show us how these women are great in their fields. They're great data scientists that are bringing great insight to the company and even to the social good as well. So yeah, I think that's very important just to make women feel seen in this data science field and to listen to the great woman who's doing amazing work. >> Absolutely. There's a saying, you can't be what you can't see. >> Exactly. >> And I like to say, I like to flip it on its head, 'cause we can talk about some of the negatives, but there's a lot of positives and I want to share some of those in a minute, is that we need to be, that visibility that you talked about, the awareness that you talked about, it needs to be there but it needs to be sustained and maintained. And an organization like WiDS and some of the other women in tech events that happen around the valley here and globally, are all aimed at raising the profile of these women so that the younger, really, all generations can see what they can be. We all, the funny thing is, we all have this expectation whether we're transacting on Uber ride or we are on Netflix or we're buying something on Amazon, we can get it like that. They're going to know who I am, they're going to know what I want, they're going to want to know what I just bought or what I just watched. Don't serve me up something that I've already done that. >> Hannah: Yeah. >> Tracy: Yeah. >> So that expectation that everyone has is all about data, though we don't necessarily think about it like that. >> Hannah: Exactly. >> Tracy: Exactly. >> But it's all about the data that, the past data, the data science, as well as the realtime data because we want to have these experiences that are fresh, in the moment, and super relevant. So whether women recognize it or not, they're data driven too. Whether or not you're in data science, we're all driven by data and we have these expectations that every business is going to meet it. >> Exactly. >> Yeah. And circling back to young women, I think it's crucial and important to have role models. As you said, if you see someone and you're younger and you're like, oh I want to be like her. I want to follow this path, and have inspiration and a role model, someone you look up to and be like, okay, this is possible if I study the math part or do the physics, and you kind of have a goal and a vision in mind, I think that's really important to drive you. >> Having those mentors and sponsors, something that's interesting is, I always, everyone knows what a mentor is, somebody that you look up to, that can guide you, that you admire. I didn't learn what a sponsor was until a Women in Tech event a few years ago that we did on theCUBE. And I was kind of, my eyes were open but I didn't understand the difference between a mentor and a sponsor. And then it got me thinking, who are my sponsors? And I started going through LinkedIn, oh, he's a sponsor, she's a sponsor, people that help really propel you forward, your recommenders, your champions, and it's so important at every level to build that network. And we have, to your point, Hannah, there's so much potential here for data drivenness across the globe, and there's so much potential for women. One of the things I also learned recently , and I wanted to share this with you 'cause I'm not sure if you know this, ChatGPT, exploding, I was on it yesterday looking at- >> Everyone talking about it. >> What's hot in data science? And it was kind of like, and I actually asked it, what was hot in data science in 2023? And it told me that it didn't know anything prior to 2021. >> Tracy: Yes. >> Hannah: Yeah. >> So I said, Oh, I'm so sorry. But everyone's talking about ChatGPT, it is the most advanced AI chatbot ever released to the masses, it's on fire. They're likening it to the launch of the iPhone, 100 million-plus users. But did you know that the CTO of ChatGPT is a woman? >> Tracy: I did not know, but I learned that. >> I learned that a couple days ago, Mira Murati, and of course- >> I love it. >> She's been, I saw this great profile piece on her on Fast Company, but of course everything that we're hearing about with respect to ChatGPT, a lot on the CEO. But I thought we need to help dial up the profile of the CTO because she's only 35, yet she is at the helm of one of the most groundbreaking things in our lifetime we'll probably ever see. Isn't that cool? >> That is, yeah, I completely had no idea. >> I didn't either. I saw it on LinkedIn over the weekend and I thought, I have to talk about that because it's so important when we talk about some of the trends, other trends from AnitaB.org, I talked about some of those positive trends. Overall hiring has rebounded in '22 compared to pre-pandemic levels. And we see also 51% more women being hired in '22 than '21. So the data, it's all about data, is showing us things are progressing quite slowly. But one of the biggest challenges that's still persistent is attrition. So we were talking about, Hannah, what would your advice be? How would you help a woman stay in tech? We saw that attrition last year in '22 according to AnitaB.org, more than doubled. So we're seeing women getting into the field and dropping out for various reasons. And so that's still an extent concern that we have. What do you think would motivate you to stick around if you were in a technical role? Same question for you in a minute. >> Right, you were talking about how we see an increase especially in the intern level for women. And I think if, I don't know, this is a great for a start point for pushing the momentum to start growth, pushing the needle rightwards. But I think if we can see more increase in the upper level, the women representation in the upper level too, maybe that's definitely a big goal and something we should work towards to. >> Lisa: Absolutely. >> But if there's more representation up in the CTO position, like in the managing level, I think that will definitely be a great factor to keep women in data science. >> I was looking at some trends, sorry, Hannah, forgetting what this source was, so forgive me, that was showing that there was a trend in the last few years, I think it was Fast Company, of more women in executive positions, specifically chief operating officer positions. What that hasn't translated to, what they thought it might translate to, is more women going from COO to CEO and we're not seeing that. We think of, if you ask, name a female executive that you'd recognize, everyone would probably say Sheryl Sandberg. But I was shocked to learn the other day at a Women in Tech event I was doing, that there was a survey done by this organization that showed that 78% of people couldn't identify. So to your point, we need more of them in that visible role, in the executive suite. >> Tracy: Exactly. >> And there's data that show that companies that have women, companies across industries that have women in leadership positions, executive positions I should say, are actually more profitable. So it's kind of like, duh, the data is there, it's telling you this. >> Hannah: Exactly. >> Right? >> And I think also a very important point is work culture and the work environment. And as a woman, maybe if you enter and you work two or three years, and then you have to oftentimes choose, okay, do I want family or do I want my job? And I think that's one of the major tasks that companies face to make it possible for women to combine being a mother and being a great data scientist or an executive or CEO. And I think there's still a lot to be done in this regard to make it possible for women to not have to choose for one thing or the other. And I think that's also a reason why we might see more women at the entry level, but not long-term. Because they are punished if they take a couple years off if they want to have kids. >> I think that's a question we need to ask to men too. >> Absolutely. >> How to balance work and life. 'Cause we never ask that. We just ask the woman. >> No, they just get it done, probably because there's a woman on the other end whose making it happen. >> Exactly. So yeah, another thing to think about, another thing to work towards too. >> Yeah, it's a good point you're raising that we have this conversation together and not exclusively only women, but we all have to come together and talk about how we can design companies in a way that it works for everyone. >> Yeah, and no slight to men at all. A lot of my mentors and sponsors are men. They're just people that I greatly admire who saw raw potential in me 15, 18 years ago, and just added a little water to this little weed and it started to grow. In fact, theCUBE- >> Tracy: And look at you now. >> Look at me now. And theCUBE, the guys Dave Vellante and John Furrier are two of those people that are sponsors of mine. But it needs to be diverse. It needs to be diverse and gender, it needs to include non-binary people, anybody, shouldn't matter. We should be able to collectively work together to solve big problems. Like the propaganda problem that was being discussed in the keynote this morning with respect to China, or climate change. Climate change is a huge challenge. Here, we are in California, we're getting an atmospheric river tomorrow. And Californians and rain, we're not so friendly. But we know that there's massive changes going on in the climate. Data science can help really unlock a lot of the challenges and solve some of the problems and help us understand better. So there's so much real-world implication potential that being data-driven can really lead to. And I love the fact that you guys are studying data journalism. You'll have to help me understand that even more. But we're going to going to have great conversations today, I'm so excited to be co-hosting with both of you. You're going to be inspired, you're going to learn, they're going to learn from us as well. So let's just kind of think of this as a community of men, women, everything in between to really help inspire the current generations, the future generations. And to your point, let's help women feel confident to be able to stay and raise their hand for fast-tracking their careers. >> Exactly. >> What are you guys, last minute, what are you looking forward to most for today? >> Just meeting these great women, I can't wait. >> Yeah, learning from each other. Having this conversation about how we can make data science even more equitable and hear from the great ideas that all these women have. >> Excellent, girls, we're going to have a great day. We're so glad that you're here with us on theCUBE, live at Stanford University, Women in Data Science, the eighth annual conference. I'm Lisa Martin, my two co-hosts for the day, Tracy Zhang, Hannah Freitag, you're going to be seeing a lot of us, we appreciate. Stick around, our first guest joins Hannah and me in just a minute. (ambient music)

Published Date : Mar 8 2023

SUMMARY :

So great to have you guys. and then Hannah we'll have Is definitely one of the Data in stories, I love that. And I love to work with and we were chatting earlier and they're going to know about me, Yeah, and the great way is And I think Margot was And part of that is raising the awareness. I mean, the representation and all these fields, for sure. and I'll ask you the same question, I think it's important to start early, What are some of the things and even to the social good as well. be what you can't see. and some of the other women in tech events So that expectation that everyone has that every business is going to meet it. And circling back to young women, and I wanted to share this with you know anything prior to 2021. it is the most advanced Tracy: I did not of one of the most groundbreaking That is, yeah, I and I thought, I have to talk about that for pushing the momentum to start growth, to keep women in data science. So to your point, we need more that have women in leadership positions, and the work environment. I think that's a question We just ask the woman. a woman on the other end another thing to work towards too. and talk about how we can design companies and it started to grow. And I love the fact that you guys great women, I can't wait. and hear from the great ideas Women in Data Science, the

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Mira MuratiPERSON

0.99+

HannahPERSON

0.99+

TracyPERSON

0.99+

Lisa MartinPERSON

0.99+

Hannah FreitagPERSON

0.99+

Tracy ZhangPERSON

0.99+

CaliforniaLOCATION

0.99+

MicrosoftORGANIZATION

0.99+

Sheryl SandbergPERSON

0.99+

twoQUANTITY

0.99+

Tracy ZhangPERSON

0.99+

LisaPERSON

0.99+

Boeing Air CompanyORGANIZATION

0.99+

BerlinLOCATION

0.99+

one yearQUANTITY

0.99+

IntuitORGANIZATION

0.99+

2023DATE

0.99+

Dave VellantePERSON

0.99+

78%QUANTITY

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

AmazonORGANIZATION

0.99+

MargotPERSON

0.99+

tens of thousandsQUANTITY

0.99+

one dayQUANTITY

0.99+

International Women's DayEVENT

0.99+

2022DATE

0.99+

yesterdayDATE

0.99+

last yearDATE

0.99+

tomorrowDATE

0.99+

three yearsQUANTITY

0.99+

10 yearQUANTITY

0.99+

12 yearQUANTITY

0.99+

three yearQUANTITY

0.99+

LinkedInORGANIZATION

0.99+

Humboldt UniversityORGANIZATION

0.99+

bothQUANTITY

0.99+

International Women's DayEVENT

0.99+

hundreds of thousandsQUANTITY

0.98+

oneQUANTITY

0.98+

'22DATE

0.98+

todayDATE

0.98+

WiDSEVENT

0.98+

John FurrierPERSON

0.98+

UberORGANIZATION

0.98+

two co-hostsQUANTITY

0.98+

35QUANTITY

0.98+

eighth Annual Women in Data Science ConferenceEVENT

0.97+

first stepQUANTITY

0.97+

first guestQUANTITY

0.97+

one thingQUANTITY

0.97+

fiveQUANTITY

0.97+

sixQUANTITY

0.97+

'21DATE

0.97+

about 350 peopleQUANTITY

0.96+

100 million-plus usersQUANTITY

0.95+

2021DATE

0.95+

theCUBEORGANIZATION

0.95+

AnitaB.orgORGANIZATION

0.95+

StanfordORGANIZATION

0.95+

Prem Balasubramanian and Suresh Mothikuru | Hitachi Vantara: Build Your Cloud Center of Excellence


 

(soothing music) >> Hey everyone, welcome to this event, "Build Your Cloud Center of Excellence." I'm your host, Lisa Martin. In the next 15 minutes or so my guest and I are going to be talking about redefining cloud operations, an application modernization for customers, and specifically how partners are helping to speed up that process. As you saw on our first two segments, we talked about problems enterprises are facing with cloud operations. We talked about redefining cloud operations as well to solve these problems. This segment is going to be focusing on how Hitachi Vantara's partners are really helping to speed up that process. We've got Johnson Controls here to talk about their partnership with Hitachi Vantara. Please welcome both of my guests, Prem Balasubramanian is with us, SVP and CTO Digital Solutions at Hitachi Vantara. And Suresh Mothikuru, SVP Customer Success Platform Engineering and Reliability Engineering from Johnson Controls. Gentlemen, welcome to the program, great to have you. >> Thank. >> Thank you, Lisa. >> First question is to both of you and Suresh, we'll start with you. We want to understand, you know, the cloud operations landscape is increasingly complex. We've talked a lot about that in this program. Talk to us, Suresh, about some of the biggest challenges and pin points that you faced with respect to that. >> Thank you. I think it's a great question. I mean, cloud has evolved a lot in the last 10 years. You know, when we were talking about a single cloud whether it's Azure or AWS and GCP, and that was complex enough. Now we are talking about multi-cloud and hybrid and you look at Johnson Controls, we have Azure we have AWS, we have GCP, we have Alibaba and we also support on-prem. So the architecture has become very, very complex and the complexity has grown so much that we are now thinking about whether we should be cloud native or cloud agnostic. So I think, I mean, sometimes it's hard to even explain the complexity because people think, oh, "When you go to cloud, everything is simplified." Cloud does give you a lot of simplicity, but it also really brings a lot more complexity along with it. So, and then next one is pretty important is, you know, generally when you look at cloud services, you have plenty of services that are offered within a cloud, 100, 150 services, 200 services. Even within those companies, you take AWS they might not know, an individual resource might not know about all the services we see. That's a big challenge for us as a customer to really understand each of the service that is provided in these, you know, clouds, well, doesn't matter which one that is. And the third one is pretty big, at least at the CTO the CIO, and the senior leadership level, is cost. Cost is a major factor because cloud, you know, will eat you up if you cannot manage it. If you don't have a good cloud governance process it because every minute you are in it, it's burning cash. So I think if you ask me, these are the three major things that I am facing day to day and that's where I use my partners, which I'll touch base down the line. >> Perfect, we'll talk about that. So Prem, I imagine that these problems are not unique to Johnson Controls or JCI, as you may hear us refer to it. Talk to me Prem about some of the other challenges that you're seeing within the customer landscape. >> So, yeah, I agree, Lisa, these are not very specific to JCI, but there are specific issues in JCI, right? So the way we think about these are, there is a common issue when people go to the cloud and there are very specific and unique issues for businesses, right? So JCI, and we will talk about this in the episode as we move forward. I think Suresh and his team have done some phenomenal step around how to manage this complexity. But there are customers who have a lesser complex cloud which is, they don't go to Alibaba, they don't have footprint in all three clouds. So their multi-cloud footprint could be a bit more manageable, but still struggle with a lot of the same problems around cost, around security, around talent. Talent is a big thing, right? And in Suresh's case I think it's slightly more exasperated because every cloud provider Be it AWS, JCP, or Azure brings in hundreds of services and there is nobody, including many of us, right? We learn every day, nowadays, right? It's not that there is one service integrator who knows all, while technically people can claim as a part of sales. But in reality all of us are continuing to learn in this landscape. And if you put all of this equation together with multiple clouds the complexity just starts to exponentially grow. And that's exactly what I think JCI is experiencing and Suresh's team has been experiencing, and we've been working together. But the common problems are around security talent and cost management of this, right? Those are my three things. And one last thing that I would love to say before we move away from this question is, if you think about cloud operations as a concept that's evolving over the last few years, and I have touched upon this in the previous episode as well, Lisa, right? If you take architectures, we've gone into microservices, we've gone into all these server-less architectures all the fancy things that we want. That helps us go to market faster, be more competent to as a business. But that's not simplified stuff, right? That's complicated stuff. It's a lot more distributed. Second, again, we've advanced and created more modern infrastructure because all of what we are talking is platform as a service, services on the cloud that we are consuming, right? In the same case with development we've moved into a DevOps model. We kind of click a button put some code in a repository, the code starts to run in production within a minute, everything else is automated. But then when we get to operations we are still stuck in a very old way of looking at cloud as an infrastructure, right? So you've got an infra team, you've got an app team, you've got an incident management team, you've got a soft knock, everything. But again, so Suresh can talk about this more because they are making significant strides in thinking about this as a single workload, and how do I apply engineering to go manage this? Because a lot of it is codified, right? So automation. Anyway, so that's kind of where the complexity is and how we are thinking, including JCI as a partner thinking about taming that complexity as we move forward. >> Suresh, let's talk about that taming the complexity. You guys have both done a great job of articulating the ostensible challenges that are there with cloud, especially multi-cloud environments that you're living in. But Suresh, talk about the partnership with Hitachi Vantara. How is it helping to dial down some of those inherent complexities? >> I mean, I always, you know, I think I've said this to Prem multiple times. I treat my partners as my internal, you know, employees. I look at Prem as my coworker or my peers. So the reason for that is I want Prem to have the same vested interest as a partner in my success or JCI success and vice versa, isn't it? I think that's how we operate and that's how we have been operating. And I think I would like to thank Prem and Hitachi Vantara for that really been an amazing partnership. And as he was saying, we have taken a completely holistic approach to how we want to really be in the market and play in the market to our customers. So if you look at my jacket it talks about OpenBlue platform. This is what JCI is building, that we are building this OpenBlue digital platform. And within that, my team, along with Prem's or Hitachi's, we have built what we call as Polaris. It's a technical platform where our apps can run. And this platform is automated end-to-end from a platform engineering standpoint. We stood up a platform engineering organization, a reliability engineering organization, as well as a support organization where Hitachi played a role. As I said previously, you know, for me to scale I'm not going to really have the talent and the knowledge of every function that I'm looking at. And Hitachi, not only they brought the talent but they also brought what he was talking about, Harc. You know, they have set up a lot and now we can leverage it. And they also came up with some really interesting concepts. I went and met them in India. They came up with this concept called IPL. Okay, what is that? They really challenged all their employees that's working for GCI to come up with innovative ideas to solve problems proactively, which is self-healing. You know, how you do that? So I think partners, you know, if they become really vested in your interests, they can do wonders for you. And I think in this case Hitachi is really working very well for us and in many aspects. And I'm leveraging them... You started with support, now I'm leveraging them in the automation, the platform engineering, as well as in the reliability engineering and then in even in the engineering spaces. And that like, they are my end-to-end partner right now? >> So you're really taking that holistic approach that you talked about and it sounds like it's a very collaborative two-way street partnership. Prem, I want to go back to, Suresh mentioned Harc. Talk a little bit about what Harc is and then how partners fit into Hitachi's Harc strategy. >> Great, so let me spend like a few seconds on what Harc is. Lisa, again, I know we've been using the term. Harc stands for Hitachi application reliability sectors. Now the reason we thought about Harc was, like I said in the beginning of this segment, there is an illusion from an architecture standpoint to be more modern, microservices, server-less, reactive architecture, so on and so forth. There is an illusion in your development methodology from Waterfall to agile, to DevOps to lean, agile to path program, whatever, right? Extreme program, so on and so forth. There is an evolution in the space of infrastructure from a point where you were buying these huge humongous servers and putting it in your data center to a point where people don't even see servers anymore, right? You buy it, by a click of a button you don't know the size of it. All you know is a, it's (indistinct) whatever that name means. Let's go provision it on the fly, get go, get your work done, right? When all of this is advanced when you think about operations people have been solving the problem the way they've been solving it 20 years back, right? That's the issue. And Harc was conceived exactly to fix that particular problem, to think about a modern way of operating a modern workload, right? That's exactly what Harc. So it brings together finest engineering talent. So the teams are trained in specific ways of working. We've invested and implemented some of the IP, we work with the best of the breed partner ecosystem, and I'll talk about that in a minute. And we've got these facilities in Dallas and I am talking from my office in Dallas, which is a Harc facility in the US from where we deliver for our customers. And then back in Hyderabad, we've got one more that we opened and these are facilities from where we deliver Harc services for our customers as well, right? And then we are expanding it in Japan and Portugal as we move into 23. That's kind of the plan that we are thinking through. However, that's what Harc is, Lisa, right? That's our solution to this cloud complexity problem. Right? >> Got it, and it sounds like it's going quite global, which is fantastic. So Suresh, I want to have you expand a bit on the partnership, the partner ecosystem and the role that it plays. You talked about it a little bit but what role does the partner ecosystem play in really helping JCI to dial down some of those challenges and the inherent complexities that we talked about? >> Yeah, sure. I think partners play a major role and JCI is very, very good at it. I mean, I've joined JCI 18 months ago, JCI leverages partners pretty extensively. As I said, I leverage Hitachi for my, you know, A group and the (indistinct) space and the cloud operations space, and they're my primary partner. But at the same time, we leverage many other partners. Well, you know, Accenture, SCL, and even on the tooling side we use Datadog and (indistinct). All these guys are major partners of our because the way we like to pick partners is based on our vision and where we want to go. And pick the right partner who's going to really, you know make you successful by investing their resources in you. And what I mean by that is when you have a partner, partner knows exactly what kind of skillset is needed for this customer, for them to really be successful. As I said earlier, we cannot really get all the skillset that we need, we rely on the partners and partners bring the the right skillset, they can scale. I can tell Prem tomorrow, "Hey, I need two parts by next week", and I guarantee it he's going to bring two parts to me. So they let you scale, they let you move fast. And I'm a big believer, in today's day and age, to get things done fast and be more agile. I'm not worried about failure, but for me moving fast is very, very important. And partners really do a very good job bringing that. But I think then they also really make you think, isn't it? Because one thing I like about partners they make you innovate whether they know it or not but they do because, you know, they will come and ask you questions about, "Hey, tell me why you are doing this. Can I review your architecture?" You know, and then they will try to really say I don't think this is going to work. Because they work with so many different clients, not JCI, they bring all that expertise and that's what I look from them, you know, just not, you know, do a T&M job for me. I ask you to do this go... They just bring more than that. That's how I pick my partners. And that's how, you know, Hitachi's Vantara is definitely one of a good partner from that sense because they bring a lot more innovation to the table and I appreciate about that. >> It sounds like, it sounds like a flywheel of innovation. >> Yeah. >> I love that. Last question for both of you, which we're almost out of time here, Prem, I want to go back to you. So I'm a partner, I'm planning on redefining CloudOps at my company. What are the two things you want me to remember from Hitachi Vantara's perspective? >> So before I get to that question, Lisa, the partners that we work with are slightly different from from the partners that, again, there are some similar partners. There are some different partners, right? For example, we pick and choose especially in the Harc space, we pick and choose partners that are more future focused, right? We don't care if they are huge companies or small companies. We go after companies that are future focused that are really, really nimble and can change for our customers need because it's not our need, right? When I pick partners for Harc my ultimate endeavor is to ensure, in this case because we've got (indistinct) GCI on, we are able to operate (indistinct) with the level of satisfaction above and beyond that they're expecting from us. And whatever I don't have I need to get from my partners so that I bring this solution to Suresh. As opposed to bringing a whole lot of people and making them stand in front of Suresh. So that's how I think about partners. What do I want them to do from, and we've always done this so we do workshops with our partners. We just don't go by tools. When we say we are partnering with X, Y, Z, we do workshops with them and we say, this is how we are thinking. Either you build it in your roadmap that helps us leverage you, continue to leverage you. And we do have minimal investments where we fix gaps. We're building some utilities for us to deliver the best service to our customers. And our intention is not to build a product to compete with our partner. Our intention is to just fill the wide space until they go build it into their product suite that we can then leverage it for our customers. So always think about end customers and how can we make it easy for them? Because for all the tool vendors out there seeing this and wanting to partner with Hitachi the biggest thing is tools sprawl, especially on the cloud is very real. For every problem on the cloud. I have a billion tools that are being thrown at me as Suresh if I'm putting my installation and it's not easy at all. It's so confusing. >> Yeah. >> So that's what we want. We want people to simplify that landscape for our end customers, and we are looking at partners that are thinking through the simplification not just making money. >> That makes perfect sense. There really is a very strong symbiosis it sounds like, in the partner ecosystem. And there's a lot of enablement that goes on back and forth it sounds like as well, which is really, to your point it's all about the end customers and what they're expecting. Suresh, last question for you is which is the same one, if I'm a partner what are the things that you want me to consider as I'm planning to redefine CloudOps at my company? >> I'll keep it simple. In my view, I mean, we've touched upon it in multiple facets in this interview about that, the three things. First and foremost, reliability. You know, in today's day and age my products has to be reliable, available and, you know, make sure that the customer's happy with what they're really dealing with, number one. Number two, my product has to be secure. Security is super, super important, okay? And number three, I need to really make sure my customers are getting the value so I keep my cost low. So these three is what I would focus and what I expect from my partners. >> Great advice, guys. Thank you so much for talking through this with me and really showing the audience how strong the partnership is between Hitachi Vantara and JCI. What you're doing together, we'll have to talk to you again to see where things go but we really appreciate your insights and your perspectives. Thank you. >> Thank you, Lisa. >> Thanks Lisa, thanks for having us. >> My pleasure. For my guests, I'm Lisa Martin. Thank you so much for watching. (soothing music)

Published Date : Mar 2 2023

SUMMARY :

In the next 15 minutes or so and pin points that you all the services we see. Talk to me Prem about some of the other in the episode as we move forward. that taming the complexity. and play in the market to our customers. that you talked about and it sounds Now the reason we thought about Harc was, and the inherent complexities But at the same time, we like a flywheel of innovation. What are the two things you want me especially in the Harc space, we pick for our end customers, and we are looking it sounds like, in the partner ecosystem. make sure that the customer's happy showing the audience how Thank you so much for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SureshPERSON

0.99+

HitachiORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

Suresh MothikuruPERSON

0.99+

JapanLOCATION

0.99+

Prem BalasubramanianPERSON

0.99+

JCIORGANIZATION

0.99+

LisaPERSON

0.99+

HarcORGANIZATION

0.99+

Johnson ControlsORGANIZATION

0.99+

DallasLOCATION

0.99+

IndiaLOCATION

0.99+

AlibabaORGANIZATION

0.99+

HyderabadLOCATION

0.99+

Hitachi VantaraORGANIZATION

0.99+

Johnson ControlsORGANIZATION

0.99+

PortugalLOCATION

0.99+

USLOCATION

0.99+

SCLORGANIZATION

0.99+

AccentureORGANIZATION

0.99+

bothQUANTITY

0.99+

AWSORGANIZATION

0.99+

two partsQUANTITY

0.99+

150 servicesQUANTITY

0.99+

SecondQUANTITY

0.99+

FirstQUANTITY

0.99+

next weekDATE

0.99+

200 servicesQUANTITY

0.99+

First questionQUANTITY

0.99+

PremPERSON

0.99+

tomorrowDATE

0.99+

PolarisORGANIZATION

0.99+

T&MORGANIZATION

0.99+

hundreds of servicesQUANTITY

0.99+

three thingsQUANTITY

0.98+

threeQUANTITY

0.98+

agileTITLE

0.98+

Warren Jackson, Dell Technologies & Scott Waller, CTO, 5G Open Innovation Lab | MWC Barcelona 2023


 

>> Narrator: theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (upbeat music) >> Hey, welcome back to the Fira in Barcelona. My name is Dave Vellante. I'm here with David Nicholson, day four of MWC '23. Show's winding down a little bit, but it's still pretty packed here. Lot of innovation, planes, trains, automobiles, and we're talking 5G all week, private networks, connected breweries. It's super exciting. Really happy to have Warren Jackson here as the Edge Gateway Product Technologist at Dell Technologies, and Scott Waller, the CTO of the 5G Open Innovation Lab. Folks, welcome to theCUBE. >> Good to be here. >> Really interesting stories that we're going to talk about. Let's start, Scott, with you, what is the Open Innovation Lab? >> So it was hatched three years ago. Ideated about a bunch of guys from Microsoft who ran startup ventures program, started the developers program over at Microsoft, if you're familiar with MSDN. And they came three years ago and said, how does CSPs working with someone like T-Mobile who's in our backyard, I'm from Seattle. How do they monetize the edge? You need a developer ecosystem of applications and use cases. That's always been the thing. The carriers are building the networks, but where's the ecosystem of startups? So we built a startup ecosystem that is sponsored by partners, Dell being one sponsor, Intel, Microsoft, VMware, Aspirant, you name it. The enterprise folks who are also in the connectivity business. And with that, we're not like a Y Combinator or a Techstars where it's investment first and it's all about funding. It's all about getting introductions from a startup who might have a VR or AI type of application or observability for 5G slicing, and bring that in front of the Microsoft's of the world, or the Intel's and the Dell's of the world that they might not have the capabilities to do it because they're still a small little startup with an MVP. So we really incubate. We're the connectors and build a network. We've had 101 startups over the last three years. They've raised over a billion dollars. And it's really valuable to our partners like T-Mobile and Dell, et cetera, where we're bringing in folks like Expedo and GenXComm and Firecell. Start up private companies that are around here they were cohorts from our program in the past. >> That's awesome because I've often, I mean, I've seen Dell get into this business and I'm like, wow, they've done a really good job of finding these guys. I wonder what the pipeline is. >> We're trying to create the pipeline for the entire industry, whether it's 5G on the edge for the CSPs, or it's for private enterprise networks. >> Warren, what's this cool little thing you got here? >> Yeah, so this is very unique in the Dell portfolio. So when people think of Dell, they think of servers laptops, et cetera. But what this does is it's designed to be deployed at the edge in harsh environments and it allows customers to do analytics, data collection at the edge. And what's unique about it is it's got an extended temperature range. There's no fan in this and there's lots of ports on it for data ingestion. So this is a smaller box Edge Gateway 3200. This is the product that we're using in the brewery. And then we have a bigger brother of this, the Edge Gateway 5200. So the value of it, you can scale depending on what your edge compute requirements are at the edge. >> So tell us about the brewery story. And you covered it, I know you were in the Dell booth, but it's basically an analog brewery. They're taking measurements and temperatures and then writing it down and then entering it in and somebody from your company saw it and said, "We can help you with this problem." Explain the story. >> Yeah, so Scott and I did a walkthrough of the brewery back in November timeframe. >> It's in Framingham, Mass. >> Framingham, Mass, correct. And basically, we talked to him, and we said, what keeps you guys up at night? What's a problem that we can solve? Very simple, a kind of a lower budget, didn't have a lot money to spend on it, but what problem can we solve that will realize great benefit for you? So we looked at their fermentation process, which was completely analog. Somebody was walking around with a clipboard looking at analog gauges. And what we did is we digitized that process. So what this did for them rather than being completely reactive, and by the time they realized there was something going wrong with the fermentation process, it's too late. A batch of scrap. This allowed them to be proactive. So anytime, anywhere on the tablet or a phone, they can see if that fermentation process is going out of range and do something about it before the batch gets scrapped. >> Okay. Amazing. And Scott, you got a picture of this workflow here? >> Yeah, actually this is the final product. >> Explain that. >> As Warren mentioned, the data is actually residing in the industrial side of the network So we wanted to keep the IT/OT separation, which is critical on the factory floor. And so all the data is brought in from the sensors via digital connection once it's converted and into the edge gateway. Then there's a snapshot of it using Telit deviceWISE, their dashboarding application, that is decoding all the digital readings, putting them in a nice dashboard. And then when we gave them, we realized another problem was they're using cheap little Chromebooks that they spill beer on once a week and throw them out. That's why they bought the cheap ones 'cause they go through them so fast. So we got a Dell Latitude Rugged notebook. This is a brand new tablet, but they have the dashboarding software. So no matter if they're out there on the floor, but because the data resides there on the factory they have access to be able to change the parameters. This one's in the maturation cycle. This one's in the crashing cycle where they're bringing the temperature back down, stopping the fermentation process, getting it ready to go to the canning side of the house. >> And they're doing all that from this dashboard. >> They're doing all from the dashboard. They also have a giant screen that we put up there that in the floor instead of walking a hundred yards back behind a whole bunch of machinery equipment from a safety perspective, now they just look up on the screen and go, "Oh, that's red. That's out of range." They're actually doing a bunch of cleaning and a bunch of other things right now, too. So this is real time from Boston. >> Dave: Oh okay. >> Scott: This is actually real time from Boston. >> I'm no hop master, but I'm looking at these things flashing at me and I'm thinking something's wrong with my beer. >> We literally just lit this up last week. So we're still tweaking a few things, but they're also learning around. This is a new capability they never had. Oh, we have the ability to alert and monitor at different processes with different batches, different brews, different yeast types. Then now they're also training and learning. And we're going to turn that into eventually a product that other breweries might be able to use. >> So back to the kind of nuts and bolts of the system. The device that you have here has essentially wifi antennas on the back. >> Warren: Correct. >> Pull that up again if you would, please. >> Now I've seen this, just so people are clear, there are also paddle 5G antennas that go on the other side. >> Correct. >> That's sort of the connection from the 5G network that then gets transmogrified, technical term guys, into wifi so the devices that are physically connected to the brew vats, don't know what they're called. >> Fermentation tanks. >> Fermentation tanks, thank you. Those are wifi. That's a wifi signal that's going into this. Is that correct? >> Scott: No. >> No, it's not. >> It's a hard wire. >> Okay, okay. >> But, you're right. This particular gateway. >> It could be wifi if it's hard wire. >> It could be, yes. Could be any technology really. >> This particular gateway is not outfitted with 5G, but something that was very important in this application was to isolate the IT network, which is on wifi and physically connected from the OT network, which is the 5G connection. So we're sending the data directly from the gateway up to the cloud. The two partners that we worked with on this project were ifm, big sensor manufacturer that actually did the wired sensors into an industrial network called IO-Link. So they're physically wired into the gateway and then in the gateway we have a solution from our partner Telit that has deviceWISE software that actually takes the data in, runs the analytics on it, the logic, and then visualizes that data locally on those panels and also up to their cloud, which is what we're looking at. So they can look at it locally, they're in the plant and then up in the cloud on a phone or a tablet, whatever, when they're at home. >> We're talking about a small business here. I don't know how many employees they have, but it's not thousands. And I love that you're talking about an IT network and an OT network. And so they wanted, it is very common when we talk about industrial internet of things use cases, but we're talking about a tiny business here. >> Warren: Correct. >> They wanted to separate those networks because of cost, because of contention. Explain why. >> Yeah, just because, I mean, they're running their ERP system, their payroll, all of their kind of the way they run their business on their IT network and you don't want to have the same traffic out on the factory floor on that network, so it was pretty important. And the other thing is we really, one of the things that we didn't want to do in this project is interrupt their production process at all. So we installed this entire system in two days. They didn't have to shut down, they didn't have to stop. We didn't have to interrupt their process at all. It was like we were invisible there and we spun the thing up and within two days, very simple, easy, but tremendous value for their business. >> Talk about new markets here. I mean, it's like any company that's analog that needs to go digital. It's like 99% of the companies on the planet. What are you guys seeing out there in terms of the types of examples beyond breweries? >> Yeah, I could talk to that. So I spent a lot of time over the last couple years running my own little IoT company and a lot of it being in agriculture. So like in Washington state, 70% of the world's hops is actually grown in Washington state. It's my hometown. But in the Ag producing regions, there's lack of connectivity. So there's interest in private networks because the carriers aren't necessarily deploying it. But because we have the vast amount of hops there's a lot of IPAs, a lot of hoppy IPAs that come out of Seattle. And with that, there's a ton of craft breweries that are about the same size, some are a little larger. Anheuser-Busch and InBev and Heineken they've got great IoT platforms. They've done it. They're mass scale, they have to digitize. But the smaller shops, they don't, when we talk about IT/OT separation, they're not aware of that. They think it's just, I get local broadband and I get wifi and one hotspot inside my facility and it works. So a little bit of it was the education. I have got years in IT/OT security in my background so that education and we come forward with a solution that actually does that for them. And now they're aware of it. So now when they're asking questions of other vendors that are trying to sell them some type of solution, they're inherently aware of what should be done so they're not vulnerable to ransomware attacks, et cetera. So it's known as the Purdue Model. >> Well, what should they do? >> We came in and keep it completely separated and educated them because in the end too we'll build a design guide and a starter kit out of this that other brewers can use. Because I've toured dozens of breweries in Washington, the exact same scenario, analog gauges, analog process, very manual. And in the end, when you ask the brewer, what do they want out of this? It keeps them up at night because if the temperature goes out of range, because the chiller fails, >> They ruined. >> That's $30,000 lost in beer. That's a lot to a small business. However, it's also once they start digitizing the data and to Warren's point, it's read-only. We're not changing any of the process. We augmented on top of their existing systems. We didn't change their process. But now they have the ability to look at the data and see batch to batch consistency. Quality doesn't always mean best, it means consistency from batch to batch. Every beer from exhibit A from yesterday to two months from now of the same style of beer should be the same taste, flavor, boldness, et cetera. This is giving them the insights on it. >> It's like St. Louis Buds, when we were kids. We would buy the St. Louis Buds 'cause they tasted better than the Merrimack Buds. And then Budweiser made them all the same. >> Must be an East coast thing. >> It's an old guy thing, Dave. You weren't born yet. >> I was in high school. Yeah, I was in high school. >> We like the hops. >> We weren't 21. Do me a favor, clarify OT versus IT. It's something we talk about all the time, but not everyone's familiar with that separation. Define OT for me. >> It's really the factory floor. You got IT systems that are ERP systems, billing, you're getting your emails, stuff like that. Where the ransomware usually gets infected in. The OT side is the industrial control network. >> David: What's the 'O' stand for? >> Operation. >> David: Operation? >> Yeah, the operations side. >> 'Cause some people will think objects 'cause we think internet of things. >> The industrial operations, think of it that way. >> But in a sense those are things that are connected. >> And you think of that as they are the safety systems as well. So a machine, if someone doesn't push the stop button, you'd think if there's a lot of traffic on that network, it isn't guaranteed that that stop button actually stops that blade from coming down, someone's going to lose their arm. So it's very tied to safety, reliability, low latency. It is crafted in design that it never touches the internet inherently without having to go through a security gateway which is what we did. >> You mentioned the large companies like InBev, et cetera. You're saying they're already there. Are they not part of your target market? Or are there ways that you can help them? Is this really more of a small to mid-size company? >> For this particular solution, I think so, yeah. Because the cost to entry is low. I mean, you talk about InBev, they have millions of dollars of budgets to spend on OT. So they're completely automated from top to bottom. But these little craft brewers, which they're everywhere in the US. Vermont, Washington state, they're completely manual. A lot of these guys just started in their garage. And they just scaled up and they got a cult kind of following around their beers. One thing that we found here this week, when you talk around edge and 5G and beer, those things get people excited. In our booth we're serving beer, and all these kind of topics, it brings people together. >> And it lets the little guy compete more effectively with the big giants. >> Correct. >> And how do you do more with less as the little guy is kind of the big thing and to Warren's point, we have folks come up and say, "Great, this is for beer, but what about wine? What about the fermentation process of wine?" Same materials in the end. A vessel of some sort, maybe it's stainless steel. The clamps are the same, the sensors are the same. The parameters like temperature are key in any type of fermentation. We had someone talking about olive oil and using that. It's the same sanitary beverage style equipment. We grabbed sensors that were off the shelf and then we integrated them in and used the set of platforms that we could. How do we rapidly enable these guys at the lowest possible cost with stuff that's at the shelf. And there's four different companies in the solution. >> We were having a conversation with T-Mobile a little earlier and she mentioned the idea of this sounding scary. And this is a great example of showing that in fact, at a relatively small scale, this technology makes a lot of sense. So from that perspective, of course you can implement private 5G networks at an industrial scale with tens of millions of dollars of investment. But what about all of the other things below? And that seems to be a perfect example. >> Yeah, correct. And it's one of the things with the gateway and having flexibility the way Dell did a great job of putting really good modems in it. It had a wide spectrum range of what bands they support. So being able to say, at a larger facility, I mean, if Heineken wants to deploy something like this, oh, heck yeah, they probably could do it. And they might have a private 5G network, but let's say T-Mobile offers a private offering on their public via a slice. It's easy to connect that radio to it. You just change the sims. >> Is that how the CSPs fit here? How are they monetized? >> Yeah, correct. So one of our partners is T-Mobile and so we're working with them. We've got other telco partners that are coming on board in our lab. And so we'll do the same thing. We're going to take this back and put it in the lab and offer it up as others because the baseline building blocks or Lego blocks per se can be used in a bunch of different industries. It's really that starter point of giving folks the idea of what's possible. >> So small manufacturing, agriculture you mentioned, any other sort of use cases we should tune into? >> I think it's environmental monitoring, all of that stuff, I see it in IoT deployments all over the world. Just the simple starter kits 'cause a farmer doesn't want to get sold a solution, a platform, where he's got to hire a bunch of coders and partner with the big carriers. He just wants something that works. >> Another use case that we see a lot, a high cost in a lot of these places is the cost of energy. And a lot of companies don't know what they're spending on electricity. So a very simple energy monitoring system like that, it's a really good ROI. I'm going to spend five or $10,000 on a system like this, but I'm going to save $20,000 over a year 'cause I'm able to see, have visibility into that data. That's a lot of what this story's about, just giving visibility into the process. >> It's very cool, and like you said, it gets people excited. Is it a big market? How do you size it? Is it a big TAM? >> Yeah, so one thing that Dell brings to the table in this space is people are buying their laptops, their servers and whatnot from Dell and companies are comfortable in doing business with Dell because of our model direct to customer and whatnot. So our ability to bring a device like this to the OT space and have them have that same user experience they have with laptops and our client products in a ruggedized solution like this and bring a lot of partners to the table makes it easy for our customers to implement this across all kinds of industries. >> So we're talking to billions, tens of billions. Do we know how big this market is? What's the TAM? I mean, come on, you work for Dell. You have to do a TAM analysis. >> Yes, no, yeah. I mean, it really is in the billions. The market is huge for this one. I think we just tapped into it. We're kind of focused in on the brewery piece of it and the liquor piece of it, but the possibilities are endless. >> Yeah, that's tip of the spear. Guys, great story. >> It's scalable. I think the biggest thing, just my final feedback is working and partnering with Dell is we got something as small as this edge gateway that I can run a Packet Core on and run a 5G standalone node and then have one of the small little 5G radios out there. And I've got these deployed in a farm. Give the farmer an idea of what's possible, give him a unit on his tractor, and now he can do something that, we're providing connectivity he had never had before. But as we scale up, we've got the big brother to this. When we scale up from that, we got the telco size units that we can put. So it's very scalable. It's just a great suite of offerings. >> Yeah, outstanding. Guys, thanks for sharing the story. Great to have you on theCUBE. >> Good to be with you today. >> Stop by for beer later. >> You know it. All right, Dave Vellante for Dave Nicholson and the entire CUBE team, we're here live at the Fira in Barcelona MWC '23 day four. Keep it right there. (upbeat music)

Published Date : Mar 2 2023

SUMMARY :

that drive human progress. and Scott Waller, the CTO of that we're going to talk about. the capabilities to do it of finding these guys. for the entire industry, So the value of it, Explain the story. of the brewery back in November timeframe. and by the time they realized of this workflow here? is the final product. and into the edge gateway. that from this dashboard. that in the floor instead Scott: This is actually and I'm thinking something's that other breweries might be able to use. nuts and bolts of the system. Pull that up again that go on the other side. so the devices that are Is that correct? This particular gateway. if it's hard wire. It could be, yes. that actually takes the data in, And I love that you're because of cost, because of contention. And the other thing is we really, It's like 99% of the that are about the same size, And in the end, when you ask the brewer, We're not changing any of the process. than the Merrimack Buds. It's an old guy thing, Dave. I was in high school. It's something we talk about all the time, It's really the factory floor. 'cause we think internet of things. The industrial operations, But in a sense those are doesn't push the stop button, You mentioned the large Because the cost to entry is low. And it lets the little is kind of the big thing and she mentioned the idea And it's one of the of giving folks the all over the world. places is the cost of energy. It's very cool, and like you and bring a lot of partners to the table What's the TAM? and the liquor piece of it, Yeah, that's tip of the spear. got the big brother to this. Guys, thanks for sharing the story. and the entire CUBE team,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
David NicholsonPERSON

0.99+

Dave NicholsonPERSON

0.99+

Dave VellantePERSON

0.99+

ScottPERSON

0.99+

WarrenPERSON

0.99+

T-MobileORGANIZATION

0.99+

$30,000QUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

Scott WallerPERSON

0.99+

SeattleLOCATION

0.99+

Warren JacksonPERSON

0.99+

DellORGANIZATION

0.99+

WashingtonLOCATION

0.99+

DavePERSON

0.99+

$10,000QUANTITY

0.99+

USLOCATION

0.99+

99%QUANTITY

0.99+

DavidPERSON

0.99+

fiveQUANTITY

0.99+

InBevORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

two partnersQUANTITY

0.99+

IntelORGANIZATION

0.99+

NovemberDATE

0.99+

Anheuser-BuschORGANIZATION

0.99+

yesterdayDATE

0.99+

TelitORGANIZATION

0.99+

70%QUANTITY

0.99+

BostonLOCATION

0.99+

oneQUANTITY

0.99+

BarcelonaLOCATION

0.99+

101 startupsQUANTITY

0.99+

HeinekenORGANIZATION

0.99+

GenXCommORGANIZATION

0.99+

ExpedoORGANIZATION

0.99+

thousandsQUANTITY

0.99+

last weekDATE

0.99+

5G Open Innovation LabORGANIZATION

0.99+

three years agoDATE

0.99+

billionsQUANTITY

0.99+

AspirantORGANIZATION

0.98+

this weekDATE

0.98+

FirecellORGANIZATION

0.98+

VMwareORGANIZATION

0.98+

MWC '23EVENT

0.98+

two daysQUANTITY

0.98+

todayDATE

0.98+

four different companiesQUANTITY

0.98+

Edge Gateway 5200COMMERCIAL_ITEM

0.98+

Open Innovation LabORGANIZATION

0.98+

millions of dollarsQUANTITY

0.97+

telcoORGANIZATION

0.97+

CUBEORGANIZATION

0.97+

over a billion dollarsQUANTITY

0.97+

Tammy Whyman, Telco & Kurt Schaubach, Federated Wireless | MWC Barcelona 2023


 

