Image Title

Search Results for more than 40 hours a week:

Driving Digital Transformation with Search & AI | Beyond.2020 Digital


 

>>Yeah, yeah. >>Welcome back to our final session in cultivating a data fluent culture track earlier today, we heard from experts like Valerie from the Data Lodge who shared best practices that you can apply to build that data flew into culture in your organization and tips on how to become the next analyst of the future from Yasmin at Comcast and Steve at all Terex. Then we heard from a captivating session with Cindy Hausen and Ruhollah Benjamin, professor at Princeton, on how now is our chance to change the patterns of injustice that we see have been woven into the fabric of society. If you do not have a chance to see today's content, I highly recommend that you check it out on demand. There's a lot of great information that you could start applying today. Now I'm excited to introduce our next session, which will take a look at how the democratization of data is powering digital transformation in the insurance industry. We have two prestigious guests joining us today. First Jim Bramblett, managing director of North America insurance practice, lead at its center. Throughout Jim's career, he's been focused on large scale transformation from large to midsize insurance carriers. His direct experience with clients has traditionally been in the intersection of technology, platform transformation and operating remodel redesign. We also have Michael cast Onus, executive VP and chief operating officer at DNA. He's responsible for all information technology, analytics and operating functions across the organization. Michael has led major initiatives to launch digital programs and incorporating modern AP I architectures ER, which was primarily deployed in the cloud. Jim, please take it away. >>Great. Thanks, Paula E thought we'd cover a few things today around around data. This is some of the trends we see in data within the insurance sector. And then I'll hand it over to Michael Teoh, take you through his story. You know, I think at the macro level, as we think about data and we think about data in the context of the insurance sector, it's interesting because the entire history of the insurance sector has been built on data and yet, at the same time, the entire future of it relies on that same data or similar similar themes for data. But but different. Right? So we think about the history, what has existed in an insurance companies. Four walls was often very enough, very enough to compete, right? So if you think about your customer data, claims, data, CRM, data, digital data, all all the data that was yeah, contained within the four walls of your company was enough to compete on. And you're able to do that for hundreds of years. But as we we think about now as we think about the future and the ability to kind of compete on data, this data comes from many more places just than inside your four walls. It comes from every device, every human, every vehicle, every property, every every digital interaction. Um in upon this data is what we believe insurers need to pivot to. To compete right. They need to be able to consume this data at scale. They need to be able to turn through this data to drive analytics, and they serve up insights based on those analytics really at the desktop of insurance professionals. And by the way, that has to be in the natural transition of national transaction. Of that employees work day. So an underwriter at a desktop claim him on the desktop, the sales associate of desktop. Those insights need to be served up at that point in time when most relevant. And you know. So if we think about how insurance companies are leveraging data, we see this really on kind of three horizons and starting from the left hand side of the page here, this is really brilliant basics. So how my leveraging core core data and core applied intelligence to monetize your existing strategy? And I think this brilliant based, brilliant basics concept is where most of most of my clients, at least within insurance are are today. You know, how are we leveraging data in the most effective way and putting it in the hands of business decision makers to make decisions largely through reporting and some applied intelligence? Um, Horizon two. We see, you know, definitely other industries blazing a trail here, and this is really about How do we integrate ecosystems and partners Now? I think within insurance, you know, we've had data providers forever, right? Whether it's NPR data, credit data risk data, you know, data aggregators and data providers have been a critical part of the insurance sector for for decades. I think what's different about this this ecosystem and partnership model is that it's much more Oneto one and it's much more, you know, kind of. How do we integrate more tightly and how do we become more embedded in each other's transactions? I think that we see some emergence of this, um, in insurance with automotive manufacturers with building management systems. But I think in the grand scheme of things, this is really very, very nascent for us as a sector. And I think the third horizon is is, you know, how do we fundamentally think about data differently to drive new business models? And I, you know, I don't know that we haven't ensure here in North America that's really doing this at any sort of scale. We certainly see pilots and proofs of concepts. We see some carriers in Europe farther down this path, but it's really it's really very new for us. A Z Think about these three horizons for insurance. So you know what's what's behind all this and what's behind. You know, the next powering of digital transformation and and we think at the end of the exercise, its data data will be the next engine that powers digital transformation. So in this exhibit, you know we see the three horizons across the top. You know, data is activated and activating digital transformation. And this, you know, this purple 3rd, 3rd road here is we think some of the foundational building blocks required to kind of get this right. But I think what's most important about about this this purple third bar here is the far right box, which is business adoption. Because you can build this infrastructure, you can have. You know, this great scalable cloud capability. Um, you can create a bunch of applications and intelligence, but unless it's adopted by the business, unless it's democratized, unless those insights and decisions air served up in the natural course of business, you're gonna have trouble really driving value. So that way, I think this is a really interesting time for data. We think this is kind of the next horizon to power the next age of digital transformation for insurance companies. With that brief prelude, I am, I'm honored. Thio, turn it over to Michael Stone Is the Cielo at CNN Insurance? >>Thanks, Jim, for that intro and very exciting Thio be here is part of part of beyond when I think a digital transformation within the context of insurance, actually look at it through the lens of competing in an era of near perfect information. So in order to be able to deliver all of the potential value that we talked about with regard to data and changing ecosystem and changing demands, the question becomes, How do you actually harness the information that's available to everybody to fundamentally change the business? So if you'll indulge me a bit here, let me tell you just a little bit more for those that don't know about insurance, what it really is. And I use a very long run on sentence to do that. It's a business model where capital is placed against risk in the form of products and associated services sold the customers through channels two companies to generate a return. Now, this sounds like a lot of other businesses in across multiple industries that were there watching today. But the difference within insurance is that every major word in that long run on sentence is changing sources of capital that we could draw on to be able to underwrite risk of going away. The nature of risk itself is changing from the perspective of policies that live six months to a year, the policies that could last six minutes. The products that we're creating are changing every day for our ability to actually put a satellite up in the air or ensure against the next pandemic. Our customers are not just companies or individuals, but they could be governments completely different entities than we would have been in sharing in the past and channels were changing. We sell direct, we sell through brokers and products are actually being embedded in other products. So you may buy something and not even know that insurance is a part of it. And what's most interesting here is the last word which is around return In the old world. Insurance was a cash flow business in which we could bring the premium in and get a level of interest income and being able to use that money to be able thio buffer the underwriting results that we would have. But those returns or dramatically reduced because of the interest income scenario, So we have to generate a higher rate of return. So what do we need to do? Is an insurance company in through this digital transformation to be able to get there? Well, fundamentally, we need to rethink how we're using information, and this is where thought spot and the cloud coming for us. We have two basic problems that we're looking to solve with information. The first one is information veracity. Do we believe it? When we get it? Can we actually trust it? Do we know what it means when we say that this is a policy in force or this is a new customer where this is the amount of attention or rate that we're going to get? Do we actually believe in that piece of data? The second is information velocity. Can we get it fast enough to be able to capitalize upon it? So in other words, we're We're working in a situation where the feedback loop is closing quickly and it's operating at a speed that we've never worked in before. So if we can't solve veracity and velocity, then we're never going to be able to get to where we need to go. So when we think of something like hot spot, what do we use it for? We use it to be able to put it in the hands of our business years so that they could ask the key questions about how the business is running. How much profit of my generating this month? What brokers do I need to talk? Thio. What is my rate retention? Look like what? The trends that I'm seeing. And we're using that mechanism not just to present nice visualizations, but to enable that really quick, dynamic question and answer and social, socially enabled search, which completely puts us in a different position of being able to respond to the market conditions. In addition, we're using it for pattern recognition. Were using it for artificial intelligence. We're gonna be capitalizing on the social aspect of of search that's that's enabled through thought spot and also connecting it into our advanced machine learning models and other capabilities that we currently have. But without it solving the two fundamental problems of veracity and velocity, we would be handicapped. So let me give you some advice about if I were in your position and you don't need to be in sleepy old industry like insurance to be able to do this, I'll leave you with three things. The first one is picking water holes so What are the things that you really want to be good at? What are the pieces of information that you really need to know more about? I mean, in insurance, its customers, it's businesses, locations, it's behavior. There are only a few water also really understand and pick those water holes that you're going to be really good at. The second is stand on the shoulders of giants. You know, in the world of technology, there's often a philosophy that says, Well, I can build it something better than somebody else create if I have it in house. But I'm happy to stand on the shoulders of giants like Thought Spot and Google and others to be able to create this capability because guess what? They're gonna out innovate any of the internal shops all day and every day. So don't be afraid. Thio. Stand side by side on the shoulders of giants as part of your journey. Unless you've got to build these organizations not just the technology for rapid experimentation and learning, because guess what? The moment you deliver insight, it begs another question, which also could change the business process, which could change the business model and If your organization the broader organization of business technology, analytics, customer service operations, etcetera is not built in a way that could be dynamic and flexible based on where the market is or is going, then you're gonna miss out on the opportunity. So again, I'm proud to be part of the fast black community. Really love the technology. And if if you look too, have the same kind of issues with your given industry about how you can actually speed up decision making, deliver insights and deliver this kind of search and recommended to use it. And with that, let's go to some questions. >>Awesome. Thank you so much, Michael and Jim for that in depth perspective and those tangible takeaways for our audience. We have a few minutes left and would love to ask a few questions. So here's the first one for Michael Michael. What are some of the most important things that you know now that you didn't know before you started this process? I think one of >>the things that's a great question. I think one of the things that really struck me is that, you know, traditional thinking would be very use case centric or pain point centric Show me, uh, this particular model or a particular question you want me to answer that can build your own analytics to do that or show me a deficiency in the system and I can go and develop a quick head that will do well, then you know, wallpaper over that particular issue. But what we've really learned is the foundation matters. So when we think about building things is building the things that are below the waterline, the pipes and plumbing about how you move data around how the engines work and how it all connects together gives you the above the waterline features that you could deliver to. You know, your employees into your customers much faster chasing use cases across the top above the waterline and ignoring what's below the water line to me. Is it really, uh, easy recipe too quick? Get your way to nothing. So again, focus on the foundation bill below the water line and then iterated above the water line that z what the lessons we've learned. It has been very effective for us. >>I think that's a very great advice for all those watching today on. But Here's one for Jim. Jim. What skills would you say are required for teams to truly adopt this digital transformation process? >>Yeah, well, I think that's a really good question, and I think I'd start with it's It's never one. Well, our experience has shown us number a one person show, right? So So we think to kind of drive some of the value that that that Michael spoke about. We really looked across disciplinary teams, which is a an amalgamation of skills and and team members, right? So if you think about the data science skills required, just kinda under under understand how toe toe work with data and drive insights, Sometimes that's high end analytic skills. Um, where you gonna find value? So some value architectural skills Thio really articulate, you know, Is this gonna move the needle for my business? I think there's a couple of critical critical components of this team. One is, you know, the operation. Whatever. That operation maybe has to be embedded, right, because they designed this is gonna look at a piece of data that seems interesting in the business Leader is going to say that that actually means nothing to me in my operation. So and then I think the last the last type of skill would be would be a data translator. Um, sitting between sometimes the technology in the business so that this amalgamation of skills is important. You know, something that Michael talked about briefly that I think is critical is You know, once you deliver insight, it leads to 10 more questions. So just in a intellectual curiosity and an understanding of, you know, if I find something here, here, the implications downstream from my business are really important. So in an environment of experimenting and learning thes thes cross discipline teams, we have found to be most effective. And I think we thought spot, you know, the platform is wired to support that type of analysis and wired to support that type of teaming. >>Definitely. I think that's though there's some really great skills. That's for people to keep in mind while they are going through this process. Okay, Michael, we have another question for you. What are some of the key changes you've had to make in your environment to make this digital transformation happen? >>That's a great question. I think if you look at our environment. We've got a mixture of, you know, space agent Stone age. We've got old legacy systems. We have all sorts of different storage. We have, you know, smatterings of things that were in cloud. The first thing that we needed to do was make a strong commitment to the cloud. So Google is our partner for for the cloud platform on unabashedly. The second thing that we needed to dio was really rethink the interplay between analytics systems in operational systems. So traditionally, you've got a large data warehouses that sit out over here that, you know, we've got some kind of extract and low that occurs, and we've got transactional operational systems that run the business, and we're thinking about them very differently from the perspective of bringing them together. How Doe I actually take advantage of data emotion that's in the cloud. So then I can actually serve up analytics, and I can also change business process as it's happening for the people that are transacting business. And in the meantime, I can also serve the multiple masters of total cost and consumption. So again, I didn't applications are two ships that pass in the night and never be in the world of Sienna. When you look at them is very much interrelated, especially as we want to get our analytics right. We want to get our A i m all right, and we want to get operational systems right By capturing that dated motion force across that architecture er that was an important point. Commit to the cloud, rethink the way we think analytics systems, work and operational systems work and then move them in tandem, as opposed to doing one without the other one in the vacuum. >>That's that's great advice, Michael. I think it's very important those key elements you just hit one question that we have final question we have for Jim. Jim, how do you see your client sustain the benefits that they've gained through this process? >>Yeah, it's a really good question. Um, you know, I think about some of the major themes around around beyond right, data fluency is one of them, right? And as I think about fluency, you only attain fluency through using the language every single day. They were day, week, over week, month over month. So you know, I think that applies to this. This problem too. You know, we see a lot of clients have to change probably two things at the same time. Number one is mindset, and number two is is structure. So if you want to turn these data projects from projects into processes, right, so so move away from spinning up teams, getting getting results and winding down. You wanna move away from that Teoh process, which is this is just the way working for these teams. Um, you have to change the mindset and often times you have to marry that with orb structure change. So So I'm gonna spin up these teams, but this team is going to deliver a set of insights on day. Then we're gonna be continuous improvement teams that that persist over time. So I think this shifting from project teams to persistent teams coupled with mindset coupled with with or structure changed, you know, a lot of times has to be in place for a period of time to get to get the fluency and achieve the fluency that that most organizations need. >>Thanks, Jim, for that well thought out answer. It really goes to show that the transformation process really varies when it comes to organizations, but I think this is a great way to close out today's track. I like to think Jim, Michael, as well as all the experts that you heard earlier today for sharing. There's best practice as to how you all can start transforming your organization's by building a data fluent culture, Um, and really empowering your employees to understand what data means and how to take actions with it. As we wrap up and get ready for the next session, I'd like to leave you all with just a couple of things. Number one if you miss anything or would like to watch any of the other tracks. Don't worry. We have everything available after this event on demand number two. If you want to ask more questions from the experts that you heard earlier today, you have a chance to do so. At the Meet The Experts Roundtable, make sure to attend the one for track four in cultivating a data fluent culture. Now, as we get ready for the product roadmap, go take a sip of water. This is something you do not want to miss. If you love what you heard yesterday, you're gonna like what you hear today. I hear there's some type of Indiana Jones theme to it all, so I won't say anything else, but I'll see you there.

