Image Title

Search Results for Rob Hof:

Breaking Analysis: Databricks faces critical strategic decisions…here’s why


 

>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Spark became a top level Apache project in 2014, and then shortly thereafter, burst onto the big data scene. Spark, along with the cloud, transformed and in many ways, disrupted the big data market. Databricks optimized its tech stack for Spark and took advantage of the cloud to really cleverly deliver a managed service that has become a leading AI and data platform among data scientists and data engineers. However, emerging customer data requirements are shifting into a direction that will cause modern data platform players generally and Databricks, specifically, we think, to make some key directional decisions and perhaps even reinvent themselves. Hello and welcome to this week's wikibon theCUBE Insights, powered by ETR. In this Breaking Analysis, we're going to do a deep dive into Databricks. We'll explore its current impressive market momentum. We're going to use some ETR survey data to show that, and then we'll lay out how customer data requirements are changing and what the ideal data platform will look like in the midterm future. We'll then evaluate core elements of the Databricks portfolio against that vision, and then we'll close with some strategic decisions that we think the company faces. And to do so, we welcome in our good friend, George Gilbert, former equities analyst, market analyst, and current Principal at TechAlpha Partners. George, good to see you. Thanks for coming on. >> Good to see you, Dave. >> All right, let me set this up. We're going to start by taking a look at where Databricks sits in the market in terms of how customers perceive the company and what it's momentum looks like. And this chart that we're showing here is data from ETS, the emerging technology survey of private companies. The N is 1,421. What we did is we cut the data on three sectors, analytics, database-data warehouse, and AI/ML. The vertical axis is a measure of customer sentiment, which evaluates an IT decision maker's awareness of the firm and the likelihood of engaging and/or purchase intent. The horizontal axis shows mindshare in the dataset, and we've highlighted Databricks, which has been a consistent high performer in this survey over the last several quarters. And as we, by the way, just as aside as we previously reported, OpenAI, which burst onto the scene this past quarter, leads all names, but Databricks is still prominent. You can see that the ETR shows some open source tools for reference, but as far as firms go, Databricks is very impressively positioned. Now, let's see how they stack up to some mainstream cohorts in the data space, against some bigger companies and sometimes public companies. This chart shows net score on the vertical axis, which is a measure of spending momentum and pervasiveness in the data set is on the horizontal axis. You can see that chart insert in the upper right, that informs how the dots are plotted, and net score against shared N. And that red dotted line at 40% indicates a highly elevated net score, anything above that we think is really, really impressive. And here we're just comparing Databricks with Snowflake, Cloudera, and Oracle. And that squiggly line leading to Databricks shows their path since 2021 by quarter. And you can see it's performing extremely well, maintaining an elevated net score and net range. Now it's comparable in the vertical axis to Snowflake, and it consistently is moving to the right and gaining share. Now, why did we choose to show Cloudera and Oracle? The reason is that Cloudera got the whole big data era started and was disrupted by Spark. And of course the cloud, Spark and Databricks and Oracle in many ways, was the target of early big data players like Cloudera. Take a listen to Cloudera CEO at the time, Mike Olson. This is back in 2010, first year of theCUBE, play the clip. >> Look, back in the day, if you had a data problem, if you needed to run business analytics, you wrote the biggest check you could to Sun Microsystems, and you bought a great big, single box, central server, and any money that was left over, you handed to Oracle for a database licenses and you installed that database on that box, and that was where you went for data. That was your temple of information. >> Okay? So Mike Olson implied that monolithic model was too expensive and inflexible, and Cloudera set out to fix that. But the best laid plans, as they say, George, what do you make of the data that we just shared? >> So where Databricks has really come up out of sort of Cloudera's tailpipe was they took big data processing, made it coherent, made it a managed service so it could run in the cloud. So it relieved customers of the operational burden. Where they're really strong and where their traditional meat and potatoes or bread and butter is the predictive and prescriptive analytics that building and training and serving machine learning models. They've tried to move into traditional business intelligence, the more traditional descriptive and diagnostic analytics, but they're less mature there. So what that means is, the reason you see Databricks and Snowflake kind of side by side is there are many, many accounts that have both Snowflake for business intelligence, Databricks for AI machine learning, where Snowflake, I'm sorry, where Databricks also did really well was in core data engineering, refining the data, the old ETL process, which kind of turned into ELT, where you loaded into the analytic repository in raw form and refine it. And so people have really used both, and each is trying to get into the other. >> Yeah, absolutely. We've reported on this quite a bit. Snowflake, kind of moving into the domain of Databricks and vice versa. And the last bit of ETR evidence that we want to share in terms of the company's momentum comes from ETR's Round Tables. They're run by Erik Bradley, and now former Gartner analyst and George, your colleague back at Gartner, Daren Brabham. And what we're going to show here is some direct quotes of IT pros in those Round Tables. There's a data science head and a CIO as well. Just make a few call outs here, we won't spend too much time on it, but starting at the top, like all of us, we can't talk about Databricks without mentioning Snowflake. Those two get us excited. Second comment zeros in on the flexibility and the robustness of Databricks from a data warehouse perspective. And then the last point is, despite competition from cloud players, Databricks has reinvented itself a couple of times over the year. And George, we're going to lay out today a scenario that perhaps calls for Databricks to do that once again. >> Their big opportunity and their big challenge for every tech company, it's managing a technology transition. The transition that we're talking about is something that's been bubbling up, but it's really epical. First time in 60 years, we're moving from an application-centric view of the world to a data-centric view, because decisions are becoming more important than automating processes. So let me let you sort of develop. >> Yeah, so let's talk about that here. We going to put up some bullets on precisely that point and the changing sort of customer environment. So you got IT stacks are shifting is George just said, from application centric silos to data centric stacks where the priority is shifting from automating processes to automating decision. You know how look at RPA and there's still a lot of automation going on, but from the focus of that application centricity and the data locked into those apps, that's changing. Data has historically been on the outskirts in silos, but organizations, you think of Amazon, think Uber, Airbnb, they're putting data at the core, and logic is increasingly being embedded in the data instead of the reverse. In other words, today, the data's locked inside the app, which is why you need to extract that data is sticking it to a data warehouse. The point, George, is we're putting forth this new vision for how data is going to be used. And you've used this Uber example to underscore the future state. Please explain? >> Okay, so this is hopefully an example everyone can relate to. The idea is first, you're automating things that are happening in the real world and decisions that make those things happen autonomously without humans in the loop all the time. So to use the Uber example on your phone, you call a car, you call a driver. Automatically, the Uber app then looks at what drivers are in the vicinity, what drivers are free, matches one, calculates an ETA to you, calculates a price, calculates an ETA to your destination, and then directs the driver once they're there. The point of this is that that cannot happen in an application-centric world very easily because all these little apps, the drivers, the riders, the routes, the fares, those call on data locked up in many different apps, but they have to sit on a layer that makes it all coherent. >> But George, so if Uber's doing this, doesn't this tech already exist? Isn't there a tech platform that does this already? >> Yes, and the mission of the entire tech industry is to build services that make it possible to compose and operate similar platforms and tools, but with the skills of mainstream developers in mainstream corporations, not the rocket scientists at Uber and Amazon. >> Okay, so we're talking about horizontally scaling across the industry, and actually giving a lot more organizations access to this technology. So by way of review, let's summarize the trend that's going on today in terms of the modern data stack that is propelling the likes of Databricks and Snowflake, which we just showed you in the ETR data and is really is a tailwind form. So the trend is toward this common repository for analytic data, that could be multiple virtual data warehouses inside of Snowflake, but you're in that Snowflake environment or Lakehouses from Databricks or multiple data lakes. And we've talked about what JP Morgan Chase is doing with the data mesh and gluing data lakes together, you've got various public clouds playing in this game, and then the data is annotated to have a common meaning. In other words, there's a semantic layer that enables applications to talk to the data elements and know that they have common and coherent meaning. So George, the good news is this approach is more effective than the legacy monolithic models that Mike Olson was talking about, so what's the problem with this in your view? >> So today's data platforms added immense value 'cause they connected the data that was previously locked up in these monolithic apps or on all these different microservices, and that supported traditional BI and AI/ML use cases. But now if we want to build apps like Uber or Amazon.com, where they've got essentially an autonomously running supply chain and e-commerce app where humans only care and feed it. But the thing is figuring out what to buy, when to buy, where to deploy it, when to ship it. We needed a semantic layer on top of the data. So that, as you were saying, the data that's coming from all those apps, the different apps that's integrated, not just connected, but it means the same. And the issue is whenever you add a new layer to a stack to support new applications, there are implications for the already existing layers, like can they support the new layer and its use cases? So for instance, if you add a semantic layer that embeds app logic with the data rather than vice versa, which we been talking about and that's been the case for 60 years, then the new data layer faces challenges that the way you manage that data, the way you analyze that data, is not supported by today's tools. >> Okay, so actually Alex, bring me up that last slide if you would, I mean, you're basically saying at the bottom here, today's repositories don't really do joins at scale. The future is you're talking about hundreds or thousands or millions of data connections, and today's systems, we're talking about, I don't know, 6, 8, 10 joins and that is the fundamental problem you're saying, is a new data error coming and existing systems won't be able to handle it? >> Yeah, one way of thinking about it is that even though we call them relational databases, when we actually want to do lots of joins or when we want to analyze data from lots of different tables, we created a whole new industry for analytic databases where you sort of mung the data together into fewer tables. So you didn't have to do as many joins because the joins are difficult and slow. And when you're going to arbitrarily join thousands, hundreds of thousands or across millions of elements, you need a new type of database. We have them, they're called graph databases, but to query them, you go back to the prerelational era in terms of their usability. >> Okay, so we're going to come back to that and talk about how you get around that problem. But let's first lay out what the ideal data platform of the future we think looks like. And again, we're going to come back to use this Uber example. In this graphic that George put together, awesome. We got three layers. The application layer is where the data products reside. The example here is drivers, rides, maps, routes, ETA, et cetera. The digital version of what we were talking about in the previous slide, people, places and things. The next layer is the data layer, that breaks down the silos and connects the data elements through semantics and everything is coherent. And then the bottom layers, the legacy operational systems feed that data layer. George, explain what's different here, the graph database element, you talk about the relational query capabilities, and why can't I just throw memory at solving this problem? >> Some of the graph databases do throw memory at the problem and maybe without naming names, some of them live entirely in memory. And what you're dealing with is a prerelational in-memory database system where you navigate between elements, and the issue with that is we've had SQL for 50 years, so we don't have to navigate, we can say what we want without how to get it. That's the core of the problem. >> Okay. So if I may, I just want to drill into this a little bit. So you're talking about the expressiveness of a graph. Alex, if you'd bring that back out, the fourth bullet, expressiveness of a graph database with the relational ease of query. Can you explain what you mean by that? >> Yeah, so graphs are great because when you can describe anything with a graph, that's why they're becoming so popular. Expressive means you can represent anything easily. They're conducive to, you might say, in a world where we now want like the metaverse, like with a 3D world, and I don't mean the Facebook metaverse, I mean like the business metaverse when we want to capture data about everything, but we want it in context, we want to build a set of digital twins that represent everything going on in the world. And Uber is a tiny example of that. Uber built a graph to represent all the drivers and riders and maps and routes. But what you need out of a database isn't just a way to store stuff and update stuff. You need to be able to ask questions of it, you need to be able to query it. And if you go back to prerelational days, you had to know how to find your way to the data. It's sort of like when you give directions to someone and they didn't have a GPS system and a mapping system, you had to give them turn by turn directions. Whereas when you have a GPS and a mapping system, which is like the relational thing, you just say where you want to go, and it spits out the turn by turn directions, which let's say, the car might follow or whoever you're directing would follow. But the point is, it's much easier in a relational database to say, "I just want to get these results. You figure out how to get it." The graph database, they have not taken over the world because in some ways, it's taking a 50 year leap backwards. >> Alright, got it. Okay. Let's take a look at how the current Databricks offerings map to that ideal state that we just laid out. So to do that, we put together this chart that looks at the key elements of the Databricks portfolio, the core capability, the weakness, and the threat that may loom. Start with the Delta Lake, that's the storage layer, which is great for files and tables. It's got true separation of compute and storage, I want you to double click on that George, as independent elements, but it's weaker for the type of low latency ingest that we see coming in the future. And some of the threats highlighted here. AWS could add transactional tables to S3, Iceberg adoption is picking up and could accelerate, that could disrupt Databricks. George, add some color here please? >> Okay, so this is the sort of a classic competitive forces where you want to look at, so what are customers demanding? What's competitive pressure? What are substitutes? Even what your suppliers might be pushing. Here, Delta Lake is at its core, a set of transactional tables that sit on an object store. So think of it in a database system, this is the storage engine. So since S3 has been getting stronger for 15 years, you could see a scenario where they add transactional tables. We have an open source alternative in Iceberg, which Snowflake and others support. But at the same time, Databricks has built an ecosystem out of tools, their own and others, that read and write to Delta tables, that's what makes the Delta Lake and ecosystem. So they have a catalog, the whole machine learning tool chain talks directly to the data here. That was their great advantage because in the past with Snowflake, you had to pull all the data out of the database before the machine learning tools could work with it, that was a major shortcoming. They fixed that. But the point here is that even before we get to the semantic layer, the core foundation is under threat. >> Yep. Got it. Okay. We got a lot of ground to cover. So we're going to take a look at the Spark Execution Engine next. Think of that as the refinery that runs really efficient batch processing. That's kind of what disrupted the DOOp in a large way, but it's not Python friendly and that's an issue because the data science and the data engineering crowd are moving in that direction, and/or they're using DBT. George, we had Tristan Handy on at Supercloud, really interesting discussion that you and I did. Explain why this is an issue for Databricks? >> So once the data lake was in place, what people did was they refined their data batch, and Spark has always had streaming support and it's gotten better. The underlying storage as we've talked about is an issue. But basically they took raw data, then they refined it into tables that were like customers and products and partners. And then they refined that again into what was like gold artifacts, which might be business intelligence metrics or dashboards, which were collections of metrics. But they were running it on the Spark Execution Engine, which it's a Java-based engine or it's running on a Java-based virtual machine, which means all the data scientists and the data engineers who want to work with Python are really working in sort of oil and water. Like if you get an error in Python, you can't tell whether the problems in Python or where it's in Spark. There's just an impedance mismatch between the two. And then at the same time, the whole world is now gravitating towards DBT because it's a very nice and simple way to compose these data processing pipelines, and people are using either SQL in DBT or Python in DBT, and that kind of is a substitute for doing it all in Spark. So it's under threat even before we get to that semantic layer, it so happens that DBT itself is becoming the authoring environment for the semantic layer with business intelligent metrics. But that's again, this is the second element that's under direct substitution and competitive threat. >> Okay, let's now move down to the third element, which is the Photon. Photon is Databricks' BI Lakehouse, which has integration with the Databricks tooling, which is very rich, it's newer. And it's also not well suited for high concurrency and low latency use cases, which we think are going to increasingly become the norm over time. George, the call out threat here is customers want to connect everything to a semantic layer. Explain your thinking here and why this is a potential threat to Databricks? >> Okay, so two issues here. What you were touching on, which is the high concurrency, low latency, when people are running like thousands of dashboards and data is streaming in, that's a problem because SQL data warehouse, the query engine, something like that matures over five to 10 years. It's one of these things, the joke that Andy Jassy makes just in general, he's really talking about Azure, but there's no compression algorithm for experience. The Snowflake guy started more than five years earlier, and for a bunch of reasons, that lead is not something that Databricks can shrink. They'll always be behind. So that's why Snowflake has transactional tables now and we can get into that in another show. But the key point is, so near term, it's struggling to keep up with the use cases that are core to business intelligence, which is highly concurrent, lots of users doing interactive query. But then when you get to a semantic layer, that's when you need to be able to query data that might have thousands or tens of thousands or hundreds of thousands of joins. And that's a SQL query engine, traditional SQL query engine is just not built for that. That's the core problem of traditional relational databases. >> Now this is a quick aside. We always talk about Snowflake and Databricks in sort of the same context. We're not necessarily saying that Snowflake is in a position to tackle all these problems. We'll deal with that separately. So we don't mean to imply that, but we're just sort of laying out some of the things that Snowflake or rather Databricks customers we think, need to be thinking about and having conversations with Databricks about and we hope to have them as well. We'll come back to that in terms of sort of strategic options. But finally, when come back to the table, we have Databricks' AI/ML Tool Chain, which has been an awesome capability for the data science crowd. It's comprehensive, it's a one-stop shop solution, but the kicker here is that it's optimized for supervised model building. And the concern is that foundational models like GPT could cannibalize the current Databricks tooling, but George, can't Databricks, like other software companies, integrate foundation model capabilities into its platform? >> Okay, so the sound bite answer to that is sure, IBM 3270 terminals could call out to a graphical user interface when they're running on the XT terminal, but they're not exactly good citizens in that world. The core issue is Databricks has this wonderful end-to-end tool chain for training, deploying, monitoring, running inference on supervised models. But the paradigm there is the customer builds and trains and deploys each model for each feature or application. In a world of foundation models which are pre-trained and unsupervised, the entire tool chain is different. So it's not like Databricks can junk everything they've done and start over with all their engineers. They have to keep maintaining what they've done in the old world, but they have to build something new that's optimized for the new world. It's a classic technology transition and their mentality appears to be, "Oh, we'll support the new stuff from our old stuff." Which is suboptimal, and as we'll talk about, their biggest patron and the company that put them on the map, Microsoft, really stopped working on their old stuff three years ago so that they could build a new tool chain optimized for this new world. >> Yeah, and so let's sort of close with what we think the options are and decisions that Databricks has for its future architecture. They're smart people. I mean we've had Ali Ghodsi on many times, super impressive. I think they've got to be keenly aware of the limitations, what's going on with foundation models. But at any rate, here in this chart, we lay out sort of three scenarios. One is re-architect the platform by incrementally adopting new technologies. And example might be to layer a graph query engine on top of its stack. They could license key technologies like graph database, they could get aggressive on M&A and buy-in, relational knowledge graphs, semantic technologies, vector database technologies. George, as David Floyer always says, "A lot of ways to skin a cat." We've seen companies like, even think about EMC maintained its relevance through M&A for many, many years. George, give us your thought on each of these strategic options? >> Okay, I find this question the most challenging 'cause remember, I used to be an equity research analyst. I worked for Frank Quattrone, we were one of the top tech shops in the banking industry, although this is 20 years ago. But the M&A team was the top team in the industry and everyone wanted them on their side. And I remember going to meetings with these CEOs, where Frank and the bankers would say, "You want us for your M&A work because we can do better." And they really could do better. But in software, it's not like with EMC in hardware because with hardware, it's easier to connect different boxes. With software, the whole point of a software company is to integrate and architect the components so they fit together and reinforce each other, and that makes M&A harder. You can do it, but it takes a long time to fit the pieces together. Let me give you examples. If they put a graph query engine, let's say something like TinkerPop, on top of, I don't even know if it's possible, but let's say they put it on top of Delta Lake, then you have this graph query engine talking to their storage layer, Delta Lake. But if you want to do analysis, you got to put the data in Photon, which is not really ideal for highly connected data. If you license a graph database, then most of your data is in the Delta Lake and how do you sync it with the graph database? If you do sync it, you've got data in two places, which kind of defeats the purpose of having a unified repository. I find this semantic layer option in number three actually more promising, because that's something that you can layer on top of the storage layer that you have already. You just have to figure out then how to have your query engines talk to that. What I'm trying to highlight is, it's easy as an analyst to say, "You can buy this company or license that technology." But the really hard work is making it all work together and that is where the challenge is. >> Yeah, and well look, I thank you for laying that out. We've seen it, certainly Microsoft and Oracle. I guess you might argue that well, Microsoft had a monopoly in its desktop software and was able to throw off cash for a decade plus while it's stock was going sideways. Oracle had won the database wars and had amazing margins and cash flow to be able to do that. Databricks isn't even gone public yet, but I want to close with some of the players to watch. Alex, if you'd bring that back up, number four here. AWS, we talked about some of their options with S3 and it's not just AWS, it's blob storage, object storage. Microsoft, as you sort of alluded to, was an early go-to market channel for Databricks. We didn't address that really. So maybe in the closing comments we can. Google obviously, Snowflake of course, we're going to dissect their options in future Breaking Analysis. Dbt labs, where do they fit? Bob Muglia's company, Relational.ai, why are these players to watch George, in your opinion? >> So everyone is trying to assemble and integrate the pieces that would make building data applications, data products easy. And the critical part isn't just assembling a bunch of pieces, which is traditionally what AWS did. It's a Unix ethos, which is we give you the tools, you put 'em together, 'cause you then have the maximum choice and maximum power. So what the hyperscalers are doing is they're taking their key value stores, in the case of ASW it's DynamoDB, in the case of Azure it's Cosmos DB, and each are putting a graph query engine on top of those. So they have a unified storage and graph database engine, like all the data would be collected in the key value store. Then you have a graph database, that's how they're going to be presenting a foundation for building these data apps. Dbt labs is putting a semantic layer on top of data lakes and data warehouses and as we'll talk about, I'm sure in the future, that makes it easier to swap out the underlying data platform or swap in new ones for specialized use cases. Snowflake, what they're doing, they're so strong in data management and with their transactional tables, what they're trying to do is take in the operational data that used to be in the province of many state stores like MongoDB and say, "If you manage that data with us, it'll be connected to your analytic data without having to send it through a pipeline." And that's hugely valuable. Relational.ai is the wildcard, 'cause what they're trying to do, it's almost like a holy grail where you're trying to take the expressiveness of connecting all your data in a graph but making it as easy to query as you've always had it in a SQL database or I should say, in a relational database. And if they do that, it's sort of like, it'll be as easy to program these data apps as a spreadsheet was compared to procedural languages, like BASIC or Pascal. That's the implications of Relational.ai. >> Yeah, and again, we talked before, why can't you just throw this all in memory? We're talking in that example of really getting down to differences in how you lay the data out on disk in really, new database architecture, correct? >> Yes. And that's why it's not clear that you could take a data lake or even a Snowflake and why you can't put a relational knowledge graph on those. You could potentially put a graph database, but it'll be compromised because to really do what Relational.ai has done, which is the ease of Relational on top of the power of graph, you actually need to change how you're storing your data on disk or even in memory. So you can't, in other words, it's not like, oh we can add graph support to Snowflake, 'cause if you did that, you'd have to change, or in your data lake, you'd have to change how the data is physically laid out. And then that would break all the tools that talk to that currently. >> What in your estimation, is the timeframe where this becomes critical for a Databricks and potentially Snowflake and others? I mentioned earlier midterm, are we talking three to five years here? Are we talking end of decade? What's your radar say? >> I think something surprising is going on that's going to sort of come up the tailpipe and take everyone by storm. All the hype around business intelligence metrics, which is what we used to put in our dashboards where bookings, billings, revenue, customer, those things, those were the key artifacts that used to live in definitions in your BI tools, and DBT has basically created a standard for defining those so they live in your data pipeline or they're defined in their data pipeline and executed in the data warehouse or data lake in a shared way, so that all tools can use them. This sounds like a digression, it's not. All this stuff about data mesh, data fabric, all that's going on is we need a semantic layer and the business intelligence metrics are defining common semantics for your data. And I think we're going to find by the end of this year, that metrics are how we annotate all our analytic data to start adding common semantics to it. And we're going to find this semantic layer, it's not three to five years off, it's going to be staring us in the face by the end of this year. >> Interesting. And of course SVB today was shut down. We're seeing serious tech headwinds, and oftentimes in these sort of downturns or flat turns, which feels like this could be going on for a while, we emerge with a lot of new players and a lot of new technology. George, we got to leave it there. Thank you to George Gilbert for excellent insights and input for today's episode. I want to thank Alex Myerson who's on production and manages the podcast, of course Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our EIC over at Siliconangle.com, he does some great editing. Remember all these episodes, they're available as podcasts. Wherever you listen, all you got to do is search Breaking Analysis Podcast, we publish each week on wikibon.com and siliconangle.com, or you can email me at David.Vellante@siliconangle.com, or DM me @DVellante. Comment on our LinkedIn post, and please do check out ETR.ai, great survey data, enterprise tech focus, phenomenal. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis.

Published Date : Mar 10 2023

SUMMARY :

bringing you data-driven core elements of the Databricks portfolio and pervasiveness in the data and that was where you went for data. and Cloudera set out to fix that. the reason you see and the robustness of Databricks and their big challenge and the data locked into in the real world and decisions Yes, and the mission of that is propelling the likes that the way you manage that data, is the fundamental problem because the joins are difficult and slow. and connects the data and the issue with that is the fourth bullet, expressiveness and it spits out the and the threat that may loom. because in the past with Snowflake, Think of that as the refinery So once the data lake was in place, George, the call out threat here But the key point is, in sort of the same context. and the company that put One is re-architect the platform and architect the components some of the players to watch. in the case of ASW it's DynamoDB, and why you can't put a relational and executed in the data and manages the podcast, of

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

David FloyerPERSON

0.99+

Mike OlsonPERSON

0.99+

2014DATE

0.99+

George GilbertPERSON

0.99+

Dave VellantePERSON

0.99+

GeorgePERSON

0.99+

Cheryl KnightPERSON

0.99+

Ken SchiffmanPERSON

0.99+

Andy JassyPERSON

0.99+

OracleORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Erik BradleyPERSON

0.99+

DavePERSON

0.99+

UberORGANIZATION

0.99+

thousandsQUANTITY

0.99+

Sun MicrosystemsORGANIZATION

0.99+

50 yearsQUANTITY

0.99+

AWSORGANIZATION

0.99+

Bob MugliaPERSON

0.99+

GartnerORGANIZATION

0.99+

AirbnbORGANIZATION

0.99+

60 yearsQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

Ali GhodsiPERSON

0.99+

2010DATE

0.99+

DatabricksORGANIZATION

0.99+

Kristin MartinPERSON

0.99+

Rob HofPERSON

0.99+

threeQUANTITY

0.99+

15 yearsQUANTITY

0.99+

Databricks'ORGANIZATION

0.99+

two placesQUANTITY

0.99+

BostonLOCATION

0.99+

Tristan HandyPERSON

0.99+

M&AORGANIZATION

0.99+

Frank QuattronePERSON

0.99+

second elementQUANTITY

0.99+

Daren BrabhamPERSON

0.99+

TechAlpha PartnersORGANIZATION

0.99+

third elementQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

50 yearQUANTITY

0.99+

40%QUANTITY

0.99+

ClouderaORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

five yearsQUANTITY

0.99+

Breaking Analysis: MWC 2023 goes beyond consumer & deep into enterprise tech


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> While never really meant to be a consumer tech event, the rapid ascendancy of smartphones sucked much of the air out of Mobile World Congress over the years, now MWC. And while the device manufacturers continue to have a major presence at the show, the maturity of intelligent devices, longer life cycles, and the disaggregation of the network stack, have put enterprise technologies front and center in the telco business. Semiconductor manufacturers, network equipment players, infrastructure companies, cloud vendors, software providers, and a spate of startups are eyeing the trillion dollar plus communications industry as one of the next big things to watch this decade. Hello, and welcome to this week's Wikibon CUBE Insights, powered by ETR. In this Breaking Analysis, we bring you part two of our ongoing coverage of MWC '23, with some new data on enterprise players specifically in large telco environments, a brief glimpse at some of the pre-announcement news and corresponding themes ahead of MWC, and some of the key announcement areas we'll be watching at the show on theCUBE. Now, last week we shared some ETR data that showed how traditional enterprise tech players were performing, specifically within the telecoms vertical. Here's a new look at that data from ETR, which isolates the same companies, but cuts the data for what ETR calls large telco. The N in this cut is 196, down from 288 last week when we included all company sizes in the dataset. Now remember the two dimensions here, on the y-axis is net score, or spending momentum, and on the x-axis is pervasiveness in the data set. The table insert in the upper left informs how the dots and companies are plotted, and that red dotted line, the horizontal line at 40%, that indicates a highly elevated net score. Now while the data are not dramatically different in terms of relative positioning, there are a couple of changes at the margin. So just going down the list and focusing on net score. Azure is comparable, but slightly lower in this sector in the large telco than it was overall. Google Cloud comes in at number two, and basically swapped places with AWS, which drops slightly in the large telco relative to overall telco. Snowflake is also slightly down by one percentage point, but maintains its position. Remember Snowflake, overall, its net score is much, much higher when measuring across all verticals. Snowflake comes down in telco, and relative to overall, a little bit down in large telco, but it's making some moves to attack this market that we'll talk about in a moment. Next are Red Hat OpenStack and Databricks. About the same in large tech telco as they were an overall telco. Then there's Dell next that has a big presence at MWC and is getting serious about driving 16G adoption, and new servers, and edge servers, and other partnerships. Cisco and Red Hat OpenShift basically swapped spots when moving from all telco to large telco, as Cisco drops and Red Hat bumps up a bit. And VMware dropped about four percentage points in large telco. Accenture moved up dramatically, about nine percentage points in big telco, large telco relative to all telco. HPE dropped a couple of percentage points. Oracle stayed about the same. And IBM surprisingly dropped by about five points. So look, I understand not a ton of change in terms of spending momentum in the large sector versus telco overall, but some deltas. The bottom line for enterprise players is one, they're just getting started in this new disruption journey that they're on as the stack disaggregates. Two, all these players have experience in delivering horizontal solutions, but now working with partners and identifying big problems to be solved, and three, many of these companies are generally not the fastest moving firms relative to smaller disruptive disruptors. Now, cloud has been an exception in fairness. But the good news for the legacy infrastructure and IT companies is that the telco transformation and the 5G buildout is going to take years. So it's moving at a pace that is very favorable to many of these companies. Okay, so looking at just some of the pre-announcement highlights that have hit the wire this week, I want to give you a glimpse of the diversity of innovation that is occurring in the telecommunication space. You got semiconductor manufacturers, device makers, network equipment players, carriers, cloud vendors, enterprise tech companies, software companies, startups. Now we've included, you'll see in this list, we've included OpeRAN, that logo, because there's so much buzz around the topic and we're going to come back to that. But suffice it to say, there's no way we can cover all the announcements from the 2000 plus exhibitors at the show. So we're going to cherry pick here and make a few call outs. Hewlett Packard Enterprise announced an acquisition of an Italian private cellular network company called AthoNet. Zeus Kerravala wrote about it on SiliconANGLE if you want more details. Now interestingly, HPE has a partnership with Solana, which also does private 5G. But according to Zeus, Solona is more of an out-of-the-box solution, whereas AthoNet is designed for the core and requires more integration. And as you'll see in a moment, there's going to be a lot of talk at the show about private network. There's going to be a lot of news there from other competitors, and we're going to be watching that closely. And while many are concerned about the P5G, private 5G, encroaching on wifi, Kerravala doesn't see it that way. Rather, he feels that these private networks are really designed for more industrial, and you know mission critical environments, like factories, and warehouses that are run by robots, et cetera. 'Cause these can justify the increased expense of private networks. Whereas wifi remains a very low cost and flexible option for, you know, whatever offices and homes. Now, over to Dell. Dell announced its intent to go hard after opening up the telco network with the announcement that in the second half of this year it's going to begin shipping its infrastructure blocks for Red Hat. Remember it's like kind of the converged infrastructure for telco with a more open ecosystem and sort of more flexible, you know, more mature engineered system. Dell has also announced a range of PowerEdge servers for a variety of use cases. A big wide line bringing forth its 16G portfolio and aiming squarely at the telco space. Dell also announced, here we go, a private wireless offering with airspan, and Expedo, and a solution with AthoNet, the company HPE announced it was purchasing. So I guess Dell and HPE are now partnering up in the private wireless space, and yes, hell is freezing over folks. We'll see where that relationship goes in the mid- to long-term. Dell also announced new lab and certification capabilities, which we said last week was going to be critical for the further adoption of open ecosystem technology. So props to Dell for, you know, putting real emphasis and investment in that. AWS also made a number of announcements in this space including private wireless solutions and associated managed services. AWS named Deutsche Telekom, Orange, T-Mobile, Telefonica, and some others as partners. And AWS announced the stepped up partnership, specifically with T-Mobile, to bring AWS services to T-Mobile's network portfolio. Snowflake, back to Snowflake, announced its telecom data cloud. Remember we showed the data earlier, it's Snowflake not as strong in the telco sector, but they're continuing to move toward this go-to market alignment within key industries, realigning their go-to market by vertical. It also announced that AT&T, and a number of other partners, are collaborating to break down data silos specifically in telco. Look, essentially, this is Snowflake taking its core value prop to the telco vertical and forming key partnerships that resonate in the space. So think simplification, breaking down silos, data sharing, eventually data monetization. Samsung previewed its future capability to allow smartphones to access satellite services, something Apple has previously done. AMD, Intel, Marvell, Qualcomm, are all in the act, all the semiconductor players. Qualcomm for example, announced along with Telefonica, and Erickson, a 5G millimeter network that will be showcased in Spain at the event this coming week using Qualcomm Snapdragon chipset platform, based on none other than Arm technology. Of course, Arm we said is going to dominate the edge, and is is clearly doing so. It's got the volume advantage over, you know, traditional Intel, you know, X86 architectures. And it's no surprise that Microsoft is touting its open AI relationship. You're going to hear a lot of AI talk at this conference as is AI is now, you know, is the now topic. All right, we could go on and on and on. There's just so much going on at Mobile World Congress or MWC, that we just wanted to give you a glimpse of some of the highlights that we've been watching. Which brings us to the key topics and issues that we'll be exploring at MWC next week. We touched on some of this last week. A big topic of conversation will of course be, you know, 5G. Is it ever going to become real? Is it, is anybody ever going to make money at 5G? There's so much excitement around and anticipation around 5G. It has not lived up to the hype, but that's because the rollout, as we've previous reported, is going to take years. And part of that rollout is going to rely on the disaggregation of the hardened telco stack, as we reported last week and in previous Breaking Analysis episodes. OpenRAN is a big component of that evolution. You know, as our RAN intelligent controllers, RICs, which essentially the brain of OpenRAN, if you will. Now as we build out 5G networks at massive scale and accommodate unprecedented volumes of data and apply compute-hungry AI to all this data, the issue of energy efficiency is going to be front and center. It has to be. Not only is it a, you know, hot political issue, the reality is that improving power efficiency is compulsory or the whole vision of telco's future is going to come crashing down. So chip manufacturers, equipment makers, cloud providers, everybody is going to be doubling down and clicking on this topic. Let's talk about AI. AI as we said, it is the hot topic right now, but it is happening not only in consumer, with things like ChatGPT. And think about the theme of this Breaking Analysis in the enterprise, AI in the enterprise cannot be ChatGPT. It cannot be error prone the way ChatGPT is. It has to be clean, reliable, governed, accurate. It's got to be ethical. It's got to be trusted. Okay, we're going to have Zeus Kerravala on the show next week and definitely want to get his take on private networks and how they're going to impact wifi. You know, will private networks cannibalize wifi? If not, why not? He wrote about this again on SiliconANGLE if you want more details, and we're going to unpack that on theCUBE this week. And finally, as always we'll be following the data flows to understand where and how telcos, cloud players, startups, software companies, disruptors, legacy companies, end customers, how are they going to make money from new data opportunities? 'Cause we often say in theCUBE, don't ever bet against data. All right, that's a wrap for today. Remember theCUBE is going to be on location at MWC 2023 next week. We got a great set. We're in the walkway in between halls four and five, right in Congress Square, stand CS-60. Look for us, we got a full schedule. If you got a great story or you have news, stop by. We're going to try to get you on the program. I'll be there with Lisa Martin, co-hosting, David Nicholson as well, and the entire CUBE crew, so don't forget to come by and see us. I want to thank Alex Myerson, who's on production and manages the podcast, and Ken Schiffman, as well, in our Boston studio. Kristen Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at SiliconANGLE.com. He does some great editing. Thank you. All right, remember all these episodes they are available as podcasts wherever you listen. All you got to do is search Breaking Analysis podcasts. I publish each week on Wikibon.com and SiliconANGLE.com. All the video content is available on demand at theCUBE.net, or you can email me directly if you want to get in touch David.Vellante@SiliconANGLE.com or DM me @DVellante, or comment on our LinkedIn posts. And please do check out ETR.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. We'll see you next week at Mobile World Congress '23, MWC '23, or next time on Breaking Analysis. (bright music)

Published Date : Feb 25 2023

SUMMARY :

bringing you data-driven in the mid- to long-term.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
David NicholsonPERSON

0.99+

Lisa MartinPERSON

0.99+

Alex MyersonPERSON

0.99+

OrangeORGANIZATION

0.99+

QualcommORGANIZATION

0.99+

HPEORGANIZATION

0.99+

TelefonicaORGANIZATION

0.99+

Kristen MartinPERSON

0.99+

AWSORGANIZATION

0.99+

Dave VellantePERSON

0.99+

AMDORGANIZATION

0.99+

SpainLOCATION

0.99+

T-MobileORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

Deutsche TelekomORGANIZATION

0.99+

Hewlett Packard EnterpriseORGANIZATION

0.99+

IBMORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

MarvellORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

SamsungORGANIZATION

0.99+

AppleORGANIZATION

0.99+

AT&TORGANIZATION

0.99+

DellORGANIZATION

0.99+

IntelORGANIZATION

0.99+

Rob HofPERSON

0.99+

Palo AltoLOCATION

0.99+

OracleORGANIZATION

0.99+

40%QUANTITY

0.99+

last weekDATE

0.99+

AthoNetORGANIZATION

0.99+

EricksonORGANIZATION

0.99+

Congress SquareLOCATION

0.99+

AccentureORGANIZATION

0.99+

next weekDATE

0.99+

Mobile World CongressEVENT

0.99+

SolanaORGANIZATION

0.99+

BostonLOCATION

0.99+

two dimensionsQUANTITY

0.99+

ETRORGANIZATION

0.99+

MWC '23EVENT

0.99+

MWCEVENT

0.99+

288QUANTITY

0.98+

todayDATE

0.98+

this weekDATE

0.98+

SolonaORGANIZATION

0.98+

David.Vellante@SiliconANGLE.comOTHER

0.98+

telcoORGANIZATION

0.98+

TwoQUANTITY

0.98+

each weekQUANTITY

0.97+

Zeus KerravalaPERSON

0.97+

MWC 2023EVENT

0.97+

about five pointsQUANTITY

0.97+

theCUBE.netOTHER

0.97+

Red HatORGANIZATION

0.97+

SnowflakeTITLE

0.96+

oneQUANTITY

0.96+

DatabricksORGANIZATION

0.96+

threeQUANTITY

0.96+

theCUBE StudiosORGANIZATION

0.96+

Breaking Analysis: MWC 2023 highlights telco transformation & the future of business


 

>> From the Cube Studios in Palo Alto in Boston, bringing you data-driven insights from The Cube and ETR. This is "Breaking Analysis" with Dave Vellante. >> The world's leading telcos are trying to shed the stigma of being monopolies lacking innovation. Telcos have been great at operational efficiency and connectivity and living off of transmission, and the costs and expenses or revenue associated with that transmission. But in a world beyond telephone poles and basic wireless and mobile services, how will telcos modernize and become more agile and monetize new opportunities brought about by 5G and private wireless and a spate of new innovations and infrastructure, cloud data and apps? Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this breaking analysis and ahead of Mobile World Congress or now, MWC23, we explore the evolution of the telco business and how the industry is in many ways, mimicking transformations that took place decades ago in enterprise IT. We'll model some of the traditional enterprise vendors using ETR data and investigate how they're faring in the telecommunications sector, and we'll pose some of the key issues facing the industry this decade. First, let's take a look at what the GSMA has in store for MWC23. GSMA is the host of what used to be called Mobile World Congress. They've set the theme for this year's event as "Velocity" and they've rebranded MWC to reflect the fact that mobile technology is only one part of the story. MWC has become one of the world's premier events highlighting innovations not only in Telco, mobile and 5G, but the collision between cloud, infrastructure, apps, private networks, smart industries, machine intelligence, and AI, and more. MWC comprises an enormous ecosystem of service providers, technology companies, and firms from virtually every industry including sports and entertainment. And as well, GSMA, along with its venue partner at the Fira Barcelona, have placed a major emphasis on sustainability and public and private partnerships. Virtually every industry will be represented at the event because every industry is impacted by the trends and opportunities in this space. GSMA has said it expects 80,000 attendees at MWC this year, not quite back to 2019 levels, but trending in that direction. Of course, attendance from Chinese participants has historically been very high at the show, and obviously the continued travel issues from that region are affecting the overall attendance, but still very strong. And despite these concerns, Huawei, the giant Chinese technology company. has the largest physical presence of any exhibitor at the show. And finally, GSMA estimates that more than $300 million in economic benefit will result from the event which takes place at the end of February and early March. And The Cube will be back at MWC this year with a major presence thanks to our anchor sponsor, Dell Technologies and other supporters of our content program, including Enterprise Web, ArcaOS, VMware, Snowflake, Cisco, AWS, and others. And one of the areas we're interested in exploring is the evolution of the telco stack. It's a topic that's often talked about and one that we've observed taking place in the 1990s when the vertically integrated IBM mainframe monopoly gave way to a disintegrated and horizontal industry structure. And in many ways, the same thing is happening today in telecommunications, which is shown on the left-hand side of this diagram. Historically, telcos have relied on a hardened, integrated, and incredibly reliable, and secure set of hardware and software services that have been fully vetted and tested, and certified, and relied upon for decades. And at the top of that stack on the left are the crown jewels of the telco stack, the operational support systems and the business support systems. For the OSS, we're talking about things like network management, network operations, service delivery, quality of service, fulfillment assurance, and things like that. For the BSS systems, these refer to customer-facing elements of the stack, like revenue, order management, what products they sell, billing, and customer service. And what we're seeing is telcos have been really good at operational efficiency and making money off of transport and connectivity, but they've lacked the innovation in services and applications. They own the pipes and that works well, but others, be the over-the-top content companies, or private network providers and increasingly, cloud providers have been able to bypass the telcos, reach around them, if you will, and drive innovation. And so, the right-most diagram speaks to the need to disaggregate pieces of the stack. And while the similarities to the 1990s in enterprise IT are greater than the differences, there are things that are different. For example, the granularity of hardware infrastructure will not likely be as high where competition occurred back in the 90s at every layer of the value chain with very little infrastructure integration. That of course changed in the 2010s with converged infrastructure and hyper-converged and also software defined. So, that's one difference. And the advent of cloud, containers, microservices, and AI, none of that was really a major factor in the disintegration of legacy IT. And that probably means that disruptors can move even faster than did the likes of Intel and Microsoft, Oracle, Cisco, and the Seagates of the 1990s. As well, while many of the products and services will come from traditional enterprise IT names like Dell, HPE, Cisco, Red Hat, VMware, AWS, Microsoft, Google, et cetera, many of the names are going to be different and come from traditional network equipment providers. These are names like Ericsson and Huawei, and Nokia, and other names, like Wind River, and Rakuten, and Dish Networks. And there are enormous opportunities in data to help telecom companies and their competitors go beyond telemetry data into more advanced analytics and data monetization. There's also going to be an entirely new set of apps based on the workloads and use cases ranging from hospitals, sports arenas, race tracks, shipping ports, you name it. Virtually every vertical will participate in this transformation as the industry evolves its focus toward innovation, agility, and open ecosystems. Now remember, this is not a binary state. There are going to be greenfield companies disrupting the apple cart, but the incumbent telcos are going to have to continue to ensure newer systems work with their legacy infrastructure, in their OSS and BSS existing systems. And as we know, this is not going to be an overnight task. Integration is a difficult thing, transformations, migrations. So that's what makes this all so interesting because others can come in with Greenfield and potentially disrupt. There'll be interesting partnerships and ecosystems will form and coalitions will also form. Now, we mentioned that several traditional enterprise companies are or will be playing in this space. Now, ETR doesn't have a ton of data on specific telecom equipment and software providers, but it does have some interesting data that we cut for this breaking analysis. What we're showing here in this graphic is some of the names that we've followed over the years and how they're faring. Specifically, we did the cut within the telco sector. So the Y-axis here shows net score or spending velocity. And the horizontal axis, that shows the presence or pervasiveness in the data set. And that table insert in the upper left, that informs as to how the dots are plotted. You know, the two columns there, net score and the ends. And that red-dotted line, that horizontal line at 40%, that is an indicator of a highly elevated level. Anything above that, we consider quite outstanding. And what we'll do now is we'll comment on some of the cohorts and share with you how they're doing in telecommunications, and that sector, that vertical relative to their position overall in the data set. Let's start with the public cloud players. They're prominent in every industry. Telcos, telecommunications is no exception and it's quite an interesting cohort here. On the one hand, they can help telecommunication firms modernize and become more agile by eliminating the heavy lifting and you know, all the cloud, you know, value prop, data center costs, and the cloud benefits. At the same time, public cloud players are bringing their services to the edge, building out their own global networks and are a disruptive force to traditional telcos. All right, let's talk about Azure first. Their net score is basically identical to telco relative to its overall average. AWS's net score is higher in telco by just a few percentage points. Google Cloud platform is eight percentage points higher in telco with a 53% net score. So all three hyperscalers have an equal or stronger presence in telco than their average overall. Okay, let's look at the traditional enterprise hardware and software infrastructure cohort. Dell, Cisco, HPE, Red Hat, VMware, and Oracle. We've highlighted in this chart just as sort of indicators or proxies. Dell's net score's 10 percentage points higher in telco than its overall average. Interesting. Cisco's is a bit higher. HPE's is actually lower by about nine percentage points in the ETR survey, and VMware's is lower by about four percentage points. Now, Red Hat is really interesting. OpenStack, as we've previously reported is popular with telcos who want to build out their own private cloud. And the data shows that Red Hat OpenStack's net score is 15 percentage points higher in the telco sector than its overall average. OpenShift, on the other hand, has a net score that's four percentage points lower in telco than its overall average. So this to us talks to the pace of adoption of microservices and containers. You know, it's going to happen, but it's going to happen more slowly. Finally, Oracle's spending momentum is somewhat lower in the sector than its average, despite the firm having a decent telco business. IBM and Accenture, heavy services companies are both lower in this sector than their average. And real quickly, snowflake's net score is much lower by about 12 percentage points relative to its very high average net score of 62%. But we look for them to be a player in this space as telcos need to modernize their analytics stack and share data in a governed manner. Databricks' net score is also much lower than its average by about 13 points. And same, I would expect them to be a player as open architectures and cloud gains steam in telco. All right, let's close out now on what we're going to be talking about at MWC23 and some of the key issues that we'll be unpacking. We've talked about stack disaggregation in this breaking analysis, but the key here will be the pace at which it will reach the operational efficiency and reliability of closed stacks. Telcos, you know, in a large part, they're engineering heavy firms and much of their work takes place, kind of in the basement, in the dark. It's not really a big public hype machine, and they tend to move slowly and cautiously. While they understand the importance of agility, they're going to be careful because, you know, it's in their DNA. And so at the same time, if they don't move fast enough, they're going to get hurt and disrupted by competitors. So that's going to be a topic of conversation, and we'll be looking for proof points. And the other comment I'll make is around integration. Telcos because of their conservatism will benefit from better testing and those firms that can innovate on the testing front and have labs and certifications and innovate at that level, with an ecosystem are going to be in a better position. Because open sometimes means wild west. So the more players like Dell, HPE, Cisco, Red Hat, et cetera, that do that and align with their ecosystems and provide those resources, the faster adoption is going to go. So we'll be looking for, you know, who's actually doing that, Open RAN or Radio Access Networks. That fits in this discussion because O-RAN is an emerging network architecture. It essentially enables the use of open technologies from an ecosystem and over time, look at O-RAN is going to be open, but the questions, you know, a lot of questions remain as to when it will be able to deliver the operational efficiency of traditional RAN. Got some interesting dynamics going on. Rakuten is a company that's working hard on this problem, really focusing on operational efficiency. Then you got Dish Networks. They're also embracing O-RAN. They're coming at it more from service innovation. So that's something that we'll be monitoring and unpacking. We're going to look at cloud as a disruptor. On the one hand, cloud can help drive agility, as we said earlier and optionality, and innovation for incumbent telcos. But the flip side is going to also do the same for startups trying to disrupt and cloud attracts startups. While some of the telcos are actually embracing the cloud, many are being cautious. So that's going to be an interesting topic of discussion. And there's private wireless networks and 5G, and hyperlocal private networks, they're being deployed, you know, at the edge. This idea of open edge is also a really hot topic and this trend is going to accelerate. You know, the importance here is that the use cases are going to be widely varied. The needs of a hospital are going to be different than those of a sports venue are different from a remote drilling location, and energy or a concert venue. Things like real-time AI inference and data flows are going to bring new services and monetization opportunities. And many firms are going to be bypassing traditional telecommunications networks to build these out. Satellites as well, we're going to see, you know, in this decade, you're going to have, you're going to look down at Google Earth and you're going to see real-time. You know, today you see snapshots and so, lots of innovations going in that space. So how is this going to disrupt industries and traditional industry structures? Now, as always, we'll be looking at data angles, right? 'Cause it's in The Cube's DNA to follow the data and what opportunities and risks data brings. The Cube is going to be on location at MWC23 at the end of the month. We got a great set. We're in the walkway between halls four and five, right in Congress Square, it's booths CS60. So we'll have a full, they're called Stan CS60. We have a full schedule. I'm going to be there with Lisa Martin, Dave Nicholson and the entire Cube crew, so don't forget to stop by. All right, that's a wrap. I want to thank Alex Myerson, who's on production and manages the podcast, Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at Silicon Angle, does some great stuff for us. Thank you all. Remember, all these episodes are available as podcasts. Wherever you listen, just search "Breaking Analysis" podcasts I publish each week on wikibon.com and silicon angle.com. And all the video content is available on demand at thecube.net. You can email me directly at david.vellante@silicon angle.com. You can DM me at dvellante or comment on my LinkedIn post. Please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for The Cube Insights powered by ETR. Thanks for watching and we'll see you at Mobile World Congress, and/or at next time on "Breaking Analysis." (bright music) (bright music fades)

Published Date : Feb 18 2023

SUMMARY :