>> Announcer: The cube's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) (background indistinct chatter) >> Good morning from Barcelona, everyone. It's theCUBE live at MWC23, day three of our four days of coverage. Lisa Martin here with Dave Nicholson. Dave, we have had some great conversations. Can't believe it's day three already. Anything sticking out at you from a thematic perspective that really caught your eye the last couple days? >> I guess I go back to kind of our experience with sort of the generalized world of information technology and a lot of the parallels between what's been happening in other parts of the economy and what's happening in the telecom space now. So it helps me understand some of the complexity when I tie it back to things that I'm aware of >> A lot of complexity, but a big ecosystem that's growing. We're going to be talking more about the ecosystem next and what they're doing to really enable customers CSPs to deliver services. We've got two guests here, Tammy Wyman joins us the Global head of Partners Telco at AWS. And Kurt Schaubach, CTO of Federated Wireless. Welcome to theCUBE Guys. >> Thank you. >> Thank you. >> Great to have you here, day three. Lots of announcements, lots of news at MWC. But Tammy, there's been a lot of announcements from partners with AWS this week. Talk to us a little bit more about first of all, the partner program and then let's unpack some of those announcements. One of them is with Federated Wireless. >> Sure. Yeah. So AWS created the partner program 10 years ago when they really started to understand the value of bringing together the ecosystem. So, I think we're starting to see how this is becoming a reality. So now we 100,000 partners later, 150 countries, 70% of those partners are outside of the US. So truly the global nature and partners being ISVs, GSIs. And then in the telco space, we're actually looking at how we help CSBs become partners of AWS and bring new revenue streams. So that's how we start having the discussions around Federated Wireless. >> Talk a little bit about Federated Wireless, Kurt, give the audience an overview of what you guys are doing and then maybe give us some commentary on the partnership. >> Sure. So we're a shared spectrum and private wireless company, and we actually started working with AWS about five years ago to take this model that we developed to perfect the use of shared spectrum to enable enterprise communications and bring the power of 5G to the enterprise to bring it to all of the AWS customers and partners. So through that now through we're one of the partner network participants. We're working very closely with the AWS team on bringing this, really unique form of connectivity to all sorts of different enterprise use cases from solving manufacturing and warehouse logistics issues to providing connectivity to mines, enhancing the experience for students on a university campus. So it's a really exciting partnership. Everything that we deliver on an end-to-end basis from design deployment to bringing the infrastructure on-prem, all runs on AWS. (background indistinct chatter) >> So a lot of the conversations that we've had sort of start with this concept of the radio access network and frankly in at least the public domain cellular sites. And so all of a sudden it's sort of grounded in this physical reality of these towers with these boxes of equipment on the tower, at the base of the tower, connected to other things. How does AWS and Federated Wireless, where do you fit in that model in terms of equipment at the base of a tower versus what having that be off-premises in some way or another. Kind of give us more of a flavor for the kind of physical reality of what you guys are doing? >> Yeah, I'll start. >> Yeah, Tammy. >> I'll hand it over to the real expert but from an AWS perspective, what we're finding is really I don't know if it's even a convergence or kind of a delaying of the network. So customers are, they don't care if they're on Wi-Fi if they're on public spectrum, if they're on private spectrum, what they want are networks that are able to talk to each other and to provide the right connectivity at the right time and with the right pricing model. So by moving to the cloud that allows us that flexibility to be able to offer the quality of service and to be able to bring in a larger ecosystem of partners as with the networks are almost disaggregated. >> So does the AWS strategy focus solely on things that are happening in, say, AWS locations or AWS data centers? Or is AWS also getting into the arena of what I would refer to as an Outpost in an AWS parlance where physical equipment that's running a stack might actually also be located physically where the communications towers are? What does that mix look like in terms of your strategy? >> Yeah, certainly as customers are looking at hybrid cloud environments, we started looking at how we can use Outpost as part of the network. So, we've got some great use cases where we're taking Outpost into the edge of operators networks, and really starting to have radio in the cloud. We've launched with Dish earlier, and now we're starting to see some other announcements that we've made with Nokia about having ran in the cloud as well. So using Outpost, that's one of our key strategies. It creates, again, a lot of flexibility for the hybrid cloud environment and brings a lot of that compute power to the edge of the network. >> Let's talk about some of the announcements. Tammy was reading that AWS is expanding, its telecom and 5g, private 5G network support. You've also unveiled the AWS Telco Network Builder service. Talk about that, who that's targeted for. What does an operator do with AWS on this? Or maybe you guys can talk about that together. >> Sure. Would you like to start? I can talk. All right. So from the network builder, it's aimed at the, I would say the persona that it's aimed at would be the network engineer within the CSPs. And there was a bit of a difficulty when you want to design a telco network on AWS versus the way that the network engineers would traditionally design. So I'm going to call them protocols, but you know I can imagine saying, "I really want to build this on the cloud, but they're making me move away from my typical way that I design a network and move it into a cloud world." So what we did was really kind of create this template saying, "You can build the network as you always do and we are going to put the magic behind it to translate it into a cloud world." So just really facilitating and taking some of the friction out of the building of the network. >> What was the catalyst for that? I think Dish and Swisscom you've been working with but talk about the catalyst for doing that and how it's facilitating change because part of that's change management with how network engineers actually function and how they work. >> Absolutely, yeah. And we're looking, we listen to customers and we're trying to understand what are those friction points? What would make it easier? And that was one that we heard consistently. So we wanted to apply a bit of our experience and the way that we're able to use data translate that using code so that you're building a network in your traditional way, and then it kind of spits out what's the formula to build the network in the cloud. >> Got it. Kurt, talk about, yeah, I saw that there was just an announcement that Federated Wireless made JBG Smith. Talk to us more about that. What will federated help them to create and how are you all working together? >> Sure. So JBG Smith is the exclusive redeveloper of an area just on the other side of the Potomac from Washington DC called National Landing. And it's about half the size of Manhattan. So it's an enormous area that's getting redeveloped. It's the home of Amazon's new HQ two location. And JBG Smith is investing in addition to the commercial real estate, digital place making a place where people live, work, play, and connect. And part of that is bringing an enhanced level of connectivity to people's homes, their residents, the enterprise, and private wireless is a key component of that. So when we talk about private wireless, what we're doing with AWS is giving an enterprise the freedom to operate a network independent of a mobile network operator. So that means everything from the ran to the core to the applications that run on this network are sort of within the domain of the enterprise merging 5G and edge compute and driving new business outcomes. That's really the most important thing. We can talk a lot about 5G here at MWC about what the enterprise really cares about are new business outcomes how do they become more efficient? And that's really what private wireless helps enable. >> So help us connect the dots. When we talk about private wireless we've definitely been in learning mode here. Well, I'll speak for myself going around and looking at some of the exhibits and seeing how things work. And I know that I wasn't necessarily a 100% clear on this connection between a 5G private wireless network today and where Wi-Fi still comes into play. So if I am a new resident in this area, happily living near the amazing new presence of AWS on the East coast, and I want to use my mobile device how am I connected into that private wireless network? What does that look like as a practical matter? >> So that example that you've just referred to is really something that we enable through neutral host. So in fact, what we're able to do through this private network is also create carrier connectivity. Basically create a pipe almost for the carriers to be able to reach a consumer device like that. A lot of private wireless is also driving business outcomes with enterprises. So work that we're doing, like for example, with the Cal Poly out in California, for example is to enable a new 5G innovation platform. So this is driving all sorts of new 5G research and innovation with the university, new applications around IoT. And they need the ability to do that indoors, outdoors in a way that's sort of free from the domain of connectivity to a a mobile network operator and having the freedom and flexibility to do that, merging that with edge compute. Those are some really important components. We're also doing a lot of work in things like warehouses. Think of a warehouse as being this very complex RF environment. You want to bring robotics you want to bring better inventory management and Wi-Fi just isn't an effective means of providing really reliable indoor coverage. You need more secure networks you need lower latency and the ability to move more data around again, merging new applications with edge compute and that's where private wireless really shines. >> So this is where we do the shout out to my daughter Rachel Nicholson, who is currently a junior at Cal Poly San Luis Obispo. Rachel, get plenty of sleep and get your homework done. >> Lisa: She better be studying. >> I held up my mobile device and I should have said full disclosure, we have spotty cellular service where I live. So I think of this as a Wi-Fi connected device, in fact. So maybe I confuse the issue at least. >> Tammy, talk to us a little bit about the architecture from an AWS perspective that is enabling JBG Smith, Cal Poly is this, we're talking an edge architecture, but give us a little bit more of an understanding of what that actually technically looks like. >> Alright, I would love to pass this one over to Kurt. >> Okay. >> So I'm sorry, just in terms of? >> Wanting to understand the AWS architecture this is an edge based architecture hosted on what? On AWS snow, application storage. Give us a picture of what that looks like. >> Right. So I mean, the beauty of this is the simplicity in it. So we're able to bring an AWS snowball, snow cone, edge appliance that runs a pack of core. We're able to run workloads on that locally so some applications, but we also obviously have the ability to bring that out to the public cloud. So depending on what the user application is, we look at anything from the AWS snow family to Outpost and sort of develop templates or solutions depending on what the customer workloads demand. But the innovation that's happened, especially around the pack core and how we can make that so compact and able to run on such a capable appliance is really powerful. >> Yeah, and I will add that I think the diversification of the different connectivity modules that we have a lot of them have been developed because of the needs from the telco industry. So the adaptation of Outpost to run into the edge, the snow family. So the telco industry is really leading a lot of the developments that AWS takes to market in the end because of the nature of having to have networks that are able to disconnect, ruggedize environments, the latency, the numerous use cases that our telco customers are facing to take to their end customers. So like it really allows us to adapt and bring the right network to the right place and the right environment. And even for the same customer they may have different satellite offices or remote sites that need different connectivity needs. >> Right. So it sounds like that collaboration between AWS and telco is quite strong and symbiotic, it sounds like. >> Tammy: Absolutely. >> So we talked about a number of the announcements in our final minutes. I want to talk about integrated private wireless that was just announced last week. What is that? Who are the users going to be? And I understand T-Mobile is involved there. >> Yes. Yeah. So this is a program that we launched based on what we're seeing is kind of a convergence of the ecosystem of private wireless. So we wanted to be able to create a program which is offering spectrum that is regulated as well. And we wanted to offer that on in a more of a multi country environment. So we launched with T-Mobile, Telephonica, KDDI and a number of other succeed, as a start to start being able to bring the regulated spectrum into the picture and as well other ISVs who are going to be bringing unique use cases so that when you look at, well we've got the connectivity into this environment, the mine or the port, what are those use cases? You know, so ISVs who are providing maybe asset tracking or some of the health and safety and we bring them in as part of the program. And I think an important piece is the actual discoverability of this, because when you think about that if you're a buyer on the other side, like where do I start? So we created a portal with this group of ISVs and partners so that one could come together and kind of build what are my needs? And then they start picking through and then the ecosystem would be recommended to them. So it's a really a way to discover and to also procure a private wireless network much more easily than could be done in the past. >> That's a great service >> And we're learning a lot from the market. And what we're doing together in our partnership is through a lot of these sort of ruggedized remote location deployments that we're doing, mines, clearing underbrush and forest forest areas to prevent forest fires. There's a tremendous number of applications for private wireless where sort of the conventional carrier networks just aren't prioritized to serve. And you need a different level of connectivity. Privacy is big concern as well. Data security. Keeping data on premise, which is a another big application that we were able to drive through these edge compute platforms. >> Awesome. Guys, thank you so much for joining us on the program talking about what AWS Federated are doing together and how you're really helping to evolve the telco landscape and make life ultimately easier for all the Nicholsons to connect over Wi-Fi, our private 5g. >> Keep us in touch. And from two Californians you had us when you said clear the brush, prevent fires. >> You did. Thanks guys, it was a pleasure having you on the program. >> Thank you. >> Thank you. >> Our pleasure. For our guest and for Dave Nicholson, I'm Lisa Martin. You're watching theCUBE Live from our third day of coverage of MWC23. Stick around Dave and I will be right back with our next guest. (upbeat music)

Published Date : Mar 1 2023

SUMMARY :

that drive human progress. eye the last couple days? and a lot of the parallels the Global head of Partners Telco at AWS. the partner program and then let's unpack So AWS created the partner commentary on the partnership. and bring the power of So a lot of the So by moving to the cloud that allows us and brings a lot of that compute power of the announcements. So from the network but talk about the catalyst for doing that and the way that we're Talk to us more about that. from the ran to the core and looking at some of the exhibits and the ability to move So this is where we do the shout out So maybe I confuse the issue at least. bit about the architecture pass this one over to Kurt. the AWS architecture the beauty of this is a lot of the developments that AWS and telco is quite strong and number of the announcements a convergence of the ecosystem a lot from the market. on the program talking the brush, prevent fires. having you on the program. of coverage of MWC23.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Kurt SchaubachPERSON

0.99+

Lisa MartinPERSON

0.99+

Rachel NicholsonPERSON

0.99+

Dave NicholsonPERSON

0.99+

Tammy WymanPERSON

0.99+

AWSORGANIZATION

0.99+

CaliforniaLOCATION

0.99+

TammyPERSON

0.99+

telcoORGANIZATION

0.99+

T-MobileORGANIZATION

0.99+

KurtPERSON

0.99+

USLOCATION

0.99+

LisaPERSON

0.99+

Washington DCLOCATION

0.99+

Federated WirelessORGANIZATION

0.99+

DavePERSON

0.99+

RachelPERSON

0.99+

last weekDATE

0.99+

NokiaORGANIZATION

0.99+

SwisscomORGANIZATION

0.99+

Cal PolyORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Tammy WhymanPERSON

0.99+

70%QUANTITY

0.99+

two guestsQUANTITY

0.99+

Dell TechnologiesORGANIZATION

0.99+

TelcoORGANIZATION

0.99+

BarcelonaLOCATION

0.99+

OneQUANTITY

0.99+

100%QUANTITY

0.99+

TelephonicaORGANIZATION

0.99+

JBG SmithORGANIZATION

0.99+

ManhattanLOCATION

0.99+

National LandingLOCATION

0.99+

four daysQUANTITY

0.99+

this weekDATE

0.98+

third dayQUANTITY

0.98+

10 years agoDATE

0.98+

JBG SmithPERSON

0.98+

DishORGANIZATION

0.98+

PotomacLOCATION

0.98+

twoQUANTITY

0.98+

KDDIORGANIZATION

0.98+

150 countriesQUANTITY

0.97+

MWC23EVENT

0.96+

two locationQUANTITY

0.96+

oneQUANTITY

0.96+

firstQUANTITY

0.96+

day threeQUANTITY

0.95+

MWCEVENT

0.95+

Juan Carlos Garcia, Telefónica & Ihab Tarazi, Dell Technologies | MWC Barcelona 2023


 

>> Narrator: TheCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) (logo background tingles) >> Hey everyone, it's so good to see you, welcome back to theCube's day two coverage of MWC 23. We are live in Barcelona, Lisa Martin with Dave Nicholson, Dave we have had no signage of people dropping out, this conference is absolutely jam packed. There's so much interest in the industry, you've had a lot of interviews this morning, before we introduce our guests and have a great conversation about the industry and challenges and how they're being solved, what are some of the things that stuck out to you in conversations today? >> Well, I think the interesting, kind of umbrella conversation, that seems to be overlapping you know, overlying everything is this question about Open RAN and open standards in radio access network technology and where the operators of networks and the providers of technology come together to chart a better path forward. A lot of discussion of private 5G networks, it's very interesting, I think I've said this a few times, from a consumer's perspective, we feel like 5G has been with us for a long time- >> We do. >> But it's very clear that this, that we're really at the beginning of stages of this and I'm super excited for our guests that we have here because we're going to be able to talk to an actual operator- >> Yes. >> And hear what they have to say, we've heard a lot of people talking about the cool stuff they build, but we're going to get to hear from someone who actually works with this stuff, so- >> Who actually built it, absolutely. Please welcome our two guests, we have Ihab Tarazi CTO and SVP at Dell Technologies, and Juan Carlos Garcia SVP Technology Innovation and Ecosystems at Telephonica, it's great to have you guys on the program. >> So, thank you very much. >> So the buzz around this conference is incredible, 80,000 plus people, 2000 exhibitors, it's standing room only. Lot of opportunity in the industry, a lot of challenges though, Juan Carlos we'd love to get your perspective on, what are some of the industry challenges that Telephonica has faced that your peers are probably facing as well? >> Well we have two kinds of challenges, one is a business challenge, I would say that we may find in other industries, like profitability and growth and I will talk about it. And the second challenge is our technology challenge, we need the network to be ready to embrace a new wave of technologies and applications that are, you know, very demanding in terms of network characteristics and features. On the efficiency and profitability and growth, the solution comes as a challenge from changing the way networks are built and operated, from the traditional way to make them become software platforms. And this is not just at the knowledge challenge, it's also changing the mindset of network operators from a network and service provider to a digital service provider, okay? And this means several things, your network needs to become software-based so that you can manage it digitally and on top of it, you need to be able to deliver detail services digitally, okay? So there are three aspects, making your network so (indistinct) and cloud and cloud waste and then be able to sell in a different way to our customers. >> So some pretty significant challenges, but to your point, Juan Carlos, you share some of those challenges with other industries so there's some commonality there. I wanted to bring Ihab into the conversation, from Dell's perspective, we're seeing, you know, the explosion of data. Every company has to be a data company, we expect to have access to data in real time, if it's a new app, whatever it is. What are some of the challenges that you're seeing from your seat at Dell? >> Yeah, I think Juan Carlos explained that really well, what all the operators are talking about here between new applications, think metaverse, think video streaming, going all the way to the edge, think all the automation of factories and everything that's happening. It's not only requiring a whole new model for delivery and for building networks, but it's throwing out enormous amount of data and the data needs to be acted on to get the value of it. So the challenge is how do I collect the data? How do I catalog it? How do I make it usable? And then how do I make it persistent? So you know, it's high performance data storage and then after that, how do I move it to where I want to and be able to use it. And for many applications that has to happen in milliseconds for the value to come out. So now we've seen this before with enterprise but now I would say this digital transformation is happening at very large scale for all the telcos and starting to deal with very familiar themes we've seen before. >> So Juan Carlos, Telephonica, you hear from partners, vendors that they've done this before, don't worry, you're in good hands. >> Juan Carlos: Yeah, yeah. >> But as a practical matter, when you look at the challenges that you have and you think about the things you'll do to address them as you move forward, what are the immediate short term priorities? >> Okay. >> Versus the longer term priorities? What's realistic? You have a network to operate- >> Yeah. >> You're not just building something out of nothing, so you have to keep the lights on. >> Yeah. >> And you have to innovate, we call that by the way, in the CTO trade, ambidextrous, management using both hands, so what's your order of priorities? >> Well, the first thing, new technologies you are getting into the network need to come with a detail shape, so being cloud native, working by software. On the legacies that you need to keep alive, you need to go for a program to switch (indistinct) off progressively, okay? In fact, in Spain we are going to switch up the copper network in two years, so in 2024, Telephonica will celebrate 100 years and the celebration will be switching up the copper network and we'll have on the fixed access only fiber, okay. So more than likely, the network is necessary, all this digitalization may happen only on the new technologies because the new technologies are cloud-based, cloud native, become already ready for this digitalization process. And not only that, so you need also to build new things, we need an abstraction layer on top of the physical infrastructure to be able to manage the network by software, okay. This is something that happened in the computing world, okay, where the servers, you know, were covered with a cloud stack layer and we are doing the same thing in the network. We are trained to abstract the network services and capabilities and be able to offer them digitally to our customers. And this is a process that we are ongoing with many initiatives in the market, so one was the CAMARA community that was opened in Linux Foundation and the other one was the announcement we made yesterday of the open gateway initiative here at Mobile World Congress where all telecom operators have agreed to launch in this year a set of service APIs that are common worldwide, okay. This is a similar thing to what we did with 2G 35 years ago, to agree on a standard way of delivering a service and in this case is digital services based on APIs. >> What's the net result of? What are the benefits of having those open standards? Is it a benefit that myself as a consumer would enjoy? It seems, I mean, I've been, I'm old enough to remember, you know, a time before cellular telephones and I remember a time when it was very, very difficult to travel from North America to Europe with a cell phone. Now I land and my provider says, "Hey, welcome-" >> Juan Carlos: Yes. >> "Welcome, we're going to charge you a little extra money." And I say, "Hallelujah, awesome." So is part of that interoperability a benefit to consumers or, how, what? >> Yeah, you touch the right point. So in the same way you travel anywhere and you want to still make a call and send an SMS and connect to the internet, you will like your applications in your smartphone to work being them edge applications, okay, and these applications, each application will have to work to be executed very close to where you are, in a way that if you travel abroad the visitor network is serving you, okay. So this means that we are somehow extending the current interconnection and roaming agreements between operators to be able also to deliver edge applications wherever you are, in whatever network, with whatever technology. >> We have that expectation on the consumer side, that it's just going to work no matter where we are, we want apps to be updated, whether I'm banking or I'm shopping for groceries, I want to make sure that they know who I am, the data's got to be there, it's got to be real time, it's got to be right, it's got to serve me personally, but it just has to work. You guys talked about some of the big challenges, but also the opportunities in terms of the future of networking, the data turning companies in the data companies. Walk us through the future of networking from Telephonica's lens, you talked about some of the big initiatives that you have by 2024. >> Yes. >> But if you had a crystal ball and you could look in there and go it looks like this for operators, what would you say? And I'd love to get your feedback too. >> Yeah, I liked how Juan Carlos talked about how the future is, I think I want to add one thing to it, to say, a lot of times the user is no longer a consumer, it's an automated thing, you know, AI think robots, so a lot of times, more and more the usage is happening by some autonomous thing and it needs to always connect. And more and more these things are extending to places where even cellular coverage doesn't exist today, so you have edge compute show up. So, and when you think about it, the things we have to solve as a community here and this is all the discussions is, number one, how you make it a fully open standard model, so everything plugs and play, more and more, there's so many pieces coming, software, hardware, from different components and the integration of all of that is probably one of the biggest challenges people want solved. You know, how it's no longer one box, you buy from one person and put it away, now you have a complex combination of hardware and software. Also the operational model is very important and that is one of the areas we're focused on at Dell, is that while the operational model works inside the data centers for certain application, for telcos, it looks different when you're out at the cell tower and you're going to have these extended temperature changes. And sometimes this may not be inside a cabinet, maybe outside and the person servicing it is not an IT technician. This is somebody that needs to know exactly how to plug it, to be able to place equipment quickly and add capacity, those are just two of the areas, the cloud, making it work like a cloud, where it's intuitive, automated and you can easily add capacity, you can, you know, get a lot of monitoring, a lot of metrics, those are some of the things that we're all solving in this community. >> Let's talk about exactly how you're achieving this, Telephonica and Dell have been working together for a couple of years, you said before we went live. Talk about, you're doing this, you talked about the challenges, the opportunities how are you solving them and why with Dell? >> Okay, well you need to go with the right partners, not to this kind of process of transforming your network into a digital platform. There are big challenges on creating the cloud infrastructure that you need to support the complex, functionality and network requires. And I think you need to have with you, companies that know about the processors, that know about the hardware, the server, that know about how to make an abstraction of that hardware layer so that you can manage that digitally and this is not something any company can do, so you need companies that are very specialized. Telecom operators are changing the way to work, we work in the past with traditionally, with network equipment vendors, now we need to start working with technology providers, hardware (indistinct) providers with cloud providers with an ecosystem that is probably wider than what we had in the past. >> Yes. >> So I come from a background, I call myself a "knuckle dragging hardware engineer" sort of guy, so I'm almost fascinated by the physical part of this. You have a network, part of that network includes towers that have transmitters, receivers, at the base of those towers and like you mentioned, they're not all necessarily in urban areas or easy to access. There's equipment there, let's say that, that tower has been there for 5 years, 10 years, in the traditional world of IT, we have this this concept of the "refresh cycle" >> Juan Carlos: Yeah. >> Where a server may have a useful life of 36 months before it's consuming more power than it should based on the technology. How do you move from, kind of a legacy more proprietary, all-inclusive stack to an open system? I mean, is this a, "Okay, we're planning for an outage for the tower and you're wheeling out old equipment and wheeling in new equipment?" >> Juan Carlos: Yeah. >> I mean that's not, that's what we say as a non-trivial exercise, it's something that isn't, it's not something that's just easy to do, but is that what progress looks like? Sort of, methodically one site at a time? >> Yeah, well, I mean, you have touched an important point. In the technology renewal cycles, we were taking an appliance and replacing that by another one. Now with the current technology, you have the couple, the hardware from the software and the hardware, you need to replace it only when you run out of processing capacity to do what you want, okay? So then we'll be there 2, 3, 4, 5 years, whatever, when you need additional capacity, you replace it, but on the software side you can make the replacement every hour, every week. And this is something that the new technologies are bringing, a flexibility for the telecom operator to introduce a new feature without having to be physically there in the place, okay, by software remotely and this is the kind of software network we want to build. >> Lisa Martin: You know- >> Yeah, I want to add to that if I can- >> Please. >> Yeah. >> I think this is one of the biggest benefits of the open model. If the stack is all integrated as one appliance, when a new technology, we all know how quickly selecon technology comes out and now we have GPU's coming out for AI more increasingly, in an appliance model it may take you two years to take advantage of some new selecon that just came out. In this new open model, as Juan Carlos was saying, you just swap out, you know, you have time to market CPUs launched, it can be put out there at the cell tower and it could double capacity instantly and we're going to need that in that world, that easily going to be AI enabled- >> Lisa Martin: Right. >> So- >> So my last question to you, we only got a minute left or so, is given everything that we've talked about, the challenges, the opportunities, what you're doing together, how would you Juan Carlos summarize how the business is benefiting from the Dell partnership and the technologies that you're enabling with this new future network? >> Well, as I said before, we will need to be able to cover all the characteristics and performance of our network. We will need the right kind of processing capacity, the right kind of hardware solutions. We know that the functionality of the network is a very demanding one, we need hardware acceleration, we need a synchronization, we need time-sensitive solutions and all these can only done by hardware, so you need a good hardware partner, that ensures that you have the processing capacity you need to be able then to run your software, you know, with the confidence that it will work and with the performance that you need. >> That confidence is key. Well it sounds like what Telephonica and Dell have achieved together has been quite successful. Congratulations on the first couple of years, sounds like it's really helping Telephonica's business move in the strategic direction that it wants. We appreciate you joining us on the program today, describing all this, thank you both so much for your time. >> Thank you very much. >> Thank you, this was fun. >> A pleasure. >> Good, our pleasure. For our guests and for Dave Nicholson, I'm Lisa Martin, you're watching theCUBE live day two from Barcelona, MWC 23. Don't go anywhere, Dave and I will be right back with our next guests. (cheerful bouncy music)

Published Date : Feb 28 2023

SUMMARY :

that drive human progress. to you in conversations today? and the providers of it's great to have you So the buzz around this and on top of it, you What are some of the and the data needs to be acted you hear from partners, so you have to keep the lights on. into the network need to What are the benefits of we're going to charge you So in the same way you travel anywhere the data's got to be there, And I'd love to get your feedback too. and that is one of the areas for a couple of years, you that know about the hardware, the server, and like you mentioned, for the tower and you're and the hardware, you need to replace it benefits of the open model. and with the performance that you need. Congratulations on the and I will be right back

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Juan CarlosPERSON

0.99+

Lisa MartinPERSON

0.99+

DavePERSON

0.99+

Dave NicholsonPERSON

0.99+

SpainLOCATION

0.99+

BarcelonaLOCATION

0.99+

DellORGANIZATION

0.99+

5 yearsQUANTITY

0.99+

EuropeLOCATION

0.99+

10 yearsQUANTITY

0.99+

36 monthsQUANTITY

0.99+

TelephonicaORGANIZATION

0.99+

2QUANTITY

0.99+

two guestsQUANTITY

0.99+

North AmericaLOCATION

0.99+

twoQUANTITY

0.99+

2024DATE

0.99+

Dell TechnologiesORGANIZATION

0.99+

two yearsQUANTITY

0.99+

Juan Carlos GarciaPERSON

0.99+

2000 exhibitorsQUANTITY

0.99+

Linux FoundationORGANIZATION

0.99+

TelefónicaORGANIZATION

0.99+

second challengeQUANTITY

0.99+

yesterdayDATE

0.99+

80,000 plus peopleQUANTITY

0.99+

oneQUANTITY

0.99+

both handsQUANTITY

0.98+

two kindsQUANTITY

0.98+

100 yearsQUANTITY

0.98+

MWC 23EVENT

0.98+

each applicationQUANTITY

0.98+

3QUANTITY

0.98+

bothQUANTITY

0.98+

one boxQUANTITY

0.98+

35 years agoDATE

0.98+

coupleQUANTITY

0.98+

this yearDATE

0.98+

first thingQUANTITY

0.97+

three aspectsQUANTITY

0.97+

Ihab TaraziPERSON

0.96+

CAMARAORGANIZATION

0.96+

todayDATE

0.95+

one thingQUANTITY

0.95+

one personQUANTITY

0.95+

4QUANTITY

0.95+

day twoQUANTITY

0.93+

first couple of yearsQUANTITY

0.92+

this morningDATE

0.91+

MWCEVENT

0.9+

2GORGANIZATION

0.9+

SVPPERSON

0.88+

Mobile World CongressEVENT

0.85+

one applianceQUANTITY

0.85+

one siteQUANTITY

0.84+

a minuteQUANTITY

0.83+

CTOPERSON

0.82+

Prem Balasubramanian and Suresh Mothikuru | Hitachi Vantara: Build Your Cloud Center of Excellence


 

(soothing music) >> Hey everyone, welcome to this event, "Build Your Cloud Center of Excellence." I'm your host, Lisa Martin. In the next 15 minutes or so my guest and I are going to be talking about redefining cloud operations, an application modernization for customers, and specifically how partners are helping to speed up that process. As you saw on our first two segments, we talked about problems enterprises are facing with cloud operations. We talked about redefining cloud operations as well to solve these problems. This segment is going to be focusing on how Hitachi Vantara's partners are really helping to speed up that process. We've got Johnson Controls here to talk about their partnership with Hitachi Vantara. Please welcome both of my guests, Prem Balasubramanian is with us, SVP and CTO Digital Solutions at Hitachi Vantara. And Suresh Mothikuru, SVP Customer Success Platform Engineering and Reliability Engineering from Johnson Controls. Gentlemen, welcome to the program, great to have you. >> Thank. >> Thank you, Lisa. >> First question is to both of you and Suresh, we'll start with you. We want to understand, you know, the cloud operations landscape is increasingly complex. We've talked a lot about that in this program. Talk to us, Suresh, about some of the biggest challenges and pin points that you faced with respect to that. >> Thank you. I think it's a great question. I mean, cloud has evolved a lot in the last 10 years. You know, when we were talking about a single cloud whether it's Azure or AWS and GCP, and that was complex enough. Now we are talking about multi-cloud and hybrid and you look at Johnson Controls, we have Azure we have AWS, we have GCP, we have Alibaba and we also support on-prem. So the architecture has become very, very complex and the complexity has grown so much that we are now thinking about whether we should be cloud native or cloud agnostic. So I think, I mean, sometimes it's hard to even explain the complexity because people think, oh, "When you go to cloud, everything is simplified." Cloud does give you a lot of simplicity, but it also really brings a lot more complexity along with it. So, and then next one is pretty important is, you know, generally when you look at cloud services, you have plenty of services that are offered within a cloud, 100, 150 services, 200 services. Even within those companies, you take AWS they might not know, an individual resource might not know about all the services we see. That's a big challenge for us as a customer to really understand each of the service that is provided in these, you know, clouds, well, doesn't matter which one that is. And the third one is pretty big, at least at the CTO the CIO, and the senior leadership level, is cost. Cost is a major factor because cloud, you know, will eat you up if you cannot manage it. If you don't have a good cloud governance process it because every minute you are in it, it's burning cash. So I think if you ask me, these are the three major things that I am facing day to day and that's where I use my partners, which I'll touch base down the line. >> Perfect, we'll talk about that. So Prem, I imagine that these problems are not unique to Johnson Controls or JCI, as you may hear us refer to it. Talk to me Prem about some of the other challenges that you're seeing within the customer landscape. >> So, yeah, I agree, Lisa, these are not very specific to JCI, but there are specific issues in JCI, right? So the way we think about these are, there is a common issue when people go to the cloud and there are very specific and unique issues for businesses, right? So JCI, and we will talk about this in the episode as we move forward. I think Suresh and his team have done some phenomenal step around how to manage this complexity. But there are customers who have a lesser complex cloud which is, they don't go to Alibaba, they don't have footprint in all three clouds. So their multi-cloud footprint could be a bit more manageable, but still struggle with a lot of the same problems around cost, around security, around talent. Talent is a big thing, right? And in Suresh's case I think it's slightly more exasperated because every cloud provider Be it AWS, JCP, or Azure brings in hundreds of services and there is nobody, including many of us, right? We learn every day, nowadays, right? It's not that there is one service integrator who knows all, while technically people can claim as a part of sales. But in reality all of us are continuing to learn in this landscape. And if you put all of this equation together with multiple clouds the complexity just starts to exponentially grow. And that's exactly what I think JCI is experiencing and Suresh's team has been experiencing, and we've been working together. But the common problems are around security talent and cost management of this, right? Those are my three things. And one last thing that I would love to say before we move away from this question is, if you think about cloud operations as a concept that's evolving over the last few years, and I have touched upon this in the previous episode as well, Lisa, right? If you take architectures, we've gone into microservices, we've gone into all these server-less architectures all the fancy things that we want. That helps us go to market faster, be more competent to as a business. But that's not simplified stuff, right? That's complicated stuff. It's a lot more distributed. Second, again, we've advanced and created more modern infrastructure because all of what we are talking is platform as a service, services on the cloud that we are consuming, right? In the same case with development we've moved into a DevOps model. We kind of click a button put some code in a repository, the code starts to run in production within a minute, everything else is automated. But then when we get to operations we are still stuck in a very old way of looking at cloud as an infrastructure, right? So you've got an infra team, you've got an app team, you've got an incident management team, you've got a soft knock, everything. But again, so Suresh can talk about this more because they are making significant strides in thinking about this as a single workload, and how do I apply engineering to go manage this? Because a lot of it is codified, right? So automation. Anyway, so that's kind of where the complexity is and how we are thinking, including JCI as a partner thinking about taming that complexity as we move forward. >> Suresh, let's talk about that taming the complexity. You guys have both done a great job of articulating the ostensible challenges that are there with cloud, especially multi-cloud environments that you're living in. But Suresh, talk about the partnership with Hitachi Vantara. How is it helping to dial down some of those inherent complexities? >> I mean, I always, you know, I think I've said this to Prem multiple times. I treat my partners as my internal, you know, employees. I look at Prem as my coworker or my peers. So the reason for that is I want Prem to have the same vested interest as a partner in my success or JCI success and vice versa, isn't it? I think that's how we operate and that's how we have been operating. And I think I would like to thank Prem and Hitachi Vantara for that really been an amazing partnership. And as he was saying, we have taken a completely holistic approach to how we want to really be in the market and play in the market to our customers. So if you look at my jacket it talks about OpenBlue platform. This is what JCI is building, that we are building this OpenBlue digital platform. And within that, my team, along with Prem's or Hitachi's, we have built what we call as Polaris. It's a technical platform where our apps can run. And this platform is automated end-to-end from a platform engineering standpoint. We stood up a platform engineering organization, a reliability engineering organization, as well as a support organization where Hitachi played a role. As I said previously, you know, for me to scale I'm not going to really have the talent and the knowledge of every function that I'm looking at. And Hitachi, not only they brought the talent but they also brought what he was talking about, Harc. You know, they have set up a lot and now we can leverage it. And they also came up with some really interesting concepts. I went and met them in India. They came up with this concept called IPL. Okay, what is that? They really challenged all their employees that's working for GCI to come up with innovative ideas to solve problems proactively, which is self-healing. You know, how you do that? So I think partners, you know, if they become really vested in your interests, they can do wonders for you. And I think in this case Hitachi is really working very well for us and in many aspects. And I'm leveraging them... You started with support, now I'm leveraging them in the automation, the platform engineering, as well as in the reliability engineering and then in even in the engineering spaces. And that like, they are my end-to-end partner right now? >> So you're really taking that holistic approach that you talked about and it sounds like it's a very collaborative two-way street partnership. Prem, I want to go back to, Suresh mentioned Harc. Talk a little bit about what Harc is and then how partners fit into Hitachi's Harc strategy. >> Great, so let me spend like a few seconds on what Harc is. Lisa, again, I know we've been using the term. Harc stands for Hitachi application reliability sectors. Now the reason we thought about Harc was, like I said in the beginning of this segment, there is an illusion from an architecture standpoint to be more modern, microservices, server-less, reactive architecture, so on and so forth. There is an illusion in your development methodology from Waterfall to agile, to DevOps to lean, agile to path program, whatever, right? Extreme program, so on and so forth. There is an evolution in the space of infrastructure from a point where you were buying these huge humongous servers and putting it in your data center to a point where people don't even see servers anymore, right? You buy it, by a click of a button you don't know the size of it. All you know is a, it's (indistinct) whatever that name means. Let's go provision it on the fly, get go, get your work done, right? When all of this is advanced when you think about operations people have been solving the problem the way they've been solving it 20 years back, right? That's the issue. And Harc was conceived exactly to fix that particular problem, to think about a modern way of operating a modern workload, right? That's exactly what Harc. So it brings together finest engineering talent. So the teams are trained in specific ways of working. We've invested and implemented some of the IP, we work with the best of the breed partner ecosystem, and I'll talk about that in a minute. And we've got these facilities in Dallas and I am talking from my office in Dallas, which is a Harc facility in the US from where we deliver for our customers. And then back in Hyderabad, we've got one more that we opened and these are facilities from where we deliver Harc services for our customers as well, right? And then we are expanding it in Japan and Portugal as we move into 23. That's kind of the plan that we are thinking through. However, that's what Harc is, Lisa, right? That's our solution to this cloud complexity problem. Right? >> Got it, and it sounds like it's going quite global, which is fantastic. So Suresh, I want to have you expand a bit on the partnership, the partner ecosystem and the role that it plays. You talked about it a little bit but what role does the partner ecosystem play in really helping JCI to dial down some of those challenges and the inherent complexities that we talked about? >> Yeah, sure. I think partners play a major role and JCI is very, very good at it. I mean, I've joined JCI 18 months ago, JCI leverages partners pretty extensively. As I said, I leverage Hitachi for my, you know, A group and the (indistinct) space and the cloud operations space, and they're my primary partner. But at the same time, we leverage many other partners. Well, you know, Accenture, SCL, and even on the tooling side we use Datadog and (indistinct). All these guys are major partners of our because the way we like to pick partners is based on our vision and where we want to go. And pick the right partner who's going to really, you know make you successful by investing their resources in you. And what I mean by that is when you have a partner, partner knows exactly what kind of skillset is needed for this customer, for them to really be successful. As I said earlier, we cannot really get all the skillset that we need, we rely on the partners and partners bring the the right skillset, they can scale. I can tell Prem tomorrow, "Hey, I need two parts by next week", and I guarantee it he's going to bring two parts to me. So they let you scale, they let you move fast. And I'm a big believer, in today's day and age, to get things done fast and be more agile. I'm not worried about failure, but for me moving fast is very, very important. And partners really do a very good job bringing that. But I think then they also really make you think, isn't it? Because one thing I like about partners they make you innovate whether they know it or not but they do because, you know, they will come and ask you questions about, "Hey, tell me why you are doing this. Can I review your architecture?" You know, and then they will try to really say I don't think this is going to work. Because they work with so many different clients, not JCI, they bring all that expertise and that's what I look from them, you know, just not, you know, do a T&M job for me. I ask you to do this go... They just bring more than that. That's how I pick my partners. And that's how, you know, Hitachi's Vantara is definitely one of a good partner from that sense because they bring a lot more innovation to the table and I appreciate about that. >> It sounds like, it sounds like a flywheel of innovation. >> Yeah. >> I love that. Last question for both of you, which we're almost out of time here, Prem, I want to go back to you. So I'm a partner, I'm planning on redefining CloudOps at my company. What are the two things you want me to remember from Hitachi Vantara's perspective? >> So before I get to that question, Lisa, the partners that we work with are slightly different from from the partners that, again, there are some similar partners. There are some different partners, right? For example, we pick and choose especially in the Harc space, we pick and choose partners that are more future focused, right? We don't care if they are huge companies or small companies. We go after companies that are future focused that are really, really nimble and can change for our customers need because it's not our need, right? When I pick partners for Harc my ultimate endeavor is to ensure, in this case because we've got (indistinct) GCI on, we are able to operate (indistinct) with the level of satisfaction above and beyond that they're expecting from us. And whatever I don't have I need to get from my partners so that I bring this solution to Suresh. As opposed to bringing a whole lot of people and making them stand in front of Suresh. So that's how I think about partners. What do I want them to do from, and we've always done this so we do workshops with our partners. We just don't go by tools. When we say we are partnering with X, Y, Z, we do workshops with them and we say, this is how we are thinking. Either you build it in your roadmap that helps us leverage you, continue to leverage you. And we do have minimal investments where we fix gaps. We're building some utilities for us to deliver the best service to our customers. And our intention is not to build a product to compete with our partner. Our intention is to just fill the wide space until they go build it into their product suite that we can then leverage it for our customers. So always think about end customers and how can we make it easy for them? Because for all the tool vendors out there seeing this and wanting to partner with Hitachi the biggest thing is tools sprawl, especially on the cloud is very real. For every problem on the cloud. I have a billion tools that are being thrown at me as Suresh if I'm putting my installation and it's not easy at all. It's so confusing. >> Yeah. >> So that's what we want. We want people to simplify that landscape for our end customers, and we are looking at partners that are thinking through the simplification not just making money. >> That makes perfect sense. There really is a very strong symbiosis it sounds like, in the partner ecosystem. And there's a lot of enablement that goes on back and forth it sounds like as well, which is really, to your point it's all about the end customers and what they're expecting. Suresh, last question for you is which is the same one, if I'm a partner what are the things that you want me to consider as I'm planning to redefine CloudOps at my company? >> I'll keep it simple. In my view, I mean, we've touched upon it in multiple facets in this interview about that, the three things. First and foremost, reliability. You know, in today's day and age my products has to be reliable, available and, you know, make sure that the customer's happy with what they're really dealing with, number one. Number two, my product has to be secure. Security is super, super important, okay? And number three, I need to really make sure my customers are getting the value so I keep my cost low. So these three is what I would focus and what I expect from my partners. >> Great advice, guys. Thank you so much for talking through this with me and really showing the audience how strong the partnership is between Hitachi Vantara and JCI. What you're doing together, we'll have to talk to you again to see where things go but we really appreciate your insights and your perspectives. Thank you. >> Thank you, Lisa. >> Thanks Lisa, thanks for having us. >> My pleasure. For my guests, I'm Lisa Martin. Thank you so much for watching. (soothing music)

Published Date : Feb 27 2023

SUMMARY :

In the next 15 minutes or so and pin points that you all the services we see. Talk to me Prem about some of the other in the episode as we move forward. that taming the complexity. and play in the market to our customers. that you talked about and it sounds Now the reason we thought about Harc was, and the inherent complexities But at the same time, we like a flywheel of innovation. What are the two things you want me especially in the Harc space, we pick for our end customers, and we are looking it sounds like, in the partner ecosystem. make sure that the customer's happy showing the audience how Thank you so much for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SureshPERSON

0.99+

HitachiORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

Suresh MothikuruPERSON

0.99+

JapanLOCATION

0.99+

Prem BalasubramanianPERSON

0.99+

JCIORGANIZATION

0.99+

LisaPERSON

0.99+

HarcORGANIZATION

0.99+

Johnson ControlsORGANIZATION

0.99+

DallasLOCATION

0.99+

IndiaLOCATION

0.99+

AlibabaORGANIZATION

0.99+

HyderabadLOCATION

0.99+

Hitachi VantaraORGANIZATION

0.99+

Johnson ControlsORGANIZATION

0.99+

PortugalLOCATION

0.99+

USLOCATION

0.99+

SCLORGANIZATION

0.99+

AccentureORGANIZATION

0.99+

bothQUANTITY

0.99+

AWSORGANIZATION

0.99+

two partsQUANTITY

0.99+

150 servicesQUANTITY

0.99+

SecondQUANTITY

0.99+

FirstQUANTITY

0.99+

next weekDATE

0.99+

200 servicesQUANTITY

0.99+

First questionQUANTITY

0.99+

PremPERSON

0.99+

tomorrowDATE

0.99+

PolarisORGANIZATION

0.99+

T&MORGANIZATION

0.99+

hundreds of servicesQUANTITY

0.99+

three thingsQUANTITY

0.98+

threeQUANTITY

0.98+

agileTITLE

0.98+

Telecom Trends: The Disruption of Closed Stacks | MWC Barcelona 2023


 