Published Date : Dec 10 2020

SUMMARY :

best practices that you can apply to build that data flew into culture in your organization So if you think about your customer data, So in order to be able to deliver all of the potential value that we talked about with regard to data that you know now that you didn't know before you started this process? the above the waterline features that you could deliver to. What skills would you say are required for teams And I think we thought spot, you know, the platform is wired to What are some of the key changes you've had to make in your environment to make this digital transformation I think if you look at our environment. Jim, how do you see your client sustain the benefits that they've gained through this process? So I think this shifting from project teams to persistent teams coupled There's best practice as to how you all can start transforming

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JimPERSON

0.99+

MichaelPERSON

0.99+

Michael TeohPERSON

0.99+

Cindy HausenPERSON

0.99+

Ruhollah BenjaminPERSON

0.99+

StevePERSON

0.99+

GoogleORGANIZATION

0.99+

Jim BramblettPERSON

0.99+

ComcastORGANIZATION

0.99+

six monthsQUANTITY

0.99+

EuropeLOCATION

0.99+

Paula EPERSON

0.99+

ValeriePERSON

0.99+

DNAORGANIZATION

0.99+

10 more questionsQUANTITY

0.99+

YasminPERSON

0.99+

todayDATE

0.99+

two companiesQUANTITY

0.99+

two thingsQUANTITY

0.99+

North AmericaLOCATION

0.99+

TerexORGANIZATION

0.99+

one questionQUANTITY

0.99+

two shipsQUANTITY

0.99+

yesterdayDATE

0.99+

oneQUANTITY

0.99+

Michael StonePERSON

0.99+

ThioPERSON

0.99+

hundreds of yearsQUANTITY

0.98+

second thingQUANTITY

0.98+

FirstQUANTITY

0.98+

CNN InsuranceORGANIZATION

0.98+

two prestigious guestsQUANTITY

0.98+

secondQUANTITY

0.98+

Data LodgeORGANIZATION

0.98+

three thingsQUANTITY

0.98+

two fundamental problemsQUANTITY

0.97+

Thought SpotORGANIZATION

0.96+

SiennaLOCATION

0.96+

a yearQUANTITY

0.96+

first oneQUANTITY

0.95+

pandemicEVENT

0.95+

OneQUANTITY

0.95+

two basic problemsQUANTITY

0.94+

Michael MichaelPERSON

0.94+

third horizonQUANTITY

0.93+

earlier todayDATE

0.93+

3rdQUANTITY

0.92+

OnetoORGANIZATION

0.91+

Four wallsQUANTITY

0.9+

first thingQUANTITY

0.89+

six minutesQUANTITY

0.89+

NPRORGANIZATION

0.88+

decadesQUANTITY

0.85+

every vehicleQUANTITY

0.84+

single dayQUANTITY

0.82+

third barQUANTITY

0.81+

Meet The Experts RoundtableEVENT

0.79+

PrincetonORGANIZATION

0.78+

deviceQUANTITY

0.76+

3rd roadQUANTITY

0.76+

Indiana JonesTITLE

0.76+

number twoQUANTITY

0.75+

every humanQUANTITY

0.74+

three horizonsQUANTITY

0.74+

Become the Analyst of the Future | Beyond.2020 Digital


 