From the Cube Studios and some of the key issues

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Lisa MartinPERSON

0.99+

Dave NicholsonPERSON

0.99+

IBMORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

EricssonORGANIZATION

0.99+

Dave VellantePERSON

0.99+

DellORGANIZATION

0.99+

HuaweiORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

Kristin MartinPERSON

0.99+

Cheryl KnightPERSON

0.99+

AWSORGANIZATION

0.99+

NokiaORGANIZATION

0.99+

RakutenORGANIZATION

0.99+

Rob HofPERSON

0.99+

OracleORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

GSMAORGANIZATION

0.99+

AccentureORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

2019DATE

0.99+

53%QUANTITY

0.99+

Palo AltoLOCATION

0.99+

Wind RiverORGANIZATION

0.99+

HPEORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

more than $300 millionQUANTITY

0.99+

40%QUANTITY

0.99+

TelcosORGANIZATION

0.99+

Congress SquareLOCATION

0.99+

FirstQUANTITY

0.99+

VMwareORGANIZATION

0.99+

TelcoORGANIZATION

0.99+

Dish NetworksORGANIZATION

0.99+

telcoORGANIZATION

0.99+

2010sDATE

0.99+

IntelORGANIZATION

0.99+

david.vellante@silicon angle.comOTHER

0.99+

MWC23EVENT

0.99+

1990sDATE

0.99+

62%QUANTITY

0.99+

Mobile World CongressEVENT

0.99+

two columnsQUANTITY

0.99+

each weekQUANTITY

0.99+

SeagatesORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

todayDATE

0.99+

early MarchDATE

0.99+

bothQUANTITY

0.99+

thecube.netOTHER

0.99+

MWCEVENT

0.99+

ETRORGANIZATION

0.98+

this yearDATE

0.98+

Cube StudiosORGANIZATION

0.98+

one partQUANTITY

0.98+

ChineseOTHER

0.98+

BostonLOCATION

0.98+

decades agoDATE

0.97+

threeQUANTITY

0.97+

90sDATE

0.97+

about 13 pointsQUANTITY

0.97+

Breaking Analysis: Google's Point of View on Confidential Computing


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Confidential computing is a technology that aims to enhance data privacy and security by providing encrypted computation on sensitive data and isolating data from apps in a fenced off enclave during processing. The concept of confidential computing is gaining popularity, especially in the cloud computing space where sensitive data is often stored and of course processed. However, there are some who view confidential computing as an unnecessary technology in a marketing ploy by cloud providers aimed at calming customers who are cloud phobic. Hello and welcome to this week's Wikibon CUBE Insights powered by ETR. In this Breaking Analysis, we revisit the notion of confidential computing, and to do so, we'll invite two Google experts to the show, but before we get there, let's summarize briefly. There's not a ton of ETR data on the topic of confidential computing. I mean, it's a technology that's deeply embedded into silicon and computing architectures. But at the highest level, security remains the number one priority being addressed by IT decision makers in the coming year as shown here. And this data is pretty much across the board by industry, by region, by size of company. I mean we dug into it and the only slight deviation from the mean is in financial services. The second and third most cited priorities, cloud migration and analytics, are noticeably closer to cybersecurity in financial services than in other sectors, likely because financial services has always been hyper security conscious, but security is still a clear number one priority in that sector. The idea behind confidential computing is to better address threat models for data in execution. Protecting data at rest and data and transit have long been a focus of security approaches, but more recently, silicon manufacturers have introduced architectures that separate data and applications from the host system. Arm, Intel, AMD, Nvidia and other suppliers are all on board, as are the big cloud players. Now the argument against confidential computing is that it narrowly focuses on memory encryption and it doesn't solve the biggest problems in security. Multiple system images updates different services and the entire code flow aren't directly addressed by memory encryption, rather to truly attack these problems, many believe that OSs need to be re-engineered with the attacker and hacker in mind. There are so many variables and at the end of the day, critics say the emphasis on confidential computing made by cloud providers is overstated and largely hype. This tweet from security researcher Rodrigo Branco sums up the sentiment of many skeptics. He says, "Confidential computing is mostly a marketing campaign for memory encryption. It's not driving the industry towards the hard open problems. It is selling an illusion." Okay. Nonetheless, encrypting data in use and fencing off key components of the system isn't a bad thing, especially if it comes with the package essentially for free. There has been a lack of standardization and interoperability between different confidential computing approaches. But the confidential computing consortium was established in 2019 ostensibly to accelerate the market and influence standards. Notably, AWS is not part of the consortium, likely because the politics of the consortium were probably a conundrum for AWS because the base technology defined by the the consortium is seen as limiting by AWS. This is my guess, not AWS's words, and but I think joining the consortium would validate a definition which AWS isn't aligned with. And two, it's got a lead with this Annapurna acquisition. This was way ahead with Arm integration and so it probably doesn't feel the need to validate its competitors. Anyway, one of the premier members of the confidential computing consortium is Google, along with many high profile names including Arm, Intel, Meta, Red Hat, Microsoft, and others. And we're pleased to welcome two experts on confidential computing from Google to unpack the topic, Nelly Porter is head of product for GCP confidential computing and encryption, and Dr. Patricia Florissi is the technical director for the office of the CTO at Google Cloud. Welcome Nelly and Patricia, great to have you. >> Great to be here. >> Thank you so much for having us. >> You're very welcome. Nelly, why don't you start and then Patricia, you can weigh in. Just tell the audience a little bit about each of your roles at Google Cloud. >> So I'll start, I'm owning a lot of interesting activities in Google and again security or infrastructure securities that I usually own. And we are talking about encryption and when encryption and confidential computing is a part of portfolio in additional areas that I contribute together with my team to Google and our customers is secure software supply chain. Because you need to trust your software. Is it operate in your confidential environment to have end-to-end story about if you believe that your software and your environment doing what you expect, it's my role. >> Got it. Okay. Patricia? >> Well, I am a technical director in the office of the CTO, OCTO for short, in Google Cloud. And we are a global team. We include former CTOs like myself and senior technologists from large corporations, institutions and a lot of success, we're startups as well. And we have two main goals. First, we walk side by side with some of our largest, more strategic or most strategical customers and we help them solve complex engineering technical problems. And second, we are devise Google and Google Cloud engineering and product management and tech on there, on emerging trends and technologies to guide the trajectory of our business. We are unique group, I think, because we have created this collaborative culture with our customers. And within OCTO, I spend a lot of time collaborating with customers and the industry at large on technologies that can address privacy, security, and sovereignty of data in general. >> Excellent. Thank you for that both of you. Let's get into it. So Nelly, what is confidential computing? From Google's perspective, how do you define it? >> Confidential computing is a tool and it's still one of the tools in our toolbox. And confidential computing is a way how we would help our customers to complete this very interesting end-to-end lifecycle of the data. And when customers bring in the data to cloud and want to protect it as they ingest it to the cloud, they protect it at rest when they store data in the cloud. But what was missing for many, many years is ability for us to continue protecting data and workloads of our customers when they running them. And again, because data is not brought to cloud to have huge graveyard, we need to ensure that this data is actually indexed. Again, there is some insights driven and drawn from this data. You have to process this data and confidential computing here to help. Now we have end to end protection of our customer's data when they bring the workloads and data to cloud, thanks to confidential computing. >> Thank you for that. Okay, we're going to get into the architecture a bit, but before we do, Patricia, why do you think this topic of confidential computing is such an important technology? Can you explain, do you think it's transformative for customers and if so, why? >> Yeah, I would maybe like to use one thought, one way, one intuition behind why confidential commuting matters, because at the end of the day, it reduces more and more the customer's thresh boundaries and the attack surface. That's about reducing that periphery, the boundary in which the customer needs to mind about trust and safety. And in a way, is a natural progression that you're using encryption to secure and protect the data. In the same way that we are encrypting data in transit and at rest, now we are also encrypting data while in use. And among other beneficials, I would say one of the most transformative ones is that organizations will be able to collaborate with each other and retain the confidentiality of the data. And that is across industry, even though it's highly focused on, I wouldn't say highly focused, but very beneficial for highly regulated industries. It applies to all of industries. And if you look at financing for example, where bankers are trying to detect fraud, and specifically double finance where you are, a customer is actually trying to get a finance on an asset, let's say a boat or a house, and then it goes to another bank and gets another finance on that asset. Now bankers would be able to collaborate and detect fraud while preserving confidentiality and privacy of the data. >> Interesting. And I want to understand that a little bit more but I'm going to push you a little bit on this, Nelly, if I can because there's a narrative out there that says confidential computing is a marketing ploy, I talked about this upfront, by cloud providers that are just trying to placate people that are scared of the cloud. And I'm presuming you don't agree with that, but I'd like you to weigh in here. The argument is confidential computing is just memory encryption and it doesn't address many other problems. It is over hyped by cloud providers. What do you say to that line of thinking? >> I absolutely disagree, as you can imagine, with this statement, but the most importantly is we mixing multiple concepts, I guess. And exactly as Patricia said, we need to look at the end-to-end story, not again the mechanism how confidential computing trying to again, execute and protect a customer's data and why it's so critically important because what confidential computing was able to do, it's in addition to isolate our tenants in multi-tenant environments the cloud covering to offer additional stronger isolation. They called it cryptographic isolation. It's why customers will have more trust to customers and to other customers, the tenant that's running on the same host but also us because they don't need to worry about against threats and more malicious attempts to penetrate the environment. So what confidential computing is helping us to offer our customers, stronger isolation between tenants in this multi-tenant environment, but also incredibly important, stronger isolation of our customers, so tenants from us. We also writing code, we also software providers will also make mistakes or have some zero days. Sometimes again us introduced, sometimes introduced by our adversaries. But what I'm trying to say by creating this cryptographic layer of isolation between us and our tenants and amongst those tenants, we're really providing meaningful security to our customers and eliminate some of the worries that they have running on multi-tenant spaces or even collaborating to gather this very sensitive data knowing that this particular protection is available to them. >> Okay, thank you. Appreciate that. And I think malicious code is often a threat model missed in these narratives. Operator access, yeah, maybe I trust my clouds provider, but if I can fence off your access even better, I'll sleep better at night. Separating a code from the data, everybody's, Arm, Intel, AMD, Nvidia, others, they're all doing it. I wonder if, Nelly, if we could stay with you and bring up the slide on the architecture. What's architecturally different with confidential computing versus how operating systems and VMs have worked traditionally. We're showing a slide here with some VMs, maybe you could take us through that. >> Absolutely. And Dave, the whole idea for Google and now industry way of dealing with confidential computing is to ensure that three main property is actually preserved. Customers don't need to change the code. They can operate on those VMs exactly as they would with normal non-confidential VMs, but to give them this opportunity of lift and shift or no changing their apps and performing and having very, very, very low latency and scale as any cloud can, something that Google actually pioneer in confidential computing. I think we need to open and explain how this magic was actually done. And as I said, it's again the whole entire system have to change to be able to provide this magic. And I would start with we have this concept of root of trust and root of trust where we will ensure that this machine, when the whole entire post has integrity guarantee, means nobody changing my code on the most low level of system. And we introduce this in 2017 called Titan. It was our specific ASIC, specific, again, inch by inch system on every single motherboard that we have that ensures that your low level former, your actually system code, your kernel, the most powerful system is actually proper configured and not changed, not tampered. We do it for everybody, confidential computing included. But for confidential computing, what we have to change, we bring in AMD, or again, future silicon vendors and we have to trust their former, their way to deal with our confidential environments. And that's why we have obligation to validate integrity, not only our software and our former but also former and software of our vendors, silicon vendors. So we actually, when we booting this machine, as you can see, we validate that integrity of all of the system is in place. It means nobody touching, nobody changing, nobody modifying it. But then we have this concept of AMD secure processor, it's special ASICs, best specific things that generate a key for every single VM that our customers will run or every single node in Kubernetes or every single worker thread in our Hadoop or Spark capability. We offer all of that. And those keys are not available to us. It's the best keys ever in encryption space because when we are talking about encryption, the first question that I'm receiving all the time, where's the key, who will have access to the key? Because if you have access to the key then it doesn't matter if you encrypted or not. So, but the case in confidential computing provides so revolutionary technology, us cloud providers, who don't have access to the keys. They sitting in the hardware and they head to memory controller. And it means when hypervisors that also know about these wonderful things saying I need to get access to the memories that this particular VM trying to get access to, they do not decrypt the data, they don't have access to the key because those keys are random, ephemeral and per VM, but the most importantly, in hardware not exportable. And it means now you would be able to have this very interesting role that customers or cloud providers will not be able to get access to your memory. And what we do, again, as you can see our customers don't need to change their applications, their VMs are running exactly as it should run and what you're running in VM, you actually see your memory in clear, it's not encrypted, but God forbid is trying somebody to do it outside of my confidential box. No, no, no, no, no, they would not be able to do it. Now you'll see cyber and it's exactly what combination of these multiple hardware pieces and software pieces have to do. So OS is also modified. And OS is modified such way to provide integrity. It means even OS that you're running in your VM box is not modifiable and you, as customer, can verify. But the most interesting thing, I guess, how to ensure the super performance of this environment because you can imagine, Dave, that encrypting and it's additional performance, additional time, additional latency. So we were able to mitigate all of that by providing incredibly interesting capability in the OS itself. So our customers will get no changes needed, fantastic performance and scales as they would expect from cloud providers like Google. >> Okay, thank you. Excellent. Appreciate that explanation. So, again, the narrative on this as well, you've already given me guarantees as a cloud provider that you don't have access to my data, but this gives another level of assurance, key management as they say is key. Now humans aren't managing the keys, the machines are managing them. So Patricia, my question to you is, in addition to, let's go pre confidential computing days, what are the sort of new guarantees that these hardware-based technologies are going to provide to customers? >> So if I am a customer, I am saying I now have full guarantee of confidentiality and integrity of the data and of the code. So if you look at code and data confidentiality, the customer cares and they want to know whether their systems are protected from outside or unauthorized access, and that recovered with Nelly, that it is. Confidential computing actually ensures that the applications and data internals remain secret, right? The code is actually looking at the data, the only the memory is decrypting the data with a key that is ephemeral and per VM and generated on demand. Then you have the second point where you have code and data integrity, and now customers want to know whether their data was corrupted, tampered with or impacted by outside actors. And what confidential computing ensures is that application internals are not tampered with. So the application, the workload as we call it, that is processing the data, it's also, it has not been tampered and preserves integrity. I would also say that this is all verifiable. So you have attestation and these attestation actually generates a log trail and the log trail guarantees that, provides a proof that it was preserved. And I think that the offer's also a guarantee of what we call ceiling, this idea that the secrets have been preserved and not tampered with, confidentiality and integrity of code and data. >> Got it. Okay, thank you. Nelly, you mentioned, I think I heard you say that the applications, it's transparent, you don't have to change the application, it just comes for free essentially. And we showed some various parts of the stack before. I'm curious as to what's affected, but really more importantly, what is specifically Google's value add? How do partners participate in this, the ecosystem, or maybe said another way, how does Google ensure the compatibility of confidential computing with existing systems and applications? >> And a fantastic question by the way. And it's very difficult and definitely complicated world because to be able to provide these guarantees, actually a lot of work was done by community. Google is very much operate in open, so again, our operating system, we working with operating system repository OSs, OS vendors to ensure that all capabilities that we need is part of the kernels, are part of the releases and it's available for customers to understand and even explore if they have fun to explore a lot of code. We have also modified together with our silicon vendors a kernel, host kernel to support this capability and it means working this community to ensure that all of those patches are there. We also worked with every single silicon vendor as you've seen, and that's what I probably feel that Google contributed quite a bit in this whole, we moved our industry, our community, our vendors to understand the value of easy to use confidential computing or removing barriers. And now I don't know if you noticed, Intel is pulling the lead and also announcing their trusted domain extension, very similar architecture. And no surprise, it's, again, a lot of work done with our partners to, again, convince, work with them and make this capability available. The same with Arm this year, actually last year, Arm announced their future design for confidential computing. It's called Confidential Computing Architecture. And it's also influenced very heavily with similar ideas by Google and industry overall. So it's a lot of work in confidential computing consortiums that we are doing, for example, simply to mention, to ensure interop, as you mentioned, between different confidential environments of cloud providers. They want to ensure that they can attest to each other because when you're communicating with different environments, you need to trust them. And if it's running on different cloud providers, you need to ensure that you can trust your receiver when you are sharing your sensitive data workloads or secret with them. So we coming as a community and we have this attestation sig, the, again, the community based systems that we want to build and influence and work with Arm and every other cloud providers to ensure that we can interrupt and it means it doesn't matter where confidential workloads will be hosted, but they can exchange the data in secure, verifiable and controlled by customers way. And to do it, we need to continue what we are doing, working open, again, and contribute with our ideas and ideas of our partners to this role to become what we see confidential computing has to become, it has to become utility. It doesn't need to be so special, but it's what we want it to become. >> Let's talk about, thank you for that explanation. Let's talk about data sovereignty because when you think about data sharing, you think about data sharing across the ecosystem and different regions and then of course data sovereignty comes up. Typically public policy lags, the technology industry and sometimes is problematic. I know there's a lot of discussions about exceptions, but Patricia, we have a graphic on data sovereignty. I'm interested in how confidential computing ensures that data sovereignty and privacy edicts are adhered to, even if they're out of alignment maybe with the pace of technology. One of the frequent examples is when you delete data, can you actually prove that data is deleted with a hundred percent certainty? You got to prove that and a lot of other issues. So looking at this slide, maybe you could take us through your thinking on data sovereignty. >> Perfect. So for us, data sovereignty is only one of the three pillars of digital sovereignty. And I don't want to give the impression that confidential computing addresses it all. That's why we want to step back and say, hey, digital sovereignty includes data sovereignty where we are giving you full control and ownership of the location, encryption and access to your data. Operational sovereignty where the goal is to give our Google Cloud customers full visibility and control over the provider operations, right? So if there are any updates on hardware, software stack, any operations, there is full transparency, full visibility. And then the third pillar is around software sovereignty where the customer wants to ensure that they can run their workloads without dependency on the provider's software. So they have sometimes is often referred as survivability, that you can actually survive if you are untethered to the cloud and that you can use open source. Now let's take a deep dive on data sovereignty, which by the way is one of my favorite topics. And we typically focus on saying, hey, we need to care about data residency. We care where the data resides because where the data is at rest or in processing, it typically abides to the jurisdiction, the regulations of the jurisdiction where the data resides. And others say, hey, let's focus on data protection. We want to ensure the confidentiality and integrity and availability of the data, which confidential computing is at the heart of that data protection. But it is yet another element that people typically don't talk about when talking about data sovereignty, which is the element of user control. And here, Dave, is about what happens to the data when I give you access to my data. And this reminds me of security two decades ago, even a decade ago, where we started the security movement by putting firewall protections and login accesses. But once you were in, you were able to do everything you wanted with the data. An insider had access to all the infrastructure, the data and the code. And that's similar because with data sovereignty we care about whether it resides, where, who is operating on the data. But the moment that the data is being processed, I need to trust that the processing of the data will abide by user control, by the policies that I put in place of how my data is going to be used. And if you look at a lot of the regulation today and a lot of the initiatives around the International Data Space Association, IDSA, and Gaia-X, there is a movement of saying the two parties, the provider of the data and the receiver of the data are going to agree on a contract that describes what my data can be used for. The challenge is to ensure that once the data crosses boundaries, that the data will be used for the purposes that it was intended and specified in the contract. And if you actually bring together, and this is the exciting part, confidential computing together with policy enforcement, now the policy enforcement can guarantee that the data is only processed within the confines of a confidential computing environment, that the workload is cryptographically verified that there is the workload that was meant to process the data and that the data will be only used when abiding to the confidentiality and integrity safety of the confidential computing environment. And that's why we believe confidential computing is one necessary and essential technology that will allow us to ensure data sovereignty, especially when it comes to user control. >> Thank you for that. I mean it was a deep dive, I mean brief, but really detailed. So I appreciate that, especially the verification of the enforcement. Last question, I met you two because as part of my year end prediction post, you guys sent in some predictions and I wasn't able to get to them in the predictions post. So I'm thrilled that you were able to make the time to come on the program. How widespread do you think the adoption of confidential computing will be in 23 and what's the maturity curve look like, this decade in your opinion? Maybe each of you could give us a brief answer. >> So my prediction in five, seven years, as I started, it'll become utility. It'll become TLS as of, again, 10 years ago we couldn't believe that websites will have certificates and we will support encrypted traffic. Now we do and it's become ubiquity. It's exactly where confidential computing is getting and heading, I don't know we deserve yet. It'll take a few years of maturity for us, but we will be there. >> Thank you. And Patricia, what's your prediction? >> I will double that and say, hey, in the future, in the very near future, you will not be able to afford not having it. I believe as digital sovereignty becomes evermore top of mind with sovereign states and also for multi national organizations and for organizations that want to collaborate with each other, confidential computing will become the norm. It'll become the default, if I say, mode of operation. I like to compare that today is inconceivable. If we talk to the young technologists, it's inconceivable to think that at some point in history, and I happen to be alive that we had data at rest that was not encrypted, data in transit that was not encrypted, and I think that will be inconceivable at some point in the near future that to have unencrypted data while in use. >> And plus I think the beauty of the this industry is because there's so much competition, this essentially comes for free. I want to thank you both for spending some time on Breaking Analysis. There's so much more we could cover. I hope you'll come back to share the progress that you're making in this area and we can double click on some of these topics. Really appreciate your time. >> Anytime. >> Thank you so much. >> In summary, while confidential computing is being touted by the cloud players as a promising technology for enhancing data privacy and security, there are also those, as we said, who remain skeptical. The truth probably lies somewhere in between and it will depend on the specific implementation and the use case as to how effective confidential computing will be. Look, as with any new tech, it's important to carefully evaluate the potential benefits, the drawbacks, and make informed decisions based on the specific requirements in the situation and the constraints of each individual customer. But the bottom line is silicon manufacturers are working with cloud providers and other system companies to include confidential computing into their architectures. Competition, in our view, will moderate price hikes. And at the end of the day, this is under the covers technology that essentially will come for free. So we'll take it. I want to thank our guests today, Nelly and Patricia from Google, and thanks to Alex Myerson who's on production and manages the podcast. Ken Schiffman as well out of our Boston studio, Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at siliconangle.com. Does some great editing for us, thank you all. Remember all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com where you can get all the news. If you want to get in touch, you can email me at david.vellante@siliconangle.com or dm me @DVellante. And you can also comment on my LinkedIn post. Definitely you want to check out etr.ai for the best survey data in the enterprise tech business. I know we didn't hit on a lot today, but there's some amazing data and it's always being updated, so check that out. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (upbeat music)

Published Date : Feb 11 2023

SUMMARY :

bringing you data-driven and at the end of the day, Just tell the audience a little and confidential computing Got it. and the industry at large for that both of you. in the data to cloud into the architecture a bit, and privacy of the data. people that are scared of the cloud. and eliminate some of the we could stay with you and they head to memory controller. So, again, the narrative on this as well, and integrity of the data and of the code. how does Google ensure the compatibility and ideas of our partners to this role One of the frequent examples and that the data will be only used of the enforcement. and we will support encrypted traffic. And Patricia, and I happen to be alive beauty of the this industry and the constraints of

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
NellyPERSON

0.99+

PatriciaPERSON

0.99+

International Data Space AssociationORGANIZATION

0.99+

Alex MyersonPERSON

0.99+

AWSORGANIZATION

0.99+

IDSAORGANIZATION

0.99+

Rodrigo BrancoPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

NvidiaORGANIZATION

0.99+

2019DATE

0.99+

2017DATE

0.99+

Kristin MartinPERSON

0.99+

Nelly PorterPERSON

0.99+

Ken SchiffmanPERSON

0.99+

Rob HofPERSON

0.99+

Cheryl KnightPERSON

0.99+

last yearDATE

0.99+

Palo AltoLOCATION

0.99+

Red HatORGANIZATION

0.99+

two partiesQUANTITY

0.99+

AMDORGANIZATION

0.99+

Patricia FlorissiPERSON

0.99+

IntelORGANIZATION

0.99+

oneQUANTITY

0.99+

fiveQUANTITY

0.99+

second pointQUANTITY

0.99+

david.vellante@siliconangle.comOTHER

0.99+

MetaORGANIZATION

0.99+

secondQUANTITY

0.99+

thirdQUANTITY

0.99+

OneQUANTITY

0.99+

twoQUANTITY

0.99+

ArmORGANIZATION

0.99+

eachQUANTITY

0.99+

two expertsQUANTITY

0.99+

FirstQUANTITY

0.99+

first questionQUANTITY

0.99+

Gaia-XORGANIZATION

0.99+

two decades agoDATE

0.99+

bothQUANTITY

0.99+

this yearDATE

0.99+

seven yearsQUANTITY

0.99+

OCTOORGANIZATION

0.99+

zero daysQUANTITY

0.98+

10 years agoDATE

0.98+

each weekQUANTITY

0.98+

todayDATE

0.97+

Breaking Analysis: Cloud players sound a cautious tone for 2023


 

>> From the Cube Studios in Palo Alto in Boston bringing you data-driven insights from the Cube and ETR. This is Breaking Analysis with Dave Vellante. >> The unraveling of market enthusiasm continued in Q4 of 2022 with the earnings reports from the US hyperscalers, the big three now all in. As we said earlier this year, even the cloud is an immune from the macro headwinds and the cracks in the armor that we saw from the data that we shared last summer, they're playing out into 2023. For the most part actuals are disappointing beyond expectations including our own. It turns out that our estimates for the big three hyperscaler's revenue missed by 1.2 billion or 2.7% lower than we had forecast from even our most recent November estimates. And we expect continued decelerating growth rates for the hyperscalers through the summer of 2023 and we don't think that's going to abate until comparisons get easier. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis, we share our view of what's happening in cloud markets not just for the hyperscalers but other firms that have hitched a ride on the cloud. And we'll share new ETR data that shows why these trends are playing out tactics that customers are employing to deal with their cost challenges and how long the pain is likely to last. You know, riding the cloud wave, it's a two-edged sword. Let's look at the players that have gone all in on or are exposed to both the positive and negative trends of cloud. Look the cloud has been a huge tailwind for so many companies like Snowflake and Databricks, Workday, Salesforce, Mongo's move with Atlas, Red Hats Cloud strategy with OpenShift and so forth. And you know, the flip side is because cloud is elastic what comes up can also go down very easily. Here's an XY graphic from ETR that shows spending momentum or net score on the vertical axis and market presence in the dataset on the horizontal axis provision or called overlap. This is data from the January 2023 survey and that the red dotted lines show the positions of several companies that we've highlighted going back to January 2021. So let's unpack this for a bit starting with the big three hyperscalers. The first point is AWS and Azure continue to solidify their moat relative to Google Cloud platform. And we're going to get into this in a moment, but Azure and AWS revenues are five to six times that of GCP for IaaS. And at those deltas, Google should be gaining ground much faster than the big two. The second point on Google is notice the red line on GCP relative to its starting point. While it appears to be gaining ground on the horizontal axis, its net score is now below that of AWS and Azure in the survey. So despite its significantly smaller size it's just not keeping pace with the leaders in terms of market momentum. Now looking at AWS and Microsoft, what we see is basically AWS is holding serve. As we know both Google and Microsoft benefit from including SaaS in their cloud numbers. So the fact that AWS hasn't seen a huge downward momentum relative to a January 2021 position is one positive in the data. And both companies are well above that magic 40% line on the Y-axis, anything above 40% we consider to be highly elevated. But the fact remains that they're down as are most of the names on this chart. So let's take a closer look. I want to start with Snowflake and Databricks. Snowflake, as we reported from several quarters back came down to Earth, it was up in the 80% range in the Y-axis here. And it's still highly elevated in the 60% range and it continues to move to the right, which is positive but as we'll address in a moment it's customers can dial down consumption just as in any cloud. Now, Databricks is really interesting. It's not a public company, it never made it to IPO during the sort of tech bubble. So we don't have the same level of transparency that we do with other companies that did make it through. But look at how much more prominent it is on the X-axis relative to January 2021. And it's net score is basically held up over that period of time. So that's a real positive for Databricks. Next, look at Workday and Salesforce. They've held up relatively well, both inching to the right and generally holding their net scores. Same from Mongo, which is the brown dot above its name that says Elastic, it says a little gets a little crowded which Elastic's actually the blue dot above it. But generally, SaaS is harder to dial down, Workday, Salesforce, Oracles, SaaS and others. So it's harder to dial down because commitments have been made in advance, they're kind of locked in. Now, one of the discussions from last summer was as Mongo, less discretionary than analytics i.e. Snowflake. And it's an interesting debate but maybe Snowflake customers, you know, they're also generally committed to a dollar amount. So over time the spending is going to be there. But in the short term, yeah maybe Snowflake customers can dial down. Now that highlighted dotted red line, that bolded one is Datadog and you can see it's made major strides on the X-axis but its net score has decelerated quite dramatically. Openshift's momentum in the survey has dropped although IBM just announced that OpenShift has a a billion dollar ARR and I suspect what's happening there is IBM consulting is bundling OpenShift into its modernization projects. It's got a, that sort of captive base if you will. And as such it's probably not as top of mind to the respondents but I'll bet you the developers are certainly aware of it. Now the other really notable call out here is CloudFlare, We've reported on them earlier. Cloudflare's net score has held up really well since January of 2021. It really hasn't seen the downdraft of some of these others, but it's making major major moves to the right gaining market presence. We really like how CloudFlare is performing. And the last comment is on Oracle which as you can see, despite its much, much lower net score continues to gain ground in the market and thrive from a profitability standpoint. But the data pretty clearly shows that there's a downdraft in the market. Okay, so what's happening here? Let's dig deeper into this data. Here's a graphic from the most recent ETR drill down asking customers that said they were going to cut spending what technique they're using to do so. Now, as we've previously reported, consolidating redundant vendors is by far the most cited approach but there's two key points we want to make here. One is reducing excess cloud resources. As you can see in the bars is the second most cited technique and it's up from the previous polling period. The second we're not showing, you know directly but we've got some red call outs there. Reducing cloud costs jumps to 29% and 28% respectively in financial services and tech telco. And it's much closer to second. It's basically neck and neck with consolidating redundant vendors in those two industries. So they're being really aggressive about optimizing cloud cost. Okay, so as we said, cloud is great 'cause you can dial it up but it's just as easy to dial down. We've identified six factors that customers tell us are affecting their cloud consumption and there are probably more, if you got more we'd love to hear them but these are the ones that are fairly prominent that have hit our radar. First, rising mortgage rates mean banks are processing fewer loans means less cloud. The crypto crash means less trading activity and that means less cloud resources. Third lower ad spend has led companies to reduce not only you know, their ad buying but also their frequency of running their analytics and their calculations. And they're also often using less data, maybe compressing the timeframe of the corpus down to a shorter time period. Also very prominent is down to the bottom left, using lower cost compute instances. For example, Graviton from AWS or AMD chips and tiering storage to cheaper S3 or deep archived tiers. And finally, optimizing based on better pricing plans. So customers are moving from, you know, smaller companies in particular moving maybe from on demand or other larger companies that are experimenting using on demand or they're moving to spot pricing or reserved instances or optimized savings plans. That all lowers cost and that means less cloud resource consumption and less cloud revenue. Now in the days when everything was on prem CFOs, what would they do? They would freeze CapEx and IT Pros would have to try to do more with less and often that meant a lot of manual tasks. With the cloud it's much easier to move things around. It still takes some thinking and some effort but it's dramatically simpler to do so. So you can get those savings a lot faster. Now of course the other huge factor is you can cut or you can freeze. And this graphic shows data from a recent ETR survey with 159 respondents and you can see the meaningful uptick in hiring freezes, freezing new IT deployments and layoffs. And as we've been reporting, this has been trending up since earlier last year. And note the call out, this is especially prominent in retail sectors, all three of these techniques jump up in retail and that's a bit of a concern because oftentimes consumer spending helps the economy make a softer landing out of a pullback. But this is a potential canary in the coal mine. If retail firms are pulling back it's because consumers aren't spending as much. And so we're keeping a close eye on that. So let's boil this down to the market data and what this all means. So in this graphic we show our estimates for Q4 IaaS revenues compared to the "actual" IaaS revenues. And we say quote because AWS is the only one that reports, you know clean revenue and IaaS, Azure and GCP don't report actuals. Why would they? Because it would make them look even, you know smaller relative to AWS. Rather, they bury the figures in overall cloud which includes their, you know G-Suite for Google and all the Microsoft SaaS. And then they give us little tidbits about in Microsoft's case, Azure, they give growth rates. Google gives kind of relative growth of GCP. So, and we use survey data and you know, other data to try to really pinpoint and we've been covering this for, I don't know, five or six years ever since the cloud really became a thing. But looking at the data, we had AWS growing at 25% this quarter and it came in at 20%. So a significant decline relative to our expectations. AWS announced that it exited December, actually, sorry it's January data showed about a 15% mid-teens growth rate. So that's, you know, something we're watching. Azure was two points off our forecast coming in at 38% growth. It said it exited December in the 35% growth range and it said that it's expecting five points of deceleration off of that. So think 30% for Azure. GCP came in three points off our expectation coming in 35% and Alibaba has yet to report but we've shaved a bid off that forecast based on some survey data and you know what maybe 9% is even still not enough. Now for the year, the big four hyperscalers generated almost 160 billion of revenue, but that was 7 billion lower than what what we expected coming into 2022. For 2023, we're expecting 21% growth for a total of 193.3 billion. And while it's, you know, lower, you know, significantly lower than historical expectations it's still four to five times the overall spending forecast that we just shared with you in our predictions post of between 4 and 5% for the overall market. We think AWS is going to come in in around 93 billion this year with Azure closing in at over 71 billion. This is, again, we're talking IaaS here. Now, despite Amazon focusing investors on the fact that AWS's absolute dollar growth is still larger than its competitors. By our estimates Azure will come in at more than 75% of AWS's forecasted revenue. That's a significant milestone. AWS is operating margins by the way declined significantly this past quarter, dropping from 30% of revenue to 24%, 30% the year earlier to 24%. Now that's still extremely healthy and we've seen wild fluctuations like this before so I don't get too freaked out about that. But I'll say this, Microsoft has a marginal cost advantage relative to AWS because one, it has a captive cloud on which to run its massive software estate. So it can just throw software at its own cloud and two software marginal costs. Marginal economics despite AWS's awesomeness in high degrees of automation, software is just a better business. Now the upshot for AWS is the ecosystem. AWS is essentially in our view positioning very smartly as a platform for data partners like Snowflake and Databricks, security partners like CrowdStrike and Okta and Palo Alto and many others and SaaS companies. You know, Microsoft is more competitive even though AWS does have competitive products. Now of course Amazon's competitive to retail companies so that's another factor but generally speaking for tech players, Amazon is a really thriving ecosystem that is a secret weapon in our view. AWS happy to spin the meter with its partners even though it sells competitive products, you know, more so in our view than other cloud players. Microsoft, of course is, don't forget is hyping now, we're hearing a lot OpenAI and ChatGPT we reported last week in our predictions post. How OpenAI is shot up in terms of market sentiment in ETR's emerging technology company surveys and people are moving to Azure to get OpenAI and get ChatGPT that is a an interesting lever. Amazon in our view has to have a response. They have lots of AI and they're going to have to make some moves there. Meanwhile, Google is emphasizing itself as an AI first company. In fact, Google spent at least five minutes of continuous dialogue, nonstop on its AI chops during its latest earnings call. So that's an area that we're watching very closely as the buzz around large language models continues. All right, let's wrap up with some assumptions for 2023. We think SaaS players are going to continue to be sticky. They're going to be somewhat insulated from all these downdrafts because they're so tied in and customers, you know they make the commitment up front, you've got the lock in. Now having said that, we do expect some backlash over time on the onerous and generally customer unfriendly pricing models of most large SaaS companies. But that's going to play out over a longer period of time. Now for cloud generally and the hyperscalers specifically we do expect accelerating growth rates into Q3 but the amplitude of the demand swings from this rubber band economy, we expect to continue to compress and become more predictable throughout the year. Estimates are coming down, CEOs we think are going to be more cautious when the market snaps back more cautious about hiring and spending and as such a perhaps we expect a more orderly return to growth which we think will slightly accelerate in Q4 as comps get easier. Now of course the big risk to these scenarios is of course the economy, the FED, consumer spending, inflation, supply chain, energy prices, wars, geopolitics, China relations, you know, all the usual stuff. But as always with our partners at ETR and the Cube community, we're here for you. We have the data and we'll be the first to report when we see a change at the margin. Okay, that's a wrap for today. I want to thank Alex Morrison who's on production and manages the podcast, Ken Schiffman as well out of our Boston studio getting this up on LinkedIn Live. Thank you for that. Kristen Martin also and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our Editor-in-Chief over at siliconangle.com. He does some great editing for us. Thank you all. Remember all these episodes are available as podcast. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com, at siliconangle.com where you can see all the data and you want to get in touch. Just all you can do is email me david.vellante@siliconangle.com or DM me @dvellante if you if you got something interesting, I'll respond. If you don't, it's either 'cause I'm swamped or it's just not tickling me. You can comment on our LinkedIn post as well. And please check out ETR.ai for the best survey data in the enterprise tech business. This is Dave Vellante for the Cube Insights powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (gentle upbeat music)

Published Date : Feb 4 2023

SUMMARY :

From the Cube Studios and how long the pain is likely to last.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MorrisonPERSON

0.99+

AWSORGANIZATION

0.99+

AlibabaORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

Kristen MartinPERSON

0.99+

Dave VellantePERSON

0.99+

Ken SchiffmanPERSON

0.99+

January 2021DATE

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Rob HofPERSON

0.99+

2.7%QUANTITY

0.99+

JanuaryDATE

0.99+

AmazonORGANIZATION

0.99+

DecemberDATE

0.99+

January of 2021DATE

0.99+

fiveQUANTITY

0.99+

January 2023DATE

0.99+

SnowflakeORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

1.2 billionQUANTITY

0.99+

20%QUANTITY

0.99+

IBMORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

29%QUANTITY

0.99+

30%QUANTITY

0.99+

six factorsQUANTITY

0.99+

second pointQUANTITY

0.99+

24%QUANTITY

0.99+

2022DATE

0.99+

david.vellante@siliconangle.comOTHER

0.99+

X-axisORGANIZATION

0.99+

2023DATE

0.99+

28%QUANTITY

0.99+

193.3 billionQUANTITY

0.99+

ETRORGANIZATION

0.99+

38%QUANTITY

0.99+

7 billionQUANTITY

0.99+

21%QUANTITY

0.99+

EarthLOCATION

0.99+

25%QUANTITY

0.99+

MongoORGANIZATION

0.99+

OracleORGANIZATION

0.99+

AtlasORGANIZATION

0.99+

two industriesQUANTITY

0.99+

last weekDATE

0.99+

six yearsQUANTITY

0.99+

first pointQUANTITY

0.99+

Red HatsORGANIZATION

0.99+

35%QUANTITY

0.99+

fourQUANTITY

0.99+

159 respondentsQUANTITY

0.99+

OktaORGANIZATION

0.99+

Breaking Analysis: ChatGPT Won't Give OpenAI First Mover Advantage


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> OpenAI The company, and ChatGPT have taken the world by storm. Microsoft reportedly is investing an additional 10 billion dollars into the company. But in our view, while the hype around ChatGPT is justified, we don't believe OpenAI will lock up the market with its first mover advantage. Rather, we believe that success in this market will be directly proportional to the quality and quantity of data that a technology company has at its disposal, and the compute power that it could deploy to run its system. Hello and welcome to this week's Wikibon CUBE insights, powered by ETR. In this Breaking Analysis, we unpack the excitement around ChatGPT, and debate the premise that the company's early entry into the space may not confer winner take all advantage to OpenAI. And to do so, we welcome CUBE collaborator, alum, Sarbjeet Johal, (chuckles) and John Furrier, co-host of the Cube. Great to see you Sarbjeet, John. Really appreciate you guys coming to the program. >> Great to be on. >> Okay, so what is ChatGPT? Well, actually we asked ChatGPT, what is ChatGPT? So here's what it said. ChatGPT is a state-of-the-art language model developed by OpenAI that can generate human-like text. It could be fine tuned for a variety of language tasks, such as conversation, summarization, and language translation. So I asked it, give it to me in 50 words or less. How did it do? Anything to add? >> Yeah, think it did good. It's large language model, like previous models, but it started applying the transformers sort of mechanism to focus on what prompt you have given it to itself. And then also the what answer it gave you in the first, sort of, one sentence or two sentences, and then introspect on itself, like what I have already said to you. And so just work on that. So it it's self sort of focus if you will. It does, the transformers help the large language models to do that. >> So to your point, it's a large language model, and GPT stands for generative pre-trained transformer. >> And if you put the definition back up there again, if you put it back up on the screen, let's see it back up. Okay, it actually missed the large, word large. So one of the problems with ChatGPT, it's not always accurate. It's actually a large language model, and it says state of the art language model. And if you look at Google, Google has dominated AI for many times and they're well known as being the best at this. And apparently Google has their own large language model, LLM, in play and have been holding it back to release because of backlash on the accuracy. Like just in that example you showed is a great point. They got almost right, but they missed the key word. >> You know what's funny about that John, is I had previously asked it in my prompt to give me it in less than a hundred words, and it was too long, I said I was too long for Breaking Analysis, and there it went into the fact that it's a large language model. So it largely, it gave me a really different answer the, for both times. So, but it's still pretty amazing for those of you who haven't played with it yet. And one of the best examples that I saw was Ben Charrington from This Week In ML AI podcast. And I stumbled on this thanks to Brian Gracely, who was listening to one of his Cloudcasts. Basically what Ben did is he took, he prompted ChatGPT to interview ChatGPT, and he simply gave the system the prompts, and then he ran the questions and answers into this avatar builder and sped it up 2X so it didn't sound like a machine. And voila, it was amazing. So John is ChatGPT going to take over as a cube host? >> Well, I was thinking, we get the questions in advance sometimes from PR people. We should actually just plug it in ChatGPT, add it to our notes, and saying, "Is this good enough for you? Let's ask the real question." So I think, you know, I think there's a lot of heavy lifting that gets done. I think the ChatGPT is a phenomenal revolution. I think it highlights the use case. Like that example we showed earlier. It gets most of it right. So it's directionally correct and it feels like it's an answer, but it's not a hundred percent accurate. And I think that's where people are seeing value in it. Writing marketing, copy, brainstorming, guest list, gift list for somebody. Write me some lyrics to a song. Give me a thesis about healthcare policy in the United States. It'll do a bang up job, and then you got to go in and you can massage it. So we're going to do three quarters of the work. That's why plagiarism and schools are kind of freaking out. And that's why Microsoft put 10 billion in, because why wouldn't this be a feature of Word, or the OS to help it do stuff on behalf of the user. So linguistically it's a beautiful thing. You can input a string and get a good answer. It's not a search result. >> And we're going to get your take on on Microsoft and, but it kind of levels the playing- but ChatGPT writes better than I do, Sarbjeet, and I know you have some good examples too. You mentioned the Reed Hastings example. >> Yeah, I was listening to Reed Hastings fireside chat with ChatGPT, and the answers were coming as sort of voice, in the voice format. And it was amazing what, he was having very sort of philosophy kind of talk with the ChatGPT, the longer sentences, like he was going on, like, just like we are talking, he was talking for like almost two minutes and then ChatGPT was answering. It was not one sentence question, and then a lot of answers from ChatGPT and yeah, you're right. I, this is our ability. I've been thinking deep about this since yesterday, we talked about, like, we want to do this segment. The data is fed into the data model. It can be the current data as well, but I think that, like, models like ChatGPT, other companies will have those too. They can, they're democratizing the intelligence, but they're not creating intelligence yet, definitely yet I can say that. They will give you all the finite answers. Like, okay, how do you do this for loop in Java, versus, you know, C sharp, and as a programmer you can do that, in, but they can't tell you that, how to write a new algorithm or write a new search algorithm for you. They cannot create a secretive code for you to- >> Not yet. >> Have competitive advantage. >> Not yet, not yet. >> but you- >> Can Google do that today? >> No one really can. The reasoning side of the data is, we talked about at our Supercloud event, with Zhamak Dehghani who's was CEO of, now of Nextdata. This next wave of data intelligence is going to come from entrepreneurs that are probably cross discipline, computer science and some other discipline. But they're going to be new things, for example, data, metadata, and data. It's hard to do reasoning like a human being, so that needs more data to train itself. So I think the first gen of this training module for the large language model they have is a corpus of text. Lot of that's why blog posts are, but the facts are wrong and sometimes out of context, because that contextual reasoning takes time, it takes intelligence. So machines need to become intelligent, and so therefore they need to be trained. So you're going to start to see, I think, a lot of acceleration on training the data sets. And again, it's only as good as the data you can get. And again, proprietary data sets will be a huge winner. Anyone who's got a large corpus of content, proprietary content like theCUBE or SiliconANGLE as a publisher will benefit from this. Large FinTech companies, anyone with large proprietary data will probably be a big winner on this generative AI wave, because it just, it will eat that up, and turn that back into something better. So I think there's going to be a lot of interesting things to look at here. And certainly productivity's going to be off the charts for vanilla and the internet is going to get swarmed with vanilla content. So if you're in the content business, and you're an original content producer of any kind, you're going to be not vanilla, so you're going to be better. So I think there's so much at play Dave (indistinct). >> I think the playing field has been risen, so we- >> Risen and leveled? >> Yeah, and leveled to certain extent. So it's now like that few people as consumers, as consumers of AI, we will have a advantage and others cannot have that advantage. So it will be democratized. That's, I'm sure about that. But if you take the example of calculator, when the calculator came in, and a lot of people are, "Oh, people can't do math anymore because calculator is there." right? So it's a similar sort of moment, just like a calculator for the next level. But, again- >> I see it more like open source, Sarbjeet, because like if you think about what ChatGPT's doing, you do a query and it comes from somewhere the value of a post from ChatGPT is just a reuse of AI. The original content accent will be come from a human. So if I lay out a paragraph from ChatGPT, did some heavy lifting on some facts, I check the facts, save me about maybe- >> Yeah, it's productive. >> An hour writing, and then I write a killer two, three sentences of, like, sharp original thinking or critical analysis. I then took that body of work, open source content, and then laid something on top of it. >> And Sarbjeet's example is a good one, because like if the calculator kids don't do math as well anymore, the slide rule, remember we had slide rules as kids, remember we first started using Waze, you know, we were this minority and you had an advantage over other drivers. Now Waze is like, you know, social traffic, you know, navigation, everybody had, you know- >> All the back roads are crowded. >> They're car crowded. (group laughs) Exactly. All right, let's, let's move on. What about this notion that futurist Ray Amara put forth and really Amara's Law that we're showing here, it's, the law is we, you know, "We tend to overestimate the effect of technology in the short run and underestimate it in the long run." Is that the case, do you think, with ChatGPT? What do you think Sarbjeet? >> I think that's true actually. There's a lot of, >> We don't debate this. >> There's a lot of awe, like when people see the results from ChatGPT, they say what, what the heck? Like, it can do this? But then if you use it more and more and more, and I ask the set of similar question, not the same question, and it gives you like same answer. It's like reading from the same bucket of text in, the interior read (indistinct) where the ChatGPT, you will see that in some couple of segments. It's very, it sounds so boring that the ChatGPT is coming out the same two sentences every time. So it is kind of good, but it's not as good as people think it is right now. But we will have, go through this, you know, hype sort of cycle and get realistic with it. And then in the long term, I think it's a great thing in the short term, it's not something which will (indistinct) >> What's your counter point? You're saying it's not. >> I, no I think the question was, it's hyped up in the short term and not it's underestimated long term. That's what I think what he said, quote. >> Yes, yeah. That's what he said. >> Okay, I think that's wrong with this, because this is a unique, ChatGPT is a unique kind of impact and it's very generational. People have been comparing it, I have been comparing to the internet, like the web, web browser Mosaic and Netscape, right, Navigator. I mean, I clearly still remember the days seeing Navigator for the first time, wow. And there weren't not many sites you could go to, everyone typed in, you know, cars.com, you know. >> That (indistinct) wasn't that overestimated, the overhyped at the beginning and underestimated. >> No, it was, it was underestimated long run, people thought. >> But that Amara's law. >> That's what is. >> No, they said overestimated? >> Overestimated near term underestimated- overhyped near term, underestimated long term. I got, right I mean? >> Well, I, yeah okay, so I would then agree, okay then- >> We were off the charts about the internet in the early days, and it actually exceeded our expectations. >> Well there were people who were, like, poo-pooing it early on. So when the browser came out, people were like, "Oh, the web's a toy for kids." I mean, in 1995 the web was a joke, right? So '96, you had online populations growing, so you had structural changes going on around the browser, internet population. And then that replaced other things, direct mail, other business activities that were once analog then went to the web, kind of read only as you, as we always talk about. So I think that's a moment where the hype long term, the smart money, and the smart industry experts all get the long term. And in this case, there's more poo-pooing in the short term. "Ah, it's not a big deal, it's just AI." I've heard many people poo-pooing ChatGPT, and a lot of smart people saying, "No this is next gen, this is different and it's only going to get better." So I think people are estimating a big long game on this one. >> So you're saying it's bifurcated. There's those who say- >> Yes. >> Okay, all right, let's get to the heart of the premise, and possibly the debate for today's episode. Will OpenAI's early entry into the market confer sustainable competitive advantage for the company. And if you look at the history of tech, the technology industry, it's kind of littered with first mover failures. Altair, IBM, Tandy, Commodore, they and Apple even, they were really early in the PC game. They took a backseat to Dell who came in the scene years later with a better business model. Netscape, you were just talking about, was all the rage in Silicon Valley, with the first browser, drove up all the housing prices out here. AltaVista was the first search engine to really, you know, index full text. >> Owned by Dell, I mean DEC. >> Owned by Digital. >> Yeah, Digital Equipment >> Compaq bought it. And of course as an aside, Digital, they wanted to showcase their hardware, right? Their super computer stuff. And then so Friendster and MySpace, they came before Facebook. The iPhone certainly wasn't the first mobile device. So lots of failed examples, but there are some recent successes like AWS and cloud. >> You could say smartphone. So I mean. >> Well I know, and you can, we can parse this so we'll debate it. Now Twitter, you could argue, had first mover advantage. You kind of gave me that one John. Bitcoin and crypto clearly had first mover advantage, and sustaining that. Guys, will OpenAI make it to the list on the right with ChatGPT, what do you think? >> I think categorically as a company, it probably won't, but as a category, I think what they're doing will, so OpenAI as a company, they get funding, there's power dynamics involved. Microsoft put a billion dollars in early on, then they just pony it up. Now they're reporting 10 billion more. So, like, if the browsers, Microsoft had competitive advantage over Netscape, and used monopoly power, and convicted by the Department of Justice for killing Netscape with their monopoly, Netscape should have had won that battle, but Microsoft killed it. In this case, Microsoft's not killing it, they're buying into it. So I think the embrace extend Microsoft power here makes OpenAI vulnerable for that one vendor solution. So the AI as a company might not make the list, but the category of what this is, large language model AI, is probably will be on the right hand side. >> Okay, we're going to come back to the government intervention and maybe do some comparisons, but what are your thoughts on this premise here? That, it will basically set- put forth the premise that it, that ChatGPT, its early entry into the market will not confer competitive advantage to >> For OpenAI. >> To Open- Yeah, do you agree with that? >> I agree with that actually. It, because Google has been at it, and they have been holding back, as John said because of the scrutiny from the Fed, right, so- >> And privacy too. >> And the privacy and the accuracy as well. But I think Sam Altman and the company on those guys, right? They have put this in a hasty way out there, you know, because it makes mistakes, and there are a lot of questions around the, sort of, where the content is coming from. You saw that as your example, it just stole the content, and without your permission, you know? >> Yeah. So as quick this aside- >> And it codes on people's behalf and the, those codes are wrong. So there's a lot of, sort of, false information it's putting out there. So it's a very vulnerable thing to do what Sam Altman- >> So even though it'll get better, others will compete. >> So look, just side note, a term which Reid Hoffman used a little bit. Like he said, it's experimental launch, like, you know, it's- >> It's pretty damn good. >> It is clever because according to Sam- >> It's more than clever. It's good. >> It's awesome, if you haven't used it. I mean you write- you read what it writes and you go, "This thing writes so well, it writes so much better than you." >> The human emotion drives that too. I think that's a big thing. But- >> I Want to add one more- >> Make your last point. >> Last one. Okay. So, but he's still holding back. He's conducting quite a few interviews. If you want to get the gist of it, there's an interview with StrictlyVC interview from yesterday with Sam Altman. Listen to that one it's an eye opening what they want- where they want to take it. But my last one I want to make it on this point is that Satya Nadella yesterday did an interview with Wall Street Journal. I think he was doing- >> You were not impressed. >> I was not impressed because he was pushing it too much. So Sam Altman's holding back so there's less backlash. >> Got 10 billion reasons to push. >> I think he's almost- >> Microsoft just laid off 10000 people. Hey ChatGPT, find me a job. You know like. (group laughs) >> He's overselling it to an extent that I think it will backfire on Microsoft. And he's over promising a lot of stuff right now, I think. I don't know why he's very jittery about all these things. And he did the same thing during Ignite as well. So he said, "Oh, this AI will write code for you and this and that." Like you called him out- >> The hyperbole- >> During your- >> from Satya Nadella, he's got a lot of hyperbole. (group talks over each other) >> All right, Let's, go ahead. >> Well, can I weigh in on the whole- >> Yeah, sure. >> Microsoft thing on whether OpenAI, here's the take on this. I think it's more like the browser moment to me, because I could relate to that experience with ChatG, personally, emotionally, when I saw that, and I remember vividly- >> You mean that aha moment (indistinct). >> Like this is obviously the future. Anything else in the old world is dead, website's going to be everywhere. It was just instant dot connection for me. And a lot of other smart people who saw this. Lot of people by the way, didn't see it. Someone said the web's a toy. At the company I was worked for at the time, Hewlett Packard, they like, they could have been in, they had invented HTML, and so like all this stuff was, like, they just passed, the web was just being passed over. But at that time, the browser got better, more websites came on board. So the structural advantage there was online web usage was growing, online user population. So that was growing exponentially with the rise of the Netscape browser. So OpenAI could stay on the right side of your list as durable, if they leverage the category that they're creating, can get the scale. And if they can get the scale, just like Twitter, that failed so many times that they still hung around. So it was a product that was always successful, right? So I mean, it should have- >> You're right, it was terrible, we kept coming back. >> The fail whale, but it still grew. So OpenAI has that moment. They could do it if Microsoft doesn't meddle too much with too much power as a vendor. They could be the Netscape Navigator, without the anti-competitive behavior of somebody else. So to me, they have the pole position. So they have an opportunity. So if not, if they don't execute, then there's opportunity. There's not a lot of barriers to entry, vis-a-vis say the CapEx of say a cloud company like AWS. You can't replicate that, Many have tried, but I think you can replicate OpenAI. >> And we're going to talk about that. Okay, so real quick, I want to bring in some ETR data. This isn't an ETR heavy segment, only because this so new, you know, they haven't coverage yet, but they do cover AI. So basically what we're seeing here is a slide on the vertical axis's net score, which is a measure of spending momentum, and in the horizontal axis's is presence in the dataset. Think of it as, like, market presence. And in the insert right there, you can see how the dots are plotted, the two columns. And so, but the key point here that we want to make, there's a bunch of companies on the left, is he like, you know, DataRobot and C3 AI and some others, but the big whales, Google, AWS, Microsoft, are really dominant in this market. So that's really the key takeaway that, can we- >> I notice IBM is way low. >> Yeah, IBM's low, and actually bring that back up and you, but then you see Oracle who actually is injecting. So I guess that's the other point is, you're not necessarily going to go buy AI, and you know, build your own AI, you're going to, it's going to be there and, it, Salesforce is going to embed it into its platform, the SaaS companies, and you're going to purchase AI. You're not necessarily going to build it. But some companies obviously are. >> I mean to quote IBM's general manager Rob Thomas, "You can't have AI with IA." information architecture and David Flynn- >> You can't Have AI without IA >> without, you can't have AI without IA. You can't have, if you have an Information Architecture, you then can power AI. Yesterday David Flynn, with Hammersmith, was on our Supercloud. He was pointing out that the relationship of storage, where you store things, also impacts the data and stressablity, and Zhamak from Nextdata, she was pointing out that same thing. So the data problem factors into all this too, Dave. >> So you got the big cloud and internet giants, they're all poised to go after this opportunity. Microsoft is investing up to 10 billion. Google's code red, which was, you know, the headline in the New York Times. Of course Apple is there and several alternatives in the market today. Guys like Chinchilla, Bloom, and there's a company Jasper and several others, and then Lena Khan looms large and the government's around the world, EU, US, China, all taking notice before the market really is coalesced around a single player. You know, John, you mentioned Netscape, they kind of really, the US government was way late to that game. It was kind of game over. And Netscape, I remember Barksdale was like, "Eh, we're going to be selling software in the enterprise anyway." and then, pshew, the company just dissipated. So, but it looks like the US government, especially with Lena Khan, they're changing the definition of antitrust and what the cause is to go after people, and they're really much more aggressive. It's only what, two years ago that (indistinct). >> Yeah, the problem I have with the federal oversight is this, they're always like late to the game, and they're slow to catch up. So in other words, they're working on stuff that should have been solved a year and a half, two years ago around some of the social networks hiding behind some of the rules around open web back in the days, and I think- >> But they're like 15 years late to that. >> Yeah, and now they got this new thing on top of it. So like, I just worry about them getting their fingers. >> But there's only two years, you know, OpenAI. >> No, but the thing (indistinct). >> No, they're still fighting other battles. But the problem with government is that they're going to label Big Tech as like a evil thing like Pharma, it's like smoke- >> You know Lena Khan wants to kill Big Tech, there's no question. >> So I think Big Tech is getting a very seriously bad rap. And I think anything that the government does that shades darkness on tech, is politically motivated in most cases. You can almost look at everything, and my 80 20 rule is in play here. 80% of the government activity around tech is bullshit, it's politically motivated, and the 20% is probably relevant, but off the mark and not organized. >> Well market forces have always been the determining factor of success. The governments, you know, have been pretty much failed. I mean you look at IBM's antitrust, that, what did that do? The market ultimately beat them. You look at Microsoft back in the day, right? Windows 95 was peaking, the government came in. But you know, like you said, they missed the web, right, and >> so they were hanging on- >> There's nobody in government >> to Windows. >> that actually knows- >> And so, you, I think you're right. It's market forces that are going to determine this. But Sarbjeet, what do you make of Microsoft's big bet here, you weren't impressed with with Nadella. How do you think, where are they going to apply it? Is this going to be a Hail Mary for Bing, or is it going to be applied elsewhere? What do you think. >> They are saying that they will, sort of, weave this into their products, office products, productivity and also to write code as well, developer productivity as well. That's a big play for them. But coming back to your antitrust sort of comments, right? I believe the, your comment was like, oh, fed was late 10 years or 15 years earlier, but now they're two years. But things are moving very fast now as compared to they used to move. >> So two years is like 10 Years. >> Yeah, two years is like 10 years. Just want to make that point. (Dave laughs) This thing is going like wildfire. Any new tech which comes in that I think they're going against distribution channels. Lina Khan has commented time and again that the marketplace model is that she wants to have some grip on. Cloud marketplaces are a kind of monopolistic kind of way. >> I don't, I don't see this, I don't see a Chat AI. >> You told me it's not Bing, you had an interesting comment. >> No, no. First of all, this is great from Microsoft. If you're Microsoft- >> Why? >> Because Microsoft doesn't have the AI chops that Google has, right? Google is got so much core competency on how they run their search, how they run their backends, their cloud, even though they don't get a lot of cloud market share in the enterprise, they got a kick ass cloud cause they needed one. >> Totally. >> They've invented SRE. I mean Google's development and engineering chops are off the scales, right? Amazon's got some good chops, but Google's got like 10 times more chops than AWS in my opinion. Cloud's a whole different story. Microsoft gets AI, they get a playbook, they get a product they can render into, the not only Bing, productivity software, helping people write papers, PowerPoint, also don't forget the cloud AI can super help. We had this conversation on our Supercloud event, where AI's going to do a lot of the heavy lifting around understanding observability and managing service meshes, to managing microservices, to turning on and off applications, and or maybe writing code in real time. So there's a plethora of use cases for Microsoft to deploy this. combined with their R and D budgets, they can then turbocharge more research, build on it. So I think this gives them a car in the game, Google may have pole position with AI, but this puts Microsoft right in the game, and they already have a lot of stuff going on. But this just, I mean everything gets lifted up. Security, cloud, productivity suite, everything. >> What's under the hood at Google, and why aren't they talking about it? I mean they got to be freaked out about this. No? Or do they have kind of a magic bullet? >> I think they have the, they have the chops definitely. Magic bullet, I don't know where they are, as compared to the ChatGPT 3 or 4 models. Like they, but if you look at the online sort of activity and the videos put out there from Google folks, Google technology folks, that's account you should look at if you are looking there, they have put all these distinctions what ChatGPT 3 has used, they have been talking about for a while as well. So it's not like it's a secret thing that you cannot replicate. As you said earlier, like in the beginning of this segment, that anybody who has more data and the capacity to process that data, which Google has both, I think they will win this. >> Obviously living in Palo Alto where the Google founders are, and Google's headquarters next town over we have- >> We're so close to them. We have inside information on some of the thinking and that hasn't been reported by any outlet yet. And that is, is that, from what I'm hearing from my sources, is Google has it, they don't want to release it for many reasons. One is it might screw up their search monopoly, one, two, they're worried about the accuracy, 'cause Google will get sued. 'Cause a lot of people are jamming on this ChatGPT as, "Oh it does everything for me." when it's clearly not a hundred percent accurate all the time. >> So Lina Kahn is looming, and so Google's like be careful. >> Yeah so Google's just like, this is the third, could be a third rail. >> But the first thing you said is a concern. >> Well no. >> The disruptive (indistinct) >> What they will do is do a Waymo kind of thing, where they spin out a separate company. >> They're doing that. >> The discussions happening, they're going to spin out the separate company and put it over there, and saying, "This is AI, got search over there, don't touch that search, 'cause that's where all the revenue is." (chuckles) >> So, okay, so that's how they deal with the Clay Christensen dilemma. What's the business model here? I mean it's not advertising, right? Is it to charge you for a query? What, how do you make money at this? >> It's a good question, I mean my thinking is, first of all, it's cool to type stuff in and see a paper get written, or write a blog post, or gimme a marketing slogan for this or that or write some code. I think the API side of the business will be critical. And I think Howie Xu, I know you're going to reference some of his comments yesterday on Supercloud, I think this brings a whole 'nother user interface into technology consumption. I think the business model, not yet clear, but it will probably be some sort of either API and developer environment or just a straight up free consumer product, with some sort of freemium backend thing for business. >> And he was saying too, it's natural language is the way in which you're going to interact with these systems. >> I think it's APIs, it's APIs, APIs, APIs, because these people who are cooking up these models, and it takes a lot of compute power to train these and to, for inference as well. Somebody did the analysis on the how many cents a Google search costs to Google, and how many cents the ChatGPT query costs. It's, you know, 100x or something on that. You can take a look at that. >> A 100x on which side? >> You're saying two orders of magnitude more expensive for ChatGPT >> Much more, yeah. >> Than for Google. >> It's very expensive. >> So Google's got the data, they got the infrastructure and they got, you're saying they got the cost (indistinct) >> No actually it's a simple query as well, but they are trying to put together the answers, and they're going through a lot more data versus index data already, you know. >> Let me clarify, you're saying that Google's version of ChatGPT is more efficient? >> No, I'm, I'm saying Google search results. >> Ah, search results. >> What are used to today, but cheaper. >> But that, does that, is that going to confer advantage to Google's large language (indistinct)? >> It will, because there were deep science (indistinct). >> Google, I don't think Google search is doing a large language model on their search, it's keyword search. You know, what's the weather in Santa Cruz? Or how, what's the weather going to be? Or you know, how do I find this? Now they have done a smart job of doing some things with those queries, auto complete, re direct navigation. But it's, it's not entity. It's not like, "Hey, what's Dave Vellante thinking this week in Breaking Analysis?" ChatGPT might get that, because it'll get your Breaking Analysis, it'll synthesize it. There'll be some, maybe some clips. It'll be like, you know, I mean. >> Well I got to tell you, I asked ChatGPT to, like, I said, I'm going to enter a transcript of a discussion I had with Nir Zuk, the CTO of Palo Alto Networks, And I want you to write a 750 word blog. I never input the transcript. It wrote a 750 word blog. It attributed quotes to him, and it just pulled a bunch of stuff that, and said, okay, here it is. It talked about Supercloud, it defined Supercloud. >> It's made, it makes you- >> Wow, But it was a big lie. It was fraudulent, but still, blew me away. >> Again, vanilla content and non accurate content. So we are going to see a surge of misinformation on steroids, but I call it the vanilla content. Wow, that's just so boring, (indistinct). >> There's so many dangers. >> Make your point, cause we got to, almost out of time. >> Okay, so the consumption, like how do you consume this thing. As humans, we are consuming it and we are, like, getting a nicely, like, surprisingly shocked, you know, wow, that's cool. It's going to increase productivity and all that stuff, right? And on the danger side as well, the bad actors can take hold of it and create fake content and we have the fake sort of intelligence, if you go out there. So that's one thing. The second thing is, we are as humans are consuming this as language. Like we read that, we listen to it, whatever format we consume that is, but the ultimate usage of that will be when the machines can take that output from likes of ChatGPT, and do actions based on that. The robots can work, the robot can paint your house, we were talking about, right? Right now we can't do that. >> Data apps. >> So the data has to be ingested by the machines. It has to be digestible by the machines. And the machines cannot digest unorganized data right now, we will get better on the ingestion side as well. So we are getting better. >> Data, reasoning, insights, and action. >> I like that mall, paint my house. >> So, okay- >> By the way, that means drones that'll come in. Spray painting your house. >> Hey, it wasn't too long ago that robots couldn't climb stairs, as I like to point out. Okay, and of course it's no surprise the venture capitalists are lining up to eat at the trough, as I'd like to say. Let's hear, you'd referenced this earlier, John, let's hear what AI expert Howie Xu said at the Supercloud event, about what it takes to clone ChatGPT. Please, play the clip. >> So one of the VCs actually asked me the other day, right? "Hey, how much money do I need to spend, invest to get a, you know, another shot to the openAI sort of the level." You know, I did a (indistinct) >> Line up. >> A hundred million dollar is the order of magnitude that I came up with, right? You know, not a billion, not 10 million, right? So a hundred- >> Guys a hundred million dollars, that's an astoundingly low figure. What do you make of it? >> I was in an interview with, I was interviewing, I think he said hundred million or so, but in the hundreds of millions, not a billion right? >> You were trying to get him up, you were like "Hundreds of millions." >> Well I think, I- >> He's like, eh, not 10, not a billion. >> Well first of all, Howie Xu's an expert machine learning. He's at Zscaler, he's a machine learning AI guy. But he comes from VMware, he's got his technology pedigrees really off the chart. Great friend of theCUBE and kind of like a CUBE analyst for us. And he's smart. He's right. I think the barriers to entry from a dollar standpoint are lower than say the CapEx required to compete with AWS. Clearly, the CapEx spending to build all the tech for the run a cloud. >> And you don't need a huge sales force. >> And in some case apps too, it's the same thing. But I think it's not that hard. >> But am I right about that? You don't need a huge sales force either. It's, what, you know >> If the product's good, it will sell, this is a new era. The better mouse trap will win. This is the new economics in software, right? So- >> Because you look at the amount of money Lacework, and Snyk, Snowflake, Databrooks. Look at the amount of money they've raised. I mean it's like a billion dollars before they get to IPO or more. 'Cause they need promotion, they need go to market. You don't need (indistinct) >> OpenAI's been working on this for multiple five years plus it's, hasn't, wasn't born yesterday. Took a lot of years to get going. And Sam is depositioning all the success, because he's trying to manage expectations, To your point Sarbjeet, earlier. It's like, yeah, he's trying to "Whoa, whoa, settle down everybody, (Dave laughs) it's not that great." because he doesn't want to fall into that, you know, hero and then get taken down, so. >> It may take a 100 million or 150 or 200 million to train the model. But to, for the inference to, yeah to for the inference machine, It will take a lot more, I believe. >> Give it, so imagine, >> Because- >> Go ahead, sorry. >> Go ahead. But because it consumes a lot more compute cycles and it's certain level of storage and everything, right, which they already have. So I think to compute is different. To frame the model is a different cost. But to run the business is different, because I think 100 million can go into just fighting the Fed. >> Well there's a flywheel too. >> Oh that's (indistinct) >> (indistinct) >> We are running the business, right? >> It's an interesting number, but it's also kind of, like, context to it. So here, a hundred million spend it, you get there, but you got to factor in the fact that the ways companies win these days is critical mass scale, hitting a flywheel. If they can keep that flywheel of the value that they got going on and get better, you can almost imagine a marketplace where, hey, we have proprietary data, we're SiliconANGLE in theCUBE. We have proprietary content, CUBE videos, transcripts. Well wouldn't it be great if someone in a marketplace could sell a module for us, right? We buy that, Amazon's thing and things like that. So if they can get a marketplace going where you can apply to data sets that may be proprietary, you can start to see this become bigger. And so I think the key barriers to entry is going to be success. I'll give you an example, Reddit. Reddit is successful and it's hard to copy, not because of the software. >> They built the moat. >> Because you can, buy Reddit open source software and try To compete. >> They built the moat with their community. >> Their community, their scale, their user expectation. Twitter, we referenced earlier, that thing should have gone under the first two years, but there was such a great emotional product. People would tolerate the fail whale. And then, you know, well that was a whole 'nother thing. >> Then a plane landed in (John laughs) the Hudson and it was over. >> I think verticals, a lot of verticals will build applications using these models like for lawyers, for doctors, for scientists, for content creators, for- >> So you'll have many hundreds of millions of dollars investments that are going to be seeping out. If, all right, we got to wrap, if you had to put odds on it that that OpenAI is going to be the leader, maybe not a winner take all leader, but like you look at like Amazon and cloud, they're not winner take all, these aren't necessarily winner take all markets. It's not necessarily a zero sum game, but let's call it winner take most. What odds would you give that open AI 10 years from now will be in that position. >> If I'm 0 to 10 kind of thing? >> Yeah, it's like horse race, 3 to 1, 2 to 1, even money, 10 to 1, 50 to 1. >> Maybe 2 to 1, >> 2 to 1, that's pretty low odds. That's basically saying they're the favorite, they're the front runner. Would you agree with that? >> I'd say 4 to 1. >> Yeah, I was going to say I'm like a 5 to 1, 7 to 1 type of person, 'cause I'm a skeptic with, you know, there's so much competition, but- >> I think they're definitely the leader. I mean you got to say, I mean. >> Oh there's no question. There's no question about it. >> The question is can they execute? >> They're not Friendster, is what you're saying. >> They're not Friendster and they're more like Twitter and Reddit where they have momentum. If they can execute on the product side, and if they don't stumble on that, they will continue to have the lead. >> If they say stay neutral, as Sam is, has been saying, that, hey, Microsoft is one of our partners, if you look at their company model, how they have structured the company, then they're going to pay back to the investors, like Microsoft is the biggest one, up to certain, like by certain number of years, they're going to pay back from all the money they make, and after that, they're going to give the money back to the public, to the, I don't know who they give it to, like non-profit or something. (indistinct) >> Okay, the odds are dropping. (group talks over each other) That's a good point though >> Actually they might have done that to fend off the criticism of this. But it's really interesting to see the model they have adopted. >> The wildcard in all this, My last word on this is that, if there's a developer shift in how developers and data can come together again, we have conferences around the future of data, Supercloud and meshs versus, you know, how the data world, coding with data, how that evolves will also dictate, 'cause a wild card could be a shift in the landscape around how developers are using either machine learning or AI like techniques to code into their apps, so. >> That's fantastic insight. I can't thank you enough for your time, on the heels of Supercloud 2, really appreciate it. All right, thanks to John and Sarbjeet for the outstanding conversation today. Special thanks to the Palo Alto studio team. My goodness, Anderson, this great backdrop. You guys got it all out here, I'm jealous. And Noah, really appreciate it, Chuck, Andrew Frick and Cameron, Andrew Frick switching, Cameron on the video lake, great job. And Alex Myerson, he's on production, manages the podcast for us, Ken Schiffman as well. Kristen Martin and Cheryl Knight help get the word out on social media and our newsletters. Rob Hof is our editor-in-chief over at SiliconANGLE, does some great editing, thanks to all. Remember, all these episodes are available as podcasts. All you got to do is search Breaking Analysis podcast, wherever you listen. Publish each week on wikibon.com and siliconangle.com. Want to get in touch, email me directly, david.vellante@siliconangle.com or DM me at dvellante, or comment on our LinkedIn post. And by all means, check out etr.ai. They got really great survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, We'll see you next time on Breaking Analysis. (electronic music)