>> Narrator: theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (bright upbeat music) >> Good morning everyone. Welcome to theCUBE. We are live at MWC '23 in Barcelona, Spain. I'm Lisa Martin, and I'm going to have a great conversation next with our esteemed CUBE analyst, Dave Nicholson. Dave, great to have you here. Great to be working this event with you. >> Good to be here with you, Lisa. >> So there are, good to be here with you and about 80,000 people. >> Dave: That's right. >> Virtually and and physically. And it's jammed in, and this is the most jammed show I've seen in years. >> Dave: It's crazy. >> So much going on in the telecom industry. What are some of your expectations for what you're going to hear and see at this year's event? >> So, I expect to hear a lot about 5G. Specifically 5G private networks, and the disaggregation of the hardware and software stacks that have driven telecom for decades. So we're at this transition into 5G. From a consumer perspective, we feel like, oh well 5G has been around for years. In terms of where it's actually been deployed, we're just at the beginning stages of that. >> Right, right. Talk about the changing of the stack. You know, the disaggregation. Why now is it too late? And what are the advantages? That it's going to enable telcos to move faster, I imagine? >> Yeah, so it's really analogous to what we see in the general IT industry that we cover so much. The move to cloud, sometimes you're gaining performance. You're always gaining agility and flexibility. A big concern of the legacy telecom providers is going to be maintaining availability, reliability against a backdrop of increasing agility in the direction that they want to go. So that's going to be the conversation. It's going to be the old school folks, who are interested in maintaining primarily availability and performance, excuse me, contrasted with the open source, OpenStack providers, who are going to be saying, hey this is a path to the future. Without that path to the future, things will stagnate. >> Talk about some of those OpenStack providers. I imagine those are some of the folks that we know quite well? >> Sure, sure. Yeah, so someone like Dell, for example. They're perfectly positioned at this sort of crossroads, because Dell has been creating "cloud stacks," that will live sometimes on-premises. And those stacks of infrastructure, based on cots, commercial off-the-shelf components, integrated within an ecosystem can live at the edge, at literally the base of transmitter towers. So when you think about this whole concept of RAN or a radio access network, think of a cellular tower with an antenna and a transmitter. The transmitter might live on that tower, or it might live in pieces at the base of the tower. But there's always at that base of the tower, forget about the acronyms, it's a box of stuff, teleco stuff. All of these things historically have been integrated into single packages. >> Right. >> For good reason. >> Right. >> Think back to a mainframe, where it was utterly, absolutely reliable. We moved, in the general IT space, from the era of the mainframe to the world of client server, through virtualization, containerization. That exact transition is happening in the world of telecom right now. >> Why is it finally happening now? It seems a bit late, given that in our consumer lives, we have this expectation that we could be mobile 24 by seven. >> Right. Well it's because, first of all, we get mad if a call doesn't go through. How often, when you make, when you try to make a cellular call or when you try to send a text, how often does it not work? >> I can count on one hand. >> Right, rarely. >> Right. >> Now, you may be in an area that has spotty coverage. But when you're in an area where you have coverage it just works all of the time. And you expect it to work all of the time. And the miracle of the services that have been delivered to us over the last decade has really kind of blunted the need for next generation stuff. Well, we're at this transition point. And 5G as a technology enables so much more bandwidth. Think of it as, you know, throughput bandwidth latency. It allows the kind of performance characteristics so that things can be delivered that couldn't be delivered in the past. Virtual reality, augmented reality. We're already seeing you know 4K data streams to our phones. So, it's sort of lagged because of our expectations for absolute, rock solid, reliability. >> Yeah. >> The technology is ahead of that area now. And so this question is how do you navigate from utter reliability to awesome openness without sacrificing performance and reliability? >> Well, and also from a stack perspective, from looking at desegregation, and the opportunities there are for the telcos, but also the public cloud providers, are they friends, are they foes? What's the relationship like? >> They're going to be frenemies. >> Lisa: Frenemies? >> Yeah, coopetition is going to be the word of the day again. Yeah because when you think of a cloud, most people automatically think off-premises. >> Lisa: Yes. >> Maybe they even think automatically you know, hyper scale or Azure, GCP, AWS. In this case, it really is a question of cloud as an operating model. Cloud facilitating agility, cloud adopting cloud native architecture from a software perspective, so that you can rapidly deploy net new capabilities into an environment. You can't do that with proprietary closed systems that might use a waterfall development process and take years to develop. You and I have covered the Kubernetes world pretty closely. And what's the big thing that we hear constantly? The hunger, the thirst for human resources, >> Right. >> people who can actually work in this world of containerization. >> Yes, yes. >> Well guess what? In the macroeconomic environment, a lot of folks in the IT space have recently been disrupted. This is a place to look, if you have that skillset. Look at the telecom space, because they need people who are forward thinking in the era of cloud. But this concept of cloud is really, it's going to be, the telcos are both competing and partnering with what we think of as the traditional, hyper scale public cloud providers. >> And what do you think, one of the things that we know at MWC '23 is virtually every industry is represented here. Every vertical is here, whether it's a sports arena, or a retail outlet, or a manufacturer. Every organization, every industry needs to have networks that deliver what they need to do but also enable them to move faster and deliver what the end user wants. What are some of the industries that you think are really ripe for this disruption? And the ability to use private 5G networks, for example? >> Well, so it's interesting, you mentioned private 5G networks. I think a good example of the transition that's underway is this, the move to 4K video. So, you get a high definition television. The first time you see a 720p TV, it's like oh my gosh, amazing. Then we get 1080p, then it's 4K. People get 4K TVs, they bring them home, and there's no content. >> No. >> The first content, was it from your cable provider? No. >> Yeah. >> Was it over the air? ABC, NBC, CBS? No, it was YouTube. YouTube delivered the first reliable 4K content, over the internet. Similarly, everything comes to us now to our mobile devices. So we're not accessing the world around us so much from a desktop or even a laptop. It's mobile. So if you want to communicate with a customer, it's mobile. If you're creating a private 5G network, you now are standing something up that is net new in a greenfield environment. And you can deploy agility and functionality that the large scale telecom providers can't, because of the massive investment they might need. So the irony is, you have a factory that sits on 20 acres and you have folks traveling around, if you create a private 5G network, it might become, it might be more feature rich than what your employees are used to being able to access through their personal mobile devices. >> Wow. >> Yeah, because you're starting net new, you have the luxury of starting greenfield, as opposed to the responsibility and legacy for supporting a massive system that exists already. >> So then, what's in it for the existing incumbent telcos from an advantage opportunity perspective? Because you mentioned frenemies, coopetition. >> Right. >> There's irony there, as you talked about. >> Right, well you could look at it as either opportunity or headache. And it's both. Because they have very, very real SLAs that they need to meet. >> Right. >> Very, very real expectations that have been set in terms of reliability, availability, and performance. So they can't slip off of that. Making that transition is, I think going to be driven by economics, because the idea of having things be open means that there's competition for every part of the stack. There will be a critical role for integration vendors. Folks like Dell, and the ecosystems that they're creating around this will be critical, because often you would prefer to have one back to pat or one throat to choke instead of many. So, you still want to have that centralized entity to go to when something goes wrong. >> Right. >> Or when you want to implement something new. So, for the incumbents, it's a classic example of what you do in the face of disruption. How do you leverage technology? In my role as adjunct faculty at the Wharton CTO Academy, we talk about the CTO mindset. And the idea that your role is to leverage technology, in the service of your organization's mission, whatever that organization and mission is. So from a telecom provider perspective, they need to stay on top of this. >> Yes. >> Or they will be disrupted. >> Right. >> It's fascinating to think of how this disruption's taking place. >> Lisa: They have no choice, if they want to survive. >> No, yeah they have no choice. >> Lisa: In the next few years. >> They have no choice, but they'll come along, kicking and screaming. I'm sure if you had someone sitting here in the industry, they'd say, well, no, no, no, no, no. >> Yeah, of course. >> We love it! It's like, yeah, well but you're going to have to make some painful changes to adopt these things. >> What are some of the opportunities for those folks like Dell that you mentioned, in terms of coming in, being able to disrupt that stack, open things up? Great opportunities for the Dells, and other similar organizations to really start gaining a bigger foothold in the telecom industry, I imagine. >> Well, I look at it through the lens of sort of traditional IT and the transitions that we've been watching for the last couple of decades. It's exactly the same. I mean you, there is a parallel. It is like coming out of the mainframe era to the client server era. So, you know, we went in that transition, it was mainframe operating systems, very, very closed systems to more slightly opened. You know, the worlds of SUN and SGI and HP, and the likes, transitioned to kind of Microsoft based software running with like Dell hardware. >> Yeah. >> And, that stack is now getting deployed into one of the remaining legacy environments which is the telco space. So, the opportunity for Dell is pretty massive because on some fronts they're competing with the move to proper off-premises public cloud. >> Right. >> In this case, they are the future for telecom as opposed to sort of representing legacy, compared to some of the other cloud opportunities that are out there. >> So ultimately, what does a modern telecom network look like? I imagine, cloud native? Distributed? >> Yeah, yeah. So, traditionally, like I said, you've got the tower and the transmitters and the computer hardware that's running it. Those are then networked together. So you can sort of think of it as leaves on a twig, on a branch, on a tree. Eventually it gets into a core network, where there is terrestrial line communication and or communication up to satellites. And that's all been humming along just fine, making the transition from 3G to 4G to 5G. But, the real transition from a cloud perspective is this idea that you're taking these proprietary systems, disaggrevating, disaggrevating them and disaggregating them, carving them up into pieces where now you're introducing virtualization. So there's a VMware play here. Some things are virtualized using that stack. I think more often we're going to be talking about containerized and truly cloud native stacks. So instead of having the proprietary stack, where all the hardware and software is designed together. Now you're going to have Dell servers running some execution layer, orchestration layer, for cloud native, containerized applications and microservices. And that's the way things are going to be developed. >> And who, from a stakeholder perspective is involved here? 'Cause one of the things that I'm hearing is with this disaggregation of the staff, which is a huge change, what you're articulated, that's already happened at enterprise IT, change management is a hard thing to do. If they want to be successful, and well not just survive, they want to thrive. I'm just imagining, who are the stakeholders that are involved in having to push those incumbents to make these decisions, to move faster, to become agile, to compete. >> So, I remember when VMware had the problem that anytime they suggested introducing a hypervisor to to virtualize a physical machine and then run software on top or an operating system on top, and then applications, the big question the customer would have was, well is Microsoft going to support that? What if I can't get support from Microsoft? I dunno if I can do this. Within about a year of those conversations taking place, the question was, can I run this in my production environment? So it was, can I get support in my test environment too? Can I please run this in production? >> Yeah. >> And so, there are folks in the kind of legacy telecom world who are going to be afraid. It's, whatever the dynamic is, there is a no one ever got fired for buying from fill in the blank >> Exactly, yep. >> in the telecom space. >> Yeah, yeah. >> Because they would buy a consolidated, aggregated stack. >> Right. >> And, if something went wrong they could say, boom, blame you. And yeah, that stack doesn't lend itself to the kind of pace of change. >> Right. >> So it doesn't necessarily need the same kind of change management. Or at least it's very, very centralized. >> Okay. Okay. >> We're getting into the brave new world of things where if you let them spin out of control, you can have big problems. And that's where the folks like Dell come in, to make sure that yes, disaggregated, yes best of commercial off-the-shelf stuff, but also the best in terms of performance and reliability and availability. >> Yeah. >> So, that's the execution part, you must execute flawlessly. >> It sounds like from a thematic perspective, the theme of MWC '23 is velocity. But it seems like an underlying theme under that, or maybe an overlying theme is disruption. It's going to be so interesting, we're only on day one. We just started our coverage. Four days of wall to wall coverage on theCUBE. Excited to hear what you're excited about, what you learn over the next few days. We get to host some segments together. >> Yeah. >> But it seems like disruption is the overall theme. And it's going to be so interesting to see how this industry evolves, what the opportunities are, what the coopetition opportunities are. We're going to be learning a lot this week. I'm excited. >> Yeah, and what's fascinating to me about this whole thing is we talk about this, all of this tumultuous, disruptive stuff that's happening. For the average consumer, they're never going to be aware of it. >> Nope. >> Dave: They're just going to see services piled on top of services. >> Which is what we want. >> There are billions of people with mobile devices and the hundreds of billions, I don't know, trillions I guess at some point of connected devices at the edge. >> Lisa: Yes, yes. >> The whole concept of the internet of things. We'll sort of be blissfully unaware of what's happening at the middle. But there's a lot of action there. So we're going to be focusing on that action that's going on. In, you know, in in the middle of it. >> Yeah. >> But there's also some cool consumer stuff out here. >> There is. >> I know I'm going to be checking out the augmented reality and virtual reality stuff. >> Yeah, yeah. Well it's all about that customer experience. We expect things right away, 24/7, wherever we are in the world. And it's enabling that to make that happen. >> Yeah. >> Dave, thank you so much for really sharing what you think you're excited about for the event and some of the trends in telecom. It sounds like it's such an interesting time to be unpacking this. >> It's going to be a great week. >> It is going to be a great week. All right, for Dave Nicholson, I'm Lisa Martin. You're watching theCUBE, the leader in live tech coverage, covering day one of MWC '23. Stick around. We'll be back with our next guest in just a minute. (bright music resumes) (music fades out)

Published Date : Feb 27 2023

SUMMARY :

that drive human progress. Dave, great to have you here. So there are, good to be here And it's jammed in, and this is the most the telecom industry. and the disaggregation of the Talk about the changing of the stack. So that's going to be the conversation. that we know quite well? that base of the tower, from the era of the mainframe that we could be mobile 24 by seven. when you try to make that couldn't be delivered in the past. is ahead of that area now. to be the word of the day again. You and I have covered the in this world of containerization. in the era of cloud. And the ability to use private is this, the move to 4K video. was it from your cable provider? So the irony is, you have a factory as opposed to the Because you mentioned as you talked about. that they need to meet. because the idea of having things be open And the idea that your role to think of how this if they want to survive. sitting here in the industry, to adopt these things. What are some of the opportunities It is like coming out of the mainframe era So, the opportunity for the future for telecom And that's the way things 'Cause one of the things that I'm hearing the big question the for buying from fill in the blank Because they would buy a to the kind of pace of change. necessarily need the same We're getting into the So, that's the It's going to be so interesting, And it's going to be so interesting to see they're never going to be Dave: They're just going to see and the hundreds of the internet of things. But there's also I know I'm going to be to make that happen. and some of the trends in telecom. It is going to be a great week.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

Dave NicholsonPERSON

0.99+

DavePERSON

0.99+

Dave NicholsonPERSON

0.99+

LisaPERSON

0.99+

MicrosoftORGANIZATION

0.99+

NBCORGANIZATION

0.99+

ABCORGANIZATION

0.99+

CBSORGANIZATION

0.99+

HPORGANIZATION

0.99+

YouTubeORGANIZATION

0.99+

20 acresQUANTITY

0.99+

DellORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

SGIORGANIZATION

0.99+

1080pQUANTITY

0.99+

720pQUANTITY

0.99+

Wharton CTO AcademyORGANIZATION

0.99+

bothQUANTITY

0.99+

billions of peopleQUANTITY

0.99+

Barcelona, SpainLOCATION

0.99+

MWC '23EVENT

0.99+

first timeQUANTITY

0.99+

Four daysQUANTITY

0.99+

SUNORGANIZATION

0.98+

24QUANTITY

0.98+

hundreds of billionsQUANTITY

0.98+

oneQUANTITY

0.98+

first contentQUANTITY

0.98+

firstQUANTITY

0.98+

day oneQUANTITY

0.97+

MWC '23LOCATION

0.97+

AWSORGANIZATION

0.97+

sevenQUANTITY

0.97+

about 80,000 peopleQUANTITY

0.97+

trillionsQUANTITY

0.96+

theCUBEORGANIZATION

0.96+

this weekDATE

0.96+

DellsORGANIZATION

0.94+

CUBEORGANIZATION

0.93+

last couple of decadesDATE

0.92+

VMwareORGANIZATION

0.92+

single packagesQUANTITY

0.92+

5GORGANIZATION

0.89+

decadesQUANTITY

0.85+

this yearDATE

0.85+

about a yearQUANTITY

0.83+

last decadeDATE

0.83+

daysDATE

0.82+

telcosORGANIZATION

0.75+

next few yearsDATE

0.74+

5GQUANTITY

0.73+

KubernetesTITLE

0.72+

5GOTHER

0.7+

VMwareTITLE

0.69+

4KQUANTITY

0.68+

AzureORGANIZATION

0.63+

MWC Barcelona 2023EVENT

0.61+

4KOTHER

0.56+

nextDATE

0.56+

OpenStackTITLE

0.53+

GCPORGANIZATION

0.52+

Prem Balasubramanian & Suresh Mothikuru


 

(soothing music) >> Hey everyone, welcome to this event, "Build Your Cloud Center of Excellence." I'm your host, Lisa Martin. In the next 15 minutes or so my guest and I are going to be talking about redefining cloud operations, an application modernization for customers, and specifically how partners are helping to speed up that process. As you saw on our first two segments, we talked about problems enterprises are facing with cloud operations. We talked about redefining cloud operations as well to solve these problems. This segment is going to be focusing on how Hitachi Vantara's partners are really helping to speed up that process. We've got Johnson Controls here to talk about their partnership with Hitachi Vantara. Please welcome both of my guests, Prem Balasubramanian is with us, SVP and CTO Digital Solutions at Hitachi Vantara. And Suresh Mothikuru, SVP Customer Success Platform Engineering and Reliability Engineering from Johnson Controls. Gentlemen, welcome to the program, great to have you. >> Thank. >> Thank you, Lisa. >> First question is to both of you and Suresh, we'll start with you. We want to understand, you know, the cloud operations landscape is increasingly complex. We've talked a lot about that in this program. Talk to us, Suresh, about some of the biggest challenges and pin points that you faced with respect to that. >> Thank you. I think it's a great question. I mean, cloud has evolved a lot in the last 10 years. You know, when we were talking about a single cloud whether it's Azure or AWS and GCP, and that was complex enough. Now we are talking about multi-cloud and hybrid and you look at Johnson Controls, we have Azure we have AWS, we have GCP, we have Alibaba and we also support on-prem. So the architecture has become very, very complex and the complexity has grown so much that we are now thinking about whether we should be cloud native or cloud agnostic. So I think, I mean, sometimes it's hard to even explain the complexity because people think, oh, "When you go to cloud, everything is simplified." Cloud does give you a lot of simplicity, but it also really brings a lot more complexity along with it. So, and then next one is pretty important is, you know, generally when you look at cloud services, you have plenty of services that are offered within a cloud, 100, 150 services, 200 services. Even within those companies, you take AWS they might not know, an individual resource might not know about all the services we see. That's a big challenge for us as a customer to really understand each of the service that is provided in these, you know, clouds, well, doesn't matter which one that is. And the third one is pretty big, at least at the CTO the CIO, and the senior leadership level, is cost. Cost is a major factor because cloud, you know, will eat you up if you cannot manage it. If you don't have a good cloud governance process it because every minute you are in it, it's burning cash. So I think if you ask me, these are the three major things that I am facing day to day and that's where I use my partners, which I'll touch base down the line. >> Perfect, we'll talk about that. So Prem, I imagine that these problems are not unique to Johnson Controls or JCI, as you may hear us refer to it. Talk to me Prem about some of the other challenges that you're seeing within the customer landscape. >> So, yeah, I agree, Lisa, these are not very specific to JCI, but there are specific issues in JCI, right? So the way we think about these are, there is a common issue when people go to the cloud and there are very specific and unique issues for businesses, right? So JCI, and we will talk about this in the episode as we move forward. I think Suresh and his team have done some phenomenal step around how to manage this complexity. But there are customers who have a lesser complex cloud which is, they don't go to Alibaba, they don't have footprint in all three clouds. So their multi-cloud footprint could be a bit more manageable, but still struggle with a lot of the same problems around cost, around security, around talent. Talent is a big thing, right? And in Suresh's case I think it's slightly more exasperated because every cloud provider Be it AWS, JCP, or Azure brings in hundreds of services and there is nobody, including many of us, right? We learn every day, nowadays, right? It's not that there is one service integrator who knows all, while technically people can claim as a part of sales. But in reality all of us are continuing to learn in this landscape. And if you put all of this equation together with multiple clouds the complexity just starts to exponentially grow. And that's exactly what I think JCI is experiencing and Suresh's team has been experiencing, and we've been working together. But the common problems are around security talent and cost management of this, right? Those are my three things. And one last thing that I would love to say before we move away from this question is, if you think about cloud operations as a concept that's evolving over the last few years, and I have touched upon this in the previous episode as well, Lisa, right? If you take architectures, we've gone into microservices, we've gone into all these server-less architectures all the fancy things that we want. That helps us go to market faster, be more competent to as a business. But that's not simplified stuff, right? That's complicated stuff. It's a lot more distributed. Second, again, we've advanced and created more modern infrastructure because all of what we are talking is platform as a service, services on the cloud that we are consuming, right? In the same case with development we've moved into a DevOps model. We kind of click a button put some code in a repository, the code starts to run in production within a minute, everything else is automated. But then when we get to operations we are still stuck in a very old way of looking at cloud as an infrastructure, right? So you've got an infra team, you've got an app team, you've got an incident management team, you've got a soft knock, everything. But again, so Suresh can talk about this more because they are making significant strides in thinking about this as a single workload, and how do I apply engineering to go manage this? Because a lot of it is codified, right? So automation. Anyway, so that's kind of where the complexity is and how we are thinking, including JCI as a partner thinking about taming that complexity as we move forward. >> Suresh, let's talk about that taming the complexity. You guys have both done a great job of articulating the ostensible challenges that are there with cloud, especially multi-cloud environments that you're living in. But Suresh, talk about the partnership with Hitachi Vantara. How is it helping to dial down some of those inherent complexities? >> I mean, I always, you know, I think I've said this to Prem multiple times. I treat my partners as my internal, you know, employees. I look at Prem as my coworker or my peers. So the reason for that is I want Prem to have the same vested interest as a partner in my success or JCI success and vice versa, isn't it? I think that's how we operate and that's how we have been operating. And I think I would like to thank Prem and Hitachi Vantara for that really been an amazing partnership. And as he was saying, we have taken a completely holistic approach to how we want to really be in the market and play in the market to our customers. So if you look at my jacket it talks about OpenBlue platform. This is what JCI is building, that we are building this OpenBlue digital platform. And within that, my team, along with Prem's or Hitachi's, we have built what we call as Polaris. It's a technical platform where our apps can run. And this platform is automated end-to-end from a platform engineering standpoint. We stood up a platform engineering organization, a reliability engineering organization, as well as a support organization where Hitachi played a role. As I said previously, you know, for me to scale I'm not going to really have the talent and the knowledge of every function that I'm looking at. And Hitachi, not only they brought the talent but they also brought what he was talking about, Harc. You know, they have set up a lot and now we can leverage it. And they also came up with some really interesting concepts. I went and met them in India. They came up with this concept called IPL. Okay, what is that? They really challenged all their employees that's working for GCI to come up with innovative ideas to solve problems proactively, which is self-healing. You know, how you do that? So I think partners, you know, if they become really vested in your interests, they can do wonders for you. And I think in this case Hitachi is really working very well for us and in many aspects. And I'm leveraging them... You started with support, now I'm leveraging them in the automation, the platform engineering, as well as in the reliability engineering and then in even in the engineering spaces. And that like, they are my end-to-end partner right now? >> So you're really taking that holistic approach that you talked about and it sounds like it's a very collaborative two-way street partnership. Prem, I want to go back to, Suresh mentioned Harc. Talk a little bit about what Harc is and then how partners fit into Hitachi's Harc strategy. >> Great, so let me spend like a few seconds on what Harc is. Lisa, again, I know we've been using the term. Harc stands for Hitachi application reliability sectors. Now the reason we thought about Harc was, like I said in the beginning of this segment, there is an illusion from an architecture standpoint to be more modern, microservices, server-less, reactive architecture, so on and so forth. There is an illusion in your development methodology from Waterfall to agile, to DevOps to lean, agile to path program, whatever, right? Extreme program, so on and so forth. There is an evolution in the space of infrastructure from a point where you were buying these huge humongous servers and putting it in your data center to a point where people don't even see servers anymore, right? You buy it, by a click of a button you don't know the size of it. All you know is a, it's (indistinct) whatever that name means. Let's go provision it on the fly, get go, get your work done, right? When all of this is advanced when you think about operations people have been solving the problem the way they've been solving it 20 years back, right? That's the issue. And Harc was conceived exactly to fix that particular problem, to think about a modern way of operating a modern workload, right? That's exactly what Harc. So it brings together finest engineering talent. So the teams are trained in specific ways of working. We've invested and implemented some of the IP, we work with the best of the breed partner ecosystem, and I'll talk about that in a minute. And we've got these facilities in Dallas and I am talking from my office in Dallas, which is a Harc facility in the US from where we deliver for our customers. And then back in Hyderabad, we've got one more that we opened and these are facilities from where we deliver Harc services for our customers as well, right? And then we are expanding it in Japan and Portugal as we move into 23. That's kind of the plan that we are thinking through. However, that's what Harc is, Lisa, right? That's our solution to this cloud complexity problem. Right? >> Got it, and it sounds like it's going quite global, which is fantastic. So Suresh, I want to have you expand a bit on the partnership, the partner ecosystem and the role that it plays. You talked about it a little bit but what role does the partner ecosystem play in really helping JCI to dial down some of those challenges and the inherent complexities that we talked about? >> Yeah, sure. I think partners play a major role and JCI is very, very good at it. I mean, I've joined JCI 18 months ago, JCI leverages partners pretty extensively. As I said, I leverage Hitachi for my, you know, A group and the (indistinct) space and the cloud operations space, and they're my primary partner. But at the same time, we leverage many other partners. Well, you know, Accenture, SCL, and even on the tooling side we use Datadog and (indistinct). All these guys are major partners of our because the way we like to pick partners is based on our vision and where we want to go. And pick the right partner who's going to really, you know make you successful by investing their resources in you. And what I mean by that is when you have a partner, partner knows exactly what kind of skillset is needed for this customer, for them to really be successful. As I said earlier, we cannot really get all the skillset that we need, we rely on the partners and partners bring the the right skillset, they can scale. I can tell Prem tomorrow, "Hey, I need two parts by next week", and I guarantee it he's going to bring two parts to me. So they let you scale, they let you move fast. And I'm a big believer, in today's day and age, to get things done fast and be more agile. I'm not worried about failure, but for me moving fast is very, very important. And partners really do a very good job bringing that. But I think then they also really make you think, isn't it? Because one thing I like about partners they make you innovate whether they know it or not but they do because, you know, they will come and ask you questions about, "Hey, tell me why you are doing this. Can I review your architecture?" You know, and then they will try to really say I don't think this is going to work. Because they work with so many different clients, not JCI, they bring all that expertise and that's what I look from them, you know, just not, you know, do a T&M job for me. I ask you to do this go... They just bring more than that. That's how I pick my partners. And that's how, you know, Hitachi's Vantara is definitely one of a good partner from that sense because they bring a lot more innovation to the table and I appreciate about that. >> It sounds like, it sounds like a flywheel of innovation. >> Yeah. >> I love that. Last question for both of you, which we're almost out of time here, Prem, I want to go back to you. So I'm a partner, I'm planning on redefining CloudOps at my company. What are the two things you want me to remember from Hitachi Vantara's perspective? >> So before I get to that question, Lisa, the partners that we work with are slightly different from from the partners that, again, there are some similar partners. There are some different partners, right? For example, we pick and choose especially in the Harc space, we pick and choose partners that are more future focused, right? We don't care if they are huge companies or small companies. We go after companies that are future focused that are really, really nimble and can change for our customers need because it's not our need, right? When I pick partners for Harc my ultimate endeavor is to ensure, in this case because we've got (indistinct) GCI on, we are able to operate (indistinct) with the level of satisfaction above and beyond that they're expecting from us. And whatever I don't have I need to get from my partners so that I bring this solution to Suresh. As opposed to bringing a whole lot of people and making them stand in front of Suresh. So that's how I think about partners. What do I want them to do from, and we've always done this so we do workshops with our partners. We just don't go by tools. When we say we are partnering with X, Y, Z, we do workshops with them and we say, this is how we are thinking. Either you build it in your roadmap that helps us leverage you, continue to leverage you. And we do have minimal investments where we fix gaps. We're building some utilities for us to deliver the best service to our customers. And our intention is not to build a product to compete with our partner. Our intention is to just fill the wide space until they go build it into their product suite that we can then leverage it for our customers. So always think about end customers and how can we make it easy for them? Because for all the tool vendors out there seeing this and wanting to partner with Hitachi the biggest thing is tools sprawl, especially on the cloud is very real. For every problem on the cloud. I have a billion tools that are being thrown at me as Suresh if I'm putting my installation and it's not easy at all. It's so confusing. >> Yeah. >> So that's what we want. We want people to simplify that landscape for our end customers, and we are looking at partners that are thinking through the simplification not just making money. >> That makes perfect sense. There really is a very strong symbiosis it sounds like, in the partner ecosystem. And there's a lot of enablement that goes on back and forth it sounds like as well, which is really, to your point it's all about the end customers and what they're expecting. Suresh, last question for you is which is the same one, if I'm a partner what are the things that you want me to consider as I'm planning to redefine CloudOps at my company? >> I'll keep it simple. In my view, I mean, we've touched upon it in multiple facets in this interview about that, the three things. First and foremost, reliability. You know, in today's day and age my products has to be reliable, available and, you know, make sure that the customer's happy with what they're really dealing with, number one. Number two, my product has to be secure. Security is super, super important, okay? And number three, I need to really make sure my customers are getting the value so I keep my cost low. So these three is what I would focus and what I expect from my partners. >> Great advice, guys. Thank you so much for talking through this with me and really showing the audience how strong the partnership is between Hitachi Vantara and JCI. What you're doing together, we'll have to talk to you again to see where things go but we really appreciate your insights and your perspectives. Thank you. >> Thank you, Lisa. >> Thanks Lisa, thanks for having us. >> My pleasure. For my guests, I'm Lisa Martin. Thank you so much for watching. (soothing music)

Published Date : Feb 24 2023

SUMMARY :

In the next 15 minutes or so and pin points that you all the services we see. Talk to me Prem about some of the other in the episode as we move forward. that taming the complexity. and play in the market to our customers. that you talked about and it sounds Now the reason we thought about Harc was, and the inherent complexities But at the same time, we like a flywheel of innovation. What are the two things you want me especially in the Harc space, we pick for our end customers, and we are looking it sounds like, in the partner ecosystem. make sure that the customer's happy showing the audience how Thank you so much for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SureshPERSON

0.99+

HitachiORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

Suresh MothikuruPERSON

0.99+

JapanLOCATION

0.99+

Prem BalasubramanianPERSON

0.99+

JCIORGANIZATION

0.99+

LisaPERSON

0.99+

HarcORGANIZATION

0.99+

Johnson ControlsORGANIZATION

0.99+

DallasLOCATION

0.99+

IndiaLOCATION

0.99+

AlibabaORGANIZATION

0.99+

HyderabadLOCATION

0.99+

Hitachi VantaraORGANIZATION

0.99+

Johnson ControlsORGANIZATION

0.99+

PortugalLOCATION

0.99+

USLOCATION

0.99+

SCLORGANIZATION

0.99+

AccentureORGANIZATION

0.99+

bothQUANTITY

0.99+

AWSORGANIZATION

0.99+

two partsQUANTITY

0.99+

150 servicesQUANTITY

0.99+

SecondQUANTITY

0.99+

FirstQUANTITY

0.99+

next weekDATE

0.99+

200 servicesQUANTITY

0.99+

First questionQUANTITY

0.99+

PremPERSON

0.99+

tomorrowDATE

0.99+

PolarisORGANIZATION

0.99+

T&MORGANIZATION

0.99+

hundreds of servicesQUANTITY

0.99+

three thingsQUANTITY

0.98+

threeQUANTITY

0.98+

agileTITLE

0.98+

Breaking Analysis: Google's Point of View on Confidential Computing


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Confidential computing is a technology that aims to enhance data privacy and security by providing encrypted computation on sensitive data and isolating data from apps in a fenced off enclave during processing. The concept of confidential computing is gaining popularity, especially in the cloud computing space where sensitive data is often stored and of course processed. However, there are some who view confidential computing as an unnecessary technology in a marketing ploy by cloud providers aimed at calming customers who are cloud phobic. Hello and welcome to this week's Wikibon CUBE Insights powered by ETR. In this Breaking Analysis, we revisit the notion of confidential computing, and to do so, we'll invite two Google experts to the show, but before we get there, let's summarize briefly. There's not a ton of ETR data on the topic of confidential computing. I mean, it's a technology that's deeply embedded into silicon and computing architectures. But at the highest level, security remains the number one priority being addressed by IT decision makers in the coming year as shown here. And this data is pretty much across the board by industry, by region, by size of company. I mean we dug into it and the only slight deviation from the mean is in financial services. The second and third most cited priorities, cloud migration and analytics, are noticeably closer to cybersecurity in financial services than in other sectors, likely because financial services has always been hyper security conscious, but security is still a clear number one priority in that sector. The idea behind confidential computing is to better address threat models for data in execution. Protecting data at rest and data and transit have long been a focus of security approaches, but more recently, silicon manufacturers have introduced architectures that separate data and applications from the host system. Arm, Intel, AMD, Nvidia and other suppliers are all on board, as are the big cloud players. Now the argument against confidential computing is that it narrowly focuses on memory encryption and it doesn't solve the biggest problems in security. Multiple system images updates different services and the entire code flow aren't directly addressed by memory encryption, rather to truly attack these problems, many believe that OSs need to be re-engineered with the attacker and hacker in mind. There are so many variables and at the end of the day, critics say the emphasis on confidential computing made by cloud providers is overstated and largely hype. This tweet from security researcher Rodrigo Branco sums up the sentiment of many skeptics. He says, "Confidential computing is mostly a marketing campaign for memory encryption. It's not driving the industry towards the hard open problems. It is selling an illusion." Okay. Nonetheless, encrypting data in use and fencing off key components of the system isn't a bad thing, especially if it comes with the package essentially for free. There has been a lack of standardization and interoperability between different confidential computing approaches. But the confidential computing consortium was established in 2019 ostensibly to accelerate the market and influence standards. Notably, AWS is not part of the consortium, likely because the politics of the consortium were probably a conundrum for AWS because the base technology defined by the the consortium is seen as limiting by AWS. This is my guess, not AWS's words, and but I think joining the consortium would validate a definition which AWS isn't aligned with. And two, it's got a lead with this Annapurna acquisition. This was way ahead with Arm integration and so it probably doesn't feel the need to validate its competitors. Anyway, one of the premier members of the confidential computing consortium is Google, along with many high profile names including Arm, Intel, Meta, Red Hat, Microsoft, and others. And we're pleased to welcome two experts on confidential computing from Google to unpack the topic, Nelly Porter is head of product for GCP confidential computing and encryption, and Dr. Patricia Florissi is the technical director for the office of the CTO at Google Cloud. Welcome Nelly and Patricia, great to have you. >> Great to be here. >> Thank you so much for having us. >> You're very welcome. Nelly, why don't you start and then Patricia, you can weigh in. Just tell the audience a little bit about each of your roles at Google Cloud. >> So I'll start, I'm owning a lot of interesting activities in Google and again security or infrastructure securities that I usually own. And we are talking about encryption and when encryption and confidential computing is a part of portfolio in additional areas that I contribute together with my team to Google and our customers is secure software supply chain. Because you need to trust your software. Is it operate in your confidential environment to have end-to-end story about if you believe that your software and your environment doing what you expect, it's my role. >> Got it. Okay. Patricia? >> Well, I am a technical director in the office of the CTO, OCTO for short, in Google Cloud. And we are a global team. We include former CTOs like myself and senior technologists from large corporations, institutions and a lot of success, we're startups as well. And we have two main goals. First, we walk side by side with some of our largest, more strategic or most strategical customers and we help them solve complex engineering technical problems. And second, we are devise Google and Google Cloud engineering and product management and tech on there, on emerging trends and technologies to guide the trajectory of our business. We are unique group, I think, because we have created this collaborative culture with our customers. And within OCTO, I spend a lot of time collaborating with customers and the industry at large on technologies that can address privacy, security, and sovereignty of data in general. >> Excellent. Thank you for that both of you. Let's get into it. So Nelly, what is confidential computing? From Google's perspective, how do you define it? >> Confidential computing is a tool and it's still one of the tools in our toolbox. And confidential computing is a way how we would help our customers to complete this very interesting end-to-end lifecycle of the data. And when customers bring in the data to cloud and want to protect it as they ingest it to the cloud, they protect it at rest when they store data in the cloud. But what was missing for many, many years is ability for us to continue protecting data and workloads of our customers when they running them. And again, because data is not brought to cloud to have huge graveyard, we need to ensure that this data is actually indexed. Again, there is some insights driven and drawn from this data. You have to process this data and confidential computing here to help. Now we have end to end protection of our customer's data when they bring the workloads and data to cloud, thanks to confidential computing. >> Thank you for that. Okay, we're going to get into the architecture a bit, but before we do, Patricia, why do you think this topic of confidential computing is such an important technology? Can you explain, do you think it's transformative for customers and if so, why? >> Yeah, I would maybe like to use one thought, one way, one intuition behind why confidential commuting matters, because at the end of the day, it reduces more and more the customer's thresh boundaries and the attack surface. That's about reducing that periphery, the boundary in which the customer needs to mind about trust and safety. And in a way, is a natural progression that you're using encryption to secure and protect the data. In the same way that we are encrypting data in transit and at rest, now we are also encrypting data while in use. And among other beneficials, I would say one of the most transformative ones is that organizations will be able to collaborate with each other and retain the confidentiality of the data. And that is across industry, even though it's highly focused on, I wouldn't say highly focused, but very beneficial for highly regulated industries. It applies to all of industries. And if you look at financing for example, where bankers are trying to detect fraud, and specifically double finance where you are, a customer is actually trying to get a finance on an asset, let's say a boat or a house, and then it goes to another bank and gets another finance on that asset. Now bankers would be able to collaborate and detect fraud while preserving confidentiality and privacy of the data. >> Interesting. And I want to understand that a little bit more but I'm going to push you a little bit on this, Nelly, if I can because there's a narrative out there that says confidential computing is a marketing ploy, I talked about this upfront, by cloud providers that are just trying to placate people that are scared of the cloud. And I'm presuming you don't agree with that, but I'd like you to weigh in here. The argument is confidential computing is just memory encryption and it doesn't address many other problems. It is over hyped by cloud providers. What do you say to that line of thinking? >> I absolutely disagree, as you can imagine, with this statement, but the most importantly is we mixing multiple concepts, I guess. And exactly as Patricia said, we need to look at the end-to-end story, not again the mechanism how confidential computing trying to again, execute and protect a customer's data and why it's so critically important because what confidential computing was able to do, it's in addition to isolate our tenants in multi-tenant environments the cloud covering to offer additional stronger isolation. They called it cryptographic isolation. It's why customers will have more trust to customers and to other customers, the tenant that's running on the same host but also us because they don't need to worry about against threats and more malicious attempts to penetrate the environment. So what confidential computing is helping us to offer our customers, stronger isolation between tenants in this multi-tenant environment, but also incredibly important, stronger isolation of our customers, so tenants from us. We also writing code, we also software providers will also make mistakes or have some zero days. Sometimes again us introduced, sometimes introduced by our adversaries. But what I'm trying to say by creating this cryptographic layer of isolation between us and our tenants and amongst those tenants, we're really providing meaningful security to our customers and eliminate some of the worries that they have running on multi-tenant spaces or even collaborating to gather this very sensitive data knowing that this particular protection is available to them. >> Okay, thank you. Appreciate that. And I think malicious code is often a threat model missed in these narratives. Operator access, yeah, maybe I trust my clouds provider, but if I can fence off your access even better, I'll sleep better at night. Separating a code from the data, everybody's, Arm, Intel, AMD, Nvidia, others, they're all doing it. I wonder if, Nelly, if we could stay with you and bring up the slide on the architecture. What's architecturally different with confidential computing versus how operating systems and VMs have worked traditionally. We're showing a slide here with some VMs, maybe you could take us through that. >> Absolutely. And Dave, the whole idea for Google and now industry way of dealing with confidential computing is to ensure that three main property is actually preserved. Customers don't need to change the code. They can operate on those VMs exactly as they would with normal non-confidential VMs, but to give them this opportunity of lift and shift or no changing their apps and performing and having very, very, very low latency and scale as any cloud can, something that Google actually pioneer in confidential computing. I think we need to open and explain how this magic was actually done. And as I said, it's again the whole entire system have to change to be able to provide this magic. And I would start with we have this concept of root of trust and root of trust where we will ensure that this machine, when the whole entire post has integrity guarantee, means nobody changing my code on the most low level of system. And we introduce this in 2017 called Titan. It was our specific ASIC, specific, again, inch by inch system on every single motherboard that we have that ensures that your low level former, your actually system code, your kernel, the most powerful system is actually proper configured and not changed, not tampered. We do it for everybody, confidential computing included. But for confidential computing, what we have to change, we bring in AMD, or again, future silicon vendors and we have to trust their former, their way to deal with our confidential environments. And that's why we have obligation to validate integrity, not only our software and our former but also former and software of our vendors, silicon vendors. So we actually, when we booting this machine, as you can see, we validate that integrity of all of the system is in place. It means nobody touching, nobody changing, nobody modifying it. But then we have this concept of AMD secure processor, it's special ASICs, best specific things that generate a key for every single VM that our customers will run or every single node in Kubernetes or every single worker thread in our Hadoop or Spark capability. We offer all of that. And those keys are not available to us. It's the best keys ever in encryption space because when we are talking about encryption, the first question that I'm receiving all the time, where's the key, who will have access to the key? Because if you have access to the key then it doesn't matter if you encrypted or not. So, but the case in confidential computing provides so revolutionary technology, us cloud providers, who don't have access to the keys. They sitting in the hardware and they head to memory controller. And it means when hypervisors that also know about these wonderful things saying I need to get access to the memories that this particular VM trying to get access to, they do not decrypt the data, they don't have access to the key because those keys are random, ephemeral and per VM, but the most importantly, in hardware not exportable. And it means now you would be able to have this very interesting role that customers or cloud providers will not be able to get access to your memory. And what we do, again, as you can see our customers don't need to change their applications, their VMs are running exactly as it should run and what you're running in VM, you actually see your memory in clear, it's not encrypted, but God forbid is trying somebody to do it outside of my confidential box. No, no, no, no, no, they would not be able to do it. Now you'll see cyber and it's exactly what combination of these multiple hardware pieces and software pieces have to do. So OS is also modified. And OS is modified such way to provide integrity. It means even OS that you're running in your VM box is not modifiable and you, as customer, can verify. But the most interesting thing, I guess, how to ensure the super performance of this environment because you can imagine, Dave, that encrypting and it's additional performance, additional time, additional latency. So we were able to mitigate all of that by providing incredibly interesting capability in the OS itself. So our customers will get no changes needed, fantastic performance and scales as they would expect from cloud providers like Google. >> Okay, thank you. Excellent. Appreciate that explanation. So, again, the narrative on this as well, you've already given me guarantees as a cloud provider that you don't have access to my data, but this gives another level of assurance, key management as they say is key. Now humans aren't managing the keys, the machines are managing them. So Patricia, my question to you is, in addition to, let's go pre confidential computing days, what are the sort of new guarantees that these hardware-based technologies are going to provide to customers? >> So if I am a customer, I am saying I now have full guarantee of confidentiality and integrity of the data and of the code. So if you look at code and data confidentiality, the customer cares and they want to know whether their systems are protected from outside or unauthorized access, and that recovered with Nelly, that it is. Confidential computing actually ensures that the applications and data internals remain secret, right? The code is actually looking at the data, the only the memory is decrypting the data with a key that is ephemeral and per VM and generated on demand. Then you have the second point where you have code and data integrity, and now customers want to know whether their data was corrupted, tampered with or impacted by outside actors. And what confidential computing ensures is that application internals are not tampered with. So the application, the workload as we call it, that is processing the data, it's also, it has not been tampered and preserves integrity. I would also say that this is all verifiable. So you have attestation and these attestation actually generates a log trail and the log trail guarantees that, provides a proof that it was preserved. And I think that the offer's also a guarantee of what we call ceiling, this idea that the secrets have been preserved and not tampered with, confidentiality and integrity of code and data. >> Got it. Okay, thank you. Nelly, you mentioned, I think I heard you say that the applications, it's transparent, you don't have to change the application, it just comes for free essentially. And we showed some various parts of the stack before. I'm curious as to what's affected, but really more importantly, what is specifically Google's value add? How do partners participate in this, the ecosystem, or maybe said another way, how does Google ensure the compatibility of confidential computing with existing systems and applications? >> And a fantastic question by the way. And it's very difficult and definitely complicated world because to be able to provide these guarantees, actually a lot of work was done by community. Google is very much operate in open, so again, our operating system, we working with operating system repository OSs, OS vendors to ensure that all capabilities that we need is part of the kernels, are part of the releases and it's available for customers to understand and even explore if they have fun to explore a lot of code. We have also modified together with our silicon vendors a kernel, host kernel to support this capability and it means working this community to ensure that all of those patches are there. We also worked with every single silicon vendor as you've seen, and that's what I probably feel that Google contributed quite a bit in this whole, we moved our industry, our community, our vendors to understand the value of easy to use confidential computing or removing barriers. And now I don't know if you noticed, Intel is pulling the lead and also announcing their trusted domain extension, very similar architecture. And no surprise, it's, again, a lot of work done with our partners to, again, convince, work with them and make this capability available. The same with Arm this year, actually last year, Arm announced their future design for confidential computing. It's called Confidential Computing Architecture. And it's also influenced very heavily with similar ideas by Google and industry overall. So it's a lot of work in confidential computing consortiums that we are doing, for example, simply to mention, to ensure interop, as you mentioned, between different confidential environments of cloud providers. They want to ensure that they can attest to each other because when you're communicating with different environments, you need to trust them. And if it's running on different cloud providers, you need to ensure that you can trust your receiver when you are sharing your sensitive data workloads or secret with them. So we coming as a community and we have this attestation sig, the, again, the community based systems that we want to build and influence and work with Arm and every other cloud providers to ensure that we can interrupt and it means it doesn't matter where confidential workloads will be hosted, but they can exchange the data in secure, verifiable and controlled by customers way. And to do it, we need to continue what we are doing, working open, again, and contribute with our ideas and ideas of our partners to this role to become what we see confidential computing has to become, it has to become utility. It doesn't need to be so special, but it's what we want it to become. >> Let's talk about, thank you for that explanation. Let's talk about data sovereignty because when you think about data sharing, you think about data sharing across the ecosystem and different regions and then of course data sovereignty comes up. Typically public policy lags, the technology industry and sometimes is problematic. I know there's a lot of discussions about exceptions, but Patricia, we have a graphic on data sovereignty. I'm interested in how confidential computing ensures that data sovereignty and privacy edicts are adhered to, even if they're out of alignment maybe with the pace of technology. One of the frequent examples is when you delete data, can you actually prove that data is deleted with a hundred percent certainty? You got to prove that and a lot of other issues. So looking at this slide, maybe you could take us through your thinking on data sovereignty. >> Perfect. So for us, data sovereignty is only one of the three pillars of digital sovereignty. And I don't want to give the impression that confidential computing addresses it all. That's why we want to step back and say, hey, digital sovereignty includes data sovereignty where we are giving you full control and ownership of the location, encryption and access to your data. Operational sovereignty where the goal is to give our Google Cloud customers full visibility and control over the provider operations, right? So if there are any updates on hardware, software stack, any operations, there is full transparency, full visibility. And then the third pillar is around software sovereignty where the customer wants to ensure that they can run their workloads without dependency on the provider's software. So they have sometimes is often referred as survivability, that you can actually survive if you are untethered to the cloud and that you can use open source. Now let's take a deep dive on data sovereignty, which by the way is one of my favorite topics. And we typically focus on saying, hey, we need to care about data residency. We care where the data resides because where the data is at rest or in processing, it typically abides to the jurisdiction, the regulations of the jurisdiction where the data resides. And others say, hey, let's focus on data protection. We want to ensure the confidentiality and integrity and availability of the data, which confidential computing is at the heart of that data protection. But it is yet another element that people typically don't talk about when talking about data sovereignty, which is the element of user control. And here, Dave, is about what happens to the data when I give you access to my data. And this reminds me of security two decades ago, even a decade ago, where we started the security movement by putting firewall protections and login accesses. But once you were in, you were able to do everything you wanted with the data. An insider had access to all the infrastructure, the data and the code. And that's similar because with data sovereignty we care about whether it resides, where, who is operating on the data. But the moment that the data is being processed, I need to trust that the processing of the data will abide by user control, by the policies that I put in place of how my data is going to be used. And if you look at a lot of the regulation today and a lot of the initiatives around the International Data Space Association, IDSA, and Gaia-X, there is a movement of saying the two parties, the provider of the data and the receiver of the data are going to agree on a contract that describes what my data can be used for. The challenge is to ensure that once the data crosses boundaries, that the data will be used for the purposes that it was intended and specified in the contract. And if you actually bring together, and this is the exciting part, confidential computing together with policy enforcement, now the policy enforcement can guarantee that the data is only processed within the confines of a confidential computing environment, that the workload is cryptographically verified that there is the workload that was meant to process the data and that the data will be only used when abiding to the confidentiality and integrity safety of the confidential computing environment. And that's why we believe confidential computing is one necessary and essential technology that will allow us to ensure data sovereignty, especially when it comes to user control. >> Thank you for that. I mean it was a deep dive, I mean brief, but really detailed. So I appreciate that, especially the verification of the enforcement. Last question, I met you two because as part of my year end prediction post, you guys sent in some predictions and I wasn't able to get to them in the predictions post. So I'm thrilled that you were able to make the time to come on the program. How widespread do you think the adoption of confidential computing will be in 23 and what's the maturity curve look like, this decade in your opinion? Maybe each of you could give us a brief answer. >> So my prediction in five, seven years, as I started, it'll become utility. It'll become TLS as of, again, 10 years ago we couldn't believe that websites will have certificates and we will support encrypted traffic. Now we do and it's become ubiquity. It's exactly where confidential computing is getting and heading, I don't know we deserve yet. It'll take a few years of maturity for us, but we will be there. >> Thank you. And Patricia, what's your prediction? >> I will double that and say, hey, in the future, in the very near future, you will not be able to afford not having it. I believe as digital sovereignty becomes evermore top of mind with sovereign states and also for multi national organizations and for organizations that want to collaborate with each other, confidential computing will become the norm. It'll become the default, if I say, mode of operation. I like to compare that today is inconceivable. If we talk to the young technologists, it's inconceivable to think that at some point in history, and I happen to be alive that we had data at rest that was not encrypted, data in transit that was not encrypted, and I think that will be inconceivable at some point in the near future that to have unencrypted data while in use. >> And plus I think the beauty of the this industry is because there's so much competition, this essentially comes for free. I want to thank you both for spending some time on Breaking Analysis. There's so much more we could cover. I hope you'll come back to share the progress that you're making in this area and we can double click on some of these topics. Really appreciate your time. >> Anytime. >> Thank you so much. >> In summary, while confidential computing is being touted by the cloud players as a promising technology for enhancing data privacy and security, there are also those, as we said, who remain skeptical. The truth probably lies somewhere in between and it will depend on the specific implementation and the use case as to how effective confidential computing will be. Look, as with any new tech, it's important to carefully evaluate the potential benefits, the drawbacks, and make informed decisions based on the specific requirements in the situation and the constraints of each individual customer. But the bottom line is silicon manufacturers are working with cloud providers and other system companies to include confidential computing into their architectures. Competition, in our view, will moderate price hikes. And at the end of the day, this is under the covers technology that essentially will come for free. So we'll take it. I want to thank our guests today, Nelly and Patricia from Google, and thanks to Alex Myerson who's on production and manages the podcast. Ken Schiffman as well out of our Boston studio, Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at siliconangle.com. Does some great editing for us, thank you all. Remember all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com where you can get all the news. If you want to get in touch, you can email me at david.vellante@siliconangle.com or dm me @DVellante. And you can also comment on my LinkedIn post. Definitely you want to check out etr.ai for the best survey data in the enterprise tech business. I know we didn't hit on a lot today, but there's some amazing data and it's always being updated, so check that out. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (upbeat music)