>>Yeah, yeah. >>Hello and welcome back. I hope you're ready for our next session. Become the analyst of the future. We'll hear the customer's perspective about their increasingly strategic role and the potential career growth that comes with it. Joining us today are Nate Weaver, director of product marketing at Thought Spot. Yasmin Natasa, senior director of national sales strategy and insights over at Comcast and Steve Would Ledge VP of customer and partner initiatives. Oughta Terex. We're so happy to have you all here today. I'll hand things over to meet to kick things off. >>Yeah, thanks, Paula. I'd like to start with a personal story that might resonate with our audience, says an analyst. Early in my career, I was the intermediary between the business and what we called I t right. Basically database administrators. I was responsible for understanding business logic gathering requirements, Ringling data building dashboards for executives and, in my case, 100 plus sales reps. Every request that came through the business intelligence team. We owned everything, right? Indexing databases for speed, S s. I s packages for data transfer maintaining Department of Data Lakes all out cubes, etcetera. We were busy. Now we were constantly building or updating something. The worst part is an analyst, If you ask the business, every request took too long. It was slow. Well, from an analyst perspective, it was slow because it's a complex process with many moving parts. So as an analyst fresh out of grad school often felt overeducated, sometimes underappreciated, like a report writer, we were constantly overwhelmed by never ending ad hoc request, even though we had hundreds of reports and robust dashboards that would answer 90% of the questions. If the end user had an analytical foundation like I did right, if they knew where to look and how to navigate dimensions and hierarchies, etcetera. So anyway, point is, we had to build everything through this complex and slow, um, process. So for the first decade of my career, I had this gut feeling there had to be a better way, and today we're going to talk about how thought SWAT and all tricks are empowering the analysts of the future by reimagining the entire data pipeline. This paradigm shift allows businesses and data teams thio, connect, transform, model and, most importantly, automate what used to be this terribly complex data analysis process. With that, I'd like to hand it over to Steve to describe the all tricks analytic process automation platform and how they help analysts create more robust data sets that enable non technical end users toe ask and answer their own questions, but also more sophisticated business questions. Using Search and AI Analytics in Thoughts Fire Steve over to you. >>Thanks for that really relevant example. Nate and Hi, everyone. I'm Steve. Will it have been in the market for about 20 years, and then Data Analytics and I can completely I can completely appreciate what they was talking about. And what I think is unique about all tricks is how we not only bring people to the data for a self service environment, but I think what's often missed in analytics is the automation and figure out. What is the business process that needs to be repeated and connecting the dots between the date of the process and the people To speed up those insights, uh, to not only give people to self service, access to information, to do data prep and blending, but more advanced analytics, and then driving that into the business in terms of outcomes. And I'll show you what that looks like when you talk about the analytic process automation platform on the next slide. What we've done is we've created this end to end workflow where data is on the left, outcomes around the right and within the ultras environment, we unify data prep and blend analytics, data science and process automation. In this continuous process, so is analysis or an end user. I can go ahead and grab whatever data is made available to me by i t. You have got 80 plus different inputs and a p i s that we connect to. You have this drag and drop environment where you conjoined the data together, apply filters, do some descriptive analytics, even do things like grab text documents and do sentiments analysis through that with text, mining and natural language processing. As people get more used to the platform and want to do more advanced analytics and process automation, we also have things like assisted machine learning and predictive analytics out of the box directly within it as well and typically within organizations. These would be different departments and different tools doing this and we try to bring all this together in one system. So there's 260 different automation building blocks again and drag a drop environment. And then those outcomes could be published into a place where thoughts about visualizes that makes it accessible to the business users to do additional search based B I and analytics directly from their browser. And it's not just the insights that you would get from thought spot, but a lot of automation is also driving unattended, unattended or automated actions within operational systems. If you take an example of one of our customers that's in the telecommunications world, they drive customer insights around likeliness to turn or next best offers, and they deliver that within a salesforce applications. So when you walk into a retail store for your cell phone provider, they will know more about you in terms of what services you might be interested in. And if you're not happy at the time and things like that. So it's about how do we connect all those components within the business process? And what this looks like is on this screen and I won't go through in detail, but it's ah, dragon drop environment, where everything from the input data, whether it's cloud on Prem or even a local file that you might have for a spreadsheet. Uh, I t wants to have this environment where it's governed, and there's sort of components that you're allowed to have access to so that you could do that data crept and blending and not just data within your organization, but also then being able to blend in third party demographic data or firm a graphic information from different third party data providers that we have joined that data together and then do more advanced analytics on it. So you could have a predictive score or something like that being applied and blending that with other information about your customer and then sharing those insights through thought spots and more and more users throughout the organization. And bring that to life. In addition to you, as we know, is gonna talk about her experience of Comcast. Given the world that we're in right now, uh, hospital care and the ability to have enough staff and and take care of all of our people is a really important thing. So one of our customers, a large healthcare network in the South was using all tricks to give not only analyst with the organization, but even nurses were being trained on how to use all tricks and do things like improve observation. Wait time eso that when you come in, the nurse was actually using all tricks to look at the different time stamps out of ethic and create a process for the understands. What are all the causes for weight in three observation room and identify outliers of people that are trying to come in for a certain type of care that may wait much longer than on average. And they're actually able to reduce their wait time by 22%. And the outliers were reduced by about 50% because they did a better job of staffing. And overall staffing is a big issue if you can imagine trying to have a predictive idea of how many staff you need in the different medical facilities around the network, they were bringing in data around the attrition of healthcare workers, the volume of patient load, the scheduled holidays that people have and being able to predict 4 to 6 months out. What are the staff that they need to prepare toe have on on site and ready so they could take care of the patients as they're coming in. In this case, they used in our module within all tricks to do that, planning to give HR and finance a view of what's required, and they could do a drop, a drop down by department and understand between physicians, nurses and different facilities. What is the predicted need in terms of staffing within that organization? So you go to the next slide done, you know, aside from technology, the number one thing for the analysts of the future is being able to focus on higher value business initiatives. So it's not just giving those analysts the ability to do this self service dragon drop data prep and blend and analytics, but also what are the the common problems that we've solved as a community? We have 150,000 people in the alter its community. We've been in business for over 23 years, so you could go toe this gallery and not only get things like the thought spot tools that we have to connect so you can do direct query through T Q l and pushed it into thought spot in Falcon memory and other things. But look at things like the example here is the healthcare District, where we have some of our third party partners that have built out templates and solutions around predictive staffing and tracking the complicating conditions around Cove. It as an example on different KPs that you might have in healthcare, environment and retail, you know, over 150 different solution templates, tens of thousands of different posts across different industries, custom return and other problems that we can solve, and bringing that to the community that help up level, that collective knowledge, that we have this business analyst to solve business problems and not just move data, and then finally, you know, as part of that community, part of my role in all tricks is not only working with partners like thought spot, but I also share our C suite advisory board, which we just happen to have this morning, as a matter of fact, and the number one thing we heard and discussed at that customer advisory board is a round up Skilling, particularly in this virtual world where you can't do in classroom learning how do we game if I and give additional skills to our staff so that they can digitize and automate more and more analytic processes in their organization? I won't go through all this, but we do have learning paths for both beginners. A swell as advanced people that want to get more into the data science world. And we've also given back to our community. There's an initiative called Adapt where we've essentially donated 125 hours of free training free access to our products. Within the first two weeks, we've had over 9000 people participate in that get certified across 100 different companies and then get jobs in this new world where they've got additional skills now around analytics. So I encourage you to check that out, learn what all tricks could do for you in up Skilling your journey becoming that analysts of the future And thanks for having me today thoughts fun looking forward to the rest of conversation with the Azmin. >>Yeah, thanks. I'm gonna jump in real quick here because you just mentioned something that again as an analyst, is incredibly important. That's, you know, empowering Mia's an analyst to answer those more sophisticated business questions. There's a few things that you touched on that would be my personal top three. Right? Is an analyst. You talked about data cleansing because everyone has data quality problems enhancing the data sets. I came from a supply chain analytics background. So things like using Dun and Bradstreet in your examples at risk profiles to my supplier data and, of course, predictive analytics, like creating a forecast to estimate future demand. These are things that I think is an analyst. I could truly provide additional value. I'd like to show you a quick example, if I may, of the type of ad hoc request that I would often get from the business. And it's fairly complex, but with a combination of all tricks and thought spots very easy to answer. Crest. The request would look something like this. I'd like to see my spend this year versus last year to date. Uh, maybe look at that monthly for Onley, my area of responsibility. But I only want to focus on my top five suppliers from this year, right? And that's like an end statement. I saw that in one of your slides and so in thoughts about that's answering or asking a simple question, you're getting the answer in maybe 30 seconds. And that's because behind the scenes, the last part is answering those complexities for you. And if I were to have to write this out in sequel is an analyst, it could take me upwards, maybe oven our because I've got to get into the right environment in the database and think about the filters and the time stamps, and there's a lot going on. So again, thoughts about removes that curiosity tax, which when becoming the analysts of the future again, if I don't have to focus on the small details that allows me to focus on higher value business initiatives, right. And I want to empower the business users to ask and answer their own questions. That does come with up Skilling, the business users as well, by improving data fluency through education and to expand on this idea. I wanna invite Yasmin from Comcast to kind of tell her personal story. A zit relates to analysts of the future inside Comcast. >>Well, thank you for having me. It's such a pleasure. And Steve, thank you so much for starting and setting the groundwork for this amazing conversation. You hit the nail on the head. I mean, data is a Trojan horse off analytics, and our ability to generate that inside is eyes busy is anchored on how well we can understand the data on get the data clean It and tools, like all tricks, are definitely at the forefront off ability to accelerate the I'll speak to incite, which is what hot spot brings to the table. Eso My story with Thought spot started about a year and a half ago as I'm part of the Sales Analytics team that Comcast all group is officially named, uh, compensation strategy and insight. We are part of the Consumer Service, uh, Consumer Service expected Consumer Service group in the cell of Residential Sales Organization, and we were created to provide insight to the Comcast sells channel leaders Thio make sure that they have database insight to drive sales performance, increased revenue. We When we started the function, we were really doing a lot of data wrangling, right? It wasn't just a self performance. It waas understanding who are customers were pulling a data on productivity. Uh, so we were going into HR systems are really going doing the E T l process, but manually sometimes. And we took a pause at one point because we realized that we're spending a good 70% of our time just doing that and maybe 5% of our time storytelling. Now our strength was the storytelling. And so you see how that balance wasn't really there. And eso Jim, my leader pause. It pulls the challenge of Is there a better way of doing this on DSO? We scan the industry, and that's how we came across that spot. And the first time I saw the tool, I fell in love. There's not a way for me to describe it. I fell in love because I love the I love the the innovation that it brought in terms of removing the middleman off, having to create all these layers between the data and me. I want to touch the data. I want to feel it, and I want to ask questions directly to it, and that's what that's what does for us. So when we launched when we launch thoughts about for our team, we immediately saw the difference in our ability to provide our stakeholders with better answers faster. And the combination of the two makes us actually quite dangerous right on. But it has been It has been a great great journey altogether are inter plantation was done on the cloud because at the time, uh, the the we had access to AWS account and I love to be at the edge of technology, So I figured it would be a good excuse for me to learn more about cloud technology on its been things. Video has been a great journey. Um, my, my background, uh, into analytics comes from science. And so, for me, uh, you know, we are really just stretching the surface off. What is possible in terms off the how well remind data to answer business questions on Do you know, tools like thought spot in combination with technologies. Like all trades, eyes really are really the way to go about it. And the up skilling, um the up skilling off the analysts that comes with it is really, really, really exciting because people who love data want to be able to, um want to be efficient about how they spend time with data. Andi and that's what? That's what I spend a lot of my Korea I'd Comcast and before Comcast doing so It gives me a lot of ah, a lot of pleasure to, um to bring that to my organization and to walk with colleagues outside off. We didn't Comcast to do so The way we the way we use stops, that's what we did not seem is varies. One of the things that I'm really excited about is integrating it with all the tools that we have in our analytics portfolio, and and I think about it as the over the top strategy. Right. Uh, group, like many other groups, wouldn't Comcast and with our organizations also used to be I tools. And it is not, um, you choose on a mutually exclusive strategies, right? Eso In our world, we build decision making, uh, decision making tools from the analysis that we generate. When we have the read out with the cells channel leaders, we we talk about the insight, and invariably there's some components off those insight that they want to see on a regular basis. That becomes a reporting activity. We're not in a reporting team. We partner with reporting team for them to think that input and and and put it on and create a regular cadence for it. Uh, the over the top strategy for me is, um, are working with the reporting team to then embed the link to talk spot within the report so that the questions that can be answered by the reports left dashboard are answered within the dashboard. But we make sure that we replicate the data source that feeds that report into thought spot so that the additional questions can then be insert in that spot. It and it works really well because it creates a great collaboration with our partners on the on the reporting side of the house on it also helps of our end the end users do the cell service in along the analytic spectrum, right? You go to the report when you can, when all you need is dropped down the filters and when the questions become more sophisticated, you still have a platform in the place to go to ask the questions directly and do things that are a bit funk here, like, you know, use for like you because you don't know what you're looking for. But you know that there's there's something there to find. >>Yeah, so yeah, I mean, a quick question. Our think would be on this year's analytics meet Cloud open for everyone and your experience. What does that mean to you? Including in the context of the thought spot community inside Comcast? >>Oh yes, it's the Comcast community. The passport commedia Comcast is very vibrant. My peers are actually our colleagues, who I have in my analytics village prior to us getting on board with hot spot and has been a great experience for us. So have thoughts, but as an additional kind of topic Thio to connect on. So my team was the second at Comcast to implement that spot. The first waas, the product team led by Skylar, and he did his instance on Prem. Um, he the way that he brings his data is, is through a sequel server. When I came what, as I mentioned earlier, I went on the cloud because, as I mentioned earlier, I like to be on the edge of technology and at the time thought spot was moving towards towards the cloud. So I wanted to be part of that wave. There's Ah, mobile team has a new instance that is on the cloud thing. The of the compliance team uses all tricks, right? And the S O that that community to me is really how the intellectual capital that we're building, uh, using thought spot is really, really growing on by what happens to me. And the power of being on the cloud is that if we are all using the same tool, right and we are all kind of bringing our data together, um, we are collaborating in ways that make the answer to the business questions that the C suite is asking much better, much richer. They don't always come to us at the same time, right? Each function has his own analytics group, Andi. Sometimes if we are not careful, we're working silo. But the community allows us to know about what each other are working on. And the fact that we're using the same tool creates a common language that translates into opportunities for collaboration, which will translate into, as I mentioned earlier, richer better on what comprehensive answers to the business. So analyst Nick the cloud means better, better business and better business answers and and better experiences for customers at the end of the day, so I'm all for it. >>That's great. Yeah. Comcast is obviously a very large enterprise. Lots of data sources, lots of data movement. It's cool to hear that you have a bit of a hybrid architecture, er thought spot both on premise. Stand in the cloud and you did bring up one other thing that I think is an important question for Steve. Most people may just think of all tricks as an E T l tool, but I know customers like Comcast use it for way more than just that. Can you expand upon the differences between what people think of a detail tool and what all tricks is today? >>Yeah, I think of E. T L tools as sort of production class source to target mapping with transformations and data pipelines that air typically built by I t. To service, you know, major areas within the business, and that's super valuable. One doesn't go away, and in all tricks can provide some of that. But really, it's about the end user empowerment. So going back to some of guys means examples where you know there may be some new information that you receive from a third party or even a spreadsheet that you develop something on. You wanna start to play around that information so you can think of all the tricks as a data lab or data science workbench, in fact, that you know, we're in the Gartner Magic Quadrant for data science and machine learning platforms. Because a lot of that innovation is gonna happen at the individual level we're trying to solve. And over time, you might want to take that learning and then have I t production eyes it within another system. But you know, there's this trade off between the agility that end users need and sort of the governance that I t needs to bring. So we work best in a environment where you have that in user autonomy. You could do E tail workloads, data prep and Glenn bringing your own information on then work with i t. To get that into the right server based environment to scale out in the thought spot and other applications that you develop new insights for the business. So I see it is ah, two sides of the same coin. In many ways, a home. And >>with that we're gonna hand it back over to a Paula. >>Thank you, Nate, Yasmin and Steve for the insights into the journey of the analyst of the future. Next up in a couple minutes, is our third session of today with Ruhollah Benjamin, professor of African American Studies at Princeton University, and our chief data strategy officer, Cindy House, in do a couple of jumping jacks or grab a glass of water and don't miss out on the next important discussion about diversity and data.