Published Date : Jan 20 2023

SUMMARY :

bringing you data-driven and ChatGPT have taken the world by storm. So I asked it, give it to the large language models to do that. So to your point, it's So one of the problems with ChatGPT, and he simply gave the system the prompts, or the OS to help it do but it kind of levels the playing- and the answers were coming as the data you can get. Yeah, and leveled to certain extent. I check the facts, save me about maybe- and then I write a killer because like if the it's, the law is we, you know, I think that's true and I ask the set of similar question, What's your counter point? and not it's underestimated long term. That's what he said. for the first time, wow. the overhyped at the No, it was, it was I got, right I mean? the internet in the early days, and it's only going to get better." So you're saying it's bifurcated. and possibly the debate the first mobile device. So I mean. on the right with ChatGPT, and convicted by the Department of Justice the scrutiny from the Fed, right, so- And the privacy and thing to do what Sam Altman- So even though it'll get like, you know, it's- It's more than clever. I mean you write- I think that's a big thing. I think he was doing- I was not impressed because You know like. And he did the same thing he's got a lot of hyperbole. the browser moment to me, So OpenAI could stay on the right side You're right, it was terrible, They could be the Netscape Navigator, and in the horizontal axis's So I guess that's the other point is, I mean to quote IBM's So the data problem factors and the government's around the world, and they're slow to catch up. Yeah, and now they got years, you know, OpenAI. But the problem with government to kill Big Tech, and the 20% is probably relevant, back in the day, right? are they going to apply it? and also to write code as well, that the marketplace I don't, I don't see you had an interesting comment. No, no. First of all, the AI chops that Google has, right? are off the scales, right? I mean they got to be and the capacity to process that data, on some of the thinking So Lina Kahn is looming, and this is the third, could be a third rail. But the first thing What they will do out the separate company Is it to charge you for a query? it's cool to type stuff in natural language is the way and how many cents the and they're going through Google search results. It will, because there were It'll be like, you know, I mean. I never input the transcript. Wow, But it was a big lie. but I call it the vanilla content. Make your point, cause we And on the danger side as well, So the data By the way, that means at the Supercloud event, So one of the VCs actually What do you make of it? you were like "Hundreds of millions." not 10, not a billion. Clearly, the CapEx spending to build all But I think it's not that hard. It's, what, you know This is the new economics Look at the amount of And Sam is depositioning all the success, or 150 or 200 million to train the model. So I think to compute is different. not because of the software. Because you can, buy They built the moat And then, you know, well that the Hudson and it was over. that are going to be seeping out. Yeah, it's like horse race, 3 to 1, 2 to 1, that's pretty low odds. I mean you got to say, I mean. Oh there's no question. is what you're saying. and if they don't stumble on that, the money back to the public, to the, Okay, the odds are dropping. the model they have adopted. Supercloud and meshs versus, you know, on the heels of Supercloud

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

SarbjeetPERSON

0.99+

Brian GracelyPERSON

0.99+

Lina KhanPERSON

0.99+

Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

Reid HoffmanPERSON

0.99+

Alex MyersonPERSON

0.99+

Lena KhanPERSON

0.99+

Sam AltmanPERSON

0.99+

AppleORGANIZATION

0.99+

AWSORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Rob ThomasPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

GoogleORGANIZATION

0.99+

David FlynnPERSON

0.99+

SamPERSON

0.99+

NoahPERSON

0.99+

Ray AmaraPERSON

0.99+

10 billionQUANTITY

0.99+

150QUANTITY

0.99+

Rob HofPERSON

0.99+

ChuckPERSON

0.99+

Palo AltoLOCATION

0.99+

Howie XuPERSON

0.99+

AndersonPERSON

0.99+

Cheryl KnightPERSON

0.99+

John FurrierPERSON

0.99+

Hewlett PackardORGANIZATION

0.99+

Santa CruzLOCATION

0.99+

1995DATE

0.99+

Lina KahnPERSON

0.99+

Zhamak DehghaniPERSON

0.99+

50 wordsQUANTITY

0.99+

Hundreds of millionsQUANTITY

0.99+

CompaqORGANIZATION

0.99+

10QUANTITY

0.99+

Kristen MartinPERSON

0.99+

two sentencesQUANTITY

0.99+

DavePERSON

0.99+

hundreds of millionsQUANTITY

0.99+

Satya NadellaPERSON

0.99+

CameronPERSON

0.99+

100 millionQUANTITY

0.99+

Silicon ValleyLOCATION

0.99+

one sentenceQUANTITY

0.99+

10 millionQUANTITY

0.99+

yesterdayDATE

0.99+

Clay ChristensenPERSON

0.99+

Sarbjeet JohalPERSON

0.99+

NetscapeORGANIZATION

0.99+

Breaking Analysis: CIOs in a holding pattern but ready to strike at monetization


 

>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Recent conversations with IT decision makers show a stark contrast between exiting 2023 versus the mindset when we were leaving 2022. CIOs are generally funding new initiatives by pushing off or cutting lower priority items, while security efforts are still being funded. Those that enable business initiatives that generate revenue or taking priority over cleaning up legacy technical debt. The bottom line is, for the moment, at least, the mindset is not cut everything, rather, it's put a pause on cleaning up legacy hairballs and fund monetization. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis, we tap recent discussions from two primary sources, year-end ETR roundtables with IT decision makers, and CUBE conversations with data, cloud, and IT architecture practitioners. The sources of data for this breaking analysis come from the following areas. Eric Bradley's recent ETR year end panel featured a financial services DevOps and SRE manager, a CSO in a large hospitality firm, a director of IT for a big tech company, the head of IT infrastructure for a financial firm, and a CTO for global travel enterprise, and for our upcoming Supercloud2 conference on January 17th, which you can register free by the way, at supercloud.world, we've had CUBE conversations with data and cloud practitioners, specifically, heads of data in retail and financial services, a cloud architect and a biotech firm, the director of cloud and data at a large media firm, and the director of engineering at a financial services company. Now we've curated commentary from these sources and now we share them with you today as anecdotal evidence supporting what we've been reporting on in the marketplace for these last couple of quarters. On this program, we've likened the economy to the slingshot effect when you're driving, when you're cruising along at full speed on the highway, and suddenly you see red brake lights up ahead, so, you tap your own brakes and then you speed up again, and traffic is moving along at full speed, so, you think nothing of it, and then, all of a sudden, the same thing happens. You slow down to a crawl and you start wondering, "What the heck is happening?" And you become a lot more cautious about the rate of acceleration when you start moving again. Well, that's the trend in IT spend right now. Back in June, we reported that despite the macro headwinds, CIOs were still expecting 6% to 7% spending growth for 2022. Now that was down from 8%, which we reported at the beginning of 2022. That was before Ukraine, and Fed tightening, but given those two factors, you know that that seemed pretty robust, but throughout the fall, we began reporting consistently declining expectations where CIOs are now saying Q4 will come in at around 3% growth relative to last year, and they're expecting, or should we say hoping that it pops back up in 2023 to 4% to 5%. The recent ETR panelists, when they heard this, are saying based on their businesses and discussions with their peers, they could see low single digit growth for 2023, so, 1%, 2%, 3%, so, this sort of slingshotting, or sometimes we call it a seesaw economy, has caught everyone off guard. Amazon is a good example of this, and there are others, but Amazon entered the pandemic with around 800,000 employees. It doubled that workforce during the pandemic. Now, right before Thanksgiving in 2022, Amazon announced that it was laying off 10,000 employees, and, Jassy, the CEO of Amazon, just last week announced that number is now going to grow to 18,000. Now look, this is a rounding error at Amazon from a headcount standpoint and their headcount remains far above 2019 levels. Its stock price, however, does not and it's back down to 2019 levels. The point is that visibility is very poor right now and it's reflected in that uncertainty. We've seen a lot of layoffs, obviously, the stock market's choppy, et cetera. Now importantly, not everything is on hold, and this downturn is different from previous tech pullbacks in that the speed at which new initiatives can be rolled out is much greater thanks to the cloud, and if you can show a fast return, you're going to get funding. Organizations are pausing on the cleanup of technical debt, unless it's driving fast business value. They're holding off on modernization projects. Those business enablement initiatives are still getting funded. CIOs are finding the money by consolidating redundant vendors, and they're stealing from other pockets of budget, so, it's not surprising that cybersecurity remains the number one technology priority in 2023. We've been reporting that for quite some time now. It's specifically cloud, cloud native security container and API security. That's where all the action is, because there's still holes to plug from that forced march to digital that occurred during COVID. Cloud migration, kind of showing here on number two on this chart, still a high priority, while optimizing cloud spend is definitely a strategy that organizations are taking to cut costs. It's behind consolidating redundant vendors by a long shot. There's very little evidence that cloud repatriation, i.e., moving workloads back on prem is a major cost cutting trend. The data just doesn't show it. What is a trend is getting more real time with analytics, so, companies can do faster and more accurate customer targeting, and they're really prioritizing that, obviously, in this down economy. Real time, we sometimes lose it, what's real time? Real time, we sometimes define as before you lose the customer. Now in the hiring front, customers tell us they're still having a hard time finding qualified site reliability engineers, SREs, Kubernetes expertise, and deep analytics pros. These job markets remain very tight. Let's stay with security for just a moment. We said many times that, prior to COVID, zero trust was this undefined buzzword, and the joke, of course, is, if you ask three people, "What is zero trust?" You're going to get three different answers, but the truth is that virtually every security company that was resisting taking a position on zero trust in an attempt to avoid... They didn't want to get caught up in the buzzword vortex, but they're now really being forced to go there by CISOs, so, there are some good quotes here on cyber that we want to share that came out of the recent conversations that we cited up front. The first one, "Zero trust is the highest ROI, because it enables business transformation." In other words, if I can have good security, I can move fast, it's not a blocker anymore. Second quote here, "ZTA," zero trust architecture, "Is more than securing the perimeter. It encompasses strong authentication and multiple identity layers. It requires taking a software approach to security instead of a hardware focus." The next one, "I'd love to have a security data lake that I could apply to asset management, vulnerability management, incident management, incident response, and all aspects for my security team. I see huge promise in that space," and the last one, I see NLP, natural language processing, as the foundation for email security, so, instead of searching for IP addresses, you can now read emails at light speed and identify phishing threats, so, look at, this is a small snapshot of the mindset around security, but I'll add, when you talk to the likes of CrowdStrike, and Zscaler, and Okta, and Palo Alto Networks, and many other security firms, they're listening to these narratives around zero trust. I'm confident they're working hard on skating to this puck, if you will. A good example is this idea of a security data lake and using analytics to improve security. We're hearing a lot about that. We're hearing architectures, there's acquisitions in that regard, and so, that's becoming real, and there are many other examples, because data is at the heart of digital business. This is the next area that we want to talk about. It's obvious that data, as a topic, gets a lot of mind share amongst practitioners, but getting data right is still really hard. It's a challenge for most organizations to get ROI and expected return out of data. Most companies still put data at the periphery of their businesses. It's not at the core. Data lives within silos or different business units, different clouds, it's on-prem, and increasingly it's at the edge, and it seems like the problem is getting worse before it gets better, so, here are some instructive comments from our recent conversations. The first one, "We're publishing events onto Kafka, having those events be processed by Dataproc." Dataproc is a Google managed service to run Hadoop, and Spark, and Flank, and Presto, and a bunch of other open source tools. We're putting them into the appropriate storage models within Google, and then normalize the data into BigQuery, and only then can you take advantage of tools like ThoughtSpot, so, here's a company like ThoughtSpot, and they're all about simplifying data, democratizing data, but to get there, you have to go through some pretty complex processes, so, this is a good example. All right, another comment. "In order to use Google's AI tools, we have to put the data into BigQuery. They haven't integrated in the way AWS and Snowflake have with SageMaker. Moving the data is too expensive, time consuming, and risky," so, I'll just say this, sharing data is a killer super cloud use case, and firms like Snowflake are on top of it, but it's still not pretty across clouds, and Google's posture seems to be, "We're going to let our database product competitiveness drive the strategy first, and the ecosystem is going to take a backseat." Now, in a way, I get it, owning the database is critical, and Google doesn't want to capitulate on that front. Look, BigQuery is really good and competitive, but you can't help but roll your eyes when a CEO stands up, and look, I'm not calling out Thomas Kurian, every CEO does this, and talks about how important their customers are, and they'll do whatever is right by the customer, so, look, I'm telling you, I'm rolling my eyes on that. Now let me also comment, AWS has figured this out. They're killing it in database. If you take Redshift for example, it's still growing, as is Aurora, really fast growing services and other data stores, but AWS realizes it can make more money in the long-term partnering with the Snowflakes and Databricks of the world, and other ecosystem vendors versus sub optimizing their relationships with partners and customers in order to sell more of their own homegrown tools. I get it. It's hard not to feature your own product. IBM chose OS/2 over Windows, and tried for years to popularize it. It failed. Lotus, go back way back to Lotus 1, 2, and 3, they refused to run on Windows when it first came out. They were running on DEC VAX. Many of you young people in the United States have never even heard of DEC VAX. IBM wanted to run every everything only in its cloud, the same with Oracle, originally. VMware, as you might recall, tried to build its own cloud, but, eventually, when the market speaks and reveals what seems to be obvious to analysts, years before, the vendors come around, they face reality, and they stop wasting money, fighting a losing battle. "The trend is your friend," as the saying goes. All right, last pull quote on data, "The hardest part is transformations, moving traditional Informatica, Teradata, or Oracle infrastructure to something more modern and real time, and that's why people still run apps in COBOL. In IT, we rarely get rid of stuff, rather we add on another coat of paint until the wood rots out or the roof is going to cave in. All right, the last key finding we want to highlight is going to bring us back to the cloud repatriation myth. Followers of this program know it's a real sore spot with us. We've heard the stories about repatriation, we've read the thoughtful articles from VCs on the subject, we've been whispered to by vendors that you should investigate this trend. It's really happening, but the data simply doesn't support it. Here's the question that was posed to these practitioners. If you had unlimited budget and the economy miraculously flipped, what initiatives would you tackle first? Where would you really lean into? The first answer, "I'd rip out legacy on-prem infrastructure and move to the cloud even faster," so, the thing here is, look, maybe renting infrastructure is more expensive than owning, maybe, but if I can optimize my rental with better utilization, turn off compute, use things like serverless, get on a steeper and higher performance over time, and lower cost Silicon curve with things like Graviton, tap best of breed tools in AI, and other areas that make my business more competitive. Move faster, fail faster, experiment more quickly, and cheaply, what's that worth? Even the most hard-o CFOs understand the business benefits far outweigh the possible added cost per gigabyte, and, again, I stress "possible." Okay, other interesting comments from practitioners. "I'd hire 50 more data engineers and accelerate our real-time data capabilities to better target customers." Real-time is becoming a thing. AI is being injected into data and apps to make faster decisions, perhaps, with less or even no human involvement. That's on the rise. Next quote, "I'd like to focus on resolving the concerns around cloud data compliance," so, again, despite the risks of data being spread out in different clouds, organizations realize cloud is a given, and they want to find ways to make it work better, not move away from it. The same thing in the next one, "I would automate the data analytics pipeline and focus on a safer way to share data across the states without moving it," and, finally, "The way I'm addressing complexity is to standardize on a single cloud." MonoCloud is actually a thing. We're hearing this more and more. Yes, my company has multiple clouds, but in my group, we've standardized on a single cloud to simplify things, and this is a somewhat dangerous trend, because it's creating even more silos and it's an opportunity that needs to be addressed, and that's why we've been talking so much about supercloud is a cross-cloud, unifying, architectural framework, or, perhaps, it's a platform. In fact, that's a question that we will be exploring later this month at Supercloud2 live from our Palo Alto Studios. Is supercloud an architecture or is it a platform? And in this program, we're featuring technologists, analysts, practitioners to explore the intersection between data and cloud and the future of cloud computing, so, you don't want to miss this opportunity. Go to supercloud.world. You can register for free and participate in the event directly. All right, thanks for listening. That's a wrap. I'd like to thank Alex Myerson, who's on production and manages our podcast, Ken Schiffman as well, Kristen Martin and Cheryl Knight, they helped get the word out on social media, and in our newsletters, and Rob Hof is our editor-in-chief over at siliconangle.com. He does some great editing. Thank you, all. Remember, all these episodes are available as podcasts wherever you listen. All you've got to do is search "breaking analysis podcasts." I publish each week on wikibon.com and siliconangle.com where you can email me directly at david.vellante@siliconangle.com or DM me, @Dante, or comment on our LinkedIn posts. By all means, check out etr.ai. They get the best survey data in the enterprise tech business. We'll be doing our annual predictions post in a few weeks, once the data comes out from the January survey. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, everybody, and we'll see you next time on "Breaking Analysis." (upbeat music)

Published Date : Jan 7 2023

SUMMARY :

This is "Breaking Analysis" and the director of engineering

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

AWSORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

Dave VellantePERSON

0.99+

AmazonORGANIZATION

0.99+

JassyPERSON

0.99+

Cheryl KnightPERSON

0.99+

Eric BradleyPERSON

0.99+

Rob HofPERSON

0.99+

OktaORGANIZATION

0.99+

Kristen MartinPERSON

0.99+

ZscalerORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Thomas KurianPERSON

0.99+

6%QUANTITY

0.99+

IBMORGANIZATION

0.99+

2023DATE

0.99+

18,000QUANTITY

0.99+

Palo Alto NetworksORGANIZATION

0.99+

10,000 employeesQUANTITY

0.99+

CrowdStrikeORGANIZATION

0.99+

JanuaryDATE

0.99+

2022DATE

0.99+

January 17thDATE

0.99+

BostonLOCATION

0.99+

Lotus 1TITLE

0.99+

2019DATE

0.99+

JuneDATE

0.99+

8%QUANTITY

0.99+

United StatesLOCATION

0.99+

david.vellante@siliconangle.comOTHER

0.99+

SnowflakesORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

LotusTITLE

0.99+

two factorsQUANTITY

0.99+

OracleORGANIZATION

0.99+

DataprocORGANIZATION

0.99+

three peopleQUANTITY

0.99+

last weekDATE

0.99+

Supercloud2EVENT

0.99+

TeradataORGANIZATION

0.99+

1%QUANTITY

0.99+

3TITLE

0.99+

WindowsTITLE

0.99+

5%QUANTITY

0.99+

3%QUANTITY

0.99+

BigQueryTITLE

0.99+

Second quoteQUANTITY

0.99+

4%QUANTITY

0.99+

DEC VAXTITLE

0.99+

ThanksgivingEVENT

0.98+

OS/2TITLE

0.98+

7%QUANTITY

0.98+

last yearDATE

0.98+

two primary sourcesQUANTITY

0.98+

each weekQUANTITY

0.98+

InformaticaORGANIZATION

0.98+

pandemicEVENT

0.98+

first oneQUANTITY

0.98+

siliconangle.comOTHER

0.97+

first answerQUANTITY

0.97+

2%QUANTITY

0.97+

around 800,000 employeesQUANTITY

0.97+

50 more data engineersQUANTITY

0.97+

zero trustQUANTITY

0.97+

SnowflakeORGANIZATION

0.96+

single cloudQUANTITY

0.96+

2TITLE

0.96+

todayDATE

0.95+

ETRORGANIZATION

0.95+

single cloudQUANTITY

0.95+

LinkedInORGANIZATION

0.94+

later this monthDATE

0.94+

Breaking Analysis: Cyber Firms Revert to the Mean


 

(upbeat music) >> From theCube Studios in Palo Alto in Boston, bringing you data driven insights from theCube and ETR. This is Breaking Analysis with Dave Vellante. >> While by no means a safe haven, the cybersecurity sector has outpaced the broader tech market by a meaningful margin, that is up until very recently. Cybersecurity remains the number one technology priority for the C-suite, but as we've previously reported the CISO's budget has constraints just like other technology investments. Recent trends show that economic headwinds have elongated sales cycles, pushed deals into future quarters, and just like other tech initiatives, are pacing cybersecurity investments and breaking them into smaller chunks. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis we explain how cybersecurity trends are reverting to the mean and tracking more closely with other technology investments. We'll make a couple of valuation comparisons to show the magnitude of the challenge and which cyber firms are feeling the heat, which aren't. There are some exceptions. We'll then show the latest survey data from ETR to quantify the contraction in spending momentum and close with a glimpse of the landscape of emerging cybersecurity companies, the private companies that could be ripe for acquisition, consolidation, or disruptive to the broader market. First, let's take a look at the recent patterns for cyber stocks relative to the broader tech market as a benchmark, as an indicator. Here's a year to date comparison of the bug ETF, which comprises a basket of cyber security names, and we compare that with the tech heavy NASDAQ composite. Notice that on April 13th of this year the cyber ETF was actually in positive territory while the NAS was down nearly 14%. Now by August 16th, the green turned red for cyber stocks but they still meaningfully outpaced the broader tech market by more than 950 basis points as of December 2nd that Delta had contracted. As you can see, the cyber ETF is now down nearly 25%, year to date, while the NASDAQ is down 27% and change. Now take a look at just how far a few of the high profile cybersecurity names have fallen. Here are six security firms that we've been tracking closely since before the pandemic. We've been, you know, tracking dozens but let's just take a look at this data and the subset. We show for comparison the S&P 500 and the NASDAQ, again, just for reference, they're both up since right before the pandemic. They're up relative to right before the pandemic, and then during the pandemic the S&P shot up more than 40%, relative to its pre pandemic level, around February is what we're using for the pre pandemic level, and the NASDAQ peaked at around 65% higher than that February level. They're now down 85% and 71% of their previous. So they're at 85% and 71% respectively from their pandemic highs. You compare that to these six companies, Splunk, which was and still is working through a transition is well below its pre pandemic market value and 44, it's 44% of its pre pandemic high as of last Friday. Palo Alto Networks is the most interesting here, in that it had been facing challenges prior to the pandemic related to a pivot to the Cloud which we reported on at the time. But as we said at that time we believe the company would sort out its Cloud transition, and its go to market challenges, and sales compensation issues, which it did as you can see. And its valuation jumped from 24 billion prior to Covid to 56 billion, and it's holding 93% of its peak value. Its revenue run rate is now over 6 billion with a healthy growth rate of 24% expected for the next quarter. Similarly, Fortinet has done relatively well holding 71% of its peak Covid value, with a healthy 34% revenue guide for the coming quarter. Now, Okta has been the biggest disappointment, a darling of the pandemic Okta's communication snafu, with what was actually a pretty benign hack combined with difficulty absorbing its 7 billion off zero acquisition, knocked the company off track. Its valuation has dropped by 35 billion since its peak during the pandemic, and that's after a nice beat and bounce back quarter just announced by Okta. Now, in our view Okta remains a viable long-term leader in identity. However, its recent fiscal 24 revenue guide was exceedingly conservative at around 16% growth. So either the company is sandbagging, or has such poor visibility that it wants to be like super cautious or maybe it's actually seeing a dramatic slowdown in its business momentum. After all, this is a company that not long ago was putting up 50% plus revenue growth rates. So it's one that bears close watching. CrowdStrike is another big name that we've been talking about on Breaking Analysis for quite some time. It like Okta has led the industry in a key ETR performance indicator that measures customer spending momentum. Just last week, CrowdStrike announced revenue increased more than 50% but new ARR was soft and the company guided conservatively. Not surprisingly, the stock got absolutely crushed as CrowdStrike blamed tepid demand from smaller and midsize firms. Many analysts believe that competition from Microsoft was one factor along with cautious spending amongst those midsize and smaller customers. Notably, large customers remain active. So we'll see if this is a longer term trend or an anomaly. Zscaler is another company in the space that we've reported having great customer spending momentum from the ETR data. But even though the company beat expectations for its recent quarter, like other companies its Outlook was conservative. So other than Palo Alto, and to a lesser extent Fortinet, these companies and others that we're not showing here are feeling the economic pinch and it shows in the compression of value. CrowdStrike, for example, had a 70 billion valuation at one point during the pandemic Zscaler top 50 billion, Okta 45 billion. Now, having said that Palo Alto Networks, Fortinet, CrowdStrike, and Zscaler are all still trading well above their pre pandemic levels that we tracked back in February of 2020. All right, let's go now back to ETR'S January survey and take a look at how much things have changed since the beginning of the year. Remember, this is obviously pre Ukraine, and pre all the concerns about the economic headwinds but here's an X Y graph that shows a net score, or spending momentum on the y-axis, and market presence on the x-axis. The red dotted line at 40% on the vertical indicates a highly elevated net score. Anything above that we think is, you know, super elevated. Now, we filtered the data here to show only those companies with more than 50 responses in the ETR survey. Still really crowded. Note that there were around 20 companies above that red 40% mark, which is a very, you know, high number. It's a, it's a crowded market, but lots of companies with, you know, positive momentum. Now let's jump ahead to the most recent October survey and take a look at what, what's happening. Same graphic plotting, spending momentum, and market presence, and look at the number of companies above that red line and how it's been squashed. It's really compressing, it's still a crowded market, it's still, you know, plenty of green, but the number of companies above 40% that, that key mark has gone from around 20 firms down to about five or six. And it speaks to that compression and IT spending, and of course the elongated sales cycles pushing deals out, taking them in smaller chunks. I can't tell you how many conversations with customers I had, at last week at Reinvent underscoring this exact same trend. The buyers are getting pressure from their CFOs to slow things down, do more with less and, and, and prioritize projects to those that absolutely are critical to driving revenue or cutting costs. And that's rippling through all sectors, including cyber. Now, let's do a bit more playing around with the ETR data and take a look at those companies with more than a hundred citations in the survey this quarter. So N, greater than or equal to a hundred. Now remember the followers of Breaking Analysis know that each quarter we take a look at those, what we call four star security firms. That is, those are the, that are in, that hit the top 10 for both spending momentum, net score, and the N, the mentions in the survey, the presence, the pervasiveness in the survey, and that's what we show here. The left most chart is sorted by spending momentum or net score, and the right hand chart by shared N, or the number of mentions in the survey, that pervasiveness metric. that solid red line denotes the cutoff point at the top 10. And you'll note we've actually cut it off at 11 to account for Auth 0, which is now part of Okta, and is going through a go to market transition, you know, with the company, they're kind of restructuring sales so they can take advantage of that. So starting on the left with spending momentum, again, net score, Microsoft leads all vendors, typical Microsoft, very prominent, although it hadn't always done so, it, for a while, CrowdStrike and Okta were, were taking the top spot, now it's Microsoft. CrowdStrike, still always near the top, but note that CyberArk and Cloudflare have cracked the top five in Okta, which as I just said was consistently at the top, has dropped well off its previous highs. You'll notice that Palo Alto Network Palo Alto Networks with a 38% net score, just below that magic 40% number, is healthy, especially as you look over to the right hand chart. Take a look at Palo Alto with an N of 395. It is the largest of the independent pure play security firms, and has a very healthy net score, although one caution is that net score has dropped considerably since the beginning of the year, which is the case for most of the top 10 names. The only exception is Fortinet, they're the only ones that saw an increase since January in spending momentum as ETR measures it. Now this brings us to the four star security firms, that is those that hit the top 10 in both net score on the left hand side and market presence on the right hand side. So it's Microsoft, Palo Alto, CrowdStrike, Okta, still there even not accounting for a Auth 0, just Okta on its own. If you put in Auth 0, it's, it's even stronger. Adding then in Fortinet and Zscaler. So Microsoft, Palo Alto, CrowdStrike, Okta, Fortinet, and Zscaler. And as we've mentioned since January, only Fortinet has shown an increase in net score since, since that time, again, since the January survey. Now again, this talks to the compression in spending. Now one of the big themes we hear constantly in cybersecurity is the market is overcrowded. Everybody talks about that, me included. The implication there, is there's a lot of room for consolidation and that consolidation can come in the form of M&A, or it can come in the form of people consolidating onto a single platform, and retiring some other vendors, and getting rid of duplicate vendors. We're hearing that as a big theme as well. Now, as we saw in the previous, previous chart, this is a very crowded market and we've seen lots of consolidation in 2022, in the form of M&A. Literally hundreds of M&A deals, with some of the largest companies going private. SailPoint, KnowBe4, Barracuda, Mandiant, Fedora, these are multi billion dollar acquisitions, or at least billion dollars and up, and many of them multi-billion, for these companies, and hundreds more acquisitions in the cyberspace, now less you think the pond is overfished, here's a chart from ETR of emerging tech companies in the cyber security industry. This data comes from ETR's Emerging Technologies Survey, ETS, which is this diamond in a rough that I found a couple quarters ago, and it's ripe with companies that are candidates for M&A. Many would've liked, many of these companies would've liked to, gotten to the public markets during the pandemic, but they, you know, couldn't get there. They weren't ready. So the graph, you know, similar to the previous one, but different, it shows net sentiment on the vertical axis and that's a measurement of, of, of intent to adopt against a mind share on the X axis, which measures, measures the awareness of the vendor in the community. So this is specifically a survey that ETR goes out and, and, and fields only to track those emerging tech companies that are private companies. Now, some of the standouts in Mindshare, are OneTrust, BeyondTrust, Tanium and Endpoint, Net Scope, which we've talked about in previous Breaking Analysis. 1Password, which has been acquisitive on its own. In identity, the managed security service provider, Arctic Wolf Network, a company we've also covered, we've had their CEO on. We've talked about MSSPs as a real trend, particularly in small and medium sized business, we'll come back to that, Sneek, you know, kind of high flyer in both app security and containers, and you can just see the number of companies in the space this huge and it just keeps growing. Now, just to make it a bit easier on the eyes we filtered the data on these companies with with those, and isolated on those with more than a hundred responses only within the survey. And that's what we show here. Some of the names that we just mentioned are a bit easier to see, but these are the ones that really stand out in ERT, ETS, survey of private companies, OneTrust, BeyondTrust, Taniam, Netscope, which is in Cloud, 1Password, Arctic Wolf, Sneek, BitSight, SecurityScorecard, HackerOne, Code42, and Exabeam, and Sim. All of these hit the ETS survey with more than a hundred responses by, by the IT practitioners. Okay, so these firms, you know, maybe they do some M&A on their own. We've seen that with Sneek, as I said, with 1Password has been inquisitive, as have others. Now these companies with the larger footprint, these private companies, will likely be candidate for both buying companies and eventually going public when the markets settle down a bit. So again, no shortage of players to affect consolidation, both buyers and sellers. Okay, so let's finish with some key questions that we're watching. CrowdStrike in particular on its earnings calls cited softness from smaller buyers. Is that because these smaller buyers have stopped adopting? If so, are they more at risk, or are they tactically moving toward the easy button, aka, Microsoft's good enough approach. What does that mean for the market if smaller company cohorts continue to soften? How about MSSPs? Will companies continue to outsource, or pause on on that, as well as try to free up, to try to free up some budget? Adam Celiski at Reinvent last week said, "If you want to save money the Cloud's the best place to do it." Is the cloud the best place to save money in cyber? Well, it would seem that way from the standpoint of controlling budgets with lots of, lots of optionality. You could dial up and dial down services, you know, or does the Cloud add another layer of complexity that has to be understood and managed by Devs, for example? Now, consolidation should favor the likes of Palo Alto and CrowdStrike, cause they're platform players, and some of the larger players as well, like Cisco, how about IBM and of course Microsoft. Will that happen? And how will economic uncertainty impact the risk equation, a particular concern is increase of tax on vulnerable sectors of the population, like the elderly. How will companies and governments protect them from scams? And finally, how many cybersecurity companies can actually remain independent in the slingshot economy? In so many ways the market is still strong, it's just that expectations got ahead of themselves, and now as earnings forecast come, come, come down and come down to earth, it's going to basically come down to who can execute, generate cash, and keep enough runway to get through the knothole. And the one certainty is nobody really knows how tight that knothole really is. All right, let's call it a wrap. Next week we dive deeper into Palo Alto Networks, and take a look at how and why that company has held up so well and what to expect at Ignite, Palo Alto's big user conference coming up later this month in Las Vegas. We'll be there with theCube. Okay, many thanks to Alex Myerson on production and manages the podcast, Ken Schiffman as well, as our newest edition to our Boston studio. Great to have you Ken. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our EIC over at Silicon Angle. He does some great editing for us. Thank you to all. Remember these episodes are all available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibond.com and siliconangle.com, or you can email me directly David.vellante@siliconangle.com or DM me @DVellante, or comment on our LinkedIn posts. Please do checkout etr.ai, they got the best survey data in the enterprise tech business. This is Dave Vellante for theCube Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis. (upbeat music)

Published Date : Dec 5 2022

SUMMARY :

with Dave Vellante. and of course the elongated

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Dave VellantePERSON

0.99+

December 2ndDATE

0.99+

OktaORGANIZATION

0.99+

DeltaORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

ZscalerORGANIZATION

0.99+

FortinetORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

Adam CeliskiPERSON

0.99+

CrowdStrikeORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

August 16thDATE

0.99+

April 13thDATE

0.99+

Rob HofPERSON

0.99+

NASDAQORGANIZATION

0.99+

IBMORGANIZATION

0.99+

93%QUANTITY

0.99+

Kristin MartinPERSON

0.99+

Palo AltoLOCATION

0.99+

Arctic Wolf NetworkORGANIZATION

0.99+

38%QUANTITY

0.99+

40%QUANTITY

0.99+

71%QUANTITY

0.99+

JanuaryDATE

0.99+

Palo AltoORGANIZATION

0.99+

Palo Alto NetworksORGANIZATION

0.99+

50%QUANTITY

0.99+

February of 2020DATE

0.99+

Las VegasLOCATION

0.99+

7 billionQUANTITY

0.99+

six companiesQUANTITY

0.99+

SplunkORGANIZATION

0.99+

2022DATE

0.99+

BarracudaORGANIZATION

0.99+

34%QUANTITY

0.99+

24%QUANTITY

0.99+

FebruaryDATE

0.99+

last weekDATE

0.99+

last FridayDATE

0.99+

SailPointORGANIZATION

0.99+

FirstQUANTITY

0.99+

more than 50%QUANTITY

0.99+

85%QUANTITY

0.99+

each weekQUANTITY

0.99+

44%QUANTITY

0.99+

35 billionQUANTITY

0.99+

70 billionQUANTITY

0.99+

KenPERSON

0.99+

KnowBe4ORGANIZATION

0.99+

27%QUANTITY

0.99+

56 billionQUANTITY

0.99+

NetscopeORGANIZATION

0.99+

OctoberDATE

0.99+

Next weekDATE

0.99+

one factorQUANTITY

0.99+

bothQUANTITY

0.99+

hundredsQUANTITY

0.99+

44QUANTITY

0.99+

dozensQUANTITY

0.99+

BeyondTrustORGANIZATION

0.99+

David.vellante@siliconangle.comOTHER

0.99+

24 billionQUANTITY

0.99+

Breaking Analysis: Cloudflare’s Supercloud…What Multi Cloud Could Have Been


 

from the cube studios in Palo Alto in Boston bringing you data-driven insights from the cube and ETR this is breaking analysis with Dave vellante over the past decade cloudflare has built a Global Network that has the potential to become the fourth us-based hyperscale class cloud in our view the company is building a durable Revenue model with hooks into many important markets these include the more mature DDOS protection space to other growth sectors such as zero trust a serverless platform for application development and an increasing number of services such as database and object storage and other network services in essence cloudflare could be thought of as a giant distributed supercomputer that can connect multiple clouds and act as a highly efficient scheduling engine at scale its disruptive DNA is increasingly attracting novel startups and established Global firms alike looking for Reliable secure high performance low latency and more cost-effective alternatives to AWS and Legacy infrastructure Solutions hello and welcome to this week's wikibon Cube insights powered by ETR in this breaking analysis we initiate our deeper coverage of cloudflare we'll briefly explain our take on the company and its unique business model we'll then share some peer comparisons with both the financial snapshot and some fresh ETR survey data finally we'll share some examples of how we think cloudflare could be a disruptive force with a super cloud-like offering that in many respects is what multi-cloud should have been cloudflare has been on our peripheral radar Ben Thompson and many others have written about their disruptive business model and recently a breaking analysis follower who will remain anonymous emailed with some excellent insights on cloudflare that prompted us to initiate more detailed coverage let's first take a look at how cloudflare seize the world in terms of its view of a modern stack this is a graphic from cloudflare that shows a simple three-layer Stack comprising Storage and compute the lower level and application layer and the network and their key message is basically that the big four hyperscalers have replaced the on-prem leaders apps have been satisfied and that mess of network that you see and Security in the upper left can now be handled all by cloudflare and the stack can be rented via Opex versus requiring heavy capex investment so okay somewhat of a simplified view is those companies on the the left are you know not standing still and we're going to come back to that but cloudflare has done something quite amazing I mean it's been a while since we've invoked Russ hanneman of Silicon Valley Fame on breaking analysis but remember when he was in a meeting one of his first meetings if not the first with Richard Hendricks it was the whiz kid on the show Silicon Valley and hanneman said something like if you had a blank check and you could build anything in the world what would it be and Richard's answer was basically a new internet and that led to Pied Piper this peer-to-peer Network powered by decentralized devices and and iPhones and this amazing compression algorithm that enabled high-speed data movement and low latency uh up to no low latency access across the network well in a way that's what cloudflare has built its founding premise reimagined how the internet should be built with a consistent set of server infrastructure where each server had lots of cores lots of dram lots of cash fast ssds and plenty of network connectivity and bandwidth and well this picture makes it look like a bunch of dots and points of presence on a map which of course it is there's a software layer that enables cloudflare to efficiently allocate resources across this Global Network the company claims that it's Network utilization is in the 70 percent range and it has used its build out to enter the technology space from the bottoms up offering for example free tiers of services to users with multiple entry points on different services and selling then more services over time to a customer which of course drives up its average contract value and its lifetime value at the same time the company continues to innovate and add new services at a very rapid cloud-like Pace you can think of cloudflare's initial Market entry as like a lightweight Cisco as a service the company's CFO actually he uses that term he calls it that which really must tick off Cisco who of course has a massive portfolio and a dominant Market position now because it owns the network cloudflare is a marginal cost of adding new Services is very small and goes towards zero so it's able to get software like economics at scale despite all this infrastructure that's building out so it doesn't have to constantly face the increasing infrastructure tax snowflake for example doesn't own its own network infrastructure as it grows it relies on AWS or Azure gcp and and while it gives the company obvious advantages it doesn't have to build out its own network it also requires them to constantly pay the tax and negotiate with hyperscalers for better rental rates now as previously mentioned Cloud Fair cloudflare claims that its utilization is very high probably higher than the hyperscalers who can spin up servers that they can charge for underutilized customer capacity cloudflare also has excellent Network traffic data that it can use to its Advantage with its Analytics the company has been rapidly innovating Beyond its original Core Business adding as I said before serverless zero trust offerings it has announced a database it calls its database D1 that's pretty creative and it's announced an object store called R2 that is S3 minus one both from the alphabet and the numeric I.E minus the egress cost saying no egress cost that's their big claim to fame and they've made a lot of marketing noise around about that and of course they've promised in our a D2 database which of course is R2D2 RR they've launched a developer platform cloudflare can be thought of kind of like first of all a modern CDN they've got a simpler security model that's how they compete for example with z-scaler that brings uh they also bring VPN sd-wan and DDOS protection services that are that are part of the network and they're less expensive than AWS that's kind of their sort of go to market and messaging and value proposition and they're positioning themselves as a neutral Network that can connect across multiple clouds now to be clear unlike AWS in particular cloudflare is not well suited to lift and shift your traditional apps like for instance sap Hana you're not going to run that in on cloudflare's platform rather the company started by making websites more secure and faster and it flew under the radar and much in the same way that clay Christensen described the disruption in the steel industry if you've seen that where new entrants picked off the low margin rebar business then moved up the stack we've used that analogy in the semiconductor business with arm and and even China cloudflare is running a similar playbook in the cloud and in the network so in the early part of the last decade as aws's ascendancy was becoming more clear many of us started thinking about how and where firms could compete and add value as AWS is becoming so dominant so for instance take an industry Focus you could do things like data sharing with snowflake eventually you know uh popularized you could build on top of clouds again snowflake is doing that as are others you could build private clouds and of course connect to hybrid clouds but not many had the wherewithal and or the hutzpah to build out a Global Network that could serve as a connecting platform for cloud services cloudflare has traction in the market as it adds new services like zero trust and object store or database its Tam continues to grow here's a quick snapshot of cloudflare's financials relative to Z scalar which is both a competitor and a customer fastly which is a smaller CDN and Akamai a more mature CDN slash Edge platform cloudflare and fastly both reported earnings this past week Cloud Fair Cloud flare surpassed a billion dollar Revenue run rate but they gave tepid guidance and the stock got absolutely crushed today which is Friday but the company's business model is sound it's growing close to 50 annually it has sas-like gross margins in the mid to high 70s and it's it it's got a very strong balance sheet and a 13x revenue run rate multiple in fact it's Financial snapshot is quite close to that of z-scaler which is kind of interesting which zinc sailor of course doesn't own its own network that's a pure play software company fastly is much smaller and growing more slowly than cloudflare hence its lower multiple well Akamai as you can see is a more mature company but it's got a nice business now on its earnings call this week cloudflare announced that its head of sales was stepping down and the company has brought in a new leader to take the firm to five billion dollars in sales I think actually its current sales leader felt like hey you know my work is done here bring on somebody else to take it to the next level the company is promising to be free cash flow positive by the end of the year and is working hard toward its long-term financial model or so working towards sorry it's a long-term financial model with gross margin Targets in the mid 70s it's targeting 20 non-gaap operating margins so so solid you know very solid not like completely off the charts but you know very good and to our knowledge it has not committed to a long-term growth rate but at that sort of operating profit level you would like to see growth be consistently at least in the 20 range so they could at least be a rule of 40 company or perhaps even even five even higher if they're going to continue to command a premium valuation okay let's take a look at the ETR data ETR is very positive on cloudflare and has recently published a report on the company like many companies cloudflare is seeing an across the board slowdown in spending velocity we've reported on this quite extensively using the ETR data to quantify the degree to that Slowdown and on the data set with ETR we see that many customers they're shifting their spend to Flat spend you know plus or minus let's say you know single digits you know two three percent or even zero or in the market we're seeing a shift from paid to free tiers remember cloudflare offers a lot of free services as you're seeing customers maybe turn off the pay for a while and going with the freebie but we're also seeing some larger customers in the data and the fortune 1000 specifically they're actually spending more which was confirmed on cloudflare's earnings call they did say everything across the board was softer but they did also indicate that some of their larger customers are actually growing faster than their smaller customers and their churn is very very low here's a two-dimensional graphic we'd like to share this view a lot it's got Net score or spending momentum on the vertical axis and overlap or pervasiveness in the survey on the horizontal axis and this cut isolates three segments in the etrs taxonomy that cloudflare plays in Cloud security and networking now the table inserted in that upper left there shows the raw data which informs the position of each company in the dots with Net score in the ends listed in that rightmost column the red dotted line indicates a highly elevated Net score and finally we posted the breakdown those colors in the bottom right of cloudflare's Net score the lime green that's new adoptions the forest green is we're spending more six percent or more the gray is flat plus or minus uh five percent and you can see that the majority of customers you can see that's the majority of the customers that gray area the pink is we're spending Less in other words down six percent or worse and the bright red is churn which is minimal one percent very good indicator for for cloudflare what you do to get etr's proprietary Net score and they've done this for many many quarters so we have that time series data you subtract the Reds from the greens and that's Net score cloudflare is at 39 just under that magic red line now note that cloudflare and zscaler are right on top of each other Cisco has a dominant position on the x-axis that cloudflare and others are eyeing AWS is also dominant but note that its Net score is well above the red dotted line it's incredible Palo Alto networks is also very impressive it's got both a strong presence on the horizontal axis and it's got a Net score that's pretty comparable to cloudflare and z-scaler to much smaller companies Akamai is actually well positioned for a reasonably mature company and you can see fastly ATT Juniper and F5 have far less spending momentum on their platforms than does cloudflare but at least they are in positive Net score territory so what's going to be really interesting to see is whether cloudflare can continue to hold this momentum or even accelerate it as we've seen with some other clouds as it scales its Network and keeps adding more and more services cloudflare has a couple of potential strategic vectors that we want to talk about and it'll be going to be interesting to see how that plays out Now One path is to compete more directly as a Cloud Player offering secure access Edge services like firewall as a service and zero Trust Services like data loss prevention email security from its area one acquisition and other zero trust offerings as well as Network Services like routing and network connectivity this is The Sweet Spot of the company load balancing many others and then add in things like Object Store and database Services more Edge services in the future it might be telecom like services such as Network switching for offices so that's one route and cloudflare is clearly on that path more services more cohorts at innovating and and growing the company and bringing in more Revenue increasing acvs and and increasing long-term value and keeping retention high now the other Vector is what we're just going to refer to as super cloud as an enabler of cross-cloud infrastructure this is new value uh relative to the former Vector that we were just talking about now the title of this episode is what multi-cloud should have been meaning cloudflare could be the control plane providing a consistent experience across clouds one that is fast and secure at global scale now to give you Insight on this let's take a look at some of the comments made by Matthew Prince the CEO and co-founder of cloudflare cloudflare put its R2 Object Store into public beta this past May and I believe it's storing around a petabyte of data today I think that's what they said in their call here's what Prince said about that quote we are talking to very large companies about moving more and more of their stored objects to where we can store that with R2 and one of the benefits is not only can we help them save money on the egress fees but it allows them to then use those object stores or objects across any of the different Cloud platforms they're that they're using so by being that neutral third party we can let people adopt a little bit of Amazon a little bit of Microsoft a little bit of Google a little bit of SAS vendors and share that data across all those different places so what's interesting about this in the super cloud context is it suggests that customers could take the best of each Cloud to power their digital businesses I might like AWS for in redshift for my analytic database or I love Google's machine learning Microsoft's collaboration and I'd like a consistent way to connect those resources but of course he's strongly hinting and has made many public statements that aws's egress fees are a blocker to that vision now at a recent investor event Matthew Prince added some color to this concept when he talked about one metric of success being how much R2 capacity was consumed and how much they sold but perhaps a more interesting Benchmark is highlighted by the following statement that he made he said a completely different measure of success for R2 is Andy jassy says I'm sick and tired of these guys meaning cloudflare taking our objects away we're dropping our egress fees to zero I would be so excited because we've then unlocked the ability to be the network that interconnects the cloud together now of course it would be Adam solipski who would be saying that or maybe Andy Jesse you know still watching over AWS and I think it's highly unlikely that that's going to happen anytime soon and that of course but but in theory gets us closer to the super cloud value proposition and to further drive that point home and we're paraphrasing a little bit his comments here he said something the effect of quote customers need one consistent control plane across clouds and we are the neutral Network that can be consistent no matter which Cloud you're using interesting right that Prince sees the world that's similar to if not nearly identical to the concepts that the cube Community has been putting forth around supercloud now this vision is a ways off let's be real Prince even suggested that his initial vision of an application running across multiple clouds you know that's like super cloud Nirvana isn't what customers are doing today that's that's really hard to do and perhaps you know it's never going to happen but there's a little doubt that cloudflare could be and is positioning itself as that cross-cloud control plane it has the network economics and the business model levers to pull it's got an edge up on the competition at the edge pun intended cloudflare is the definition of Edge and it's distributed platform it's decentralized platform is much better suited for Edge workloads than these giant data centers that are you know set up to to try and handle that today the the hyperscalers are building out you know their Edge networks things like outposts you know going out to the edge and other local zones Etc now cloudflare is increasingly competitive to the hyperscalers and those traditional Stacks that it depositioned on an earlier slide that we showed but you know the likes of AWS and Dell and hpe and Cisco and those others they're not sitting in their hands they have a huge huge customer install bases and they are definitely a moving Target they're investing and they're building out their own Super clouds with really robust stacks as well let's face it it's going to take a decade or more for Enterprises to adopt a developer platform or a new database Cloud plus cloudflare's capabilities when compared to incumbent stacks and the hyperscalers is much less robust in these areas and even in storage you know despite all the great conversation that R2 generated and the buzz you take a specialist like Wasabi they're more mature they're more functional and they're way cheaper even than cloudflare so you know it's not a fake a complete that cloudflare is going to win in those markets but we love the disruption and if cloudflare wants to be the fourth us-based hyperscaler or join the the big four as the as the fifth if we put Alibaba in the mix it's got a lot of work to do in the ecosystem by its own admission as much to learn and is part of the value by the way that it sees in its area one acquisition it's email security company that it bought but even in that case much of the emphasis has been on reseller channels compare that to the AWS ecosystem which is not only a channel play but is as much an innovation flywheel filling gaps where companies like snowflake Thrive side by side with aws's data stores as well all the on-prem stacks are building hybrid connections to AWS and other clouds as a means of providing consistent experiences across clouds indeed many of them see what they call cross-cloud services or what we call super cloud hyper cloud or whatever you know Mega Cloud you want to call it we use super cloud they are really eyeing that opportunity so very few companies frankly are not going after that space but we're going to close with this cloudflare is one of those companies that's in a position to wake up each morning and ask who can we disrupt today and very few companies are in a position to disrupt the hyperscalers to the degree that cloudflare is and that my friends is going to be fascinating to watch unfold all right let's call it a wrap I want to thank Alex Meyerson who's on production and manages the podcast as well as Ken schiffman who's our newest addition to the Boston Studio Kristen Martin and Cheryl Knight help us get the word out on social media and in our newsletters and Rob Hof is our editor-in-chief over at silicon angle thank you to all remember all these episodes are available as podcasts wherever you listen all you're going to do is search breaking analysis podcasts I publish each week on wikibon.com and siliconangle.com you can email me at david.velante at siliconangle.com or DM me at divalante if you comment on my LinkedIn posts and please do check out etr.ai they got the best survey data in the Enterprise Tech business this is Dave vellante for the cube insights powered by ETR thank you very much for watching and we'll see you next time on breaking analysis