Published Date : Feb 11 2023

SUMMARY :

bringing you data-driven and at the end of the day, Just tell the audience a little and confidential computing Got it. and the industry at large for that both of you. in the data to cloud into the architecture a bit, and privacy of the data. people that are scared of the cloud. and eliminate some of the we could stay with you and they head to memory controller. So, again, the narrative on this as well, and integrity of the data and of the code. how does Google ensure the compatibility and ideas of our partners to this role One of the frequent examples and that the data will be only used of the enforcement. and we will support encrypted traffic. And Patricia, and I happen to be alive beauty of the this industry and the constraints of

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
NellyPERSON

0.99+

PatriciaPERSON

0.99+

International Data Space AssociationORGANIZATION

0.99+

Alex MyersonPERSON

0.99+

AWSORGANIZATION

0.99+

IDSAORGANIZATION

0.99+

Rodrigo BrancoPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

NvidiaORGANIZATION

0.99+

2019DATE

0.99+

2017DATE

0.99+

Kristin MartinPERSON

0.99+

Nelly PorterPERSON

0.99+

Ken SchiffmanPERSON

0.99+

Rob HofPERSON

0.99+

Cheryl KnightPERSON

0.99+

last yearDATE

0.99+

Palo AltoLOCATION

0.99+

Red HatORGANIZATION

0.99+

two partiesQUANTITY

0.99+

AMDORGANIZATION

0.99+

Patricia FlorissiPERSON

0.99+

IntelORGANIZATION

0.99+

oneQUANTITY

0.99+

fiveQUANTITY

0.99+

second pointQUANTITY

0.99+

david.vellante@siliconangle.comOTHER

0.99+

MetaORGANIZATION

0.99+

secondQUANTITY

0.99+

thirdQUANTITY

0.99+

OneQUANTITY

0.99+

twoQUANTITY

0.99+

ArmORGANIZATION

0.99+

eachQUANTITY

0.99+

two expertsQUANTITY

0.99+

FirstQUANTITY

0.99+

first questionQUANTITY

0.99+

Gaia-XORGANIZATION

0.99+

two decades agoDATE

0.99+

bothQUANTITY

0.99+

this yearDATE

0.99+

seven yearsQUANTITY

0.99+

OCTOORGANIZATION

0.99+

zero daysQUANTITY

0.98+

10 years agoDATE

0.98+

each weekQUANTITY

0.98+

todayDATE

0.97+

Google's PoV on Confidential Computing NO PUB


 

>> Welcome Nelly and Patricia, great to have you. >> Great to be here. >> Thank you so much for having us. >> You're very welcome. Nelly, why don't you start, and then Patricia you can weigh in. Just tell the audience a little bit about each of your roles at Google Cloud. >> So I'll start, I'm honing a lot of interesting activities in Google and again, security or infrastructure securities that I usually hone, and we're talking about encryption, Antware encryption, and confidential computing is a part of portfolio. In additional areas that I contribute to get with my team to Google and our customers is secure software supply chain. Because you need to trust your software. Is it operating your confidential environment to have end to end story about if you believe that your software and your environment doing what you expect, it's my role. >> Got it, okay. Patricia? >> Well I am a technical director in the office of the CTO, OCTO for short, in Google Cloud. And we are a global team. We include former CTOs like myself and senior technologies from large corporations, institutions, and a lot of success for startups as well. And we have two main goals. First, we work side by side with some of our largest, more strategic or most strategic customers and we help them solve complex engineering technical problems. And second, we are device Google and Google Cloud engineering and product management on emerging trends in technologies to guide the trajectory of our business. We are unique group, I think, because we have created this collaborative culture with our customers. And within OCTO I spend a lot of time collaborating with customers in the industry at large on technologies that can address privacy, security, and sovereignty of data in general. >> Excellent, thank you for that both of you. Let's get into it. So Nelly, what is confidential computing from Google's perspective? How do you define it? >> Confidential computing is a tool. And it's one of the tools in our toolbox. And confidential computing is a way how would help our customers to complete this very interesting end to end lifecycle of their data. And when customers bring in the data to Cloud and want to protect it, as they ingest it to the Cloud, they protect it address when they store data in the Cloud. But what was missing for many, many years is ability for us to continue protecting data and workloads of our customers when they running them. And again, because data is not brought to Cloud to have huge graveyard, we need to ensure that this data is actually indexed. Again there is some insights driven and drawn from this data. You have to process this data and confidential computing here to help. Now we have end to end protection of our customer's data when they bring the workloads and data to Cloud, thanks to confidential computing. >> Thank you for that. Okay, we're going to get into the architecture a bit but before we do Patricia, why do you think this topic of confidential computing is such an important technology? Can you explain, do you think it's transformative for customers and if so, why? >> Yeah, I would maybe like to use one thought, one way, one intuition behind why confidential matters. Because at the end of the day it reduces more and more the customers thrush boundaries and the attack surface, that's about reducing that periphery, the boundary, in which the customer needs to mind about trust and safety. And in a way is a natural progression that you're using encryption to secure and protect data in the same way that we are encrypting data in transit and at rest. Now we are also encrypting data while in use. And among other beneficial I would say one of the most transformative ones is that organizations will be able to collaborate with each other and retain the confidentiality of the data. And that is across industry. Even though it's highly focused on, I wouldn't say highly focused, but very beneficial for highly regulated industries. It applies to all of industries. And if you look at financing for example, where bankers are trying to detect fraud and specifically double finance where you are a customer is actually trying to get a finance on an asset, let's say a boat or a house and then it goes to another bank and gets another finance on that asset. Now bankers would be able to collaborate and detect fraud while preserving confidentiality and privacy of the of the data. >> Interesting, and I want to understand that a little bit more but I'm going to push you a little bit on this, Nelly, if I can, because there's a narrative out there that says confidential computing is a marketing ploy. I talked about this upfront, by Cloud providers that are just trying to placate people that are scared of the Cloud. And I'm presuming you don't agree with that but I'd like you to weigh in here. The argument is confidential computing is just memory encryption, it doesn't address many other problems, it is overhyped by Cloud providers. What do you say to that line of thinking? >> I absolutely disagree as you can imagine, it's a crazy statement. But the most importantly is we mixing multiple concepts I guess. And exactly as Patricia said, we need to look at the end-to-end story not again the mechanism of how confidential computing trying to again execute and protect customer's data, and why it's so critically important. Because what confidential computing was able to do it's in addition to isolate our tenants in multi-tenant environments the Cloud over. To offer additional stronger isolation, we called it cryptographic isolation. It's why customers will have more trust to customers and to other customers, the tenants that's running on the same host but also us, because they don't need to worry about against threats and more malicious attempts to penetrate the environment. So what confidential computing is helping us to offer our customers, stronger isolation between tenants in this multi-tenant environment but also incredibly important, stronger isolation of our customers. So tenants from us, we also writing code, we also software providers will also make mistakes or have some zero days sometimes again us introduced, sometimes introduced by our adversaries. But what I'm trying to say by creating this cryptographic layer of isolation between us and our tenants, and amongst those tenants, they're really providing meaningful security to our customers and eliminate some of the worries that they have running on multi-tenant spaces or even collaborating together this very sensitive data, knowing that this particular protection is available to them. >> Okay, thank you, appreciate that. And I, you know, I think malicious code is often a threat model missed in these narratives. You know, operator access, yeah, could maybe I trust my Clouds provider, but if I can fence off your access even better I'll sleep better at night. Separating a code from the data, everybody's arm Intel, AM, Invidia, others, they're all doing it. I wonder if Nell, if we could stay with you and bring up the slide on the architecture. What's architecturally different with confidential computing versus how operating systems and VMs have worked traditionally? We're showing a slide here with some VMs, maybe you could take us through that. >> Absolutely, and Dave, the whole idea for Google and industry way of dealing with confidential computing is to ensure as it's three main property is actually preserved. Customers don't need to change the code. They can operate in those VMs exactly as they would with normal non-confidential VMs. But to give them this opportunity of lift and shift or no changing their apps and performing and having very, very, very low latency and scale as any Cloud can, something that Google actually pioneered in confidential computing. I think we need to open and explain how this magic was actually done. And as I said, it's again the whole entire system have to change to be able to provide this magic. And I would start with we have this concept of root of trust and root of trust where we will ensure that this machine, the whole entire post has integrity guarantee, means nobody changing my code on the most low level of system. And we introduce this in 2017 code Titan. Those our specific ASIC specific, again inch by inch system on every single motherboard that we have, that ensures that your low level former, your actually system code, your kernel, the most powerful system, is actually proper configured and not changed, not tempered. We do it for everybody, confidential computing concluded. But for confidential computing what we have to change we bring in a MD again, future silicon vendors, and we have to trust their former, their way to deal with our confidential environments. And that's why we have obligation to validate integrity not only our software and our firmware but also firmware and software of our vendors, silicon vendors. So we actually, when we booting this machine as you can see, we validate that integrity of all of this system is in place. It means nobody touching, nobody changing, nobody modifying it. But then we have this concept of the secure processor. It's special Asics best, specific things that generate a key for every single VM that our customers will run or every single node in Kubernetes, or every single worker thread in our Spark capability. We offer all of that, and those keys are not available to us. It's the best keys ever in encryption space. Because when we are talking about encryption the first question that I'm receiving all the time, where's the key, who will have access to the key? Because if you have access to the key then it doesn't matter if you encrypt it enough. But the case in confidential computing quite so revolutionary technology, ask Cloud providers who don't have access to the keys. They're sitting in the hardware and they fed to memory controller. And it means when Hypervisors that also know about these wonderful things, saying I need to get access to the memories that this particular VM I'm trying to get access to. They do not encrypt the data, they don't have access to the key. Because those keys are random, ephemeral and VM, but the most importantly in hardware not exportable. And it means now you will be able to have this very interesting role that customers all Cloud providers, will not be able to get access to your memory. And what we do, again, as you can see our customers don't need to change their applications. Their VMs are running exactly as it should run. And what you're running in VM you actually see your memory in clear, it's not encrypted. But God forbid is trying somebody to do it outside of my confidential box. No, no, no, no, no, you will not be able to do it. Now you'll see cybernet. And it's exactly what combination of these multiple hardware pieces and software pieces have to do. So OS is also modified, and OS is modified such way to provide integrity. It means even OS that you're running in UVM bucks is not modifiable and you as customer can verify. But the most interesting thing I guess how to ensure the super performance of this environment because you can imagine, Dave, that's increasing it's additional performance, additional time, additional latency. So we're able to mitigate all of that by providing incredibly interesting capability in the OS itself. So our customers will get no changes needed, fantastic performance, and scales as they would expect from Cloud providers like Google. >> Okay, thank you. Excellent, appreciate that explanation. So you know again, the narrative on this is, well you know you've already given me guarantees as a Cloud provider that you don't have access to my data but this gives another level of assurance. Key management as they say is key. Now you're not, humans aren't managing the keys the machines are managing them. So Patricia, my question to you is in addition to, you know, let's go pre-confidential computing days what are the sort of new guarantees that these hardware-based technologies are going to provide to customers? >> So if I am a customer, I am saying I now have full guarantee of confidentiality and integrity of the data and of the code. So if you look at code and data confidentiality the customer cares then they want to know whether their systems are protected from outside or unauthorized access. And that we covered with Nelly that it is. Confidential computing actually ensures that the applications and data antennas remain secret, right? The code is actually looking at the data only the memory is decrypting the data with a key that is ephemeral, and per VM, and generated on demand. Then you have the second point where you have code and data integrity and now customers want to know whether their data was corrupted, tempered, with or impacted by outside actors. And what confidential computing insures is that application internals are not tampered with. So the application, the workload as we call it, that is processing the data it's also it has not been tempered and preserves integrity. I would also say that this is all verifiable. So you have attestation, and this attestation actually generates a log trail and the log trail guarantees that provides a proof that it was preserved. And I think that the offers also a guarantee of what we call ceiling, this idea that the secrets have been preserved and not tempered with. Confidentiality and integrity of code and data. >> Got it, okay, thank you. You know, Nelly, you mentioned, I think I heard you say that the applications, it's transparent,you don't have to change the application it just comes for free essentially. And I'm, we showed some various parts of the stack before. I'm curious as to what's affected but really more importantly what is specifically Google's value add? You know, how do partners, you know, participate in this? The ecosystem or maybe said another way how does Google ensure the compatibility of confidential computing with existing systems and applications? >> And a fantastic question by the way. And it's very difficult and definitely complicated world because to be able to provide these guarantees actually a lot of works was done by community. Google is very much operate and open. So again, our operating system we working in this operating system repository OS vendors to ensure that all capabilities that we need is part of their kernels, are part of their releases, and it's available for customers to understand and even explore if they have fun to explore a lot of code. We have also modified together with our silicon vendors, kernel, host kernel, to support this capability and it means working this community to ensure that all of those patches are there. We also worked with every single silicon vendor as you've seen, and that's what I probably feel that Google contributed quite a bit in this role. We moved our industry, our community, our vendors to understand the value of easy to use confidential computing or removing barriers. And now I don't know if you noticed Intel is pulling the lead and also announcing the trusted domain extension very similar architecture and no surprise, it's again a lot of work done with our partners to again, convince, work with them, and make this capability available. The same with ARM this year, actually last year, ARM unknowns are future design for confidential computing. It's called confidential computing architecture. And it's also influenced very heavily with similar ideas by Google and industry overall. So it's a lot of work in confidential computing consortiums that we are doing. For example, simply to mention to ensure interop, as you mentioned, between different confidential environments of Cloud providers. We want to ensure that they can attest to each other. Because when you're communicating with different environments, you need to trust them. And if it's running on different Cloud providers you need to ensure that you can trust your receiver when you are sharing your sensitive data workloads or secret with them. So we coming as a community and we have this at the station, the community based systems that we want to build and influence and work with ARM and every other Cloud providers to ensure that they can interrupt. And it means it doesn't matter where confidential workloads will be hosted but they can exchange the data in secure, verifiable, and controlled by customers way. And to do it, we need to continue what we are doing. Working open again and contribute with our ideas and ideas of our partners to this role to become what we see confidential computing has to become, it has to become utility. It doesn't need to be so special but it's what what we've wanted to become. >> Let's talk about, thank you for that explanation. Let talk about data sovereignty, because when you think about data sharing you think about data sharing across, you know, the ecosystem and different regions and then of course data sovereignty comes up. Typically public policy lags, you know, the technology industry and sometimes is problematic. I know, you know, there's a lot of discussions about exceptions, but Patricia, we have a graphic on data sovereignty. I'm interested in how confidential computing ensures that data sovereignty and privacy edicts are adhered to even if they're out of alignment maybe with the pace of technology. One of the frequent examples is when you you know, when you delete data, can you actually prove the data is deleted with a hundred percent certainty? You got to prove that and a lot of other issues. So looking at this slide, maybe you could take us through your thinking on data sovereignty. >> Perfect, so for us, data sovereignty is only one of the three pillars of digital sovereignty. And I don't want to give the impression that confidential computing addresses at all. That's why we want to step back and say, hey, digital sovereignty includes data sovereignty where we are giving you full control and ownership of the location, encryption, and access to your data. Operational sovereignty where the goal is to give our Google Cloud customers full visibility and control over the provider operations, right? So if there are any updates on hardware, software, stack, any operations, that is full transparency, full visibility. And then the third pillar is around software sovereignty where the customer wants to ensure that they can run their workloads without dependency on the provider's software. So they have sometimes is often referred as survivability that you can actually survive if you are untethered to the Cloud and that you can use open source. Now let's take a deep dive on data sovereignty, which by the way is one of my favorite topics. And we typically focus on saying, hey, we need to care about data residency. We care where the data resides because where the data is at rest or in processing it typically abides to the jurisdiction, the regulations of the jurisdiction where the data resides. And others say, hey, let's focus on data protection. We want to ensure the confidentiality and integrity and availability of the data which confidential computing is at the heart of that data protection. But it is yet another element that people typically don't talk about when talking about data sovereignty, which is the element of user control. And here Dave, is about what happens to the data when I give you access to my data. And this reminds me of security two decades ago, even a decade ago, where we started the security movement by putting firewall protections and login accesses. But once you were in, you were able to do everything you wanted with the data, an insider had access to all the infrastructure, the data, and the code. And that's similar because with data sovereignty we care about whether it resides, who is operating on the data. But the moment that the data is being processed, I need to trust that the processing of the data will abide by user control, by the policies that I put in place of how my data is going to be used. And if you look at a lot of the regulation today and a lot of the initiatives around the International Data Space Association, IDSA, and Gaia X, there is a movement of saying the two parties, the provider of the data and the receiver of the data going to agree on a contract that describes what my data can be used for. The challenge is to ensure that once the data crosses boundaries, that the data will be used for the purposes that it was intended and specified in the contract. And if you actually bring together, and this is the exciting part, confidential computing together with policy enforcement. Now the policy enforcement can guarantee that the data is only processed within the confines of a confidential computing environment. That the workload is cryptographically verified that there is the workload that was meant to process the data and that the data will be only used when abiding to the confidentiality and integrity, safety of the confidential computing environment. And that's why we believe confidential computing is one, necessary and essential technology that will allow us to ensure data sovereignty especially when it comes to user control. >> Thank you for that. I mean it was a deep dive, I mean brief, but really detailed, so I appreciate that, especially the verification of the enforcement. Last question, I met you two because as part of my year end prediction post you guys sent in some predictions, and I wasn't able to get to them in the predictions post. So I'm thrilled that you were able to make the time to come on the program. How widespread do you think the adoption of confidential computing will be in '23 and what's the maturity curve look like, you know, this decade in, in your opinion? Maybe each of you could give us a brief answer. >> So my prediction in five, seven years as I started, it'll become utility. It'll become TLS. As of, again, 10 years ago we couldn't believe that websites will have certificates and we will support encrypted traffic. Now we do, and it's become ubiquity. It's exactly where our confidential computing is heading and heading, I don't know if we are there yet yet. It'll take a few years of maturity for us, but we'll do that. >> Thank you, and Patricia, what's your prediction? >> I would double that and say, hey, in the future, in the very near future you will not be able to afford not having it. I believe as digital sovereignty becomes ever more top of mind with sovereign states and also for multinational organizations and for organizations that want to collaborate with each other, confidential computing will become the norm. It'll become the default, If I say mode of operation, I like to compare that, today is inconceivable if we talk to the young technologists. It's inconceivable to think that at some point in history and I happen to be alive that we had data at address that was not encrypted. Data in transit, that was not encrypted. And I think that we will be inconceivable at some point in the near future that to have unencrypted data while we use. >> You know, and plus, I think the beauty of the this industry is because there's so much competition this essentially comes for free. I want to thank you both for spending some time on Breaking Analysis. There's so much more we could cover. I hope you'll come back to share the progress that you're making in this area and we can double click on some of these topics. Really appreciate your time. >> Anytime. >> Thank you so much.

Published Date : Feb 10 2023

SUMMARY :

Patricia, great to have you. and then Patricia you can weigh in. In additional areas that I contribute to Got it, okay. of the CTO, OCTO for Excellent, thank you in the data to Cloud into the architecture a bit and privacy of the of the data. but I'm going to push you a is available to them. we could stay with you and they fed to memory controller. So Patricia, my question to you is and integrity of the data and of the code. that the applications, and ideas of our partners to this role is when you you know, and that the data will be only used of the enforcement. and we will support encrypted traffic. and I happen to be alive and we can double click

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
NellyPERSON

0.99+

PatriciaPERSON

0.99+

International Data Space AssociationORGANIZATION

0.99+

DavePERSON

0.99+

GoogleORGANIZATION

0.99+

IDSAORGANIZATION

0.99+

last yearDATE

0.99+

2017DATE

0.99+

two partiesQUANTITY

0.99+

oneQUANTITY

0.99+

twoQUANTITY

0.99+

second pointQUANTITY

0.99+

FirstQUANTITY

0.99+

ARMORGANIZATION

0.99+

first questionQUANTITY

0.99+

fiveQUANTITY

0.99+

bothQUANTITY

0.99+

IntelORGANIZATION

0.99+

two decades agoDATE

0.99+

AsicsORGANIZATION

0.99+

secondQUANTITY

0.99+

Gaia XORGANIZATION

0.99+

OneQUANTITY

0.99+

eachQUANTITY

0.98+

seven yearsQUANTITY

0.98+

OCTOORGANIZATION

0.98+

one thoughtQUANTITY

0.98+

a decade agoDATE

0.98+

this yearDATE

0.98+

10 years agoDATE

0.98+

InvidiaORGANIZATION

0.98+

'23DATE

0.98+

todayDATE

0.98+

CloudTITLE

0.98+

three pillarsQUANTITY

0.97+

one wayQUANTITY

0.97+

hundred percentQUANTITY

0.97+

zero daysQUANTITY

0.97+

three main propertyQUANTITY

0.95+

third pillarQUANTITY

0.95+

two main goalsQUANTITY

0.95+

CTOORGANIZATION

0.93+

NellPERSON

0.9+

KubernetesTITLE

0.89+

every single VMQUANTITY

0.86+

NellyORGANIZATION

0.83+

Google CloudTITLE

0.82+

every single workerQUANTITY

0.77+

every single nodeQUANTITY

0.74+

AMORGANIZATION

0.73+

doubleQUANTITY

0.71+

single motherboardQUANTITY

0.68+

single siliconQUANTITY

0.57+

SparkTITLE

0.53+

kernelTITLE

0.53+

inchQUANTITY

0.48+

Breaking Analysis: Google's PoV on Confidential Computing


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Confidential computing is a technology that aims to enhance data privacy and security, by providing encrypted computation on sensitive data and isolating data, and apps that are fenced off enclave during processing. The concept of, I got to start over. I fucked that up, I'm sorry. That's not right, what I said was not right. On Dave in five, four, three. Confidential computing is a technology that aims to enhance data privacy and security by providing encrypted computation on sensitive data, isolating data from apps and a fenced off enclave during processing. The concept of confidential computing is gaining popularity, especially in the cloud computing space, where sensitive data is often stored and of course processed. However, there are some who view confidential computing as an unnecessary technology in a marketing ploy by cloud providers aimed at calming customers who are cloud phobic. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis, we revisit the notion of confidential computing, and to do so, we'll invite two Google experts to the show. But before we get there, let's summarize briefly. There's not a ton of ETR data on the topic of confidential computing, I mean, it's a technology that's deeply embedded into silicon and computing architectures. But at the highest level, security remains the number one priority being addressed by IT decision makers in the coming year as shown here. And this data is pretty much across the board by industry, by region, by size of company. I mean we dug into it and the only slight deviation from the mean is in financial services. The second and third most cited priorities, cloud migration and analytics are noticeably closer to cybersecurity in financial services than in other sectors, likely because financial services has always been hyper security conscious, but security is still a clear number one priority in that sector. The idea behind confidential computing is to better address threat models for data in execution. Protecting data at rest and data in transit have long been a focus of security approaches, but more recently, silicon manufacturers have introduced architectures that separate data and applications from the host system, ARM, Intel, AMD, Nvidia and other suppliers are all on board, as are the big cloud players. Now, the argument against confidential computing is that it narrowly focuses on memory encryption and it doesn't solve the biggest problems in security. Multiple system images, updates, different services and the entire code flow aren't directly addressed by memory encryption. Rather to truly attack these problems, many believe that OSs need to be re-engineered with the attacker and hacker in mind. There are so many variables and at the end of the day, critics say the emphasis on confidential computing made by cloud providers is overstated and largely hype. This tweet from security researcher Rodrigo Bronco, sums up the sentiment of many skeptics. He says, "Confidential computing is mostly a marketing campaign from memory encryption. It's not driving the industry towards the hard open problems. It is selling an illusion." Okay. Nonetheless, encrypting data in use and fencing off key components of the system isn't a bad thing, especially if it comes with the package essentially for free. There has been a lack of standardization and interoperability between different confidential computing approaches. But the confidential computing consortium was established in 2019 ostensibly to accelerate the market and influence standards. Notably, AWS is not part of the consortium, likely because the politics of the consortium were probably a conundrum for AWS because the base technology defined by the consortium is seen as limiting by AWS. This is my guess, not AWS' words. But I think joining the consortium would validate a definition which AWS isn't aligned with. And two, it's got to lead with this Annapurna acquisition. It was way ahead with ARM integration, and so it's probably doesn't feel the need to validate its competitors. Anyway, one of the premier members of the confidential computing consortium is Google, along with many high profile names, including Aem, Intel, Meta, Red Hat, Microsoft, and others. And we're pleased to welcome two experts on confidential computing from Google to unpack the topic. Nelly Porter is Head of Product for GCP Confidential Computing and Encryption and Dr. Patricia Florissi is the Technical Director for the Office of the CTO at Google Cloud. Welcome Nelly and Patricia, great to have you. >> Great to be here. >> Thank you so much for having us. >> You're very welcome. Nelly, why don't you start and then Patricia, you can weigh in. Just tell the audience a little bit about each of your roles at Google Cloud. >> So I'll start, I'm owning a lot of interesting activities in Google and again, security or infrastructure securities that I usually own. And we are talking about encryption, end-to-end encryption, and confidential computing is a part of portfolio. Additional areas that I contribute to get with my team to Google and our customers is secure software supply chain because you need to trust your software. Is it operate in your confidential environment to have end-to-end security, about if you believe that your software and your environment doing what you expect, it's my role. >> Got it. Okay, Patricia? >> Well, I am a Technical Director in the Office of the CTO, OCTO for short in Google Cloud. And we are a global team, we include former CTOs like myself and senior technologies from large corporations, institutions and a lot of success for startups as well. And we have two main goals, first, we walk side by side with some of our largest, more strategic or most strategical customers and we help them solve complex engineering technical problems. And second, we advice Google and Google Cloud Engineering, product management on emerging trends and technologies to guide the trajectory of our business. We are unique group, I think, because we have created this collaborative culture with our customers. And within OCTO I spend a lot of time collaborating with customers in the industry at large on technologies that can address privacy, security, and sovereignty of data in general. >> Excellent. Thank you for that both of you. Let's get into it. So Nelly, what is confidential computing from Google's perspective? How do you define it? >> Confidential computing is a tool and one of the tools in our toolbox. And confidential computing is a way how we would help our customers to complete this very interesting end-to-end lifecycle of the data. And when customers bring in the data to cloud and want to protect it as they ingest it to the cloud, they protect it at rest when they store data in the cloud. But what was missing for many, many years is ability for us to continue protecting data and workloads of our customers when they run them. And again, because data is not brought to cloud to have huge graveyard, we need to ensure that this data is actually indexed. Again, there is some insights driven and drawn from this data. You have to process this data and confidential computing here to help. Now we have end-to-end protection of our customer's data when they bring the workloads and data to cloud thanks to confidential computing. >> Thank you for that. Okay, we're going to get into the architecture a bit, but before we do Patricia, why do you think this topic of confidential computing is such an important technology? Can you explain? Do you think it's transformative for customers and if so, why? >> Yeah, I would maybe like to use one thought, one way, one intuition behind why confidential computing matters because at the end of the day, it reduces more and more the customer's thrush boundaries and the attack surface. That's about reducing that periphery, the boundary in which the customer needs to mind about trust and safety. And in a way is a natural progression that you're using encryption to secure and protect data in the same way that we are encrypting data in transit and at rest. Now, we are also encrypting data while in the use. And among other beneficials, I would say one of the most transformative ones is that organizations will be able to collaborate with each other and retain the confidentiality of the data. And that is across industry, even though it's highly focused on, I wouldn't say highly focused but very beneficial for highly regulated industries, it applies to all of industries. And if you look at financing for example, where bankers are trying to detect fraud and specifically double finance where a customer is actually trying to get a finance on an asset, let's say a boat or a house, and then it goes to another bank and gets another finance on that asset. Now bankers would be able to collaborate and detect fraud while preserving confidentiality and privacy of the data. >> Interesting and I want to understand that a little bit more but I got to push you a little bit on this, Nellie if I can, because there's a narrative out there that says confidential computing is a marketing ploy I talked about this up front, by cloud providers that are just trying to placate people that are scared of the cloud. And I'm presuming you don't agree with that, but I'd like you to weigh in here. The argument is confidential computing is just memory encryption, it doesn't address many other problems. It is over hyped by cloud providers. What do you say to that line of thinking? >> I absolutely disagree as you can imagine Dave, with this statement. But the most importantly is we mixing a multiple concepts I guess, and exactly as Patricia said, we need to look at the end-to-end story, not again, is a mechanism. How confidential computing trying to execute and protect customer's data and why it's so critically important. Because what confidential computing was able to do, it's in addition to isolate our tenants in multi-tenant environments the cloud offering to offer additional stronger isolation, they called it cryptographic isolation. It's why customers will have more trust to customers and to other customers, the tenants running on the same host but also us because they don't need to worry about against rats and more malicious attempts to penetrate the environment. So what confidential computing is helping us to offer our customers stronger isolation between tenants in this multi-tenant environment, but also incredibly important, stronger isolation of our customers to tenants from us. We also writing code, we also software providers, we also make mistakes or have some zero days. Sometimes again us introduce, sometimes introduced by our adversaries. But what I'm trying to say by creating this cryptographic layer of isolation between us and our tenants and among those tenants, we really providing meaningful security to our customers and eliminate some of the worries that they have running on multi-tenant spaces or even collaborating together with very sensitive data knowing that this particular protection is available to them. >> Okay, thank you. Appreciate that. And I think malicious code is often a threat model missed in these narratives. You know, operator access. Yeah, maybe I trust my cloud's provider, but if I can fence off your access even better, I'll sleep better at night separating a code from the data. Everybody's ARM, Intel, AMD, Nvidia and others, they're all doing it. I wonder if Nell, if we could stay with you and bring up the slide on the architecture. What's architecturally different with confidential computing versus how operating systems and VMs have worked traditionally? We're showing a slide here with some VMs, maybe you could take us through that. >> Absolutely, and Dave, the whole idea for Google and now industry way of dealing with confidential computing is to ensure that three main property is actually preserved. Customers don't need to change the code. They can operate in those VMs exactly as they would with normal non-confidential VMs. But to give them this opportunity of lift and shift though, no changing the apps and performing and having very, very, very low latency and scale as any cloud can, some things that Google actually pioneer in confidential computing. I think we need to open and explain how this magic was actually done, and as I said, it's again the whole entire system have to change to be able to provide this magic. And I would start with we have this concept of root of trust and root of trust where we will ensure that this machine within the whole entire host has integrity guarantee, means nobody changing my code on the most low level of system, and we introduce this in 2017 called Titan. So our specific ASIC, specific inch by inch system on every single motherboard that we have that ensures that your low level former, your actually system code, your kernel, the most powerful system is actually proper configured and not changed, not tempered. We do it for everybody, confidential computing included, but for confidential computing is what we have to change, we bring in AMD or future silicon vendors and we have to trust their former, their way to deal with our confidential environments. And that's why we have obligation to validate intelligent not only our software and our former but also former and software of our vendors, silicon vendors. So we actually, when we booting this machine as you can see, we validate that integrity of all of this system is in place. It means nobody touching, nobody changing, nobody modifying it. But then we have this concept of AMD Secure Processor, it's special ASIC best specific things that generate a key for every single VM that our customers will run or every single node in Kubernetes or every single worker thread in our Hadoop spark capability. We offer all of that and those keys are not available to us. It's the best case ever in encryption space because when we are talking about encryption, the first question that I'm receiving all the time, "Where's the key? Who will have access to the key?" because if you have access to the key then it doesn't matter if you encrypted or not. So, but the case in confidential computing why it's so revolutionary technology, us cloud providers who don't have access to the keys, they're sitting in the hardware and they fed to memory controller. And it means when hypervisors that also know about this wonderful things saying I need to get access to the memories, that this particular VM I'm trying to get access to. They do not decrypt the data, they don't have access to the key because those keys are random, ephemeral and per VM, but most importantly in hardware not exportable. And it means now you will be able to have this very interesting world that customers or cloud providers will not be able to get access to your memory. And what we do, again as you can see, our customers don't need to change their applications. Their VMs are running exactly as it should run. And what you've running in VM, you actually see your memory clear, it's not encrypted. But God forbid is trying somebody to do it outside of my confidential box, no, no, no, no, no, you will now be able to do it. Now, you'll see cyber test and it's exactly what combination of these multiple hardware pieces and software pieces have to do. So OS is also modified and OS is modified such way to provide integrity. It means even OS that you're running in your VM box is not modifiable and you as customer can verify. But the most interesting thing I guess how to ensure the super performance of this environment because you can imagine Dave, that's increasing and it's additional performance, additional time, additional latency. So we're able to mitigate all of that by providing incredibly interesting capability in the OS itself. So our customers will get no changes needed, fantastic performance and scales as they would expect from cloud providers like Google. >> Okay, thank you. Excellent, appreciate that explanation. So you know again, the narrative on this is, well, you've already given me guarantees as a cloud provider that you don't have access to my data, but this gives another level of assurance, key management as they say is key. Now humans aren't managing the keys, the machines are managing them. So Patricia, my question to you is in addition to, let's go pre-confidential computing days, what are the sort of new guarantees that these hardware based technologies are going to provide to customers? >> So if I am a customer, I am saying I now have full guarantee of confidentiality and integrity of the data and of the code. So if you look at code and data confidentiality, the customer cares and they want to know whether their systems are protected from outside or unauthorized access, and that we covered with Nelly that it is. Confidential computing actually ensures that the applications and data antennas remain secret. The code is actually looking at the data, only the memory is decrypting the data with a key that is ephemeral, and per VM, and generated on demand. Then you have the second point where you have code and data integrity and now customers want to know whether their data was corrupted, tempered with or impacted by outside actors. And what confidential computing ensures is that application internals are not tempered with. So the application, the workload as we call it, that is processing the data is also has not been tempered and preserves integrity. I would also say that this is all verifiable, so you have attestation and this attestation actually generates a log trail and the log trail guarantees that provides a proof that it was preserved. And I think that the offers also a guarantee of what we call sealing, this idea that the secrets have been preserved and not tempered with, confidentiality and integrity of code and data. >> Got it. Okay, thank you. Nelly, you mentioned, I think I heard you say that the applications is transparent, you don't have to change the application, it just comes for free essentially. And we showed some various parts of the stack before, I'm curious as to what's affected, but really more importantly, what is specifically Google's value add? How do partners participate in this, the ecosystem or maybe said another way, how does Google ensure the compatibility of confidential computing with existing systems and applications? >> And a fantastic question by the way, and it's very difficult and definitely complicated world because to be able to provide these guarantees, actually a lot of work was done by community. Google is very much operate and open. So again our operating system, we working this operating system repository OS is OS vendors to ensure that all capabilities that we need is part of the kernels are part of the releases and it's available for customers to understand and even explore if they have fun to explore a lot of code. We have also modified together with our silicon vendors kernel, host kernel to support this capability and it means working this community to ensure that all of those pages are there. We also worked with every single silicon vendor as you've seen, and it's what I probably feel that Google contributed quite a bit in this world. We moved our industry, our community, our vendors to understand the value of easy to use confidential computing or removing barriers. And now I don't know if you noticed Intel is following the lead and also announcing a trusted domain extension, very similar architecture and no surprise, it's a lot of work done with our partners to convince work with them and make this capability available. The same with ARM this year, actually last year, ARM announced future design for confidential computing, it's called confidential computing architecture. And it's also influenced very heavily with similar ideas by Google and industry overall. So it's a lot of work in confidential computing consortiums that we are doing, for example, simply to mention, to ensure interop as you mentioned, between different confidential environments of cloud providers. They want to ensure that they can attest to each other because when you're communicating with different environments, you need to trust them. And if it's running on different cloud providers, you need to ensure that you can trust your receiver when you sharing your sensitive data workloads or secret with them. So we coming as a community and we have this at Station Sig, the community-based systems that we want to build, and influence, and work with ARM and every other cloud providers to ensure that they can interop. And it means it doesn't matter where confidential workloads will be hosted, but they can exchange the data in secure, verifiable and controlled by customers really. And to do it, we need to continue what we are doing, working open and contribute with our ideas and ideas of our partners to this role to become what we see confidential computing has to become, it has to become utility. It doesn't need to be so special, but it's what what we've wanted to become. >> Let's talk about, thank you for that explanation. Let's talk about data sovereignty because when you think about data sharing, you think about data sharing across the ecosystem in different regions and then of course data sovereignty comes up, typically public policy, lags, the technology industry and sometimes it's problematic. I know there's a lot of discussions about exceptions but Patricia, we have a graphic on data sovereignty. I'm interested in how confidential computing ensures that data sovereignty and privacy edicts are adhered to, even if they're out of alignment maybe with the pace of technology. One of the frequent examples is when you delete data, can you actually prove the data is deleted with a hundred percent certainty, you got to prove that and a lot of other issues. So looking at this slide, maybe you could take us through your thinking on data sovereignty. >> Perfect. So for us, data sovereignty is only one of the three pillars of digital sovereignty. And I don't want to give the impression that confidential computing addresses it at all, that's why we want to step back and say, hey, digital sovereignty includes data sovereignty where we are giving you full control and ownership of the location, encryption and access to your data. Operational sovereignty where the goal is to give our Google Cloud customers full visibility and control over the provider operations, right? So if there are any updates on hardware, software stack, any operations, there is full transparency, full visibility. And then the third pillar is around software sovereignty, where the customer wants to ensure that they can run their workloads without dependency on the provider's software. So they have sometimes is often referred as survivability that you can actually survive if you are untethered to the cloud and that you can use open source. Now, let's take a deep dive on data sovereignty, which by the way is one of my favorite topics. And we typically focus on saying, hey, we need to care about data residency. We care where the data resides because where the data is at rest or in processing need to typically abides to the jurisdiction, the regulations of the jurisdiction where the data resides. And others say, hey, let's focus on data protection, we want to ensure the confidentiality, and integrity, and availability of the data, which confidential computing is at the heart of that data protection. But it is yet another element that people typically don't talk about when talking about data sovereignty, which is the element of user control. And here Dave, is about what happens to the data when I give you access to my data, and this reminds me of security two decades ago, even a decade ago, where we started the security movement by putting firewall protections and logging accesses. But once you were in, you were able to do everything you wanted with the data. An insider had access to all the infrastructure, the data, and the code. And that's similar because with data sovereignty, we care about whether it resides, who is operating on the data, but the moment that the data is being processed, I need to trust that the processing of the data we abide by user's control, by the policies that I put in place of how my data is going to be used. And if you look at a lot of the regulation today and a lot of the initiatives around the International Data Space Association, IDSA and Gaia-X, there is a movement of saying the two parties, the provider of the data and the receiver of the data going to agree on a contract that describes what my data can be used for. The challenge is to ensure that once the data crosses boundaries, that the data will be used for the purposes that it was intended and specified in the contract. And if you actually bring together, and this is the exciting part, confidential computing together with policy enforcement. Now, the policy enforcement can guarantee that the data is only processed within the confines of a confidential computing environment, that the workload is in cryptographically verified that there is the workload that was meant to process the data and that the data will be only used when abiding to the confidentiality and integrity safety of the confidential computing environment. And that's why we believe confidential computing is one necessary and essential technology that will allow us to ensure data sovereignty, especially when it comes to user's control. >> Thank you for that. I mean it was a deep dive, I mean brief, but really detailed. So I appreciate that, especially the verification of the enforcement. Last question, I met you two because as part of my year-end prediction post, you guys sent in some predictions and I wasn't able to get to them in the predictions post, so I'm thrilled that you were able to make the time to come on the program. How widespread do you think the adoption of confidential computing will be in '23 and what's the maturity curve look like this decade in your opinion? Maybe each of you could give us a brief answer. >> So my prediction in five, seven years as I started, it will become utility, it will become TLS. As of freakin' 10 years ago, we couldn't believe that websites will have certificates and we will support encrypted traffic. Now we do, and it's become ubiquity. It's exactly where our confidential computing is heeding and heading, I don't know we deserve yet. It'll take a few years of maturity for us, but we'll do that. >> Thank you. And Patricia, what's your prediction? >> I would double that and say, hey, in the very near future, you will not be able to afford not having it. I believe as digital sovereignty becomes ever more top of mind with sovereign states and also for multinational organizations, and for organizations that want to collaborate with each other, confidential computing will become the norm, it will become the default, if I say mode of operation. I like to compare that today is inconceivable if we talk to the young technologists, it's inconceivable to think that at some point in history and I happen to be alive, that we had data at rest that was non-encrypted, data in transit that was not encrypted. And I think that we'll be inconceivable at some point in the near future that to have unencrypted data while we use. >> You know, and plus I think the beauty of the this industry is because there's so much competition, this essentially comes for free. I want to thank you both for spending some time on Breaking Analysis, there's so much more we could cover. I hope you'll come back to share the progress that you're making in this area and we can double click on some of these topics. Really appreciate your time. >> Anytime. >> Thank you so much, yeah. >> In summary, while confidential computing is being touted by the cloud players as a promising technology for enhancing data privacy and security, there are also those as we said, who remain skeptical. The truth probably lies somewhere in between and it will depend on the specific implementation and the use case as to how effective confidential computing will be. Look as with any new tech, it's important to carefully evaluate the potential benefits, the drawbacks, and make informed decisions based on the specific requirements in the situation and the constraints of each individual customer. But the bottom line is silicon manufacturers are working with cloud providers and other system companies to include confidential computing into their architectures. Competition in our view will moderate price hikes and at the end of the day, this is under-the-covers technology that essentially will come for free, so we'll take it. I want to thank our guests today, Nelly and Patricia from Google. And thanks to Alex Myerson who's on production and manages the podcast. Ken Schiffman as well out of our Boston studio. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters, and Rob Hoof is our editor-in-chief over at siliconangle.com, does some great editing for us. Thank you all. Remember all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com where you can get all the news. If you want to get in touch, you can email me at david.vellante@siliconangle.com or DM me at D Vellante, and you can also comment on my LinkedIn post. Definitely you want to check out etr.ai for the best survey data in the enterprise tech business. I know we didn't hit on a lot today, but there's some amazing data and it's always being updated, so check that out. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (subtle music)