Published Date : Dec 10 2020

SUMMARY :

and the potential career growth that comes with it. So for the first decade of my career, And it's not just the insights that you would get from thought spot, the analysts of the future again, if I don't have to focus on the small details that allows me to focus saw the difference in our ability to provide our stakeholders with better answers Including in the context of the thought spot community inside And the S O that that community to me is Stand in the cloud and you did bring up the thought spot and other applications that you develop new insights for the business. and our chief data strategy officer, Cindy House, in do a couple

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
StevePERSON

0.99+

ComcastORGANIZATION

0.99+

PaulaPERSON

0.99+

Ruhollah BenjaminPERSON

0.99+

90%QUANTITY

0.99+

Nate WeaverPERSON

0.99+

YasminPERSON

0.99+

30 secondsQUANTITY

0.99+

5%QUANTITY

0.99+

4QUANTITY

0.99+

AWSORGANIZATION

0.99+

NatePERSON

0.99+

125 hoursQUANTITY

0.99+

70%QUANTITY

0.99+

third sessionQUANTITY

0.99+

todayDATE

0.99+

GlennPERSON

0.99+

Yasmin NatasaPERSON

0.99+

80 plusQUANTITY

0.99+

150,000 peopleQUANTITY

0.99+

22%QUANTITY

0.99+

Cindy HousePERSON

0.99+

NickPERSON

0.99+

Each functionQUANTITY

0.99+

100 plus sales reps.QUANTITY

0.99+

over 23 yearsQUANTITY

0.99+

twoQUANTITY

0.99+

ComcaORGANIZATION

0.99+

6 monthsQUANTITY

0.99+

two sidesQUANTITY

0.99+

last yearDATE

0.99+

one systemQUANTITY

0.99+

100 different companiesQUANTITY

0.99+

secondQUANTITY

0.99+

firstQUANTITY

0.99+

JimPERSON

0.99+

about 20 yearsQUANTITY

0.98+

this yearDATE

0.98+

Thought SpotORGANIZATION

0.98+

about 50%QUANTITY

0.98+

MiaPERSON

0.98+

first two weeksQUANTITY

0.98+

OneQUANTITY

0.98+

oneQUANTITY

0.98+

one pointQUANTITY

0.97+

Department of Data LakesORGANIZATION

0.97+

hundreds of reportsQUANTITY

0.97+

over 9000 peopleQUANTITY

0.97+

first decadeQUANTITY

0.96+

bothQUANTITY

0.96+

Steve Would LedgePERSON

0.95+

GartnerORGANIZATION

0.95+

first timeQUANTITY

0.94+

five suppliersQUANTITY

0.94+

DunORGANIZATION

0.92+

tens of thousandsQUANTITY

0.92+

Princeton UniversityORGANIZATION

0.92+

Oughta TerexPERSON

0.91+

over 150 different solutionQUANTITY

0.91+

AzminPERSON

0.9+

a year and a half agoDATE

0.9+

260 different automation building blocksQUANTITY

0.87+

couple minutesQUANTITY

0.86+

OnleyORGANIZATION

0.85+

top threeQUANTITY

0.83+

AndiPERSON

0.83+

aboutDATE

0.79+

ThioPERSON

0.74+

BradstreetORGANIZATION

0.74+

3 3 Adminstering Analytics v4 TRT 20m 23s


 

>>Yeah. >>All right. Welcome back to our third session, which is all about administering analytics at Global Scale. We're gonna be discussing how you can implement security data compliance and governance across the globe at for large numbers of users to ensure thoughts. What is open for everyone across your organization? So coming right up is Cheryl Zang, who is a senior director of product management of Thought spot, and Kendrick. He threw the sports sports director of Systems Engineering. So, Cheryl and Kendrick, the floor is yours. >>Thank you, Tina, for the introduction. So let's talk about analytics scale on. Let's understand what that is. It's really three components. It's the access to not only data but its technology, and we start looking at the intersection of that is the value that you get as an organization. When you start thinking about analytics scale, a lot of times we think of analysts at scale and we look at the cloud as the A seven m for it, and that's a That's an accurate statement because people are moving towards the cloud for a variety of reasons. And if you think about what's been driving, it has been the applications like Salesforce, Forcados, Mongo, DB, among others. And it's actually part of where we're seeing our market go where 64% of the company's air planning to move their analytics to the cloud. And if you think of stock spotted specifically, we see that vast majority of our customers are already in the cloud with one of the Big Four Cloud Data warehouses, or they're evaluated. And what we found, though, is that even though companies are moving their analytics to the cloud, we have not solved. The problem of accessing the data is a matter of fact. Our customers. They're telling us that 10 to 25% of that data warehouse that they're leveraging, they've moved and I'm utilizing. And if you look at in General, Forrester says that 60 to 73% of data that you have is not being leveraged, and if we think about why you go through, you have this process of taking enterprise data, moving it into these cubes and aggregates and building these reports dashboards. And there's this bottleneck typically of that be I to and at the end of the day, the people that are getting that data on the right hand side or on Lee. Anywhere from 20 to 30% of the population when companies want to be data driven is 20 to 30% of the population. Really what you're looking for now it's something north of that. And if you think of Cloud data, warehouse is being the the process and you bring Cloud Data Warehouse and it's still within the same framework. You know? Why invest? Why invest and truly not fix the problem? And if you take that out and your leverage okay, you don't necessarily have the You could go directly against the warehouse, but you're still not solving the reports and dashboards. Why investing truly not scale? It's the three pillars. It's technology, it's data, and it's a accessibility. So if we look at analytics at scale, it truly is being able to get to that north of the 20 to 30% have that be I team become enablers, often organization. Have them be ableto work with the data in the Cloud Data warehouse and allow the cells marking finding supplies and then hr get direct access to that. Ask their own questions to be able to leverage that to be able to do that. You really have to look at your modern data architecture and figure out where you are in this maturity, and then they'll be able to build that out. So you look at this from the left to right and sources. It's ingestion transformation. It's the storage that the technology brains e. It's the data from a historical predictive perspective. And then it's the accessibility. So it's technology. It's data accessibility. And how do you build that? Well, if you look at for a thought to spot perspective, it truly is taking and driving and leveraging the cloud data warehouse architectures, interrogated, essay behind it. And then the accessibility is the search answers pen boards and embedded analytics. If you take that and extend it where you want to augment it, it's adding our partners from E T L R E L t. Perspective like al tricks talent Matile Ian Streaming data from data brings or if you wanna leverage your cloud, data warehouses of Data Lake and then leverage the Martin capability of your child data warehouse. The augmentation leveraging out through its data bricks and data robot. And that's where your data side of that pillar gets stronger, the technologies are enabling it. And then the accessibility from the output. This thought spot. Now, if you look at the hot spots, why and how do we make this technology accessible? What's the user experience we are? We allow an organization to go from 20 to 30% population, having access to data to what it means to be truly data driven by our users. That user experience is enabled by our ability to lead a person through the search process. There are search index and rankings. This is built for search for corporate data on top of the Cloud Data Warehouse. On top of the data that you need to be able to allow a person who doesn't understand analytics to get access to the data and the questions they need to answer, Arcuri Engine makes it simple for customers to take. Ask those questions and what you might think are not complex business questions. But they turn into complex queries in the back end that someone who typically needs to know that's that power user needs to know are very engine. Isolate that from an end user and allows them to ask that question and drive that query. And it's built on an architecture that allows us to change and adapt to the types of things. It's micro services architecture, that we've not only gone from a non grim system to our cloud offering, in a matter of of really true these 23 years. And it's amazing the reason why we can do that, do that and in a sense, future proof your investment. It's because of the way we've developed this. It's wild. First, it's Michael Services. It's able to drive. So what this architecture ER that we've talked about. We've seen different conversations of beyond its thought spot everywhere, which allows us to take that spot. One. Our ability to for search for search data for auto analyzed the Monitor with that govern security in the background and being able to leverage that not only internally but externally and then being able to take thought spot modeling language for that analysts and that person who just really good at creating and let them create these models that it could be deployed anywhere very, very quickly and then taking advantage off the Cloud Data warehouse or the technology that you have and really give you accessibility the technology that you need as well as the data that you need. That's what you need to be able to administer, uh, to take analytics at scale. So what I'm gonna do now is I'm gonna turn it over to Cheryl and she's gonna talk about administration in thought spot. Cheryl, >>thank you very much Can take. Today. I'm going to show you how you can administrator and manage South Spot for your organization >>covering >>streaming topics, the user management >>data management and >>also user adoption and performance monitoring. Let's jump into the demo. >>I think the Southport Application The Admin Council provides all the core functions needed for system level administration. Let's start with user management and authentication. With the user tab. You can add or delete a user, or you can modify the setting for an existing user. For example, user name, password email. Or you can add the user toe a different group with the group's tab. You can add or delete group, or you can manage the group setting. For example, Privileges associated with all the group members, for example, can administrate a soft spot can share data with all users or can manage data this can manage data privilege is very important. It grants a user the privileges to add data source added table and worksheet, manage data for different organizations or use cases without being an at me. There is also a field called Default Pin Board. You can select a set of PIN board that will be shown toe all of the users in that group on their homepage in terms off authentication. Currently, we support three different methods local active directory and samel By default. Local authentication is enabled and you can also choose to have several integration with an external identity provider. Currently, we support actor Ping Identity, Seaside Minor or a T. F. S. The third method is integration with active directory. You can configure integration with L DAP through active directory, allowing you to authenticate users against an elder up server. Once the users and groups are added to the system, we can share pin board wisdom or they can search to ask and answer their own questions. To create a searchable data, we first need to connect to our data warehouses with embraced. You can directly query the data as it exists in the data warehouse without having to move or transfer the data. In this page, you can add a connection to any off the six supported data warehouses. Today we will be focusing on the administrative aspect off the data management. So I will close the tap here and we will be using the connections that are already being set up. Under the Data Objects tab, we can see all of the tables from the connections. Sometimes there are a lot of tables, and it may be overwhelming for the administrator to manage the data as a best practice. We recommend using stickers toe organize your data sets here, we're going to select the Salesforce sticker. This will refined a list off tables coming from Salesforce only. This helps with data, lineage and the traceability because worksheets are curated data that's based on those tables. Let's take a look at this worksheet. Here we can see the joints between tables that created a schema. Once the data analyst created the table and worksheet, the data is searchable by end users. Let's go to search first, let's select the data source here. We can see all of the data that we have been granted access to see Let's choose the Salesforce sticker and we will see all of the tables and work ship that's available to us as a data source. Let's choose this worksheet as a data source. Now we're ready to search the search Insight can be saved either into a PIN board or an answer. Okay, it's important to know that the sticker actually persist with PIN board and answers. So when the user logging, they will be able to see all of the content that's available to them. Let's go to the Admin Council and check out the User Adoption Pin board. The User Adoption Pin board contains essential information about your soft spot users and their adoption off the platform. Here, you can see daily active user, weekly, active user and monthly active user. Count that in the last 30 days you can also see the total count off the pin board and answers that saved in the system. Here, you can see that unique count off users. Now. You can also find out the top 10 users in the last 30 days. The top 10 PIN board consumers and top 10 ad hoc searchers here, you can see that trending off weekly, active users, daily, active users and hourly active users over time. You can also get information about popular pin boards and user actions in the last one month. Now let's zoom in into this chart. With this chart, you can see weekly active users and how they're using soft spot. In this example, you can see 60% of the time people are doing at Hawk search. If you would like to see what people are searching, you can do a simple drill down on quarry tax. Here we can find out the most popular credit tax that's being used is number off the opportunities. At last, I would like to show you assistant performance Tracking PIN board that's available to the ad means this PIN board contains essential information about your soft spot. Instance performance You this pimple. To understand the query, Leighton see user traffic, how users are interacting with soft spot, most frequently loaded tables and so on. The last component toe scowling hundreds of users, is a great on boarding experience. A new feature we call Search Assist helps automate on boarding while ensuring new users have the foundation. They need to be successful on Day one, when new users logging for the first time, they're presented with personalized sample searches that are specific to their data set. In this example, someone in a sales organization would see questions like What were sales by product? Type in 2020. From there are guided step by step process helps introduce new users with search ensuring a successful on boarding experience. The search assist. The coach is a customized in product Walk through that uses your own data and your own business vocabulary to take your business users from unfamiliar to near fluent in minutes. Instead of showing the entire end user experience today, I will focus on the set up and administration side off the search assist. Search Assist is easy to set up at worksheet level with flexible options for multiple guided lessons. Using preview template, we help you create multiple learning path based on department or based on your business. Users needs to set up a learning path. You're simply feeling the template with relevant search examples while previewing what the end user will see and then increase the complexity with each additional question toe. Help your users progress >>in summary. It is easy to administrator user management, data management, management and the user adoption at scale Using soft spot Admin Council Back to you, Kendrick. >>Thank you, Cheryl. That was great. Appreciate the demo there. It's awesome. It's real life data, real life software. You know what? Enclosing here? I want to talk a little bit about what we've seen out in the marketplace and some of them when we're talking through prospects and customers, what they talk a little bit about. Well, I'm not quite area either. My data is not ready or I've got I don't have a file data warehouse. That's this process. In this thinking on, we have examples and three different examples. We have a company that actually had never I hadn't even thought about analytics at scale. We come in, we talked to them in less than a week. They're able to move their data thought spot and ask questions of the billion rose in less than a week now. We've also had customers that are early adoption. They're sticking their toes in the water around the technology, so they have a lot of data warehouse and they put some data at it, and with 11 minute within 11 minutes, we were able to search on a billion rows of their data. Now they're adding more data to combine to, to be able to work with. And then we have customers that are more mature in their process. Uh, they put large volumes of data within nine minutes. We're asking questions of their data, their business users air understanding. What's going on? A second question we get sometimes is my data is not clean. We'll talk Spot is very, very good at finding that type of data. If you take, you start moving and becomes an inner door process, and we can help with that again. Within a week, we could take data, get it into your system, start asking business questions of that and be ready to go. You know, I'm gonna turn it back to you and thank you for your time. >>Kendrick and Carol thank you for joining us today and bringing all of that amazing inside for our audience at home. Let's do a couple of stretches and then join us in a few minutes for our last session of the track. Insides for all about how Canadian Tire is delivering Korean making business outcomes would certainly not in a I. So you're there