Published Date : Nov 5 2022

SUMMARY :

that the majority of customers you can

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MeyersonPERSON

0.99+

RichardPERSON

0.99+

Matthew PrincePERSON

0.99+

Ken schiffmanPERSON

0.99+

Matthew PrincePERSON

0.99+

Adam solipskiPERSON

0.99+

70 percentQUANTITY

0.99+

Rob HofPERSON

0.99+

Cheryl KnightPERSON

0.99+

PrincePERSON

0.99+

Dave vellantePERSON

0.99+

Andy JessePERSON

0.99+

Palo AltoLOCATION

0.99+

six percentQUANTITY

0.99+

CiscoORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

13xQUANTITY

0.99+

AmazonORGANIZATION

0.99+

five billionQUANTITY

0.99+

AWSORGANIZATION

0.99+

hannemanPERSON

0.99+

FridayDATE

0.99+

Ben ThompsonPERSON

0.99+

Richard HendricksPERSON

0.99+

zeroQUANTITY

0.99+

DellORGANIZATION

0.99+

siliconangle.comOTHER

0.99+

Andy jassyPERSON

0.99+

39QUANTITY

0.99+

iPhonesCOMMERCIAL_ITEM

0.99+

AlibabaORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

five percentQUANTITY

0.99+

Boston StudioORGANIZATION

0.99+

AkamaiORGANIZATION

0.99+

clay ChristensenPERSON

0.99+

one percentQUANTITY

0.99+

awsORGANIZATION

0.99+

R2TITLE

0.99+

40 companyQUANTITY

0.98+

fiveQUANTITY

0.98+

fifthQUANTITY

0.98+

sapTITLE

0.98+

BostonLOCATION

0.98+

firstQUANTITY

0.98+

Russ hannemanPERSON

0.98+

cloudflareTITLE

0.98+

each companyQUANTITY

0.98+

each weekQUANTITY

0.97+

mid 70sDATE

0.97+

ETRORGANIZATION

0.97+

each serverQUANTITY

0.97+

this weekDATE

0.97+

EdgeTITLE

0.97+

zero trustQUANTITY

0.96+

todayDATE

0.96+

fourthQUANTITY

0.96+

two three percentQUANTITY

0.96+

each morningQUANTITY

0.95+

S3TITLE

0.95+

one metricQUANTITY

0.95+

bothQUANTITY

0.95+

billion dollarQUANTITY

0.95+

hpeORGANIZATION

0.94+

one acquisitionQUANTITY

0.94+

Breaking Analysis: CEO Nuggets from Microsoft Ignite & Google Cloud Next


 

>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> This past week we saw two of the Big 3 cloud providers present the latest update on their respective cloud visions, their business progress, their announcements and innovations. The content at these events had many overlapping themes, including modern cloud infrastructure at global scale, applying advanced machine intelligence, AKA AI, end-to-end data platforms, collaboration software. They talked a lot about the future of work automation. And they gave us a little taste, each company of the Metaverse Web 3.0 and much more. Despite these striking similarities, the differences between these two cloud platforms and that of AWS remains significant. With Microsoft leveraging its massive application software footprint to dominate virtually all markets and Google doing everything in its power to keep up with the frenetic pace of today's cloud innovation, which was set into motion a decade and a half ago by AWS. Hello and welcome to this week's Wikibon CUBE Insights, powered by ETR. In this Breaking Analysis, we unpack the immense amount of content presented by the CEOs of Microsoft and Google Cloud at Microsoft Ignite and Google Cloud Next. We'll also quantify with ETR survey data the relative position of these two cloud giants in four key sectors: cloud IaaS, BI analytics, data platforms and collaboration software. Now one thing was clear this past week, hybrid events are the thing. Google Cloud Next took place live over a 24-hour period in six cities around the world, with the main gathering in New York City. Microsoft Ignite, which normally is attended by 30,000 people, had a smaller event in Seattle, in person with a virtual audience around the world. AWS re:Invent, of course, is much different. Yes, there's a virtual component at re:Invent, but it's all about a big live audience gathering the week after Thanksgiving, in the first week of December in Las Vegas. Regardless, Satya Nadella keynote address was prerecorded. It was highly produced and substantive. It was visionary, energetic with a strong message that Azure was a platform to allow customers to build their digital businesses. Doing more with less, which was a key theme of his. Nadella covered a lot of ground, starting with infrastructure from the compute, highlighting a collaboration with Arm-based, Ampere processors. New block storage, 60 regions, 175,000 miles of fiber cables around the world. He presented a meaningful multi-cloud message with Azure Arc to support on-prem and edge workloads, as well as of course the public cloud. And talked about confidential computing at the infrastructure level, a theme we hear from all cloud vendors. He then went deeper into the end-to-end data platform that Microsoft is building from the core data stores to analytics, to governance and the myriad tooling Microsoft offers. AI was next with a big focus on automation, AI, training models. He showed demos of machines coding and fixing code and machines automatically creating designs for creative workers and how Power Automate, Microsoft's RPA tooling, would combine with Microsoft Syntex to understand documents and provide standard ways for organizations to communicate with those documents. There was of course a big focus on Azure as developer cloud platform with GitHub Copilot as a linchpin using AI to assist coders in low-code and no-code innovations that are coming down the pipe. And another giant theme was a workforce transformation and how Microsoft is using its heritage and collaboration and productivity software to move beyond what Nadella called productivity paranoia, i.e., are remote workers doing their jobs? In a world where collaboration is built into intelligent workflows, and he even showed a glimpse of the future with AI-powered avatars and partnerships with Meta and Cisco with Teams of all firms. And finally, security with a bevy of tools from identity, endpoint, governance, et cetera, stressing a suite of tools from a single provider, i.e., Microsoft. So a couple points here. One, Microsoft is following in the footsteps of AWS with silicon advancements and didn't really emphasize that trend much except for the Ampere announcement. But it's building out cloud infrastructure at a massive scale, there is no debate about that. Its plan on data is to try and provide a somewhat more abstracted and simplified solutions, which differs a little bit from AWS's approach of the right database tool, for example, for the right job. Microsoft's automation play appears to provide simple individual productivity tools, kind of a ground up approach and make it really easy for users to drive these bottoms up initiatives. We heard from UiPath that forward five last month, a little bit of a different approach of horizontal automation, end-to-end across platforms. So quite a different play there. Microsoft's angle on workforce transformation is visionary and will continue to solidify in our view its dominant position with Teams and Microsoft 365, and it will drive cloud infrastructure consumption by default. On security as well as a cloud player, it has to have world-class security, and Azure does. There's not a lot of debate about that, but the knock on Microsoft is Patch Tuesday becomes Hack Wednesday because Microsoft releases so many patches, it's got so much Swiss cheese in its legacy estate and patching frequently, it becomes a roadmap and a trigger for hackers. Hey, patch Tuesday, these are all the exploits that you can go after so you can act before the patches are implemented. And so it's really become a problem for users. As well Microsoft is competing with many of the best-of-breed platforms like CrowdStrike and Okta, which have market momentum and appear to be more attractive horizontal plays for customers outside of just the Microsoft cloud. But again, it's Microsoft. They make it easy and very inexpensive to adopt. Now, despite the outstanding presentation by Satya Nadella, there are a couple of statements that should raise eyebrows. Here are two of them. First, as he said, Azure is the only cloud that supports all organizations and all workloads from enterprises to startups, to highly regulated industries. I had a conversation with Sarbjeet Johal about this, to make sure I wasn't just missing something and we were both surprised, somewhat, by this claim. I mean most certainly AWS supports more certifications for example, and we would think it has a reasonable case to dispute that claim. And the other statement, Nadella made, Azure is the only cloud provider enabling highly regulated industries to bring their most sensitive applications to the cloud. Now, reasonable people can debate whether AWS is there yet, but very clearly Oracle and IBM would have something to say about that statement. Now maybe it's not just, would say, "Oh, they're not real clouds, you know, they're just going to hosting in the cloud if you will." But still, when it comes to mission-critical applications, you would think Oracle is really the the leader there. Oh, and Satya also mentioned the claim that the Edge browser, the Microsoft Edge browser, no questions asked, he said, is the best browser for business. And we could see some people having some questions about that. Like isn't Edge based on Chrome? Anyway, so we just had to question these statements and challenge Microsoft to defend them because to us it's a little bit of BS and makes one wonder what else in such as awesome keynote and it was awesome, it was hyperbole. Okay, moving on to Google Cloud Next. The keynote started with Sundar Pichai doing a virtual session, he was remote, stressing the importance of Google Cloud. He mentioned that Google Cloud from its Q2 earnings was on a $25-billion annual run rate. What he didn't mention is that it's also on a 3.6 billion annual operating loss run rate based on its first half performance. Just saying. And we'll dig into that issue a little bit more later in this episode. He also stressed that the investments that Google has made to support its core business and search, like its global network of 22 subsea cables to support things like, YouTube video, great performance obviously that we all rely on, those innovations there. Innovations in BigQuery to support its search business and its threat analysis that it's always had and its AI, it's always been an AI-first company, he's stressed, that they're all leveraged by the Google Cloud Platform, GCP. This is all true by the way. Google has absolutely awesome tech and the talk, as well as his talk, Pichai, but also Kurian's was forward thinking and laid out a vision of the future. But it didn't address in our view, and I talked to Sarbjeet Johal about this as well, today's challenges to the degree that Microsoft did and we expect AWS will at re:Invent this year, it was more out there, more forward thinking, what's possible in the future, somewhat less about today's problem, so I think it's resonates less with today's enterprise players. Thomas Kurian then took over from Sundar Pichai and did a really good job of highlighting customers, and I think he has to, right? He has to say, "Look, we are in this game. We have customers, 9 out of the top 10 media firms use Google Cloud. 8 out of the top 10 manufacturers. 9 out of the top 10 retailers. Same for telecom, same for healthcare. 8 out of the top 10 retail banks." He and Sundar specifically referenced a number of companies, customers, including Avery Dennison, Groupe Renault, H&M, John Hopkins, Prudential, Minna Bank out of Japan, ANZ bank and many, many others during the session. So you know, they had some proof points and you got to give 'em props for that. Now like Microsoft, Google talked about infrastructure, they referenced training processors and regions and compute optionality and storage and how new workloads were emerging, particularly data-driven workloads in AI that required new infrastructure. He explicitly highlighted partnerships within Nvidia and Intel. I didn't see anything on Arm, which somewhat surprised me 'cause I believe Google's working on that or at least has come following in AWS's suit if you will, but maybe that's why they're not mentioning it or maybe I got to do more research there, but let's park that for a minute. But again, as we've extensively discussed in Breaking Analysis in our view when it comes to compute, AWS via its Annapurna acquisition is well ahead of the pack in this area. Arm is making its way into the enterprise, but all three companies are heavily investing in infrastructure, which is great news for customers and the ecosystem. We'll come back to that. Data and AI go hand in hand, and there was no shortage of data talk. Google didn't mention Snowflake or Databricks specifically, but it did mention, by the way, it mentioned Mongo a couple of times, but it did mention Google's, quote, Open Data cloud. Now maybe Google has used that term before, but Snowflake has been marketing the data cloud concept for a couple of years now. So that struck as a shot across the bow to one of its partners and obviously competitor, Snowflake. At BigQuery is a main centerpiece of Google's data strategy. Kurian talked about how they can take any data from any source in any format from any cloud provider with BigQuery Omni and aggregate and understand it. And with the support of Apache Iceberg and Delta and Hudi coming in the future and its open Data Cloud Alliance, they talked a lot about that. So without specifically mentioning Snowflake or Databricks, Kurian co-opted a lot of messaging from these two players, such as life and tech. Kurian also talked about Google Workspace and how it's now at 8 million users up from 6 million just two years ago. There's a lot of discussion on developer optionality and several details on tools supported and the open mantra of Google. And finally on security, Google brought out Kevin Mandian, he's a CUBE alum, extremely impressive individual who's CEO of Mandiant, a leading security service provider and consultancy that Google recently acquired for around 5.3 billion. They talked about moving from a shared responsibility model to a shared fate model, which is again, it's kind of a shot across AWS's bow, kind of shared responsibility model. It's unclear that Google will pay the same penalty if a customer doesn't live up to its portion of the shared responsibility, but we can probably assume that the customer is still going to bear the brunt of the pain, nonetheless. Mandiant is really interesting because it's a services play and Google has stated that it is not a services company, it's going to give partners in the channel plenty of room to play. So we'll see what it does with Mandiant. But Mandiant is a very strong enterprise capability and in the single most important area security. So interesting acquisition by Google. Now as well, unlike Microsoft, Google is not competing with security leaders like Okta and CrowdStrike. Rather, it's partnering aggressively with those firms and prominently putting them forth. All right. Let's get into the ETR survey data and see how Microsoft and Google are positioned in four key markets that we've mentioned before, IaaS, BI analytics, database data platforms and collaboration software. First, let's look at the IaaS cloud. ETR is just about to release its October survey, so I cannot share the that data yet. I can only show July data, but we're going to give you some directional hints throughout this conversation. This chart shows net score or spending momentum on the vertical axis and overlap or presence in the data, i.e., how pervasive the platform is. That's on the horizontal axis. And we've inserted the Wikibon estimates of IaaS revenue for the companies, the Big 3. Actually the Big 4, we included Alibaba. So a couple of points in this somewhat busy data chart. First, Microsoft and AWS as always are dominant on both axes. The red dotted line there at 40% on the vertical axis. That represents a highly elevated spending velocity and all of the Big 3 are above the line. Now at the same time, GCP is well behind the two leaders on the horizontal axis and you can see that in the table insert as well in our revenue estimates. Now why is Azure bigger in the ETR survey when AWS is larger according to the Wikibon revenue estimates? And the answer is because Microsoft with products like 365 and Teams will often be considered by respondents in the survey as cloud by customers, so they fit into that ETR category. But in the insert data we're stripping out applications and SaaS from Microsoft and Google and we're only isolating on IaaS. The other point is when you take a look at the early October returns, you see downward pressure as signified by those dotted arrows on every name. The only exception was Dell, or Dell and IBM, which showing slightly improved momentum. So the survey data generally confirms what we know that AWS and Azure have a massive lead and strong momentum in the marketplace. But the real story is below the line. Unlike Google Cloud, which is on pace to lose well over 3 billion on an operating basis this year, AWS's operating profit is around $20 billion annually. Microsoft's Intelligent Cloud generated more than $30 billion in operating income last fiscal year. Let that sink in for a moment. Now again, that's not to say Google doesn't have traction, it does and Kurian gave some nice proof points and customer examples in his keynote presentation, but the data underscores the lead that Microsoft and AWS have on Google in cloud. And here's a breakdown of ETR's proprietary net score methodology, that vertical axis that we showed you in the previous chart. It asks customers, are you adopting the platform new? That's that lime green. Are you spending 6% or more? That's the forest green. Is you're spending flat? That's the gray. Is you're spending down 6% or worse? That's the pinkest color. Or are you replacing the platform, defecting? That's the bright red. You subtract the reds from the greens and you get a net score. Now one caveat here, which actually is really favorable from Microsoft, the Microsoft data that we're showing here is across the entire Microsoft portfolio. The other point is, this is July data, we'll have an update for you once ETR releases its October results. But we're talking about meaningful samples here, the ends. 620 for AWS over a thousand from Microsoft in more than 450 respondents in the survey for Google. So the real tell is replacements, that bright red. There is virtually no churn for AWS and Microsoft, but Google's churn is 5x, those two in the survey. Now 5% churn is not high, but you'd like to see three things for Google given it's smaller size. One is less churn, two is much, much higher adoption rates in the lime green. Three is a higher percentage of those spending more, the forest green. And four is a lower percentage of those spending less. And none of these conditions really applies here for Google. GCP is still not growing fast enough in our opinion, and doesn't have nearly the traction of the two leaders and that shows up in the survey data. All right, let's look at the next sector, BI analytics. Here we have that same XY dimension. Again, Microsoft dominating the picture. AWS very strong also in both axes. Tableau, very popular and respectable of course acquired by Salesforce on the vertical axis, still looking pretty good there. And again on the horizontal axis, big presence there for Tableau. And Google with Looker and its other platforms is also respectable, but it again, has some work to do. Now notice Streamlit, that's a recent Snowflake acquisition. It's strong in the vertical axis and because of Snowflake's go-to-market (indistinct), it's likely going to move to the right overtime. Grafana is also prominent in the Y axis, but a glimpse at the most recent survey data shows them slightly declining while Looker actually improves a bit. As does Cloudera, which we'll move up slightly. Again, Microsoft just blows you away, doesn't it? All right, now let's get into database and data platform. Same X Y dimensions, but now database and data warehouse. Snowflake as usual takes the top spot on the vertical axis and it is actually keeps moving to the right as well with again, Microsoft and AWS is dominant in the market, as is Oracle on the X axis, albeit it's got less spending velocity, but of course it's the database king. Google is well behind on the X axis but solidly above the 40% line on the vertical axis. Note that virtually all platforms will see pressure in the next survey due to the macro environment. Microsoft might even dip below the 40% line for the first time in a while. Lastly, let's look at the collaboration and productivity software market. This is such an important area for both Microsoft and Google. And just look at Microsoft with 365 and Teams up into the right. I mean just so impressive in ubiquitous. And we've highlighted Google. It's in the pack. It certainly is a nice base with 174 N, which I can tell you that N will rise in the next survey, which is an indication that more people are adopting. But given the investment and the tech behind it and all the AI and Google's resources, you'd really like to see Google in this space above the 40% line, given the importance of this market, of this collaboration area to Google's success and the degree to which they emphasize it in their pitch. And look, this brings up something that we've talked about before on Breaking Analysis. Google doesn't have a tech problem. This is a go-to-market and marketing challenge that Google faces and it's up against two go-to-market champs and Microsoft and AWS. And Google doesn't have the enterprise sales culture. It's trying, it's making progress, but it's like that racehorse that has all the potential in the world, but it's just missing some kind of key ingredient to put it over at the top. It's always coming in third, (chuckles) but we're watching and Google's obviously, making some investments as we shared with earlier. All right. Some final thoughts on what we learned this week and in this research: customers and partners should be thrilled that both Microsoft and Google along with AWS are spending so much money on innovation and building out global platforms. This is a gift to the industry and we should be thankful frankly because it's good for business, it's good for competitiveness and future innovation as a platform that can be built upon. Now we didn't talk much about multi-cloud, we haven't even mentioned supercloud, but both Microsoft and Google have a story that resonates with customers in cross cloud capabilities, unlike AWS at this time. But we never say never when it comes to AWS. They sometimes and oftentimes surprise you. One of the other things that Sarbjeet Johal and John Furrier and I have discussed is that each of the Big 3 is positioning to their respective strengths. AWS is the best IaaS. Microsoft is building out the kind of, quote, we-make-it-easy-for-you cloud, and Google is trying to be the open data cloud with its open-source chops and excellent tech. And that puts added pressure on Snowflake, doesn't it? You know, Thomas Kurian made some comments according to CRN, something to the effect that, we are the only company that can do the data cloud thing across clouds, which again, if I'm being honest is not really accurate. Now I haven't clarified these statements with Google and often things get misquoted, but there's little question that, as AWS has done in the past with Redshift, Google is taking a page out of Snowflake, Databricks as well. A big difference in the Big 3 is that AWS doesn't have this big emphasis on the up-the-stack collaboration software that both Microsoft and Google have, and that for Microsoft and Google will drive captive IaaS consumption. AWS obviously does some of that in database, a lot of that in database, but ISVs that compete with Microsoft and Google should have a greater affinity, one would think, to AWS for competitive reasons. and the same thing could be said in security, we would think because, as I mentioned before, Microsoft competes very directly with CrowdStrike and Okta and others. One of the big thing that Sarbjeet mentioned that I want to call out here, I'd love to have your opinion. AWS specifically, but also Microsoft with Azure have successfully created what Sarbjeet calls brand distance. AWS from the Amazon Retail, and even though AWS all the time talks about Amazon X and Amazon Y is in their product portfolio, but you don't really consider it part of the retail organization 'cause it's not. Azure, same thing, has created its own identity. And it seems that Google still struggles to do that. It's still very highly linked to the sort of core of Google. Now, maybe that's by design, but for enterprise customers, there's still some potential confusion with Google, what's its intentions? How long will they continue to lose money and invest? Are they going to pull the plug like they do on so many other tools? So you know, maybe some rethinking of the marketing there and the positioning. Now we didn't talk much about ecosystem, but it's vital for any cloud player, and Google again has some work to do relative to the leaders. Which brings us to supercloud. The ecosystem and end customers are now in a position this decade to digitally transform. And we're talking here about building out their own clouds, not by putting in and building data centers and installing racks of servers and storage devices, no. Rather to build value on top of the hyperscaler gift that has been presented. And that is a mega trend that we're watching closely in theCUBE community. While there's debate about the supercloud name and so forth, there little question in our minds that the next decade of cloud will not be like the last. All right, we're going to leave it there today. Many thanks to Sarbjeet Johal, and my business partner, John Furrier, for their input to today's episode. Thanks to Alex Myerson who's on production and manages the podcast and Ken Schiffman as well. Kristen Martin and Cheryl Knight helped get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE, who does some wonderful editing. And check out SiliconANGLE, a lot of coverage on Google Cloud Next and Microsoft Ignite. Remember, all these episodes are available as podcast wherever you listen. Just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. And you can always get in touch with me via email, david.vellante@siliconangle.com or you can DM me at dvellante or comment on my LinkedIn posts. And please do check out etr.ai, the best survey data in the enterprise tech business. This is Dave Vellante for the CUBE Insights, powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (gentle music)

Published Date : Oct 15 2022

SUMMARY :

with Dave Vellante. and the degree to which they

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AWSORGANIZATION

0.99+

IBMORGANIZATION

0.99+

NadellaPERSON

0.99+

Alex MyersonPERSON

0.99+

NvidiaORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Kevin MandianPERSON

0.99+

OracleORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

Kristen MartinPERSON

0.99+

Thomas KurianPERSON

0.99+

DellORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

OctoberDATE

0.99+

Satya NadellaPERSON

0.99+

SeattleLOCATION

0.99+

John FurrierPERSON

0.99+

3.6 billionQUANTITY

0.99+

Rob HofPERSON

0.99+

SundarPERSON

0.99+

PrudentialORGANIZATION

0.99+

JulyDATE

0.99+

New York CityLOCATION

0.99+

H&MORGANIZATION

0.99+

KurianPERSON

0.99+

twoQUANTITY

0.99+

6%QUANTITY

0.99+

Minna BankORGANIZATION

0.99+

5xQUANTITY

0.99+

Sarbjeet JohalPERSON

0.99+

Breaking Analysis: Latest CIO Survey Shows Steady Deceleration in IT Spend


 

>> From the Cube Studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> Is the glass half full or half empty? Well, it depends on how you want to look at it. CIOs are tapping the breaks on spending, that's clear. The latest macro survey data from ETR quantifies what we already know to be true, that IT spend is decelerating. CIOs and IT buyers forecast that their tech spend will grow by 5.5% this year. That's a meaningful deceleration from near year end 2021 expectations. But these levels are still well above historical norms. So while the feel good factor may be in some jeopardy, overall things are pretty good, at least for now. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis, we update you in the latest macro tech spending data from Enterprise Technology Research, including strategies that organizations are employing to cut costs, and which project categories continue to see the most traction. Now, CIOs were much more optimistic at the end of last year than they are today. Back then they thought their aggregates spend would increase by more than 8%. Of course, at that time the expectation was that the economy was ready to make a semi ordered return to normal, and that didn't happen as you well know. And you can see here the expectation for spending this year is down to 5.5% growth, as we said, and this is based on the most recent ETR CIO and IT buyer survey, which includes more than 1100 responses. So we started the year above 8% then made a meaningful decline into the mid sixes and nine months into the year, we're now in the mid fives, but this is still two to 300 basis points above historical norms for IT spending. And looking ahead to next year, CIOs are expecting accelerated growth edging back up toward that 6% level. Now as noted here, the visibility on this is probably less clear than pre COVID years of course, but the bottom line is digital transformations are continuing to push it spending above historical levels. Now the problem as we know, is earning estimates are coming down and forecasts are being lowered every day. I mean, as the saying goes the first disappointment is rarely the last. Even the semiconductor industry is seeing softness. Just this past week we saw AMD lower its quarterly revenue forecast by more than a billion dollars, as PC demand in the second half has significantly softened. But again, that's relative to some pretty amazing PC growth in the past couple of years thanks to the isolation economy. So we do see CIOs tapping the brakes, and these data points here tell an interesting story. ETR asked respondents about various actions that they're taking and these two stood out. The top line is, "We're accelerating new IT projects," and the bottom line is, "We're freezing IT projects," and you can see the convergence of those two lines, which of course signals the down. But again, these are not alarming data points. If you think about history. If you go back to Q1 2020, for example, just before the pandemic, that top line that was at 12% versus where it is today at 25%. And if you look at project freezes, they were at 22% in Q1 of 2020, which is significantly higher than today. So relatively speaking the spending dynamic is still strong. It just doesn't feel that way because we're coming out of an historic anomaly. Now, ETR asked a follow up question to respondents that indicated that spending would be down this quarter relative to the same quarter last year. So they wanted to better understand the most common actions that organizations would take to save money, and that's what this chart shows. The most common approach is still to consolidate redundant vendors across the lines of business. That was over 30%, as you can see here in the first set of bars. So presumably CIOs now have the latitude to go after so-called shadow projects, shadow IT, and implement standards across the organization via vendor consolidation. As well, there's a big jump in the survey from 14% to 20% of respondents saying that they were going after the Cloud bill, and that relates to the fourth set of bars which is scrutinizing consumption based services. So combined, 45% of respondents are looking at reducing their on demand spend. Now, some of that may be SaaS related, but most of the SaaS spend is committed, so pre-committed, but we do see organizations doing more audits and trying to eliminate or reduce orphaned licenses. Now the last data point that we want to focus on is the technology sectors that are of the highest priority. You can see here on the set of bars on the left while cybersecurity remains the top technology area, even this sector is showing a little bit of softness. What's really notable is the uptick in data related areas, that second set of bars, this category is now the second most cited, taking over from Cloud, which as you can see, remain strong, and of course Cloud continues to be a key component of digital transformations. As we've previously reported, machine learning, AI, and RPA are somewhat more strategic and more discretionary, and they've dropped below the 40% mark in terms of net score in the overall survey. We're not showing that data here, but we covered this in our last Breaking Analysis ahead of our UI path event. Now you have to remember these are the top seven sectors, and there are dozens in the ETR taxonomy, so making this list is goodness from a spending perspective. So even though there's some softness in most of these categories, these are the ones CIOs are most focused on addressing. So the big takeaways of this data are spending targets are coming down to the mid 5% range, but this is meaningfully higher than historical norms. And while CIOs, they are pumping the brakes on projects, they're still moving forward at rates faster than pre COVID levels and they're freezing fewer projects. Remember, this as well, this could be a skill shortage in play, but the slowdown is more likely related to the economic uncertainty. You know, we're seeing the two-sided coin of pay by the drink consumption models, right? You can dial it up as as you need to but you can also dial it down, and that's one of the alluring features of on demand. And we're seeing firms give more scrutiny to the Cloud bill, why wouldn't they? And there's a bit of unsurprising backlash to the flaws in today's SaaS pricing model that locks you in for specified terms. So people, when their term comes up are really going to scrutinize whether or not they have orphan licenses and try to reduce those. And it appears that the real savings can come from eliminating redundant vendors. That seems to be the biggest, you know, number one strategy, and that could favor some of the larger firms, think Oracle, Dell, Salesforce ServiceNow, IBM, HPE, Cisco, and others, you know, they may benefit from having more of larger footprint across the organization. You know, having that one throat to choke, you know one back to pat, as some like to say, but they could benefit those larger companies in least in the near term. Now having said that, we do see an uptick in data related areas as a priority for CIOs, and that could mean companies like Snowflake are in a strong position and can continue to thrive. You know, even though as we reported a couple of weeks ago, virtually all companies and sectors in the ETR data set are showing some softness related to spending a momentum from previous quarters. ETR will have its... will release its results next week and then we'll dig into the specific vendor action relative to previous quarters. So look, it feels like a meaningful slowdown but the sky is by no means falling. There are these kind of out of our control factors like interest rates, and Ukraine, and oil supply, and wages, et cetera, that are creating this uncertainty and causing firms to be more cautious. But generally we remain optimistic as leading tech companies are pretty well managed and have a lot of runway on the balance sheets, and can adjust costs to reflect the uncertain environment and remain flexible in their business models in doing so. Okay, that's it for today. Thanks to Alex Myerson who's on production and he also manages the podcast for Breaking Analysis. Ken Schiffman is also out of our Boston studio as well. Kristin Martin and Cheryl Knight, they help get the word out on social media and in our newsletters, and Rob Hof is our editor in chief over at Silicon Angle who posts our Breaking Analysis and does some great editing. So thank you to all. Remember all these episodes are available as podcasts. Wherever you listen all you got to do is search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com, and you can email me at david.vellante@siliconangle.com or DM me @dvellante, or feel free to comment on our LinkedIn posts. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave for the theCUBE Insights powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (relaxing music)

Published Date : Oct 7 2022

SUMMARY :

From the Cube Studios in Palo Alto and that relates to the fourth set of bars

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Rob HofPERSON

0.99+

IBMORGANIZATION

0.99+

DellORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

OracleORGANIZATION

0.99+

twoQUANTITY

0.99+

Dave VellantePERSON

0.99+

Ken SchiffmanPERSON

0.99+

HPEORGANIZATION

0.99+

40%QUANTITY

0.99+

Palo AltoLOCATION

0.99+

14%QUANTITY

0.99+

Kristin MartinPERSON

0.99+

45%QUANTITY

0.99+

two linesQUANTITY

0.99+

5.5%QUANTITY

0.99+

6%QUANTITY

0.99+

ETRORGANIZATION

0.99+

second halfQUANTITY

0.99+

next weekDATE

0.99+

25%QUANTITY

0.99+

more than 1100 responsesQUANTITY

0.99+

david.vellante@siliconangle.comOTHER

0.99+

22%QUANTITY

0.99+

BostonLOCATION

0.99+

todayDATE

0.99+

Silicon AngleORGANIZATION

0.99+

more than a billion dollarsQUANTITY

0.99+

fourth setQUANTITY

0.99+

DavePERSON

0.99+

Cube StudiosORGANIZATION

0.99+

more than 8%QUANTITY

0.99+

next yearDATE

0.99+

12%QUANTITY

0.99+

first setQUANTITY

0.99+

nine monthsQUANTITY

0.99+

each weekQUANTITY

0.99+

this yearDATE

0.99+

AMDORGANIZATION

0.99+

20%QUANTITY

0.99+

Q1DATE

0.99+

Salesforce ServiceNowORGANIZATION

0.98+

two-sidedQUANTITY

0.98+

dozensQUANTITY

0.98+

secondQUANTITY

0.98+

pandemicEVENT

0.98+

first disappointmentQUANTITY

0.97+

Q1 2020DATE

0.97+

over 30%QUANTITY

0.96+

Breaking AnalysisTITLE

0.96+

last yearDATE

0.96+

this weekDATE

0.95+

Enterprise Technology ResearchORGANIZATION

0.94+

LinkedInORGANIZATION

0.92+

second setQUANTITY

0.9+

UkraineLOCATION

0.9+

past couple of yearsDATE

0.88+

mid fivesQUANTITY

0.88+

sevenQUANTITY

0.88+

couple of weeks agoDATE

0.85+

above 8%QUANTITY

0.85+

quarterDATE

0.85+

this quarterDATE

0.82+

end of last yearDATE

0.82+

mid 5%QUANTITY

0.81+

300 basis pointsQUANTITY

0.8+

theCUBEORGANIZATION

0.79+

@dvellantePERSON

0.75+

SnowflakeORGANIZATION

0.72+

past weekDATE

0.71+

COVIDOTHER

0.7+

wikibon.comORGANIZATION

0.69+

year end 2021DATE

0.67+

Wikibon CubeORGANIZATION

0.63+

oneQUANTITY

0.58+

siliconangle.comORGANIZATION

0.57+

BreakingTITLE

0.57+

2020DATE

0.54+

halfQUANTITY

0.52+

Breaking Analysis: As the tech tide recedes, all sectors feel the pinch


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Virtually all tech companies have expressed caution in their respective earnings calls, and why not? I know you're sick in talking about the macroeconomic environment, but it's full of uncertainties and there's no upside to providing aggressive guidance when sellers are in control. They punish even the slightest miss. Moreover, the spending data confirms the softening market across the board, so it's becoming expected that CFOs will guide cautiously. But companies facing execution challenges, they can't hide behind the macro, which is why it's important to understand which firms are best positioned to maintain momentum through the headwinds and come out the other side stronger. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this "Breaking Analysis," we'll do three things. First, we're going to share a high-level view of the spending pinch that almost all sectors are experiencing. Second, we're going to highlight some of those companies that continue to show notably strong momentum and relatively high spending velocity on their platforms, albeit less robust than last year. And third, we're going to give you a peak at how one senior technology leader in the financial sector sees the competitive dynamic between AWS, Snowflake, and Databricks. So I landed on the red eye this morning and opened my eyes, and then opened my email to see this. My Barron's Daily had a headline telling me how bad things are and why they could get worse. The S&P Thursday hit a new closing low for the year. The safe haven of bonds are sucking wind. The market hasn't seemed to find a floor. Central banks are raising rates. Inflation is still high, but the job market remains strong. Oh, not to mention that the US debt service is headed toward a trillion dollars per year, and the geopolitical situation is pretty tense, and Europe seems to be really struggling. Yeah, so the Santa Claus rally is really looking pretty precarious, especially if there's a liquidity crunch coming, like guess why they call Barron's Barron's. Last week, we showed you this graphic ahead of the UiPath event. For months, the big four sectors, cloud, containers, AI, and RPA, have shown spending momentum above the rest. Now, this chart shows net score or spending velocity on specific sectors, and these four have consistently trended above the 40% red line for two years now, until this past ETR survey. ML/AI and RPA have decelerated as shown by the squiggly lines, and our premise was that they are more discretionary than the other sectors. The big four is now the big two: cloud and containers. But the reality is almost every sector in the ETR taxonomy is down as shown here. This chart shows the sectors that have decreased in a meaningful way. Almost all sectors are now below the trend line and only cloud and containers, as we showed earlier, are above the magic 40% mark. Container platforms and container orchestration are those gray dots. And no sector has shown a significant increase in spending velocity relative to October 2021 survey. In addition to ML/AI and RPA, information security, yes, security, virtualizations, video conferencing, outsourced IT, syndicated research. Syndicated research, yeah, those Gartner, IDC, Forrester, they stand out as seemingly the most discretionary, although we would argue that security is less discretionary. But what you're seeing is a share shift as we've previously reported toward modern platforms and away from point tools. But the point is there is no sector that is immune from the macroeconomic environment. Although remember, as we reported last week, we're still expecting five to 6% IT spending growth this year relative to 2021, but it's a dynamic environment. So let's now take a look at some of the key players and see how they're performing on a relative basis. This chart shows the net score or spending momentum on the y-axis and the pervasiveness of the vendor within the ETR survey measured as the percentage of respondents citing the vendor in use. As usual, Microsoft and AWS stand out because they are both pervasive on the x-axis and they're highly elevated on the vertical axis. For two companies of this size that demonstrate and maintain net scores above the 40% mark is extremely impressive. Although AWS is now showing much higher on the vertical scale relative to Microsoft, which is a new trend. Normally, we see Microsoft dominating on both dimensions. Salesforce is impressive as well because it's so large, but it's below those two on the vertical axis. Now, Google is meaningfully large, but relative to the other big public clouds, AWS and Azure, we see this as disappointing. John Blackledge of Cowen went on CNBC this past week and said that GCP, by his estimates, are 75% of Google Cloud's reported revenue and is now only five years behind AWS in Azure. Now, our models say, "No way." Google Cloud Platform, by our estimate, is running at about $3 billion per quarter or more like 60% of Google's reported overall cloud revenue. You have to go back to 2016 to find AWS running at that level and 2018 for Azure. So we would estimate that GCP is six years behind AWS and four years behind Azure from a revenue performance standpoint. Now, tech-wise, you can make a stronger case for Google. They have really strong tech. But revenue is, in our view, a really good indicator. Now, we circle here ServiceNow because they have become a generational company and impressively remain above the 40% line. We were at CrowdStrike with theCUBE two weeks ago, and we saw firsthand what we see as another generational company in the making. And you can see the company spending momentum is quite impressive. Now, HashiCorp and Snowflake have now surpassed Kubernetes to claim the top net score spots. Now, we know Kubernetes isn't a company, but ETR tracks it as though it were just for context. And we've highlighted Databricks as well, showing momentum, but it doesn't have the market presence of Snowflake. And there are a number of other players in the green: Pure Storage, Workday, Elastic, JFrog, Datadog, Palo Alto, Zscaler, CyberArk, Fortinet. Those last ones are in security, but again, they're all off their recent highs of 2021 and early 2022. Now, speaking of AWS, Snowflake, and Databricks, our colleague Eric Bradley of ETR recently held an in-depth interview with a senior executive at a large financial institution to dig into the analytics space. And there were some interesting takeaways that we'd like to share. The first is a discussion about whether or not AWS can usurp Snowflake as the top dog in analytics. I'll let you read this at your at your leisure, but I'll pull out some call-outs as indicated by the red lines. This individual's take was quite interesting. Note the comment that quote, this is my area of expertise. This person cited AWS's numerous databases as problematic, but Redshift was cited as the closest competitors to Snowflake. This individual also called out Snowflake's current cross-cloud Advantage, what we sometimes call supercloud, as well as the value add in their marketplace as a differentiator. But the point is this person was actually making, the point that this person was actually making is that cloud vendors make a lot of money from Snowflake. AWS, for example, see Snowflake as much more of a partner than a competitor. And as we've reported, Snowflake drives a lot of EC2 and storage revenue for AWS. Now, as well, this doesn't mean AWS does not have a strong marketplace. It does. Probably the best in the business, but the point is Snowflake's marketplace is exclusively focused on a data marketplace and the company's challenge or opportunity is to build up that ecosystem and to continue to add partners and create network effects that allow them to create long-term sustainable moat for the company, while at the same time, staying ahead of the competition with innovation. Now, the other comment that caught our attention was Snowflake's differentiators. This individual cited three areas. One, the well-known separation of compute and storage, which, of course, AWS has replicated sort of, maybe not as elegant in the sense that you can reduce the compute load with Redshift, but unlike Snowflake, you can't shut it down. Two, with Snowflake's data sharing capability, which is becoming quite well-known and a key part of its value proposition. And three, its marketplace. And again, key opportunity for Snowflake to build out its ecosystem. Close feature gaps that it's not necessarily going to deliver on its own. And really importantly, create governed and secure data sharing experiences for anyone on the data cloud or across clouds. Now, the last thing this individual addressed in the ETR interview that we'll share is how Databricks and Snowflake are attacking a similar problem, i.e. simplifying data, data sharing, and getting more value from data. The key messages here are there's overlap with these two platforms, but Databricks appeals to a more techy crowd. You open a notebook, when you're working with Databricks, you're more likely to be a data scientist, whereas with Snowflake, you're more likely to be aligned with the lines of business within sometimes an industry emphasis. We've talked about this quite often on "Breaking Analysis." Snowflake is moving into the data science arena from its data warehouse strength, and Databricks is moving into analytics and the world of SQL from its AI/ML position of strength, and both companies are doing well, although Snowflake was able to get to the public markets at IPO, Databricks has not. Now, even though Snowflake is on the quarterly shock clock as we saw earlier, it has a larger presence in the market. That's at least partly due to the tailwind of an IPO, and, of course, a stronger go-to market posture. Okay, so we wanted to share some of that with you, and I realize it's a bit of a tangent, but it's good stuff from a qualitative practitioner perspective. All right, let's close with some final thoughts. Look forward a little bit. Things in the short-term are really hard to predict. We've seen these oversold rallies peter out for the last couple of months because the world is such a mess right now, and it's really difficult to reconcile these counterveiling trends. Nothing seems to be working from a public policy perspective. Now, we know tech spending is softening, but let's not forget it, five to 6% growth. It's at or above historical norms, but there's no question the trend line is down. That said, there are certain growth companies, several mentioned in this episode, that are modern and vying to be generational platforms. They're well-positioned, financially sound, disciplined, with strong cash positions, with inherent profitability. What I mean by that is they can dial down growth if they wanted to, dial up EBIT, but being a growth company today is not what it was a year ago. Because of rising rates, the discounted cash flows are just less attractive. So earnings estimates, along with revenue multiples on these growth companies, are reverting toward the mean. However, companies like Snowflake, and CrowdStrike, and some others are able to still command a relative premium because of their execution and continued momentum. Others, as we reported last week, like UiPath for example, despite really strong momentum and customer spending, have had execution challenges. Okta is another example of a company with strong spending momentum, but is absorbing off zero for example. And as a result, they're getting hit harder from evaluation standpoint. The bottom line is sellers are still firmly in control, the bulls have been humbled, and the traders aren't buying growth tech or much tech at all right now. But long-term investors are looking for entry points because these generational companies are going to be worth significantly more five to 10 years down the line. Okay, that's it for today. Thanks for watching this "Breaking Analysis" episode. Thanks to Alex Myerson and Ken Schiffman on production. And Alex manages our podcast as well. Kristen Martin and Cheryl Knight. They help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at SiliconANGLE do some wonderful editing for us, so thank you. Thank you all. Remember that all these episodes are available as podcast wherever you listen. All you do is search "Breaking Analysis" podcast. I publish each week on wikibon.com and siliconangle.com and you can email me at david.vellante@siliconangle.com, or DM me @dvellante, or comment on my LinkedIn post. And please check out etr.ai for the very best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis." (gentle music)

Published Date : Oct 2 2022

SUMMARY :

This is "Breaking Analysis" and come out the other side stronger.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AWSORGANIZATION