Published Date : Feb 10 2023

SUMMARY :

bringing you data-driven and at the end of the day, and then Patricia, you can weigh in. contribute to get with my team Okay, Patricia? Director in the Office of the CTO, for that both of you. in the data to cloud into the architecture a bit, and privacy of the data. that are scared of the cloud. and eliminate some of the we could stay with you and they fed to memory controller. to you is in addition to, and integrity of the data and of the code. that the applications is transparent, and ideas of our partners to this role One of the frequent examples and a lot of the initiatives of the enforcement. and we will support encrypted traffic. And Patricia, and I happen to be alive, the beauty of the this industry and at the end of the day,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
NellyPERSON

0.99+

PatriciaPERSON

0.99+

Alex MyersonPERSON

0.99+

AWSORGANIZATION

0.99+

International Data Space AssociationORGANIZATION

0.99+

DavePERSON

0.99+

AWS'ORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Rob HoofPERSON

0.99+

Cheryl KnightPERSON

0.99+

Nelly PorterPERSON

0.99+

GoogleORGANIZATION

0.99+

NvidiaORGANIZATION

0.99+

IDSAORGANIZATION

0.99+

Rodrigo BroncoPERSON

0.99+

2019DATE

0.99+

Ken SchiffmanPERSON

0.99+

IntelORGANIZATION

0.99+

AMDORGANIZATION

0.99+

2017DATE

0.99+

ARMORGANIZATION

0.99+

AemORGANIZATION

0.99+

NelliePERSON

0.99+

Kristin MartinPERSON

0.99+

Red HatORGANIZATION

0.99+

two partiesQUANTITY

0.99+

Palo AltoLOCATION

0.99+

last yearDATE

0.99+

Patricia FlorissiPERSON

0.99+

oneQUANTITY

0.99+

MetaORGANIZATION

0.99+

twoQUANTITY

0.99+

thirdQUANTITY

0.99+

Gaia-XORGANIZATION

0.99+

second pointQUANTITY

0.99+

two expertsQUANTITY

0.99+

david.vellante@siliconangle.comOTHER

0.99+

secondQUANTITY

0.99+

bothQUANTITY

0.99+

first questionQUANTITY

0.99+

fiveQUANTITY

0.99+

OneQUANTITY

0.99+

theCUBE StudiosORGANIZATION

0.99+

two decades agoDATE

0.99+

'23DATE

0.99+

eachQUANTITY

0.99+

a decade agoDATE

0.99+

threeQUANTITY

0.99+

zero daysQUANTITY

0.98+

fourQUANTITY

0.98+

OCTOORGANIZATION

0.98+

todayDATE

0.98+

Ben Hirschberg, Armo Ltd | CloudNativeSecurityCon 23


 

(upbeat music) >> Hello everyone, welcome back to theCUBE's coverage of Cloud Native SecurityCon North America 2023. Obviously, CUBE's coverage with our CUBE Center Report. We're not there on the ground, but we have folks and our CUBE Alumni there. We have entrepreneurs there. Of course, we want to be there in person, but we're remote. We've got Ben Hirschberg, CTO and Co-Founder of Armo, a cloud native security startup, well positioned in this industry. He's there in Seattle. Ben, thank you for coming on and sharing what's going on with theCUBE. >> Yeah, it's great to be here, John. >> So we had written on you guys up on SiliconANGLE. Congratulations on your momentum and traction. But let's first get into what's going on there on the ground? What are some of the key trends? What's the most important story being told there? What is the vibe? What's the most important story right now? >> So I think, I would like to start here with the I think the most important thing was that I think the event is very successful. Usually, the Cloud Native Security Day usually was part of KubeCon in the previous years and now it became its own conference of its own and really kudos to all the organizers who brought this up in, actually in a short time. And it wasn't really clear how many people will turn up, but at the end, we see a really nice turn up and really great talks and keynotes around here. I think that one of the biggest trends, which haven't started like in this conference, but already we're talking for a while is supply chain. Supply chain is security. I think it's, right now, the biggest trend in the talks, in the keynotes. And I think that we start to see companies, big companies, who are adopting themselves into this direction. There is a clear industry need. There is a clear problem and I think that the cloud native security teams are coming up with tooling around it. I think for right now we see more tools than adoption, but the adoption is always following the tooling. And I think it already proves itself. So we have just a very interesting talk this morning about the OpenSSL vulnerability, which was I think around Halloween, which came out and everyone thought that it's going to be a critical issue for the whole cloud native and internet infrastructure and at the end it turned out to be a lesser problem, but the reason why I think it was understood that to be a lesser problem real soon was that because people started to use (indistinct) store software composition information in the environment so security teams could look into, look up in their systems okay, what, where they're using OpenSSL, which version they are using. It became really soon real clear that this version is not adopted by a wide array of software out there so the tech surface is relatively small and I think it already proved itself that the direction if everyone is talking about. >> Yeah, we agree, we're very bullish on this move from the Cloud Native Foundation CNCF that do the security conference. Amazon Web Services has re:Invent. That's their big show, but they also have re:Inforce, the security show, so clearly they work together. I like the decoupling, very cohesive. But you guys have Kubescape of Kubernetes security. Talk about the conversations that are there and that you're hearing around why there's different event what's different around KubeCon and CloudNativeCon than this Cloud Native SecurityCon. It's not called KubeSucSecCon, it's called Cloud Native SecurityCon. What's the difference? Are people confused? Is it clear? What's the difference between the two shows? What are you hearing? >> So I think that, you know, there is a good question. Okay, where is Cloud Native Computing Foundation came from? Obviously everyone knows that it was somewhat coupled with the adoption of Kubernetes. It was a clear understanding in the industry that there are different efforts where the industry needs to come together without looking be very vendor-specific and try to sort out a lot of issues in order to enable adoption and bring great value and I think that the main difference here between KubeCon and the Cloud Native Security Conference is really the focus, and not just on Kubernetes, but the whole ecosystem behind that. The way we are delivering software, the way we are monitoring software, and all where Kubernetes is only just, you know, maybe the biggest clog in the system, but, you know, just one of the others and it gives great overview of what you have in the whole ecosystem. >> Yeah, I think it's a good call. I would add that what I'm hearing too is that security is so critical to the business model of every company. It's so mainstream. The hackers have a great business model. They make money, their costs are lower than the revenue. So the business of hacking in breaches, ransomware all over the place is so successful that they're playing offense, everyone's playing defense, so it's about time we can get focus to really be faster and more nimble and agile on solving some of these security challenges in open source. So I think that to me is a great focus and so I give total props to the CNC. I call it the event operating system. You got the security group over here decoupled from the main kernel, but they work together. Good call and so this brings back up to some of the things that are going on so I have to ask you, as your startup as a CTO, you guys have the Kubescape platform, how do you guys fit into the landscape and what's different from your tools for Kubernetes environments versus what's out there? >> So I think that our journey is really interesting in the solution space because I think that our mode really tries to understand where security can meet the actual adoption because as you just said, somehow we have to sort out together how security is going to be automated and integrated in its best way. So Kubescape project started as a Kubernetes security posture tool. Just, you know, when people are really early in their adoption of Kubernetes systems, they want to understand whether the installation is is secure, whether the basic configurations are look okay, and giving them instant feedback on that, both in live systems and in the CICD, this is where Kubescape came from. We started as an open source project because we are big believers of open source, of the power of open source security, and I can, you know I think maybe this is my first interview when I can say that Kubescape was accepted to be a CNCF Sandbox project so Armo was actually donating the project to the CNCF, I think, which is a huge milestone and a great way to further the adoption of Kubernetes security and from now on we want to see where the users in Armo and Kubescape project want to see where the users are going, their Kubernetes security journey and help them to automatize, help them to to implement security more fast in the way the developers are using it working. >> Okay, if you don't mind, I want to just get clarification. What's the difference between the Armo platform and Kubescape because you have Kubescape Sandbox project and Armo platform. Could you talk about the differences and interaction? >> Sure, Kubescape is an open source project and Armo platform is actually a managed platform which runs Kubescape in the cloud for you because Kubescape is part, it has several parts. One part is, which is running inside the Kubernetes cluster in the CICD processes of the user, and there is another part which we call the backend where the results are stored and can be analyzed further. So Armo platform gives you managed way to run the backend, but I can tell you that backend is also, will be available within a month or two also for everyone to install on their premises as well, because again, we are an open source company and we are, we want to enable users, so the difference is that Armo platform is a managed platform behind Kubescape. >> How does Kubescape differ from closed proprietary sourced solutions? >> So I can tell you that there are closed proprietary solutions which are very good security solutions, but I think that the main difference, if I had to pick beyond the very specific technicalities is the worldview. The way we see that our user is not the CISO. Our user is not necessarily the security team. From our perspective, the user is the DevOps and the developers who are working on the Kubernetes cluster day to day and we want to enable them to improve their security. So actually our approach is more developer-friendly, if I would need to define it very shortly. >> What does this risk calculation score you guys have in Kubscape? That's come up and we cover that in our story. Can you explain to the folks how that fits in? Is it Kubescape is the platform and what's the benefit, what's the purpose? >> So the risk calculation is actually a score we are giving to clusters in order for the users to understand where they are standing in the general population, how they are faring against a perfect hardened cluster. It is based on the number of different tests we are making. And I don't want to go into, you know, the very specifics of the mathematical functions, but in general it takes into account how many functions are failing, security tests are failing inside your cluster. How many nodes you are having, how many workloads are having, and creating this number which enables you to understand where you are standing in the global, in the world. >> What's the customer value that you guys pitching? What's the pitch for the Armo platform? When you go and talk to a customer, are they like, "We need you." Do they come to you? Is it word of mouth? You guys have a strategy? What's the pitch? What's so appealing to the customers? Why are they enthusiastic about you guys? >> So John, I can tell you, maybe it's not so easy to to say the words, but I nearly 20 years in the industry and though I've been always around cyber and the defense industry and I can tell you that I never had this journey where before where I could say that the the customers are coming to us and not we are pitching to customers. Simply because people want to, this is very easy tool, very very easy to use, very understandable and it very helps the engineers to improve security posture. And they're coming to us and they're saying, "Well, awesome, okay, how we can like use it. Do you have a graphical interface?" And we are pointing them to the Armor platform and they are falling in love and coming to us even more and we can tell you that we have a big number of active users behind the platform itself. >> You know, one of the things that comes up every time at KubeCon and Cloud NativeCon when we're there, and we'll be in Amsterdam, so folks watching, you know, we'll see onsite, developer productivity is like the number one thing everyone talks about and security is so important. It's become by default a blocker or anchor or a drag on productivity. This is big, the things that you're mentioning, easy to use, engineering supporting it, developer adoption, you know we've always said on theCUBE, developers will be the de facto standards bodies by their choices 'cause developers make all the decisions. So if I can go faster and I can have security kind of programmed in, I'm not shifting left, it's just I'm just having security kind of in there. That's the dream state. Is that what you guys are trying to do here? Because that's the nirvana, everyone wants to do that. >> Yeah, I think your definition is like perfect because really we had like this, for a very long time we had this world where we decoupled security teams from developers and even for sometimes from engineering at all and I think for multiple reasons, we are more seeing a big convergence. Security teams are becoming part of the engineering and the engineering becoming part of the security and as you're saying, okay, the day-to-day world of developers are becoming very tangled up in the good way with security, so the think about it that today, one of my developers at Armo is creating a pull request. He's already, code is already scanned by security scanners for to test for different security problems. It's already, you know, before he already gets feedback on his first time where he's sharing his code and if there is an issue, he already can solve it and this is just solving issues much faster, much cheaper, and also you asked me about, you know, the wipe in the conference and we know no one can deny the current economic wipe we have and this also relates to security teams and security teams has to be much more efficient. And one of the things that everyone is talking, okay, we need more automation, we need more, better tooling and I think we are really fitting into this. >> Yeah, and I talked to venture capitalists yesterday and today, an angel investor. Best time for startup is right now and again, open source is driving a lot of value. Ben, it's been great to have you on and sharing with us what's going on on the ground there as well as talking about some of the traction you have. Just final question, how old's the company? How much funding do you have? Where you guys located? Put a plug in for the company. You guys looking to hire? Tell us about the company. Were you guys located? How much capital do you have? >> So, okay, the company's here for three years. We've passed a round last March with Tiger and Hyperwise capitals. We are located, most of the company's located today in Israel in Tel Aviv, but we have like great team also in Ukraine and also great guys are in Europe and right now also Craig Box joined us as an open source VP and he's like right now located in New Zealand, so we are a really global team, which I think it's really helps us to strengthen ourselves. >> Yeah, and I think this is the entrepreneurial equation for the future. It's really great to see that global. We heard that in Priyanka Sharma's keynote. It's a global culture, global community. >> Right. >> And so really, really props you guys. Congratulations on Armo and thanks for coming on theCUBE and sharing insights and expertise and also what's happening on the ground. Appreciate it, Ben, thanks for coming on. >> Thank you, John. >> Okay, cheers. Okay, this is CUB coverage here of the Cloud Native SecurityCon in North America 2023. I'm John Furrier for Lisa Martin, Dave Vellante. We're back with more of wrap up of the event after this short break. (gentle upbeat music)

Published Date : Feb 3 2023

SUMMARY :

and sharing what's going on with theCUBE. What is the vibe? and at the end it turned that do the security conference. the way we are monitoring software, I call it the event operating system. the project to the CNCF, What's the difference between in the CICD processes of the user, is the worldview. Is it Kubescape is the platform It is based on the number of What's the pitch for the Armo platform? and the defense industry This is big, the things and the engineering becoming the traction you have. So, okay, the company's Yeah, and I think this is and also what's happening on the ground. of the Cloud Native SecurityCon

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Ben HirschbergPERSON

0.99+

Lisa MartinPERSON

0.99+

EuropeLOCATION

0.99+

SeattleLOCATION

0.99+

IsraelLOCATION

0.99+

UkraineLOCATION

0.99+

JohnPERSON

0.99+

John FurrierPERSON

0.99+

Amazon Web ServicesORGANIZATION

0.99+

New ZealandLOCATION

0.99+

TigerORGANIZATION

0.99+

three yearsQUANTITY

0.99+

CUBEORGANIZATION

0.99+

AmsterdamLOCATION

0.99+

Priyanka SharmaPERSON

0.99+

Tel AvivLOCATION

0.99+

BenPERSON

0.99+

ArmoORGANIZATION

0.99+

todayDATE

0.99+

Craig BoxPERSON

0.99+

two showsQUANTITY

0.99+

HyperwiseORGANIZATION

0.99+

last MarchDATE

0.99+

One partQUANTITY

0.99+

yesterdayDATE

0.99+

Armo LtdORGANIZATION

0.99+

Cloud Native Computing FoundationORGANIZATION

0.99+

KubeConEVENT

0.99+

Cloud Native FoundationORGANIZATION

0.99+

first timeQUANTITY

0.99+

first interviewQUANTITY

0.99+

HalloweenEVENT

0.99+

Cloud Native Security ConferenceEVENT

0.98+

oneQUANTITY

0.98+

Cloud Native SecurityConEVENT

0.98+

KubernetesTITLE

0.98+

Cloud Native Security DayEVENT

0.97+

firstQUANTITY

0.97+

CNCFORGANIZATION

0.97+

KubeSucSecConEVENT

0.97+

CloudNativeConEVENT

0.96+

twoQUANTITY

0.96+

bothQUANTITY

0.95+

North AmericaLOCATION

0.95+

ArmoTITLE

0.94+

nearly 20 yearsQUANTITY

0.94+

Cloud Native SecurityCon North America 2023EVENT

0.94+

KubescapeTITLE

0.94+

OpenSSLTITLE

0.94+

theCUBEORGANIZATION

0.93+

this morningDATE

0.93+

a monthQUANTITY

0.93+

Kubescape SandboxTITLE

0.9+

thingsQUANTITY

0.89+

ArmoPERSON

0.87+

KubscapeTITLE

0.86+

CloudNativeSecurityCon 23EVENT

0.78+

one ofQUANTITY

0.77+

KubescapeORGANIZATION

0.76+

Cloud NativeConEVENT

0.75+

CUBE Center ReportTITLE

0.75+

Breaking Analysis: Enterprise Technology Predictions 2023


 

(upbeat music beginning) >> From the Cube Studios in Palo Alto and Boston, bringing you data-driven insights from the Cube and ETR, this is "Breaking Analysis" with Dave Vellante. >> Making predictions about the future of enterprise tech is more challenging if you strive to lay down forecasts that are measurable. In other words, if you make a prediction, you should be able to look back a year later and say, with some degree of certainty, whether the prediction came true or not, with evidence to back that up. Hello and welcome to this week's Wikibon Cube Insights, powered by ETR. In this breaking analysis, we aim to do just that, with predictions about the macro IT spending environment, cost optimization, security, lots to talk about there, generative AI, cloud, and of course supercloud, blockchain adoption, data platforms, including commentary on Databricks, snowflake, and other key players, automation, events, and we may even have some bonus predictions around quantum computing, and perhaps some other areas. To make all this happen, we welcome back, for the third year in a row, my colleague and friend Eric Bradley from ETR. Eric, thanks for all you do for the community, and thanks for being part of this program. Again. >> I wouldn't miss it for the world. I always enjoy this one. Dave, good to see you. >> Yeah, so let me bring up this next slide and show you, actually come back to me if you would. I got to show the audience this. These are the inbounds that we got from PR firms starting in October around predictions. They know we do prediction posts. And so they'll send literally thousands and thousands of predictions from hundreds of experts in the industry, technologists, consultants, et cetera. And if you bring up the slide I can show you sort of the pattern that developed here. 40% of these thousands of predictions were from cyber. You had AI and data. If you combine those, it's still not close to cyber. Cost optimization was a big thing. Of course, cloud, some on DevOps, and software. Digital... Digital transformation got, you know, some lip service and SaaS. And then there was other, it's kind of around 2%. So quite remarkable, when you think about the focus on cyber, Eric. >> Yeah, there's two reasons why I think it makes sense, though. One, the cybersecurity companies have a lot of cash, so therefore the PR firms might be working a little bit harder for them than some of their other clients. (laughs) And then secondly, as you know, for multiple years now, when we do our macro survey, we ask, "What's your number one spending priority?" And again, it's security. It just isn't going anywhere. It just stays at the top. So I'm actually not that surprised by that little pie chart there, but I was shocked that SaaS was only 5%. You know, going back 10 years ago, that would've been the only thing anyone was talking about. >> Yeah. So true. All right, let's get into it. First prediction, we always start with kind of tech spending. Number one is tech spending increases between four and 5%. ETR has currently got it at 4.6% coming into 2023. This has been a consistently downward trend all year. We started, you know, much, much higher as we've been reporting. Bottom line is the fed is still in control. They're going to ease up on tightening, is the expectation, they're going to shoot for a soft landing. But you know, my feeling is this slingshot economy is going to continue, and it's going to continue to confound, whether it's supply chains or spending. The, the interesting thing about the ETR data, Eric, and I want you to comment on this, the largest companies are the most aggressive to cut. They're laying off, smaller firms are spending faster. They're actually growing at a much larger, faster rate as are companies in EMEA. And that's a surprise. That's outpacing the US and APAC. Chime in on this, Eric. >> Yeah, I was surprised on all of that. First on the higher level spending, we are definitely seeing it coming down, but the interesting thing here is headlines are making it worse. The huge research shop recently said 0% growth. We're coming in at 4.6%. And just so everyone knows, this is not us guessing, we asked 1,525 IT decision-makers what their budget growth will be, and they came in at 4.6%. Now there's a huge disparity, as you mentioned. The Fortune 500, global 2000, barely at 2% growth, but small, it's at 7%. So we're at a situation right now where the smaller companies are still playing a little bit of catch up on digital transformation, and they're spending money. The largest companies that have the most to lose from a recession are being more trepidatious, obviously. So they're playing a "Wait and see." And I hope we don't talk ourselves into a recession. Certainly the headlines and some of their research shops are helping it along. But another interesting comment here is, you know, energy and utilities used to be called an orphan and widow stock group, right? They are spending more than anyone, more than financials insurance, more than retail consumer. So right now it's being driven by mid, small, and energy and utilities. They're all spending like gangbusters, like nothing's happening. And it's the rest of everyone else that's being very cautious. >> Yeah, so very unpredictable right now. All right, let's go to number two. Cost optimization remains a major theme in 2023. We've been reporting on this. You've, we've shown a chart here. What's the primary method that your organization plans to use? You asked this question of those individuals that cited that they were going to reduce their spend and- >> Mhm. >> consolidating redundant vendors, you know, still leads the way, you know, far behind, cloud optimization is second, but it, but cloud continues to outpace legacy on-prem spending, no doubt. Somebody, it was, the guy's name was Alexander Feiglstorfer from Storyblok, sent in a prediction, said "All in one becomes extinct." Now, generally I would say I disagree with that because, you know, as we know over the years, suites tend to win out over, you know, individual, you know, point products. But I think what's going to happen is all in one is going to remain the norm for these larger companies that are cutting back. They want to consolidate redundant vendors, and the smaller companies are going to stick with that best of breed and be more aggressive and try to compete more effectively. What's your take on that? >> Yeah, I'm seeing much more consolidation in vendors, but also consolidation in functionality. We're seeing people building out new functionality, whether it's, we're going to talk about this later, so I don't want to steal too much of our thunder right now, but data and security also, we're seeing a functionality creep. So I think there's further consolidation happening here. I think niche solutions are going to be less likely, and platform solutions are going to be more likely in a spending environment where you want to reduce your vendors. You want to have one bill to pay, not 10. Another thing on this slide, real quick if I can before I move on, is we had a bunch of people write in and some of the answer options that aren't on this graph but did get cited a lot, unfortunately, is the obvious reduction in staff, hiring freezes, and delaying hardware, were three of the top write-ins. And another one was offshore outsourcing. So in addition to what we're seeing here, there were a lot of write-in options, and I just thought it would be important to state that, but essentially the cost optimization is by and far the highest one, and it's growing. So it's actually increased in our citations over the last year. >> And yeah, specifically consolidating redundant vendors. And so I actually thank you for bringing that other up, 'cause I had asked you, Eric, is there any evidence that repatriation is going on and we don't see it in the numbers, we don't see it even in the other, there was, I think very little or no mention of cloud repatriation, even though it might be happening in this in a smattering. >> Not a single mention, not one single mention. I went through it for you. Yep. Not one write-in. >> All right, let's move on. Number three, security leads M&A in 2023. Now you might say, "Oh, well that's a layup," but let me set this up Eric, because I didn't really do a great job with the slide. I hid the, what you've done, because you basically took, this is from the emerging technology survey with 1,181 responses from November. And what we did is we took Palo Alto and looked at the overlap in Palo Alto Networks accounts with these vendors that were showing on this chart. And Eric, I'm going to ask you to explain why we put a circle around OneTrust, but let me just set it up, and then have you comment on the slide and take, give us more detail. We're seeing private company valuations are off, you know, 10 to 40%. We saw a sneak, do a down round, but pretty good actually only down 12%. We've seen much higher down rounds. Palo Alto Networks we think is going to get busy. Again, they're an inquisitive company, they've been sort of quiet lately, and we think CrowdStrike, Cisco, Microsoft, Zscaler, we're predicting all of those will make some acquisitions and we're thinking that the targets are somewhere in this mess of security taxonomy. Other thing we're predicting AI meets cyber big time in 2023, we're going to probably going to see some acquisitions of those companies that are leaning into AI. We've seen some of that with Palo Alto. And then, you know, your comment to me, Eric, was "The RSA conference is going to be insane, hopping mad, "crazy this April," (Eric laughing) but give us your take on this data, and why the red circle around OneTrust? Take us back to that slide if you would, Alex. >> Sure. There's a few things here. First, let me explain what we're looking at. So because we separate the public companies and the private companies into two separate surveys, this allows us the ability to cross-reference that data. So what we're doing here is in our public survey, the tesis, everyone who cited some spending with Palo Alto, meaning they're a Palo Alto customer, we then cross-reference that with the private tech companies. Who also are they spending with? So what you're seeing here is an overlap. These companies that we have circled are doing the best in Palo Alto's accounts. Now, Palo Alto went and bought Twistlock a few years ago, which this data slide predicted, to be quite honest. And so I don't know if they necessarily are going to go after Snyk. Snyk, sorry. They already have something in that space. What they do need, however, is more on the authentication space. So I'm looking at OneTrust, with a 45% overlap in their overall net sentiment. That is a company that's already existing in their accounts and could be very synergistic to them. BeyondTrust as well, authentication identity. This is something that Palo needs to do to move more down that zero trust path. Now why did I pick Palo first? Because usually they're very inquisitive. They've been a little quiet lately. Secondly, if you look at the backdrop in the markets, the IPO freeze isn't going to last forever. Sooner or later, the IPO markets are going to open up, and some of these private companies are going to tap into public equity. In the meantime, however, cash funding on the private side is drying up. If they need another round, they're not going to get it, and they're certainly not going to get it at the valuations they were getting. So we're seeing valuations maybe come down where they're a touch more attractive, and Palo knows this isn't going to last forever. Cisco knows that, CrowdStrike, Zscaler, all these companies that are trying to make a push to become that vendor that you're consolidating in, around, they have a chance now, they have a window where they need to go make some acquisitions. And that's why I believe leading up to RSA, we're going to see some movement. I think it's going to pretty, a really exciting time in security right now. >> Awesome. Thank you. Great explanation. All right, let's go on the next one. Number four is, it relates to security. Let's stay there. Zero trust moves from hype to reality in 2023. Now again, you might say, "Oh yeah, that's a layup." A lot of these inbounds that we got are very, you know, kind of self-serving, but we always try to put some meat in the bone. So first thing we do is we pull out some commentary from, Eric, your roundtable, your insights roundtable. And we have a CISO from a global hospitality firm says, "For me that's the highest priority." He's talking about zero trust because it's the best ROI, it's the most forward-looking, and it enables a lot of the business transformation activities that we want to do. CISOs tell me that they actually can drive forward transformation projects that have zero trust, and because they can accelerate them, because they don't have to go through the hurdle of, you know, getting, making sure that it's secure. Second comment, zero trust closes that last mile where once you're authenticated, they open up the resource to you in a zero trust way. That's a CISO of a, and a managing director of a cyber risk services enterprise. Your thoughts on this? >> I can be here all day, so I'm going to try to be quick on this one. This is not a fluff piece on this one. There's a couple of other reasons this is happening. One, the board finally gets it. Zero trust at first was just a marketing hype term. Now the board understands it, and that's why CISOs are able to push through it. And what they finally did was redefine what it means. Zero trust simply means moving away from hardware security, moving towards software-defined security, with authentication as its base. The board finally gets that, and now they understand that this is necessary and it's being moved forward. The other reason it's happening now is hybrid work is here to stay. We weren't really sure at first, large companies were still trying to push people back to the office, and it's going to happen. The pendulum will swing back, but hybrid work's not going anywhere. By basically on our own data, we're seeing that 69% of companies expect remote and hybrid to be permanent, with only 30% permanent in office. Zero trust works for a hybrid environment. So all of that is the reason why this is happening right now. And going back to our previous prediction, this is why we're picking Palo, this is why we're picking Zscaler to make these acquisitions. Palo Alto needs to be better on the authentication side, and so does Zscaler. They're both fantastic on zero trust network access, but they need the authentication software defined aspect, and that's why we think this is going to happen. One last thing, in that CISO round table, I also had somebody say, "Listen, Zscaler is incredible. "They're doing incredibly well pervading the enterprise, "but their pricing's getting a little high," and they actually think Palo Alto is well-suited to start taking some of that share, if Palo can make one move. >> Yeah, Palo Alto's consolidation story is very strong. Here's my question and challenge. Do you and me, so I'm always hardcore about, okay, you've got to have evidence. I want to look back at these things a year from now and say, "Did we get it right? Yes or no?" If we got it wrong, we'll tell you we got it wrong. So how are we going to measure this? I'd say a couple things, and you can chime in. One is just the number of vendors talking about it. That's, but the marketing always leads the reality. So the second part of that is we got to get evidence from the buying community. Can you help us with that? >> (laughs) Luckily, that's what I do. I have a data company that asks thousands of IT decision-makers what they're adopting and what they're increasing spend on, as well as what they're decreasing spend on and what they're replacing. So I have snapshots in time over the last 11 years where I can go ahead and compare and contrast whether this adoption is happening or not. So come back to me in 12 months and I'll let you know. >> Now, you know, I will. Okay, let's bring up the next one. Number five, generative AI hits where the Metaverse missed. Of course everybody's talking about ChatGPT, we just wrote last week in a breaking analysis with John Furrier and Sarjeet Joha our take on that. We think 2023 does mark a pivot point as natural language processing really infiltrates enterprise tech just as Amazon turned the data center into an API. We think going forward, you're going to be interacting with technology through natural language, through English commands or other, you know, foreign language commands, and investors are lining up, all the VCs are getting excited about creating something competitive to ChatGPT, according to (indistinct) a hundred million dollars gets you a seat at the table, gets you into the game. (laughing) That's before you have to start doing promotion. But he thinks that's what it takes to actually create a clone or something equivalent. We've seen stuff from, you know, the head of Facebook's, you know, AI saying, "Oh, it's really not that sophisticated, ChatGPT, "it's kind of like IBM Watson, it's great engineering, "but you know, we've got more advanced technology." We know Google's working on some really interesting stuff. But here's the thing. ETR just launched this survey for the February survey. It's in the field now. We circle open AI in this category. They weren't even in the survey, Eric, last quarter. So 52% of the ETR survey respondents indicated a positive sentiment toward open AI. I added up all the sort of different bars, we could double click on that. And then I got this inbound from Scott Stevenson of Deep Graham. He said "AI is recession-proof." I don't know if that's the case, but it's a good quote. So bring this back up and take us through this. Explain this chart for us, if you would. >> First of all, I like Scott's quote better than the Facebook one. I think that's some sour grapes. Meta just spent an insane amount of money on the Metaverse and that's a dud. Microsoft just spent money on open AI and it is hot, undoubtedly hot. We've only been in the field with our current ETS survey for a week. So my caveat is it's preliminary data, but I don't care if it's preliminary data. (laughing) We're getting a sneak peek here at what is the number one net sentiment and mindshare leader in the entire machine-learning AI sector within a week. It's beating Data- >> 600. 600 in. >> It's beating Databricks. And we all know Databricks is a huge established enterprise company, not only in machine-learning AI, but it's in the top 10 in the entire survey. We have over 400 vendors in this survey. It's number eight overall, already. In a week. This is not hype. This is real. And I could go on the NLP stuff for a while. Not only here are we seeing it in open AI and machine-learning and AI, but we're seeing NLP in security. It's huge in email security. It's completely transforming that area. It's one of the reasons I thought Palo might take Abnormal out. They're doing such a great job with NLP in this email side, and also in the data prep tools. NLP is going to take out data prep tools. If we have time, I'll discuss that later. But yeah, this is, to me this is a no-brainer, and we're already seeing it in the data. >> Yeah, John Furrier called, you know, the ChatGPT introduction. He said it reminded him of the Netscape moment, when we all first saw Netscape Navigator and went, "Wow, it really could be transformative." All right, number six, the cloud expands to supercloud as edge computing accelerates and CloudFlare is a big winner in 2023. We've reported obviously on cloud, multi-cloud, supercloud and CloudFlare, basically saying what multi-cloud should have been. We pulled this quote from Atif Kahn, who is the founder and CTO of Alkira, thanks, one of the inbounds, thank you. "In 2023, highly distributed IT environments "will become more the norm "as organizations increasingly deploy hybrid cloud, "multi-cloud and edge settings..." Eric, from one of your round tables, "If my sources from edge computing are coming "from the cloud, that means I have my workloads "running in the cloud. "There is no one better than CloudFlare," That's a senior director of IT architecture at a huge financial firm. And then your analysis shows CloudFlare really growing in pervasion, that sort of market presence in the dataset, dramatically, to near 20%, leading, I think you had told me that they're even ahead of Google Cloud in terms of momentum right now. >> That was probably the biggest shock to me in our January 2023 tesis, which covers the public companies in the cloud computing sector. CloudFlare has now overtaken GCP in overall spending, and I was shocked by that. It's already extremely pervasive in networking, of course, for the edge networking side, and also in security. This is the number one leader in SaaSi, web access firewall, DDoS, bot protection, by your definition of supercloud, which we just did a couple of weeks ago, and I really enjoyed that by the way Dave, I think CloudFlare is the one that fits your definition best, because it's bringing all of these aspects together, and most importantly, it's cloud agnostic. It does not need to rely on Azure or AWS to do this. It has its own cloud. So I just think it's, when we look at your definition of supercloud, CloudFlare is the poster child. >> You know, what's interesting about that too, is a lot of people are poo-pooing CloudFlare, "Ah, it's, you know, really kind of not that sophisticated." "You don't have as many tools," but to your point, you're can have those tools in the cloud, Cloudflare's doing serverless on steroids, trying to keep things really simple, doing a phenomenal job at, you know, various locations around the world. And they're definitely one to watch. Somebody put them on my radar (laughing) a while ago and said, "Dave, you got to do a breaking analysis on CloudFlare." And so I want to thank that person. I can't really name them, 'cause they work inside of a giant hyperscaler. But- (Eric laughing) (Dave chuckling) >> Real quickly, if I can from a competitive perspective too, who else is there? They've already taken share from Akamai, and Fastly is their really only other direct comp, and they're not there. And these guys are in poll position and they're the only game in town right now. I just, I don't see it slowing down. >> I thought one of your comments from your roundtable I was reading, one of the folks said, you know, CloudFlare, if my workloads are in the cloud, they are, you know, dominant, they said not as strong with on-prem. And so Akamai is doing better there. I'm like, "Okay, where would you want to be?" (laughing) >> Yeah, which one of those two would you rather be? >> Right? Anyway, all right, let's move on. Number seven, blockchain continues to look for a home in the enterprise, but devs will slowly begin to adopt in 2023. You know, blockchains have got a lot of buzz, obviously crypto is, you know, the killer app for blockchain. Senior IT architect in financial services from your, one of your insight roundtables said quote, "For enterprises to adopt a new technology, "there have to be proven turnkey solutions. "My experience in talking with my peers are, "blockchain is still an open-source component "where you have to build around it." Now I want to thank Ravi Mayuram, who's the CTO of Couchbase sent in, you know, one of the predictions, he said, "DevOps will adopt blockchain, specifically Ethereum." And he referenced actually in his email to me, Solidity, which is the programming language for Ethereum, "will be in every DevOps pro's playbook, "mirroring the boom in machine-learning. "Newer programming languages like Solidity "will enter the toolkits of devs." His point there, you know, Solidity for those of you don't know, you know, Bitcoin is not programmable. Solidity, you know, came out and that was their whole shtick, and they've been improving that, and so forth. But it, Eric, it's true, it really hasn't found its home despite, you know, the potential for smart contracts. IBM's pushing it, VMware has had announcements, and others, really hasn't found its way in the enterprise yet. >> Yeah, and I got to be honest, I don't think it's going to, either. So when we did our top trends series, this was basically chosen as an anti-prediction, I would guess, that it just continues to not gain hold. And the reason why was that first comment, right? It's very much a niche solution that requires a ton of custom work around it. You can't just plug and play it. And at the end of the day, let's be very real what this technology is, it's a database ledger, and we already have database ledgers in the enterprise. So why is this a priority to move to a different database ledger? It's going to be very niche cases. I like the CTO comment from Couchbase about it being adopted by DevOps. I agree with that, but it has to be a DevOps in a very specific use case, and a very sophisticated use case in financial services, most likely. And that's not across the entire enterprise. So I just think it's still going to struggle to get its foothold for a little bit longer, if ever. >> Great, thanks. Okay, let's move on. Number eight, AWS Databricks, Google Snowflake lead the data charge with Microsoft. Keeping it simple. So let's unpack this a little bit. This is the shared accounts peer position for, I pulled data platforms in for analytics, machine-learning and AI and database. So I could grab all these accounts or these vendors and see how they compare in those three sectors. Analytics, machine-learning and database. Snowflake and Databricks, you know, they're on a crash course, as you and I have talked about. They're battling to be the single source of truth in analytics. They're, there's going to be a big focus. They're already started. It's going to be accelerated in 2023 on open formats. Iceberg, Python, you know, they're all the rage. We heard about Iceberg at Snowflake Summit, last summer or last June. Not a lot of people had heard of it, but of course the Databricks crowd, who knows it well. A lot of other open source tooling. There's a company called DBT Labs, which you're going to talk about in a minute. George Gilbert put them on our radar. We just had Tristan Handy, the CEO of DBT labs, on at supercloud last week. They are a new disruptor in data that's, they're essentially making, they're API-ifying, if you will, KPIs inside the data warehouse and dramatically simplifying that whole data pipeline. So really, you know, the ETL guys should be shaking in their boots with them. Coming back to the slide. Google really remains focused on BigQuery adoption. Customers have complained to me that they would like to use Snowflake with Google's AI tools, but they're being forced to go to BigQuery. I got to ask Google about that. AWS continues to stitch together its bespoke data stores, that's gone down that "Right tool for the right job" path. David Foyer two years ago said, "AWS absolutely is going to have to solve that problem." We saw them start to do it in, at Reinvent, bringing together NoETL between Aurora and Redshift, and really trying to simplify those worlds. There's going to be more of that. And then Microsoft, they're just making it cheap and easy to use their stuff, you know, despite some of the complaints that we hear in the community, you know, about things like Cosmos, but Eric, your take? >> Yeah, my concern here is that Snowflake and Databricks are fighting each other, and it's allowing AWS and Microsoft to kind of catch up against them, and I don't know if that's the right move for either of those two companies individually, Azure and AWS are building out functionality. Are they as good? No they're not. The other thing to remember too is that AWS and Azure get paid anyway, because both Databricks and Snowflake run on top of 'em. So (laughing) they're basically collecting their toll, while these two fight it out with each other, and they build out functionality. I think they need to stop focusing on each other, a little bit, and think about the overall strategy. Now for Databricks, we know they came out first as a machine-learning AI tool. They were known better for that spot, and now they're really trying to play catch-up on that data storage compute spot, and inversely for Snowflake, they were killing it with the compute separation from storage, and now they're trying to get into the MLAI spot. I actually wouldn't be surprised to see them make some sort of acquisition. Frank Slootman has been a little bit quiet, in my opinion there. The other thing to mention is your comment about DBT Labs. If we look at our emerging technology survey, last survey when this came out, DBT labs, number one leader in that data integration space, I'm going to just pull it up real quickly. It looks like they had a 33% overall net sentiment to lead data analytics integration. So they are clearly growing, it's fourth straight survey consecutively that they've grown. The other name we're seeing there a little bit is Cribl, but DBT labs is by far the number one player in this space. >> All right. Okay, cool. Moving on, let's go to number nine. With Automation mixer resurgence in 2023, we're showing again data. The x axis is overlap or presence in the dataset, and the vertical axis is shared net score. Net score is a measure of spending momentum. As always, you've seen UI path and Microsoft Power Automate up until the right, that red line, that 40% line is generally considered elevated. UI path is really separating, creating some distance from Automation Anywhere, they, you know, previous quarters they were much closer. Microsoft Power Automate came on the scene in a big way, they loom large with this "Good enough" approach. I will say this, I, somebody sent me a results of a (indistinct) survey, which showed UiPath actually had more mentions than Power Automate, which was surprising, but I think that's not been the case in the ETR data set. We're definitely seeing a shift from back office to front soft office kind of workloads. Having said that, software testing is emerging as a mainstream use case, we're seeing ML and AI become embedded in end-to-end automations, and low-code is serving the line of business. And so this, we think, is going to increasingly have appeal to organizations in the coming year, who want to automate as much as possible and not necessarily, we've seen a lot of layoffs in tech, and people... You're going to have to fill the gaps with automation. That's a trend that's going to continue. >> Yep, agreed. At first that comment about Microsoft Power Automate having less citations than UiPath, that's shocking to me. I'm looking at my chart right here where Microsoft Power Automate was cited by over 60% of our entire survey takers, and UiPath at around 38%. Now don't get me wrong, 38% pervasion's fantastic, but you know you're not going to beat an entrenched Microsoft. So I don't really know where that comment came from. So UiPath, looking at it alone, it's doing incredibly well. It had a huge rebound in its net score this last survey. It had dropped going through the back half of 2022, but we saw a big spike in the last one. So it's got a net score of over 55%. A lot of people citing adoption and increasing. So that's really what you want to see for a name like this. The problem is that just Microsoft is doing its playbook. At the end of the day, I'm going to do a POC, why am I going to pay more for UiPath, or even take on another separate bill, when we know everyone's consolidating vendors, if my license already includes Microsoft Power Automate? It might not be perfect, it might not be as good, but what I'm hearing all the time is it's good enough, and I really don't want another invoice. >> Right. So how does UiPath, you know, and Automation Anywhere, how do they compete with that? Well, the way they compete with it is they got to have a better product. They got a product that's 10 times better. You know, they- >> Right. >> they're not going to compete based on where the lowest cost, Microsoft's got that locked up, or where the easiest to, you know, Microsoft basically give it away for free, and that's their playbook. So that's, you know, up to UiPath. UiPath brought on Rob Ensslin, I've interviewed him. Very, very capable individual, is now Co-CEO. So he's kind of bringing that adult supervision in, and really tightening up the go to market. So, you know, we know this company has been a rocket ship, and so getting some control on that and really getting focused like a laser, you know, could be good things ahead there for that company. Okay. >> One of the problems, if I could real quick Dave, is what the use cases are. When we first came out with RPA, everyone was super excited about like, "No, UiPath is going to be great for super powerful "projects, use cases." That's not what RPA is being used for. As you mentioned, it's being used for mundane tasks, so it's not automating complex things, which I think UiPath was built for. So if you were going to get UiPath, and choose that over Microsoft, it's going to be 'cause you're doing it for more powerful use case, where it is better. But the problem is that's not where the enterprise is using it. The enterprise are using this for base rote tasks, and simply, Microsoft Power Automate can do that. >> Yeah, it's interesting. I've had people on theCube that are both Microsoft Power Automate customers and UiPath customers, and I've asked them, "Well you know, "how do you differentiate between the two?" And they've said to me, "Look, our users and personal productivity users, "they like Power Automate, "they can use it themselves, and you know, "it doesn't take a lot of, you know, support on our end." The flip side is you could do that with UiPath, but like you said, there's more of a focus now on end-to-end enterprise automation and building out those capabilities. So it's increasingly a value play, and that's going to be obviously the challenge going forward. Okay, my last one, and then I think you've got some bonus ones. Number 10, hybrid events are the new category. Look it, if I can get a thousand inbounds that are largely self-serving, I can do my own here, 'cause we're in the events business. (Eric chuckling) Here's the prediction though, and this is a trend we're seeing, the number of physical events is going to dramatically increase. That might surprise people, but most of the big giant events are going to get smaller. The exception is AWS with Reinvent, I think Snowflake's going to continue to grow. So there are examples of physical events that are growing, but generally, most of the big ones are getting smaller, and there's going to be many more smaller intimate regional events and road shows. These micro-events, they're going to be stitched together. Digital is becoming a first class citizen, so people really got to get their digital acts together, and brands are prioritizing earned media, and they're beginning to build their own news networks, going direct to their customers. And so that's a trend we see, and I, you know, we're right in the middle of it, Eric, so you know we're going to, you mentioned RSA, I think that's perhaps going to be one of those crazy ones that continues to grow. It's shrunk, and then it, you know, 'cause last year- >> Yeah, it did shrink. >> right, it was the last one before the pandemic, and then they sort of made another run at it last year. It was smaller but it was very vibrant, and I think this year's going to be huge. Global World Congress is another one, we're going to be there end of Feb. That's obviously a big big show, but in general, the brands and the technology vendors, even Oracle is going to scale down. I don't know about Salesforce. We'll see. You had a couple of bonus predictions. Quantum and maybe some others? Bring us home. >> Yeah, sure. I got a few more. I think we touched upon one, but I definitely think the data prep tools are facing extinction, unfortunately, you know, the Talons Informatica is some of those names. The problem there is that the BI tools are kind of including data prep into it already. You know, an example of that is Tableau Prep Builder, and then in addition, Advanced NLP is being worked in as well. ThoughtSpot, Intelius, both often say that as their selling point, Tableau has Ask Data, Click has Insight Bot, so you don't have to really be intelligent on data prep anymore. A regular business user can just self-query, using either the search bar, or even just speaking into what it needs, and these tools are kind of doing the data prep for it. I don't think that's a, you know, an out in left field type of prediction, but it's the time is nigh. The other one I would also state is that I think knowledge graphs are going to break through this year. Neo4j in our survey is growing in pervasion in Mindshare. So more and more people are citing it, AWS Neptune's getting its act together, and we're seeing that spending intentions are growing there. Tiger Graph is also growing in our survey sample. I just think that the time is now for knowledge graphs to break through, and if I had to do one more, I'd say real-time streaming analytics moves from the very, very rich big enterprises to downstream, to more people are actually going to be moving towards real-time streaming, again, because the data prep tools and the data pipelines have gotten easier to use, and I think the ROI on real-time streaming is obviously there. So those are three that didn't make the cut, but I thought deserved an honorable mention. >> Yeah, I'm glad you did. Several weeks ago, we did an analyst prediction roundtable, if you will, a cube session power panel with a number of data analysts and that, you know, streaming, real-time streaming was top of mind. So glad you brought that up. Eric, as always, thank you very much. I appreciate the time you put in beforehand. I know it's been crazy, because you guys are wrapping up, you know, the last quarter survey in- >> Been a nuts three weeks for us. (laughing) >> job. I love the fact that you're doing, you know, the ETS survey now, I think it's quarterly now, right? Is that right? >> Yep. >> Yep. So that's phenomenal. >> Four times a year. I'll be happy to jump on with you when we get that done. I know you were really impressed with that last time. >> It's unbelievable. This is so much data at ETR. Okay. Hey, that's a wrap. Thanks again. >> Take care Dave. Good seeing you. >> All right, many thanks to our team here, Alex Myerson as production, he manages the podcast force. Ken Schiffman as well is a critical component of our East Coast studio. Kristen Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hoof is our editor-in-chief. He's at siliconangle.com. He's just a great editing for us. Thank you all. Remember all these episodes that are available as podcasts, wherever you listen, podcast is doing great. Just search "Breaking analysis podcast." Really appreciate you guys listening. I publish each week on wikibon.com and siliconangle.com, or you can email me directly if you want to get in touch, david.vellante@siliconangle.com. That's how I got all these. I really appreciate it. I went through every single one with a yellow highlighter. It took some time, (laughing) but I appreciate it. You could DM me at dvellante, or comment on our LinkedIn post and please check out etr.ai. Its data is amazing. Best survey data in the enterprise tech business. This is Dave Vellante for theCube Insights, powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis." (upbeat music beginning) (upbeat music ending)