Published Date : Dec 10 2020

SUMMARY :

We're gonna be discussing how you can implement security data compliance and governance across the globe Forrester says that 60 to 73% of data that you have is not I'm going to show you how you Let's jump into the demo. and it may be overwhelming for the administrator to manage the data as data management, management and the user adoption at scale Using soft spot Admin and thank you for your time. Kendrick and Carol thank you for joining us today and bringing all of that amazing inside for our audience at home.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
CherylPERSON

0.99+

TinaPERSON

0.99+

KendrickPERSON

0.99+

Cheryl ZangPERSON

0.99+

10QUANTITY

0.99+

60QUANTITY

0.99+

20QUANTITY

0.99+

60%QUANTITY

0.99+

ForresterORGANIZATION

0.99+

third sessionQUANTITY

0.99+

64%QUANTITY

0.99+

11 minuteQUANTITY

0.99+

TodayDATE

0.99+

FirstQUANTITY

0.99+

30%QUANTITY

0.99+

nine minutesQUANTITY

0.99+

third methodQUANTITY

0.99+

second questionQUANTITY

0.99+

Global ScaleORGANIZATION

0.99+

first timeQUANTITY

0.99+

South SpotORGANIZATION

0.99+

less than a weekQUANTITY

0.99+

23 yearsQUANTITY

0.99+

2020DATE

0.99+

CarolPERSON

0.99+

LeightonORGANIZATION

0.98+

todayDATE

0.98+

Michael ServicesORGANIZATION

0.98+

25%QUANTITY

0.97+

73%QUANTITY

0.97+

hundreds of usersQUANTITY

0.97+

11 minutesQUANTITY

0.97+

Matile IanPERSON

0.97+

firstQUANTITY

0.96+

three pillarsQUANTITY

0.96+

three componentsQUANTITY

0.96+

oneQUANTITY

0.95+

three different methodsQUANTITY

0.95+

10 usersQUANTITY

0.95+

Day oneQUANTITY

0.95+

six supported data warehousesQUANTITY

0.94+

Systems EngineeringORGANIZATION

0.94+

Thought spotORGANIZATION

0.93+

Data LakeORGANIZATION

0.91+

Arcuri EngineORGANIZATION

0.9+

10 ad hoc searchersQUANTITY

0.9+

WarehouseTITLE

0.89+

billion rowsQUANTITY

0.88+

Cloud Data warehouseTITLE

0.87+

billionQUANTITY

0.86+

three different examplesQUANTITY

0.86+

last one monthDATE

0.86+

SalesforceORGANIZATION

0.86+

a weekQUANTITY

0.85+

CanadianOTHER

0.84+

each additional questionQUANTITY

0.83+

v4OTHER

0.83+

last 30 daysDATE

0.78+

SalesforceTITLE

0.77+

last 30 daysDATE

0.77+

KoreanOTHER

0.75+

OneQUANTITY

0.74+

SearchTITLE

0.73+

Big FourQUANTITY

0.73+

MartinPERSON

0.72+

DBTITLE

0.72+

10 PINQUANTITY

0.71+

SouthportTITLE

0.66+

LeePERSON

0.66+

HawkORGANIZATION

0.66+

Adminstering AnalyticsTITLE

0.66+

MongoTITLE

0.64+

ForcadosTITLE

0.64+

Seaside MinorORGANIZATION

0.62+

gressORGANIZATION

0.6+

CloudTITLE

0.57+

PingTITLE

0.53+

sevenQUANTITY

0.49+

User AdoptionORGANIZATION

0.39+

20mOTHER

0.36+

UserORGANIZATION

0.35+

AdoptionCOMMERCIAL_ITEM

0.35+

ThoughtSpot Everywhere | Beyond.2020 Digital


 