0.99+

Eric BradleyPERSON

0.99+

Cheryl KnightPERSON

0.99+

Dave VellantePERSON

0.99+

Alex MyersonPERSON

0.99+

Kristen MartinPERSON

0.99+

Ken SchiffmanPERSON

0.99+

October 2021DATE

0.99+

John BlackledgePERSON

0.99+

fiveQUANTITY

0.99+

Rob HofPERSON

0.99+

two companiesQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

Last weekDATE

0.99+

GartnerORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

ForresterORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

2021DATE

0.99+

IDCORGANIZATION

0.99+

75%QUANTITY

0.99+

last weekDATE

0.99+

GoogleORGANIZATION

0.99+

FortinetORGANIZATION

0.99+

2018DATE

0.99+

2016DATE

0.99+

DatadogORGANIZATION

0.99+

AlexPERSON

0.99+

two yearsQUANTITY

0.99+

Palo AltoORGANIZATION

0.99+

OktaORGANIZATION

0.99+

four yearsQUANTITY

0.99+

last weekDATE

0.99+

UiPathORGANIZATION

0.99+

david.vellante@siliconangle.comOTHER

0.99+

40%QUANTITY

0.99+

last yearDATE

0.99+

CyberArkORGANIZATION

0.99+

60%QUANTITY

0.99+

six yearsQUANTITY

0.99+

both companiesQUANTITY

0.99+

FirstQUANTITY

0.99+

ZscalerORGANIZATION

0.99+

threeQUANTITY

0.99+

SecondQUANTITY

0.99+

ETRORGANIZATION

0.99+

CrowdStrikeORGANIZATION

0.99+

firstQUANTITY

0.99+

thirdQUANTITY

0.99+

JFrogORGANIZATION

0.99+

SiliconANGLEORGANIZATION

0.99+

three areasQUANTITY

0.99+

a year agoDATE

0.99+

SnowflakeTITLE

0.99+

each weekQUANTITY

0.99+

S&PORGANIZATION

0.99+

five yearsQUANTITY

0.99+

Pure StorageORGANIZATION

0.99+

twoQUANTITY

0.98+

ElasticORGANIZATION

0.98+

WorkdayORGANIZATION

0.98+

two weeks agoDATE

0.98+

Breaking Analysis: UiPath is a Rocket Ship Resetting its Course


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Like a marathon runner pumped up on adrenaline, UiPath sprinted to the lead in what is surely going to be a long journey toward enabling the modern automated enterprise. Now, in doing so the company has established itself as a leader in enterprise automation while at the same time, it got out over its skis on critical execution items and it disappointed investors along the way. In our view, the company has plenty of upside potential, but will have to slog through its current challenges, including restructuring its go-to market, prioritizing investments, balancing growth with profitability and dealing with a very difficult macro environment. Hello and welcome to this week's Wikibon Cube insights powered by ETR. In this Breaking Analysis and ahead of Forward 5, UiPath's big customer event, we once again dig into RPA and automation leader, UiPath, to share our most current data and view of the company's prospects relative to the competition and the market overall. Now, since the pandemic, four sectors have consistently outperformed in the overall spending landscape in the ETR dataset, cloud, containers, machine learning/AI, and robotic process automation. For the first time in a long time ML and AI and RPA have dropped below the elevated 40% line shown in this ETR graph with the red dotted line. The data here plots the net score or spending momentum for each sector with we put in video conferencing, we added it in simply to provide height to the vertical access. Now, you see those squiggly lines, they show the pattern for ML/AI and RPA, and they demonstrate the downward trajectory over time with only the most current period dropping below the 40% net score mark. While this is not surprising, it underscores one component of the macro headwinds facing all companies generally and UiPath specifically, that is the discretionary nature of certain technology investments. This has been a topic of conversation on theCUBE since the spring spanning data players like Mongo and Snowflake, the cloud, security, and other sectors. The point is ML/AI and RPA appear to be more discretionary than certain sectors, including cloud. Containers most likely benefit from the fact that much of the activity is spending on internal resources, staff like developers as much of the action in containers is free and open source. Now, security is not shown on this graphic, but as we've reported extensively in the last week at CrowdStrike's Falcon conference, security is somewhat less discretionary than other sectors. Now, as it relates to the big four that we've been highlighting since the pandemic hit, we're starting to see priorities shift from strategic investments like AI and automation to more tactical areas to keep the lights on. UiPath has not been immune to this downward pressure, but the company is still able to show some impressive metrics. Here's a snapshot chart from its investor deck. For the first time UiPath's ARR has surpassed $1 billion. The company now has more than 10,000 customers with a large number generating more than $100,000 in ARR. While not shown in this data, UiPath reported this month in its second quarter close that it had $191 million plus ARR customers, which is up 13% sequentially from its Q1. As well, the company's NRR is over 130%, which is very solid and underscores the low churn that we've previously reported for the company. But with that increased ARR comes slower growth. Here's some data we compiled that shows the dramatic growth in ARR, the blue bars, compared with the rapid deceleration and growth. That's the orange line on the right hand access there. For the first time UiPath's ARR growth dipped below 50% last quarter. Now, we've projected 34% and 25% respectively for the company's Q3 in Q4, which is slightly higher than the upper range of UiPath's CFO, Ashim Gupta's guidance from the last earnings call. That still puts UiPath exiting its fiscal year at a 25% ARR growth rate. While it's not unexpected that a company reaching $1 billion in ARR, that milestone, will begin to show lower, slower growth, net new ARR is well off its fiscal year '22 levels. The other perhaps more concerning factor is the company, despite strong 80% gross margins, remains unprofitable and free cash flow negative. New CEO, Rob Enslin, has emphasized the focus on profitability, and we'd like to see a consistent and more disciplined Rule of 40 or Rule of 45 to 50 type of performance going forward. As a result of this decelerating growth and lowered guidance stemming from significant macro challenges including currency fluctuations and weaker demand, especially in Europe and EP and inconsistent performance, the stock, as shown here, has been on a steady decline. What all growth stocks are facing, you know, challenges relative to inflation, rising interest rates, and looming recession, but as seen here, UiPath has significantly underperformed relative to the tech-heavy NASDAQ. UiPath has admitted to execution challenges, and it has brought in an expanded management team to facilitate its sales transition and desire to become a more strategic platform play versus a tactical point product. Now, adding to this challenge of foreign exchange issues, as we've previously reported unlike most high flying tech companies from Silicon Valley, UiPath has a much larger proportion of its business coming from locations outside of the United States, around 50% of its revenue, in fact. Because it prices in local currencies, when you convert back to appreciated dollars, there are less of them, and that weighs down on revenue. Now, we asked Breaking Analysis contributor, Chip Simonton, for his take on this stock, and he told us, "From a technical standpoint, there's really not much you can say, it just looks like a falling knife. It's trading at an all time low but that doesn't mean it can't go lower. New management with a good product is always a positive with a stock like this, but this is just a bad environment for UiPath and all growth stocks really, and," he added, "95% of money managers have never operated in this type of environment before. So that creates more uncertainty. There will be a bottom, but picking it in this high-inflation, high-interest rate world hasn't worked too well lately. There's really no floor to these stocks that don't have earnings, until you start to trade to cash levels." Well, okay, let's see, UiPath has $1.6 billion in cash in the balance sheet and no debt, so we're a long ways off from that target, the cash value with its current $7 billion valuation. You have to go back to April 2019 to UiPaths Series D to find a $7 billion valuation. So Simonton says, "The stock still could go lower." The valuation range for this stock has been quite remarkable from around $50 billion last May to $7 billion today. That's quite a swing. And the spending data from ETR sort of supports this story. This graphic here shows the net score or spending momentum granularity for UiPath. The lime green is new additions to the platform. The forest green is spending 6% or more. The gray is flat spending. The pink is spending down 6% or worse. And the bright red is churn. Subtract the red from the green and you get net score, which is that blue line. The yellow line is pervasiveness within the data set. Now, that yellow line is skewed somewhat because of Microsoft citations. There's a belief from some that competition from Microsoft is the reason for UiPath's troubles, but Microsoft is really delivering RPA for individuals and isn't an enterprise automation platform at least not today, but it's Microsoft, so you can't discount their presence in the market. And it probably is having some impact, but we think there are many other factors weighing on UiPath. Now, this is data through the July survey but taking a glimpse at the early October returns they're trending with the arrows, meaning less green more gray and red, which is going to lower UiPath's overall net score, which is consistent with the macro headwinds and the business performance that it's been seeing. Now, nonetheless, UiPath continues to get high marks from its customers, and relative to it's peers it maintains a leadership position. So this chart from ETR, shows net score or spending velocity in the vertical access, an overlap or presence in the dataset on the horizontal access. Microsoft continues to have a big presence, and as we mentioned, somewhat skews the data. UiPath has maintained its lead relative to automation anywhere on the horizontal access, and remains ahead of the legacy pack of business process and other RPA vendors. Solonis has popped up in the ETR data set recently as a process mining player and has a pretty high net score. It's a critical space UiPath has entered, via its acquisition of ProcessGold back in October 2019. Now, you can also see what we did is we added in the Gartner Magic Quadrant for robotic process automation. We didn't blow it up here but we circled the position of UiPath. You can see it's leading in both the vertical and the horizontal access, ahead of automation anywhere as well as Microsoft and others. Now, we're still not seeing the likes of SAP, Service Now, and Salesforce showing up in the ETR data, but these enterprise software vendors are in a reasonable position to capitalize on automation opportunities within their installed basis. This is why it's so important that UiPath transitions to an enterprise-wide horizontal play that can cut across multiple ERP, CRM, HCM, and service management platforms. While the big software companies can add automation to their respective stovepipes, and they're doing that, UiPath's opportunity is to bring automation to enable enterprises to build on top of and across these SaaS platforms that most companies are running. Now, on the chart, you see the red arrows slanting down. That signifies the expected trend from the upcoming October ETR survey, which is currently in the field and will run through early next month. Suffice it to say that there is downward spending pressure across the board, and we would expect most of these names, including UiPath, to dip below the 40% dotted line. Now, as it relates to the conversation about platform versus product, let's dig into that a bit more. Here's a graphic from UiPath's investor deck that underscores the move from product to platform. UiPath has expanded its platform from its initial on-prem point product to focus on automating tasks for individuals and back offices to a cloud-first platform approach. The company has added in technology from a number of acquisitions and added organically to those. These include, the previously mentioned, ProcessGold for process discovery, process documentation from the acquisition of StepShot, API automation via the acquisition of Cloud Elements, to its more recent acquisition of Re:infer, a natural language processing specialist. Now, we expect the platform to be a big focus of discussion at Forward 5 next week in Las Vegas. So let's close in on our expectations for the three-day event next week at the Venetian. UiPath's user conference has grown over the years and the Venetian should be by far be the biggest and most heavily attended in the company's history. We expect UiPath to really emphasize the role of automation, specifically in the context of digital transformation, and how UiPath has evolved, again, from point product to platform to support digital transformation. Expect to focus on platform maturity. When UiPath announced its platform intentions back in 2019, which was the last physical face-to-face customer event prior to COVID, it essentially was laying out a statement of direction. And over the past three years, it has matured the platform and taken it from vision to reality. You know, I said the last event, actually, the last event was 2021. Of course, theCUBE was there at the Bellagio in Las Vegas. But prior to that, 2019 is when they laid out that platform vision. Now, in a conjunction with this evolution, the company has evolved its partnerships, pairing up with the likes of Snowflake and the data cloud, CrowdStrike, to provide better security, and, of course, the big Global System Integrators, to help implement enterprise automation. And this is where we expect to hear a lot from customers. I've heard, there'll be over 100 speaking at the show about the outcomes and how they're digitally transforming. Now, I mentioned earlier that we haven't seen the big ERP and enterprise software companies show up yet in the ETR data, but believe me they're out there and they're selling automation and RPA and they're competing. So expect UiPath to position themselves and deposition those companies. Position UiPath as a layer above these bespoke platforms shown here on number four. With process discovery and task discovery, building automation across enterprise apps, and operationalizing process workflows as a horizontal play. And I'm sure there'll be some new graphics on this platform that we can share after the event that will emphasize this positioning. And finally, as we showed earlier in the platform discussion, we expect to hear a lot about the new platform capabilities and use cases, and not just RPA, but process mining, testing, testing automation, which is a new vector of growth for UiPath, document processing. And also, we expect UiPath to address its low code development capabilities to expand the number of people in the organization that can create automation capabilities and automations. Those domain experts is what we're talking about here that deeply understand the business but aren't software engineers. Enabling them is going to be really important, and we expect to hear more about that. And we expect this conference to set the tone for a new chapter in UiPath's history. The company's second in-person gathering, but the first one was last October. So really this is going to be sort of a build upon that, and many in-person events. For the first time this year, UiPath was one of the first to bring back its physical event, but we expect it to be bigger than what was at the Bellagio, and a lot of people were concerned about traveling. Although UiPath got a lot of customers there, but I think they're going to really up the game in terms of attendance this year. And really, that comparison is unfair because UiPath, again, it was sort of the middle of COVID last year. But anyway, we expect this new operations and go-to-market oriented focus from co-CEO, Rob Enslin, and new sales management, we're going to be, you know, hearing from them. And the so-called adult supervision has really been lacking at UiPath, historically. Daniel Dines will no doubt continue to have a big presence at the event and at the company. He's not a figurehead by any means. He's got a deep understanding of the product and the market and we'll be interviewing both Daniel and Rob Enslin on theCUBE to find out how they see the future. So tune in next week, or if you're in Las Vegas, definitely stop by theCUBE. If you're not go to thecube.net, you'll be able to watch all of our coverage. Okay, we're going to leave it there today. I want to thank Chip Simonton again for his input to today's episode. Thanks to Alex Morrison who's on production and manages our podcasts. Ken Schiffman, as well, from our Boston office, our Boston studio. Kristen Martin, and Cheryl Knight, they helped get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE that does some great editing. Thanks all. Remember, these episodes are all available as podcasts wherever you listen. All you got to do is search Breaking Analysis Podcasts. I publish each week on wikibon.com and siliconangle.com, and you could email me at david.vellante@siliconangle.com or DM me @dvellante. If you got anything interesting, I'll respond. If not, please keep trying, or comment on my LinkedIn post and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis. (gentle techno music)

Published Date : Sep 25 2022

SUMMARY :

in Palo Alto in Boston, but the company is still able to show

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MorrisonPERSON

0.99+

UiPathORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Ken SchiffmanPERSON

0.99+

Kristen MartinPERSON

0.99+

Cheryl KnightPERSON

0.99+

DanielPERSON

0.99+

April 2019DATE

0.99+

October 2019DATE

0.99+

Chip SimontonPERSON

0.99+

Rob EnslinPERSON

0.99+

MicrosoftORGANIZATION

0.99+

40%QUANTITY

0.99+

Rob HofPERSON

0.99+

$7 billionQUANTITY

0.99+

$191 millionQUANTITY

0.99+

Las VegasLOCATION

0.99+

$1 billionQUANTITY

0.99+

Palo AltoLOCATION

0.99+

$1.6 billionQUANTITY

0.99+

UiPathsORGANIZATION

0.99+

NASDAQORGANIZATION

0.99+

Silicon ValleyLOCATION

0.99+

next weekDATE

0.99+

EuropeLOCATION

0.99+

25%QUANTITY

0.99+

80%QUANTITY

0.99+

JulyDATE

0.99+

United StatesLOCATION

0.99+

david.vellante@siliconangle.comOTHER

0.99+

last yearDATE

0.99+

Ashim GuptaPERSON

0.99+

2019DATE

0.99+

34%QUANTITY

0.99+

early OctoberDATE

0.99+

more than $100,000QUANTITY

0.99+

2021DATE

0.99+

more than 10,000 customersQUANTITY

0.99+

last MayDATE

0.99+

three-dayQUANTITY

0.99+

SimontonPERSON

0.99+

Daniel DinesPERSON

0.99+

BostonLOCATION

0.99+

around $50 billionQUANTITY

0.99+

last weekDATE

0.99+

early next monthDATE

0.99+

last OctoberDATE

0.99+

each weekQUANTITY

0.99+

OctoberDATE

0.99+

this yearDATE

0.98+

siliconangle.comOTHER

0.98+

around 50%QUANTITY

0.98+

todayDATE

0.98+

bothQUANTITY

0.98+

wikibon.comOTHER

0.98+

over 100QUANTITY

0.98+

SiliconANGLEORGANIZATION

0.98+

Breaking Analysis: How CrowdStrike Plans to Become a Generational Platform


 

>> From theCUBE studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> In just over 10 years, CrowdStrike has become a leading independent security firm with more than 2 billion in annual recurring revenue, nearly 60% ARR growth, and approximate $40 billion market capitalization, very high retention rates, low churn, and a path to 5 billion in revenue by mid decade. The company has joined Palo Alto Networks as a gold standard pure play cyber security firm. It has achieved this lofty status with an architecture that goes beyond a point product. With outstanding go to market and financial execution, some sharp acquisitions and an ever increasing total available market. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this "Breaking Analysis" and ahead of Falcon, Fal.Con, CrowdStrike's user conference, we take a deeper look into CrowdStrike, its performance, its platform, and survey data from our partner ETR. Now, the general consensus is that spending on Cyber is non-discretionary and is held up better than other technology sectors. While this is generally true, as this data shows, it's nuanced. Let's explore this a bit. First, this is a year-to-date chart of the stock performance of CrowdStrike relative to Palo Alto, the BUG ETF, which is a Cyber index, the NASDAQ and SentinelOne, a relatively new entrant to the IPO public markets. Now, as you can see the security sector as evidenced by the orange line, that Cyber ETF, is holding up better than the overall NASDAQ which is off 28% year-to-date. Palo Alto has held up incredibly well, the best, being off only around 4% year-to-date. Whereas CrowdStrike is off in the double digits this year. But up as we talked about in one of our last "Breaking Analysis" on Cyber, up from its lows this past May. Now, CrowdStrike had a very nice beat and raise on August 30th. But the stop didn't respond well initially. We asked "Breaking Analysis" contributor, Chip Simonton for his technical take and he stated that CrowdStrike has bounced around for the last three months in its current range. He said that Cyber stocks have held up better than the rest of the market, as we're showing. And now might be a good time to take a shot but he is cautious. FedEx had a warning today of a global recession and that's obvious case for a concern. You know, maybe some of these quality Cyber stocks like Palo Alto and CrowdStrike and Zscaler will outperform in a recession, but that play is not for the faint of heart. In fact, it's feeling like a longer, more drawn out tech lash than many had hoped. Perhaps as much as 12 to 18 months of bouncing around with sellers still in control, is generally the sentiment from Simonton. So in terms of Cyber spending being non-discretionary, we'd say it's less discretionary than other it sectors but the CISO still does not have an open wallet, as we've reported before. We've seen that spending momentum has decelerated in all sectors throughout the year. This is an across the board trend. Now, independent of the stock price, George Kurtz, CEO of CrowdStrike, he's running a marathon, not a sprint. And this company is running at a nice pace despite tough macro headwinds. The company is free cash flow positive and is in the black, or a non-GAAP operating profit basis and yet it's growing ARR at nearly 60%. Frank Slootman uses the term inherent profitability, meaning that the company could drive more profits if it wanted to dial down expenses especially in go to market costs. But that would be a mistake for a company like CrowdStrike, in our opinion. While it has an impressive nearly 20,000 customers, there are hundreds of thousands of customers that CrowdStrike could penetrate. So like Snowflake and Slootman, Kurtz is not taking its foot off the gas. Now, the fundamental strength of CrowdStrike and its secret sauce is its architecture and platform, in our view, so let's take a deeper look. CrowdStrike believes that the unstoppable breach is a myth. Now, CISOs don't agree with that because they assume they're going to get breached, but that's CrowdStrike's point of view, so lofty vision. CrowdStrike's mission is to consolidate the patchwork of solutions by introducing modules that go beyond point products. CrowdStrike has more than 20 modules, I think 22, that span a range of capabilities as shown in this table. Now, there are a few critical aspects of the CrowdStrike architecture that bear mentioning. First is the lightweight agent, that is fundamental. You know, we're used to thinking that agentless is good and agent is bad, but in this case, a powerful but small, slim and easy to install but unobtrusive agent has its advantages because it supports multiple CrowdStrike modules. The second point is CrowdStrike from the beginning has been dogmatic about getting all the telemetry data into the cloud. It sort of shunned doing bespoke on prem so that all the data could be analyzed. So the more agents that CrowdStrike installs around the world, the more data it has access to and the better its intelligence. Few companies have access to more data, perhaps Microsoft given it scale and size is an exception in that endpoint space. CrowdStrike has developed a purpose-built threat graph and analytics platform that allows it to quickly ingest in near real time key telemetry data and detect not only known malware, that's pretty straightforward, pretty much anybody could do that. But using machine intelligence, it can also detect unknown malware and other potentially malicious behavior using indicators of attack, IOC, or IOAs. Humio is shown here as a company that CrowdStrike bought for around 400 million in early 2020, early 2021. It's the company's Splunk killer and will serve as an observability platform. It's really starting to take off, that's a great market for them to go after. CrowdStrike, to try to put it into sort of a summary, uses a three pronged approach. First is it's next generation anti-virus, meaning it's SaaS base. SAS based solution that can do fast lookups to telemetry data and that data lives in the cloud. And this leverages cloud strikes proprietary threat graph. Now, the second is endpoint detection and response. CrowdStrike sends all endpoint activity to the cloud and can process the data in real time. CrowdStrike EDR allows you to search data history and its partners with threat intelligent platforms who push the data into CrowdStrike, the CrowdStrike cloud. This increases CloudStrike's observation space. It also has containment capabilities in EDR to fence off compromised system. Now, the third leg of the stool is CrowdStrike's world class manage hunting approach. Like many firms, CrowdStrike has a crack team of experts that is looking at the data, but CrowdStrike's advantage is the amount of data, that observation space that we just talked about, and near real time capabilities of the architecture thanks to that proprietary database that they've developed. And all this is built in the cloud and so it enables global scale. And of course, agility. Now, let's dig into some of the survey data and take a look at what ETR respondents are saying about the spending momentum for CrowdStrike in context with its peers. Here's a very recent dataset, the October preliminary data from the October dataset in ETR's survey. Eric Bradley shared with us, ETR's head of strategy, and he runs the round tables, he's a frequent "Breaking Analysis" contributor. This is an XY graph with Netcore or spending momentum on the vertical axis and the overlap or pervasiveness in the survey on the horizontal axis. That dotted red line at 40% indicates an elevated level of spending velocity. Anything above that, we consider really impressive. Note the CrowdStrike progression since the pandemic started. The two notable points are one, that CrowdStrike has remained consistently above that 40% mark and two, it has made notable progress to the right. You can see that sort of squiggly line consistently increasing its share with one little anomaly there in the early days of over a two-year period. The other call out here is Microsoft in the upper-right. We circled Microsoft as usual. Microsoft messes up the data because it's such a dominant player and has referenced earlier as a massive scale and very quality telemetry from its endpoints. Unlike AWS, Microsoft is a direct competitor of CrowdStrike's. Nonetheless, the sector remains very strong with lots of players. Cyber is a large and expanding TAM with too many point tools that CrowdStrike is well positioned to consolidate, in our view. Now, here's a more narrow view of that same XY graph. What it does is it takes out Microsoft to kind of normalize the data a bit and it compares a number of firms that specialize in endpoint, along with CrowdStrike such as Tanium which also has a lightweight agent, by the way, and appears to be doing pretty well. SentinelOne did a relatively recent IPO, took off, stock hasn't done as well since, as you saw earlier. Carbon Black which VMware bought for around $2 billion and Cylance which is the Blackberry pivot. Now, we've also for context included Palo Alto and Cisco because they are major players with the big presence in security and they've got solutions that compete with CrowdStrike. But you can see how CrowdStrike looms large with a higher net score than these others. Although Palo Alto is very impressive, as is Cisco, steady. But Palo Alto also, sorry, CrowdStrike also has a very steady posture instead of just looming on that X axis. Let's now take a look at XDR, extended detection and response. XDR is kind of this bit of a buzzword but CrowdStrike seems to be taking the mantle and trying to sort of own the category and define it, in our view. It's a natural evolution of endpoint detection and response, EDR. In a recent ETR Roundtable hosted by our colleague, Eric Bradley, the sentiment among several CIOs is that existing SIEM, security information and event management platforms are inadequate and some see XDR as a replacement for, or at least a strong compliment to SIEM. CISOs want a single view of their data. Hmm, you haven't heard that before. They want help prioritizing potentially high impact breaches and they want to automate the low level stuff because the problem is sometimes too much information becomes information overload and you can't prioritize. So they want to consolidate platforms. They want better co consistency. They have too many dashboards, too many stove pipes. They have difficulty scaling and they have inconsistent telemetry data. As one CISO said, it's a call out here. "If the regulatory requirement isn't there, I absolutely would get rid of my SIEM." So CrowdStrike, we feel, is in a good position to continue to gain, share and disrupt this space. And that's what Dave Nicholson and I will be looking for next week when theCUBE is at Fal.Con, CrowdStrike's user conference. We'll be there for two days at the area in Vegas. In addition to CrowdStrike CEO, we'll hear from government cyber experts. We always hear that at security conferences and the CEO of Mandiant. Google just the other day closed its $5 billion plus acquisition of Mandiant, which is a threat intelligence expert and MSSP. I'm going to hear a lot about MSSPs by the way. CrowdStrike is a growing MSSP base. We think that's a really interesting sector because many companies don't have a SOC. As many as 50% of companies in the United States don't have a security operations center. So they need help, that's where MSPs come in. At the conference, there'll be a real focus on the Falcon platform. And we expect CrowdStrike to educate the audience on its multiple modules and how to take advantage of the capabilities beyond endpoint. And we'll also be watching for the ecosystem conversations. We saw this at reinforced, for example, where CrowdStrike and Okta were presenting together to show how these companies products compliment each other in the marketplace. Sometimes it gets confusing when you hear that CrowdStrike has an identity product. Okta, of course, is the identity specialist. So we'll be helping extract that signal from the noise. Because a generational company must have a strong ecosystem. CrowdStrike is evolving and our belief is that it has some work to do to create a stronger partner flywheel, and we're eager to dig into that next week. So if you're at the event, please do stop by theCUBE, say hello to Dave Nicholson and myself. Okay, we're going to leave it there today. Many thanks to Chip Simonton and Eric Bradley for their input and contributions to today's episode. Thanks to Alex Myerson, who does production, he also manages our podcast, Ken Schiffman as well, in our Boston studios, Kristen Martin and Cheryl Knight help get the word out on social media and our newsletters, and Rob Hof is our editor in chief over at siliconangle.com. He does some wonderful editing and I really appreciate that. Remember, all these episodes are available as podcasts wherever you listen, just search "Breaking Analysis" Podcast. I publish each week on wikibon.com and siliconangle.com and you can email me at david.vellante@siliconangle.com or DM me @DVellante or comment on our LinkedIn post. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis". (upbeat music)

Published Date : Sep 17 2022

SUMMARY :

This is "Breaking Analysis" and is in the black, or a

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Dave NicholsonPERSON

0.99+

CiscoORGANIZATION

0.99+

Chip SimontonPERSON

0.99+

Eric BradleyPERSON

0.99+

Frank SlootmanPERSON

0.99+

Dave VellantePERSON

0.99+

George KurtzPERSON

0.99+

August 30thDATE

0.99+

OctoberDATE

0.99+

Cheryl KnightPERSON

0.99+

Rob HofPERSON

0.99+

FedExORGANIZATION

0.99+

CrowdStrikeORGANIZATION

0.99+

ZscalerORGANIZATION

0.99+

VegasLOCATION

0.99+

MicrosoftORGANIZATION

0.99+

Kristen MartinPERSON

0.99+

5 billionQUANTITY

0.99+

MandiantORGANIZATION

0.99+

Palo AltoORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

28%QUANTITY

0.99+

twoQUANTITY

0.99+

$5 billionQUANTITY

0.99+

two daysQUANTITY

0.99+

GoogleORGANIZATION

0.99+

12QUANTITY

0.99+

FirstQUANTITY

0.99+

Palo AltoLOCATION

0.99+

40%QUANTITY

0.99+

50%QUANTITY

0.99+

United StatesLOCATION

0.99+

second pointQUANTITY

0.99+

OktaORGANIZATION

0.99+

david.vellante@siliconangle.comOTHER

0.99+

TaniumORGANIZATION

0.99+

oneQUANTITY

0.99+

more than 2 billionQUANTITY

0.99+

early 2021DATE

0.99+

AWSORGANIZATION

0.99+

BlackberryORGANIZATION

0.99+

next weekDATE

0.99+

more than 20 modulesQUANTITY

0.99+

nearly 20,000 customersQUANTITY

0.99+

18 monthsQUANTITY

0.99+

around $2 billionQUANTITY

0.99+

siliconangle.comOTHER

0.99+

Chip SimontonPERSON

0.99+

VMwareORGANIZATION

0.99+

Palo Alto NetworksORGANIZATION

0.99+

this yearDATE

0.98+

early 2020DATE

0.98+

each weekQUANTITY

0.98+

nearly 60%QUANTITY

0.98+

SentinelOneORGANIZATION

0.98+

over 10 yearsQUANTITY

0.98+

BostonLOCATION

0.98+

todayDATE

0.98+

CrowdStrikeTITLE

0.98+

HumioORGANIZATION

0.97+

ETRORGANIZATION

0.97+

secondQUANTITY

0.97+

Breaking Analysis: We Have the Data…What Private Tech Companies Don’t Tell you About Their Business


 

>> From The Cube Studios in Palo Alto and Boston, bringing you data driven insights from The Cube at ETR. This is "Breaking Analysis" with Dave Vellante. >> The reverse momentum in tech stocks caused by rising interest rates, less attractive discounted cash flow models, and more tepid forward guidance, can be easily measured by public market valuations. And while there's lots of discussion about the impact on private companies and cash runway and 409A valuations, measuring the performance of non-public companies isn't as easy. IPOs have dried up and public statements by private companies, of course, they accentuate the good and they kind of hide the bad. Real data, unless you're an insider, is hard to find. Hello and welcome to this week's "Wikibon Cube Insights" powered by ETR. In this "Breaking Analysis", we unlock some of the secrets that non-public, emerging tech companies may or may not be sharing. And we do this by introducing you to a capability from ETR that we've not exposed you to over the past couple of years, it's called the Emerging Technologies Survey, and it is packed with sentiment data and performance data based on surveys of more than a thousand CIOs and IT buyers covering more than 400 companies. And we've invited back our colleague, Erik Bradley of ETR to help explain the survey and the data that we're going to cover today. Erik, this survey is something that I've not personally spent much time on, but I'm blown away at the data. It's really unique and detailed. First of all, welcome. Good to see you again. >> Great to see you too, Dave, and I'm really happy to be talking about the ETS or the Emerging Technology Survey. Even our own clients of constituents probably don't spend as much time in here as they should. >> Yeah, because there's so much in the mainstream, but let's pull up a slide to bring out the survey composition. Tell us about the study. How often do you run it? What's the background and the methodology? >> Yeah, you were just spot on the way you were talking about the private tech companies out there. So what we did is we decided to take all the vendors that we track that are not yet public and move 'em over to the ETS. And there isn't a lot of information out there. If you're not in Silicon (indistinct), you're not going to get this stuff. So PitchBook and Tech Crunch are two out there that gives some data on these guys. But what we really wanted to do was go out to our community. We have 6,000, ITDMs in our community. We wanted to ask them, "Are you aware of these companies? And if so, are you allocating any resources to them? Are you planning to evaluate them," and really just kind of figure out what we can do. So this particular survey, as you can see, 1000 plus responses, over 450 vendors that we track. And essentially what we're trying to do here is talk about your evaluation and awareness of these companies and also your utilization. And also if you're not utilizing 'em, then we can also figure out your sales conversion or churn. So this is interesting, not only for the ITDMs themselves to figure out what their peers are evaluating and what they should put in POCs against the big guys when contracts come up. But it's also really interesting for the tech vendors themselves to see how they're performing. >> And you can see 2/3 of the respondents are director level of above. You got 28% is C-suite. There is of course a North America bias, 70, 75% is North America. But these smaller companies, you know, that's when they start doing business. So, okay. We're going to do a couple of things here today. First, we're going to give you the big picture across the sectors that ETR covers within the ETS survey. And then we're going to look at the high and low sentiment for the larger private companies. And then we're going to do the same for the smaller private companies, the ones that don't have as much mindshare. And then I'm going to put those two groups together and we're going to look at two dimensions, actually three dimensions, which companies are being evaluated the most. Second, companies are getting the most usage and adoption of their offerings. And then third, which companies are seeing the highest churn rates, which of course is a silent killer of companies. And then finally, we're going to look at the sentiment and mindshare for two key areas that we like to cover often here on "Breaking Analysis", security and data. And data comprises database, including data warehousing, and then big data analytics is the second part of data. And then machine learning and AI is the third section within data that we're going to look at. Now, one other thing before we get into it, ETR very often will include open source offerings in the mix, even though they're not companies like TensorFlow or Kubernetes, for example. And we'll call that out during this discussion. The reason this is done is for context, because everyone is using open source. It is the heart of innovation and many business models are super glued to an open source offering, like take MariaDB, for example. There's the foundation and then there's with the open source code and then there, of course, the company that sells services around the offering. Okay, so let's first look at the highest and lowest sentiment among these private firms, the ones that have the highest mindshare. So they're naturally going to be somewhat larger. And we do this on two dimensions, sentiment on the vertical axis and mindshare on the horizontal axis and note the open source tool, see Kubernetes, Postgres, Kafka, TensorFlow, Jenkins, Grafana, et cetera. So Erik, please explain what we're looking at here, how it's derived and what the data tells us. >> Certainly, so there is a lot here, so we're going to break it down first of all by explaining just what mindshare and net sentiment is. You explain the axis. We have so many evaluation metrics, but we need to aggregate them into one so that way we can rank against each other. Net sentiment is really the aggregation of all the positive and subtracting out the negative. So the net sentiment is a very quick way of looking at where these companies stand versus their peers in their sectors and sub sectors. Mindshare is basically the awareness of them, which is good for very early stage companies. And you'll see some names on here that are obviously been around for a very long time. And they're clearly be the bigger on the axis on the outside. Kubernetes, for instance, as you mentioned, is open source. This de facto standard for all container orchestration, and it should be that far up into the right, because that's what everyone's using. In fact, the open source leaders are so prevalent in the emerging technology survey that we break them out later in our analysis, 'cause it's really not fair to include them and compare them to the actual companies that are providing the support and the security around that open source technology. But no survey, no analysis, no research would be complete without including these open source tech. So what we're looking at here, if I can just get away from the open source names, we see other things like Databricks and OneTrust . They're repeating as top net sentiment performers here. And then also the design vendors. People don't spend a lot of time on 'em, but Miro and Figma. This is their third survey in a row where they're just dominating that sentiment overall. And Adobe should probably take note of that because they're really coming after them. But Databricks, we all know probably would've been a public company by now if the market hadn't turned, but you can see just how dominant they are in a survey of nothing but private companies. And we'll see that again when we talk about the database later. >> And I'll just add, so you see automation anywhere on there, the big UiPath competitor company that was not able to get to the public markets. They've been trying. Snyk, Peter McKay's company, they've raised a bunch of money, big security player. They're doing some really interesting things in developer security, helping developers secure the data flow, H2O.ai, Dataiku AI company. We saw them at the Snowflake Summit. Redis Labs, Netskope and security. So a lot of names that we know that ultimately we think are probably going to be hitting the public market. Okay, here's the same view for private companies with less mindshare, Erik. Take us through this one. >> On the previous slide too real quickly, I wanted to pull that security scorecard and we'll get back into it. But this is a newcomer, that I couldn't believe how strong their data was, but we'll bring that up in a second. Now, when we go to the ones of lower mindshare, it's interesting to talk about open source, right? Kubernetes was all the way on the top right. Everyone uses containers. Here we see Istio up there. Not everyone is using service mesh as much. And that's why Istio is in the smaller breakout. But still when you talk about net sentiment, it's about the leader, it's the highest one there is. So really interesting to point out. Then we see other names like Collibra in the data side really performing well. And again, as always security, very well represented here. We have Aqua, Wiz, Armis, which is a standout in this survey this time around. They do IoT security. I hadn't even heard of them until I started digging into the data here. And I couldn't believe how well they were doing. And then of course you have AnyScale, which is doing a second best in this and the best name in the survey Hugging Face, which is a machine learning AI tool. Also doing really well on a net sentiment, but they're not as far along on that access of mindshare just yet. So these are again, emerging companies that might not be as well represented in the enterprise as they will be in a couple of years. >> Hugging Face sounds like something you do with your two year old. Like you said, you see high performers, AnyScale do machine learning and you mentioned them. They came out of Berkeley. Collibra Governance, InfluxData is on there. InfluxDB's a time series database. And yeah, of course, Alex, if you bring that back up, you get a big group of red dots, right? That's the bad zone, I guess, which Sisense does vis, Yellowbrick Data is a NPP database. How should we interpret the red dots, Erik? I mean, is it necessarily a bad thing? Could it be misinterpreted? What's your take on that? >> Sure, well, let me just explain the definition of it first from a data science perspective, right? We're a data company first. So the gray dots that you're seeing that aren't named, that's the mean that's the average. So in order for you to be on this chart, you have to be at least one standard deviation above or below that average. So that gray is where we're saying, "Hey, this is where the lump of average comes in. This is where everyone normally stands." So you either have to be an outperformer or an underperformer to even show up in this analysis. So by definition, yes, the red dots are bad. You're at least one standard deviation below the average of your peers. It's not where you want to be. And if you're on the lower left, not only are you not performing well from a utilization or an actual usage rate, but people don't even know who you are. So that's a problem, obviously. And the VCs and the PEs out there that are backing these companies, they're the ones who mostly are interested in this data. >> Yeah. Oh, that's great explanation. Thank you for that. No, nice benchmarking there and yeah, you don't want to be in the red. All right, let's get into the next segment here. Here going to look at evaluation rates, adoption and the all important churn. First new evaluations. Let's bring up that slide. And Erik, take us through this. >> So essentially I just want to explain what evaluation means is that people will cite that they either plan to evaluate the company or they're currently evaluating. So that means we're aware of 'em and we are choosing to do a POC of them. And then we'll see later how that turns into utilization, which is what a company wants to see, awareness, evaluation, and then actually utilizing them. That's sort of the life cycle for these emerging companies. So what we're seeing here, again, with very high evaluation rates. H2O, we mentioned. SecurityScorecard jumped up again. Chargebee, Snyk, Salt Security, Armis. A lot of security names are up here, Aqua, Netskope, which God has been around forever. I still can't believe it's in an Emerging Technology Survey But so many of these names fall in data and security again, which is why we decided to pick those out Dave. And on the lower side, Vena, Acton, those unfortunately took the dubious award of the lowest evaluations in our survey, but I prefer to focus on the positive. So SecurityScorecard, again, real standout in this one, they're in a security assessment space, basically. They'll come in and assess for you how your security hygiene is. And it's an area of a real interest right now amongst our ITDM community. >> Yeah, I mean, I think those, and then Arctic Wolf is up there too. They're doing managed services. You had mentioned Netskope. Yeah, okay. All right, let's look at now adoption. These are the companies whose offerings are being used the most and are above that standard deviation in the green. Take us through this, Erik. >> Sure, yet again, what we're looking at is, okay, we went from awareness, we went to evaluation. Now it's about utilization, which means a survey respondent's going to state "Yes, we evaluated and we plan to utilize it" or "It's already in our enterprise and we're actually allocating further resources to it." Not surprising, again, a lot of open source, the reason why, it's free. So it's really easy to grow your utilization on something that's free. But as you and I both know, as Red Hat proved, there's a lot of money to be made once the open source is adopted, right? You need the governance, you need the security, you need the support wrapped around it. So here we're seeing Kubernetes, Postgres, Apache Kafka, Jenkins, Grafana. These are all open source based names. But if we're looking at names that are non open source, we're going to see Databricks, Automation Anywhere, Rubrik all have the highest mindshare. So these are the names, not surprisingly, all names that probably should have been public by now. Everyone's expecting an IPO imminently. These are the names that have the highest mindshare. If we talk about the highest utilization rates, again, Miro and Figma pop up, and I know they're not household names, but they are just dominant in this survey. These are applications that are meant for design software and, again, they're going after an Autodesk or a CAD or Adobe type of thing. It is just dominant how high the utilization rates are here, which again is something Adobe should be paying attention to. And then you'll see a little bit lower, but also interesting, we see Collibra again, we see Hugging Face again. And these are names that are obviously in the data governance, ML, AI side. So we're seeing a ton of data, a ton of security and Rubrik was interesting in this one, too, high utilization and high mindshare. We know how pervasive they are in the enterprise already. >> Erik, Alex, keep that up for a second, if you would. So yeah, you mentioned Rubrik. Cohesity's not on there. They're sort of the big one. We're going to talk about them in a moment. Puppet is interesting to me because you remember the early days of that sort of space, you had Puppet and Chef and then you had Ansible. Red Hat bought Ansible and then Ansible really took off. So it's interesting to see Puppet on there as well. Okay. So now let's look at the churn because this one is where you don't want to be. It's, of course, all red 'cause churn is bad. Take us through this, Erik. >> Yeah, definitely don't want to be here and I don't love to dwell on the negative. So we won't spend as much time. But to your point, there's one thing I want to point out that think it's important. So you see Rubrik in the same spot, but Rubrik has so many citations in our survey that it actually would make sense that they're both being high utilization and churn just because they're so well represented. They have such a high overall representation in our survey. And the reason I call that out is Cohesity. Cohesity has an extremely high churn rate here about 17% and unlike Rubrik, they were not on the utilization side. So Rubrik is seeing both, Cohesity is not. It's not being utilized, but it's seeing a high churn. So that's the way you can look at this data and say, "Hm." Same thing with Puppet. You noticed that it was on the other slide. It's also on this one. So basically what it means is a lot of people are giving Puppet a shot, but it's starting to churn, which means it's not as sticky as we would like. One that was surprising on here for me was Tanium. It's kind of jumbled in there. It's hard to see in the middle, but Tanium, I was very surprised to see as high of a churn because what I do hear from our end user community is that people that use it, like it. It really kind of spreads into not only vulnerability management, but also that endpoint detection and response side. So I was surprised by that one, mostly to see Tanium in here. Mural, again, was another one of those application design softwares that's seeing a very high churn as well. >> So you're saying if you're in both... Alex, bring that back up if you would. So if you're in both like MariaDB is for example, I think, yeah, they're in both. They're both green in the previous one and red here, that's not as bad. You mentioned Rubrik is going to be in both. Cohesity is a bit of a concern. Cohesity just brought on Sanjay Poonen. So this could be a go to market issue, right? I mean, 'cause Cohesity has got a great product and they got really happy customers. So they're just maybe having to figure out, okay, what's the right ideal customer profile and Sanjay Poonen, I guarantee, is going to have that company cranking. I mean they had been doing very well on the surveys and had fallen off of a bit. The other interesting things wondering the previous survey I saw Cvent, which is an event platform. My only reason I pay attention to that is 'cause we actually have an event platform. We don't sell it separately. We bundle it as part of our offerings. And you see Hopin on here. Hopin raised a billion dollars during the pandemic. And we were like, "Wow, that's going to blow up." And so you see Hopin on the churn and you didn't see 'em in the previous chart, but that's sort of interesting. Like you said, let's not kind of dwell on the negative, but you really don't. You know, churn is a real big concern. Okay, now we're going to drill down into two sectors, security and data. Where data comprises three areas, database and data warehousing, machine learning and AI and big data analytics. So first let's take a look at the security sector. Now this is interesting because not only is it a sector drill down, but also gives an indicator of how much money the firm has raised, which is the size of that bubble. And to tell us if a company is punching above its weight and efficiently using its venture capital. Erik, take us through this slide. Explain the dots, the size of the dots. Set this up please. >> Yeah. So again, the axis is still the same, net sentiment and mindshare, but what we've done this time is we've taken publicly available information on how much capital company is raised and that'll be the size of the circle you see around the name. And then whether it's green or red is basically saying relative to the amount of money they've raised, how are they doing in our data? So when you see a Netskope, which has been around forever, raised a lot of money, that's why you're going to see them more leading towards red, 'cause it's just been around forever and kind of would expect it. Versus a name like SecurityScorecard, which is only raised a little bit of money and it's actually performing just as well, if not better than a name, like a Netskope. OneTrust doing absolutely incredible right now. BeyondTrust. We've seen the issues with Okta, right. So those are two names that play in that space that obviously are probably getting some looks about what's going on right now. Wiz, we've all heard about right? So raised a ton of money. It's doing well on net sentiment, but the mindshare isn't as well as you'd want, which is why you're going to see a little bit of that red versus a name like Aqua, which is doing container and application security. And hasn't raised as much money, but is really neck and neck with a name like Wiz. So that is why on a relative basis, you'll see that more green. As we all know, information security is never going away. But as we'll get to later in the program, Dave, I'm not sure in this current market environment, if people are as willing to do POCs and switch away from their security provider, right. There's a little bit of tepidness out there, a little trepidation. So right now we're seeing overall a slight pause, a slight cooling in overall evaluations on the security side versus historical levels a year ago. >> Now let's stay on here for a second. So a couple things I want to point out. So it's interesting. Now Snyk has raised over, I think $800 million but you can see them, they're high on the vertical and the horizontal, but now compare that to Lacework. It's hard to see, but they're kind of buried in the middle there. That's the biggest dot in this whole thing. I think I'm interpreting this correctly. They've raised over a billion dollars. It's a Mike Speiser company. He was the founding investor in Snowflake. So people watch that very closely, but that's an example of where they're not punching above their weight. They recently had a layoff and they got to fine tune things, but I'm still confident they they're going to do well. 'Cause they're approaching security as a data problem, which is probably people having trouble getting their arms around that. And then again, I see Arctic Wolf. They're not red, they're not green, but they've raised fair amount of money, but it's showing up to the right and decent level there. And a couple of the other ones that you mentioned, Netskope. Yeah, they've raised a lot of money, but they're actually performing where you want. What you don't want is where Lacework is, right. They've got some work to do to really take advantage of the money that they raised last November and prior to that. >> Yeah, if you're seeing that more neutral color, like you're calling out with an Arctic Wolf, like that means relative to their peers, this is where they should be. It's when you're seeing that red on a Lacework where we all know, wow, you raised a ton of money and your mindshare isn't where it should be. Your net sentiment is not where it should be comparatively. And then you see these great standouts, like Salt Security and SecurityScorecard and Abnormal. You know they haven't raised that much money yet, but their net sentiment's higher and their mindshare's doing well. So those basically in a nutshell, if you're a PE or a VC and you see a small green circle, then you're doing well, then it means you made a good investment. >> Some of these guys, I don't know, but you see these small green circles. Those are the ones you want to start digging into and maybe help them catch a wave. Okay, let's get into the data discussion. And again, three areas, database slash data warehousing, big data analytics and ML AI. First, we're going to look at the database sector. So Alex, thank you for bringing that up. Alright, take us through this, Erik. Actually, let me just say Postgres SQL. I got to ask you about this. It shows some funding, but that actually could be a mix of EDB, the company that commercializes Postgres and Postgres the open source database, which is a transaction system and kind of an open source Oracle. You see MariaDB is a database, but open source database. But the companies they've raised over $200 million and they filed an S-4. So Erik looks like this might be a little bit of mashup of companies and open source products. Help us understand this. >> Yeah, it's tough when you start dealing with the open source side and I'll be honest with you, there is a little bit of a mashup here. There are certain names here that are a hundred percent for profit companies. And then there are others that are obviously open source based like Redis is open source, but Redis Labs is the one trying to monetize the support around it. So you're a hundred percent accurate on this slide. I think one of the things here that's important to note though, is just how important open source is to data. If you're going to be going to any of these areas, it's going to be open source based to begin with. And Neo4j is one I want to call out here. It's not one everyone's familiar with, but it's basically geographical charting database, which is a name that we're seeing on a net sentiment side actually really, really high. When you think about it's the third overall net sentiment for a niche database play. It's not as big on the mindshare 'cause it's use cases aren't as often, but third biggest play on net sentiment. I found really interesting on this slide. >> And again, so MariaDB, as I said, they filed an S-4 I think $50 million in revenue, that might even be ARR. So they're not huge, but they're getting there. And by the way, MariaDB, if you don't know, was the company that was formed the day that Oracle bought Sun in which they got MySQL and MariaDB has done a really good job of replacing a lot of MySQL instances. Oracle has responded with MySQL HeatWave, which was kind of the Oracle version of MySQL. So there's some interesting battles going on there. If you think about the LAMP stack, the M in the LAMP stack was MySQL. And so now it's all MariaDB replacing that MySQL for a large part. And then you see again, the red, you know, you got to have some concerns about there. Aerospike's been around for a long time. SingleStore changed their name a couple years ago, last year. Yellowbrick Data, Fire Bolt was kind of going after Snowflake for a while, but yeah, you want to get out of that red zone. So they got some work to do. >> And Dave, real quick for the people that aren't aware, I just want to let them know that we can cut this data with the public company data as well. So we can cross over this with that because some of these names are competing with the larger public company names as well. So we can go ahead and cross reference like a MariaDB with a Mongo, for instance, or of something of that nature. So it's not in this slide, but at another point we can certainly explain on a relative basis how these private names are doing compared to the other ones as well. >> All right, let's take a quick look at analytics. Alex, bring that up if you would. Go ahead, Erik. >> Yeah, I mean, essentially here, I can't see it on my screen, my apologies. I just kind of went to blank on that. So gimme one second to catch up. >> So I could set it up while you're doing that. You got Grafana up and to the right. I mean, this is huge right. >> Got it thank you. I lost my screen there for a second. Yep. Again, open source name Grafana, absolutely up and to the right. But as we know, Grafana Labs is actually picking up a lot of speed based on Grafana, of course. And I think we might actually hear some noise from them coming this year. The names that are actually a little bit more disappointing than I want to call out are names like ThoughtSpot. It's been around forever. Their mindshare of course is second best here but based on the amount of time they've been around and the amount of money they've raised, it's not actually outperforming the way it should be. We're seeing Moogsoft obviously make some waves. That's very high net sentiment for that company. It's, you know, what, third, fourth position overall in this entire area, Another name like Fivetran, Matillion is doing well. Fivetran, even though it's got a high net sentiment, again, it's raised so much money that we would've expected a little bit more at this point. I know you know this space extremely well, but basically what we're looking at here and to the bottom left, you're going to see some names with a lot of red, large circles that really just aren't performing that well. InfluxData, however, second highest net sentiment. And it's really pretty early on in this stage and the feedback we're getting on this name is the use cases are great, the efficacy's great. And I think it's one to watch out for. >> InfluxData, time series database. The other interesting things I just noticed here, you got Tamer on here, which is that little small green. Those are the ones we were saying before, look for those guys. They might be some of the interesting companies out there and then observe Jeremy Burton's company. They do observability on top of Snowflake, not green, but kind of in that gray. So that's kind of cool. Monte Carlo is another one, they're sort of slightly green. They are doing some really interesting things in data and data mesh. So yeah, okay. So I can spend all day on this stuff, Erik, phenomenal data. I got to get back and really dig in. Let's end with machine learning and AI. Now this chart it's similar in its dimensions, of course, except for the money raised. We're not showing that size of the bubble, but AI is so hot. We wanted to cover that here, Erik, explain this please. Why TensorFlow is highlighted and walk us through this chart. >> Yeah, it's funny yet again, right? Another open source name, TensorFlow being up there. And I just want to explain, we do break out machine learning, AI is its own sector. A lot of this of course really is intertwined with the data side, but it is on its own area. And one of the things I think that's most important here to break out is Databricks. We started to cover Databricks in machine learning, AI. That company has grown into much, much more than that. So I do want to state to you Dave, and also the audience out there that moving forward, we're going to be moving Databricks out of only the MA/AI into other sectors. So we can kind of value them against their peers a little bit better. But in this instance, you could just see how dominant they are in this area. And one thing that's not here, but I do want to point out is that we have the ability to break this down by industry vertical, organization size. And when I break this down into Fortune 500 and Fortune 1000, both Databricks and Tensorflow are even better than you see here. So it's quite interesting to see that the names that are succeeding are also succeeding with the largest organizations in the world. And as we know, large organizations means large budgets. So this is one area that I just thought was really interesting to point out that as we break it down, the data by vertical, these two names still are the outstanding players. >> I just also want to call it H2O.ai. They're getting a lot of buzz in the marketplace and I'm seeing them a lot more. Anaconda, another one. Dataiku consistently popping up. DataRobot is also interesting because all the kerfuffle that's going on there. The Cube guy, Cube alum, Chris Lynch stepped down as executive chairman. All this stuff came out about how the executives were taking money off the table and didn't allow the employees to participate in that money raising deal. So that's pissed a lot of people off. And so they're now going through some kind of uncomfortable things, which is unfortunate because DataRobot, I noticed, we haven't covered them that much in "Breaking Analysis", but I've noticed them oftentimes, Erik, in the surveys doing really well. So you would think that company has a lot of potential. But yeah, it's an important space that we're going to continue to watch. Let me ask you Erik, can you contextualize this from a time series standpoint? I mean, how is this changed over time? >> Yeah, again, not show here, but in the data. I'm sorry, go ahead. >> No, I'm sorry. What I meant, I should have interjected. In other words, you would think in a downturn that these emerging companies would be less interesting to buyers 'cause they're more risky. What have you seen? >> Yeah, and it was interesting before we went live, you and I were having this conversation about "Is the downturn stopping people from evaluating these private companies or not," right. In a larger sense, that's really what we're doing here. How are these private companies doing when it comes down to the actual practitioners? The people with the budget, the people with the decision making. And so what I did is, we have historical data as you know, I went back to the Emerging Technology Survey we did in November of 21, right at the crest right before the market started to really fall and everything kind of started to fall apart there. And what I noticed is on the security side, very much so, we're seeing less evaluations than we were in November 21. So I broke it down. On cloud security, net sentiment went from 21% to 16% from November '21. That's a pretty big drop. And again, that sentiment is our one aggregate metric for overall positivity, meaning utilization and actual evaluation of the name. Again in database, we saw it drop a little bit from 19% to 13%. However, in analytics we actually saw it stay steady. So it's pretty interesting that yes, cloud security and security in general is always going to be important. But right now we're seeing less overall net sentiment in that space. But within analytics, we're seeing steady with growing mindshare. And also to your point earlier in machine learning, AI, we're seeing steady net sentiment and mindshare has grown a whopping 25% to 30%. So despite the downturn, we're seeing more awareness of these companies in analytics and machine learning and a steady, actual utilization of them. I can't say the same in security and database. They're actually shrinking a little bit since the end of last year. >> You know it's interesting, we were on a round table, Erik does these round tables with CISOs and CIOs, and I remember one time you had asked the question, "How do you think about some of these emerging tech companies?" And one of the executives said, "I always include somebody in the bottom left of the Gartner Magic Quadrant in my RFPs. I think he said, "That's how I found," I don't know, it was Zscaler or something like that years before anybody ever knew of them "Because they're going to help me get to the next level." So it's interesting to see Erik in these sectors, how they're holding up in many cases. >> Yeah. It's a very important part for the actual IT practitioners themselves. There's always contracts coming up and you always have to worry about your next round of negotiations. And that's one of the roles these guys play. You have to do a POC when contracts come up, but it's also their job to stay on top of the new technology. You can't fall behind. Like everyone's a software company. Now everyone's a tech company, no matter what you're doing. So these guys have to stay in on top of it. And that's what this ETS can do. You can go in here and look and say, "All right, I'm going to evaluate their technology," and it could be twofold. It might be that you're ready to upgrade your technology and they're actually pushing the envelope or it simply might be I'm using them as a negotiation ploy. So when I go back to the big guy who I have full intentions of writing that contract to, at least I have some negotiation leverage. >> Erik, we got to leave it there. I could spend all day. I'm going to definitely dig into this on my own time. Thank you for introducing this, really appreciate your time today. >> I always enjoy it, Dave and I hope everyone out there has a great holiday weekend. Enjoy the rest of the summer. And, you know, I love to talk data. So anytime you want, just point the camera on me and I'll start talking data. >> You got it. I also want to thank the team at ETR, not only Erik, but Darren Bramen who's a data scientist, really helped prepare this data, the entire team over at ETR. I cannot tell you how much additional data there is. We are just scratching the surface in this "Breaking Analysis". So great job guys. I want to thank Alex Myerson. Who's on production and he manages the podcast. Ken Shifman as well, who's just coming back from VMware Explore. Kristen Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE. Does some great editing for us. Thank you. All of you guys. Remember these episodes, they're all available as podcast, wherever you listen. All you got to do is just search "Breaking Analysis" podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me to get in touch david.vellante@siliconangle.com. You can DM me at dvellante or comment on my LinkedIn posts and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for Erik Bradley and The Cube Insights powered by ETR. Thanks for watching. Be well. And we'll see you next time on "Breaking Analysis". (upbeat music)

Published Date : Sep 7 2022

SUMMARY :

bringing you data driven it's called the Emerging Great to see you too, Dave, so much in the mainstream, not only for the ITDMs themselves It is the heart of innovation So the net sentiment is a very So a lot of names that we And then of course you have AnyScale, That's the bad zone, I guess, So the gray dots that you're rates, adoption and the all And on the lower side, Vena, Acton, in the green. are in the enterprise already. So now let's look at the churn So that's the way you can look of dwell on the negative, So again, the axis is still the same, And a couple of the other And then you see these great standouts, Those are the ones you want to but Redis Labs is the one And by the way, MariaDB, So it's not in this slide, Alex, bring that up if you would. So gimme one second to catch up. So I could set it up but based on the amount of time Those are the ones we were saying before, And one of the things I think didn't allow the employees to here, but in the data. What have you seen? the market started to really And one of the executives said, And that's one of the Thank you for introducing this, just point the camera on me We are just scratching the surface

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ErikPERSON

0.99+

Alex MyersonPERSON

0.99+

Ken ShifmanPERSON

0.99+

Sanjay PoonenPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

Erik BradleyPERSON

0.99+

November 21DATE

0.99+

Darren BramenPERSON

0.99+

AlexPERSON

0.99+

Cheryl KnightPERSON

0.99+

PostgresORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

NetskopeORGANIZATION

0.99+

AdobeORGANIZATION

0.99+

Rob HofPERSON

0.99+

FivetranORGANIZATION

0.99+

$50 millionQUANTITY

0.99+

21%QUANTITY

0.99+

Chris LynchPERSON

0.99+

19%QUANTITY

0.99+

Jeremy BurtonPERSON

0.99+

$800 millionQUANTITY

0.99+

6,000QUANTITY

0.99+

OracleORGANIZATION

0.99+

Redis LabsORGANIZATION

0.99+

November '21DATE

0.99+

ETRORGANIZATION

0.99+

FirstQUANTITY

0.99+

25%QUANTITY

0.99+

last yearDATE

0.99+

OneTrustORGANIZATION

0.99+

two dimensionsQUANTITY

0.99+

two groupsQUANTITY

0.99+

November of 21DATE

0.99+

bothQUANTITY

0.99+

BostonLOCATION

0.99+

more than 400 companiesQUANTITY

0.99+

Kristen MartinPERSON

0.99+

MySQLTITLE

0.99+

MoogsoftORGANIZATION

0.99+

The CubeORGANIZATION

0.99+

thirdQUANTITY

0.99+

GrafanaORGANIZATION

0.99+

H2OORGANIZATION

0.99+

Mike SpeiserPERSON

0.99+

david.vellante@siliconangle.comOTHER

0.99+

secondQUANTITY

0.99+

twoQUANTITY

0.99+

firstQUANTITY

0.99+

28%QUANTITY

0.99+

16%QUANTITY

0.99+

SecondQUANTITY

0.99+

Breaking Analysis: What we hope to learn at Supercloud22


 