Published Date : Jan 29 2023

SUMMARY :

insights from the Cube and ETR, do for the community, Dave, good to see you. actually come back to me if you would. It just stays at the top. the most aggressive to cut. that have the most to lose What's the primary method still leads the way, you know, So in addition to what we're seeing here, And so I actually thank you I went through it for you. I'm going to ask you to explain and they're certainly not going to get it to you in a zero trust way. So all of that is the One is just the number of So come back to me in 12 So 52% of the ETR survey amount of money on the Metaverse and also in the data prep tools. the cloud expands to the biggest shock to me "Ah, it's, you know, really and Fastly is their really the folks said, you know, for a home in the enterprise, Yeah, and I got to be honest, in the community, you know, and I don't know if that's the right move and the vertical axis is shared net score. So that's really what you want Well, the way they compete So that's, you know, One of the problems, if and that's going to be obviously even Oracle is going to scale down. and the data pipelines and that, you know, Been a nuts three I love the fact I know you were really is so much data at ETR. and we'll see you next time

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

EricPERSON

0.99+

Eric BradleyPERSON

0.99+

CiscoORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

Rob HoofPERSON

0.99+

AmazonORGANIZATION

0.99+

OracleORGANIZATION

0.99+

Dave VellantePERSON

0.99+

10QUANTITY

0.99+

Ravi MayuramPERSON

0.99+

Cheryl KnightPERSON

0.99+

George GilbertPERSON

0.99+

Ken SchiffmanPERSON

0.99+

AWSORGANIZATION

0.99+

Tristan HandyPERSON

0.99+

DavePERSON

0.99+

Atif KahnPERSON

0.99+

NovemberDATE

0.99+

Frank SlootmanPERSON

0.99+

APACORGANIZATION

0.99+

ZscalerORGANIZATION

0.99+

PaloORGANIZATION

0.99+

David FoyerPERSON

0.99+

FebruaryDATE

0.99+

January 2023DATE

0.99+

DBT LabsORGANIZATION

0.99+

OctoberDATE

0.99+

Rob EnsslinPERSON

0.99+

Scott StevensonPERSON

0.99+

John FurrierPERSON

0.99+

69%QUANTITY

0.99+

GoogleORGANIZATION

0.99+

CrowdStrikeORGANIZATION

0.99+

4.6%QUANTITY

0.99+

10 timesQUANTITY

0.99+

2023DATE

0.99+

ScottPERSON

0.99+

1,181 responsesQUANTITY

0.99+

Palo AltoORGANIZATION

0.99+

third yearQUANTITY

0.99+

BostonLOCATION

0.99+

AlexPERSON

0.99+

thousandsQUANTITY

0.99+

OneTrustORGANIZATION

0.99+

45%QUANTITY

0.99+

33%QUANTITY

0.99+

DatabricksORGANIZATION

0.99+

two reasonsQUANTITY

0.99+

Palo AltoLOCATION

0.99+

last yearDATE

0.99+

BeyondTrustORGANIZATION

0.99+

7%QUANTITY

0.99+

IBMORGANIZATION

0.99+

Breaking Analysis: ChatGPT Won't Give OpenAI First Mover Advantage


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> OpenAI The company, and ChatGPT have taken the world by storm. Microsoft reportedly is investing an additional 10 billion dollars into the company. But in our view, while the hype around ChatGPT is justified, we don't believe OpenAI will lock up the market with its first mover advantage. Rather, we believe that success in this market will be directly proportional to the quality and quantity of data that a technology company has at its disposal, and the compute power that it could deploy to run its system. Hello and welcome to this week's Wikibon CUBE insights, powered by ETR. In this Breaking Analysis, we unpack the excitement around ChatGPT, and debate the premise that the company's early entry into the space may not confer winner take all advantage to OpenAI. And to do so, we welcome CUBE collaborator, alum, Sarbjeet Johal, (chuckles) and John Furrier, co-host of the Cube. Great to see you Sarbjeet, John. Really appreciate you guys coming to the program. >> Great to be on. >> Okay, so what is ChatGPT? Well, actually we asked ChatGPT, what is ChatGPT? So here's what it said. ChatGPT is a state-of-the-art language model developed by OpenAI that can generate human-like text. It could be fine tuned for a variety of language tasks, such as conversation, summarization, and language translation. So I asked it, give it to me in 50 words or less. How did it do? Anything to add? >> Yeah, think it did good. It's large language model, like previous models, but it started applying the transformers sort of mechanism to focus on what prompt you have given it to itself. And then also the what answer it gave you in the first, sort of, one sentence or two sentences, and then introspect on itself, like what I have already said to you. And so just work on that. So it it's self sort of focus if you will. It does, the transformers help the large language models to do that. >> So to your point, it's a large language model, and GPT stands for generative pre-trained transformer. >> And if you put the definition back up there again, if you put it back up on the screen, let's see it back up. Okay, it actually missed the large, word large. So one of the problems with ChatGPT, it's not always accurate. It's actually a large language model, and it says state of the art language model. And if you look at Google, Google has dominated AI for many times and they're well known as being the best at this. And apparently Google has their own large language model, LLM, in play and have been holding it back to release because of backlash on the accuracy. Like just in that example you showed is a great point. They got almost right, but they missed the key word. >> You know what's funny about that John, is I had previously asked it in my prompt to give me it in less than a hundred words, and it was too long, I said I was too long for Breaking Analysis, and there it went into the fact that it's a large language model. So it largely, it gave me a really different answer the, for both times. So, but it's still pretty amazing for those of you who haven't played with it yet. And one of the best examples that I saw was Ben Charrington from This Week In ML AI podcast. And I stumbled on this thanks to Brian Gracely, who was listening to one of his Cloudcasts. Basically what Ben did is he took, he prompted ChatGPT to interview ChatGPT, and he simply gave the system the prompts, and then he ran the questions and answers into this avatar builder and sped it up 2X so it didn't sound like a machine. And voila, it was amazing. So John is ChatGPT going to take over as a cube host? >> Well, I was thinking, we get the questions in advance sometimes from PR people. We should actually just plug it in ChatGPT, add it to our notes, and saying, "Is this good enough for you? Let's ask the real question." So I think, you know, I think there's a lot of heavy lifting that gets done. I think the ChatGPT is a phenomenal revolution. I think it highlights the use case. Like that example we showed earlier. It gets most of it right. So it's directionally correct and it feels like it's an answer, but it's not a hundred percent accurate. And I think that's where people are seeing value in it. Writing marketing, copy, brainstorming, guest list, gift list for somebody. Write me some lyrics to a song. Give me a thesis about healthcare policy in the United States. It'll do a bang up job, and then you got to go in and you can massage it. So we're going to do three quarters of the work. That's why plagiarism and schools are kind of freaking out. And that's why Microsoft put 10 billion in, because why wouldn't this be a feature of Word, or the OS to help it do stuff on behalf of the user. So linguistically it's a beautiful thing. You can input a string and get a good answer. It's not a search result. >> And we're going to get your take on on Microsoft and, but it kind of levels the playing- but ChatGPT writes better than I do, Sarbjeet, and I know you have some good examples too. You mentioned the Reed Hastings example. >> Yeah, I was listening to Reed Hastings fireside chat with ChatGPT, and the answers were coming as sort of voice, in the voice format. And it was amazing what, he was having very sort of philosophy kind of talk with the ChatGPT, the longer sentences, like he was going on, like, just like we are talking, he was talking for like almost two minutes and then ChatGPT was answering. It was not one sentence question, and then a lot of answers from ChatGPT and yeah, you're right. I, this is our ability. I've been thinking deep about this since yesterday, we talked about, like, we want to do this segment. The data is fed into the data model. It can be the current data as well, but I think that, like, models like ChatGPT, other companies will have those too. They can, they're democratizing the intelligence, but they're not creating intelligence yet, definitely yet I can say that. They will give you all the finite answers. Like, okay, how do you do this for loop in Java, versus, you know, C sharp, and as a programmer you can do that, in, but they can't tell you that, how to write a new algorithm or write a new search algorithm for you. They cannot create a secretive code for you to- >> Not yet. >> Have competitive advantage. >> Not yet, not yet. >> but you- >> Can Google do that today? >> No one really can. The reasoning side of the data is, we talked about at our Supercloud event, with Zhamak Dehghani who's was CEO of, now of Nextdata. This next wave of data intelligence is going to come from entrepreneurs that are probably cross discipline, computer science and some other discipline. But they're going to be new things, for example, data, metadata, and data. It's hard to do reasoning like a human being, so that needs more data to train itself. So I think the first gen of this training module for the large language model they have is a corpus of text. Lot of that's why blog posts are, but the facts are wrong and sometimes out of context, because that contextual reasoning takes time, it takes intelligence. So machines need to become intelligent, and so therefore they need to be trained. So you're going to start to see, I think, a lot of acceleration on training the data sets. And again, it's only as good as the data you can get. And again, proprietary data sets will be a huge winner. Anyone who's got a large corpus of content, proprietary content like theCUBE or SiliconANGLE as a publisher will benefit from this. Large FinTech companies, anyone with large proprietary data will probably be a big winner on this generative AI wave, because it just, it will eat that up, and turn that back into something better. So I think there's going to be a lot of interesting things to look at here. And certainly productivity's going to be off the charts for vanilla and the internet is going to get swarmed with vanilla content. So if you're in the content business, and you're an original content producer of any kind, you're going to be not vanilla, so you're going to be better. So I think there's so much at play Dave (indistinct). >> I think the playing field has been risen, so we- >> Risen and leveled? >> Yeah, and leveled to certain extent. So it's now like that few people as consumers, as consumers of AI, we will have a advantage and others cannot have that advantage. So it will be democratized. That's, I'm sure about that. But if you take the example of calculator, when the calculator came in, and a lot of people are, "Oh, people can't do math anymore because calculator is there." right? So it's a similar sort of moment, just like a calculator for the next level. But, again- >> I see it more like open source, Sarbjeet, because like if you think about what ChatGPT's doing, you do a query and it comes from somewhere the value of a post from ChatGPT is just a reuse of AI. The original content accent will be come from a human. So if I lay out a paragraph from ChatGPT, did some heavy lifting on some facts, I check the facts, save me about maybe- >> Yeah, it's productive. >> An hour writing, and then I write a killer two, three sentences of, like, sharp original thinking or critical analysis. I then took that body of work, open source content, and then laid something on top of it. >> And Sarbjeet's example is a good one, because like if the calculator kids don't do math as well anymore, the slide rule, remember we had slide rules as kids, remember we first started using Waze, you know, we were this minority and you had an advantage over other drivers. Now Waze is like, you know, social traffic, you know, navigation, everybody had, you know- >> All the back roads are crowded. >> They're car crowded. (group laughs) Exactly. All right, let's, let's move on. What about this notion that futurist Ray Amara put forth and really Amara's Law that we're showing here, it's, the law is we, you know, "We tend to overestimate the effect of technology in the short run and underestimate it in the long run." Is that the case, do you think, with ChatGPT? What do you think Sarbjeet? >> I think that's true actually. There's a lot of, >> We don't debate this. >> There's a lot of awe, like when people see the results from ChatGPT, they say what, what the heck? Like, it can do this? But then if you use it more and more and more, and I ask the set of similar question, not the same question, and it gives you like same answer. It's like reading from the same bucket of text in, the interior read (indistinct) where the ChatGPT, you will see that in some couple of segments. It's very, it sounds so boring that the ChatGPT is coming out the same two sentences every time. So it is kind of good, but it's not as good as people think it is right now. But we will have, go through this, you know, hype sort of cycle and get realistic with it. And then in the long term, I think it's a great thing in the short term, it's not something which will (indistinct) >> What's your counter point? You're saying it's not. >> I, no I think the question was, it's hyped up in the short term and not it's underestimated long term. That's what I think what he said, quote. >> Yes, yeah. That's what he said. >> Okay, I think that's wrong with this, because this is a unique, ChatGPT is a unique kind of impact and it's very generational. People have been comparing it, I have been comparing to the internet, like the web, web browser Mosaic and Netscape, right, Navigator. I mean, I clearly still remember the days seeing Navigator for the first time, wow. And there weren't not many sites you could go to, everyone typed in, you know, cars.com, you know. >> That (indistinct) wasn't that overestimated, the overhyped at the beginning and underestimated. >> No, it was, it was underestimated long run, people thought. >> But that Amara's law. >> That's what is. >> No, they said overestimated? >> Overestimated near term underestimated- overhyped near term, underestimated long term. I got, right I mean? >> Well, I, yeah okay, so I would then agree, okay then- >> We were off the charts about the internet in the early days, and it actually exceeded our expectations. >> Well there were people who were, like, poo-pooing it early on. So when the browser came out, people were like, "Oh, the web's a toy for kids." I mean, in 1995 the web was a joke, right? So '96, you had online populations growing, so you had structural changes going on around the browser, internet population. And then that replaced other things, direct mail, other business activities that were once analog then went to the web, kind of read only as you, as we always talk about. So I think that's a moment where the hype long term, the smart money, and the smart industry experts all get the long term. And in this case, there's more poo-pooing in the short term. "Ah, it's not a big deal, it's just AI." I've heard many people poo-pooing ChatGPT, and a lot of smart people saying, "No this is next gen, this is different and it's only going to get better." So I think people are estimating a big long game on this one. >> So you're saying it's bifurcated. There's those who say- >> Yes. >> Okay, all right, let's get to the heart of the premise, and possibly the debate for today's episode. Will OpenAI's early entry into the market confer sustainable competitive advantage for the company. And if you look at the history of tech, the technology industry, it's kind of littered with first mover failures. Altair, IBM, Tandy, Commodore, they and Apple even, they were really early in the PC game. They took a backseat to Dell who came in the scene years later with a better business model. Netscape, you were just talking about, was all the rage in Silicon Valley, with the first browser, drove up all the housing prices out here. AltaVista was the first search engine to really, you know, index full text. >> Owned by Dell, I mean DEC. >> Owned by Digital. >> Yeah, Digital Equipment >> Compaq bought it. And of course as an aside, Digital, they wanted to showcase their hardware, right? Their super computer stuff. And then so Friendster and MySpace, they came before Facebook. The iPhone certainly wasn't the first mobile device. So lots of failed examples, but there are some recent successes like AWS and cloud. >> You could say smartphone. So I mean. >> Well I know, and you can, we can parse this so we'll debate it. Now Twitter, you could argue, had first mover advantage. You kind of gave me that one John. Bitcoin and crypto clearly had first mover advantage, and sustaining that. Guys, will OpenAI make it to the list on the right with ChatGPT, what do you think? >> I think categorically as a company, it probably won't, but as a category, I think what they're doing will, so OpenAI as a company, they get funding, there's power dynamics involved. Microsoft put a billion dollars in early on, then they just pony it up. Now they're reporting 10 billion more. So, like, if the browsers, Microsoft had competitive advantage over Netscape, and used monopoly power, and convicted by the Department of Justice for killing Netscape with their monopoly, Netscape should have had won that battle, but Microsoft killed it. In this case, Microsoft's not killing it, they're buying into it. So I think the embrace extend Microsoft power here makes OpenAI vulnerable for that one vendor solution. So the AI as a company might not make the list, but the category of what this is, large language model AI, is probably will be on the right hand side. >> Okay, we're going to come back to the government intervention and maybe do some comparisons, but what are your thoughts on this premise here? That, it will basically set- put forth the premise that it, that ChatGPT, its early entry into the market will not confer competitive advantage to >> For OpenAI. >> To Open- Yeah, do you agree with that? >> I agree with that actually. It, because Google has been at it, and they have been holding back, as John said because of the scrutiny from the Fed, right, so- >> And privacy too. >> And the privacy and the accuracy as well. But I think Sam Altman and the company on those guys, right? They have put this in a hasty way out there, you know, because it makes mistakes, and there are a lot of questions around the, sort of, where the content is coming from. You saw that as your example, it just stole the content, and without your permission, you know? >> Yeah. So as quick this aside- >> And it codes on people's behalf and the, those codes are wrong. So there's a lot of, sort of, false information it's putting out there. So it's a very vulnerable thing to do what Sam Altman- >> So even though it'll get better, others will compete. >> So look, just side note, a term which Reid Hoffman used a little bit. Like he said, it's experimental launch, like, you know, it's- >> It's pretty damn good. >> It is clever because according to Sam- >> It's more than clever. It's good. >> It's awesome, if you haven't used it. I mean you write- you read what it writes and you go, "This thing writes so well, it writes so much better than you." >> The human emotion drives that too. I think that's a big thing. But- >> I Want to add one more- >> Make your last point. >> Last one. Okay. So, but he's still holding back. He's conducting quite a few interviews. If you want to get the gist of it, there's an interview with StrictlyVC interview from yesterday with Sam Altman. Listen to that one it's an eye opening what they want- where they want to take it. But my last one I want to make it on this point is that Satya Nadella yesterday did an interview with Wall Street Journal. I think he was doing- >> You were not impressed. >> I was not impressed because he was pushing it too much. So Sam Altman's holding back so there's less backlash. >> Got 10 billion reasons to push. >> I think he's almost- >> Microsoft just laid off 10000 people. Hey ChatGPT, find me a job. You know like. (group laughs) >> He's overselling it to an extent that I think it will backfire on Microsoft. And he's over promising a lot of stuff right now, I think. I don't know why he's very jittery about all these things. And he did the same thing during Ignite as well. So he said, "Oh, this AI will write code for you and this and that." Like you called him out- >> The hyperbole- >> During your- >> from Satya Nadella, he's got a lot of hyperbole. (group talks over each other) >> All right, Let's, go ahead. >> Well, can I weigh in on the whole- >> Yeah, sure. >> Microsoft thing on whether OpenAI, here's the take on this. I think it's more like the browser moment to me, because I could relate to that experience with ChatG, personally, emotionally, when I saw that, and I remember vividly- >> You mean that aha moment (indistinct). >> Like this is obviously the future. Anything else in the old world is dead, website's going to be everywhere. It was just instant dot connection for me. And a lot of other smart people who saw this. Lot of people by the way, didn't see it. Someone said the web's a toy. At the company I was worked for at the time, Hewlett Packard, they like, they could have been in, they had invented HTML, and so like all this stuff was, like, they just passed, the web was just being passed over. But at that time, the browser got better, more websites came on board. So the structural advantage there was online web usage was growing, online user population. So that was growing exponentially with the rise of the Netscape browser. So OpenAI could stay on the right side of your list as durable, if they leverage the category that they're creating, can get the scale. And if they can get the scale, just like Twitter, that failed so many times that they still hung around. So it was a product that was always successful, right? So I mean, it should have- >> You're right, it was terrible, we kept coming back. >> The fail whale, but it still grew. So OpenAI has that moment. They could do it if Microsoft doesn't meddle too much with too much power as a vendor. They could be the Netscape Navigator, without the anti-competitive behavior of somebody else. So to me, they have the pole position. So they have an opportunity. So if not, if they don't execute, then there's opportunity. There's not a lot of barriers to entry, vis-a-vis say the CapEx of say a cloud company like AWS. You can't replicate that, Many have tried, but I think you can replicate OpenAI. >> And we're going to talk about that. Okay, so real quick, I want to bring in some ETR data. This isn't an ETR heavy segment, only because this so new, you know, they haven't coverage yet, but they do cover AI. So basically what we're seeing here is a slide on the vertical axis's net score, which is a measure of spending momentum, and in the horizontal axis's is presence in the dataset. Think of it as, like, market presence. And in the insert right there, you can see how the dots are plotted, the two columns. And so, but the key point here that we want to make, there's a bunch of companies on the left, is he like, you know, DataRobot and C3 AI and some others, but the big whales, Google, AWS, Microsoft, are really dominant in this market. So that's really the key takeaway that, can we- >> I notice IBM is way low. >> Yeah, IBM's low, and actually bring that back up and you, but then you see Oracle who actually is injecting. So I guess that's the other point is, you're not necessarily going to go buy AI, and you know, build your own AI, you're going to, it's going to be there and, it, Salesforce is going to embed it into its platform, the SaaS companies, and you're going to purchase AI. You're not necessarily going to build it. But some companies obviously are. >> I mean to quote IBM's general manager Rob Thomas, "You can't have AI with IA." information architecture and David Flynn- >> You can't Have AI without IA >> without, you can't have AI without IA. You can't have, if you have an Information Architecture, you then can power AI. Yesterday David Flynn, with Hammersmith, was on our Supercloud. He was pointing out that the relationship of storage, where you store things, also impacts the data and stressablity, and Zhamak from Nextdata, she was pointing out that same thing. So the data problem factors into all this too, Dave. >> So you got the big cloud and internet giants, they're all poised to go after this opportunity. Microsoft is investing up to 10 billion. Google's code red, which was, you know, the headline in the New York Times. Of course Apple is there and several alternatives in the market today. Guys like Chinchilla, Bloom, and there's a company Jasper and several others, and then Lena Khan looms large and the government's around the world, EU, US, China, all taking notice before the market really is coalesced around a single player. You know, John, you mentioned Netscape, they kind of really, the US government was way late to that game. It was kind of game over. And Netscape, I remember Barksdale was like, "Eh, we're going to be selling software in the enterprise anyway." and then, pshew, the company just dissipated. So, but it looks like the US government, especially with Lena Khan, they're changing the definition of antitrust and what the cause is to go after people, and they're really much more aggressive. It's only what, two years ago that (indistinct). >> Yeah, the problem I have with the federal oversight is this, they're always like late to the game, and they're slow to catch up. So in other words, they're working on stuff that should have been solved a year and a half, two years ago around some of the social networks hiding behind some of the rules around open web back in the days, and I think- >> But they're like 15 years late to that. >> Yeah, and now they got this new thing on top of it. So like, I just worry about them getting their fingers. >> But there's only two years, you know, OpenAI. >> No, but the thing (indistinct). >> No, they're still fighting other battles. But the problem with government is that they're going to label Big Tech as like a evil thing like Pharma, it's like smoke- >> You know Lena Khan wants to kill Big Tech, there's no question. >> So I think Big Tech is getting a very seriously bad rap. And I think anything that the government does that shades darkness on tech, is politically motivated in most cases. You can almost look at everything, and my 80 20 rule is in play here. 80% of the government activity around tech is bullshit, it's politically motivated, and the 20% is probably relevant, but off the mark and not organized. >> Well market forces have always been the determining factor of success. The governments, you know, have been pretty much failed. I mean you look at IBM's antitrust, that, what did that do? The market ultimately beat them. You look at Microsoft back in the day, right? Windows 95 was peaking, the government came in. But you know, like you said, they missed the web, right, and >> so they were hanging on- >> There's nobody in government >> to Windows. >> that actually knows- >> And so, you, I think you're right. It's market forces that are going to determine this. But Sarbjeet, what do you make of Microsoft's big bet here, you weren't impressed with with Nadella. How do you think, where are they going to apply it? Is this going to be a Hail Mary for Bing, or is it going to be applied elsewhere? What do you think. >> They are saying that they will, sort of, weave this into their products, office products, productivity and also to write code as well, developer productivity as well. That's a big play for them. But coming back to your antitrust sort of comments, right? I believe the, your comment was like, oh, fed was late 10 years or 15 years earlier, but now they're two years. But things are moving very fast now as compared to they used to move. >> So two years is like 10 Years. >> Yeah, two years is like 10 years. Just want to make that point. (Dave laughs) This thing is going like wildfire. Any new tech which comes in that I think they're going against distribution channels. Lina Khan has commented time and again that the marketplace model is that she wants to have some grip on. Cloud marketplaces are a kind of monopolistic kind of way. >> I don't, I don't see this, I don't see a Chat AI. >> You told me it's not Bing, you had an interesting comment. >> No, no. First of all, this is great from Microsoft. If you're Microsoft- >> Why? >> Because Microsoft doesn't have the AI chops that Google has, right? Google is got so much core competency on how they run their search, how they run their backends, their cloud, even though they don't get a lot of cloud market share in the enterprise, they got a kick ass cloud cause they needed one. >> Totally. >> They've invented SRE. I mean Google's development and engineering chops are off the scales, right? Amazon's got some good chops, but Google's got like 10 times more chops than AWS in my opinion. Cloud's a whole different story. Microsoft gets AI, they get a playbook, they get a product they can render into, the not only Bing, productivity software, helping people write papers, PowerPoint, also don't forget the cloud AI can super help. We had this conversation on our Supercloud event, where AI's going to do a lot of the heavy lifting around understanding observability and managing service meshes, to managing microservices, to turning on and off applications, and or maybe writing code in real time. So there's a plethora of use cases for Microsoft to deploy this. combined with their R and D budgets, they can then turbocharge more research, build on it. So I think this gives them a car in the game, Google may have pole position with AI, but this puts Microsoft right in the game, and they already have a lot of stuff going on. But this just, I mean everything gets lifted up. Security, cloud, productivity suite, everything. >> What's under the hood at Google, and why aren't they talking about it? I mean they got to be freaked out about this. No? Or do they have kind of a magic bullet? >> I think they have the, they have the chops definitely. Magic bullet, I don't know where they are, as compared to the ChatGPT 3 or 4 models. Like they, but if you look at the online sort of activity and the videos put out there from Google folks, Google technology folks, that's account you should look at if you are looking there, they have put all these distinctions what ChatGPT 3 has used, they have been talking about for a while as well. So it's not like it's a secret thing that you cannot replicate. As you said earlier, like in the beginning of this segment, that anybody who has more data and the capacity to process that data, which Google has both, I think they will win this. >> Obviously living in Palo Alto where the Google founders are, and Google's headquarters next town over we have- >> We're so close to them. We have inside information on some of the thinking and that hasn't been reported by any outlet yet. And that is, is that, from what I'm hearing from my sources, is Google has it, they don't want to release it for many reasons. One is it might screw up their search monopoly, one, two, they're worried about the accuracy, 'cause Google will get sued. 'Cause a lot of people are jamming on this ChatGPT as, "Oh it does everything for me." when it's clearly not a hundred percent accurate all the time. >> So Lina Kahn is looming, and so Google's like be careful. >> Yeah so Google's just like, this is the third, could be a third rail. >> But the first thing you said is a concern. >> Well no. >> The disruptive (indistinct) >> What they will do is do a Waymo kind of thing, where they spin out a separate company. >> They're doing that. >> The discussions happening, they're going to spin out the separate company and put it over there, and saying, "This is AI, got search over there, don't touch that search, 'cause that's where all the revenue is." (chuckles) >> So, okay, so that's how they deal with the Clay Christensen dilemma. What's the business model here? I mean it's not advertising, right? Is it to charge you for a query? What, how do you make money at this? >> It's a good question, I mean my thinking is, first of all, it's cool to type stuff in and see a paper get written, or write a blog post, or gimme a marketing slogan for this or that or write some code. I think the API side of the business will be critical. And I think Howie Xu, I know you're going to reference some of his comments yesterday on Supercloud, I think this brings a whole 'nother user interface into technology consumption. I think the business model, not yet clear, but it will probably be some sort of either API and developer environment or just a straight up free consumer product, with some sort of freemium backend thing for business. >> And he was saying too, it's natural language is the way in which you're going to interact with these systems. >> I think it's APIs, it's APIs, APIs, APIs, because these people who are cooking up these models, and it takes a lot of compute power to train these and to, for inference as well. Somebody did the analysis on the how many cents a Google search costs to Google, and how many cents the ChatGPT query costs. It's, you know, 100x or something on that. You can take a look at that. >> A 100x on which side? >> You're saying two orders of magnitude more expensive for ChatGPT >> Much more, yeah. >> Than for Google. >> It's very expensive. >> So Google's got the data, they got the infrastructure and they got, you're saying they got the cost (indistinct) >> No actually it's a simple query as well, but they are trying to put together the answers, and they're going through a lot more data versus index data already, you know. >> Let me clarify, you're saying that Google's version of ChatGPT is more efficient? >> No, I'm, I'm saying Google search results. >> Ah, search results. >> What are used to today, but cheaper. >> But that, does that, is that going to confer advantage to Google's large language (indistinct)? >> It will, because there were deep science (indistinct). >> Google, I don't think Google search is doing a large language model on their search, it's keyword search. You know, what's the weather in Santa Cruz? Or how, what's the weather going to be? Or you know, how do I find this? Now they have done a smart job of doing some things with those queries, auto complete, re direct navigation. But it's, it's not entity. It's not like, "Hey, what's Dave Vellante thinking this week in Breaking Analysis?" ChatGPT might get that, because it'll get your Breaking Analysis, it'll synthesize it. There'll be some, maybe some clips. It'll be like, you know, I mean. >> Well I got to tell you, I asked ChatGPT to, like, I said, I'm going to enter a transcript of a discussion I had with Nir Zuk, the CTO of Palo Alto Networks, And I want you to write a 750 word blog. I never input the transcript. It wrote a 750 word blog. It attributed quotes to him, and it just pulled a bunch of stuff that, and said, okay, here it is. It talked about Supercloud, it defined Supercloud. >> It's made, it makes you- >> Wow, But it was a big lie. It was fraudulent, but still, blew me away. >> Again, vanilla content and non accurate content. So we are going to see a surge of misinformation on steroids, but I call it the vanilla content. Wow, that's just so boring, (indistinct). >> There's so many dangers. >> Make your point, cause we got to, almost out of time. >> Okay, so the consumption, like how do you consume this thing. As humans, we are consuming it and we are, like, getting a nicely, like, surprisingly shocked, you know, wow, that's cool. It's going to increase productivity and all that stuff, right? And on the danger side as well, the bad actors can take hold of it and create fake content and we have the fake sort of intelligence, if you go out there. So that's one thing. The second thing is, we are as humans are consuming this as language. Like we read that, we listen to it, whatever format we consume that is, but the ultimate usage of that will be when the machines can take that output from likes of ChatGPT, and do actions based on that. The robots can work, the robot can paint your house, we were talking about, right? Right now we can't do that. >> Data apps. >> So the data has to be ingested by the machines. It has to be digestible by the machines. And the machines cannot digest unorganized data right now, we will get better on the ingestion side as well. So we are getting better. >> Data, reasoning, insights, and action. >> I like that mall, paint my house. >> So, okay- >> By the way, that means drones that'll come in. Spray painting your house. >> Hey, it wasn't too long ago that robots couldn't climb stairs, as I like to point out. Okay, and of course it's no surprise the venture capitalists are lining up to eat at the trough, as I'd like to say. Let's hear, you'd referenced this earlier, John, let's hear what AI expert Howie Xu said at the Supercloud event, about what it takes to clone ChatGPT. Please, play the clip. >> So one of the VCs actually asked me the other day, right? "Hey, how much money do I need to spend, invest to get a, you know, another shot to the openAI sort of the level." You know, I did a (indistinct) >> Line up. >> A hundred million dollar is the order of magnitude that I came up with, right? You know, not a billion, not 10 million, right? So a hundred- >> Guys a hundred million dollars, that's an astoundingly low figure. What do you make of it? >> I was in an interview with, I was interviewing, I think he said hundred million or so, but in the hundreds of millions, not a billion right? >> You were trying to get him up, you were like "Hundreds of millions." >> Well I think, I- >> He's like, eh, not 10, not a billion. >> Well first of all, Howie Xu's an expert machine learning. He's at Zscaler, he's a machine learning AI guy. But he comes from VMware, he's got his technology pedigrees really off the chart. Great friend of theCUBE and kind of like a CUBE analyst for us. And he's smart. He's right. I think the barriers to entry from a dollar standpoint are lower than say the CapEx required to compete with AWS. Clearly, the CapEx spending to build all the tech for the run a cloud. >> And you don't need a huge sales force. >> And in some case apps too, it's the same thing. But I think it's not that hard. >> But am I right about that? You don't need a huge sales force either. It's, what, you know >> If the product's good, it will sell, this is a new era. The better mouse trap will win. This is the new economics in software, right? So- >> Because you look at the amount of money Lacework, and Snyk, Snowflake, Databrooks. Look at the amount of money they've raised. I mean it's like a billion dollars before they get to IPO or more. 'Cause they need promotion, they need go to market. You don't need (indistinct) >> OpenAI's been working on this for multiple five years plus it's, hasn't, wasn't born yesterday. Took a lot of years to get going. And Sam is depositioning all the success, because he's trying to manage expectations, To your point Sarbjeet, earlier. It's like, yeah, he's trying to "Whoa, whoa, settle down everybody, (Dave laughs) it's not that great." because he doesn't want to fall into that, you know, hero and then get taken down, so. >> It may take a 100 million or 150 or 200 million to train the model. But to, for the inference to, yeah to for the inference machine, It will take a lot more, I believe. >> Give it, so imagine, >> Because- >> Go ahead, sorry. >> Go ahead. But because it consumes a lot more compute cycles and it's certain level of storage and everything, right, which they already have. So I think to compute is different. To frame the model is a different cost. But to run the business is different, because I think 100 million can go into just fighting the Fed. >> Well there's a flywheel too. >> Oh that's (indistinct) >> (indistinct) >> We are running the business, right? >> It's an interesting number, but it's also kind of, like, context to it. So here, a hundred million spend it, you get there, but you got to factor in the fact that the ways companies win these days is critical mass scale, hitting a flywheel. If they can keep that flywheel of the value that they got going on and get better, you can almost imagine a marketplace where, hey, we have proprietary data, we're SiliconANGLE in theCUBE. We have proprietary content, CUBE videos, transcripts. Well wouldn't it be great if someone in a marketplace could sell a module for us, right? We buy that, Amazon's thing and things like that. So if they can get a marketplace going where you can apply to data sets that may be proprietary, you can start to see this become bigger. And so I think the key barriers to entry is going to be success. I'll give you an example, Reddit. Reddit is successful and it's hard to copy, not because of the software. >> They built the moat. >> Because you can, buy Reddit open source software and try To compete. >> They built the moat with their community. >> Their community, their scale, their user expectation. Twitter, we referenced earlier, that thing should have gone under the first two years, but there was such a great emotional product. People would tolerate the fail whale. And then, you know, well that was a whole 'nother thing. >> Then a plane landed in (John laughs) the Hudson and it was over. >> I think verticals, a lot of verticals will build applications using these models like for lawyers, for doctors, for scientists, for content creators, for- >> So you'll have many hundreds of millions of dollars investments that are going to be seeping out. If, all right, we got to wrap, if you had to put odds on it that that OpenAI is going to be the leader, maybe not a winner take all leader, but like you look at like Amazon and cloud, they're not winner take all, these aren't necessarily winner take all markets. It's not necessarily a zero sum game, but let's call it winner take most. What odds would you give that open AI 10 years from now will be in that position. >> If I'm 0 to 10 kind of thing? >> Yeah, it's like horse race, 3 to 1, 2 to 1, even money, 10 to 1, 50 to 1. >> Maybe 2 to 1, >> 2 to 1, that's pretty low odds. That's basically saying they're the favorite, they're the front runner. Would you agree with that? >> I'd say 4 to 1. >> Yeah, I was going to say I'm like a 5 to 1, 7 to 1 type of person, 'cause I'm a skeptic with, you know, there's so much competition, but- >> I think they're definitely the leader. I mean you got to say, I mean. >> Oh there's no question. There's no question about it. >> The question is can they execute? >> They're not Friendster, is what you're saying. >> They're not Friendster and they're more like Twitter and Reddit where they have momentum. If they can execute on the product side, and if they don't stumble on that, they will continue to have the lead. >> If they say stay neutral, as Sam is, has been saying, that, hey, Microsoft is one of our partners, if you look at their company model, how they have structured the company, then they're going to pay back to the investors, like Microsoft is the biggest one, up to certain, like by certain number of years, they're going to pay back from all the money they make, and after that, they're going to give the money back to the public, to the, I don't know who they give it to, like non-profit or something. (indistinct) >> Okay, the odds are dropping. (group talks over each other) That's a good point though >> Actually they might have done that to fend off the criticism of this. But it's really interesting to see the model they have adopted. >> The wildcard in all this, My last word on this is that, if there's a developer shift in how developers and data can come together again, we have conferences around the future of data, Supercloud and meshs versus, you know, how the data world, coding with data, how that evolves will also dictate, 'cause a wild card could be a shift in the landscape around how developers are using either machine learning or AI like techniques to code into their apps, so. >> That's fantastic insight. I can't thank you enough for your time, on the heels of Supercloud 2, really appreciate it. All right, thanks to John and Sarbjeet for the outstanding conversation today. Special thanks to the Palo Alto studio team. My goodness, Anderson, this great backdrop. You guys got it all out here, I'm jealous. And Noah, really appreciate it, Chuck, Andrew Frick and Cameron, Andrew Frick switching, Cameron on the video lake, great job. And Alex Myerson, he's on production, manages the podcast for us, Ken Schiffman as well. Kristen Martin and Cheryl Knight help get the word out on social media and our newsletters. Rob Hof is our editor-in-chief over at SiliconANGLE, does some great editing, thanks to all. Remember, all these episodes are available as podcasts. All you got to do is search Breaking Analysis podcast, wherever you listen. Publish each week on wikibon.com and siliconangle.com. Want to get in touch, email me directly, david.vellante@siliconangle.com or DM me at dvellante, or comment on our LinkedIn post. And by all means, check out etr.ai. They got really great survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, We'll see you next time on Breaking Analysis. (electronic music)

Published Date : Jan 20 2023

SUMMARY :

bringing you data-driven and ChatGPT have taken the world by storm. So I asked it, give it to the large language models to do that. So to your point, it's So one of the problems with ChatGPT, and he simply gave the system the prompts, or the OS to help it do but it kind of levels the playing- and the answers were coming as the data you can get. Yeah, and leveled to certain extent. I check the facts, save me about maybe- and then I write a killer because like if the it's, the law is we, you know, I think that's true and I ask the set of similar question, What's your counter point? and not it's underestimated long term. That's what he said. for the first time, wow. the overhyped at the No, it was, it was I got, right I mean? the internet in the early days, and it's only going to get better." So you're saying it's bifurcated. and possibly the debate the first mobile device. So I mean. on the right with ChatGPT, and convicted by the Department of Justice the scrutiny from the Fed, right, so- And the privacy and thing to do what Sam Altman- So even though it'll get like, you know, it's- It's more than clever. I mean you write- I think that's a big thing. I think he was doing- I was not impressed because You know like. And he did the same thing he's got a lot of hyperbole. the browser moment to me, So OpenAI could stay on the right side You're right, it was terrible, They could be the Netscape Navigator, and in the horizontal axis's So I guess that's the other point is, I mean to quote IBM's So the data problem factors and the government's around the world, and they're slow to catch up. Yeah, and now they got years, you know, OpenAI. But the problem with government to kill Big Tech, and the 20% is probably relevant, back in the day, right? are they going to apply it? and also to write code as well, that the marketplace I don't, I don't see you had an interesting comment. No, no. First of all, the AI chops that Google has, right? are off the scales, right? I mean they got to be and the capacity to process that data, on some of the thinking So Lina Kahn is looming, and this is the third, could be a third rail. But the first thing What they will do out the separate company Is it to charge you for a query? it's cool to type stuff in natural language is the way and how many cents the and they're going through Google search results. It will, because there were It'll be like, you know, I mean. I never input the transcript. Wow, But it was a big lie. but I call it the vanilla content. Make your point, cause we And on the danger side as well, So the data By the way, that means at the Supercloud event, So one of the VCs actually What do you make of it? you were like "Hundreds of millions." not 10, not a billion. Clearly, the CapEx spending to build all But I think it's not that hard. It's, what, you know This is the new economics Look at the amount of And Sam is depositioning all the success, or 150 or 200 million to train the model. So I think to compute is different. not because of the software. Because you can, buy They built the moat And then, you know, well that the Hudson and it was over. that are going to be seeping out. Yeah, it's like horse race, 3 to 1, 2 to 1, that's pretty low odds. I mean you got to say, I mean. Oh there's no question. is what you're saying. and if they don't stumble on that, the money back to the public, to the, Okay, the odds are dropping. the model they have adopted. Supercloud and meshs versus, you know, on the heels of Supercloud

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

SarbjeetPERSON

0.99+

Brian GracelyPERSON

0.99+

Lina KhanPERSON

0.99+

Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

Reid HoffmanPERSON

0.99+

Alex MyersonPERSON

0.99+

Lena KhanPERSON

0.99+

Sam AltmanPERSON

0.99+

AppleORGANIZATION

0.99+

AWSORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Rob ThomasPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

GoogleORGANIZATION

0.99+

David FlynnPERSON

0.99+

SamPERSON

0.99+

NoahPERSON

0.99+

Ray AmaraPERSON

0.99+

10 billionQUANTITY

0.99+

150QUANTITY

0.99+

Rob HofPERSON

0.99+

ChuckPERSON

0.99+

Palo AltoLOCATION

0.99+

Howie XuPERSON

0.99+

AndersonPERSON

0.99+

Cheryl KnightPERSON

0.99+

John FurrierPERSON

0.99+

Hewlett PackardORGANIZATION

0.99+

Santa CruzLOCATION

0.99+

1995DATE

0.99+

Lina KahnPERSON

0.99+

Zhamak DehghaniPERSON

0.99+

50 wordsQUANTITY

0.99+

Hundreds of millionsQUANTITY

0.99+

CompaqORGANIZATION

0.99+

10QUANTITY

0.99+

Kristen MartinPERSON

0.99+

two sentencesQUANTITY

0.99+

DavePERSON

0.99+

hundreds of millionsQUANTITY

0.99+

Satya NadellaPERSON

0.99+

CameronPERSON

0.99+

100 millionQUANTITY

0.99+

Silicon ValleyLOCATION

0.99+

one sentenceQUANTITY

0.99+

10 millionQUANTITY

0.99+

yesterdayDATE

0.99+

Clay ChristensenPERSON

0.99+

Sarbjeet JohalPERSON

0.99+

NetscapeORGANIZATION

0.99+

Breaking Analysis: How Palo Alto Networks Became the Gold Standard of Cybersecurity