>>Yeah, yeah. >>Welcome back to session, too. Thoughts about everywhere. Unlock new revenue streams with embedded search and I Today we're joined by our senior director of Global Oh am Rick Dimel, along with speakers from our thoughts about customer Hayes to discuss how thought spot is open for everyone by unlocking unprecedented value through data search in A I, you'll see how thoughts about compound analytics in your applications and hear how industry leaders are creating new revenue streams with embedded search and a I. You'll also learn how to increase app stickiness on how to create an autonomous this experience for your end users. I'm delighted to introduce our senior director of Global OPM from Phillips Spot, Rick DeMARE on then British Ramesh, chief technology officer, and Leon Roof, director of product management, both from Hayes over to you. Rick, >>Thank you so much. I appreciate it. Hi, everybody. We're here to talk to you about Fox Spot everywhere are branded version of our embedded analytics application. It really our analytics application is all about user experience. And in today's world, user experience could mean a lot of things in ux design methodologies. We want to talk about the things that make our product different from an embedded perspective. If you take a look at what product managers and product design people and engineers are doing in this space, they're looking at a couple of key themes when they design applications for us to consume. One of the key things in the marketplace today is about product led growth, where the product is actually the best marketing tool for the business, not even the sales portion or the marketing department. The product, by the word of mouth, is expanding and getting more people onto the system. Why is that important? It's important because within the first few days of any application, regardless of what it is being used binding users, 70% of those users will lose. Interest will stop coming back. Why do they stop coming back? Because there's no ah ha moment through them. To get engaged within the technology, today's technologies need to create a direct relationship with the user. There can't be a gatekeeper between the user and the products, such as marketing or sales or information. In our case. Week to to make this work, we have toe leverage learning models in leverage learning as it's called Thio. Get the user is engaged, and what that means is we have to give them capabilities they already know how to use and understand. There are too many applications on the marketplace today for for users to figure out. So if we can leverage the best of what other APS have, we can increase the usage of our systems. Because in today's world, what we don't want to do from a product perspective is lead the user to a dead end or from a product methodology. Our perspective. It's called an empty state, and in our world we do that all the time. In the embedded market place. If you look at at the embedded marketplace, it's all visualizations and dashboards, or what I call check engine lights in your application's Well, guess what happens when you hit a check engine life. You've got to call the dealer to get more information about what just took place. The same thing happens in the analytic space where we provide visualizations to users. They get an indicator, but they have to go through your gatekeepers to get access to the real value of that data. What am I looking at? Why is it important the best user experiences out on the marketplace today? They are autonomous. If we wanna leverage the true value of digital transformation, we have to allow our developers to develop, not have them, the gatekeepers to the rial, content to users want. And in today's world, with data growing at much larger and faster levels than we've ever seen. And with that shelf life or value of that data being much shorter and that data itself being much more fragmented, there's no developer or analysts that can create enough visualizations or dashboards in the world to keep the consumption or desire for these users to get access to information up to speed. Clients today require the ability to sift through this information on their own to customize their own content. And if we don't support this methodology, our users are gonna end up feeling powerless and frustrated and coming back to us. The gatekeepers of that information for more information. Loyalty, conversely, can be created when we give the users the ability toe access this information on their own. That is what product like growth is all about in thought spot, as you know we're all about search. It's simple. It's guided as we type. It gives a super fast responses, but it's also smart on the back end handling complexities, and it's really safe from a governance and as well as who gets access to what perspective it's unknown learned environment. Equally important in that learned environment is this expectation that it's not just search on music. It's actually gonna recommend content to me on the fly instantly as I try content I might not even thought of before. Just the way Spotify recommends music to us or Netflix recommends a movie. This is a expected learned behavior, and we don't want to support that so that they can get benefit and get to the ah ha moments much quicker. In the end, which consumption layer do you want to use, the one that leads you to the Dead End Street or the one that gets you to the ah ha moment quickly and easily and does it in an autonomous fashion. Needless to say, the benefits of autonomous user access are well documented today. Natural language search is the wave of the future. It is today. By 2004 75% of organizations are going to be using it. The dashboard is dead. It's no longer going to be utilized through search today, I if we can improve customer satisfaction and customer productivity, we're going to increase pretensions of our retention of our applications. And if we do that just a little bit, it's gonna have a tremendous impact to our bottom line. The way we deploy hotspots. As you know, from today's conversations in the cloud, it could be a manage class, not offering or could be software that runs in your own VPC. We've talked about that at length at this conference. We've also talked about the transformation of application delivery from a Cloud Analytics perspective at length here it beyond. But we apply those same principles to your product development. The benefits are astronomical because not only do you get architectural flexibility to scale up and scale down and right size, but your engineers will increase their productivity because their offerings, because their time and effort is not going to be spent on delivering analytics but delivering their offerings. The speed of innovation isn't gonna be released twice a year or four times a year. It's gonna It can happen on a weekly basis, so your time to market in your margins should increase significantly. At this point, I want a hand. The microphone over to Revert. Tesche was going to tell you a little bit about what they're doing. It hes for cash. >>Thanks, Rick. I just want to introduce myself to the audience. My name is Rotational. Mention the CTO Europe ace. I'm joined my today by my colleague Gillian Ruffles or doctor of product management will be demoing what we have built with thoughts about, >>um but >>just to my introduction, I'm going to talk about five key things. Talk about what we do. What hes, uh we have Really, um what we went through the select that spot with other competitors What we have built with that spot very quickly and last but not least, some lessons learned during the implementation. So just to start with what we do, uh, we're age. We are health care compliance and revenue integrity platform were a saas platform voter on AWS were very short of l A. That's it. Use it on these around 1 50 customers across the U. S. On these include large academic Medical Insight on. We have been in the compliant space for the last 30 plus years, and we were traditionally consulting company. But very recently we have people did more towards software platform model, uh, in terms off why we chose that spot. There were three business problems that I faced when I took this job last year. At age number one is, uh, should be really rapidly deliver new functionality, nor platform, and he agile because some of our product development cycles are in weeks and not months. Hey had a lot of data, which we collected traditionally from the SAS platform, and all should be really create inside stretch experience for our customers. And then the third Big one is what we saw Waas large for customers but really demanding self service capabilities. But they were really not going for the static dash boats and and curated content, but instead they wanted to really use the cell service capabilities. Thio mind the data and get some interesting answers during their questions. So they elevated around three products around these problems statements, and there were 14 reasons why we just start spot number one wars off course. The performance and speed to insights. Uh, we had around 800 to a billion robot of data and we wanted to really kind of mind the data and set up the data in seconds on not minutes and hours. We had a lot of out of the box capabilities with that spot, be it natural language search, predictive algorithms. And also the interactive visualization, which, which was which, Which gave us the agility Thio deliver these products very quickly. And then, uh, the end user experience. We just wanted to make sure that I would users can use this interface s so that they can very quickly, um, do some discovery of data and get some insights very quickly. On last but not least, talksport add a lot of robust AP ice around the platform which helped us embed tot spot into are offering. But those are the four key reasons which we went for thoughts part which we thought was, uh, missing in in the other products we evaluated performance and search, uh, the interactive visualization, the end user experience, and last but not least flexible AP ice, which we could customize into our platform in terms of what we built. We were trying to solve to $50 billion problem in health care, which is around denials. Um so every year, around 2, 50 to $300 billion are denied by players thes air claims which are submitted by providers. And we built offering, which we called it US revenue optimizer. But in plain English, what revenue optimizer does is it gives the capability tow our customers to mind that denials data s so that they can really understand why the claims were being denied. And under what category? Recent reasons. We're all the providers and quarters who are responsible for these claims, Um, that were dryland denials, how they could really do some, uh, prediction off. It is trending based on their historical denial reasons. And then last but not least, we also build some functionality in the platform where we could close the loop between insights, action and outcome that Leon will be showing where we could detect some compliance and revenue risks in the platform. On more importantly, we could, uh, take those risks, put it in a I would say, shopping card and and push it to the stakeholders to take corrective action so the revenue optimizer is something which we built in three months from concept to lunch and and that that pretty much prove the value proposition of thoughts. But while we could kind of take it the market within a short period of time Next leopard >>in terms >>off lessons learned during the implementation thes air, some of the things that came to my mind asses, we're going through this journey. The first one is, uh, focus on the use case formulation, outcomes and wishful story boarding. And that is something that hot spot that's really balance. Now you can you can focus on your business problem formulation and not really focus on your custom dash boarding and technology track, etcetera. So I think it really helped our team to focus on the versus problem, to focus on the outcomes from the problem and more importantly, really spend some time on visualizing What story are we say? Are we trying to say to our customers through revenue optimizer The second lesson learned first When we started this implementation, we did not dualistic data volume and capacity planning exercise and we learned it our way. When we are we loaded a lot of our data sets into that spot. And then Aziz were doing performance optimization. XYZ. We figured out that we had to go back and shot the infrastructure because the data volumes are growing exponentially and we did not account for it. So the biggest lesson learned This is part of your architectural er planning, exercise, always future proof your infrastructure and make sure that you work very closely with the transport engineering team. Um, to make sure that the platform can scale. Uh, the last two points are passport as a robust set of AP Ice and we were able to plug into those AP ice to seamlessly ended the top spot software into a platform. And last but not least, one thing I would like to closest as we start these projects, it's very common that the solution design we run into a lot of surprises. The one thing I should say is, along those 12 weeks, we very closely work with the thoughts, part architecture and accounting, and they were a great partner to work with us to really understand our business problem, and they were along the way to kind of government suggested, recommends and workarounds and more importantly, also, helpers put some other features and functionality which you requested in their engineering roadmap. So it's been a very successful partnership. Um, So I think the biggest take of it is please make sure that you set up your project and operating model value ember thoughts what resources and your team to make sure that they can help you as you. It's some obstacles in the projects so that you can meet your time ones. Uh, those are the key lessons learned from the implementation. And with that, I would pass this to my colleague Leon Rough was going to show you a demo off what we go. >>Thanks for Tesh. So when we were looking Thio provide this to our customer base, we knew that not everyone needed do you access or have available to them the same types of information or at the same particular level of information. And we do have different roles within RMD auto Enterprise platform. So we did, uh, minimize some roles to certain information. We drew upon a persona centric approach because we knew that those different personas had different goals and different reasons for wanting to drive into these insights, and those different personas were on three different levels. So we're looking at the executive level, which is more on the C suite. Chief Compliance Officer. We have a denial trending analyses pin board, which is more for the upper, uh, managers and also exact relatives if they're interested. And then really, um, the targeted denial analysis is more for the day to day analysts, um, the usage so that they could go in and they can really see where the trends are going and how they need to take action and launch into the auditing workflow so within the executive or review, Um, and not to mention that we were integrating and implementing this when everyone was we were focused on co vid. So as you can imagine, just without covert in the picture, our customers are concentrated on denials, and that's why they utilize our platform so they could minimize those risks and then throw in the covert factor. Um, you know, those denial dollars increase substantially over the course of spring and the summer, and we wanted to be able to give them ah, good view of the denials in aggregate as well as's we focus some curated pin boards specific to those areas that were accounting for those high developed denials. So on the Executive Overview Board, we created some banner tiles. The banner tiles are pretty much a blast of information for executives thes air, particular areas where there concentrating and their look looking at those numbers consistently so it provides them away to take a good look at that and have that quick snapshot. Um, more importantly, we did offer as I mentioned some curated pin boards so that it would give customers this turnkey access. They wouldn't necessarily have to wonder, You know, what should I be doing now on Day one, but the day one that we're providing to them these curated insights leads the curiosity and increases that curiosity so that they can go in and start creating their own. But the base curated set is a good overview of their denial dollars and those risks, and we used, um, a subject matter expert within our organization who worked in the field. So it's important to know you know what you're targeting and why you're targeting it and what's important to these personas. Um, not everyone is necessarily interests in all the same information, and you want to really hit on those critical key point to draw them and, um, and allowed them that quick access and answer those questions they may have. So in this particular example, the curated insight that we created was a monthly denial amount by functional area. And as I was mentioning being uber focused on co vid, you know, a lot of scrutiny goes back to those organizations, especially those coding and H i M departments, um, to ensure that their coding correctly, making sure that players aren't sitting on, um, those payments or denying those payments. So if I were in executive and I came in here and this was interesting to me and I want to drill down a little bit, I might say, You know, let me focus more on the functional area than I know probably is our main concern. And that's coating and h i M. And because of it hit in about the early winter. I know that those claims came in and they weren't getting paid until springtime. So that's where I start to see a spike. And what's nice is that the executive can drill down, they may have a hunch, or they can utilize any of the data attributes we made available to them from the Remittance file. So all of these data, um, attributes are related to what's being sent on the 8 35 fear familiar with the anti 8 35 file. So in particular, if I was curious and had a suspicion that these were co vid related or just want to concentrate in that area, um, we have particular flag set up. So the confirmed and suspected cases are pulling in certain diagnosis and procedure codes. And I might say 1.27 million is pretty high. Um, toe look at for that particular month, and then they have the ability to drill down even further. Maybe they want to look at a facility level or where that where that's coming from. Furthermore, on the executive level, we did take advantage of Let me stop here where, um also provided some lagged a so leg. This is important to organizations in this area because they wanna know how long does it take before they re submit a claim that was originally denied before they get paid industry benchmark is about 10 days of 10 days is a fairly good, good, um, basis to look at. And then, obviously anything over that they're going to take a little bit more scrutiny on and want to drill in and understand why that is. And again, they have that capabilities in order to drill down and really get it. Those answers that they're looking for, we also for this particular pin board. And these users thought it would be helpful to utilize the time Siri's forecasting that's made available. So again, thes executives need thio need to keep track and forecast where they're trends were going or what those numbers may look like in the future. And we thought by providing the prediction pins and we have a few prediction pins, um would give them that capability to take a look at that and be able to drill down and use that within, um, certain reporting and such for their organization. Another person, a level that I will go to is, um, Mawr on the analyst side, where those folks are utilizing, um, are auditing workflow and being in our platform, creating audits, completing audits, we have it segregated by two different areas. And this is by claim types so professional or institutional, I'm going to jump in here. And then I am going to go to present mode. So in this particular, um, in this particular view or insight, we're providing that analysts view with something that's really key and critical in their organization is denials related Thio HCC s andi. That's a condition category that kind of forecast, the risk of treatment. And, you know, if that particular patient is probably going to be seen again and have more conditions and higher costs, higher health care spending. So in this example, we're looking at the top 15 attending providers that had those HCC denials. And this is, um, critical because at this point, it really peaks in analyst curiosity. Especially, You know, they'll see providers here and then see the top 15 on the top is generating Ah, hide denial rate. Hi, denial. The dollars for those HCC's and that's a that's a real risk to the organization, because if that behavior continues, um, then those those dollars won't go down. That number won't go down so that analysts then can go in and they can drill down um, I'm going to drill down on diagnosis and then look at the diagnosis name because I have a suspicion, but I'm not exactly sure. And what's great is that they can easily do this. Change the view. Um, you know, it's showing a lot of diagnoses, but what's important is the first one is sepsis and substance is a big one. Substances something that those organizations see a lot of. And if they hover, they can see that 49.57 million, um, is attributed to that. So they may want to look further into that. They'd probably be interested in closing that loop and creating an audit. And so what allowed us to be able to do that for them is we're launching directly into our auditing workflow. So they noticed something in the carried insight. It sparked some investigation, and then they don't have to leave that insight to be able to jump into the auditing workflow and complete that. Answer that question. Okay, so now they're at the point where we've pulled back all the cases that attributed to that dollar amount that we saw on the Insight and the users launching into their auditing workflow. They have the ability Thio select be selective about what cases they wanna pull into the audit or if they were looking, um, as we saw with sepsis, they could pull in their 1600 rose, but they could take a sampling size, which is primarily what they would do. They went audit all 1600 cases, and then from this point in they're into, they're auditing workflow and they'd continue down the path. Looking at those cases they just pulled in and being able Thio finalized the audit and determine, you know, if further, um, education with that provider is needed. So that concludes the demo of how we integrated thought spot into our platform. >>Thank you, LeAnn. And thank you. Re test for taking the time to walk us through. Not only your company, but how Thought spot is helping you Power analytics for your clients. At this point, we want to open this up for a little Q and A, but we want to leave you with the fact that thought spot everywhere. Specifically, it cannot only do this for Hayes, but could do it for any company anywhere they need. Analytical applications providing these applications for their customers, their partners, providers or anybody within their network for more about this, you can see that the website attached below >>Thanks, Rick and thanks for tests and Leon that I find it just fascinating hearing what our customers are doing with our technology. And I certainly have learned 100% more about sepsis than I ever knew before this session. So thank you so much for sharing that it's really is great to see how you're taking our software and putting it into your application. So that's it for this session. But do stay tuned for the next session, which is all about getting the most out of your data and amplifying your insights. With the help of A, I will be joined by two thought spot leaders who will share their first hand experiences. So take a quick breather and come right back