>> From theCUBE studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante. >> The term Supercloud is somewhat new, but the concepts behind it have been bubbling for years, early last decade when NIST put forth a definition of cloud computing it said services had to be accessible over a public network essentially cutting the on-prem crowd out of the cloud conversation. Now a guy named Chuck Hollis, who was a field CTO at EMC at the time and a prolific blogger objected to that criterion and laid out his vision for what he termed a private cloud. Now, in that post, he showed a workload running both on premises and in a public cloud sharing the underlying resources in an automated and seamless manner. What later became known more broadly as hybrid cloud that vision as we now know, really never materialized, and we were left with multi-cloud sets of largely incompatible and disconnected cloud services running in separate silos. The point is what Hollis laid out, IE the ability to abstract underlying infrastructure complexity and run workloads across multiple heterogeneous estates with an identical experience is what super cloud is all about. Hello and welcome to this week's Wikibon cube insights powered by ETR and this breaking analysis. We share what we hope to learn from super cloud 22 next week, next Tuesday at 9:00 AM Pacific. The community is gathering for Supercloud 22 an inclusive pilot symposium hosted by theCUBE and made possible by VMware and other founding partners. It's a one day single track event with more than 25 speakers digging into the architectural, the technical, structural and business aspects of Supercloud. This is a hybrid event with a live program in the morning running out of our Palo Alto studio and pre-recorded content in the afternoon featuring industry leaders, technologists, analysts and investors up and down the technology stack. Now, as I said up front the seeds of super cloud were sewn early last decade. After the very first reinvent we published our Amazon gorilla post, that scene in the upper right corner here. And we talked about how to differentiate from Amazon and form ecosystems around industries and data and how the cloud would change IT permanently. And then up in the upper left we put up a post on the old Wikibon Wiki. Yeah, it used to be a Wiki. Check out my hair by the way way no gray, that's how long ago this was. And we talked about in that post how to compete in the Amazon economy. And we showed a graph of how IT economics were changing. And cloud services had marginal economics that looked more like software than hardware at scale. And this would reset, we said opportunities for both technology sellers and buyers for the next 20 years. And this came into sharper focus in the ensuing years culminating in a milestone post by Greylock's Jerry Chen called Castles in the Cloud. It was an inspiration and catalyst for us using the term Supercloud in John Furrier's post prior to reinvent 2021. So we started to flesh out this idea of Supercloud where companies of all types build services on top of hyperscale infrastructure and across multiple clouds, going beyond multicloud 1.0, if you will, which was really a symptom, as we said, many times of multi-vendor at least that's what we argued. And despite its fuzzy definition, it resonated with people because they knew something was brewing, Keith Townsend the CTO advisor, even though he frankly, wasn't a big fan of the buzzy nature of the term Supercloud posted this awesome Blackboard on Twitter take a listen to how he framed it. Please play the clip. >> Is VMware the right company to make the super cloud work, term that Wikibon came up with to describe the taking of discreet services. So it says RDS from AWS, cloud compute engines from GCP and authentication from Azure to build SaaS applications or enterprise applications that connect back to your data center, is VMware's cross cloud vision 'cause it is just a vision today, the right approach. Or should you be looking towards companies like HashiCorp to provide this overall capability that we all agree, or maybe you don't that we need in an enterprise comment below your thoughts. >> So I really like that Keith has deep practitioner knowledge and lays out a couple of options. I especially like the examples he uses of cloud services. He recognizes the need for cross cloud services and he notes this capability is aspirational today. Remember this was eight or nine months ago and he brings HashiCorp into the conversation as they're one of the speakers at Supercloud 22 and he asks the community, what they think, the thing is we're trying to really test out this concept and people like Keith are instrumental as collaborators. Now I'm sure you're not surprised to hear that mot everyone is on board with the Supercloud meme, in particular Charles Fitzgerald has been a wonderful collaborator just by his hilarious criticisms of the concept. After a couple of super cloud posts, Charles put up his second rendition of "Supercloudifragilisticexpialidoucious". I mean, it's just beautiful, but to boot, he put up this picture of Baghdad Bob asking us to just stop, Bob's real name is Mohamed Said al-Sahaf. He was the minister of propaganda for Sadam Husein during the 2003 invasion of Iraq. And he made these outrageous claims of, you know US troops running in fear and putting down their arms and so forth. So anyway, Charles laid out several frankly very helpful critiques of Supercloud which has led us to really advance the definition and catalyze the community's thinking on the topic. Now, one of his issues and there are many is we said a prerequisite of super cloud was a super PaaS layer. Gartner's Lydia Leong chimed in saying there were many examples of successful PaaS vendors built on top of a hyperscaler some having the option to run in more than one cloud provider. But the key point we're trying to explore is the degree to which that PaaS layer is purpose built for a specific super cloud function. And not only runs in more than one cloud provider, Lydia but runs across multiple clouds simultaneously creating an identical developer experience irrespective of a state. Now, maybe that's what Lydia meant. It's hard to say from just a tweet and she's a sharp lady, so, and knows more about that market, that PaaS market, than I do. But to the former point at Supercloud 22, we have several examples. We're going to test. One is Oracle and Microsoft's recent announcement to run database services on OCI and Azure, making them appear as one rather than use an off the shelf platform. Oracle claims to have developed a capability for developers specifically built to ensure high performance low latency, and a common experience for developers across clouds. Another example we're going to test is Snowflake. I'll be interviewing Benoit Dageville co-founder of Snowflake to understand the degree to which Snowflake's recent announcement of an application development platform is perfect built, purpose built for the Snowflake data cloud. Is it just a plain old pass, big whoop as Lydia claims or is it something new and innovative, by the way we invited Charles Fitz to participate in Supercloud 22 and he decline saying in addition to a few other somewhat insulting things there's definitely interesting new stuff brewing that isn't traditional cloud or SaaS but branding at all super cloud doesn't help either. Well, indeed, we agree with part of that and we'll see if it helps advanced thinking and helps customers really plan for the future. And that's why Supercloud 22 has going to feature some of the best analysts in the business in The Great Supercloud Debate. In addition to Keith Townsend and Maribel Lopez of Lopez research and Sanjeev Mohan from former Gartner analyst and principal at SanjMo participated in this session. Now we don't want to mislead you. We don't want to imply that these analysts are hopping on the super cloud bandwagon but they're more than willing to go through the thought experiment and mental exercise. And, we had a great conversation that you don't want to miss. Maribel Lopez had what I thought was a really excellent way to think about this. She used TCP/IP as an historical example, listen to what she said. >> And Sanjeev Mohan has some excellent thoughts on the feasibility of an open versus de facto standard getting us to the vision of Supercloud, what's possible and what's likely now, again, I don't want to imply that these analysts are out banging the Supercloud drum. They're not necessarily doing that, but they do I think it's fair to say believe that something new is bubbling and whether it's called Supercloud or multicloud 2.0 or cross cloud services or whatever name you choose it's not multicloud of the 2010s and we chose Supercloud. So our goal here is to advance the discussion on what's next in cloud and Supercloud is meant to be a term to describe that future of cloud and specifically the cloud opportunities that can be built on top of hyperscale, compute, storage, networking machine learning, and other services at scale. And that is why we posted this piece on Answering the top 10 questions about Supercloud. Many of which were floated by Charles Fitzgerald and others in the community. Why does the industry need another term what's really new and different? And what is hype? What specific problems does Supercloud solve? What are the salient characteristics of Supercloud? What's different beyond multicloud? What is a super pass? Is it necessary to have a Supercloud? How will applications evolve on superclouds? What workloads will run? All these questions will be addressed in detail as a way to advance the discussion and help practitioners and business people understand what's real today. And what's possible with cloud in the near future. And one other question we'll address is who will build super clouds? And what new entrance we can expect. This is an ETR graphic that we showed in a previous episode of breaking analysis, and it lays out some of the companies we think are building super clouds or in a position to do so, by the way the Y axis shows net score or spending velocity and the X axis depicts presence in the ETR survey of more than 1200 respondents. But the key callouts to this slide in addition to some of the smaller firms that aren't yet showing up in the ETR data like Chaossearch and Starburst and Aviatrix and Clumio but the really interesting additions are industry players Walmart with Azure, Capital one and Goldman Sachs with AWS, Oracle, with Cerner. These we think are early examples, bubbling up of industry clouds that will eventually become super clouds. So we'll explore these and other trends to get the community's input on how this will all play out. These are the things we hope you'll take away from Supercloud 22. And we have an amazing lineup of experts to answer your question. Technologists like Kit Colbert, Adrian Cockcroft, Mariana Tessel, Chris Hoff, Will DeForest, Ali Ghodsi, Benoit Dageville, Muddu Sudhakar and many other tech athletes, investors like Jerry Chen and In Sik Rhee the analyst we featured earlier, Paula Hansen talking about go to market in a multi-cloud world Gee Rittenhouse talking about cloud security, David McJannet, Bhaskar Gorti of Platform9 and many, many more. And of course you, so please go to theCUBE.net and register for Supercloud 22, really lightweight reg. We're not doing this for lead gen. We're doing it for collaboration. If you sign in you can get the chat and ask questions in real time. So don't miss this inaugural event Supercloud 22 on August 9th at 9:00 AM Pacific. We'll see you there. Okay. That's it for today. Thanks for watching. Thank you to Alex Myerson who's on production and manages the podcast. Kristen Martin and Cheryl Knight. They help get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE. Does some really wonderful editing. Thank you to all. Remember these episodes are all available as podcasts wherever you listen, just search breaking analysis podcast. I publish each week on wikibon.com and Siliconangle.com. And you can email me at David.Vellantesiliconangle.com or DM me at Dvellante, comment on my LinkedIn post. Please do check out ETR.AI for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE insights powered by ETR. Thanks for watching. And we'll see you next week in Palo Alto at Supercloud 22 or next time on breaking analysis. (calm music)

Published Date : Aug 5 2022

SUMMARY :

This is breaking analysis and buyers for the next 20 years. Is VMware the right company is the degree to which that PaaS layer and specifically the cloud opportunities

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Dave VellantePERSON

0.99+

David McJannetPERSON

0.99+

Cheryl KnightPERSON

0.99+

Paula HansenPERSON

0.99+

Jerry ChenPERSON

0.99+

Adrian CockcroftPERSON

0.99+

Maribel LopezPERSON

0.99+

Keith TownsendPERSON

0.99+

Kristen MartinPERSON

0.99+

Chuck HollisPERSON

0.99+

Charles FitzPERSON

0.99+

CharlesPERSON

0.99+

Chris HoffPERSON

0.99+

KeithPERSON

0.99+

Mariana TesselPERSON

0.99+

AWSORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

Ali GhodsiPERSON

0.99+

OracleORGANIZATION

0.99+

Charles FitzgeraldPERSON

0.99+

Mohamed Said al-SahafPERSON

0.99+

Kit ColbertPERSON

0.99+

WalmartORGANIZATION

0.99+

Rob HofPERSON

0.99+

ClumioORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

Gee RittenhousePERSON

0.99+

AviatrixORGANIZATION

0.99+

ChaossearchORGANIZATION

0.99+

Benoit DagevillePERSON

0.99+

AmazonORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

NISTORGANIZATION

0.99+

Lydia LeongPERSON

0.99+

Muddu SudhakarPERSON

0.99+

BobPERSON

0.99+

CernerORGANIZATION

0.99+

John FurrierPERSON

0.99+

Sanjeev MohanPERSON

0.99+

Capital oneORGANIZATION

0.99+

David.Vellantesiliconangle.comOTHER

0.99+

StarburstORGANIZATION

0.99+

EMCORGANIZATION

0.99+

2010sDATE

0.99+

Will DeForestPERSON

0.99+

more than 1200 respondentsQUANTITY

0.99+

one dayQUANTITY

0.99+

VMwareORGANIZATION

0.99+

GartnerORGANIZATION

0.99+

2021DATE

0.99+

next weekDATE

0.99+

Supercloud 22EVENT

0.99+

theCUBE.netOTHER

0.99+

Bhaskar GortiPERSON

0.99+

SupercloudORGANIZATION

0.98+

each weekQUANTITY

0.98+

eightDATE

0.98+

SanjMoORGANIZATION

0.98+

LydiaPERSON

0.98+

theCUBEORGANIZATION

0.98+

PaaSTITLE

0.98+

more than 25 speakersQUANTITY

0.98+

SnowflakeORGANIZATION

0.98+

Platform9ORGANIZATION

0.97+

firstQUANTITY

0.97+

oneQUANTITY

0.97+

todayDATE

0.97+

HollisPERSON

0.97+

Sadam HuseinPERSON

0.97+

second renditionQUANTITY

0.97+

BostonLOCATION

0.97+

SiliconANGLEORGANIZATION

0.96+

more than one cloud providerQUANTITY

0.96+

bothQUANTITY

0.95+

super cloud 22EVENT

0.95+

Breaking Analysis: How the cloud is changing security defenses in the 2020s


 

>> Announcer: From theCUBE studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> The rapid pace of cloud adoption has changed the way organizations approach cybersecurity. Specifically, the cloud is increasingly becoming the first line of cyber defense. As such, along with communicating to the board and creating a security aware culture, the chief information security officer must ensure that the shared responsibility model is being applied properly. Meanwhile, the DevSecOps team has emerged as the critical link between strategy and execution, while audit becomes the free safety, if you will, in the equation, i.e., the last line of defense. Hello, and welcome to this week's, we keep on CUBE Insights, powered by ETR. In this "Breaking Analysis", we'll share the latest data on hyperscale, IaaS, and PaaS market performance, along with some fresh ETR survey data. And we'll share some highlights and the puts and takes from the recent AWS re:Inforce event in Boston. But first, the macro. It's earning season, and that's what many people want to talk about, including us. As we reported last week, the macro spending picture is very mixed and weird. Think back to a week ago when SNAP reported. A player like SNAP misses and the Nasdaq drops 300 points. Meanwhile, Intel, the great semiconductor hope for America misses by a mile, cuts its revenue outlook by 15% for the year, and the Nasdaq was up nearly 250 points just ahead of the close, go figure. Earnings reports from Meta, Google, Microsoft, ServiceNow, and some others underscored cautious outlooks, especially those exposed to the advertising revenue sector. But at the same time, Apple, Microsoft, and Google, were, let's say less bad than expected. And that brought a sigh of relief. And then there's Amazon, which beat on revenue, it beat on cloud revenue, and it gave positive guidance. The Nasdaq has seen this month best month since the isolation economy, which "Breaking Analysis" contributor, Chip Symington, attributes to what he calls an oversold rally. But there are many unknowns that remain. How bad will inflation be? Will the fed really stop tightening after September? The Senate just approved a big spending bill along with corporate tax hikes, which generally don't favor the economy. And on Monday, August 1st, the market will likely realize that we are in the summer quarter, and there's some work to be done. Which is why it's not surprising that investors sold the Nasdaq at the close today on Friday. Are people ready to call the bottom? Hmm, some maybe, but there's still lots of uncertainty. However, the cloud continues its march, despite some very slight deceleration in growth rates from the two leaders. Here's an update of our big four IaaS quarterly revenue data. The big four hyperscalers will account for $165 billion in revenue this year, slightly lower than what we had last quarter. We expect AWS to surpass 83 billion this year in revenue. Azure will be more than 2/3rds the size of AWS, a milestone from Microsoft. Both AWS and Azure came in slightly below our expectations, but still very solid growth at 33% and 46% respectively. GCP, Google Cloud Platform is the big concern. By our estimates GCP's growth rate decelerated from 47% in Q1, and was 38% this past quarter. The company is struggling to keep up with the two giants. Remember, both GCP and Azure, they play a shell game and hide the ball on their IaaS numbers, so we have to use a survey data and other means of estimating. But this is how we see the market shaping up in 2022. Now, before we leave the overall cloud discussion, here's some ETR data that shows the net score or spending momentum granularity for each of the hyperscalers. These bars show the breakdown for each company, with net score on the right and in parenthesis, net score from last quarter. lime green is new adoptions, forest green is spending up 6% or more, the gray is flat, pink is spending at 6% down or worse, and the bright red is replacement or churn. Subtract the reds from the greens and you get net score. One note is this is for each company's overall portfolio. So it's not just cloud. So it's a bit of a mixed bag, but there are a couple points worth noting. First, anything above 40% or 40, here as shown in the chart, is considered elevated. AWS, as you can see, is well above that 40% mark, as is Microsoft. And if you isolate Microsoft's Azure, only Azure, it jumps above AWS's momentum. Google is just barely hanging on to that 40 line, and Alibaba is well below, with both Google and Alibaba showing much higher replacements, that bright red. But here's the key point. AWS and Azure have virtually no churn, no replacements in that bright red. And all four companies are experiencing single-digit numbers in terms of decreased spending within customer accounts. People may be moving some workloads back on-prem selectively, but repatriation is definitely not a trend to bet the house on, in our view. Okay, let's get to the main subject of this "Breaking Analysis". TheCube was at AWS re:Inforce in Boston this week, and we have some observations to share. First, we had keynotes from Steven Schmidt who used to be the chief information security officer at Amazon on Web Services, now he's the CSO, the chief security officer of Amazon. Overall, he dropped the I in his title. CJ Moses is the CISO for AWS. Kurt Kufeld of AWS also spoke, as did Lena Smart, who's the MongoDB CISO, and she keynoted and also came on theCUBE. We'll go back to her in a moment. The key point Schmidt made, one of them anyway, was that Amazon sees more data points in a day than most organizations see in a lifetime. Actually, it adds up to quadrillions over a fairly short period of time, I think, it was within a month. That's quadrillion, it's 15 zeros, by the way. Now, there was drill down focus on data protection and privacy, governance, risk, and compliance, GRC, identity, big, big topic, both within AWS and the ecosystem, network security, and threat detection. Those are the five really highlighted areas. Re:Inforce is really about bringing a lot of best practice guidance to security practitioners, like how to get the most out of AWS tooling. Schmidt had a very strong statement saying, he said, "I can assure you with a 100% certainty that single controls and binary states will absolutely positively fail." Hence, the importance of course, of layered security. We heard a little bit of chat about getting ready for the future and skating to the security puck where quantum computing threatens to hack all of the existing cryptographic algorithms, and how AWS is trying to get in front of all that, and a new set of algorithms came out, AWS is testing. And, you know, we'll talk about that maybe in the future, but that's a ways off. And by its prominent presence, the ecosystem was there enforced, to talk about their role and filling the gaps and picking up where AWS leaves off. We heard a little bit about ransomware defense, but surprisingly, at least in the keynotes, no discussion about air gaps, which we've talked about in previous "Breaking Analysis", is a key factor. We heard a lot about services to help with threat detection and container security and DevOps, et cetera, but there really wasn't a lot of specific talk about how AWS is simplifying the life of the CISO. Now, maybe it's inherently assumed as AWS did a good job stressing that security is job number one, very credible and believable in that front. But you have to wonder if the world is getting simpler or more complex with cloud. And, you know, you might say, "Well, Dave, come on, of course it's better with cloud." But look, attacks are up, the threat surface is expanding, and new exfiltration records are being set every day. I think the hard truth is, the cloud is driving businesses forward and accelerating digital, and those businesses are now exposed more than ever. And that's why security has become such an important topic to boards and throughout the entire organization. Now, the other epiphany that we had at re:Inforce is that there are new layers and a new trust framework emerging in cyber. Roles are shifting, and as a direct result of the cloud, things are changing within organizations. And this first hit me in a conversation with long-time cyber practitioner and Wikibon colleague from our early Wikibon days, and friend, Mike Versace. And I spent two days testing the premise that Michael and I talked about. And here's an attempt to put that conversation into a graphic. The cloud is now the first line of defense. AWS specifically, but hyperscalers generally provide the services, the talent, the best practices, and automation tools to secure infrastructure and their physical data centers. And they're really good at it. The security inside of hyperscaler clouds is best of breed, it's world class. And that first line of defense does take some of the responsibility off of CISOs, but they have to understand and apply the shared responsibility model, where the cloud provider leaves it to the customer, of course, to make sure that the infrastructure they're deploying is properly configured. So in addition to creating a cyber aware culture and communicating up to the board, the CISO has to ensure compliance with and adherence to the model. That includes attracting and retaining the talent necessary to succeed. Now, on the subject of building a security culture, listen to this clip on one of the techniques that Lena Smart, remember, she's the CISO of MongoDB, one of the techniques she uses to foster awareness and build security cultures in her organization. Play the clip >> Having the Security Champion program, so that's just, it's like one of my babies. That and helping underrepresented groups in MongoDB kind of get on in the tech world are both really important to me. And so the Security Champion program is purely purely voluntary. We have over 100 members. And these are people, there's no bar to join, you don't have to be technical. If you're an executive assistant who wants to learn more about security, like my assistant does, you're more than welcome. Up to, we actually, people grade themselves when they join us. We give them a little tick box, like five is, I walk on security water, one is I can spell security, but I'd like to learn more. Mixing those groups together has been game-changing for us. >> Now, the next layer is really where it gets interesting. DevSecOps, you know, we hear about it all the time, shifting left. It implies designing security into the code at the dev level. Shift left and shield right is the kind of buzz phrase. But it's getting more and more complicated. So there are layers within the development cycle, i.e., securing the container. So the app code can't be threatened by backdoors or weaknesses in the containers. Then, securing the runtime to make sure the code is maintained and compliant. Then, the DevOps platform so that change management doesn't create gaps and exposures, and screw things up. And this is just for the application security side of the equation. What about the network and implementing zero trust principles, and securing endpoints, and machine to machine, and human to app communication? So there's a lot of burden being placed on the DevOps team, and they have to partner with the SecOps team to succeed. Those guys are not security experts. And finally, there's audit, which is the last line of defense or what I called at the open, the free safety, for you football fans. They have to do more than just tick the box for the board. That doesn't cut it anymore. They really have to know their stuff and make sure that what they sign off on is real. And then you throw ESG into the mix is becoming more important, making sure the supply chain is green and also secure. So you can see, while much of this stuff has been around for a long, long time, the cloud is accelerating innovation in the pace of delivery. And so much is changing as a result. Now, next, I want to share a graphic that we shared last week, but a little different twist. It's an XY graphic with net score or spending velocity in the vertical axis and overlap or presence in the dataset on the horizontal. With that magic 40% red line as shown. Okay, I won't dig into the data and draw conclusions 'cause we did that last week, but two points I want to make. First, look at Microsoft in the upper-right hand corner. They are big in security and they're attracting a lot of dollars in the space. We've reported on this for a while. They're a five-star security company. And every time, from a spending standpoint in ETR data, that little methodology we use, every time I've run this chart, I've wondered, where the heck is AWS? Why aren't they showing up there? If security is so important to AWS, which it is, and its customers, why aren't they spending money with Amazon on security? And I asked this very question to Merrit Baer, who resides in the office of the CISO at AWS. Listen to her answer. >> It doesn't mean don't spend on security. There is a lot of goodness that we have to offer in ESS, external security services. But I think one of the unique parts of AWS is that we don't believe that security is something you should buy, it's something that you get from us. It's something that we do for you a lot of the time. I mean, this is the definition of the shared responsibility model, right? >> Now, maybe that's good messaging to the market. Merritt, you know, didn't say it outright, but essentially, Microsoft they charge for security. At AWS, it comes with the package. But it does answer my question. And, of course, the fact is that AWS can subsidize all this with egress charges. Now, on the flip side of that, (chuckles) you got Microsoft, you know, they're both, they're competing now. We can take CrowdStrike for instance. Microsoft and CrowdStrike, they compete with each other head to head. So it's an interesting dynamic within the ecosystem. Okay, but I want to turn to a powerful example of how AWS designs in security. And that is the idea of confidential computing. Of course, AWS is not the only one, but we're coming off of re:Inforce, and I really want to dig into something that David Floyer and I have talked about in previous episodes. And we had an opportunity to sit down with Arvind Raghu and J.D. Bean, two security experts from AWS, to talk about this subject. And let's share what we learned and why we think it matters. First, what is confidential computing? That's what this slide is designed to convey. To AWS, they would describe it this way. It's the use of special hardware and the associated firmware that protects customer code and data from any unauthorized access while the data is in use, i.e., while it's being processed. That's oftentimes a security gap. And there are two dimensions here. One is protecting the data and the code from operators on the cloud provider, i.e, in this case, AWS, and protecting the data and code from the customers themselves. In other words, from admin level users are possible malicious actors on the customer side where the code and data is being processed. And there are three capabilities that enable this. First, the AWS Nitro System, which is the foundation for virtualization. The second is Nitro Enclaves, which isolate environments, and then third, the Nitro Trusted Platform Module, TPM, which enables cryptographic assurances of the integrity of the Nitro instances. Now, we've talked about Nitro in the past, and we think it's a revolutionary innovation, so let's dig into that a bit. This is an AWS slide that was shared about how they protect and isolate data and code. On the left-hand side is a classical view of a virtualized architecture. You have a single host or a single server, and those white boxes represent processes on the main board, X86, or could be Intel, or AMD, or alternative architectures. And you have the hypervisor at the bottom which translates instructions to the CPU, allowing direct execution from a virtual machine into the CPU. But notice, you also have blocks for networking, and storage, and security. And the hypervisor emulates or translates IOS between the physical resources and the virtual machines. And it creates some overhead. Now, companies like VMware have done a great job, and others, of stripping out some of that overhead, but there's still an overhead there. That's why people still like to run on bare metal. Now, and while it's not shown in the graphic, there's an operating system in there somewhere, which is privileged, so it's got access to these resources, and it provides the services to the VMs. Now, on the right-hand side, you have the Nitro system. And you can see immediately the differences between the left and right, because the networking, the storage, and the security, the management, et cetera, they've been separated from the hypervisor and that main board, which has the Intel, AMD, throw in Graviton and Trainium, you know, whatever XPUs are in use in the cloud. And you can see that orange Nitro hypervisor. That is a purpose-built lightweight component for this system. And all the other functions are separated in isolated domains. So very strong isolation between the cloud software and the physical hardware running workloads, i.e., those white boxes on the main board. Now, this will run at practically bare metal speeds, and there are other benefits as well. One of the biggest is security. As we've previously reported, this came out of AWS's acquisition of Annapurna Labs, which we've estimated was picked up for a measly $350 million, which is a drop in the bucket for AWS to get such a strategic asset. And there are three enablers on this side. One is the Nitro cards, which are accelerators to offload that wasted work that's done in traditional architectures by typically the X86. We've estimated 25% to 30% of core capacity and cycles is wasted on those offloads. The second is the Nitro security chip, which is embedded and extends the root of trust to the main board hardware. And finally, the Nitro hypervisor, which allocates memory and CPU resources. So the Nitro cards communicate directly with the VMs without the hypervisors getting in the way, and they're not in the path. And all that data is encrypted while it's in motion, and of course, encryption at rest has been around for a while. We asked AWS, is this an, we presumed it was an Arm-based architecture. We wanted to confirm that. Or is it some other type of maybe hybrid using X86 and Arm? They told us the following, and quote, "The SoC, system on chips, for these hardware components are purpose-built and custom designed in-house by Amazon and Annapurna Labs. The same group responsible for other silicon innovations such as Graviton, Inferentia, Trainium, and AQUA. Now, the Nitro cards are Arm-based and do not use any X86 or X86/64 bit CPUs. Okay, so it confirms what we thought. So you may say, "Why should we even care about all this technical mumbo jumbo, Dave?" Well, a year ago, David Floyer and I published this piece explaining why Nitro and Graviton are secret weapons of Amazon that have been a decade in the making, and why everybody needs some type of Nitro to compete in the future. This is enabled, this Nitro innovations and the custom silicon enabled by the Annapurna acquisition. And AWS has the volume economics to make custom silicon. Not everybody can do it. And it's leveraging the Arm ecosystem, the standard software, and the fabrication volume, the manufacturing volume to revolutionize enterprise computing. Nitro, with the alternative processor, architectures like Graviton and others, enables AWS to be on a performance, cost, and power consumption curve that blows away anything we've ever seen from Intel. And Intel's disastrous earnings results that we saw this past week are a symptom of this mega trend that we've been talking about for years. In the same way that Intel and X86 destroyed the market for RISC chips, thanks to PC volumes, Arm is blowing away X86 with volume economics that cannot be matched by Intel. Thanks to, of course, to mobile and edge. Our prediction is that these innovations and the Arm ecosystem are migrating and will migrate further into enterprise computing, which is Intel's stronghold. Now, that stronghold is getting eaten away by the likes of AMD, Nvidia, and of course, Arm in the form of Graviton and other Arm-based alternatives. Apple, Tesla, Amazon, Google, Microsoft, Alibaba, and others are all designing custom silicon, and doing so much faster than Intel can go from design to tape out, roughly cutting that time in half. And the premise of this piece is that every company needs a Nitro to enable alternatives to the X86 in order to support emergent workloads that are data rich and AI-based, and to compete from an economic standpoint. So while at re:Inforce, we heard that the impetus for Nitro was security. Of course, the Arm ecosystem, and its ascendancy has enabled, in our view, AWS to create a platform that will set the enterprise computing market this decade and beyond. Okay, that's it for today. Thanks to Alex Morrison, who is on production. And he does the podcast. And Ken Schiffman, our newest member of our Boston Studio team is also on production. Kristen Martin and Cheryl Knight help spread the word on social media and in the community. And Rob Hof is our editor in chief over at SiliconANGLE. He does some great, great work for us. Remember, all these episodes are available as podcast. Wherever you listen, just search "Breaking Analysis" podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me directly at David.Vellante@siliconangle.com or DM me @dvellante, comment on my LinkedIn post. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. Be well, and we'll see you next time on "Breaking Analysis." (upbeat theme music)

Published Date : Jul 30 2022

SUMMARY :

This is "Breaking Analysis" and the Nasdaq was up nearly 250 points And so the Security Champion program the SecOps team to succeed. of the shared responsibility model, right? and it provides the services to the VMs.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MorrisonPERSON

0.99+

David FloyerPERSON

0.99+

Mike VersacePERSON

0.99+

MichaelPERSON

0.99+

AWSORGANIZATION

0.99+

Steven SchmidtPERSON

0.99+

AmazonORGANIZATION

0.99+

Kurt KufeldPERSON

0.99+

AppleORGANIZATION

0.99+

Dave VellantePERSON

0.99+

TeslaORGANIZATION

0.99+

AlibabaORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

J.D. BeanPERSON

0.99+

Ken SchiffmanPERSON

0.99+

Arvind RaghuPERSON

0.99+

Lena SmartPERSON

0.99+

Kristen MartinPERSON

0.99+

Cheryl KnightPERSON

0.99+

40%QUANTITY

0.99+

Rob HofPERSON

0.99+

DavePERSON

0.99+

SchmidtPERSON

0.99+

Palo AltoLOCATION

0.99+

2022DATE

0.99+

fiveQUANTITY

0.99+

NvidiaORGANIZATION

0.99+

two daysQUANTITY

0.99+

Annapurna LabsORGANIZATION

0.99+

6%QUANTITY

0.99+

SNAPORGANIZATION

0.99+

five-starQUANTITY

0.99+

Chip SymingtonPERSON

0.99+

47%QUANTITY

0.99+

AnnapurnaORGANIZATION

0.99+

$350 millionQUANTITY

0.99+

BostonLOCATION

0.99+

Merrit BaerPERSON

0.99+

CJ MosesPERSON

0.99+

40QUANTITY

0.99+

MerrittPERSON

0.99+

15%QUANTITY

0.99+

25%QUANTITY

0.99+

AMDORGANIZATION

0.99+

Breaking Analysis: Answering the top 10 questions about SuperCloud


 

>> From the theCUBE studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Welcome to this week's Wikibon, theCUBE's insights powered by ETR. As we exited the isolation economy last year, supercloud is a term that we introduced to describe something new that was happening in the world of cloud. In this Breaking Analysis, we address the 10 most frequently asked questions we get around supercloud. Okay, let's review these frequently asked questions on supercloud that we're going to try to answer today. Look at an industry that's full of hype and buzzwords. Why the hell does anyone need a new term? Aren't hyperscalers building out superclouds? We'll try to answer why the term supercloud connotes something different from hyperscale clouds. And we'll talk about the problems that superclouds solve specifically. And we'll further define the critical aspects of a supercloud architecture. We often get asked, isn't this just multi-cloud? Well, we don't think so, and we'll explain why in this Breaking Analysis. Now in an earlier episode, we introduced the notion of super PaaS. Well, isn't a plain vanilla PaaS already a super PaaS? Again, we don't think so, and we'll explain why. Who will actually build and who are the players currently building superclouds? What workloads and services will run on superclouds? And 8-A or number nine, what are some examples that we can share of supercloud? And finally, we'll answer what you can expect next from us on supercloud? Okay, let's get started. Why do we need another buzzword? Well, late last year, ahead of re:Invent, we were inspired by a post from Jerry Chen called "Castles in the Cloud." Now in that blog post, he introduced the idea that there were sub-markets emerging in cloud that presented opportunities for investors and entrepreneurs that the cloud wasn't going to suck the hyperscalers. Weren't going to suck all the value out of the industry. And so we introduced this notion of supercloud to describe what we saw as a value layer emerging above the hyperscalers CAPEX gift, we sometimes call it. Now it turns out, that we weren't the only ones using the term as both Cornell and MIT have used the phrase in somewhat similar, but different contexts. The point is something new was happening in the AWS and other ecosystems. It was more than IaaS and PaaS, and wasn't just SaaS running in the cloud. It was a new architecture that integrates infrastructure, platform and software as services to solve new problems that the cloud vendors in our view, weren't addressing by themselves. It seemed to us that the ecosystem was pursuing opportunities across clouds that went beyond conventional implementations of multi-cloud. And we felt there was a structural change going on at the industry level, the supercloud, metaphorically was highlighting. So that's the background on why we felt a new catch phrase was warranted, love it or hate it. It's memorable and it's what we chose. Now to that last point about structural industry transformation. Andy Rappaport is sometimes and often credited with identifying the shift from the vertically integrated IBM mainframe era to the fragmented PC microprocesor-based era in his HBR article in 1991. In fact, it was David Moschella, who at the time was an IDC Analyst who first introduced the concept in 1987, four years before Rappaport's article was published. Moschella saw that it was clear that Intel, Microsoft, Seagate and others would replace the system vendors, and put that forth in a graphic that looked similar to the first two on this chart. We don't have to review the shift from IBM as the center of the industry to Wintel, that's well understood. What isn't as well known or accepted is what Moschella put out in his 2018 book called "Seeing Digital" which introduced the idea of "The Matrix" that's shown on the right hand side of this chart. Moschella posited that new services were emerging built on top of the internet and hyperscale clouds that would integrate other innovations and would define the next era of computing. He used the term Matrix because the conceptual depiction included not only horizontal technology rose like the cloud and the internet, but for the first time included connected industry verticals, the columns in this chart. Moschella pointed out that whereas historically, industry verticals had a closed value chain or stack and ecosystem of R&D, and production, and manufacturing, and distribution. And if you were in that industry, the expertise within that vertical generally stayed within that vertical and was critical to success. But because of digital and data, for the first time, companies were able to traverse industries, jump across industries and compete because data enabled them to do that. Examples, Amazon and content, payments, groceries, Apple, and payments, and content, and so forth. There are many examples. Data was now this unifying enabler and this marked a change in the structure of the technology landscape. And supercloud is meant to imply more than running in hyperscale clouds, rather it's the combination of multiple technologies enabled by CloudScale with new industry participants from those verticals, financial services and healthcare, manufacturing, energy, media, and virtually all in any industry. Kind of an extension of every company is a software company. Basically, every company now has the opportunity to build their own cloud or supercloud. And we'll come back to that. Let's first address what's different about superclouds relative to hyperscale clouds? You know, this one's pretty straightforward and obvious, I think. Hyperscale clouds, they're walled gardens where they want your data in their cloud and they want to keep you there. Sure, every cloud player realizes that not all data will go to their particular cloud so they're meeting customers where their data lives with initiatives like Amazon Outposts and Azure Arc, and Google Anthos. But at the end of the day, the more homogeneous they can make their environments, the better control, security, cost, and performance they can deliver. The more complex the environment, the more difficult it is to deliver on their brand promises. And of course, the lesser margin that's left for them to capture. Will the hyperscalers get more serious about cross-cloud services? Maybe, but they have plenty of work to do within their own clouds and within enabling their own ecosystems. They had a long way to go a lot of runway. So let's talk about specifically, what problems superclouds solve? We've all seen the stats from IDC or Gartner, or whomever the customers on average use more than one cloud. You know, two clouds, three clouds, five clouds, 20 clouds. And we know these clouds operate in disconnected silos for the most part. And that's a problem because each cloud requires different skills because the development environment is different as is the operating environment. They have different APIs, different primitives, and different management tools that are optimized for each respective hyperscale cloud. Their functions and value props don't extend to their competitors' clouds for the most part. Why would they? As a result, there's friction when moving between different clouds. It's hard to share data, it's hard to move work. It's hard to secure and govern data. It's hard to enforce organizational edicts and policies across these clouds, and on-prem. Supercloud is an architecture designed to create a single environment that enables management of workloads and data across clouds in an effort to take out complexity, accelerate application development, streamline operations and share data safely, irrespective of location. It's pretty straightforward, but non-trivial, which is why I always ask a company's CEO and executives if stock buybacks and dividends will yield as much return as building out superclouds that solve really specific and hard problems, and create differential value. Okay, let's dig a bit more into the architectural aspects of supercloud. In other words, what are the salient attributes of supercloud? So first and foremost, a supercloud runs a set of specific services designed to solve a unique problem and it can do so in more than one cloud. Superclouds leverage the underlying cloud native tooling of a hyperscale cloud, but they're optimized for a specific objective that aligns with the problem that they're trying to solve. For example, supercloud might be optimized for lowest cost or lowest latency, or sharing data, or governing, or securing that data, or higher performance for networking, for example. But the point is, the collection of services that is being delivered is focused on a unique value proposition that is not being delivered by the hyperscalers across clouds. A supercloud abstracts the underlying and siloed primitives of the native PaaS layer from the hyperscale cloud and then using its own specific platform as a service tooling, creates a common experience across clouds for developers and users. And it does so in a most efficient manner, meaning it has the metadata knowledge and management capabilities that can optimize for latency, bandwidth, or recovery, or data sovereignty, or whatever unique value that supercloud is delivering for the specific use case in their domain. And a supercloud comprises a super PaaS capability that allows ecosystem partners through APIs to add incremental value on top of the supercloud platform to fill gaps, accelerate features, and of course innovate. The services can be infrastructure-related, they could be application services, they could be data services, security services, user services, et cetera, designed and packaged to bring unique value to customers. Again, that hyperscalers are not delivering across clouds or on-premises. Okay, so another common question we get is, isn't that just multi-cloud? And what we'd say to that is yes, but no. You can call it multi-cloud 2.0, if you want, if you want to use it, it's kind of a commonly used rubric. But as Dell's Chuck Whitten proclaimed at Dell Technologies World this year, multi-cloud by design, is different than multi-cloud by default. Meaning to date, multi-cloud has largely been a symptom of what we've called multi-vendor or of M&A, you buy a company and they happen to use Google Cloud, and so you bring it in. And when you look at most so-called, multi-cloud implementations, you see things like an on-prem stack, which is wrapped in a container and hosted on a specific cloud or increasingly a technology vendor has done the work of building a cloud native version of their stack and running it on a specific cloud. But historically, it's been a unique experience within each cloud with virtually no connection between the cloud silos. Supercloud sets out to build incremental value across clouds and above hyperscale CAPEX that goes beyond cloud compatibility within each cloud. So if you want to call it multi-cloud 2.0, that's fine, but we chose to call it supercloud. Okay, so at this point you may be asking, well isn't PaaS already a version of supercloud? And again, we would say no, that supercloud and its corresponding superPaaS layer which is a prerequisite, gives the freedom to store, process and manage, and secure, and connect islands of data across a continuum with a common experience across clouds. And the services offered are specific to that supercloud and will vary by each offering. Your OpenShift, for example, can be used to construct a superPaaS, but in and of itself, isn't a superPaaS, it's generic. A superPaaS might be developed to support, for instance, ultra low latency database work. It would unlikely again, taking the OpenShift example, it's unlikely that off-the-shelf OpenShift would be used to develop such a low latency superPaaS layer for ultra low latency database work. The point is supercloud and its inherent superPaaS will be optimized to solve specific problems like that low latency example for distributed databases or fast backup and recovery for data protection, and ransomware, or data sharing, or data governance. Highly specific use cases that the supercloud is designed to solve for. Okay, another question we often get is who has a supercloud today and who's building a supercloud, and who are the contenders? Well, most companies that consider themselves cloud players will, we believe, be building or are building superclouds. Here's a common ETR graphic that we like to show with Net Score or spending momentum on the Y axis and overlap or pervasiveness in the ETR surveys on the X axis. And we've randomly chosen a number of players that we think are in the supercloud mix, and we've included the hyperscalers because they are enablers. Now remember, this is a spectrum of maturity it's a maturity model and we've added some of those industry players that we see building superclouds like CapitalOne, Goldman Sachs, Walmart. This is in deference to Moschella's observation around The Matrix and the industry structural changes that are going on. This goes back to every company, being a software company and rather than pattern match an outdated SaaS model, we see new industry structures emerging where software and data, and tools, specific to an industry will lead the next wave of innovation and bring in new value that traditional technology companies aren't going to solve, and the hyperscalers aren't going to solve. You know, we've talked a lot about Snowflake's data cloud as an example of supercloud. After being at Snowflake Summit, we're more convinced than ever that they're headed in this direction. VMware is clearly going after cross-cloud services you know, perhaps creating a new category. Basically, every large company we see either pursuing supercloud initiatives or thinking about it. Dell showed project Alpine at Dell Tech World, that's a supercloud. Snowflake introducing a new application development capability based on their superPaaS, our term of course, they don't use the phrase. Mongo, Couchbase, Nutanix, Pure Storage, Veeam, CrowdStrike, Okta, Zscaler. Yeah, all of those guys. Yes, Cisco and HPE. Even though on theCUBE at HPE Discover, Fidelma Russo said on theCUBE, she wasn't a fan of cloaking mechanisms, but then we talked to HPE's Head of Storage Services, Omer Asad is clearly headed in the direction that we would consider supercloud. Again, those cross-cloud services, of course, their emphasis is connecting as well on-prem. That single experience, which traditionally has not existed with multi-cloud or hybrid. And we're seeing the emergence of companies, smaller companies like Aviatrix and Starburst, and Clumio and others that are building versions of superclouds that solve for a specific problem for their customers. Even ISVs like Adobe, ADP, we've talked to UiPath. They seem to be looking at new ways to go beyond the SaaS model and add value within their cloud ecosystem specifically, around data as part of their and their customers digital transformations. So yeah, pretty much every tech vendor with any size or momentum and new industry players are coming out of hiding, and competing. Building superclouds that look a lot like Moschella's Matrix, with machine intelligence and blockchains, and virtual realities, and gaming, all enabled by the internet and hyperscale cloud CAPEX. So it's moving fast and it's the future in our opinion. So don't get too caught up in the past or you'll be left behind. Okay, what about examples? We've given a number in the past, but let's try to be a little bit more specific. Here are a few we've selected and we're going to answer the two questions in one section here. What workloads and services will run in superclouds and what are some examples? Let's start with analytics. Our favorite example is Snowflake, it's one of the furthest along with its data cloud, in our view. It's a supercloud optimized for data sharing and governance, query performance, and security, and ecosystem enablement. When you do things inside of that data cloud, what we call a super data cloud. Again, our term, not theirs. You can do things that you could not do in a single cloud. You can't do this with Redshift, You can't do this with SQL server and they're bringing new data types now with merging analytics or at least accommodate analytics and transaction type data, and bringing open source tooling with things like Apache Iceberg. And so it ticks the boxes we laid out earlier. I would say that a company like Databricks is also in that mix doing it, coming at it from a data science perspective, trying to create that consistent experience for data scientists and data engineering across clouds. Converge databases, running transaction and analytic workloads is another example. Take a look at what Couchbase is doing with Capella and how it's enabling stretching the cloud to the edge with ARM-based platforms and optimizing for low latency across clouds, and even out to the edge. Document database workloads, look at MongoDB, a very developer-friendly platform that with the Atlas is moving toward a supercloud model running document databases very, very efficiently. How about general purpose workloads? This is where VMware comes into to play. Very clearly, there's a need to create a common operating environment across clouds and on-prem, and out to the edge. And I say VMware is hard at work on that. Managing and moving workloads, and balancing workloads, and being able to recover very quickly across clouds for everyday applications. Network routing, take a look at what Aviatrix is doing across clouds, industry workloads. We see CapitalOne, it announced its cost optimization platform for Snowflake, piggybacking on Snowflake supercloud or super data cloud. And in our view, it's very clearly going to go after other markets is going to test it out with Snowflake, running, optimizing on AWS and it's going to expand to other clouds as Snowflake's business and those other clouds grows. Walmart working with Microsoft to create an on-premed Azure experience that's seamless. Yes, that counts, on-prem counts. If you can create that seamless and continuous experience, identical experience from on-prem to a hyperscale cloud, we would include that as a supercloud. You know, we've written about what Goldman is doing. Again, connecting its on-prem data and software tooling, and other capabilities to AWS for scale. And we can bet dollars to donuts that Oracle will be building a supercloud in healthcare with its Cerner acquisition. Supercloud is everywhere you look. So I'm sorry, naysayers it's happening all around us. So what's next? Well, with all the industry buzz and debate about the future, John Furrier and I, have decided to host an event in Palo Alto, we're motivated and inspired to further this conversation. And we welcome all points of view, positive, negative, multi-cloud, supercloud, hypercloud, all welcome. So theCUBE on Supercloud is coming on August 9th, out of our Palo Alto studios, we'll be running a live program on the topic. We've reached out to a number of industry participants, VMware, Snowflake, Confluent, Sky High Security, Gee Rittenhouse's new company, HashiCorp, CloudFlare. We've hit up Red Hat and we expect many of these folks will be in our studios on August 9th. And we've invited a number of industry participants as well that we're excited to have on. From industry, from financial services, from healthcare, from retail, we're inviting analysts, thought leaders, investors. We're going to have more detail in the coming weeks, but for now, if you're interested, please reach out to me or John with how you think you can advance the discussion and we'll see if we can fit you in. So mark your calendars, stay tuned for more information. Okay, that's it for today. Thanks to Alex Myerson who handles production and manages the podcast for Breaking Analysis. And I want to thank Kristen Martin and Cheryl Knight, they help get the word out on social and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE, who does a lot of editing and appreciate you posting on SiliconANGLE, Rob. Thanks to all of you. Remember, all these episodes are available as podcasts wherever you listen. All you got to do is search Breaking Analysis podcast. It publish each week on wikibon.com and siliconangle.com. You can email me directly at david.vellante@siliconangle.com or DM me @DVellante, or comment on my LinkedIn post. And please do check out ETR.ai for the best survey data. And the enterprise tech business will be at AWS NYC Summit next Tuesday, July 12th. So if you're there, please do stop by and say hello to theCUBE, it's at the Javits Center. This is Dave Vellante for theCUBE insights powered by ETR. Thanks for watching. And we'll see you next time on "Breaking Analysis." (bright music)

Published Date : Jul 9 2022

SUMMARY :

From the theCUBE studios and how it's enabling stretching the cloud

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

SeagateORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

Dave VellantePERSON

0.99+

1987DATE

0.99+

Andy RappaportPERSON

0.99+

David MoschellaPERSON

0.99+

WalmartORGANIZATION

0.99+

Jerry ChenPERSON

0.99+

IntelORGANIZATION

0.99+

Chuck WhittenPERSON

0.99+

Cheryl KnightPERSON

0.99+

Rob HofPERSON

0.99+

1991DATE

0.99+

August 9thDATE

0.99+

AmazonORGANIZATION

0.99+

HPEORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

JohnPERSON

0.99+

MoschellaPERSON

0.99+

OracleORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

IBMORGANIZATION

0.99+

20 cloudsQUANTITY

0.99+

StarburstORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

DellORGANIZATION

0.99+

Fidelma RussoPERSON

0.99+

2018DATE

0.99+

two questionsQUANTITY

0.99+

AppleORGANIZATION

0.99+

AWSORGANIZATION

0.99+

AviatrixORGANIZATION

0.99+

Omer AsadPERSON

0.99+

Sky High SecurityORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

ConfluentORGANIZATION

0.99+

WintelORGANIZATION

0.99+

NutanixORGANIZATION

0.99+

CapitalOneORGANIZATION

0.99+

CouchbaseORGANIZATION

0.99+

HashiCorpORGANIZATION

0.99+

five cloudsQUANTITY

0.99+

Kristen MartinPERSON

0.99+

last yearDATE

0.99+

david.vellante@siliconangle.comOTHER

0.99+

two cloudsQUANTITY

0.99+

RobPERSON

0.99+

SnowflakeORGANIZATION

0.99+

MongoORGANIZATION

0.99+

Pure StorageORGANIZATION

0.99+

each cloudQUANTITY

0.99+

VeeamORGANIZATION

0.99+

John FurrierPERSON

0.99+

GartnerORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

first twoQUANTITY

0.99+

ClumioORGANIZATION

0.99+

CrowdStrikeORGANIZATION

0.99+

OktaORGANIZATION

0.99+

three cloudsQUANTITY

0.99+

MITORGANIZATION

0.99+

Javits CenterLOCATION

0.99+

first timeQUANTITY

0.99+

ZscalerORGANIZATION

0.99+

RappaportPERSON

0.99+

MoschellaORGANIZATION

0.99+

each weekQUANTITY

0.99+

late last yearDATE

0.99+

UiPathORGANIZATION

0.99+

10 most frequently asked questionsQUANTITY

0.99+

CloudFlareORGANIZATION

0.99+

IDCORGANIZATION

0.99+

one sectionQUANTITY

0.99+

SiliconANGLEORGANIZATION

0.98+

Seeing DigitalTITLE

0.98+

eachQUANTITY

0.98+

firstQUANTITY

0.98+

bothQUANTITY

0.98+

AdobeORGANIZATION

0.98+

more than one cloudQUANTITY

0.98+

each offeringQUANTITY

0.98+

Breaking Analysis: Answering the top 10 questions about supercloud


 