 

>> From "theCube" Studios in Palo Alto in Boston bringing you data-driven insights from "theCube" and ETR. This is "Breaking Analysis" with Dave Vellante. >> As an independent pure play company, Palo Alto Networks has earned its status as the leader in security. You can measure this in a variety of ways. Revenue, market cap, execution, ethos, and most importantly, conversations with customers generally. In CISO specifically, who consistently affirm this position. The company's on track to double its revenues in fiscal year 23 relative to fiscal year 2020. Despite macro headwinds, which are likely to carry through next year, Palo Alto owes its position to a clarity of vision and strong execution on a TAM expansion strategy through acquisitions and integration into its cloud and SaaS offerings. Hello and welcome to this week's "Wikibon Cube Insights" powered by ETR and this breaking analysis and ahead of Palo Alto Ignite the company's user conference, we bring you the next chapter on top of the last week's cybersecurity update. We're going to dig into the ETR data on Palo Alto Networks as we promised and provide a glimpse of what we're going to look for at "Ignite" and posit what Palo Alto needs to do to stay on top of the hill. Now, the challenges for cybersecurity professionals. Dead simple to understand. Solving it, not so much. This is a taxonomic eye test, if you will, from Optiv. It's one of our favorite artifacts to make the point the cybersecurity landscape is a mosaic of stovepipes. Security professionals have to work with dozens of tools many legacy combined with shiny new toys to try and keep up with the relentless pace of innovation catalyzed by the incredibly capable well-funded and motivated adversaries. Cybersecurity is an anomalous market in that the leaders have low single digit market shares. Think about that. Cisco at one point held 60% market share in the networking business and it's still deep into the 40s. Oracle captures around 30% of database market revenue. EMC and storage at its peak had more than 30% of that market. Even Dell's PC market shares, you know, in the mid 20s or even over that from a revenue standpoint. So cybersecurity from a market share standpoint is even more fragmented perhaps than the software industry. Okay, you get the point. So despite its position as the number one player Palo Alto might have maybe three maybe 4% of the total market, depending on what you use as your denominator, but just a tiny slice. So how is it that we can sit here and declare Palo Alto as the undisputed leader? Well, we probably wouldn't go that far. They probably have quite a bit of competition. But this CISO from a recent ETR round table discussion with our friend Eric Bradley, summed up Palo Alto's allure. We thought pretty well. The question was why Palo Alto Networks? Here's the answer. Because of its completeness as a platform, its ability to integrate with its own products or they acquire, integrate then rebrand them as their own. We've looked at other vendors we just didn't think they were as mature and we already had implemented some of the Palo Alto tools like the firewalls and stuff and we thought why not go holistically with the vendor a single throat to choke, if you will, if stuff goes wrong. And I think that was probably the primary driver and familiarity with the tools and the resources that they provided. Now here's another stat from ETR's Eric Bradley. He gave us a glimpse of the January survey that's in the field now. The percent of IT buyers stating that they plan to consolidate redundant vendors, it went from 34% in the October survey and now stands at 44%. So we fo we feel this bodes well for consolidators like Palo Alto networks. And the same is true from Microsoft's kind of good enough approach. It should also be true for CrowdStrike although last quarter we saw softness reported on in their SMB market, whereas interestingly MongoDB actually saw consistent strength from its SMB and its self-serve. So that's something that we're watching very closely. Now, Palo Alto Networks has held up better than most of its peers in the stock market. So let's take a look at that real quick. This chart gives you a sense of how well. It's a one year comparison of Palo Alto with the bug ETF. That's the cyber basket that we like to compare often CrowdStrike, Zscaler, and Okta. Now remember Palo Alto, they didn't run up as much as CrowdStrike, ZS and Okta during the pandemic but you can see it's now down unquote only 9% for the year. Whereas the cyber basket ETF is off 27% roughly in line with the NASDAQ. We're not showing that CrowdStrike down 44%, Zscaler down 61% and Okta off a whopping 72% in the past 12 months. Now as we've indicated, Palo Alto is making a strong case for consolidating point tools and we think it will have a much harder time getting customers to switch off of big platforms like Cisco who's another leader in network security. But based on the fragmentation in the market there's plenty of room to grow in our view. We asked breaking analysis contributor Chip Simington for his take on the technicals of the stock and he said that despite Palo Alto's leadership position it doesn't seem to make much difference these days. It's all about interest rates. And even though this name has performed better than its peers, it looks like the stock wants to keep testing its 52 week lows, but he thinks Palo Alto got oversold during the last big selloff. And the fact that the company's free cash flow is so strong probably keeps it at the one 50 level or above maybe bouncing around there for a while. If it breaks through that under to the downside it's ne next test is at that low of around one 40 level. So thanks for that, Chip. Now having get that out of the way as we said on the previous chart Palo Alto has strong opinions, it's founder and CTO, Nir Zuk, is extremely clear on that point of view. So let's take a look at how Palo Alto got to where it is today and how we think you should think about his future. The company was founded around 18 years ago as a network security company focused on what they called NextGen firewalls. Now, what Palo Alto did was different. They didn't try to stuff a bunch of functionality inside of a hardware box. Rather they layered network security functions on top of its firewalls and delivered value as a service through software running at the time in its own cloud. So pretty obvious today, but forward thinking for the time and now they've moved to a more true cloud native platform and much more activity in the public cloud. In February, 2020, right before the pandemic we reported on the divergence in market values between Palo Alto and Fort Net and we cited some challenges that Palo Alto was happening having transitioning to a cloud native model. And at the time we said we were confident that Palo Alto would make it through the knot hole. And you could see from the previous chart that it has. So the company's architectural approach was to do the heavy lifting in the cloud. And this eliminates the need for customers to deploy sensors on prem or proxies on prem or sandboxes on prem sandboxes, you know for instance are vulnerable to overwhelming attacks. Think about it, if you're a sandbox is on prem you're not going to be updating that every day. No way. You're probably not going to updated even every week or every month. And if the capacity of your sandbox is let's say 20,000 files an hour you know a hacker's just going to turn up the volume, it'll overwhelm you. They'll send a hundred thousand emails attachments into your sandbox and they'll choke you out and then they'll have the run of the house while you're trying to recover. Now the cloud doesn't completely prevent that but what it does, it definitely increases the hacker's cost. So they're going to probably hit some easier targets and that's kind of the objective of security firms. You know, increase the denominator on the ROI. All right, the next thing that Palo Alto did is start acquiring aggressively, I think we counted 17 or 18 acquisitions to expand the TAM beyond network security into endpoint CASB, PaaS security, IaaS security, container security, serverless security, incident response, SD WAN, CICD pipeline security, attack service management, supply chain security. Just recently with the acquisition of Cider Security and Palo Alto by all accounts takes the time to integrate into its cloud and SaaS platform called Prisma. Unlike many acquisitive companies in the past EMC was a really good example where you ended up with a kind of a Franken portfolio. Now all this leads us to believe that Palo Alto wants to be the consolidator and is in a good position to do so. But beyond that, as multi-cloud becomes more prevalent and more of a strategy customers tell us they want a consistent experience across clouds. And is going to be the same by the way with IoT. So of the next wave here. Customers don't want another stove pipe. So we think Palo Alto is in a good position to build what we call the security super cloud that layer above the clouds that brings a common experience for devs and operational teams. So of course the obvious question is this, can Palo Alto networks continue on this path of acquire and integrate and still maintain best of breed status? Can it? Will it? Does it even have to? As Holger Mueller of Constellation Research and I talk about all the time integrated suites seem to always beat best of breed in the long run. We'll come back to that. Now, this next graphic that we're going to show you underscores this question about portfolio. Here's a picture and I don't expect you to digest it all but it's a screen grab of Palo Alto's product and solutions portfolios, network cloud, network security rather, cloud security, Sassy, CNAP, endpoint unit 42 which is their threat intelligence platform and every imaginable security service and solution for customers. Well, maybe not every, I'm sure there's more to come like supply chain with the recent Cider acquisition and maybe more IoT beyond ZingBox and earlier acquisition but we're sure there will be more in the future both organic and inorganic. Okay, let's bring in more of the ETR survey data. For those of you who don't know ETR, they are the number one enterprise data platform surveying thousands of end customers every quarter with additional drill down surveys and customer round tables just an awesome SaaS enabled platform. And here's a view that shows net score or spending momentum on the vertical axis in provision or presence within the ETR data set on the horizontal axis. You see that red dotted line at 40%. Anything at or over that indicates a highly elevated net score. And as you can see Palo Alto is right on that line just under. And I'll give you another glimpse it looks like Palo Alto despite the macro may even just edge up a bit in the next survey based on the glimpse that Eric gave us. Now those colored bars in the bottom right corner they show the breakdown of Palo Alto's net score and underscore the methodology that ETR uses. The lime green is new customer adoptions, that's 7%. The forest green at 38% represents the percent of customers that are spending 6% or more on Palo Alto solutions. The gray is at that 40 or 8% that's flat spending plus or minus 5%. The pinkish at 5% is spending is down on Palo Alto network products by 6% or worse. And the bright red at only 2% is churn or defections. Very low single digit numbers for Palo Alto, that's a real positive. What you do is you subtract the red from the green and you get a net score of 38% which is very good for a company of Palo Alto size. And we'll note this is based on just under 400 responses in the ETR survey that are Palo Alto customers out of around 1300 in the total survey. It's a really good representation of Palo Alto. And you can see the other leading companies like CrowdStrike, Okta, Zscaler, Forte, Cisco they loom large with similar aspirations. Well maybe not so much Okta. They don't necessarily rule want to rule the world. They want to rule identity and of course the ever ubiquitous Microsoft in the upper right. Now drilling deeper into the ETR data, let's look at how Palo Alto has progressed over the last three surveys in terms of market presence in the survey. This view of the data shows provision in the data going back to October, 2021, that's the gray bars. The blue is July 22 and the yellow is the latest survey from October, 2022. Remember, the January survey is currently in the field. Now the leftmost set of data there show size a company. The middle set of data shows the industry for a select number of industries in the right most shows, geographic region. Notice anything, yes, Palo Alto up across the board relative to both this past summer and last fall. So that's pretty impressive. Palo Alto network CEO, Nikesh Aurora, stressed on the last earnings call that the company is seeing somewhat elongated deal approvals and sometimes splitting up size of deals. He's stressed that certain industries like energy, government and financial services continue to spend. But we would expect even a pullback there as companies get more conservative. But the point is that Nikesh talked about how they're hiring more sales pros to work the pipeline because they understand that they have to work harder to pull deals forward 'cause they got to get more approvals and they got to increase the volume that's coming through the pipeline to account for the possibility that certain companies are going to split up the deals, you know, large deals they want to split into to smaller bite size chunks. So they're really going hard after they go to market expansion to account for that. All right, so we're going to wrap by sharing what we expect and what we're going to probe for at Palo Alto Ignite next week, Lisa Martin and I will be hosting "theCube" and here's what we'll be looking for. First, it's a four day event at the MGM with the meat of the program on days two and three. That's day two was the big keynote. That's when we'll start our broadcasting, we're going for two days. Now our understanding is we've never done Palo Alto Ignite before but our understanding it's a pretty technically oriented crowd that's going to be eager to hear what CTO and founder Nir Zuk has to say. And as well CEO Nikesh Aurora and as in addition to longtime friend of "theCube" and current president, BJ Jenkins, he's going to be speaking. Wendy Whitmore runs Unit 42 and is going to be several other high profile Palo Alto execs, as well, Thomas Kurian from Google is a featured speaker. Lee Claridge, who is Palo Alto's, chief product officer we think is going to be giving the audience heavy doses of Prisma Cloud and Cortex enhancements. Now, Cortex, you might remember, came from an acquisition and does threat detection and attack surface management. And we're going to hear a lot about we think about security automation. So we'll be listening for how Cortex has been integrated and what kind of uptake that it's getting. We've done some, you know, modeling in from the ETR. Guys have done some modeling of cortex, you know looks like it's got a lot of upside and through the Palo Alto go to market machine, you know could really pick up momentum. That's something that we'll be probing for. Now, one of the other things that we'll be watching is pricing. We want to talk to customers about their spend optimization, their spending patterns, their vendor consolidation strategies. Look, Palo Alto is a premium offering. It charges for value. It's expensive. So we also want to understand what kind of switching costs are customers willing to absorb and how onerous they are and what's the business case look like? How are they thinking about that business case. We also want to understand and really probe on how will Palo Alto maintain best of breed as it continues to acquire and integrate to expand its TAM and appeal as that one-stop shop. You know, can it do that as we talked about before. And will it do that? There's also an interesting tension going on sort of changing subjects here in security. There's a guy named Edward Hellekey who's been in "theCube" before. He hasn't been in "theCube" in a while but he's a security pro who has educated us on the nuances of protecting data privacy, public policy, how it varies by region and how complicated it is relative to security. Because securities you technically you have to show a chain of custody that proves unequivocally, for example that data has been deleted or scrubbed or that metadata does. It doesn't include any residual private data that violates the laws, the local laws. And the tension is this, you need good data and lots of it to have good security, really the more the better. But government policy is often at odds in a major blocker to sharing data and it's getting more so. So we want to understand this tension and how companies like Palo Alto are dealing with it. Our customers testing public policy in courts we think not quite yet, our government's making exceptions and policies like GDPR that favor security over data privacy. What are the trade-offs there? And finally, one theme of this breaking analysis is what does Palo Alto have to do to stay on top? And we would sum it up with three words. Ecosystem, ecosystem, ecosystem. And we said this at CrowdStrike Falcon in September that the one concern we had was the pace of ecosystem development for CrowdStrike. Is collaboration possible with competitors? Is being adopted aggressively? Is Palo Alto being adopted aggressively by global system integrators? What's the uptake there? What about developers? Look, the hallmark of a cloud company which Palo Alto is a cloud security company is a thriving ecosystem that has entries into and exits from its platform. So we'll be looking at what that ecosystem looks like how vibrant and inclusive it is where the public clouds fit and whether Palo Alto Networks can really become the security super cloud. Okay, that's a wrap stop by next week. If you're in Vegas, say hello to "theCube" team. We have an unbelievable lineup on the program. Now if you're not there, check out our coverage on theCube.net. I want to thank Eric Bradley for sharing a glimpse on short notice of the upcoming survey from ETR and his thoughts. And as always, thanks to Chip Symington for his sharp comments. Want to thank Alex Morrison, who's on production and manages the podcast Ken Schiffman as well in our Boston studio, Kristen Martin and Cheryl Knight they help get the word out on social and of course in our newsletters, Rob Hoof, is our editor in chief over at Silicon Angle who does some awesome editing, thank you to all. Remember all these episodes they're available as podcasts. Wherever you listen, all you got to do is search "Breaking Analysis" podcasts. I publish each week on wikibon.com and silicon angle.com where you can email me at david.valante@siliconangle.com or dm me at D Valante or comment on our LinkedIn post. And please do check out etr.ai. They've got the best survey data in the enterprise tech business. This is Dave Valante for "theCube" Insights powered by ETR. Thanks for watching. We'll see you next week on "Ignite" or next time on "Breaking Analysis". (upbeat music)

Published Date : Dec 11 2022

SUMMARY :

bringing you data-driven and of course the ever

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MorrisonPERSON

0.99+

Edward HellekeyPERSON

0.99+

Eric BradleyPERSON

0.99+

Lisa MartinPERSON

0.99+

CiscoORGANIZATION

0.99+

Thomas KurianPERSON

0.99+

Dave VellantePERSON

0.99+

Lee ClaridgePERSON

0.99+

Rob HoofPERSON

0.99+

17QUANTITY

0.99+

October, 2021DATE

0.99+

Palo AltoORGANIZATION

0.99+

February, 2020DATE

0.99+

October, 2022DATE

0.99+

40QUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

Dave ValantePERSON

0.99+

Wendy WhitmorePERSON

0.99+

SeptemberDATE

0.99+

OctoberDATE

0.99+

JanuaryDATE

0.99+

ZscalerORGANIZATION

0.99+

OktaORGANIZATION

0.99+

ForteORGANIZATION

0.99+

CrowdStrikeORGANIZATION

0.99+

Chip SimingtonPERSON

0.99+

52 weekQUANTITY

0.99+

Palo AltoORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

BJ JenkinsPERSON

0.99+

DellORGANIZATION

0.99+

July 22DATE

0.99+

6%QUANTITY

0.99+

EricPERSON

0.99+

VegasLOCATION

0.99+

Palo AltoLOCATION

0.99+

two daysQUANTITY

0.99+

one yearQUANTITY

0.99+

34%QUANTITY

0.99+

Chip SymingtonPERSON

0.99+

Kristen MartinPERSON

0.99+

7%QUANTITY

0.99+

40%QUANTITY

0.99+

27%QUANTITY

0.99+

44%QUANTITY

0.99+

61%QUANTITY

0.99+

38%QUANTITY

0.99+

Palo Alto NetworksORGANIZATION

0.99+

Nir ZukPERSON

0.99+

72%QUANTITY

0.99+

5%QUANTITY

0.99+

4%QUANTITY

0.99+

next weekDATE

0.99+

Constellation ResearchORGANIZATION

0.99+

Cider SecurityORGANIZATION

0.99+

four dayQUANTITY

0.99+

fiscal year 23DATE

0.99+

8%QUANTITY

0.99+

last quarterDATE

0.99+

david.valante@siliconangle.comOTHER

0.99+

Fort NetORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

FirstQUANTITY

0.99+

Ken SchiffmanPERSON

0.99+

GDPRTITLE

0.99+

last fallDATE

0.99+

NASDAQORGANIZATION

0.99+

fiscal year 2020DATE

0.99+

threeQUANTITY

0.99+

more than 30%QUANTITY

0.99+

three wordsQUANTITY

0.99+

todayDATE

0.99+

OracleORGANIZATION

0.99+

FrankenORGANIZATION

0.99+

Hitachi Vantara | Russell Skingsley


 

(shimmering corporate music) >> Hey, everyone. Welcome back to our conversation with Hitachi Vantara. Lisa Martin here with Russell Skingsley, the CTO and Global VP of Technical Sales at Hitachi Vantara. Russell, welcome to the program. >> Hiya, Lisa! Nice to be here! >> Yeah, great to have you. So, here we are, at the end of calendar year 2022. What are some of the things that you're hearing out in the field in terms of customers' priorities for 2023? >> Yeah, good one. Just to set the scene here, we tend to deal with enterprises that have mission-critical IT environments and this has been been in our heritage and continues to be our major strength. So, just to set the scene here, that's the type of customers predominantly I'd be hearing from and so, that's what you're going to hear about here. Now, in terms of 2023, one of the macro concerns that's hitting almost all of our customers right now, as you can probably appreciate, is power consumption and closely related to that is the whole area of ESG and de-carbonization and all of that sort of thing, and I'm not going to spend a lot of time on that one because that would be a whole session in itself really, but sufficient to say, it is a priority for us and we are very active in that area. So, aside from that one, that big one, there's also a couple that are pretty much in common for most of our customers and we're in areas that we can help. One of those is in an exponential growth of the amount of data. It's predicted that the world's data is going to triple by 2025 as opposed to where it was in 2020 and I think everyone's contributing to that, including a lot of our customers. So, just the act of managing that amount of data is a challenge in itself and I think closely related to that, a desire to use that data better to be able to gain more business insights and potentially create new business outcomes and business ideas is another one of those big challenges. In that sense, I think a lot of our customers are in what I would kind of call, I affectionately call, the Post-Facebook Awakening Era, and what I mean by that is our traditional businesses, you know, when Facebook came along, they kind of illustrated, hey, I can actually make some use out of what is seemingly an enormous amount of useless data, which is exactly what Facebook did. They took a whole lot of people's, yeah, the minutiae of people's lives, and turned it into, you know, advertising revenue by gaining insights from those, you know, sort of seemingly useless bits of data. >> Right. >> Yeah, right, and I think this actually gave rise to a lot of digital business at that time. You know, this whole idea of all you really need to be successful and disrupt the business is a great idea, you know, an app and a whole bunch of data to power it and I think that a lot of our traditional customers are looking at this and wondering how do they get into the act because they've been collecting data for decades, an enormous amount of data. Right. >> Yeah, every company these days has to be a data company, but to your point, it's got to be able to extract those insights, monetize it, and create real value, new opportunities for the business, at record speed. >> Yes, that's exactly right, and so, being able to wield that data somehow, it kind of turns out our customer's attentions to the type of infrastructure they've got as well. I mean, if you think about those companies that have been really successful in leveraging that data or a lot of them have, especially in the early days, leverage the Cloud to be able to build out their capabilities and the reason why the Cloud became such a pivotal part of that is because it offered self-service IT and, you know, easy development platforms to those people that had these great ideas. All they needed was access to, you know, the provider's website and a credit card and now, all of a sudden, they could start to build a business from that and I think a lot of our traditional IT customers are looking at this and thinking, now, how do I build a similar sort of infrastructure? How do I provide that kind of self-service capability to the owners of business inside my company rather than the IT company sort of being a gatekeeper to a selected set of software packages? How now do I provide this development platform for those internal users? And I think this is why, really, Hybrid Cloud has become the defacto IT sort of architectural standard even for quite traditional, you know, IT companies. >> So, when it comes to Hybrid Cloud, what are some of the challenges the customers are facing? And then, I know Hitachi has a great partner ecosystem. How are partners helping Hitachi Vantara and its customers to eliminate or solve some of those Hybrid Cloud challenges? >> Yeah, it's a great question and, you know, it's not 1975 anymore. It's not like you're going to get all of your IT needs from one vendor. Hybrid by, sort of, its, you know, by definition, is going to involve multiple pieces and so, there basically is no hybrid at all without a partner ecosystem. You really can't get everything at a one-stop shop like you used to, but even if you think about the biggest public Cloud provider on the planet, AWS, even it has a marketplace for partner solutions. So, even they see, even for customers that might consider themselves to be all in on Public Cloud, they are still going to need other pieces, which is where their marketplace comes in. Now, for us, you know, we're a company that, we've been in the IT business for over 60 years, one of the few that could claim that sort of heritage, and, you know, we've seen a lot of this type of change ourselves, this change of attitude from being able to provide everything yourself to being someone who contributes to an overall ecosystem. So, partners are absolutely essential, and so now, we kind of have a partner-first philosophy when it comes to our routes to market on, you know, not just our own products in terms of, you know, a resale channel or whatever, but also making sure that we are working with some of the biggest players in Hybrid infrastructure and determining where we can add value to that in our own solutions and so, you know, when it comes to those partner ecosystems, we're always looking for the spaces where we can best add our own capability to those prevailing IT architectures that are successful in the marketplace and, you know, I think that it's probably fair to say, you know, for us, first and foremost, we have a reputation for having the biggest, most reliable storage infrastructure available on the planet and we make no apologies for the fact that we tout our speeds and feeds and uptime supremacy. You know, a lot of our competitors would suggest that, hey, speeds and feeds don't matter, but, you know, that's kind of what you say when you're not the fastest or not the most reliable. You know, of course they matter and for us, the way that we look at this is we say, let's look at who's providing the best possible Hybrid solutions and let's partner with them to make those solutions even better. That's the way we look at it. >> Can you peel the onion a little bit on the technology underpinning the solutions? Give me a glimpse into that and then maybe add some color in terms of how partners are enhancing that. >> Yeah, let me do that with a few examples here and maybe what I can do is I can sort of share some insight about the way we think with partnering with particular people and why it's a good blend or why we see that technologically it's a good blend. So, for example, the work we do with VMware, which we consider to be one of our most important Hybrid Cloud partners and in fact, it's my belief they have one of the strongest Hybrid Cloud stories in the industry. It resonates really strongly with our customers as well, but, you know, we think it's made so much better with the robust underpinnings that we provide. We're one of the few storage vendors that provides a 100% data availability guarantee. So, we take that sort of level of reliability and we add other aspects like life cycle management of the underpinning infrastructure. We combine that with what VMware's doing and then, when you look at our converged, or hyper-converged, solutions with them, it's a 'better together' story where you now have what is one of the best Hybrid Cloud stories in the industry with VMware, but now, for the on-premise part especially, you've now added 100% data availability guarantee, and you've made managing the underlying infrastructure so much easier through the tools that we provide that go down to that level, a level underneath, where VMware are, and so, that's VMware, and I've got a couple more examples just to sort of fill that out a bit. >> Sure. >> Cisco is another part, a very strong partner of ours, a key partner, and, I mean, you look at Cisco, they're a $50,000,000,000 IT provider, and they don't have a dedicated storage infrastructure of their own, so they're going to partner with someone. From our perspective, we look at Cisco's customers and we look at them and think, they're very similar to our own in terms of they're known to appreciate performance and reliability and a bit of premium in quality and we think we match with them quite well. They're already buying what we believe are the best converged platforms in the industry from Cisco, so it makes sense that those customers would want to compliment that investment with the best arrays, best storage arrays, they can get, and so, we think we are helping Cisco's customers make the most of their decision to be UCS customers. Final one for you, Lisa, by way of example. We have a relationship with Equinix and, you know, Equinix is the world's sort of leading Colo provider and the way I think they like to think of themselves, and I too tend to agree with them, is they're one of the most compelling high-speed interconnect networks in the world. They're connected to all of the significant Cloud providers in most of the locations around the world. We have a relationship with them where we find we have customers in common who really love the idea of compute from the Cloud. Compute from the Cloud is great because compute is something that you are doing for a set period of time and then it's over. You, like, you have a task, you do some compute, it's done. Cloud is beautiful for that. Storage on the other hand is very long-lived. Storage doesn't tend to operate in that same sort of way. It sort of just becomes a bigger and bigger blob over time and so, the cost model around Public Cloud and storage is not as compelling as it is for compute, and so, with our relationship with Equinix, we help our customers to be able to create, let's call it a data anchor point, where they put our arrays into an Equinix location and then they utilize Equinix as high-speeding, interconnects to the Cloud providers to take the compute from them. So, they take the compute from the Cloud providers and they own their own storage, and in this way, they feel like, we've now got the best of all worlds. >> Right. >> What I hope that illustrates Lisa is, with those three examples, is we are always looking for ways to find our key advantages with any given, you know, alliance partner's advantages. >> Right. What are, when you're in customer conversations, in our final few minutes here I want to get, what are some of the key differentiators that you talk about when you're in customer conversations and then how does the partner ecosystem fit into Hitachi Vantara as a service business? We'll start with differentiators and then let's move into the as-a-service business so we can round out with that. >> Okay, let's just start with the differentiators. You know, firstly, and hopefully, I've kind of, I've hit this point hard enough. We do believe that we have the fastest and most reliable storage infrastructure on the planet. This is kind of what we are known for and customers that are working with us already sort of have an appreciation for that and so, they're looking for, okay, you've got that. Now, how can you make my Hybrid Cloud aspirations better? So, we do have that as a fundamental, right? So, but secondly, I'd say, I think it's also because we go beyond just storage management and into the areas of data management. >> Okay. >> You know, we've got solutions that are not just about storing the bits. We do think that we do that very well, but we also have solutions that move into the areas of enrichment of the data, cataloging of the data, classification of the data, and most importantly, analytics. So, you know, we think it's, some of our competitors just stop at storing stuff and some of our competitors are in the analytics space, but we feel that we can bridge that and we think that that's a competitive advantage for us. >> Right. >> One of the other areas that I think is key for us as well is, as I said, we're one of the few vendors who've been in the marketplace for 60 years and we think this gives us a more nuanced perspective about things. There are many things in the industry, trends that have happened over time, where we feel we've seen this kind of thing before and I think we will see it again, but you only really get that perspective if you are long-lived in the industry and so, we believe that our conversations with our customers bear a little bit more sophistication. It's not just about what's the latest and greatest trends. >> Right. We've got about one minute left. Can you round us out with how the partner ecosystem is playing a role in the as-a-service business? >> They're absolutely pivotal in that, you know? We ourselves don't own data centers, right? So, we don't provide our own Cloud services out. So, we are 100% partner-focused when it comes to that aspect. Our formula is to help partners build their Cloud services with our solutions and then on-sell them to their customers as a service. You know, and by quick way of example, VMware, for example, they've got nearly 5,000 partners selling VMware Cloud services. 5,000 blows me away and many of them are our partners too. So, we kind of see this as a virtuous cycle. We've got product, we've got an an alliance with VMware, and we work together with partners in common for the delivery of an as-a-service business. >> Got it. So, as you said, the partner ecosystem, it's absolutely pivotal. Russell, it's been a pleasure having you on the program talking about all things Hybrid Cloud challenges and how Hitachi Vantara is working with its partner ecosystems to really help customers across industries solve those big problems. We really appreciate your insights and your time. >> Thank you very much, Lisa! >> Thanks, Russell. You're watching theCUBE, the leader in live tech coverage!

Published Date : Dec 6 2022

SUMMARY :

the CTO and Global VP of Technical What are some of the and all of that sort of thing, and disrupt the business new opportunities for the leverage the Cloud to be able to build and its customers to eliminate to our routes to market on, you know, on the technology about the way we think with partnering of the locations around the world. you know, alliance partner's advantages. that you talk about when you're and into the areas of data management. of enrichment of the data, One of the other is playing a role in the for the delivery of an on the program talking

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
RussellPERSON

0.99+

HitachiORGANIZATION

0.99+

EquinixORGANIZATION

0.99+

Russell SkingsleyPERSON

0.99+

CiscoORGANIZATION

0.99+

LisaPERSON

0.99+

Lisa MartinPERSON

0.99+

2023DATE

0.99+

100%QUANTITY

0.99+

60 yearsQUANTITY

0.99+

Hitachi VantaraORGANIZATION

0.99+

2020DATE

0.99+

FacebookORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

$50,000,000,000QUANTITY

0.99+

AWSORGANIZATION

0.99+

2025DATE

0.99+

OneQUANTITY

0.99+

over 60 yearsQUANTITY

0.99+

5,000QUANTITY

0.99+

oneQUANTITY

0.98+

three examplesQUANTITY

0.97+

one vendorQUANTITY

0.96+

decadesQUANTITY

0.96+

firstQUANTITY

0.94+

firstlyQUANTITY

0.9+

year 2022DATE

0.87+

coupleQUANTITY

0.84+

one-stop shopQUANTITY

0.82+

ColoLOCATION

0.81+

UCSORGANIZATION

0.79+

nearly 5,000 partnersQUANTITY

0.78+

one minuteQUANTITY

0.75+

CloudTITLE

0.68+

couple moreQUANTITY

0.66+

secondlyQUANTITY

0.62+

CTOPERSON

0.56+

theCUBEORGANIZATION

0.55+

VMwareTITLE

0.39+

Facebook AwakeningTITLE

0.34+

Marco Palladino, Kong Inc | AWS re:Invent 2022


 

>>Welcome back to the Cube, as a continued coverage here from AWS Reinvent 22. It's day three of our coverage here at the Venetian in Las Vegas, and we're part of the AWS Global Startup Showcase. With me to talk about what Kong's to in that regard is Marco Palladino, who's the, the CTO and the co-founder of Con Marco. Good >>To see you. Well, thanks for having me >>Here. Yeah, I was gonna say, by the way, I, I, you've got a beautiful exhibit down on the show floor. How's the week been for you so far as an exhibitor here? >>It's been very busy. You know, to this year we made a big investment at the WS reinvent. You know, I think this is one of the best conferences in the industry. There is technology developers, but it's also business oriented. So you can learn about all the business outcomes that our, you know, customers or, you know, people are trying to make when, when adopting these new technologies. So it's very good so far. >>Good, good, good to hear. Alright, so in your world, the API world, you know, it used to be we had this, you know, giant elephant. Now we're cutting down the little pieces, right? That's right. We're all going micro now these days. That's right. Talk about that trend a little bit, what you're seeing, and we'll jump in a little deeper as to how you're addressing that. >>Well, I think the industry learned a long time ago that running large code bases is actually quite problematic when it comes to scaling the organization and capturing new opportunities. And so, you know, we're transitioning to microservices because we want to get more opportunities in our business. We want to be able to create new products, fasters, we want to be able to leverage existing services or data that we have built, like an assembly line of software, you know, picking up APIs that other developers are building, and then assemble them together to create new experiences or new products, enter new markets. And so microservices are fantastic for that, except microservices. They also introduce significant concerns on the networking layer, on the API layer. And so this is where Kong specializes by providing API infrastructure to our customers. >>Right. So more about the problems, more about the challenges there, because you're right, it, opportunities always create, you know, big upside and, and I, I don't wanna say downside, but they do introduce new complexities. >>That's right. And introducing new complexity. It's a little bit the biggest enemy of any large organization, right? We want to reduce complexity, we want to move faster, we want to be more agile, and, and we need an API vision to be able to do that. Our teams, you know, I'm speaking with customers here at Reinvent, they're telling me that in the next five years, the organization is going to be creating more APIs than all the APIs they've created up until now. Right? So how do you >>Support, that's a mind boggling number, right? >>It's mind boggling. Yeah, exactly. How do you support that type of growth? And things have been moving so fast. I feel like there is a big dilemma in, you know, with certain organizations where, you know, we have not taught a long term strategy for APIs, whereas we do have a long term strategy for our business, but APIs are running the business. We must have a long term strategy for our APIs, otherwise we're not gonna be able to execute. And that's a big dilemma right now. Yeah. >>So, so how do we get the horse back in front of the cart then? Because it's like you said, it's almost as if we've, we're, we're reprioritizing, you know, incorrectly or inaccurately, right? You're, you're getting a little bit ahead of ourselves. >>Well, so, you know, whenever we have a long-term strategy for pretty much anything in the organization, right? We know what we want to do. We know the outcome that we want to achieve. We work backwards to, you know, determine what are the steps that are gonna bring us there. And, and the responsibility for thinking long term in, in every organization, including for APIs at the end of the day, always falls on the leaders and the should on the shoulders of the leadership and, and to see executives of the organization, right? And so we're seeing, you know, look at aws by the way. Look at Amazon. This conference would not have been possible without a very strong API vision from Amazon. And the CEO himself, Jeff Bezos, everybody talks about wanting to become an API first organization. And Amazon did that with the famous Jeff Bezos mandate today, aws, it's a hundred billion revenue for Amazon. You see, Amazon was not the first organization with, with an e-commerce, but if it was the first one that married a very strong e-commerce business execution with a very strong API vision, and here we are. >>So yeah, here we are putting you squarely in, in, in a pretty good position, right? In terms of what you're offering to the marketplace who has this high demand, you see this trend starting to explode. The hockey sticks headed up a little bit, right? You know, how are you answering that call specifically at how, how are you looking at your client's needs and, and trying to address what they need and when they need it, and how they need it. Because everybody's in a kind of a different place right now. >>Right? That's exactly right. And so you have multiple teams at different stages of their journey, right? With technology, some of them are still working on legacy, some of them are moving to the cloud. Yep. Some of them are working in containers and in microservices and Kubernetes. And so how do you, how do we provide an API vision that can fulfill the needs of the entire organization in such a way that we reduce that type of fragmentation and we don't introduce too much complexity? Well, so at con, we do it by essentially splitting the API platform in three different components. Okay. One is API management. When, whenever we want to expose APIs internally or to an ecosystem of partners, right? Or to mobile, DRA is a service mesh. You know, as we're splitting these microservices into smaller parts, we have a lot of connectivity, all, you know, across all the services that the teams are building that we need to, to manage. >>You know, the network is unreliable. It's by default, not secure, not observable. There is nothing that that works in there. And so how do we make that network reliable without asking our teams to go and build these cross-cut concerns whenever they create a new service. And so we need a service match for that, right? And then finally, we could have the best AP infrastructure in the world, millions of APIs and millions of microservices. Everything is working great. And with no API consumption, all of that would be useless. The value of our APIs and the value of our infrastructure is being driven by the consumption that we're able to drive to all of these APIs. And so there is a whole area of API productivity and discovery and design and testing and mocking that enables the application teams to be successful with APIs, even when they do have a, the proper API infrastructure in place that's made of meshes and management products and so on and so forth. Right. >>Can you gimme some examples? I mean, at least with people that you've been working with in terms of addressing maybe unique needs. Cuz again, as you've addressed, journeys are in different stages now. Some people are on level one, some people are on level five. So maybe just a couple of examples Yeah. Of clients with whom you've been working. Yeah, >>So listen, I I was talking with many organizations here at AWS Reinvent that are of course trying to migrate to the cloud. That's a very common common transformation that pretty much everybody's doing in the world. And, and how do you transition to the cloud by de-risking the migration while at the same time being able to get all the benefits of, of running in the cloud? Well, we think that, you know, we can do that in two, two ways. One, by containerizing our workloads so that we can make them portable. But then we also need to lift and shift the API connectivity in such a way that we can determine how much traffic goes to the legacy and how much traffic goes to the new cloud infrastructure. And by doing that, we're able to deal with some of these transformations that can be quite complex. And then finally, API infrastructure must support every team in the organization. >>And so being able to run on a single cloud, multi-cloud, single cluster, multi cluster VMs containers, that's important and essential because we want the entire organization to be on board. Because whenever we do not do that, then the developers will make short term decisions that are not going to be fitting into the organizational outcomes that we want to achieve. And we look at any outcome that your organization wants to achieve the cloud transformation, improving customer retention, creating new products, being more agile. At the end of the day, there is an API that's powering that outcome. >>Right? Right. Well, and, and there's always a security component, right? That you have to be concerned about. So how are you raising that specter with your clients to make them aware? Because sometimes it, I wouldn't say it's an afterthought, but sometimes it's not the first thought. And, and obviously with APIs and with their integral place, you know, in, in the system now security's gotta be included in that, right? >>API security is perhaps the biggest, biggest request that we're hearing from customers. You know, 83% of the world's internet traffic at the end of the day runs on APIs, right? That's a lot of traffic. As a matter of fact, APIs are the first attack vector for any, you know, malicious store party. Whenever there is a breach, APIs must be secured. And we can secure APIs on different layers of our infrastructure. We can secure APIs at the L four mesh layer by implementing zero trust security, for example, encrypting all the traffic, assigning an identity to every service, removing the concept of trust from our systems because trust is exploitable, right? And so we need to remove the cut zero trust, remove the concept of trust, and then once we have that underlying networking that's being secure and encrypted, we want to secure access to our APIs. >>And so this is the typical authentication, authorization concerns. You know, we can use patterns like op, op or opa open policy agent to create a security layer that does not rely on the team's writing code every time they're creating a new service. But the infrastructure is enforcing the type of layer. So for example, last week I was in Sweden, as a matter of fact speaking with the largest bank in Sweden while our customers, and they were telling us that they are implementing GDPR validation in the service mesh on the OPPA layer across every service that anybody's building. Why? Well, because you can embed the GDPR settings of the consumer into a claim in a gel token, and then you can use OPPA to validate in a blanket way that Jo Token across every service in the mesh, developers don't have to do that. It just comes out of the box like that. And then finally, so networking, security, API security for access and, and management of those APIs. And then finally we have deep inspection of our API traffic. And here you will see more exotic solutions for API security, where we essentially take a subset of our API traffic and we try to inspect it to see if there is anybody doing anything that they shouldn't be doing and, and perhaps block them or, you know, raise, raise, raise the flag, so to speak. >>Well, the answer is probably yes, they are. Somebody's trying to, somebody's trying to, yeah, you're trying to block 'em out. Before I let you go, you've had some announcements leading up here to the show that's just to hit a few of those highlights, if you would. >>Well, you know, Kong is an organization that you know, is very proud of the technology that we create. Of course, we started with a, with the API gateway Con Gateway, which was our first product, the most adopted gateway in the world. But then we've expanded our platform with service mesh. We just announced D B P F support in the service mesh. For example, we made our con gateway, which was already one of the fastest gateway, if not the fastest gateway out there, 30% faster with Con Gateway 3.0. We have shipped an official con operator for Kubernetes, both community and enterprise. And then finally we're doubling down on insomnia, insomnia's, our API productivity application that essentially connects the developers with the APIs that are creating and allows them to create a discovery mechanism for testing, mocking the bagging, those APIs, all of this, we of course ship it OnPrem, but then also on the cloud. And you know, in a cloud conference right now, of course, cloud, right? Right. Is a very important part of our corporate strategy. And our customers are asking us that. Why? Because they don't wanna manage the software, they want the API platform, they don't, don't wanna manage it. >>Well, no, nobody does. And there are a few stragglers, >>A few, a few. And for them there is the on-prem >>Platform. Fine, let 'em go. Right? Exactly. But if you wanna make it a little quick and dirty, hand it off, right? Oh, >>That's exactly right. Yes. >>Let Con do the heavy lifting for you. Hey Marco, thanks for the time. Yeah, thank you so much. We appreciate, and again, congratulations on what appears to be a pretty good show for you guys. Yeah, thank you. Well done. All right, we continue our discussions here at aws. Reinvent 22. You're watching the Cube, the leader in high tech coverage. >>Okay.