Published Date : Dec 10 2020

SUMMARY :

on how to create an autonomous this experience for your end users. that so that they can get benefit and get to the ah ha moments much quicker. Mention the CTO Europe ace. to a billion robot of data and we wanted to really kind of mind the data the last two points are passport as a robust set of AP Ice and we Um, and not to mention that we were integrating and implementing this when everyone Re test for taking the time to walk us through. And I certainly have learned 100% more about sepsis than I ever knew before this session.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Gillian RufflesPERSON

0.99+

RickPERSON

0.99+

LeAnnPERSON

0.99+

Leon RoofPERSON

0.99+

70%QUANTITY

0.99+

10 daysQUANTITY

0.99+

49.57 millionQUANTITY

0.99+

$50 billionQUANTITY

0.99+

14 reasonsQUANTITY

0.99+

100%QUANTITY

0.99+

SiriTITLE

0.99+

Phillips SpotORGANIZATION

0.99+

1.27 millionQUANTITY

0.99+

Leon RoughPERSON

0.99+

NetflixORGANIZATION

0.99+

HCCORGANIZATION

0.99+

LeonPERSON

0.99+

Rick DeMAREPERSON

0.99+

2004DATE

0.99+

AzizPERSON

0.99+

oneQUANTITY

0.99+

last yearDATE

0.99+

SpotifyORGANIZATION

0.99+

firstQUANTITY

0.99+

Fox SpotORGANIZATION

0.99+

12 weeksQUANTITY

0.99+

1600 casesQUANTITY

0.99+

todayDATE

0.99+

Rick DimelPERSON

0.99+

three monthsQUANTITY

0.98+

second lessonQUANTITY

0.98+

around 1 50 customersQUANTITY

0.98+

8 35OTHER

0.98+

OneQUANTITY

0.98+

AWSORGANIZATION

0.98+

twice a yearQUANTITY

0.98+

first oneQUANTITY

0.98+

three business problemsQUANTITY

0.98+

four key reasonsQUANTITY

0.98+

Global OPMORGANIZATION

0.98+

$300 billionQUANTITY

0.97+

around 800QUANTITY

0.97+

around 2, 50QUANTITY

0.97+

U. S.LOCATION

0.97+

bothQUANTITY

0.97+

Day oneQUANTITY

0.96+

EnglishOTHER

0.96+

75%QUANTITY

0.95+

a billionQUANTITY

0.95+

TeshPERSON

0.94+

TeschePERSON

0.93+

Global Oh amORGANIZATION

0.93+

four times a yearQUANTITY

0.93+

two pointsQUANTITY

0.93+

first few daysQUANTITY

0.92+

top 15QUANTITY

0.9+

five key thingsQUANTITY

0.9+

three productsQUANTITY

0.9+

last 30 plus yearsDATE

0.9+

USLOCATION

0.87+

CTO EuropeORGANIZATION

0.87+

uberORGANIZATION

0.87+

about 10 daysQUANTITY

0.86+

Dead End StreetLOCATION

0.86+

Thio HCCORGANIZATION

0.85+

talksportORGANIZATION

0.85+

day oneQUANTITY

0.85+

two thought spot leadersQUANTITY

0.83+

RevertPERSON

0.81+

TodayDATE

0.8+

HayesPERSON

0.79+

top 15 attending providersQUANTITY

0.77+

threeQUANTITY

0.76+

two different areasQUANTITY

0.75+

one thingQUANTITY

0.73+

ThioPERSON

0.72+

age number oneQUANTITY

0.66+

ThioORGANIZATION

0.65+

third Big oneQUANTITY

0.64+

first handQUANTITY

0.62+

Deep Dive into ThoughtSpot One | Beyond.2020 Digital


 