>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vallante. >> Welcome to this week's Wikibon CUBE Insights powered by ETR. As we exited the isolation economy last year, Supercloud is a term that we introduced to describe something new that was happening in the world of cloud. In this "Breaking Analysis," we address the 10 most frequently asked questions we get around Supercloud. Okay, let's review these frequently asked questions on Supercloud that we're going to try to answer today. Look at an industry that's full of hype and buzzwords. Why the hell does anyone need a new term? Aren't hyperscalers building out Superclouds? We'll try to answer why the term Supercloud connotes something different from hyperscale clouds. And we'll talk about the problems that Superclouds solve specifically, and we'll further define the critical aspects of a Supercloud architecture. We often get asked, "Isn't this just multi-cloud?" Well, we don't think so, and we'll explain why in this "Breaking Analysis." Now, in an earlier episode, we introduced the notion of super PaaS. Well, isn't a plain vanilla PaaS already a super PaaS? Again, we don't think so, and we'll explain why. Who will actually build and who are the players currently building Superclouds? What workloads and services will run on Superclouds? And eight A or number nine, what are some examples that we can share of Supercloud? And finally, we'll answer what you can expect next from us on Supercloud. Okay, let's get started. Why do we need another buzzword? Well, late last year ahead of re:Invent, we were inspired by a post from Jerry Chen called castles in the cloud. Now, in that blog post, he introduced the idea that there were submarkets emerging in cloud that presented opportunities for investors and entrepreneurs. That the cloud wasn't going to suck the hyperscalers, weren't going to suck all the value out of the industry. And so we introduced this notion of Supercloud to describe what we saw as a value layer emerging above the hyperscalers CAPEX gift, we sometimes call it. Now, it turns out that we weren't the only ones using the term, as both Cornell and MIT, have used the phrase in somewhat similar, but different contexts. The point is, something new was happening in the AWS and other ecosystems. It was more than IS and PaaS, and wasn't just SaaS running in the cloud. It was a new architecture that integrates infrastructure, platform and software as services, to solve new problems that the cloud vendors, in our view, weren't addressing by themselves. It seemed to us that the ecosystem was pursuing opportunities across clouds that went beyond conventional implementations of multi-cloud. And we felt there was a structural change going on at the industry level. The Supercloud metaphorically was highlighting. So that's the background on why we felt a new catch phrase was warranted. Love it or hate it, it's memorable and it's what we chose. Now, to that last point about structural industry transformation. Andy Rapaport is sometimes and often credited with identifying the shift from the vertically integrated IBM mainframe era to the fragmented PC microprocesor based era in his HBR article in 1991. In fact, it was David Moschella, who at the time was an IDC analyst who first introduced the concept in 1987, four years before Rapaport's article was published. Moschella saw that it was clear that Intel, Microsoft, Seagate and others would replace the system vendors and put that forth in a graphic that looked similar to the first two on this chart. We don't have to review the shift from IBM as the center of the industry to Wintel. That's well understood. What isn't as well known or accepted is what Moschella put out in his 2018 book called "Seeing Digital" which introduced the idea of the matrix that's shown on the right hand side of this chart. Moschella posited that new services were emerging, built on top of the internet and hyperscale clouds that would integrate other innovations and would define the next era of computing. He used the term matrix, because the conceptual depiction included, not only horizontal technology rows, like the cloud and the internet, but for the first time included connected industry verticals, the columns in this chart. Moschella pointed out that, whereas historically, industry verticals had a closed value chain or stack and ecosystem of R&D and production and manufacturing and distribution. And if you were in that industry, the expertise within that vertical generally stayed within that vertical and was critical to success. But because of digital and data, for the first time, companies were able to traverse industries jump across industries and compete because data enabled them to do that. Examples, Amazon and content, payments, groceries, Apple and payments, and content and so forth. There are many examples. Data was now this unifying enabler and this marked a change in the structure of the technology landscape. And Supercloud is meant to imply more than running in hyperscale clouds. Rather, it's the combination of multiple technologies, enabled by cloud scale with new industry participants from those verticals; financial services, and healthcare, and manufacturing, energy, media, and virtually all and any industry. Kind of an extension of every company is a software company. Basically, every company now has the opportunity to build their own cloud or Supercloud. And we'll come back to that. Let's first address what's different about Superclouds relative to hyperscale clouds. Now, this one's pretty straightforward and obvious, I think. Hyperscale clouds, they're walled gardens where they want your data in their cloud and they want to keep you there. Sure, every cloud player realizes that not all data will go to their particular cloud. So they're meeting customers where their data lives with initiatives like Amazon Outposts and Azure Arc and Google Antos. But at the end of the day, the more homogeneous they can make their environments, the better control, security, costs, and performance they can deliver. The more complex the environment, the more difficult it is to deliver on their brand promises. And, of course, the less margin that's left for them to capture. Will the hyperscalers get more serious about cross cloud services? Maybe, but they have plenty of work to do within their own clouds and within enabling their own ecosystems. They have a long way to go, a lot of runway. So let's talk about specifically, what problems Superclouds solve. We've all seen the stats from IDC or Gartner or whomever, that customers on average use more than one cloud, two clouds, three clouds, five clouds, 20 clouds. And we know these clouds operate in disconnected silos for the most part. And that's a problem, because each cloud requires different skills, because the development environment is different as is the operating environment. They have different APIs, different primitives, and different management tools that are optimized for each respective hyperscale cloud. Their functions and value props don't extend to their competitors' clouds for the most part. Why would they? As a result, there's friction when moving between different clouds. It's hard to share data. It's hard to move work. It's hard to secure and govern data. It's hard to enforce organizational edicts and policies across these clouds and on-prem. Supercloud is an architecture designed to create a single environment that enables management of workloads and data across clouds in an effort to take out complexity, accelerate application development, streamline operations, and share data safely, irrespective of location. It's pretty straightforward, but non-trivial, which is why I always ask a company's CEO and executives if stock buybacks and dividends will yield as much return as building out Superclouds that solve really specific and hard problems and create differential value. Okay, let's dig a bit more into the architectural aspects of Supercloud. In other words, what are the salient attributes of Supercloud? So, first and foremost, a Supercloud runs a set of specific services designed to solve a unique problem, and it can do so in more than one cloud. Superclouds leverage the underlying cloud native tooling of a hyperscale cloud, but they're optimized for a specific objective that aligns with the problem that they're trying to solve. For example, Supercloud might be optimized for lowest cost or lowest latency or sharing data or governing or securing that data or higher performance for networking, for example. But the point is, the collection of services that is being delivered is focused on a unique value proposition that is not being delivered by the hyperscalers across clouds. A Supercloud abstracts the underlying and siloed primitives of the native PaaS layer from the hyperscale cloud, and then using its own specific platform as a service tooling, creates a common experience across clouds for developers and users. And it does so in the most efficient manner, meaning it has the metadata knowledge and management capabilities that can optimize for latency, bandwidth, or recovery or data sovereignty, or whatever unique value that Supercloud is delivering for the specific use case in their domain. And a Supercloud comprises a super PaaS capability that allows ecosystem partners through APIs to add incremental value on top of the Supercloud platform to fill gaps, accelerate features, and of course, innovate. The services can be infrastructure related, they could be application services, they could be data services, security services, user services, et cetera, designed and packaged to bring unique value to customers. Again, that hyperscalers are not delivering across clouds or on premises. Okay, so another common question we get is, "Isn't that just multi-cloud?" And what we'd say to that is yeah, "Yes, but no." You can call it multi-cloud 2.0, if you want. If you want to use, it's kind of a commonly used rubric. But as Dell's Chuck Whitten proclaimed at Dell Technologies World this year, multi-cloud, by design, is different than multi-cloud by default. Meaning, to date, multi-cloud has largely been a symptom of what we've called multi-vendor or of M&A. You buy a company and they happen to use Google cloud. And so you bring it in. And when you look at most so-called multi-cloud implementations, you see things like an on-prem stack, which is wrapped in a container and hosted on a specific cloud. Or increasingly, a technology vendor has done the work of building a cloud native version of their stack and running it on a specific cloud. But historically, it's been a unique experience within each cloud, with virtually no connection between the cloud silos. Supercloud sets out to build incremental value across clouds and above hyperscale CAPEX that goes beyond cloud compatibility within each cloud. So, if you want to call it multi-cloud 2.0, that's fine, but we chose to call it Supercloud. Okay, so at this point you may be asking, "Well isn't PaaS already a version of Supercloud?" And again, we would say, "No." That Supercloud and its corresponding super PaaS layer, which is a prerequisite, gives the freedom to store, process, and manage and secure and connect islands of data across a continuum with a common experience across clouds. And the services offered are specific to that Supercloud and will vary by each offering. OpenShift, for example, can be used to construct a super PaaS, but in and of itself, isn't a super PaaS, it's generic. A super PaaS might be developed to support, for instance, ultra low latency database work. It would unlikely, again, taking the OpenShift example, it's unlikely that off the shelf OpenShift would be used to develop such a low latency, super PaaS layer for ultra low latency database work. The point is, Supercloud and its inherent super PaaS will be optimized to solve specific problems like that low latency example for distributed databases or fast backup in recovery for data protection and ransomware, or data sharing or data governance. Highly specific use cases that the Supercloud is designed to solve for. Okay, another question we often get is, "Who has a Supercloud today and who's building a Supercloud and who are the contenders?" Well, most companies that consider themselves cloud players will, we believe, be building or are building Superclouds. Here's a common ETR graphic that we like to show with net score or spending momentum on the Y axis, and overlap or pervasiveness in the ETR surveys on the X axis. And we've randomly chosen a number of players that we think are in the Supercloud mix. And we've included the hyperscalers because they are enablers. Now, remember, this is a spectrum of maturity. It's a maturity model. And we've added some of those industry players that we see building Superclouds like Capital One, Goldman Sachs, Walmart. This is in deference to Moschella's observation around the matrix and the industry structural changes that are going on. This goes back to every company being a software company. And rather than pattern match and outdated SaaS model, we see new industry structures emerging where software and data and tools specific to an industry will lead the next wave of innovation and bring in new value that traditional technology companies aren't going to solve. And the hyperscalers aren't going to solve. We've talked a lot about Snowflake's data cloud as an example of Supercloud. After being at Snowflake Summit, we're more convinced than ever that they're headed in this direction. VMware is clearly going after cross cloud services, perhaps creating a new category. Basically, every large company we see either pursuing Supercloud initiatives or thinking about it. Dell showed Project Alpine at Dell Tech World. That's a Supercloud. Snowflake introducing a new application development capability based on their super PaaS, our term, of course. They don't use the phrase. Mongo, Couchbase, Nutanix, Pure Storage, Veeam, CrowdStrike, Okta, Zscaler. Yeah, all of those guys. Yes, Cisco and HPE. Even though on theCUBE at HPE Discover, Fidelma Russo said on theCUBE, she wasn't a fan of cloaking mechanisms. (Dave laughing) But then we talked to HPE's head of storage services, Omer Asad, and he's clearly headed in the direction that we would consider Supercloud. Again, those cross cloud services, of course, their emphasis is connecting as well on-prem. That single experience, which traditionally has not existed with multi-cloud or hybrid. And we're seeing the emergence of smaller companies like Aviatrix and Starburst and Clumio and others that are building versions of Superclouds that solve for a specific problem for their customers. Even ISVs like Adobe, ADP, we've talked to UiPath. They seem to be looking at new ways to go beyond the SaaS model and add value within their cloud ecosystem, specifically around data as part of their and their customer's digital transformations. So yeah, pretty much every tech vendor with any size or momentum, and new industry players are coming out of hiding and competing, building Superclouds that look a lot like Moschella's matrix, with machine intelligence and blockchains and virtual realities and gaming, all enabled by the internet and hyperscale cloud CAPEX. So it's moving fast and it's the future in our opinion. So don't get too caught up in the past or you'll be left behind. Okay, what about examples? We've given a number in the past but let's try to be a little bit more specific. Here are a few we've selected and we're going to answer the two questions in one section here. What workloads and services will run in Superclouds and what are some examples? Let's start with analytics. Our favorite example of Snowflake. It's one of the furthest along with its data cloud, in our view. It's a Supercloud optimized for data sharing and governance, and query performance, and security, and ecosystem enablement. When you do things inside of that data cloud, what we call a super data cloud. Again, our term, not theirs. You can do things that you could not do in a single cloud. You can't do this with Redshift. You can't do this with SQL server. And they're bringing new data types now with merging analytics or at least accommodate analytics and transaction type data and bringing open source tooling with things like Apache Iceberg. And so, it ticks the boxes we laid out earlier. I would say that a company like Databricks is also in that mix, doing it, coming at it from a data science perspective trying to create that consistent experience for data scientists and data engineering across clouds. Converge databases, running transaction and analytic workloads is another example. Take a look at what Couchbase is doing with Capella and how it's enabling stretching the cloud to the edge with arm based platforms and optimizing for low latency across clouds, and even out to the edge. Document database workloads, look at Mongo DB. A very developer friendly platform that where the Atlas is moving toward a Supercloud model, running document databases very, very efficiently. How about general purpose workloads? This is where VMware comes into play. Very clearly, there's a need to create a common operating environment across clouds and on-prem and out to the edge. And I say, VMware is hard at work on that, managing and moving workloads and balancing workloads, and being able to recover very quickly across clouds for everyday applications. Network routing, take a look at what Aviatrix is doing across clouds. Industry workloads, we see Capital One. It announced its cost optimization platform for Snowflake, piggybacking on Snowflake's Supercloud or super data cloud. And in our view, it's very clearly going to go after other markets. It's going to test it out with Snowflake, optimizing on AWS, and it's going to expand to other clouds as Snowflake's business and those other clouds grows. Walmart working with Microsoft to create an on-premed Azure experience that's seamless. Yes, that counts, on-prem counts. If you can create that seamless and continuous experience, identical experience from on-prem to a hyperscale cloud, we would include that as a Supercloud. We've written about what Goldman is doing. Again, connecting its on-prem data and software tooling, and other capabilities to AWS for scale. And you can bet dollars to donuts that Oracle will be building a Supercloud in healthcare with its Cerner acquisition. Supercloud is everywhere you look. So I'm sorry, naysayers, it's happening all around us. So what's next? Well, with all the industry buzz and debate about the future, John Furrier and I have decided to host an event in Palo Alto. We're motivated and inspired to further this conversation. And we welcome all points of view, positive, negative, multi-cloud, Supercloud, HyperCloud, all welcome. So theCUBE on Supercloud is coming on August 9th out of our Palo Alto studios. We'll be running a live program on the topic. We've reached out to a number of industry participants; VMware, Snowflake, Confluent, Skyhigh Security, G. Written House's new company, HashiCorp, CloudFlare. We've hit up Red Hat and we expect many of these folks will be in our studios on August 9th. And we've invited a number of industry participants as well that we're excited to have on. From industry, from financial services, from healthcare, from retail, we're inviting analysts, thought leaders, investors. We're going to have more detail in the coming weeks, but for now, if you're interested, please reach out to me or John with how you think you can advance the discussion, and we'll see if we can fit you in. So mark your calendars, stay tuned for more information. Okay, that's it for today. Thanks to Alex Myerson who handles production and manages the podcast for "Breaking Analysis." And I want to thank Kristen Martin and Cheryl Knight. They help get the word out on social and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE, who does a lot of editing and appreciate you posting on SiliconANGLE, Rob. Thanks to all of you. Remember, all these episodes are available as podcasts wherever you listen. All you got to do is search, breaking analysis podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me directly at david.vellante@siliconangle.com. Or DM me @DVallante, or comment on my LinkedIn post. And please, do check out etr.ai for the best survey data in the enterprise tech business. We'll be at AWS NYC summit next Tuesday, July 12th. So if you're there, please do stop by and say hello to theCUBE. It's at the Javits Center. This is Dave Vallante for theCUBE Insights, powered by ETR. Thanks for watching. And we'll see you next time on "Breaking Analysis." (slow music)

Published Date : Jul 8 2022

SUMMARY :

This is "Breaking Analysis" stretching the cloud to the edge

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

SeagateORGANIZATION

0.99+

1987DATE

0.99+

Dave VallantePERSON

0.99+

MicrosoftORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

1991DATE

0.99+

Andy RapaportPERSON

0.99+

Jerry ChenPERSON

0.99+

MoschellaPERSON

0.99+

OracleORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

David MoschellaPERSON

0.99+

Rob HofPERSON

0.99+

Palo AltoLOCATION

0.99+

August 9thDATE

0.99+

IntelORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

HPEORGANIZATION

0.99+

Chuck WhittenPERSON

0.99+

IBMORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Fidelma RussoPERSON

0.99+

20 cloudsQUANTITY

0.99+

AWSORGANIZATION

0.99+

WintelORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

two questionsQUANTITY

0.99+

DellORGANIZATION

0.99+

John FurrierPERSON

0.99+

2018DATE

0.99+

AppleORGANIZATION

0.99+

JohnPERSON

0.99+

BostonLOCATION

0.99+

AviatrixORGANIZATION

0.99+

StarburstORGANIZATION

0.99+

ConfluentORGANIZATION

0.99+

five cloudsQUANTITY

0.99+

ClumioORGANIZATION

0.99+

CouchbaseORGANIZATION

0.99+

first timeQUANTITY

0.99+

NutanixORGANIZATION

0.99+

MoschellaORGANIZATION

0.99+

Skyhigh SecurityORGANIZATION

0.99+

MITORGANIZATION

0.99+

HashiCorpORGANIZATION

0.99+

last yearDATE

0.99+

RobPERSON

0.99+

two cloudsQUANTITY

0.99+

three cloudsQUANTITY

0.99+

david.vellante@siliconangle.comOTHER

0.99+

first twoQUANTITY

0.99+

Kristen MartinPERSON

0.99+

MongoORGANIZATION

0.99+

GartnerORGANIZATION

0.99+

CrowdStrikeORGANIZATION

0.99+

OktaORGANIZATION

0.99+

Pure StorageORGANIZATION

0.99+

Omer AsadPERSON

0.99+

Capital OneORGANIZATION

0.99+

each cloudQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

VeeamORGANIZATION

0.99+

OpenShiftTITLE

0.99+

10 most frequently asked questionsQUANTITY

0.99+

RapaportPERSON

0.99+

SiliconANGLEORGANIZATION

0.99+

CloudFlareORGANIZATION

0.99+

one sectionQUANTITY

0.99+

Seeing DigitalTITLE

0.99+

VMwareORGANIZATION

0.99+

IDCORGANIZATION

0.99+

ZscalerORGANIZATION

0.99+

each weekQUANTITY

0.99+

Javits CenterLOCATION

0.99+

late last yearDATE

0.98+

firstQUANTITY

0.98+

AdobeORGANIZATION

0.98+

more than one cloudQUANTITY

0.98+

each offeringQUANTITY

0.98+

Breaking Analysis: Tech Spending Intentions are Holding Despite Macro Concerns


 

>> From theCUBE studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante. >> Despite fears of inflation, supply chain issues skyrocketing energy and home prices and global instability caused by the Ukraine crisis CIOs and IT buyers continue to expect overall spending to increase more than 6% in 2022. Now, while this is lower than our 8% prediction that we made earlier this year in January, it remains in line with last year's roughly six to 7% growth and is holding firm with the expectations reported by tech executives on the ETR surveys last quarter. Hello and welcome to this week's wiki bond cube insights powered by ETR in this breaking analysis, we'll update you on our latest look at tech spending with a preliminary take from ETR's latest macro drill down survey. We'll share some insights to which vendors have shown the biggest change in spending trajectory. And we'll tap our technical analysts to get a read on what they think it means for technology stocks going forward. The IT spending sentiment among IT buyers remains pretty solid. >> In the past two months, we've had conversations with dozens of CIOs, chief digital officers data executives, IT managers, and application developers, and across the board, they've indicated that for now at least their spending levels remain largely unchanged. The latest ETR drill down data which will share shortly, confirms these anecdotal checks. However, the interpretation of this data it's somewhat nuanced. Part of the reason for the spending levels being you know reasonably strong and holding up is inflation. Stuff costs more so spending levels are higher forcing IT managers to prioritize. Now security remains the number one priority and is less susceptible to cuts, cloud migration, productivity initiatives and other data projects remain top priorities. >> So where are CIO's robbing from Peter to pay Paul to focus on these priorities? Well, we've seen a slight uptick in certain speculative. IT projects being put on hold or frozen for a period of time. And according to ETR survey data we've seen some hiring freezes reported and this is especially notable in the healthcare sector. ETR also surveyed its buyer base to find out where they were adjusting their budgets and the strategies and tactics they were using to do so. Consolidating IT vendors was by far the most cited tactic. Now this makes sense as companies in an effort to negotiate better deals will often forego investments in newer so-called best of breed products and services, and negotiate bundles from larger suppliers. You know, even though they might not be as functional, the buyers >> can get a better deal if they bundle together from one of their larger suppliers. Think Microsoft or a Dell or other, you know, large companies. ETR survey respondents also cited cutting the cloud bill where discretionary spending was in play was another strategy or tactic that they were using. We certainly saw this with some of the largest snowflake customers this past quarter. Where even though they were still growing consumption rapidly certain snowflake customers dialed down their consumption and pushed spending off to future quarters. Now remember in the case of snowflake, anyway, customers negotiate consumption rates and their pricing based on a total commitment over a period of time. So while they may consume less in one quarter, over the lifetime of the contract, snowflake, as do many other cloud companies, have good visibility on the lifetime value of a deal. Now this next chart shows the latest ETR spending expectations among more than 900 respondents. The bars represent spending growth expectations from the periods of December, 2021 that's the gray bars, March of 2022 survey in the blue, and the most recent June data, That's the yellow bar. So you can see spending expectations for the quarter is down slightly in the mid 5% range. But overall for the year expectations remain in the mid 6% range. Now it's down from 8%, 8.3% in December where it looked like 2022 was going to really be a breakout year and have more momentum than even last year. Now, remember this was before Russia invaded Ukraine which occurred in mid-February of this year. So expectations were a little higher. So look, generally speaking CIOs have told us that their CFOs and CEOs have lowered their earnings outlooks and communicated that to Wall Street. They've told us that unless and until these revised forecasts appear at risk, they continue to expect their budget levels to remain pretty constant. Now there's still plenty of momentum and spending velocity on specific vendor platforms. Let's take a look at that. >> This chart shows the companies with the greatest spending momentum as measured by ETRs proprietary net score methodology. Net score essentially measures the net percent of customers spending more on a particular platform. That measurement is shown on the Y axis. The red line there that's inserted that red dotted line at 40%, we consider to be a highly elevated mark. And the green dots are companies in the ETR survey that are near or above that line. The X axis measures the presence in the data set, how much, you know sort of pervasiveness, if you will, is in the data. It's kind of a proxy for market presence. Now, of course we all know Kubernetes is not a company, but it remains an area where organizations are spending lots of resources and time particularly to modernize and mobilize applications. Snowflake remains the company which leads all firms in spending velocity, but as you'll see momentarily, despite its highest position relative to everybody else in the survey, it's still down from its previous levels in the high seventies and low 80% range. AWS is incredibly impressive because it has an elevated level but also a big presence in the data set in the survey. Same with Microsoft, same with ServiceNow which also stands out. And you can see the other smaller vendors like HashiCorp which is increasingly being seen as a strategic cross cloud enabler. They're showing, spending momentum. The RPA vendors you see in there automation anywhere and UI path are in the mix with numerous security companies, CrowdStrike, CyberArk, Netskope, Cloudflare, Tenable Okta, Zscaler Palo Alto networks, Sale Point Fortunate. A big number of cybersecurity firms hovering at or above that 40% mark you can see pure storage remains elevated as do PagerDuty and Coupa. So plenty of good news here, despite the recent tech crash. So that was the good, here's the not so good. So >> there is no 40% line on this chart because all these companies are well below that line. Now this doesn't mean these companies are bad companies. They just don't have the spending velocity of the ones we showed earlier. A good example here is Oracle. Look how they stand out on the X axis with a huge market presence. And Oracle remains an incredibly successful company selling to high end customers and really owning that mission critical data and application space. And remember ETR measures spending activity, but not actual spending dollars. So Oracle is skewed as a result because Oracle customers spend big bucks. But the fact is that Oracle has a large legacy install base that pulls down their growth rates. And that does show up in the ETR survey data. Broadcom is another example. They're one of the most successful companies in the industry, and they're not going after growth at all costs at all. They're going after EBITDA and of course ETR doesn't measure EBIT. So just keep that in mind, as you look at this data. Now another way to look at the data and the survey, is exploring the net score movement over the last period amongst companies. So how are they moving? What's happening to the net score over time. And this chart shows the year over year >> net score change for vendors that participate in at least three sectors within the ETR taxonomy. Remember ETR taxonomy has 12, 15 different segments. So the names above or below the gray dotted line are those companies where the net score has increased or decreased meaningfully. So to the earlier chart, it's all relative, right? Look at Oracle. While having lower net scores has also shown a more meaningful improvement in net score than some of the others, as have SAP and Teradata. Now what's impressive to me here is how AWS, Microsoft, and Google are actually holding that dotted line that gray line pretty well despite their size and the other ironically interesting two data points here are Broadcom and Nutanix. Now Broadcom, of course, as we've reported and dug into, is buying VMware and, and of, of course most customers are concerned about getting hit with higher prices. Once Broadcom takes over. Well Nutanix despite its change in net scores, in a good position potentially to capture some of that VMware business. Just yesterday, I talked to a customer who told me he migrated his entire portfolio off VMware using Nutanix AHV, the Acropolis hypervisor. And that was in an effort to avoid the VTEX specifically. Now this was a smaller customer granted and it's not representative of what I feel is Broadcom's ICP the ideal customer profile, but look, Nutanix should benefit from the Broadcom acquisition. If it can position itself to pick up the business that Broadcom really doesn't want. That kind of bottom of the pyramid. One person's trash is another's treasure as they say, okay. And here's that same chart for companies >> that participate in less than three segments. So, two or one of the segments in the ETR taxonomy. Only three names are seeing positive movement year over year in net score. SUSE under the leadership of amazing CEO, Melissa Di Donato. She's making moves. The company went public last year and acquired rancher labs in 2020. Look, we know that red hat is the big dog in Kubernetes but since the IBM acquisition people have looked to SUSE as a possible alternative and it's showing up in the numbers. It's a nice business. It's going to do more than 600 million this year in revenue, SUSE that is. It's got solid double digit growth in kind of the low teens. It's profitability is under pressure but they're definitely a player that is found a niche and is worth watching. The SolarWinds, What can I say there? I mean, maybe it's a dead cat bounce coming off the major breach that we saw a couple years ago. Some of its customers maybe just can't move off the platform. Constant contact we really don't follow and don't really, you know, focus on them. So, not much to say there. Now look at all the high priced earning stocks or infinite PE stocks that have no E and divide by zero or a negative number and boom, you have infinite PE and look at how their net scores have dropped. We've reported extensively on snowflake. They're still number one as we showed you earlier, net score, but big moves off their highs. Okta, Datadog, Zscaler, SentinelOne Dynatrace, big downward moves, and you can see the rest. So this chart really speaks to the change in expectations from the COVID bubble. Despite the fact that many of these companies CFOs would tell you that the pandemic wasn't necessarily a tailwind for them, but it certainly seemed to be the case when you look back in some of the ETR data. But a big question in the community is what's going to happen to these tech stocks, these tech companies in the market? We reached out to both Eric Bradley of ETR who used to be a technical analyst on Wall Street, and the long time trader and breaking analysis contributor, Chip Symington to get a read on what they thought. First, you know the market >> first point of the market has been off 11 out of the past 12 weeks. And bare market rallies like what we're seeing today and yesterday, they happen from time to time and it was kind of expected. Chair Powell's testimony was broadly viewed as a positive by the street because higher interest rates appear to be pushing commodity prices down. And a weaker consumer sentiment may point to a less onerous inflation outlook. That's good for the market. Chip Symington pointed out to breaking analysis a while ago that the NASDAQ has been on a trend line for the past six months where its highs are lower and the lows are lower and that's a bad sign. And we're bumping up against that trend line here. Meaning if it breaks through that trend it could be a buying signal. As he feels that tech stocks are oversold. He pointed to a recent bounce in semiconductors and cited the Qualcomm example. Here's a company trading at 12 times forward earnings with a sustained 14% growth rate over the next couple of years. And their cash flow is able to support their 2.4, 2% annual dividend. So overall Symington feels this rally was absolutely expected. He's cautious because we're still in a bear market but he's beginning to, to turn bullish. And Eric Bradley added that He feels the market is building a base here and he doesn't expect a 1970s or early 1980s year long sideways move because of all the money that's still in the system. You know, but it could bounce around for several months And remember with higher interest rates there are going to be more options other than equities which for many years has not been the case. Obviously inflation and recession. They are like two looming towers that we're all watching closely and will ultimately determine if, when, and how this market turns around. Okay, that's it for today. Thanks to my colleagues, Stephanie Chan, who helps research breaking analysis topics sometimes, and Alex Myerson who is on production in the podcast. Kristin Martin and Cheryl Knight they help get the word out and do all of our newsletters. And Rob Hof is our Editor in Chief over at siliconangle.com and does some wonderful editing for breaking analysis. Thank you. Remember, all these episodes are available as podcasts wherever you listen. All you got to do is search breaking analysis podcasts. I publish each week on wikibon.com and Siliconangle.com. And of course you can reach me by email at david.vellante@siliconangle.com or DM me at DVellante comment on my LinkedIn post and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for the CUBE insights powered by ETR. Stay safe, be well. And we'll see you next time. (soft music)

Published Date : Jun 25 2022

SUMMARY :

bringing you data driven by tech executives on the and across the board, they've and the strategies and tactics and the most recent June in the data set, how much, you know and the survey, is exploring That kind of bottom of the pyramid. in kind of the low teens. and the lows are lower

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Stephanie ChanPERSON

0.99+

Alex MyersonPERSON

0.99+

Cheryl KnightPERSON

0.99+

Eric BradleyPERSON

0.99+

BroadcomORGANIZATION

0.99+

Kristin MartinPERSON

0.99+

MicrosoftORGANIZATION

0.99+

NutanixORGANIZATION

0.99+

AWSORGANIZATION

0.99+

Melissa Di DonatoPERSON

0.99+

2020DATE

0.99+

GoogleORGANIZATION

0.99+

Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

DecemberDATE

0.99+

DatadogORGANIZATION

0.99+

OracleORGANIZATION

0.99+

ZscalerORGANIZATION

0.99+

2.4, 2%QUANTITY

0.99+

yesterdayDATE

0.99+

12 timesQUANTITY

0.99+

December, 2021DATE

0.99+

PaulPERSON

0.99+

14%QUANTITY

0.99+

Chip SymingtonPERSON

0.99+

DellORGANIZATION

0.99+

twoQUANTITY

0.99+

Palo AltoLOCATION

0.99+

Rob HofPERSON

0.99+

NASDAQORGANIZATION

0.99+

PagerDutyORGANIZATION

0.99+

QualcommORGANIZATION

0.99+

2022DATE

0.99+

oneQUANTITY

0.99+

40%QUANTITY

0.99+

last yearDATE

0.99+

OktaORGANIZATION

0.99+

1970sDATE

0.99+

PeterPERSON

0.99+

11QUANTITY

0.99+

more than 600 millionQUANTITY

0.99+

last quarterDATE

0.99+

FirstQUANTITY

0.99+

8%QUANTITY

0.99+

ETRORGANIZATION

0.99+

david.vellante@siliconangle.comOTHER

0.99+

more than 900 respondentsQUANTITY

0.99+

two looming towersQUANTITY

0.99+

more than 6%QUANTITY

0.99+

JuneDATE

0.99+

NetskopeORGANIZATION

0.99+

dozensQUANTITY

0.99+

todayDATE

0.99+

CoupaORGANIZATION

0.99+

VTEXORGANIZATION

0.98+

bothQUANTITY

0.98+

zeroQUANTITY

0.98+

each weekQUANTITY

0.98+

AcropolisORGANIZATION

0.98+

less than three segmentsQUANTITY

0.98+

this yearDATE

0.98+

early 1980sDATE

0.98+

three namesQUANTITY

0.97+

siliconangle.comOTHER

0.97+

this weekDATE

0.97+

theCUBEORGANIZATION

0.97+

TeradataORGANIZATION

0.97+

Nutanix AHVORGANIZATION

0.97+

CyberArkORGANIZATION

0.97+

8.3%QUANTITY

0.96+

Breaking Analysis: Snowflake Summit 2022...All About Apps & Monetization


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Snowflake Summit 2022 underscored that the ecosystem excitement which was once forming around Hadoop is being reborn, escalated and coalescing around Snowflake's data cloud. What was once seen as a simpler cloud data warehouse and good marketing with the data cloud is evolving rapidly with new workloads of vertical industry focus, data applications, monetization, and more. The question is, will the promise of data be fulfilled this time around, or is it same wine, new bottle? Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this "Breaking Analysis," we'll talk about the event, the announcements that Snowflake made that are of greatest interest, the major themes of the show, what was hype and what was real, the competition, and some concerns that remain in many parts of the ecosystem and pockets of customers. First let's look at the overall event. It was held at Caesars Forum. Not my favorite venue, but I'll tell you it was packed. Fire Marshall Full, as we sometimes say. Nearly 10,000 people attended the event. Here's Snowflake's CMO Denise Persson on theCUBE describing how this event has evolved. >> Yeah, two, three years ago, we were about 1800 people at a Hilton in San Francisco. We had about 40 partners attending. This week we're close to 10,000 attendees here. Almost 10,000 people online as well, and over over 200 partners here on the show floor. >> Now, those numbers from 2019 remind me of the early days of Hadoop World, which was put on by Cloudera but then Cloudera handed off the event to O'Reilly as this article that we've inserted, if you bring back that slide would say. The headline it almost got it right. Hadoop World was a failure, but it didn't have to be. Snowflake has filled the void created by O'Reilly when it first killed Hadoop World, and killed the name and then killed Strata. Now, ironically, the momentum and excitement from Hadoop's early days, it probably could have stayed with Cloudera but the beginning of the end was when they gave the conference over to O'Reilly. We can't imagine Frank Slootman handing the keys to the kingdom to a third party. Serious business was done at this event. I'm talking substantive deals. Salespeople from a host sponsor and the ecosystems that support these events, they love physical. They really don't like virtual because physical belly to belly means relationship building, pipeline, and deals. And that was blatantly obvious at this show. And in fairness, all theCUBE events that we've done year but this one was more vibrant because of its attendance and the action in the ecosystem. Ecosystem is a hallmark of a cloud company, and that's what Snowflake is. We asked Frank Slootman on theCUBE, was this ecosystem evolution by design or did Snowflake just kind of stumble into it? Here's what he said. >> Well, when you are a data clouding, you have data, people want to do things with that data. They don't want just run data operations, populate dashboards, run reports. Pretty soon they want to build applications and after they build applications, they want build businesses on it. So it goes on and on and on. So it drives your development to enable more and more functionality on that data cloud. Didn't start out that way, you know, we were very, very much focused on data operations. Then it becomes application development and then it becomes, hey, we're developing whole businesses on this platform. So similar to what happened to Facebook in many ways. >> So it sounds like it was maybe a little bit of both. The Facebook analogy is interesting because Facebook is a walled garden, as is Snowflake, but when you come into that garden, you have assurances that things are going to work in a very specific way because a set of standards and protocols is being enforced by a steward, i.e. Snowflake. This means things run better inside of Snowflake than if you try to do all the integration yourself. Now, maybe over time, an open source version of that will come out but if you wait for that, you're going to be left behind. That said, Snowflake has made moves to make its platform more accommodating to open source tooling in many of its announcements this week. Now, I'm not going to do a deep dive on the announcements. Matt Sulkins from Monte Carlo wrote a decent summary of the keynotes and a number of analysts like Sanjeev Mohan, Tony Bear and others are posting some deeper analysis on these innovations, and so we'll point to those. I'll say a few things though. Unistore extends the type of data that can live in the Snowflake data cloud. It's enabled by a new feature called hybrid tables, a new table type in Snowflake. One of the big knocks against Snowflake was it couldn't handle and transaction data. Several database companies are creating this notion of a hybrid where both analytic and transactional workloads can live in the same data store. Oracle's doing this for example, with MySQL HeatWave and there are many others. We saw Mongo earlier this month add an analytics capability to its transaction system. Mongo also added sequel, which was kind of interesting. Here's what Constellation Research analyst Doug Henschen said about Snowflake's moves into transaction data. Play the clip. >> Well with Unistore, they're reaching out and trying to bring transactional data in. Hey, don't limit this to analytical information and there's other ways to do that like CDC and streaming but they're very closely tying that again to that marketplace, with the idea of bring your data over here and you can monetize it. Don't just leave it in that transactional database. So another reach to a broader play across a big community that they're building. >> And you're also seeing Snowflake expand its workload types in its unique way and through Snowpark and its stream lit acquisition, enabling Python so that native apps can be built in the data cloud and benefit from all that structure and the features that Snowflake is built in. Hence that Facebook analogy, or maybe the App Store, the Apple App Store as I propose as well. Python support also widens the aperture for machine intelligence workloads. We asked Snowflake senior VP of product, Christian Kleinerman which announcements he thought were the most impactful. And despite the who's your favorite child nature of the question, he did answer. Here's what he said. >> I think the native applications is the one that looks like, eh, I don't know about it on the surface but he has the biggest potential to change everything. That's create an entire ecosystem of solutions for within a company or across companies that I don't know that we know what's possible. >> Snowflake also announced support for Apache Iceberg, which is a new open table format standard that's emerging. So you're seeing Snowflake respond to these concerns about its lack of openness, and they're building optionality into their cloud. They also showed some cost op optimization tools both from Snowflake itself and from the ecosystem, notably Capital One which launched a software business on top of Snowflake focused on optimizing cost and eventually the rollout data management capabilities, and all kinds of features that Snowflake announced that the show around governance, cross cloud, what we call super cloud, a new security workload, and they reemphasize their ability to read non-native on-prem data into Snowflake through partnerships with Dell and Pure and a lot more. Let's hear from some of the analysts that came on theCUBE this week at Snowflake Summit to see what they said about the announcements and their takeaways from the event. This is Dave Menninger, Sanjeev Mohan, and Tony Bear, roll the clip. >> Our research shows that the majority of organizations, the majority of people do not have access to analytics. And so a couple of the things they've announced I think address those or help to address those issues very directly. So Snowpark and support for Python and other languages is a way for organizations to embed analytics into different business processes. And so I think that'll be really beneficial to try and get analytics into more people's hands. And I also think that the native applications as part of the marketplace is another way to get applications into people's hands rather than just analytical tools. Because most people in the organization are not analysts. They're doing some line of business function. They're HR managers, they're marketing people, they're sales people, they're finance people, right? They're not sitting there mucking around in the data, they're doing a job and they need analytics in that job. >> Primarily, I think it is to contract this whole notion that once you move data into Snowflake, it's a proprietary format. So I think that's how it started but it's usually beneficial to the customers, to the users because now if you have large amount of data in paket files you can leave it on S3, but then you using the Apache Iceberg table format in Snowflake, you get all the benefits of Snowflake's optimizer. So for example, you get the micro partitioning, you get the metadata. And in a single query, you can join, you can do select from a Snowflake table union and select from an iceberg table and you can do store procedure, user defined function. So I think what they've done is extremely interesting. Iceberg by itself still does not have multi-table transactional capabilities. So if I'm running a workload, I might be touching 10 different tables. So if I use Apache Iceberg in a raw format, they don't have it, but Snowflake does. So the way I see it is Snowflake is adding more and more capabilities right into the database. So for example, they've gone ahead and added security and privacy. So you can now create policies and do even cell level masking, dynamic masking, but most organizations have more than Snowflake. So what we are starting to see all around here is that there's a whole series of data catalog companies, a bunch of companies that are doing dynamic data masking, security and governance, data observability which is not a space Snowflake has gone into. So there's a whole ecosystem of companies that is mushrooming. Although, you know, so they're using the native capabilities of Snowflake but they are at a level higher. So if you have a data lake and a cloud data warehouse and you have other like relational databases, you can run these cross platform capabilities in that layer. So that way, you know, Snowflake's done a great job of enabling that ecosystem. >> I think it's like the last mile, essentially. In other words, it's like, okay, you have folks that are basically that are very comfortable with Tableau but you do have developers who don't want to have to shell out to a separate tool. And so this is where Snowflake is essentially working to address that constituency. To Sanjeev's point, and I think part of it, this kind of plays into it is what makes this different from the Hadoop era is the fact that all these capabilities, you know, a lot of vendors are taking it very seriously to put this native. Now, obviously Snowflake acquired Streamlit. So we can expect that the Streamlit capabilities are going to be native. >> I want to share a little bit about the higher level thinking at Snowflake, here's a chart from Frank Slootman's keynote. It's his version of the modern data stack, if you will. Now, Snowflake of course, was built on the public cloud. If there were no AWS, there would be no Snowflake. Now, they're all about bringing data and live data and expanding the types of data, including structured, we just heard about that, unstructured, geospatial, and the list is going to continue on and on. Eventually I think it's going to bleed into the edge if we can figure out what to do with that edge data. Executing on new workloads is a big deal. They started with data sharing and they recently added security and they've essentially created a PaaS layer. We call it a SuperPaaS layer, if you will, to attract application developers. Snowflake has a developer-focused event coming up in November and they've extended the marketplace with 1300 native apps listings. And at the top, that's the holy grail, monetization. We always talk about building data products and we saw a lot of that at this event, very, very impressive and unique. Now here's the thing. There's a lot of talk in the press, in the Wall Street and the broader community about consumption-based pricing and concerns over Snowflake's visibility and its forecast and how analytics may be discretionary. But if you're a company building apps in Snowflake and monetizing like Capital One intends to do, and you're now selling in the marketplace, that is not discretionary, unless of course your costs are greater than your revenue for that service, in which case is going to fail anyway. But the point is we're entering a new error where data apps and data products are beginning to be built and Snowflake is attempting to make the data cloud the defacto place as to where you're going to build them. In our view they're well ahead in that journey. Okay, let's talk about some of the bigger themes that we heard at the event. Bringing apps to the data instead of moving the data to the apps, this was a constant refrain and one that certainly makes sense from a physics point of view. But having a single source of data that is discoverable, sharable and governed with increasingly robust ecosystem options, it doesn't have to be moved. Sometimes it may have to be moved if you're going across regions, but that's unique and a differentiator for Snowflake in our view. I mean, I'm yet to see a data ecosystem that is as rich and growing as fast as the Snowflake ecosystem. Monetization, we talked about that, industry clouds, financial services, healthcare, retail, and media, all front and center at the event. My understanding is that Frank Slootman was a major force behind this shift, this development and go to market focus on verticals. It's really an attempt, and he talked about this in his keynote to align with the customer mission ultimately align with their objectives which not surprisingly, are increasingly monetizing with data as a differentiating ingredient. We heard a ton about data mesh, there were numerous presentations about the topic. And I'll say this, if you map the seven pillars Snowflake talks about, Benoit Dageville talked about this in his keynote, but if you map those into Zhamak Dehghani's data mesh framework and the four principles, they align better than most of the data mesh washing that I've seen. The seven pillars, all data, all workloads, global architecture, self-managed, programmable, marketplace and governance. Those are the seven pillars that he talked about in his keynote. All data, well, maybe with hybrid tables that becomes more of a reality. Global architecture means the data is globally distributed. It's not necessarily physically in one place. Self-managed is key. Self-service infrastructure is one of Zhamak's four principles. And then inherent governance. Zhamak talks about computational, what I'll call automated governance, built in. And with all the talk about monetization, that aligns with the second principle which is data as product. So while it's not a pure hit and to its credit, by the way, Snowflake doesn't use data mesh in its messaging anymore. But by the way, its customers do, several customers talked about it. Geico, JPMC, and a number of other customers and partners are using the term and using it pretty closely to the concepts put forth by Zhamak Dehghani. But back to the point, they essentially, Snowflake that is, is building a proprietary system that substantially addresses some, if not many of the goals of data mesh. Okay, back to the list, supercloud, that's our term. We saw lots of examples of clouds on top of clouds that are architected to spin multiple clouds, not just run on individual clouds as separate services. And this includes Snowflake's data cloud itself but a number of ecosystem partners that are headed in a very similar direction. Snowflake still talks about data sharing but now it uses the term collaboration in its high level messaging, which is I think smart. Data sharing is kind of a geeky term. And also this is an attempt by Snowflake to differentiate from everyone else that's saying, hey, we do data sharing too. And finally Snowflake doesn't say data marketplace anymore. It's now marketplace, accounting for its application market. Okay, let's take a quick look at the competitive landscape via this ETR X-Y graph. Vertical access remembers net score or spending momentum and the x-axis is penetration, pervasiveness in the data center. That's what ETR calls overlap. Snowflake continues to lead on the vertical axis. They guide it conservatively last quarter, remember, so I wouldn't be surprised if that lofty height, even though it's well down from its earlier levels but I wouldn't be surprised if it ticks down again a bit in the July survey, which will be in the field shortly. Databricks is a key competitor obviously at a strong spending momentum, as you can see. We didn't draw it here but we usually draw that 40% line or red line at 40%, anything above that is considered elevated. So you can see Databricks is quite elevated. But it doesn't have the market presence of Snowflake. It didn't get to IPO during the bubble and it doesn't have nearly as deep and capable go-to market machinery. Now, they're getting better and they're getting some attention in the market, nonetheless. But as a private company, you just naturally, more people are aware of Snowflake. Some analysts, Tony Bear in particular, believe Mongo and Snowflake are on a bit of a collision course long term. I actually can see his point. You know, I mean, they're both platforms, they're both about data. It's long ways off, but you can see them sort of in a similar path. They talk about kind of similar aspirations and visions even though they're quite in different markets today but they're definitely participating in similar tam. The cloud players are probably the biggest or definitely the biggest partners and probably the biggest competitors to Snowflake. And then there's always Oracle. Doesn't have the spending velocity of the others but it's got strong market presence. It owns a cloud and it knows a thing about data and it definitely is a go-to market machine. Okay, we're going to end on some of the things that we heard in the ecosystem. 'Cause look, we've heard before how particular technology, enterprise data warehouse, data hubs, MDM, data lakes, Hadoop, et cetera. We're going to solve all of our data problems and of course they didn't. And in fact, sometimes they create more problems that allow vendors to push more incremental technology to solve the problems that they created. Like tools and platforms to clean up the no schema on right nature of data lakes or data swamps. But here are some of the things that I heard firsthand from some customers and partners. First thing is, they said to me that they're having a hard time keeping up sometimes with the pace of Snowflake. It reminds me of AWS in 2014, 2015 timeframe. You remember that fire hose of announcements which causes increased complexity for customers and partners. I talked to several customers that said, well, yeah this is all well and good but I still need skilled people to understand all these tools that I'm integrated in the ecosystem, the catalogs, the machine learning observability. A number of customers said, I just can't use one governance tool, I need multiple governance tools and a lot of other technologies as well, and they're concerned that that's going to drive up their cost and their complexity. I heard other concerns from the ecosystem that it used to be sort of clear as to where they could add value you know, when Snowflake was just a better data warehouse. But to point number one, they're either concerned that they'll be left behind or they're concerned that they'll be subsumed. Look, I mean, just like we tell AWS customers and partners, you got to move fast, you got to keep innovating. If you don't, you're going to be left. Either if your customer you're going to be left behind your competitor, or if you're a partner, somebody else is going to get there or AWS is going to solve the problem for you. Okay, and there were a number of skeptical practitioners, really thoughtful and experienced data pros that suggested that they've seen this movie before. That's hence the same wine, new bottle. Well, this time around I certainly hope not given all the energy and investment that is going into this ecosystem. And the fact is Snowflake is unquestionably making it easier to put data to work. They built on AWS so you didn't have to worry about provisioning, compute and storage and networking and scaling. Snowflake is optimizing its platform to take advantage of things like Graviton so you don't have to, and they're doing some of their own optimization tools. The ecosystem is building optimization tools so that's all good. And firm belief is the less expensive it is, the more data will get brought into the data cloud. And they're building a data platform on which their ecosystem can build and run data applications, aka data products without having to worry about all the hard work that needs to get done to make data discoverable, shareable, and governed. And unlike the last 10 years, you don't have to be a keeper and integrate all the animals in the Hadoop zoo. Okay, that's it for today, thanks for watching. Thanks to my colleague, Stephanie Chan who helps research "Breaking Analysis" topics. Sometimes Alex Myerson is on production and manages the podcasts. Kristin Martin and Cheryl Knight help get the word out on social and in our newsletters, and Rob Hof is our editor in chief over at Silicon, and Hailey does some wonderful editing, thanks to all. Remember, all these episodes are available as podcasts wherever you listen. All you got to do is search Breaking Analysis Podcasts. I publish each week on wikibon.com and siliconangle.com and you can email me at David.Vellante@siliconangle.com or DM me @DVellante. If you got something interesting, I'll respond. If you don't, I'm sorry I won't. Or comment on my LinkedIn post. Please check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time. (upbeat music)

Published Date : Jun 18 2022

SUMMARY :

bringing you data driven that the ecosystem excitement here on the show floor. and the action in the ecosystem. Didn't start out that way, you know, One of the big knocks against Snowflake the idea of bring your data of the question, he did answer. is the one that looks like, and from the ecosystem, And so a couple of the So that way, you know, from the Hadoop era is the fact the defacto place as to where

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Frank SlootmanPERSON

0.99+

Frank SlootmanPERSON

0.99+

Doug HenschenPERSON

0.99+

Stephanie ChanPERSON

0.99+

Christian KleinermanPERSON

0.99+

AWSORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Rob HofPERSON

0.99+

Benoit DagevillePERSON

0.99+

2014DATE

0.99+

Matt SulkinsPERSON

0.99+

JPMCORGANIZATION

0.99+

2019DATE

0.99+

Cheryl KnightPERSON

0.99+

Palo AltoLOCATION

0.99+

Denise PerssonPERSON

0.99+

Alex MyersonPERSON

0.99+

Tony BearPERSON

0.99+

Dave MenningerPERSON

0.99+

DellORGANIZATION

0.99+

JulyDATE

0.99+

GeicoORGANIZATION

0.99+

NovemberDATE

0.99+

SnowflakeTITLE

0.99+

40%QUANTITY

0.99+

OracleORGANIZATION

0.99+

App StoreTITLE

0.99+

Capital OneORGANIZATION

0.99+

second principleQUANTITY

0.99+

Sanjeev MohanPERSON

0.99+

SnowflakeORGANIZATION

0.99+

1300 native appsQUANTITY

0.99+

Tony BearPERSON

0.99+

David.Vellante@siliconangle.comOTHER

0.99+

Kristin MartinPERSON

0.99+

MongoORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

Snowflake Summit 2022EVENT

0.99+

FirstQUANTITY

0.99+

twoDATE

0.99+

PythonTITLE

0.99+

10 different tablesQUANTITY

0.99+

FacebookORGANIZATION

0.99+

ETRORGANIZATION

0.99+

bothQUANTITY

0.99+

SnowflakeEVENT

0.98+

one placeQUANTITY

0.98+

each weekQUANTITY

0.98+

O'ReillyORGANIZATION

0.98+

This weekDATE

0.98+

Hadoop WorldEVENT

0.98+

this weekDATE

0.98+

PureORGANIZATION

0.98+

about 40 partnersQUANTITY

0.98+

theCUBEORGANIZATION

0.98+

last quarterDATE

0.98+

OneQUANTITY

0.98+

S3TITLE

0.97+

HadoopLOCATION

0.97+

singleQUANTITY

0.97+

Caesars ForumLOCATION

0.97+

IcebergTITLE

0.97+

single sourceQUANTITY

0.97+

SiliconORGANIZATION

0.97+

Nearly 10,000 peopleQUANTITY

0.97+

Apache IcebergORGANIZATION

0.97+

Breaking Analysis: How Lake Houses aim to be the Modern Data Analytics Platform


 

from the cube studios in palo alto in boston bringing you data driven insights from the cube and etr this is breaking analysis with dave vellante earnings season has shown a conflicting mix of signals for software companies well virtually all firms are expressing caution over so-called macro headwinds we're talking about ukraine inflation interest rates europe fx headwinds supply chain just overall i.t spend mongodb along with a few other names appeared more sanguine thanks to a beat in the recent quarter and a cautious but upbeat outlook for the near term hello and welcome to this week's wikibon cube insights powered by etr in this breaking analysis ahead of mongodb world 2022 we drill into mongo's business and what etr survey data tells us in the context of overall demand and the patterns that we're seeing from other software companies and we're seeing some distinctly different results from major firms these days we'll talk more about [ __ ] in this session which beat eps by 30 cents in revenue by more than 18 million dollars salesforce had a great quarter and its diversified portfolio is paying off as seen by the stocks noticeable uptick post earnings uipath which had been really beaten down prior to this quarter it's brought in a new co-ceo and it's business is showing a nice rebound with a small three cent eps beat and a nearly 20 million dollar top line beat crowdstrike is showing strength as well meanwhile managements at microsoft workday and snowflake expressed greater caution about the macroeconomic climate and especially on investors minds his concern about consumption pricing models snowflake in particular which had a small top-line beat cited softness and effects from reduced consumption especially from certain consumer-facing customers which has analysts digging more deeply into the predictability of their models in fact barclays analyst ramo lenchow published an especially thoughtful piece on this topic concluding that [ __ ] was less susceptible to consumption headwinds than for example snowflake essentially for a few reasons one because atlas mongo's cloud managed service which is the consumption model comprises only about 60 percent of mongo's revenue second is the premise that [ __ ] is supporting core operational applications that can't be easily dialed down or turned off and three that snowflake customers it sounds like has a more concentrated customer base and due to that fact there's a preponderance of its revenue is consumption driven and would be more sensitive to swings in these consumption patterns now i'll say this first consumption pricing models are here to stay and the much preferred model for customers is consumption the appeal of consumption is i can actually dial down turn off if i need to and stop spending for a while which happened or at least happened to a certain extent this quarter for certain companies but to the point about [ __ ] supporting core applications i do believe that over time you're going to see the increased emergence of data products that will become core monetization drivers in snowflake along with other data platforms is going to feed those data products and services and become over time maybe less susceptible and less sensitive to these consumption patterns it'll always be there but i think increasingly it's going to be tied to operational revenue last two points here in this slide software evaluations have reverted to their historical mean which is a good thing in our view we've taken some air out of the bubble and returned to more normalized valuations was really predicted and looked forward to look we're still in a lousy market for stocks it's really a bear market for tech the market tends to be at least six months ahead of the economy and often not always but often is a good predictor we've had some tough compares relative to the pandemic days in tech and we'll be watching next quarter very closely because the macro headwinds have now been firmly inserted into the guidance of software companies okay let's have a look at how certain names have performed relative to a software index benchmark so far this year here's a year-to-date chart comparing microsoft salesforce [ __ ] and snowflake to the igv software heavy etf which is shown in the darker blue line which by the way it does not own the ctf does not own snowflake or [ __ ] you can see that these big super caps have fared pretty well whereas [ __ ] and especially snowflake those higher growth companies have been much more negatively impacted year to date from a stock price standpoint now let's move on let's take a financial snapshot of [ __ ] and put it next to snowflake so we can compare these two higher growth names what we've done here in this chart has taken the most recent quarters revenue and multiplied it by 4x to get a revenue run rate and we've parenthetically added a projection for the full year revenue [ __ ] as you see will do north of a billion dollars in revenue while snowflake will begin to approach three billion dollars 2.7 and run right through that that four quarter run rate that they just had last quarter and you can see snowflake is growing faster than [ __ ] at 85 percent this past quarter and we took now these most of these profit of these next profitability ratios off the current quarter with one exception both companies have high gross margins of course you'd expect that but as we've discussed not as high as some traditional software companies in part because of their cloud costs but also you know their maturity or lack thereof both [ __ ] and snowflake because they are in high growth mode have thin operating margins they spend nearly half or more than half of their revenue on growth that's the sg a line mostly the s the sales and marketing is really where they're spending money uh and and they're specialists so they spend a fair amount of their revenue on r d but maybe not as high as you might think but a pretty hefty percentage the free cash flow as a percentage of revenue line we calculated off the full year projections because there was a kind of an anomaly this quarter in the in the snowflake numbers and you can see snowflakes free cash flow uh which again was abnormally high this quarter is going to settle in around 16 this year versus mongo's six percent so strong focus by snowflake on free cash flow and its management snowflake is about four billion dollars in cash and marketable securities on its balance sheet with little or no debt whereas [ __ ] has about two billion dollars on its balance sheet with a little bit of longer term debt and you can see snowflakes market cap is about double that of mongos so you're paying for higher growth with snowflake you're paying for the slootman scarpelli execution engine the expectation there a stronger balance sheet etc but snowflake is well off its roughly 100 billion evaluation which it touched during the peak days of tech during the pandemic and just that as an aside [ __ ] has around 33 000 customers about five times the number of customers snowflake has so a bit of a different customer mix and concentration but both companies in our view have no lack of market in terms of tam okay now let's dig a little deeper into mongo's business and bring in some etr data this colorful chart shows the breakdown of mongo's net score net score is etr's proprietary methodology that measures the percent of customers in the etr survey that are adding the platform new that's the lime green at nine percent existing customers that are spending six percent or more on the platform that's the forest green at 37 spending flat that's the gray at 46 percent decreasing spend that's the pinkish at around 5 and churning that's only 3 that's the bright red for [ __ ] subtract the red from the greens and you net out to a 38 which is a very solid net score figure note this is a survey of 1500 or so organizations and it includes 150 mongodb customers which includes by the way 68 global 2000 customers and they show a spending velocity or a net score of 44 so notably higher among the larger clients and while it's a smaller sample only 27 emea's net score for [ __ ] is 33 now that's down from 60 last quarter note that [ __ ] cited softness in its european business on its earning calls so that aligns to the gtr data okay now let's plot [ __ ] relative to some other data platforms these don't all necessarily compete head to head with [ __ ] but they are in data and database platforms in the etr data set and that's what this chart shows it's an xy graph with net score or as we say spending momentum on the vertical axis and overlap or presence or pervasiveness in the data set on the horizontal axis see that red dotted line there at 40 that indicates an elevated level of spending anything above that is highly elevated we've highlighted [ __ ] in that red box which is very close to that 40 percent line it has a pretty strong presence on the x-axis right there with gcp snowflake as we've reported has come down to earth but still well elevated again that aligns with the earnings releases uh aws and microsoft they have many data platforms especially aws so their plot position reflects their broad portfolio massive size on the x-axis um that's the presence and and very impressive on the vertical axis so despite that size they have strong spending momentum and you can see the pack of others including cockroach small on the verdict on the horizontal but elevated on the vertical couch base is creeping up since its ipo redis maria db which was launched the day that oracle bought sun and and got my sequel and some legacy platforms including the leader in database oracle as well as ibm and teradata's both cloud and on-prem platforms now one interesting side note here is on mongo's earning call it clearly cited the advantages of its increasingly all-in-one approach relative to others that offer a portfolio of bespoke or what we some sometimes call horses for courses databases [ __ ] cited the advantages of its simplicity and lower costs as it adds more and more functionality this is an argument often made by oracle and they often target aws as the company with too many databases and of course [ __ ] makes that argument uh as well but they also make the argument that oracle they don't necessarily call them out but they talk about traditional relational databases of course they're talking about oracle and others they say that's more complex less flexible and less appealing to developers than is [ __ ] now oracle of course would retur we retort saying hey we now support a mongodb api so why go anywhere else we're the most robust and the best for mission critical but this gives credence to the fact that if oracle is trying to capture business by offering a [ __ ] api for example that [ __ ] must be doing something right okay let's look at why they buy [ __ ] here's an etr chart that addresses that question it's it's mongo's feature breadth is the number one reason lower cost or better roi is number two integrations and stack alignment is third and mongo's technology lead is fourth those four kind of stand out with notice on the right hand side security and vision much lower there in the right that doesn't necessarily mean that [ __ ] doesn't have good security and and good vision although it has been cited uh security concerns um and and so we keep an eye on that but look [ __ ] has a document database it's become a viable alternative to traditional relational databases meaning you have much more flexibility over your schema um and in fact you know it's kind of schema-less you can pretty much put anything into a document database uh developers seem to love it generally it's fair to say mongo's architecture would favor consistency over availability because it uses a single master architecture as a primary and you can create secondary nodes in the event of a primary failure but you got to think about that and how to architect availability into the platform and got to consider recovery more carefully now now no schema means it's not a tables and rows structure and you can again shove anything you want into the database but you got to think about how to optimize performance um on queries now [ __ ] has been hard at work evolving the platform from the early days when you go back and look at its roadmap it's been you know started as a document database purely it added graph processing time series it's made search you know much much easier and more fundamental it's added atlas that fully managed cloud database uh service which we said now comprises 60 of its revenue it's you know kubernetes integrations and kind of the modern microservices stack and dozens and dozens and dozens of other features mongo's done a really fine job we think of creating a leading database platform today that is loved by customers loved by developers and is highly functional and next week the cube will be at mongodb world and we'll be looking for some of these items that we're showing here and this this chart this always going to be main focus on developers [ __ ] prides itself on being a developer friendly platform we're going to look for new features especially around security and governance and simplification of configurations and cluster management [ __ ] is likely going to continue to advance its all-in-one appeal and add more capabilities that reduce the need to to spin up bespoke platforms and we would expect enhance enhancements to atlas further enhancements there is atlas really is the future you know maybe adding you know more cloud native features and integrations and perhaps simplified ways to migrate to the cloud to atlas and improve access to data sources generally making the lives of developers and data analysts easier that's going to be we think a big theme at the event so these are the main things that we'll be scoping out at the event so please stop by if you're in new york city new york city at mongodb world or tune in to thecube.net okay that's it for today thanks to my colleagues stephanie chan who helps research breaking analysis from time to time alex meyerson is on production as today is as is andrew frick sarah kenney steve conte conte anderson hill and the entire team in palo alto thank you kristen martin and cheryl knight helped get the word out and rob hof is our editor-in-chief over there at siliconangle remember all these episodes are available as podcasts wherever you listen just search breaking analysis podcast we do publish each week on wikibon.com and siliconangle.com want to reach me email me david.velante siliconangle.com or dm me at divalante or a comment on my linkedin post and please do check out etr.ai for the best survey data in the enterprise tech business this is dave vellante for the cube insights powered by etr thanks for watching see you next time [Music] you