Published Date : Dec 1 2022

SUMMARY :

With me to talk about what Kong's to Well, thanks for having me How's the week been for you you know, customers or, you know, people are trying to make when, when adopting these new technologies. had this, you know, giant elephant. services or data that we have built, like an assembly line of software, you know, you know, big upside and, and I, I don't wanna say downside, Our teams, you know, I'm speaking with customers here at Reinvent, I feel like there is a big dilemma in, you know, with certain organizations where, Because it's like you said, We know the outcome that we want to achieve. You know, how are you answering that call specifically at how, And so you have multiple teams at different stages of their journey, And so how do we make that network reliable without Can you gimme some examples? Well, we think that, you know, we can do that in two, two ways. And so being able to run on a single cloud, multi-cloud, single cluster, multi cluster VMs and obviously with APIs and with their integral place, you know, the first attack vector for any, you know, malicious store party. And here you will see more exotic solutions for API security, Before I let you go, you've had some announcements leading up here to the show that's just to hit a few of those And you know, in a cloud conference right now, of course, cloud, right? And there are a few stragglers, And for them there is the on-prem But if you wanna make it a little quick and dirty, That's exactly right. and again, congratulations on what appears to be a pretty good show for you guys.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AmazonORGANIZATION

0.99+

Marco PalladinoPERSON

0.99+

Jeff BezosPERSON

0.99+

MarcoPERSON

0.99+

SwedenLOCATION

0.99+

30%QUANTITY

0.99+

83%QUANTITY

0.99+

last weekDATE

0.99+

twoQUANTITY

0.99+

AWSORGANIZATION

0.99+

KongORGANIZATION

0.99+

GDPRTITLE

0.99+

first productQUANTITY

0.99+

Las VegasLOCATION

0.99+

first thoughtQUANTITY

0.99+

KubernetesORGANIZATION

0.99+

bothQUANTITY

0.99+

ReinventORGANIZATION

0.98+

OneQUANTITY

0.98+

first oneQUANTITY

0.97+

first organizationQUANTITY

0.97+

oneQUANTITY

0.97+

level fiveQUANTITY

0.97+

two waysQUANTITY

0.96+

millions of APIsQUANTITY

0.96+

VenetianLOCATION

0.95+

level oneQUANTITY

0.95+

Con Gateway 3.0TITLE

0.95+

single cloudQUANTITY

0.95+

hundred billionQUANTITY

0.95+

CubePERSON

0.94+

Kong IncORGANIZATION

0.91+

this yearDATE

0.91+

OPPATITLE

0.9+

millions of microservicesQUANTITY

0.89+

next five yearsDATE

0.88+

AWS Global Startup ShowcaseEVENT

0.85+

three different componentsQUANTITY

0.83+

single clusterQUANTITY

0.83+

first attackQUANTITY

0.77+

todayDATE

0.77+

Reinvent 22TITLE

0.76+

threeQUANTITY

0.75+

InventEVENT

0.74+

zero trustQUANTITY

0.72+

CTOPERSON

0.72+

reinventEVENT

0.7+

zero trustQUANTITY

0.69+

Con MarcoPERSON

0.6+

WSORGANIZATION

0.6+

ConPERSON

0.53+

Reinvent 22EVENT

0.52+

DTITLE

0.51+

2022DATE

0.51+

Con GatewayORGANIZATION

0.49+

KubernetesTITLE

0.47+

OnPremORGANIZATION

0.4+

ReinventTITLE

0.38+

Holger Mueller, Constellation Research | AWS re:Invent 2022


 

(upbeat music) >> Hey, everyone, welcome back to Las Vegas, "theCube" is on our fourth day of covering AWS re:Invent, live from the Venetian Expo Center. This week has been amazing. We've created a ton of content, as you know, 'cause you've been watching. But, there's been north of 55,000 people here, hundreds of thousands online. We've had amazing conversations across the AWS ecosystem. Lisa Martin, Paul Gillan. Paul, what's your, kind of, take on day four of the conference? It's still highly packed. >> Oh, there's lots of people here. (laughs) >> Yep. Unusual for the final day of a conference. I think Werner Vogels, if I'm pronouncing it right kicked things off today when he talked about asymmetry and how the world is, you know, asymmetric. We build symmetric software, because it's convenient to do so, but asymmetric software actually scales and evolves much better. And I think that that was a conversation starter for a lot of what people are talking about here today, which is how the cloud changes the way we think about building software. >> Absolutely does. >> Our next guest, Holger Mueller, that's one of his key areas of focus. And Holger, welcome, thanks for joining us on the "theCube". >> Thanks for having me. >> What did you take away from the keynote this morning? >> Well, how do you feel on the final day of the marathon, right? We're like 23, 24 miles. Hit the ball yesterday, right? >> We are going strong Holger. And, of course, >> Yeah. >> you guys, we can either talk about business transformation with cloud or the World Cup. >> Or we can do both. >> The World Cup, hands down. World Cup. (Lisa laughs) Germany's out, I'm unbiased now. They just got eliminated. >> Spain is out now. >> What will the U.S. do against Netherlands tomorrow? >> They're going to win. What's your forecast? U.S. will win? >> They're going to win 2 to 1. >> What do you say, 2:1? >> I'm optimistic, but realistic. >> 3? >> I think Netherlands. >> Netherlands will win? >> 2 to nothing. >> Okay, I'll vote for the U.S.. >> Okay, okay >> 3:1 for the U.S.. >> Be optimistic. >> Root for the U.S.. >> Okay, I like that. >> Hope for the best wherever you work. >> Tomorrow you'll see how much soccer experts we are. >> If your prediction was right. (laughs) >> (laughs) Ja, ja. Or yours was right, right, so. Cool, no, but the event, I think the event is great to have 50,000 people. Biggest event of the year again, right? Not yet the 70,000 we had in 2019. But it's great to have the energy. I've never seen the show floor going all the way down like this, right? >> I haven't either. >> I've never seen that. I think it's a record. Often vendors get the space here and they have the keynote area, and the entertainment area, >> Yeah. >> and the food area, and then there's an exposition, right? This is packed. >> It's packed. >> Maybe it'll pay off. >> You don't see the big empty booths that you often see. >> Oh no. >> Exactly, exactly. You know, the white spaces and so on. >> No. >> Right. >> Which is a good thing. >> There's lots of energy, which is great. And today's, of course, the developer day, like you said before, right now Vogels' a rockstar in the developer community, right. Revered visionary on what has been built, right? And he's becoming a little professorial is my feeling, right. He had these moments before too, when it was justifying how AWS moved off the Oracle database about the importance of data warehouses and structures and why DynamoDB is better and so on. But, he had a large part of this too, and this coming right across the keynotes, right? Adam Selipsky talking about Antarctica, right? Scott against almonds and what went wrong. He didn't tell us, by the way, which often the tech winners forget. Scott banked on technology. He had motorized sleds, which failed after three miles. So, that's not the story to tell the technology. Let everything down. Everybody went back to ponies and horses and dogs. >> Maybe goes back to these asynchronous behavior. >> Yeah. >> The way of nature. >> And, yesterday, Swami talking about the bridges, right? The root bridges, right? >> Right. >> So, how could Werner pick up with his video at the beginning. >> Yeah. >> And then talk about space and other things? So I think it's important to educate about event-based architecture, right? And we see this massive transformation. Modern software has to be event based, right? Because, that's how things work and we didn't think like this before. I see this massive transformation in my other research area in other platforms about the HR space, where payrolls are being rebuilt completely. And payroll used to be one of the three peaks of ERP, right? You would size your ERP machine before the cloud to financial close, to run the payroll, and to do an MRP manufacturing run if you're manufacturing. God forbid you run those three at the same time. Your machine wouldn't be able to do that, right? So it was like start the engine, start the boosters, we are running payroll. And now the modern payroll designs like you see from ADP or from Ceridian, they're taking every payroll relevant event. You check in time wise, right? You go overtime, you take a day of vacation and right away they trigger and run the payroll, so it's up to date for you, up to date for you, which, in this economy, is super important, because we have more gig workers, we have more contractors, we have employees who are leaving suddenly, right? The great resignation, which is happening. So, from that perspective, it's the modern way of building software. So it's great to see Werner showing that. The dirty little secrets though is that is more efficient software for the cloud platform vendor too. Takes less resources, gets less committed things, so it's a much more scalable architecture. You can move the events, you can work asynchronously much better. And the biggest showcase, right? What's the biggest transactional showcase for an eventually consistent asynchronous transactional application? I know it's a mouthful, but we at Amazon, AWS, Amazon, right? You buy something on Amazon they tell you it's going to come tomorrow. >> Yep. >> They don't know it's going to come tomorrow by that time, because it's not transactionally consistent, right? We're just making every ERP vendor, who lives in transactional work, having nightmares of course, (Lisa laughs) but for them it's like, yes we have the delivery to promise, a promise to do that, right? But they come back to you and say, "Sorry, we couldn't make it, delivery didn't work and so on. It's going to be a new date. We are out of the product.", right? So these kind of event base asynchronous things are more and more what's going to scale around the world. It's going to be efficient for everybody, it's going to be better customer experience, better employee experience, ultimately better user experience, it's going to be better for the enterprise to build, but we have to learn to build it. So big announcement was to build our environment to build better eventful applications from today. >> Talk about... This is the first re:Invent... Well, actually, I'm sorry, it's the second re:Invent under Adam Selipsky. >> Right. Adam Selipsky, yep. >> But his first year. >> Right >> We're hearing a lot of momentum. What's your takeaway with what he delivered with the direction Amazon is going, their vision? >> Ja, I think compared to the Jassy times, right, we didn't see the hockey stick slide, right? With a number of innovations and releases. That was done in 2019 too, right? So I think it's a more pedestrian pace, which, ultimately, is good for everybody, because it means that when software vendors go slower, they do less width, but more depth. >> Yeah. >> And depth is what customers need. So Amazon's building more on the depth side, which is good news. I also think, and that's not official, right, but Adam Selipsky came from Tableau, right? >> Yeah. So he is a BI analytics guy. So it's no surprise we have three data lake offerings, right? Security data lake, we have a healthcare data lake and we have a supply chain data lake, right? Where all, again, the epigonos mentioned them I was like, "Oh, my god, Amazon's coming to supply chain.", but it's actually data lakes, which is an interesting part. But, I think it's not a surprise that someone who comes heavily out of the analytics BI world, it's off ringside, if I was pitching internally to him maybe I'd do something which he's is familiar with and I think that's what we see in the major announcement of his keynote on Tuesday. >> I mean, speaking of analytics, one of the big announcements early on was Amazon is trying to bridge the gap between Aurora. >> Yep. >> And Redshift. >> Right. >> And setting up for continuous pipelines, continuous integration. >> Right. >> Seems to be a trend that is common to all database players. I mean, Oracle is doing the same thing. SAP is doing the same thing. MariaDB. Do you see the distinction between transactional and analytical databases going away? >> It's coming together, right? Certainly coming together, from that perspective, but there's a fundamental different starting point, right? And with the big idea part, right? The universal database, which does everything for you in one system, whereas the suite of specialized databases, right? Oracle is in the classic Oracle database in the universal database camp. On the other side you have Amazon, which built a database. This is one of the first few Amazon re:Invents. It's my 10th where there was no new database announced. Right? >> No. >> So it was always add another one specially- >> I think they have enough. >> It's a great approach. They have enough, right? So it's a great approach to build something quick, which Amazon is all about. It's not so great when customers want to leverage things. And, ultimately, which I think with Selipsky, AWS is waking up to the enterprise saying, "I have all this different database and what is in them matters to me." >> Yeah. >> "So how can I get this better?" So no surprise between the two most popular database, Aurora and RDS. They're bring together the data with some out of the box parts. I think it's kind of, like, silly when Swami's saying, "Hey, no ETL.". (chuckles) Right? >> Yeah. >> There shouldn't be an ETL from the same vendor, right? There should be data pipes from that perspective anyway. So it looks like, on the overall value proposition database side, AWS is moving closer to the universal database on the Oracle side, right? Because, if you lift, of course, the universal database, under the hood, you see, well, there's different database there, different part there, you do something there, you have to configure stuff, which is also the case but it's one part of it, right, so. >> With that shift, talk about the value that's going to be in it for customers regardless of industry. >> Well, the value for customers is great, because when software vendors, or platform vendors, go in depth, you get more functionality, you get more maturity you get easier ways of setting up the whole things. You get ways of maintaining things. And you, ultimately, get lower TCO to build them, which is super important for enterprise. Because, here, this is the developer cloud, right? Developers love AWS. Developers are scarce, expensive. Might not be want to work for you, right? So developer velocity getting more done with same amount of developers, getting less done, less developers getting more done, is super crucial, super important. So this is all good news for enterprise banking on AWS and then providing them more efficiency, more automation, out of the box. >> Some of your customer conversations this week, talk to us about some of the feedback. What's the common denominator amongst customers right now? >> Customers are excited. First of all, like, first event, again in person, large, right? >> Yeah. >> People can travel, people meet each other, meet in person. They have a good handle around the complexity, which used to be a huge challenge in the past, because people say, "Do I do this?" I know so many CXOs saying, "Yeah, I want to build, say, something in IoT with AWS. The first reference built it like this, the next reference built it completely different. The third one built it completely different again. So now I'm doubting if my team has the skills to build things successfully, because will they be smart enough, like your teams, because there's no repetitiveness and that repetitiveness is going to be very important for AWS to come up with some higher packaging and version numbers.", right? But customers like that message. They like that things are working better together. They're not missing the big announcement, right? One of the traditional things of AWS would be, and they made it even proud, as a system, Jassy was saying, "If we look at the IT spend and we see something which is, like, high margin for us and not served well and we announced something there, right?" So Quick Start, Workspaces, where all liaisons where AWS went after traditional IT spend and had an offering. We haven't had this in 2019, we don't have them in 2020. Last year and didn't have it now. So something is changing on the AWS side. It's a little bit too early to figure out what, but they're not chewing off as many big things as they used in the past. >> Right. >> Yep. >> Did you get the sense that... Keith Townsend, from "The CTO Advisor", was on earlier. >> Yep. >> And he said he's been to many re:Invents, as you have, and he said that he got the sense that this is Amazon's chance to do a victory lap, as he called it. That this is a way for Amazon to reinforce the leadership cloud. >> Ja. >> And really, kind of, establish that nobody can come close to them, nobody can compete with them. >> You don't think that- >> I don't think that's at all... I mean, love Keith, he's a great guy, but I don't think that's the mindset at all, right? So, I mean, Jassy was always saying, "It's still the morning of the day in the cloud.", right? They're far away from being done. They're obsessed over being right. They do more work with the analysts. We think we got something right. And I like the passion, from that perspective. So I think Amazon's far from being complacent and the area, which is the biggest bit, right, the biggest. The only thing where Amazon truly has floundered, always floundered, is the AI space, right? So, 2018, Werner Vogels was doing more technical stuff that "Oh, this is all about linear regression.", right? And Amazon didn't start to put algorithms on silicon, right? And they have a three four trail and they didn't announce anything new here, behind Google who's been doing this for much, much longer than TPU platform, so. >> But they have now. >> They're keen aware. >> Yep. >> They now have three, or they own two of their own hardware platforms for AI. >> Right. >> They support the Intel platform. They seem to be catching up in that area. >> It's very hard to catch up on hardware, right? Because, there's release cycles, right? And just the volume that, just talking about the largest models that we have right now, to do with the language models, and Google is just doing a side note of saying, "Oh, we supported 50 less or 30 less, not little spoken languages, which I've never even heard of, because they're under banked and under supported and here's the language model, right? And I think it's all about little bit the organizational DNA of a company. I'm a strong believer in that. And, you have to remember AWS comes from the retail side, right? >> Yeah. >> Their roll out of data centers follows their retail strategy. Open secret, right? But, the same thing as the scale of the AI is very very different than if you take a look over at Google where it makes sense of the internet, right? The scale right away >> Right. >> is a solution, which is a good solution for some of the DNA of AWS. Also, Microsoft Azure is good. There has no chance to even get off the ship of that at Google, right? And these leaders with Google and it's not getting smaller, right? We didn't hear anything. I mean so much focused on data. Why do they focus so much on data? Because, data is the first step for AI. If AWS was doing a victory lap, data would've been done. They would own data, right? They would have a competitor to BigQuery Omni from the Google side to get data from the different clouds. There's crickets on that topic, right? So I think they know that they're catching up on the AI side, but it's really, really hard. It's not like in software where you can't acquire someone they could acquire in video. >> Not at Core Donovan. >> Might play a game, but that's not a good idea, right? So you can't, there's no shortcuts on the hardware side. As much as I'm a software guy and love software and don't like hardware, it's always a pain, right? There's no shortcuts there and there's nothing, which I think, has a new Artanium instance, of course, certainly, but they're not catching up. The distance is the same, yep. >> One of the things is funny, one of our guests, I think it was Tuesday, it was, it was right after Adam's keynote. >> Sure. >> Said that Adam Selipsky stood up on stage and talked about data for 52 minutes. >> Yeah. Right. >> It was timed, 52 minutes. >> Right. >> Huge emphasis on that. One of the things that Adam said to John Furrier when they were able to sit down >> Yeah >> a week or so ago at an event preview, was that CIOs and CEOs are not coming to Adam to talk about technology. They want to talk about transformation. They want to talk about business transformation. >> Sure, yes, yes. >> Talk to me in our last couple of minutes about what CEOs and CIOs are coming to you saying, "Holger, help us figure this out. We have to transform the business." >> Right. So we advise, I'm going quote our friends at Gartner, once the type A company. So we'll use technology aggressively, right? So take everything in the audience with a grain of salt, followers are the laggards, and so on. So for them, it's really the cusp of doing AI, right? Getting that data together. It has to be in the cloud. We live in the air of infinite computing. The cloud makes computing infinite, both from a storage, from a compute perspective, from an AI perspective, and then define new business models and create new best practices on top of that. Because, in the past, everything was fine out on premise, right? We talked about the (indistinct) size. Now in the cloud, it's just the business model to say, "Do I want to have a little more AI? Do I want a to run a little more? Will it give me the insight in the business?". So, that's the transformation that is happening, really. So, bringing your data together, this live conversation data, but not for bringing the data together. There's often the big win for the business for the first time to see the data. AWS is banking on that. The supply chain product, as an example. So many disparate systems, bring them them together. Big win for the business. But, the win for the business, ultimately, is when you change the paradigm from the user showing up to do something, to software doing stuff for us, right? >> Right. >> We have too much in this operator paradigm. If the user doesn't show up, doesn't find the click, doesn't find where to go, nothing happens. It can't be done in the 21st century, right? Software has to look over your shoulder. >> Good point. >> Understand one for you, autonomous self-driving systems. That's what CXOs, who're future looking, will be talked to come to AWS and all the other cloud vendors. >> Got it, last question for you. We're making a sizzle reel on Instagram. >> Yeah. >> If you had, like, a phrase, like, or a 30 second pitch that would describe re:Invent 2022 in the direction the company's going. What would that elevator pitch say? >> 30 second pitch? >> Yeah. >> All right, just timing. AWS is doing well. It's providing more depth, less breadth. Making things work together. It's catching up in some areas, has some interesting offerings, like the healthcare offering, the security data lake offering, which might change some things in the industry. It's staying the course and it's going strong. >> Ah, beautifully said, Holger. Thank you so much for joining Paul and me. >> Might have been too short. I don't know. (laughs) >> About 10 seconds left over. >> It was perfect, absolutely perfect. >> Thanks for having me. >> Perfect sizzle reel. >> Appreciate it. >> We appreciate your insights, what you're seeing this week, and the direction the company is going. We can't wait to see what happens in the next year. And, yeah. >> Thanks for having me. >> And of course, we've been on so many times. We know we're going to have you back. (laughs) >> Looking forward to it, thank you. >> All right, for Holger Mueller and Paul Gillan, I'm Lisa Martin. You're watching "theCube", the leader in live enterprise and emerging tech coverage. (upbeat music)

Published Date : Dec 1 2022

SUMMARY :

across the AWS ecosystem. of people here. and how the world is, And Holger, welcome, on the final day of the marathon, right? And, of course, or the World Cup. They just got eliminated. What will the U.S. do They're going to win. Hope for the best experts we are. was right. Biggest event of the year again, right? and the entertainment area, and the food area, the big empty booths You know, the white spaces in the developer community, right. Maybe goes back to So, how could Werner pick up and run the payroll, the enterprise to build, This is the first re:Invent... Right. a lot of momentum. compared to the Jassy times, right, more on the depth side, in the major announcement one of the big announcements early on And setting up for I mean, Oracle is doing the same thing. This is one of the first to build something quick, So no surprise between the So it looks like, on the overall talk about the value Well, the value for customers is great, What's the common denominator First of all, like, So something is changing on the AWS side. Did you get the sense that... and he said that he got the sense that can come close to them, And I like the passion, or they own two of their own the Intel platform. and here's the language model, right? But, the same thing as the scale of the AI from the Google side to get The distance is the same, yep. One of the things is funny, Said that Adam Selipsky Yeah. One of the things that are not coming to Adam coming to you saying, for the first time to see the data. It can't be done in the come to AWS and all the We're making a sizzle reel on Instagram. 2022 in the direction It's staying the course Paul and me. I don't know. It was perfect, and the direction the company is going. And of course, we've the leader in live enterprise

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
PaulPERSON

0.99+

HolgerPERSON

0.99+

AdamPERSON

0.99+

ScottPERSON

0.99+

Adam SelipskyPERSON

0.99+

Lisa MartinPERSON

0.99+

AmazonORGANIZATION

0.99+

JassyPERSON

0.99+

KeithPERSON

0.99+

GartnerORGANIZATION

0.99+

Paul GillanPERSON

0.99+

23QUANTITY

0.99+

AWSORGANIZATION

0.99+

twoQUANTITY

0.99+

2019DATE

0.99+

TuesdayDATE

0.99+

2020DATE

0.99+

Las VegasLOCATION

0.99+

Last yearDATE

0.99+

GoogleORGANIZATION

0.99+

Holger MuellerPERSON

0.99+

Keith TownsendPERSON

0.99+

Werner VogelsPERSON

0.99+

OracleORGANIZATION

0.99+

WernerPERSON

0.99+

21st centuryDATE

0.99+

52 minutesQUANTITY

0.99+

threeQUANTITY

0.99+

yesterdayDATE

0.99+

2018DATE

0.99+

Holger MuellerPERSON

0.99+

10thQUANTITY

0.99+

firstQUANTITY

0.99+

TomorrowDATE

0.99+

NetherlandsORGANIZATION

0.99+

U.S.ORGANIZATION

0.99+

50QUANTITY

0.99+

tomorrowDATE

0.99+

LisaPERSON

0.99+

first timeQUANTITY

0.99+

50,000 peopleQUANTITY

0.99+

John FurrierPERSON

0.99+

AntarcticaLOCATION

0.99+

MicrosoftORGANIZATION

0.99+

third oneQUANTITY

0.99+

2QUANTITY

0.99+

Jed Dougherty, Dataiku | AWS re:Invent 2022


 

(bright music) >> Welcome back to Vegas, guys and girls. We're pleased that you're watching theCUBE. We know you've been with us. This is our fourth day. We know you've been with us since day one. Why wouldn't you be? Lisa Martin, here. As I mentioned, day four of theCUBE's coverage of AWS re:Invent. There are north of 55,000 people that have been at this event this week. We're hearing hundreds of thousands online. It really feels like old times, which is awesome. We're pleased to welcome back a gentleman from Dataiku who's actually new to theCUBE but Dataiku is not. Jed Dougherty is here, the VP of Platform Strategy. Thanks to joining me today, Jed. >> Oh, I'm so happy to be here. >> Talk a little bit, for anybody that isn't familiar with Dataiku, tell the audience a little bit about the technology, what you guys do. >> Dataiku is an end-to-end data science machine learning platform. We take everything from data ingestion, piplining of that data, bringing it all together, something that's useful for building models, deploying those models and then managing your ML ops workflow. So, really all the way across. And we sit on top of, basically, tons of different AWS stack as well as lots of the partners that are here today. >> Okay, got it. >> Snowflake, Databricks, all that. >> Got it, so one of the things that, it was funny, I think it was Adam's keynote Tuesday morning. I didn't time it, I watched it, but one of my guests said to me earlier this week that Adam spent exactly 52 minutes talking about data. >> Yeah. >> 52 minutes. Obviously, we can't come to an event like this without talking about data. Every company these days has to be a data company. Whether it's my grocery store or a retailer, a hospital, and so- >> Jed: It is the lifeblood of every modern company. >> It is, but you have to be able to access it. You have to be able to harness it, access it, derive insights from it, and be able to act on that faster than the competitors that are waiting, like, right back here. One of the things Adam Selipsky talked about with our boss, John Furrier, who's the co-CEO of theCUBE, they had a sit-down about a week before re:Invent. John always gets a preview of the show and Adam said, you know, he thinks the role of data analyst is going to go away. Or at least the term, because with data democratization that needs to happen. Putting data in the hands of all the business users, that every business user, whether you're in technology or marketing or ops or finance, it's going to have to analyze data to do their jobs. >> Could not agree more. >> Are you hearing that from customers? >> 100% >> Yeah. >> I was just at the CTO Summit of Bank of America two weeks ago out in California, and they told, their CTO had a statistic, 60,000 technologists in Bank of America, all asking data-type questions. You can have the best team of data scientists in the world, and they do. They have some of the best data scientists in the world there. And this team of data scientists could answer any one of the questions that those 60,000 people might have but they can't answer all of them, right? You need those people to be able to answer their own questions. I don't know if the term data analysts are going away. I think, yeah, everybody's just going to have to become a bit more of one. Just like how Excel taught everybody how to use the spreadsheet, in the future, in the next five, 10 years, the democratization of AI means that tools like Dataiku and other data science tools are going to teach everybody how to analyze data. >> Talk about Dataiku as a facilitator of that, of that democratization. Giving, like the citizen technologist who might be in finance, the ability to do that. >> So, a lot of data science tools are aimed at your hardcore coder, right? Somebody who wants to be sitting at a notebook writing (indistinct) or something like that and running models on some big fancy Spark server. Dataiku is still going to be running models on some big fancy Spark server but we're really obfuscating the challenge of writing code away from the user. So we target low code, no code, and high code users all working together in a collaborative platform. So we really do, we believe that there is always going to be a place for data scientists. That role is not going away. You will always need hardcore coders to take on those moonshot very challenging topics. But for every day AI, anybody should be able to do this and it should be open to anybody. >> Right. >> Jed: Really aim to facilitate that. >> I would love to hear some feedback, you know, this is day four of the show as I was saying, and day four is packed. I mean, this is energy-level-wise, guys, it is the same as it was when we started here on Friday night. But I'd love to hear, Jed, from your perspective some of the customer conversations that you've had, what are some of the challenges? They're coming to you saying, "Jed, Dataiku, help us eradicate these challenges so we can transform our business." >> What I'm hearing from customers and partners and AWS here is, over and over, we don't want to buy tools anymore. We want to buy solutions. We want a vertical solution that's pre-built for our industry. And we want it to be, not necessarily click and run out of the box, but we want a template that we can build off of quickly. And I've heard that customers are also looking to understand how tools can be packaged together. You got how many booths are here? 1000 booths? >> Yes, easily. >> You have 1000 different products being talked about, right behind us. Customers need to know which of these products are friends with each other and how they fit together so that they are making sure that when they purchase a set, a suite of tools to do their jobs, it's all going to work naturally together. So, being able, I think this is a really vital concept for GSIs as well. GSIs needs to understand how to package sets of tools together to deliver a full solution to clients. People don't want to be, you know, I think 10 years ago, five years ago, AWS was in the business of selling servers in the cloud. But basically what you do is, you would buy an EC two instance and you install whatever software you wanted on it. I don't know that they're in that business still but customers don't want to buy servers from AWS anymore. They want to buy solutions. >> Right. >> Rent, whatever. >> Yeah. (chuckles) >> That is the big repeated message that I've heard here. >> So you brought up a good point that there are probably 1000 booths here. You could be here every day and not get to see everything that's going on. Plus this show was going on across the strip. We're only getting a fraction of the people that are here. But with that said, to your point, there are so many tools out there. Customers are looking for solutions. One of the things that we say about theCUBE is, we extract the signal from the noise. How does Dataiku get past the noise? How do you get up the stack to really impact customers so they understand the value that you're delivering? >> I think that Data science and ML sound like a very complicated topic but our value prop is relatively simple. And we appeal both to your end users who are excited to learn about how data science works and how they can leverage these tools in their day-to-day jobs, as well as appealing to IT. IT, right now, at major organizations they want to be able to build a full stack that makes sense. And the big choices they're making right now are around infrastructure. Where am I going to run my compute? So, they're choosing between Snowflake or Databricks or a native AWS compute solution, right? And so they make this big choice around compute and then they realize, "Oh, how many of our users across our organization are actually able to leverage this big compute choice?" Oh, maybe 100, maybe 200. That's not incredibly useful for what we've just decided to completely stand behind. Dataiku, all of a sudden, opens that up to 1000s of users across your organization. So it makes IT feel empowered by being able to help more people. And it makes users feel empowered by being able to use a great tool and start answering their own questions. >> And where are your customer conversations these days? As we look at AI and ML, emerging technologies, so many customers and companies, knowing we have to go in this direction. We have to have AI to speed the business. Are you seeing more of the conversations are still in IT or are they actually going up the stack? >> (chuckles) It's a great question. When you're going into large organizations, there's two sales motions, right? There's convincing the business users that this is a great thing and then convincing IT that it's not going to be too painful. You always have to go to both places. IT doesn't want to take on a boondoggler, or there's an albatross, I don't remember the word, but, something that they're going to have to deal with for the next 10 years and then eventually dismantle and pull apart. I think a lot of IT got very scared about big data platforms and solutions because of Hadoop. To be honest, Hadoop was incredibly powerful but maybe not as mature of technology as IT would've liked it to be. From a maintenance and administration standpoint. So yes, you will always have to sell to IT and help IT feel comfortable with the platform. But no, the conversations that I want to have are the use case conversations with a Chief Data Officer, Chief Revenue Officer, Chief Marketing Officer. That's who I really want to convince that this is going to be a worthwhile opportunity. >> And what are some of the key, sorry. What are some of the key use cases that Dataiku is tackling in the market these days? >> So we work a lot. Two of the biggest organizations, or verticals, that I work with personally are finance and pharmaceuticals. In finance, we are closely embedded with wealth management organizations. So, a lot of that is around customer entertainment, churn, relatively obvious, simple concepts but ones where it's worth a lot of money. In pharma, we work both on the supply side. So, doing supply chain optimization, ensuring the right drugs get to the right places at the right time. As well as on the business and marketing side. So, ensuring that your ad spend is correctly distributed across different advertising platforms. >> So if you're working with a financial organization, I want to understand from a consumer, from the end user's perspective, although obviously this technology impacts the end user who's trying to do a transaction. What's in it for me? And I don't know as the end user that Dataiku is under the hood. >> You'd never know. >> Which is good. I shouldn't have to worry about the technology. >> Jed: You shouldn't have to worry about that at all. >> What's in it for the end user customer? What are they gaining from this? >> So, from a very end user perspective, if you think about when you logged onto maybe your Bank of America, your Chase app, five or 10 years ago, maybe you didn't even have it on your phone five years ago. Or when you logged into your account online. We do 95% of our banking online right now, right? I go into a physical location, what? I don't know, once every six months or something? Get a cashier's check? I don't know. The experience that you're getting and the amount of information you're getting back about your spending habits, where your money is going, what your credit score is, all of these things are being driven by these big data organizations inside the banks. Also, any type, this is a little creepier, but any type of promotional emails or the types of things that you get feedback on when you use your credit card and the offers that you get through that, are all being personalized to you through the information that these banks are collecting about your spending habits. >> Yeah, but we want that as a consumer, we want the personalized. >> Yeah, of course. We want it to be magic slash not creepy. (laughs) >> Right, I want them to recommend the best card for me. >> Right. >> The next best thing. >> It's good for me, it's good for them. >> Don't serve me up something that I've already bought. That always bugs me when I'm like, I already bought that. >> I get that all the time. I'm like, yeah, I have that card already. It's in my wallet. Why are you telling me? >> We only have a couple of minutes left Jed, but talk to me about from a platform strategy perspective, what's next for Dataiku and AWS? >> So we are making a matrix transition right now and it's core to our platform. For a long time, the way that we've installed Dataiku is, we help our customers install it on their AWS account so it runs inside their tenant. This is very comfortable for, for example, large banking clients, pharma clients that have personally identifiable information, all that kind of thing. They own everything. However, as we were talking about before, we're really moving from providing a tool to providing solutions. And part of that is obviously a move to SaaS. So two years ago we released a SaaS offering. We've been expanding it more and more to, this year, we want to be pushing SaaS first. So Dataiku online should be the first option when new customers move on. And that is a huge platform shift. It means making sure that we have the right security in place. It means making sure that we have the right scaling in place, that we have 24-7 support. All this has been a big challenge. A big fascinating challenge, actually, to put together. >> Awesome. Last question for you. Say you get a brand new DeLorean, I hear they're coming back, and you want to put, you really, really want to put a bumper sticker on it, 'cause why not? And it's about Dataiku and it's like a sizzle reel kind of thing. >> A sizzle real, alright. >> Yeah. What does it say? >> Extraordinary people, everyday AI. >> Wow. Drop the mic, Jed. That was awesome. Thank you so much for coming on the program. We really appreciate the update on Dataiku. What you guys are doing for customers, your specialization and solutions for verticals. Awesome stuff, we'll have to have you back. >> Thank you so much. >> Alright, my pleasure. >> Bye-Bye. >> For my guest, I'm Lisa Martin. You're watching theCUBE, the leader in live enterprise and emerging tech coverage. (bright music)

Published Date : Dec 1 2022

SUMMARY :

Jed Dougherty is here, the tell the audience a little lots of the partners that are here today. Got it, so one of the has to be a data company. Jed: It is the lifeblood that needs to happen. I don't know if the term the ability to do that. is always going to be a of the show as I was saying, and run out of the box, I don't know that they're That is the big repeated of the people that are here. And the big choices We have to have AI to speed the business. that this is going to be What are some of the key use cases So, a lot of that is around And I don't know as the I shouldn't have to worry to worry about that at all. and the offers that you get through that, Yeah, but we want that as a consumer, We want it to be magic the best card for me. it's good for them. something that I've already bought. I get that all the time. and it's core to our platform. and you want to put, you really, really What does it say? have to have you back. the leader in live enterprise

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AdamPERSON

0.99+

Lisa MartinPERSON

0.99+

Jed DoughertyPERSON

0.99+

Adam SelipskyPERSON

0.99+

John FurrierPERSON

0.99+

AWSORGANIZATION

0.99+

95%QUANTITY

0.99+

CaliforniaLOCATION

0.99+

JedPERSON

0.99+

1000 boothsQUANTITY

0.99+

Friday nightDATE

0.99+

JohnPERSON

0.99+

100%QUANTITY

0.99+

fourth dayQUANTITY

0.99+

TwoQUANTITY

0.99+

first optionQUANTITY

0.99+

Tuesday morningDATE

0.99+

ExcelTITLE

0.99+

60,000 peopleQUANTITY

0.99+

Bank of AmericaORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

two years agoDATE

0.99+

this yearDATE

0.99+

100QUANTITY

0.99+

todayDATE

0.99+

52 minutesQUANTITY

0.99+

60,000 technologistsQUANTITY

0.99+

10 years agoDATE

0.99+

bothQUANTITY

0.99+

OneQUANTITY

0.99+

fiveDATE

0.99+

DataikuORGANIZATION

0.99+

52 minutesQUANTITY

0.98+

five years agoDATE

0.98+

200QUANTITY

0.98+

two salesQUANTITY

0.98+

oneQUANTITY

0.98+

earlier this weekDATE

0.98+

SnowflakeORGANIZATION

0.98+

VegasLOCATION

0.98+

1000 different productsQUANTITY

0.97+

this weekDATE

0.97+

both placesQUANTITY

0.97+

HadoopTITLE

0.97+

CTO SummitEVENT

0.97+

two weeks agoDATE

0.96+

hundreds of thousandsQUANTITY

0.96+

theCUBEORGANIZATION

0.95+

Bank of AmericaLOCATION

0.94+

Bank of AmericaEVENT

0.93+

DataikuTITLE

0.92+

day oneQUANTITY

0.91+

SparkTITLE

0.9+

day fourQUANTITY

0.89+

firstQUANTITY

0.88+

EC twoTITLE

0.88+

DataikuPERSON

0.86+

a weekDATE

0.83+

ChaseTITLE

0.83+

one of my guestsQUANTITY

0.83+

CTOORGANIZATION

0.81+

Keith Townsend, The CTO Advisor | AWS re:Invent 2022


 

(upbeat music) >> Hello, beautiful cloud community, and welcome back to AWS reInvent. It is day four here in fabulous Las Vegas, Nevada. My voice can feel it, clearly. I'm Savannah Peterson with my co-host Paul Gillin. Paul, how you doing? >> Doing fine, Savannah. >> Are your feet about where my voice is? >> Well, getting little rest here as we have back to back segments. >> Yeah, yeah, we'll keep you off those. Very excited about this next segment. We get to have a chat with one of our very favorite analysts, Keith Townsend. Welcome back to theCUBE. >> Savannah Page. I'm going to use your south names, Savannah Page. Thank you for having me, Paul. Good to see you again. It's been been too long since CubeCon Valencia. >> Valencia. >> Valencia. >> Well at that beautiful lisp, love that. Keith, how's the show been for you so far? >> It has been great. I tweeted it a couple of days ago. Amazon reInvent is back. >> Savannah: Whoo! Love that. >> 50, 60 thousand people, you know? After 40 thousand, I stop countin'. It has been an amazing show. I don't know if it's just the assignment of returning, but easily the best reInvent of the four that I've attended. >> Savannah: Love that. >> Paul: I love that we have you here because, you know, we tend to get anchored to these desks, and we don't really get a sense of what's going on out there. You've been spending the last four days traversing the floor and talking to people. What are you hearing? Are there any mega themes that are emerging? >> Keith: So, a couple of mega themes is... We were in the Allen session with Adam, and Adam bought up the idea of hybrid cloud. At the 2019 show, that would be unheard of. There's only one cloud, and that's the AWS cloud, when you're at the Amazon show. Booths, folks, I was at the VMware booth and there's a hybrid cloud sign session. People are talking about multicloud. Yes, we're at the AWS show, but the reality that most customers' environments are complex. Adam mentioned that it's hybrid today and more than likely to be hybrid in the future in Amazon, and the ecosystem has adjusted to that reality. >> Paul: Now, is that because they want sell more outposts? >> You know, outpost is definitely a part of the story, but it's a tactile realization that outposts alone won't get it. So, you know, from Todd Consulting, to Capgemini, to PWC, to many of the integrations on the show floor... I even saw company that's doing HP-UX in the cloud or on-prem. The reality is these, well, we've deemed these legacy systems aren't going anywhere. AWS announced the mainframe service last year for converting mainframe code into cloud workloads, and it's just not taking on the, I think, the way that the Amazon would like, and that's a reality that is too complex for all of it to run in the cloud. >> Paul: So it sounds like the strategy is to envelop and consume then if you have mainframe conversion services and HP-UX in the cloud, I mean, you're talking about serious legacy stuff there. >> Keith: You're talking about serious legacy stuff. They haven't de-emphasized their relationship with VMware. You know, hybrid is not a place, it is a operating model. So VMware cloud on AWS allows you to do both models concurrently if you have those applications that need layer two. You have these workloads that just don't... SAP just doesn't... Sorry, AWS, SAP in the cloud and EC2 just doesn't make financial sense. It's a reality. It's accepting of that and meeting customers where they're at. >> And all the collaboration, I mean, you've mentioned so many companies in that answer, and I think it's very interesting to see how much we're all going to have to work together to make the cloud its own operating system. Cloud as an OS came up on our last conversation here and I think it's absolutely fascinating. >> Keith: Yeah, cloud is the OS I think is a thing. This idea that I'm going to use the cloud as my base layer of abstraction. I've talked to a really interesting startup... Well actually it's a open source project cross plane of where they're taking that cloud model and now I can put my VMware vsphere, my AWS, GCP, et cetera, behind that and use that operating model to manage my overall infrastructure. So, the maturity of the market has fascinated me over the past year, year and a half. >> It really feels like we're at a new inflection point. I totally agree. I want to talk about something completely different. >> Keith: Okay. >> Because I know that we both did this challenge. So one of the things that's really inspiring quite frankly about being here at AWS reInvent, and I know you all at home don't have an opportunity to walk the floor and get the experience and get as many steps as Paul gets in, but there's a real emphasis on giving back. This community cares about giving back and AWS is doing a variety of different activations to donate to a variety of different charities. And there's a DJ booth. I've been joking. It kind of feels like you're arriving at a rave when you get to reInvent. And right next to that, there is a hydrate and help station with these reusable water bottles. This is actually firm. It's not one of those plastic ones that's going to end up in the recycled bin or the landfill. And every single time that you fill up your water bottle, AWS will donate $3 to help women in Kenya get access to water. One of the things that I found really fascinating about the activation is women in sub-Saharan Africa spend 16 million hours carrying water a day, which is a wild concept to think about, and water is heavy. Keith, my man, I know that you did the activation. They had you carrying two 20 pound jugs of water. >> Keith: For about 15 feet. It's not the... >> (laughs) >> 20 pound jugs of water, 20 gallons, whatever the amount is. It was extremely heavy. I'm a fairly sizeable guy. Six four, six five. >> You're in good shape, yeah. >> Keith: Couple of a hundred pounds. >> Yeah. >> Keith: And I could not imagine spending that many hours simply getting fresh water. We take it for granted. Every time I run the water in the sink, my family gets on me because I get on them when they leave the sink water. It's like my dad's left the light on. If you leave the water on in my house, you are going to hear it from me because, you know, things like this tickle in my mind like, wow, people walk that far. >> Savannah: That's your whole day. >> Just water, and that's probably not even enough water for the day. >> Paul: Yeah. We think of that as being, like, an 18th century phenomenon, but it's very much today in parts of Sub-Saharan Africa. >> I know, and we're so privileged. For me, it was just, we work in technology. Everyone here is pretty blessed, and to do that activation really got my head in the right space to think, wow I'm so lucky. The team here, the fabulous production team, can go refill my water bottle. I mean, so simple. They've also got a fitness activation going on. You can jump on a bike, a treadmill, and if you work out for five minutes, they donate $5 to Fred Hutch up in Seattle. And that was nice. I did a little cross-training in between segments yesterday and I just, I really love seeing that emphasis. None of this matters if we're not taking care of community. >> Yeah, I'm going to go out and google Fred Hutch, and just donate the five bucks. 'Cause I'm not, I'm not. >> (laughs) >> I'll run forever, but I'm not getting on a bike. >> This from a guy who did 100 5Ks in a row last year. >> Yeah. I did 100 5Ks in a row, and I'm not doing five minutes on a bike. That's it. That's crazy, right? >> I mean there is a treadmill And they have the little hands workout thing too if you want. >> About five minutes though. >> Savannah: I know. >> Like five minutes is way longer than what you think it is. >> I mean, it's true. I was up there in a dress in sequence. Hopefully, I didn't scar any anyone on the show floor yesterday. It's still toss up. >> I'm going to take us back to back. >> Take us back Paul. >> Back to what we were talking about. I want to know what you're hearing. So we've had a lot of people on this show, a lot of vendors on the show who have said AWS is our most important cloud partner, which would imply that AWS's lead is solidifying its lead and pulling away from the pack as the number one. Do you hear that as well? Or is that lip service? >> Keith: So I always think about AWS reInvent as the Amazon victory lap. This is where they come and just thumb their noses at all the other cloud providers and just show how far ahead they're are. Werner Vogels, CTO at Amazon's keynotes, so I hadn't watched it yet, but at that keynote, this is where they literally take the victory lap and say that we're going to expose what we did four or five years ago on stage, and what we did four or five years ago is ahead of every cloud provider with maybe the exception of GCP and they're maybe three years behind. So customers are overwhelmingly choosing Amazon for these reasons. Don't get me wrong, Corey Quinn, Gardner folks, really went at Adam yesterday about Amazon had three majors outages in December last year. AWS has way too many services that are disconnected, but from the pure capability, I talked to a born in the cloud data protection company who could repatriate their data protection and storage on-prem private data center, save money. Instead, they double down on Amazon. They're using, they modernize their application and they're reduced their cost by 60 to 70%. >> Massive. >> This is massive. AWS is keeping up with customers no matter where they're at on the spectrum. >> Savannah: I love that you use the term victory lap. We've had a lot of folks from AWS here up on the show this week, and a couple of them have said they live for this. I mean, and it's got to be pretty cool. You've got 70 thousand plus people obsessed with your product and so many different partners doing so many different things from the edge to hospital to the largest companies on earth to the Israeli Ministry of Defense we were just talking about earlier, so everybody needs the cloud. I feel like that's where we're at. >> Keith: Yeah, and the next step, I think the next level opportunity for AWS is to get to that analyst or that citizen developer, being able to enable the end user to use a lambda, use these data services to create new applications, and the meanwhile, there's folks on the show floor filling that gap that enable develop... the piece of owner, the piece of parlor owner, to create a web portal that compares his prices and solutions to other vendors in his area and adjust dynamically. You go into a restaurant now and there is no price menu. There's a QR code that Amazon is powering much of that dynamic relationship between the restaurateur, the customer, and even the menu and availability. It's just a wonderful time. >> I always ask for the print menu. I'm sorry. >> Yeah. You want the printed menu. >> Look down, my phone doesn't work. >> Gimme something I could shine my light on. >> I know you didn't have have a chance to look at Vogel's keynote yet, but I mean you mentioned citizen developer. One of the things they announced this morning was essentially a low code lambda interface. So you can plug, take your lamb dysfunctions and do drag and drop a connection between them. So they are going after that market. >> Keith: So I guess I'll take my victory lap because that was my prediction. That's where Amazon's next... >> Well done, Keith. >> Because Lambda is that thing when you look at what server list was and the name of the concept of being, not having to have to worry about servers in your application development, the logical next step, I won't take too much of a leap. That logical first step is, well, code less code. This is something that Kelsey Hightower has talked about a lot. Low code, no code, the ability to empower people without having these artificial barriers, learning how to code in a different language. This is the time where I can go to Valencia, it's pronounced, where I can go to Valencia and not speak Spanish and just have my phone. Why can't we do, at business value, for people who have amazing ideas and enable those amazing ideas before I have to stick a developer in between them and the system. >> Paul: Low-code market is growing 35% a year. It's not surprising, given the potential that's out there. >> And as a non-technical person, who works in technology, I've been waiting for this moment. So keep predicting this kind of thing, Keith. 'Cause hopefully it'll keep happening. Keith, I'm going to give you the challenge we've been giving all of our guests this week. >> Keith: Okay. >> And I know you're going to absolutely crush this. So we are looking for your 32nd Instagram real, sizzle hot take, biggest takeaway from this year's show. >> So 32nd Instagram, I'll even put it on TikTok. >> Savannah: Heck yeah. >> Hybrid cloud, hybrid infrastructure. This is way bigger than Amazon. Whether we're talking about Amazon, AWS, I mean AWS's solutions, Google Cloud, Azure, OCI, on-prem. Customers want it all. They want a way to manage it all, and they need the skill and tools to enable their not-so-growing work force to do it. That is, that's AWS reInvent 2019 to 2022. >> Absolutely nailed it. Keith Townsend, it is always such a joy to have you here on theCUBE. Thank you for joining us >> Savannah Page. Great to have you. Paul, you too. You're always a great co-host. >> (laughs) We co-hosted for three days. >> We've got a lot of love for each other here. And we have even more love for all of you tuning into our fabulous livestream from AWS reInvent Las Vegas, Nevada, with Paul Gillin. I'm Savannah Peterson. You're watching theCUBE, the leader in high tech coverage. (upbeat music)

Published Date : Dec 1 2022

SUMMARY :

Paul, how you doing? as we have back to back segments. We get to have a chat Good to see you again. Keith, how's the show been for you so far? I tweeted it a couple of days ago. Savannah: Whoo! of the four that I've attended. and talking to people. and that's the AWS cloud, on the show floor... like the strategy is to Sorry, AWS, SAP in the cloud and EC2 And all the collaboration, I mean, This idea that I'm going to use the cloud I want to talk about something One of the things that I It's not the... I'm a fairly sizeable guy. It's like my dad's left the light on. that's probably not even of that as being, like, in the right space to and just donate the five bucks. but I'm not getting on a bike. 100 5Ks in a row last year. and I'm not doing five minutes on a bike. if you want. than what you think it is. on the show floor yesterday. as the number one. I talked to a born in the at on the spectrum. on the show this week, Keith: Yeah, and the next step, I always ask for the print menu. Gimme something I One of the things they because that was my prediction. This is the time where It's not surprising, given the Keith, I'm going to give you the challenge to absolutely crush this. So 32nd Instagram, That is, that's AWS reInvent 2019 to 2022. to have you here on theCUBE. Great to have you. We co-hosted for three days. And we have even more love for all of you

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AdamPERSON

0.99+

Paul GillinPERSON

0.99+

Keith TownsendPERSON

0.99+

SavannahPERSON

0.99+

AWSORGANIZATION

0.99+

Savannah PetersonPERSON

0.99+

KeithPERSON

0.99+

PaulPERSON

0.99+

AmazonORGANIZATION

0.99+

SeattleLOCATION

0.99+

Werner VogelsPERSON

0.99+

five minutesQUANTITY

0.99+

PWCORGANIZATION

0.99+

$3QUANTITY

0.99+

$5QUANTITY

0.99+

20 gallonsQUANTITY

0.99+

ValenciaLOCATION

0.99+

Savannah PagePERSON

0.99+

SixQUANTITY

0.99+

Todd ConsultingORGANIZATION

0.99+

five bucksQUANTITY

0.99+

Corey QuinnPERSON

0.99+

CapgeminiORGANIZATION

0.99+

KenyaLOCATION

0.99+

December last yearDATE

0.99+

16 million hoursQUANTITY

0.99+

threeQUANTITY

0.99+

2019DATE

0.99+

last yearDATE

0.99+

yesterdayDATE

0.99+

sixQUANTITY

0.99+

32ndQUANTITY

0.99+

18th centuryDATE

0.99+

2022DATE

0.99+