Published Date : Jun 3 2022

SUMMARY :

into the platform and got to consider

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
nine percentQUANTITY

0.99+

30 centsQUANTITY

0.99+

six percentQUANTITY

0.99+

46 percentQUANTITY

0.99+

ramo lenchowPERSON

0.99+

new yorkLOCATION

0.99+

next weekDATE

0.99+

thecube.netOTHER

0.99+

85 percentQUANTITY

0.99+

microsoftORGANIZATION

0.99+

40 percentQUANTITY

0.99+

six percentQUANTITY

0.99+

cherylPERSON

0.99+

andrew frickPERSON

0.99+

three billion dollarsQUANTITY

0.99+

more than 18 million dollarsQUANTITY

0.99+

dave vellantePERSON

0.99+

oracleORGANIZATION

0.99+

this yearDATE

0.99+

stephanie chanPERSON

0.99+

alex meyersonPERSON

0.99+

next quarterDATE

0.99+

37QUANTITY

0.99+

44QUANTITY

0.99+

last quarterDATE

0.99+

bostonLOCATION

0.99+

60QUANTITY

0.99+

both companiesQUANTITY

0.99+

38QUANTITY

0.99+

david.velanteOTHER

0.99+

todayDATE

0.99+

about two billion dollarsQUANTITY

0.99+

dozensQUANTITY

0.98+

about four billion dollarsQUANTITY

0.98+

rob hofPERSON

0.98+

33QUANTITY

0.98+

firstQUANTITY

0.98+

each weekQUANTITY

0.98+

around 33 000 customersQUANTITY

0.98+

27QUANTITY

0.98+

secondQUANTITY

0.98+

4xQUANTITY

0.97+

150 mongodb customersQUANTITY

0.97+

threeQUANTITY

0.97+

more than halfQUANTITY

0.97+

fourthQUANTITY

0.96+

awsORGANIZATION

0.96+

this weekDATE

0.96+

bothQUANTITY

0.96+

nearly 20 million dollarQUANTITY

0.96+

anderson hillPERSON

0.96+

2022DATE

0.95+

palo altoORGANIZATION

0.94+

mongoORGANIZATION

0.94+

sarah kenneyPERSON

0.94+

kristen martinPERSON

0.93+

about 60 percentQUANTITY

0.93+

oneQUANTITY

0.93+

40QUANTITY

0.93+

one exceptionQUANTITY

0.93+

2.7QUANTITY

0.93+

thirdQUANTITY

0.93+

fourQUANTITY

0.93+

atlasTITLE

0.92+

two higher growthQUANTITY

0.92+

about five timesQUANTITY

0.92+

3QUANTITY

0.91+

etrORGANIZATION

0.91+

pandemicEVENT

0.91+

atlas mongoORGANIZATION

0.91+

this quarterDATE

0.9+

ukraineLOCATION

0.9+

siliconangle.comOTHER

0.89+

2000 customersQUANTITY

0.88+

paloLOCATION

0.88+

around 5QUANTITY

0.87+

Breaking Analysis: Broadcom, Taming the VMware Beast


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> In the words of my colleague CTO David Nicholson, Broadcom buys old cars, not to restore them to their original luster and beauty. Nope. They buy classic cars to extract the platinum that's inside the catalytic converter and monetize that. Broadcom's planned 61 billion acquisition of VMware will mark yet another new era and chapter for the virtualization pioneer, a mere seven months after finally getting spun out as an independent company by Dell. For VMware, this means a dramatically different operating model with financial performance and shareholder value creation as the dominant and perhaps the sole agenda item. For customers, it will mean a more focused portfolio, less aspirational vision pitches, and most certainly higher prices. Hello and welcome to this week's Wikibon CUBE Insights powered by ETR. In this Breaking Analysis, we'll share data, opinions and customer insights about this blockbuster deal and forecast the future of VMware, Broadcom and the broader ecosystem. Let's first look at the key deal points, it's been well covered in the press. But just for the record, $61 billion in a 50/50 cash and stock deal, resulting in a blended price of $138 per share, which is a 44% premium to the unaffected price, i.e. prior to the news breaking. Broadcom will assume 8 billion of VMware debt and promises that the acquisition will be immediately accretive and will generate 8.5 billion in EBITDA by year three. That's more than 4 billion in EBITDA relative to VMware's current performance today. In a classic Broadcom M&A approach, the company promises to dilever debt and maintain investment grade ratings. They will rebrand their software business as VMware, which will now comprise about 50% of revenues. There's a 40 day go shop and importantly, Broadcom promises to continue to return 60% of its free cash flow to shareholders in the form of dividends and buybacks. Okay, with that out of the way, we're going to get to the money slide literally in a moment that Broadcom shared on its investor call. Broadcom has more than 20 business units. It's CEO Hock Tan makes it really easy for his business unit managers to understand. Rule number one, you agreed to an operating plan with targets for revenue, growth, EBITDA, et cetera, hit your numbers consistently and we're good. You'll be very well compensated and life will be wonderful for you and your family. Miss the number, and we're going to have a frank and uncomfortable bottom line discussion. You'll four, perhaps five quarters to turn your business around, if you don't, we'll kill it or sell it if we can. Rule number two, refer to rule number one. Hello, VMware, here's the money slide. I'll interpret the bullet points on the left for clarity. Your fiscal year 2022 EBITDA was 4.7 billion. By year three, it will be 8.5 billion. And we Broadcom have four knobs to turn with you, VMware to help you get there. First knob, if it ain't recurring revenue with rubber stamp renewals, we're going to convert that revenue or kill it. Knob number two, we're going to focus R&D in the most profitable areas of the business. AKA expect the R&D budget to be cut. Number three, we're going to spend less on sales and marketing by focusing on existing customers. We're not going to lose money today and try to make it up many years down the road. And number four, we run Broadcom with 1% GNA. You will too. Any questions? Good. Now, just to give you a little sense of how Broadcom runs its business and how well run a company it is, let's do a little simple comparison with this financial snapshot. All we're doing here is taking the most recent quarterly earnings reports from Broadcom and VMware respectively. We take the quarterly revenue and multiply by four X to get the revenue run rate and then we calculate the ratios off of the most recent quarters revenue. It's worth spending some time on this to get a sense of how profitable the Broadcom business actually is and what the spreadsheet gurus at Broadcom are seeing with respect to the possibilities for VMware. So combined, we're talking about a 40 plus billion dollar company. Broadcom is growing at more than 20% per year. Whereas VMware's latest quarter showed a very disappointing 3% growth. Broadcom is mostly a hardware company, but its gross margin is in the high seventies. As a software company of course VMware has higher gross margins, but FYI, Broadcom's software business, the remains of Symantec and what they purchased as CA has 90% gross margin. But the I popper is operating margin. This is all non gap. So it excludes things like stock based compensation, but Broadcom had 61% operating margin last quarter. This is insanely off the charts compared to VMware's 25%. Oracle's non gap operating margin is 47% and Oracle is an incredibly profitable company. Now the red box is where the cuts are going to take place. Broadcom doesn't spend much on marketing. It doesn't have to. It's SG&A is 3% of revenue versus 18% for VMware and R&D spend is almost certainly going to get cut. The other eye popper is free cash flow as a percentage of revenue at 51% for Broadcom and 29% for VMware. 51%. That's incredible. And that my dear friends is why Broadcom a company with just under 30 billion in revenue has a market cap of 230 billion. Let's dig into the VMware portfolio a bit more and identify the possible areas that will be placed under the microscope by Hock Tan and his managers. The data from ETR's latest survey shows the net score or spending momentum across VMware's portfolio in this chart, net score essentially measures the net percent of customers that are spending more on a specific product or vendor. The yellow bar is the most recent survey and compares the April 22 survey data to April 21 and January of 22. Everything is down in the yellow from January, not surprising given the economic outlook and the change in spending patterns that we've reported. VMware Cloud on AWS remains the product in the ETR survey with the most momentum. It's the only offering in the portfolio with spending momentum above the 40% line, a level that we consider highly elevated. Unified Endpoint Management looks more than respectable, but that business is a rock fight with Microsoft. VMware Cloud is things like VMware Cloud foundation, VCF and VMware's cross cloud offerings. NSX came from the Nicira acquisition. Tanzu is not yet pervasive and one wonders if VMware is making any money there. Server is ESX and vSphere and is the bread and butter. That is where Broadcom is going to focus. It's going to look at VSAN and NSX, which is software probably profitable. And of course the other products and see if the investments are paying off, if they are Broadcom will keep, if they are not, you can bet your socks, they will be sold off or killed. Carbon Black is at the far right. VMware paid $2.1 billion for Carbon Black. And it's the lowest performer on this list in terms of net score or spending momentum. And that doesn't mean it's not profitable. It just doesn't have the momentum you'd like to see, so you can bet that is going to get scrutiny. Remember VMware's growth has been under pressure for the last several years. So it's been buying companies, dozens of them. It bought AirWatch, bought Heptio, Carbon Black, Nicira, SaltStack, Datrium, Versedo, Bitnami, and on and on and on. Many of these were to pick up engineering teams. Some of them were to drive new revenue. Now this is definitely going to be scrutinized by Broadcom. So that helps explain why Michael Dell would sell VMware. And where does VMware go from here? It's got great core product. It's an iconic name. It's got an awesome ecosystem, fantastic distribution channel, but its growth is slowing. It's got limited developer chops in a world that developers and cloud native is all the rage. It's got a far flung R&D agenda going at war with a lot of different places. And it's increasingly fighting this multi front war with cloud companies, companies like Cisco, IBM Red Hat, et cetera. VMware's kind of becoming a heavy lift. It's a perfect acquisition target for Broadcom and why the street loves this deal. And we titled this Breaking Analysis taming the VMware beast because VMware is a beast. It's ubiquitous. It's an epic software platform. EMC couldn't control it. Dell used it as a piggy bank, but really didn't change its operating model. Broadcom 100% will. Now one of the things that we get excited about is the future of systems architectures. We published a breaking analysis about a year ago, talking about AWS's secret weapon with Nitro and it's Annapurna custom Silicon efforts. Remember it acquired Annapurna for a measly $350 million. And we talked about how there's a new architecture and a new price performance curve emerging in the enterprise, driven by AWS and being followed by Microsoft, Google, Alibaba, a trend toward custom Silicon with the arm based Nitro and which is AWS's hypervisor and Nick strategy, enabling processor diversity with things like Graviton and Trainium and other diverse processors, really diversifying away from x86 and how this leads to much faster product cycles, faster tape out, lower costs. And our premise was that everyone in the data center is going to competes, is going to need a Nitro to be competitive long term. And customers are going to gravitate toward the most economically favorable platform. And as we describe the landscape with this chart, we've updated this for this Breaking Analysis and we'll come back to nitro in a moment. This is a two dimensional graphic with net score or spending momentum on the vertical axis and overlap formally known as market share or presence within the survey, pervasiveness that's on the horizontal axis. And we plot various companies and products and we've inserted VMware's net score breakdown. The granularity in those colored bars on the bottom right. Net score is essentially the green minus the red and a couple points on that. VMware in the latest survey has 6% new adoption. That's that lime green. It's interesting. The question Broadcom is going to ask is, how much does it cost you to acquire that 6% new. 32% of VMware customers in the survey are increasing spending, meaning they're increasing spending by 6% or more. That's the forest green. And the question Broadcom will dig into is what percent of that increased spend (chuckles) you're capturing is profitable spend? Whatever isn't profitable is going to be cut. Now that 52% gray area flat spending that is ripe for the Broadcom picking, that is the fat middle, and those customers are locked and loaded for future rent extraction via perpetual renewals and price increases. Only 8% of customers are spending less, that's the pinkish color and only 3% are defecting, that's the bright red. So very, very sticky profile. Perfect for Broadcom. Now the rest of the chart lays out some of the other competitor names and we've plotted many of the VMware products so you can see where they fit. They're all pretty respectable on the vertical axis, that's spending momentum. But what Broadcom wants is that core ESX vSphere base where we've superimposed the Broadcom logo. Broadcom doesn't care so much about spending momentum. It cares about profitability potential and then momentum. AWS and Azure, they're setting the pace in this business, in the upper right corner. Cisco very huge presence in the data center, as does Intel, they're not in the ETR survey, but we've superimposed them. Now, Intel of course, is in a dog fight within Nvidia, the Arm ecosystem, AMD, don't forget China. You see a Google cloud platform is in there. Oracle is also on the chart as well, somewhat lower on the vertical axis, but it doesn't have that spending momentum, but it has a big presence. And it owns a cloud as we've talked about many times and it's highly differentiated. It's got a strategy that allows it to differentiate from the pack. It's very financially driven. It knows how to extract lifetime value. Safra Catz operates in many ways, similar to what we're seeing from Hock Tan and company, different from a portfolio standpoint. Oracle's got the full stack, et cetera. So it's a different strategy. But very, very financially savvy. You could see IBM and IBM Red Hat in the mix and then Dell and HP. I want to come back to that momentarily to talk about where value is flowing. And then we plotted Nutanix, which with Acropolis could suck up some V tax avoidance business. Now notice Symantec and CA, relatively speaking in the ETR survey, they have horrible spending momentum. As we said, Broadcom doesn't care. Hock Tan is not going for growth at the expense of profitability. So we fully expect VMware to come down on the vertical axis over time and go up on the profit scale. Of course, ETR doesn't measure the profitability here. Now back to Nitro, VMware has this thing called Project Monterey. It's essentially their version of Nitro and will serve as their future architecture diversifying off x86 and accommodating alternative processors. And a much more efficient performance, price in energy consumption curve. Now, one of the things that we've advocated for, we said this about Dell and others, including VMware to take a page out of AWS and start developing custom Silicon to better integrate hardware and software and accelerate multi-cloud or what we call supercloud. That layer above the cloud, not just running on individual clouds. So this is all about efficiency and simplicity to own this space. And we've challenged organizations to do that because otherwise we feel like the cloud guys are just going to have consistently better costs, not necessarily price, but better cost structures, but it begs the question. What happens to Project Monterey? Hock Tan and Broadcom, they don't invest in something that is unproven and doesn't throw off free cash flow. If it's not going to pay off for years to come, they're probably not going to invest in it. And yet Project Monterey could help secure VMware's future in not only the data center, but at the edge and compete more effectively with cloud economics. So we think either Project Monterey is toast or the VMware team will knock on the door of one of Broadcom's 20 plus business units and say, guys, what if we work together with you to develop a version of Monterey that we can use and sell to everyone, it'd be the arms dealer to everyone and be competitive with the cloud and other players out there and create the de facto standard for data center performance and supercloud. I mean, it's not outrageously expensive to develop custom Silicon. Tesla is doing it for example. And Broadcom obviously is capable of doing it. It's got good relationships with semiconductor fabs. But I think this is going to be a tough sell to Broadcom, unless VMware can hide this in plain site and make it profitable fast, like AWS most likely has with Nitro and Graviton. Then Project Monterey and our pipe dream of alternatives to Nitro in the data center could happen but if it can't, it's going to be toast. Or maybe Intel or Nvidia will take it over or maybe the Monterey team will spin out a VMware and do a Pensando like deal and demonstrate the viability of this concept and then Broadcom will buy it back in 10 years. Here's a double click on that previous data that we put in tabular form. It's how the data on that previous slide was plotted. I just want to give you the background data here. So net score spending momentum is the sorted on the left. So it's sorted by net score in the left hand chart, that was the y-axis in the previous data set and then shared and or presence in the data set is the right hand chart. In other words, it's sorted on the right hand chart, right hand table. That right most column is shared and you can see it's sorted top to bottom, and that was the x-axis on the previous chart. The point is not many on the left hand side are above the 40% line. VMware Cloud on AWS is, it's expensive, so it's probably profitable and it's probably a keeper. We'll see about the rest of VMware's portfolio. Like what happens to Tanzu for example. On the right, we drew a red line, just arbitrarily at those companies and products with more than a hundred mentions in the survey, everything but Tanzu from VMware makes that cut. Again, this is no indication of profitability here, and that's what's going to matter to Broadcom. Now let's take a moment to address the question of Broadcom as a software company. What the heck do they know about software, right. Well, they're not dumb over there and they know how to run a business, but there is a strategic rationale to this move beyond just doing portfolios and extracting rents and cutting R&D, et cetera, et cetera. Why, for example, isn't Broadcom going after coming back to Dell or HPE, it could pick up for a lot less than VMware, and they got way more revenue than VMware. Well, it's obvious, software's more profitable of course, and Broadcom wants to move up the stack, but there's a trend going on, which Broadcom is very much in touch with. First, it sells to Dell and HPE and Cisco and all the OEM. so it's not going to disrupt that. But this chart shows that the value is flowing away from traditional servers and storage and networking to two places, merchant Silicon, which itself is morphing. Broadcom... We focus on the left hand side of this chart. Broadcom correctly believes that the world is shifting from a CPU centric center of gravity to a connectivity centric world. We've talked about this on theCUBE a lot. You should listen to Broadcom COO Charlie Kawwas speak about this. It's all that supporting infrastructure around the CPU where value is flowing, including of course, alternative GPUs and XPUs, and NPUs et cetera, that are sucking the value out of the traditional x86 architecture, offloading some of the security and networking and storage functions that traditionally have been done in x86 which are part of the waste right now in the data center. This is that shifting dynamic of Moore's law. Moore's law, not keeping pace. It's slowing down. It's slower relative to some of the combinatorial factors. When you add up in all the CPU and GPU and NPU and accelerators, et cetera. So we've talked about this a lot in Breaking Analysis episodes. So the value is shifting left within that middle circle. And it's shifting left within that left circle toward components, other than CPU, many of which Broadcom supplies. And then you go back to the middle, value is shifting from that middle section, that traditional data center up into hyperscale clouds, and then to the right toward infrastructure software to manage all that equipment in the data center and across clouds. And look Broadcom is an arms dealer. They simply sell to everyone, locking up key vectors of the value chain, cutting costs and raising prices. It's a pretty straightforward strategy, but not for the fate of heart. And Broadcom has become pretty good at it. Let's close with the customer feedback. I spoke with ETRs Eric Bradley this morning. He and I both reached out to VMware customers that we know and got their input. And here's a little snapshot of what they said. I'll just read this. Broadcom will be looking to invest in the core and divest of any underperforming assets, right on. It's just what we were saying. This doesn't bode well for future innovation, this is a CTO at a large travel company. Next comment, we're a Carbon Black customer. VMware didn't seem to interfere with Carbon Black, but now that we're concerned about short term disruption to their tech roadmap and long term, are they going to split and be sold off like Symantec was, this is a CISO at a large hospitality organization. Third comment, I got directly from a VMware practitioner, an IT director at a manufacturing firm. This individual said, moving off VMware would be very difficult for us. We have over 500 applications running on VMware, and it's really easy to manage. We're not going to move those into the cloud and we're worried Broadcom will raise prices and just extract rents. Last comment, we'll share as, Broadcom sees the cloud data center and IoT is their next revenue source. The VMware acquisition provides them immediate virtualization capabilities to support a lightweight IoT offering. Big concern for customers is what technology they will invest in and innovate, and which will be stripped off and sold. Interesting. I asked David Floyer to give me a back of napkin estimate for the following question. I said, David, if you're running mission critical applications on VMware, how much would it increase your operating cost moving those applications into the cloud? Or how much would it save? And he said, Dave, VMware's really easy to run. It can run any application pretty much anywhere, and you don't need an army of people to manage it. All your processes are tied to VMware, you're locked and loaded. Move that into the cloud and your operating cost would double by his estimates. Well, there you have it. Broadcom will pinpoint the optimal profit maximization strategy and raise prices to the point where customers say, you know what, we're still better off staying with VMware. And sadly, for many practitioners there aren't a lot of choices. You could move to the cloud and increase your cost for a lot of your applications. You could do it yourself with say Zen or OpenStack. Good luck with that. You could tap Nutanix. That will definitely work for some applications, but are you going to move your entire estate, your application portfolio to Nutanix? It's not likely. So you're going to pay more for VMware and that's the price you're going to pay for two decades of better IT. So our advice is get out ahead of this, do an application portfolio assessment. If you can move apps to the cloud for less, and you haven't yet, do it, start immediately. Definitely give Nutanix a call, but going to have to be selective as to what you actually can move, forget porting to OpenStack, or do it yourself Hypervisor, don't even go there. And start building new cloud native apps where it makes sense and let the VMware stuff go into manage decline. Let certain apps just die through attrition, shift your development resources to innovation in the cloud and build a brick wall around the stable apps with VMware. As Paul Maritz, the former CEO of VMware said, "We are building the software mainframe". Now marketing guys got a hold of that and said, Paul, stop saying that, but it's true. And with Broadcom's help that day we'll soon be here. That's it for today. Thanks to Stephanie Chan who helps research our topics for Breaking Analysis. Alex Myerson does the production and he also manages the Breaking Analysis podcast. Kristen Martin and Cheryl Knight help get the word out on social and thanks to Rob Hof, who was our editor in chief at siliconangle.com. Remember, these episodes are all available as podcast, wherever you listen, just search Breaking Analysis podcast. Check out ETRs website at etr.ai for all the survey action. We publish a full report every week on wikibon.com and siliconangle.com. You can email me directly at david.vellante@siliconangle.com. You can DM me at DVellante or comment on our LinkedIn posts. This is Dave Vellante for theCUBE Insights powered by ETR. Have a great week, stay safe, be well. And we'll see you next time. (upbeat music)

Published Date : May 28 2022

SUMMARY :

This is Breaking Analysis and promises that the acquisition

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Stephanie ChanPERSON

0.99+

CiscoORGANIZATION

0.99+

Dave VellantePERSON

0.99+

SymantecORGANIZATION

0.99+

Rob HofPERSON

0.99+

Alex MyersonPERSON

0.99+

April 22DATE

0.99+

HPORGANIZATION

0.99+

David FloyerPERSON

0.99+

AWSORGANIZATION

0.99+

DellORGANIZATION

0.99+

OracleORGANIZATION

0.99+

HPEORGANIZATION

0.99+

Paul MaritzPERSON

0.99+

BroadcomORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

NvidiaORGANIZATION

0.99+

Eric BradleyPERSON

0.99+

April 21DATE

0.99+

NSXORGANIZATION

0.99+

IBMORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

DavePERSON

0.99+

JanuaryDATE

0.99+

$61 billionQUANTITY

0.99+

8.5 billionQUANTITY

0.99+

$2.1 billionQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

EMCORGANIZATION

0.99+

AcropolisORGANIZATION

0.99+

Kristen MartinPERSON

0.99+

90%QUANTITY

0.99+

6%QUANTITY

0.99+

4.7 billionQUANTITY

0.99+

GoogleORGANIZATION

0.99+

Hock TanORGANIZATION

0.99+

60%QUANTITY

0.99+

44%QUANTITY

0.99+

40 dayQUANTITY

0.99+

61%QUANTITY

0.99+

8 billionQUANTITY

0.99+

Michael DellPERSON

0.99+

52%QUANTITY

0.99+

47%QUANTITY

0.99+

Breaking Analysis: Are Cyber Stocks Oversold or Still too Pricey?


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Cybersecurity stocks have been sending mixed signals as of late, mostly negative like much of tech, but some such as Palo Alto Networks, despite a tough go of it recently have held up better than most tech names. Others like CrowdStrike, had been out performing Broader Tech in March, but then flipped in May. Okta's performance was pretty much tracking along with CrowdStrike for most of the past several months, a little bit below, but then the Okta hack changed the trajectory of that name. Zscaler has crossed the critical billion dollar ARR revenue milestone, and now sees a path to five billion dollars in revenue, but the company stock fell sharply after its last earnings report and has been on a down trend since last November. Meanwhile, CyberArk's recent beat and raise, was encouraging and the stock acted well after its last report. Security remains the number one initiative priority amongst IT organizations and the spending momentum for many high flying cyber names remain strong. So what gives in cyber security? Hello, and welcome to this week's Wikibon CUBE insights powered by ETR. In this breaking analysis, we focus on security and will update you on the latest data from ETR to try to make sense out of the market and read into what this all means in both the near and long term, for some of our favorite names in cyber. First, the news. There's always something happening in security news cycles. The big recent news is new President Rodrigo Chavez declared a national emergency in Costa Rica due to the preponderance of Russian cyber attacks on the country's critical infrastructure. Such measures are normally reserved for natural disasters like earthquakes, but this move speaks to the nature of today's cyber threats. Of no surprise is modern superpower warfare even for a depleted power like Russia almost certainly involves cyber warfare as we continue to see in Ukraine. Privately held Arctic Wolf Networks hired Dustin Williams as its new CFO. Williams has taken three companies to IPO, including Nutanix in 2016, a very successful IPO for that company. Whether AWN chooses to pull the trigger this year or will wait until markets are less choppy or obviously remains to be seen. But it's a pretty clear sign the company is headed to IPO at some point. Now, big point of discussion this week at Red Hat Summit in Boston and the prior week at Dell technologies world was security. In the case of Red Hat, securing the digital supply chain was the main theme. And from Dell building, many security features into its storage arrays and cyber resilience services into its as a service offering called Apex. And we're seeing a trend where buyers want to reduce the number of bespoke tools they use if they, in fact can. Here's IDC's Jim Mercer, sharing data from a recent survey they conducted on the topic. Play the clip. >> Interestingly, we did a survey, I think around last August or something. And one of the questions was around where do you want your security, right? Where do you want to get your DevSecOps security from? Do you want to get it from individual vendors, right? Or do you want to get it from like your platforms that you're using and deploying changes in Kubernetes? >> Great question. What did they say? >> The majority of them, they're hoping they can get it built into the platform. That's really what they want-- >> Now, whether that's actually achievable is debatable because you have so much innovation and investment going on from the likes of startups and for instance, lace work or sneak and security companies that you see even trying to build platforms, you've got CrowdStrike, Okta, Zscaler and many others, trying to build security platforms and put it all under their umbrella. Now the last point will hit here is there was a lot of buzz in the news about Okta. The reaction to what was a relatively benign hack was pretty severe and probably overblown, but Okta's stock is paying the price of what is generally considered a blown communications plan versus a technical failure. Remember, identity is not an easy thing to rip and replace and Okta remains a best-of-breed player and leader in the space. So we're going to look at some ETR data later in this segment to try and make sense of the recent action in the market and certain names. Speaking of which let's take a look at how some of the names in cybersecurity have fared relative to some of the indices and relative indicators that we like to look at. Here's a Google finance comparison for a number of stocks and names in the bottom there you can see we plot the hack ETF which tracks security stocks. This is a year to date view. And so we don't show it here but the tech heavy NASDAQ is off around 26% year to date whereas the cyber ETF that we're showing is down 18%, okay. So cyber holding up a little bit better than broader tech as we've reported earlier, was actually much better and still seems to be a gap there, but the data are mixed. You can see Okta is way off relative to its peers. That's a combination of the breach that we talked about but also the run up in the stock since COVID. CrowdStrike was actually faring better but broke this month, we'll see how it's upcoming earnings announcements are received when it announces on June 2nd after the close. Palo Alto in the light blue has done better than most and until recently was holding up quite well. And of course, Sailpoint is another identity specialist, it is kind of off the charts here because it's going private with the acquisition by Thoma Bravo at nearly seven billion dollars. So you see some mixed signals in cyber these past several months and weeks. And so we're trying to understand what that all means. So let's take a look at the survey data and see how spending momentum is holding up. As we've reported IT spending forecast, at the macro level, they've come off their 8% highs from the end of the year, the ETRS December survey, but robust tech spending is still there. It's expected at nearly seven percent and this is amongst 1200 ETR respondents. Here's a picture from the ETR survey of the cybersecurity landscape. That y-axis that's net score or a measure of spending momentum and that horizontal access is overlap. We used to talk about it as a market share which is a measure of pervasiveness in the data set. That dotted red line at 40% indicates an elevated spending momentum level on the vertical axis and we filter the names and limited to only those with a hundred or more responses in the ETR survey. Then the pictures still pretty crowded as you can see. You got lots of companies above the red dotted line, including Microsoft which is up into the right, they're so far off the chart, it's just amazing. But also Palo Alto and Okta, Auth0, which of course is now owned by Okta, Zscaler, CyberArk is making moves. Sailpoint and Cloudflare, they're all above that magic 40% line. Now, you look at Cisco, it shows a very large presence in the horizontal axis in the data set. And it's got pretty respectable momentum and you see Splunk doing okay, no before and tenable just below that 40% line and a lot of names in the very respectable 20% zone. And we've included some legacy names just for context that fall below the zero percent line with a negative net score. And that means a larger proportion, that negative net score means a larger proportion of their customers in the survey are spending less than those that are spending more. Now, typically for these legacy names you're going to have a huge proportion of customers who have flat spending that kind of fat middle and that's why they sort of don't have that highly elevated score, but they're still viable as they get the recurring revenue each year. But the bottom line is that spending remains robust for some of the top names that we've talked about earlier despite their rocky stock performance. Now, let's filter this data a bit more to make it a little bit easier to read. So to do that, we take out Microsoft because they're just so dominant and we cherry pick some names to make the data more consumable and scannable. The other data point we've added is Okta's net score breakdown, the multicolored rows there, that row in the bottom right. Net score, it measures the percent of customers that are adding the platform new, that's the lime green, at 18% for Okta. The forest green is at 42%. That's the percent of customers in the survey that are spending six percent or more. The gray is flat spending. That's 32% for Okta, this past survey. The pink is customers that are spending less, that's three percent. They're spending six percent or worse in the survey, so only three percent for Okta. And the bright red at three percent is decommissioning the platform. You subtract the reds from the greens and you get a net score, well, into the 50s for Okta and you can see. We highlight Okta here because it's a name that we've been following for quite some time and customers have given us really solid feedback on the technology and up until the hack, they're affinity to Okta, but that seems to be continuing. We'll talk more about that. This recent breach to Okta has caused us to take a closer look. And you may recall, we reported with our ETR colleague, Eric Bradley. The breach was announced right in the middle of ETR collecting data in the last survey. And while we did see a noticeable downtick right after the announcement, the exposure of the hack and Okta's net score just after the breach was disclosed, you can see the combination of Okta and Auth0 remains very strong. I asked Eric Bradley this morning what he thought about Okta, and he pointed out that you can't evaluate this company on its price to earnings ratio. But it's forward sales multiple is now below 7X. And while attractive, these high flyers at some point, Eric says, they got to start making a profit. So you going to hold that thought, we'll come back to that. Now, another cut of the ETR data to look at our four star security names here. A while back we developed a methodology to try and cut through the noise of the crowded security sector using the ETR data to evaluate two key metrics; net score and shared N. Net score again is, spending momentum, the latter is an indicator of presence in the data set which is a proxy for market presence. Okay, we assigned those companies that cracked the top 10 in both net score and shared N, we give them four stars, okay, if they make the top 10. This chart here shows the April survey data for those companies with an N that's greater than, equal to a hundred responses. So again, we're filtering on those with a hundred or more responses. The table on the left that you see there, that's sorted by net score, okay. So we're sorting by spending momentum. And then the one on the right is sorted by shared N, so their presence in the data set. Seven companies hit the top 10 for both categories; Palo Alto Network, Splunk, CrowdStrike Okta, Proofpoint, Fortinet and Zscaler. Now, remember, take a look, Okta excludes Auth0, in this little methodology that we came up with. Auth0 didn't make the cuts but it hits the top 10 for net score. So if you add in Auth0's 112 N there that you see on the right. You add that into Okta, we put Okta in the number two spot in the survey on the right most table with the shared N of 354. Only Cisco has a higher presence in the data set. And you can see Cisco in the left lands just below that red dotted line. That's the top 10 in security. So if we were to combine Okta and Auth0 as one, Cisco would make the cut and earn four stars. Now, some other notables are CyberArk, which is just below the red line on the right most chart with an impressive 177 shared N. Again, if you combine Auth0 and Okta, CyberArk makes the four star grade because it's in the top 10 for net score on the left. And Sailpoint is another notable with a net score above 50% and it's got a shared N of 122, which is respectable. So despite the market's choppy waters, we're seeing some positive signs in the survey data for some of the more prominent names that we've been following for the last couple of years. So what does this mean for the markets going forward? As always, when we see these confusing signs we like to reach out to the network and one of the sharpest traders out there is Chip Simonton. We've quoted him before and we like to share some of his insights. And so we're going to highlight some of that here. So technically, almost every good tech stock is oversold. And as such, he suggested we might see a bounce here. We certainly are seeing that on this Friday, the 13th. But the right call tactically has been to sell into the rally these past several months, so we'll see what happens on Monday. The key issue with the name like Okta and some other momentum names like CrowdStrike and Zscaler is that when money comes back into tech, it's likely going to go to the FAANG stocks, the Facebook, Apple, Amazon, Netflix, Google, and of course, you put Microsoft in there as well. And we'll see about Amazon, by the way, it's kind of out of favor right now, as everyone's focused on the retail side of the business meanwhile it's cloud business is booming and that's where all the profit is. We think that should be the real focus for Amazon. But the point is, for these momentum names in cybersecurity that don't make money, they face real headwinds, as growth is slowing overall and interest rates rise, that makes the net present value of these investments much less attractive. We've talked about that before. But longer term, we agree with Chip Simonton that these are excellent companies and they will weather the storm and we think they're going to lead their respective markets. And in cyber, we would expect continued M&A activity, which could act as a booster shot in the arms of these names. Now in 2019, we saw the ETR data, it pointed to CrowdStrike, Zscaler, Okta and others in the security space. Some of those names that really looked to us like they were moving forward and the pandemic just created a surge in these names and admittedly they got out over their skis. But the data suggests that these leading companies have continued momentum and the potential for stay in power. Unlike the SolarWinds hack, it seems at this point anyway that Okta will recover in the market. For the reasons that we cited, investors, they might stay away for some time but longer term, there's a shift in CSO security strategies that appear to be permanent. They're really valuing cloud-based modern platforms, these platforms will likely continue to gain share and carry their momentum forward. Okay, that's it for now, thanks to Stephanie Chan, who helps with the background research and with social, Kristen Martin and Cheryl Knight help get the word out and do some great work as well. Alex Morrison is on production and handles all of our podcast. Alex, thank you. And Rob Hof is our Editor in Chief at SiliconANGLE. Remember, all these episodes, they're available as podcast, you can pop in the headphones and listen, just search "Breaking Analysis Podcast." I publish each week on wikibon.com and SiliconANGLE.com. Don't forget to check out etr.ai, best in the business for real customer data. It's an awesome platform. You can reach me at dave.vellante@siliconangle.com or @dvellante. You can comment on our LinkedIn posts. This is Dave Vellante for the CUBEinsights powered by ETR. Thanks for watching. And we'll see you next time. (bright upbeat music)

Published Date : May 13 2022

SUMMARY :

in Palo Alto in Boston, and the prior week at Dell And one of the questions was around What did they say? it built into the platform. and a lot of names in the

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AmazonORGANIZATION

0.99+

Dustin WilliamsPERSON

0.99+

AppleORGANIZATION

0.99+

FacebookORGANIZATION

0.99+

NetflixORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

Jim MercerPERSON

0.99+

2016DATE

0.99+

OktaORGANIZATION

0.99+

Stephanie ChanPERSON

0.99+

Eric BradleyPERSON

0.99+

EricPERSON

0.99+

Rob HofPERSON

0.99+

MarchDATE

0.99+

Alex MorrisonPERSON

0.99+

Dave VellantePERSON

0.99+

Cheryl KnightPERSON

0.99+

2019DATE

0.99+

MayDATE

0.99+

NutanixORGANIZATION

0.99+

FortinetORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

AprilDATE

0.99+

June 2ndDATE

0.99+

Arctic Wolf NetworksORGANIZATION

0.99+

six percentQUANTITY

0.99+

SplunkORGANIZATION

0.99+

8%QUANTITY

0.99+

AWNORGANIZATION

0.99+

ZscalerORGANIZATION

0.99+

ProofpointORGANIZATION

0.99+

Kristen MartinPERSON

0.99+

MondayDATE

0.99+

CyberArkORGANIZATION

0.99+

UkraineLOCATION

0.99+

Palo Alto NetworkORGANIZATION

0.99+

Seven companiesQUANTITY

0.99+

WilliamsPERSON

0.99+

CrowdStrikeORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

PresidentPERSON

0.99+

SailpointORGANIZATION

0.99+

20%QUANTITY

0.99+

AlexPERSON

0.99+

five billion dollarsQUANTITY

0.99+

50sQUANTITY

0.99+

32%QUANTITY

0.99+

ETRORGANIZATION

0.99+

dave.vellante@siliconangle.comOTHER

0.99+

40%QUANTITY

0.99+

last NovemberDATE

0.99+

42%QUANTITY

0.99+

three percentQUANTITY

0.99+

18%QUANTITY

0.99+

FirstQUANTITY

0.99+

zero percentQUANTITY

0.99+

Auth0ORGANIZATION

0.99+

bothQUANTITY

0.99+

DellORGANIZATION

0.99+

three companiesQUANTITY

0.99+

Costa RicaLOCATION

0.99+

Chip SimontonPERSON

0.99+

Breaking Analysis: What you May not Know About the Dell Snowflake Deal


 

>> From theCUBE Studios in Palo Alto, in Boston bringing you Data Driven Insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> In the pre-cloud era hardware companies would run benchmarks, showing how database and or application performance ran better on their systems relative to competitors or previous generation boxes. And they would make a big deal out of it. And the independent software vendors, you know they'd do a little golf clap if you will, in the form of a joint press release it became a game of leaprog amongst hardware competitors. That was pretty commonplace over the years. The Dell Snowflake Deal underscores that the value proposition between hardware companies and ISVs is changing and has much more to do with distribution channels, volumes and the amount of data that lives On-Prem in various storage platforms. For cloud native ISVs like Snowflake they're realizing that despite their Cloud only dogma they have to grit their teeth and deal with On-premises data or risk getting shut out of evolving architectures. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis, we unpack what little is known about the Snowflake announcement from Dell Technologies World and discuss the implications of a changing Cloud landscape. We'll also share some new data for Cloud and Database platforms from ETR that shows Snowflake has actually entered the Earth's orbit when it comes to spending momentum on its platform. Now, before we get into the news I want you to listen to Frank's Slootman's answer to my question as to whether or not Snowflake would ever architect the platform to run On-Prem because it's doable technically, here's what he said, play the clip >> Forget it, this will only work in the Public Cloud. Because it's, this is how the utility model works, right. I think everybody is coming through this realization, right? I mean, excuses are running out at this point. You know, we think that it'll, people will come to the Public Cloud a lot sooner than we will ever come to the Private Cloud. It's not that we can't run a private Cloud. It's just diminishes the potential and the value that we bring. >> So you may be asking yourselves how do you square that circle? Because basically the Dell Snowflake announcement is about bringing Snowflake to the private cloud, right? Or is it let's get into the news and we'll find out. Here's what we know at Dell Technologies World. One of the more buzzy announcements was the, by the way this was a very well attended vet event. I should say about I would say 8,000 people by my estimates. But anyway, one of the more buzzy announcements was Snowflake can now run analytics on Non-native Snowflake data that lives On-prem in a Dell object store Dell's ECS to start with. And eventually it's software defined object store. Here's Snowflake's clark, Snowflake's Clark Patterson describing how it works this past week on theCUBE. Play the clip. The way it works is I can now access Non-native Snowflake data using what materialized views, external tables How does that work? >> Some combination of the, all the above. So we've had in Snowflake, a capability called External Tables, which you refer to, it goes hand in hand with this notion of external stages. Basically there's a through the combination of those two capabilities, it's a metadata layer on data, wherever it resides. So customers have actually used this in Snowflake for data lake data outside of Snowflake in the Cloud, up until this point. So it's effectively an extension of that functionality into the Dell On-Premises world, so that we can tap into those things. So we use the external stages to expose all the metadata about what's in the Dell environment. And then we build external tables in Snowflake. So that data looks like it is in Snowflake. And then the experience for the analyst or whomever it is, is exactly as though that data lives in the Snowflake world. >> So as Clark explained, this capability of External tables has been around in the Cloud for a while, mainly to suck data out of Cloud data lakes. Snowflake External Tables use file level metadata, for instance, the name of the file and the versioning so that it can be queried in a stage. A stage is just an external location outside of Snowflake. It could be an S3 bucket or an Azure Blob and it's soon will be a Dell object store. And in using this feature, the Dell looks like it lives inside of Snowflake and Clark essentially, he's correct to say to an analyst that looks exactly like the data is in Snowflake, but uh, not exactly the data's read only which means you can't do what are called DML operations. DML stands for Data Manipulation Language and allows for things like inserting data into tables or deleting and modifying existing data. But the data can be queried. However, the performance of those queries to External Tables will almost certainly be slower. Now users can build things like materialized views which are going to speed things up a bit, but at the end of the day, it's going to run faster than the Cloud. And you can be almost certain that's where Snowflake wants it to run, but some organizations can't or won't move data into the Cloud for a variety of reasons, data sovereignty, compliance security policies, culture, you know, whatever. So data can remain in place On-prem, or it can be moved into the Public Cloud with this new announcement. Now, the compute today presumably is going to be done in the Public Cloud. I don't know where else it's going to be done. They really didn't talk about the compute side of things. Remember, one of Snowflake's early innovations was to separate compute from storage. And what that gave them is you could more efficiently scale with unlimited resources when you needed them. And you could shut off the compute when you don't need us. You didn't have to buy, and if you need more storage you didn't have to buy more compute and vice versa. So everybody in the industry has copied that including AWS with Redshift, although as we've reported not as elegantly as Snowflake did. RedShift's more of a storage tiering solution which minimizes the compute required but you can't really shut it off. And there are companies like Vertica with Eon Mode that have enabled this capability to be done On-prem, you know, but of course in that instance you don't have unlimited elastic compute scale on-Prem but with solutions like Dell Apex and HPE GreenLake, you can certainly, you can start to simulate that Cloud elasticity On-prem. I mean, it's not unlimited but it's sort of gets you there. According to a Dell Snowflake joint statement, the companies the quote, the companies will pursue product integrations and joint go to market efforts in the second half of 2022. So that's a little vague and kind of benign. It's not really clear when this is going to be available based on that statement from the two first, but, you know, we're left wondering will Dell develop an On-Prem compute capability and enable queries to run locally maybe as part of an extended apex offering? I mean, we don't know really not sure there's even a market for that but it's probably a good bet that again, Snowflake wants that data to land in the Snowflake data Cloud kind of makes you wonder how this deal came about. You heard Sloop on earlier Snowflake has always been pretty dogmatic about getting data into its native snowflake format to enable the best performance as we talked about but also data sharing and governance. But you could imagine that data architects they're building out their data mesh we've reported on this quite extensively and their data fabric and those visions around that. And they're probably telling Snowflake, Hey if you want to be a strategic partner of ours you're going to have to be more inclusive of our data. That for whatever reason we're not putting in your Cloud. So Snowflake had to kind of hold its nose and capitulate. Now the good news is it further opens up Snowflakes Tam the total available market. It's obviously good marketing posture. And ultimately it provides an on ramp to the Cloud. And we're going to come back to that shortly but let's look a little deeper into what's happening with data platforms and to do that we'll bring in some ETR data. Now, let me just say as companies like Dell, IBM, Cisco, HPE, Lenovo, Pure and others build out their hybrid Clouds. The cold hard fact is not only do they have to replicate the Cloud Operating Model. You will hear them talk about that a lot, but they got to do that. So it, and that's critical from a user experience but in order to gain that flywheel momentum they need to build a robust ecosystem that goes beyond their proprietary portfolios. And, you know, honestly they're really not even in the first inning most companies and for the likes of Snowflake to sort of flip this, they've had to recognize that not everything is moving into the Cloud. Now, let's bring up the next slide. One of the big areas of discussion at Dell Tech World was Apex. That's essentially Dell's nascent as a service offering. Apex is infrastructure as a Service Cloud On-prem and obviously has the vision of connecting to the Cloud and across Clouds and out to the Edge. And it's no secret that database is one of the most important ingredients of infrastructure as a service generally in Cloud Infrastructure specifically. So this chart here shows the ETR data for data platforms inside of Dell accounts. So the beauty of ETR platform is you can cut data a million different ways. So we cut it. We said, okay, give us the Cloud platforms inside Dell accounts, how are they performing? Now, this is a two dimensional graphic. You got net score or spending momentum on the vertical axis and what ETR now calls Overlap formally called Market Share which is a measure of pervasiveness in the survey. That's on the horizontal axis that red dotted line at 40% represents highly elevated spending on the Y. The table insert shows the raw data for how the dots are positioned. Now, the first call out here is Snowflake. According to ETR quote, after 13 straight surveys of astounding net scores, Snowflake has finally broken the trend with its net score dropping below the 70% mark among all respondents. Now, as you know, net score is measured by asking customers are you adding the platform new? That's the lime green in the bar that's pointing from Snowflake in the graph and or are you increasing spend by 6% or more? That's the forest green is spending flat that's the gray is you're spend decreasing by 6% or worse. That's the pinkish or are you decommissioning the platform bright red which is essentially zero for Snowflake subtract the reds from the greens and you get a net score. Now, what's somewhat interesting is that snowflakes net score overall in the survey is 68 which is still huge, just under 70%, but it's net score inside the Dell account base drops to the low sixties. Nonetheless, this chart tells you why Snowflake it's highly elevated spending momentum combined with an increasing presence in the market over the past two years makes it a perfect initial data platform partner for Dell. Now and in the Ford versus Ferrari dynamic. That's going on between the likes of Dell's apex and HPE GreenLake database deals are going to become increasingly important beyond what we're seeing with this recent Snowflake deal. Now noticed by the way HPE is positioned on this graph with its acquisition of map R which is now part of HPE Ezmeral. But if these companies want to be taken seriously as Cloud players, they need to further expand their database affinity to compete ideally spinning up databases as part of their super Clouds. We'll come back to that that span multiple Clouds and include Edge data platforms. We're a long ways off from that. But look, there's Mongo, there's Couchbase, MariaDB, Cloudera or Redis. All of those should be on the short list in my view and why not Microsoft? And what about Oracle? Look, that's to be continued on maybe as a future topic in a, in a Breaking Analysis but I'll leave you with this. There are a lot of people like John Furrier who believe that Dell is playing with fire in the Snowflake deal because he sees it as a one way ticket to the Cloud. He calls it a one way door sometimes listen to what he said this past week. >> I would say that that's a dangerous game because we've seen that movie before, VMware and AWS. >> Yeah, but that we've talked about this don't you think that was the right move for VMware? >> At the time, but if you don't nurture the relationship AWS will take all those customers ultimately from VMware. >> Okay, so what does the data say about what John just said? How is VMware actually doing in Cloud after its early missteps and then its subsequent embracing of AWS and other Clouds. Here's that same XY graphic spending momentum on the Y and pervasiveness on the X and the same table insert that plots the dots and the, in the breakdown of Dell's net score granularity. You see that at the bottom of the chart in those colors. So as usual, you see Azure and AWS up and to the right with Google well behind in a distant third, but still in the mix. So very impressive for Microsoft and AWS to have both that market presence in such elevated spending momentum. But the story here in context is that the VMware Cloud on AWS and VMware's On-Prem Cloud like VMware Cloud Foundation VCF they're doing pretty well in the market. Look, at HPE, gaining some traction in Cloud. And remember, you may not think HPE and Dell and VCF are true Cloud but these are customers answering the survey. So their perspective matters more than the purest view. And the bad news is the Dell Cloud is not setting the world on fire from a momentum standpoint on the vertical axis but it's above the line of zero and compared to Dell's overall net score of 20 you could see it's got some work to do. Okay, so overall Dell's got a pretty solid net score to you know, positive 20, as I say their Cloud perception needs to improve. Look, Apex has to be the Dell Cloud brand not Dell reselling VMware. And that requires more maturity of Apex it's feature sets, its selling partners, its compensation models and it's ecosystem. And I think Dell clearly understands that. I think they're pretty open about that. Now this includes partners that go beyond being just sellers has to include more tech offerings in the marketplace. And actually they got to build out a marketplace like Cloud Platform. So they got a lot of work to do there. And look, you've got Oracle coming up. I mean they're actually kind of just below the magic 40% in the line which is pro it's pretty impressive. And we've been telling you for years, you can hate Oracle all you want. You can hate its price, it's closed system all of that it's red stack shore. You can say it's legacy. You can say it's old and outdated, blah, blah, blah. You can say Oracle is irrelevant in trouble. You are dead wrong. When it comes to mission critical workloads. Oracle is the king of the hill. They're a founder led company that knows exactly what it's doing and they're showing Cloud momentum. Okay, the last point is that while Microsoft AWS and Google have major presence as shown on the X axis. VMware and Oracle now have more than a hundred citations in the survey. You can see that on the insert in the right hand, right most column. And IBM had better keep the momentum from last quarter going, or it won't be long before they get passed by Dell and HP in Cloud. So look, John might be right. And I would think Snowflake quietly agrees that this Dell deal is all about access to Dell's customers and their data. So they can Hoover it into the Snowflake Data Cloud but the data right now, anyway doesn't suggest that's happening with VMware. Oh, by the way, we're keeping an eye close eye on NetApp who last September ink, a similar deal to VMware Cloud on AWS to see how that fares. Okay, let's wrap with some closing thoughts on what this deal means. We learned a lot from the Cloud generally in AWS, specifically in two pizza teams, working backwards, customer obsession. We talk about flywheel all the time and we've been talking today about marketplaces. These have all become common parlance and often fundamental narratives within strategic plans investor decks and customer presentations. Cloud ecosystems are different. They take both competition and partnerships to new heights. You know, when I look at Azure service offerings like Apex, GreenLake and similar services and I see the vendor noise or hear the vendor noise that's being made around them. I kind of shake my head and ask, you know which movie were these companies watching last decade? I really wish we would've seen these initiatives start to roll out in 2015, three years before AWS announced Outposts not three years after but Hey, the good news is that not only was Outposts a wake up call for the On-Prem crowd but it's showing how difficult it is to build a platform like Outposts and bring it to On-Premises. I mean, Outpost isn't currently even a rounding era in the marketplace. It really doesn't do much in terms of database support and support of other services. And, you know, it's unclear where that that is going. And I don't think it has much momentum. And so the Hybrid Cloud Vendors they've had time to figure it out. But now it's game on, companies like Dell they're promising a consistent experience between On-Prem into the Cloud, across Clouds and out to the Edge. They call it MultCloud which by the way my view has really been multi-vendor Chuck, Chuck Whitten. Who's the new co-COO of Dell called it Multi-Cloud by default. (laughing) That's really, I think an accurate description of that. I call this new world Super Cloud. To me, it's different than MultiCloud. It's a layer that runs on top of hyperscale infrastructure kind of hides the underlying complexity of the Cloud. It's APIs, it's primitives. And it stretches not only across Clouds but out to the Edge. That's a big vision and that's going to require some seriously intense engineering to build out. It's also going to require partnerships that go beyond the portfolios of companies like Dell like their own proprietary stacks if you will. It's going to have to replicate the Cloud Operating Model and to do that, you're going to need more and more deals like Snowflake and even deeper than Snowflake, not just in database. Sure, you'll need to have a catalog of databases that run in your On-Prem and Hybrid and Super Cloud but also other services that customers can tap. I mean, can you imagine a day when Dell offers and embraces a directly competitive service inside of apex. I have trouble envisioning that, you know not with their historical posture, you think about companies like, you know, Nutanix, you know, or Cisco where they really, you know those relationships cooled quite quickly but you know, look, think about it. That's what AWS does. It offers for instance, Redshift and Snowflake side by side happily and the Redshift guys they probably hate Snowflake. I wouldn't blame them, but the EC Two Folks, they love them. And Adam SloopesKy understands that ISVs like Snowflake are a key part of the Cloud ecosystem. Again, I have a hard time envisioning that occurring with Dell or even HPE, you know maybe less so with HPE, but what does this imply that the Edge will allow companies like Dell to a reach around on the Cloud and somehow create a new type of model that begrudgingly accommodates the Public Cloud but drafts of the new momentum of the Edge, which right now to these companies is kind of mostly telco and retail. It's hard to see that happening. I think it's got to evolve in a more comprehensive and inclusive fashion. What's much more likely is companies like Dell are going to substantially replicate that Cloud Operating Model for the pieces that they own pieces that they control which admittedly are big pieces of the market. But unless they're able to really tap that ecosystem magic they're not going to be able to grow much beyond their existing install bases. You take that lime green we showed you earlier that new adoption metric from ETR as an example, by my estimates, AWS and Azure are capturing new accounts at a rate between three to five times faster than Dell and HPE. And in the more mature US and mere markets it's probably more like 10 X and a major reason is because of the Cloud's robust ecosystem and the optionality and simplicity of transaction that that is bringing to customers. Now, Dell for its part is a hundred billion dollar revenue company. And it has the capability to drive that kind of dynamic. If it can pivot its partner ecosystem mindset from kind of resellers to Cloud services and technology optionality. Okay, that's it for now? Thanks to my colleagues, Stephanie Chan who helped research topics for Breaking Analysis. Alex Myerson is on the production team. Kristen Martin and Cheryl Knight and Rob Hof, on editorial they helped get the word out and thanks to Jordan Anderson for the new Breaking Analysis branding and graphics package. Remember these episodes are all available as podcasts wherever you listen. All you do is search Breaking Analysis podcasts. You could check out ETR website @etr.ai. We publish a full report every week on wikibon.com and siliconangle.com. You want to get in touch. @dave.vellente @siliconangle.com. You can DM me @dvellante. You can make a comment on our LinkedIn posts. This is Dave Vellante for the Cube Insights powered by ETR. Have a great week, stay safe, be well. And we'll see you next time. (upbeat music)

Published Date : May 7 2022

SUMMARY :

bringing you Data Driven and the amount of data that lives On-Prem and the value that we bring. One of the more buzzy into the Dell On-Premises world, Now and in the Ford I would say that At the time, but if you And it has the capability to

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jordan AndersonPERSON

0.99+

Stephanie ChanPERSON

0.99+

IBMORGANIZATION

0.99+

DellORGANIZATION

0.99+

Clark PattersonPERSON

0.99+

Alex MyersonPERSON

0.99+

Dave VellantePERSON

0.99+

AWSORGANIZATION

0.99+

Rob HofPERSON

0.99+

LenovoORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

JohnPERSON

0.99+

MicrosoftORGANIZATION

0.99+

John FurrierPERSON

0.99+

OracleORGANIZATION

0.99+

2015DATE

0.99+

GoogleORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

ClarkPERSON

0.99+

HPORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

BostonLOCATION

0.99+

HPEORGANIZATION

0.99+

6%QUANTITY

0.99+

FordORGANIZATION

0.99+

threeQUANTITY

0.99+

40%QUANTITY

0.99+

Chuck WhittenPERSON

0.99+

VMwareORGANIZATION

0.99+

NutanixORGANIZATION

0.99+

Kristen MartinPERSON

0.99+

FerrariORGANIZATION

0.99+

Adam SloopesKyPERSON

0.99+

EarthLOCATION

0.99+

13 straight surveysQUANTITY

0.99+

70%QUANTITY

0.99+

firstQUANTITY

0.99+

68QUANTITY

0.99+

last quarterDATE

0.99+

RedshiftTITLE

0.99+

siliconangle.comOTHER

0.99+

theCUBE StudiosORGANIZATION

0.99+

SnowflakeEVENT

0.99+

SnowflakeTITLE

0.99+

8,000 peopleQUANTITY

0.99+

bothQUANTITY

0.99+

20QUANTITY

0.99+

VCFORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+