>>Yeah, >>yeah. Hello and welcome to this track to creating engaging analytics experiences for all. I'm Hannah Sinden Thought spots Omiya director of marketing on. I'm delighted to have you here today. A boy Have we got to show for you now? I might be a little bit biased as the host of this track, but in my humble opinion, you've come to a great place to start because this track is all about everything. Thought spot. We'll be talking about embedded search in a I thought spot one spot I. Q. We've got great speakers from both thoughts about andare customers as well as some cool product demos. But it's not all product talk. We'll be looking at how to leverage the tech to give your users a great experience. So first up is our thoughts about one deep dive. This session will be showing you how we've built on our already superb search experience to make it even easier for users across your company to get insight. We've got some great speakers who are going to be telling you about the cool stuff they've been working on to make it really fantastic and easy for non technical people to get the answers they need. So I'm really delighted to introduce Bob Baxley s VP of design and experience That thought spot on Vishal Kyocera Thought spots director of product management. So without further ado, I'll hand it over to Bob. Thanks, >>Hannah. It's great to be here with everybody today and really excited to be able to present to you thought spot one. We've been working on this for months and months and are super excited to share it before we get to the demo with Shawl, though, I just want to set things up a little bit to help people understand how we think about design here. A thought spot. The first thing is that we really try to think in terms of thought. Spot is a consumer grade product, terms what we wanted. Consumer grade you x for an analytics. And that means that for reference points rather than looking at other enterprise software companies, we tend to look at well known consumer brands like Google, YouTube and WhatsApp. We firmly believe that people are people, and it doesn't matter if they're using software for their own usage or thought are they're using software at work We wanted to have a great experience. The second piece that we were considering with thoughts about one is really what we call the desegregation of bundles. So instead of having all of your insights wraps strictly into dashboards, we want to allow users to get directly to individual answers. This is similar to what we saw in music. Were instead of you having to buy the entire album, of course, you could just buy individual songs. You see this in iTunes, Spotify and others course. Another key idea was really getting rid of gate keepers and curators and kind of changing people from owning the information, helping enable users to gather together the most important and interesting insights So you can follow curator rather than feeling like you're limited in the types of information you can get. And finally, we wanted to make search the primary way, for people are thinking about thought spot. As you'll see, we've extended search from beyond simply searching for your data toe, also searching to be able to find pin boards and answers that have been created by other people. So with that, I'll turn it over to my good friend Rachel Thio introduce more of thought, spot one and to show you a demo of the product. >>Thank you, Bob. It's a pleasure to be here to Hello, everyone. My name is Michelle and Andy, product management for Search. And I'm really, really excited to be here talking about thoughts about one our Consumer analytics experience in the Cloud. Now, for my part of the talk, we're gonna first to a high level overview of thoughts about one. Then we're going to dive into a demo, and then we're gonna close with just a few thoughts about what's coming next. So, without any today, let's get started now at thought spot. Our mission is to empower every user regardless of their expertise, to easily engage with data on make better data driven decisions. We want every user, the nurse, the neighborhood barista, the teacher, the sales person, everyone to be able to do their jobs better by using data now with thoughts about one. We've made it even more intuitive for all these business users to easily connect with the insights that are most relevant for them, and we've made it even easier for analysts to do their jobs more effectively and more efficiently. So what does thoughts about one have? There's a lot off cool new features, but they all fall into three main categories. The first main category is enhanced search capabilities. The second is a brand new homepage that's built entirely for you, and the third is powerful tools for the analysts that make them completely self service and boost their productivity. So let's see how these work Thought Spot is the pioneer for search driven analytics. We invented search so that business users can ask questions of data and create new insights. But over the years we realized that there was one key piece off functionality that was missing from our search, and that was the ability to discover insights and content that had already been created. So to clarify, our search did allow users to create new content, but we until now did not have the ability to search existing content. Now, why does that matter? Let's take an example. I am a product manager and I am always in thought spot, asking questions to better understand how are users are using the product so we can improve it now. Like me, A lot of my colleagues are doing the same thing. Ah, lot of questions that I asked have already been answered either completely are almost completely by many of my colleagues, but until now there's been no easy way for me to benefit from their work. And so I end up recreating insights that already exists, leading to redundant work that is not good for the productivity off the organization. In addition, even though our search technology is really intuitive, it does require a little bit of familiarity with the underlying data. You do need to know what metric you care about and what grouping you care about so that you can articulate your questions and create new insights. Now, if I consider in New employees product manager who joins Hotspot today and wants to ask questions, then the first time they use thought spot, they may not have that data familiarity. So we went back to the drawing board and asked ourselves, Well, how can we augment our search so that we get rid off or reduced the redundant work that I described? And in addition, empower users, even new users with very little expertise, maybe with no data familiarity, to succeed in getting answers to their questions the first time they used Hot Spot, and we're really proud and excited to announce search answers. Search answers allows users to search across existing content to get answers to their questions, and its a great compliment to search data, which allows them to search the underlying data directly to create new content. Now, with search answers were shipping in number of cool features like Answer Explainer, Personalized search Results, Answer Explorer, etcetera that make it really intuitive and powerful. And we'll see how all of these work in action in the demo. Our brand new homepage makes it easier than ever for all these business users to connect with the insights that are most relevant to them. These insights could be insights that these users already know about and want to track regularly. For example, as you can see, the monitor section at the top center of the screen thes air, the KP eyes that I may care most about, and I may want to look at them every day, and I can see them every day right here on my home page. By the way, there's a monitoring these metrics in the bankrupt these insights that I want to connect with could also be insights that I want to know more about the search experience that I just spoke about ISS seamlessly integrated into the home page. So right here from the home page, I can fire my searchers and ask whatever questions I want. Finally, and most interestingly, the homepage also allows me to connect with insights that I should know about, even if I didn't explicitly ask for them. So what's an example? If you look at the panel on the right, I can discover insights that are trending in my organization. If I look at the panel on the left, I can discover insights based on my social graph based on the people that I'm following. Now you might wonder, How do we create this personalized home page? Well, our brand new, personalized on boarding experience makes it a piece of cake as a new business user. The very first time I log into thought spot, I pay three people I want to follow and three metrics that I want to follow, and I picked these from a pool of suggestions that Ai has generated. And just like that, the new home page gets created. And let's not forget about analysts. We have a personalized on boarding experience specifically for analysts that's optimized for their needs. Now, speaking of analysts, I do want to talk about the tools that I spoke off earlier that made the analysts completely self service and greatly boost their productivity's. We want analysts to go from zero to search in less than 30 minutes, and with our with our new augmented data modeling features and thoughts about one, they can do just that. They get a guided experience where they can connect, model and visualize their data. With just a few clicks, our AI engine takes care off a number of tasks, including figuring out joints and, you know, cleaning up column names. In fact, our AI engine also helps them create a number of answers to get started quickly so that these analysts can spend their time and energy on what matters most answering the most complicated and challenging and impactful questions for the business. So I spoke about a number of different capabilities off thoughts about one, but let's not forget that they are all packaged in a delightful user experience designed by Bob and his team, and it powers really, really intuitive and powerful user flows, from personalized on boarding to searching to discover insights that already exist on that are ranked based on personalized algorithms to making refinements to these insights with a assistance to searching, to create brand new insights from scratch. And finally sharing all the insights that you find interesting with your colleagues so that it drives conversations, decisions and, most importantly, actions so that your business can improve. With that said, let's drive right into the demo for this demo. We're going to use sales data set for a company that runs a chain off retail stores selling apparel. Our user is a business user. Her name is Charlotte. She's a merchandiser, She's new to this company, and she is going to be leading the genes broader category. She's really excited about job. She wants to use data to make better decisions, so she comes to thought spot, and this is what she sees. There are three main sections on the home page that she comes to. The central section allows you to browse through items that she has access to and filter them in various ways. Based for example, on author or on tags or based on what she has favorited. The second section is this panel on the right hand side, which allows her to discover insights that are trending within her company. This is based on what other people within her company are viewing and also personalized to her. Finally, there's this search box that seamlessly integrated into the home page. Now Charlotte is really curious to learn how the business is doing. She wants to learn more about sales for the business, so she goes to the search box and searches for sales, and you can see that she's taken to a page with search results. Charlotte start scanning the search results, and she sees the first result is very relevant. It shows her what the quarterly results were for the last year, but the result that really catches her attention is regional sales. She'd love to better understand how sales are broken down by regions. Now she's interested in the search result, but she doesn't yet want to commit to clicking on it and going to that result. She wants to learn more about this result before she does that, and she could do that very easily simply by clicking anywhere on the search result card. Doing that reveals our answer. Explain our technology and you can see this information panel on the right side. It shows more details about the search results that she selected, and it also gives her an easy to understand explanation off the data that it contains. You can see that it tells her that the metrics sales it's grouped by region and splitter on last year. She can also click on this preview button to see a preview off the chart that she would see if she went to that result. It shows her that region is going to be on the X axis and sales on the Y axis. All of this seems interesting to her, and she wants to learn more. So she clicks on this result, and she's brought to this chart now. This contains the most up to date data, and she can interact with this data. Now, as she's looking at this data, she learns that Midwest is the region with the highest sales, and it has a little over $23 million in sales, and South is the region with the lowest sales, and it has about $4.24 million in sales. Now, as Charlotte is looking at this chart, she's reminded off a conversation she had with Suresh, another new hire at the company who she met at orientation just that morning. Suresh is responsible for leading a few different product categories for the Western region off the business, and she thinks that he would find this chart really useful Now she can share this chart with Suresh really easily from right here by clicking the share button. As Charlotte continues to look at this chart and understand the data, she thinks, uh, that would be great for her to understand. How do these sales numbers across regions look for just the genes product category, since that's the product category that she is going to be leading? And she can easily narrow this data to just the genes category by using her answer Explorer technology. This panel on the right hand side allows her to make the necessary refinements. Now she can do that simply by typing in the search box, or she can pick from one off the AI generated suggestions that are personalized for her now. In this case, the AI has already suggested genes as a prototype for her. So with just a single click, she can narrow the data to show sales data for just jeans broken down by region. And she can see that Midwest is still the region with the highest sales for jeans, with $1.35 million in sales. Now let's spend a minute thinking about what we just saw. This is the first time that Charlotte is using Thought spot. She does not know anything about the data sources. She doesn't know anything about measures or attributes. She doesn't know the names of the columns. And yet she could get to insights that are relevant for her really easily using a search interface that's very much like Google. And as she started interacting with search results, she started building a slightly better understanding off the underlying data. When she found an insight that she thought would be useful to a colleague offers, it was really seamless for her to share it with that colleague from where she Waas. Also, even though she's searching over content that has already been created by her colleagues in search answers. She was in no way restricted to exactly that data as we just saw. She could refine the data in an insight that she found by narrowing it. And there's other things you can do so she could interact with the data for the inside that she finds using search answers. Let's take a slightly more complex question that Charlotte may have. Let's assume she wanted to learn about sales broken down by, um, by category so that she can compare her vertical, which is jeans toe other verticals within the company. Again, she can see that the very first result that she gets is very relevant. It shows her search Sorry, sales by category for last year. But what really catches her attention about this result is the name of the author. She's thrilled to note that John, who is the author of this result, was also an instructor for one off for orientation sessions and clearly someone who has a lot of insight into the sales data at this company. Now she would love to see mawr results by John, and to do that, all she has to do is to click on his name now all of the search results are only those that have been authored by John. In fact, this whole panel at the top of the results allow her to filter her search results or sort them in different ways. By clicking on these authors filter, she can discover other authors who are reputed for the topic that she's searching for. She can also filter by tags, and she can sort these results in different ways. This whole experience off doing a search and then filtering search results easily is similar to how we use e commerce search engines in the consumer world. For example, Amazon, where you may search for a product and then filter by price range or filter by brand. For example, Let's also spend a minute talking about how do we determine relevance for these results and how they're ranked. Um, when considering relevance for these results, we consider three main categories of things. We want to first make sure that the result is in fact relevant to the question that the user is asking, and for that we look at various fields within the result. We look at the title, the author, the description, but also the technical query underpinning that result. We also want to make sure that the results are trustworthy, because we want users to be able to make business decisions based on the results that they find. And for that we look at a number of signals as well. For example, how popular that result is is one of those signals. And finally, we want to make sure the results are relevant to the users themselves. So we look at signals to personalize the result for that user. So those are all the different categories of signals that we used to determine overall ranking for a search result. You may be wondering what happens if if Charlotte asks a question for which nobody has created any answer, so no answers exist. Let's say she wants to know what the total sales of genes for last year and no one's created that well. It's really easy for her to switch from searching for answers, which is searching for content that has already been created to searching the data directly so she can create a new insight from scratch. Let's see how that works. She could just click here, and now she's in the search data in her face and for the question that I just talked about. She can just type genes sales last year. And just like that, she could get an answer to her question. The total sales for jeans last year were almost $4.6 million. As you can see, the two modes off search searching for answers and searching, the data are complementary, and it's really easy to switch from one to the other. Now we understand that some business users may not be motivated to create their own insights from scratch. Or sometimes some of these business users may have questions that are too complicated, and so they may struggle to create their own inside from scratch. Now what happens usually in these circumstances is that these users will open a ticket, which would go to the analyst team. The analyst team is usually overrun with these tickets and have trouble prioritizing them. And so we started thinking, How can we make that entire feedback loop really efficient so that analysts can have a massive impact with as little work as possible? Let me show you what we came up with. Search answers comes with this system generated dashboard that analysts can see to see analytics on the queries that business users are asking in search answers so it contains high level K P. I is like, You know how many searches there are and how many users there are. It also contains one of the most popular queries that users are asking. But most importantly, it contains information about what are popular queries where users are failing. So the number on the top right tells you that about 10% off queries in this case ended with no results. So the user clearly failed because there were no results on the table. Right below it shows you here are the top search queries for original results exist. So, for example, the highlighted row there says jean sales with the number three, which tells the analysts that last week there were three searches for the query jean sales and the resulted in no results on search answers. Now, when an analyst sees a report like this, they can use it to prioritize what kind of content they could be creating or optimizing. Now, in addition to giving them inside into queries which led to no results or zero results. This dashboard also contains reports on creatives that lead to poor results because the user did get some results but didn't click on anything, meaning that they didn't get the answer that they were looking for. Taking all these insights, analysts can better prioritize and either create or optimize their content to have maximum impact for their business users with the least amount of for. So that was the demo. As you can see with search answers, we've created a very consumer search interface that any business user can use to get the answers to their questions by leveraging data or answers that have already been created in the system by other users in their organization. In addition, we're creating tools that allow analysts toe create or optimized content that can have the highest impact for these business users. All right, so that was the demo or thoughts about one and hope you guys liked it. We're really excited about it. Now Let me just spend a minute talking about what's coming next. As I've mentioned before, we want to connect every business user with the insights that are most relevant for them, and for that we will continue to invest in Advanced AI and personalization, and some of the ways you will see it is improved relevance in ranking in recommendations in how we understand your questions across the product within search within the home page everywhere. The second team that will continue to invest in is powerful analyst tools. We talked about tools and, I assure you, tools that make the analysts more self service. We are committed to improving the analyst experience so that they can make the most off their time. An example of a tool that we're really excited about is one that allows them to bridge the vocabulary difference that this even business user asks questions. A user asked a question like revenue, but the column name for the metric in the data set its sales. Now analysts can get insights into what are the words that users air using in their questions that aren't matching anything in the data set and easily create synonyms so that that vocabulary difference gets breached. But that's just one example of how we're thinking about empowering the analysts so that with minimal work, they can amplify their impact and help their business users succeed. So there's a lot coming, and we're really excited about how we're planning to evolve thoughts about one. With all that said, Um, there's just, well, one more thing that my friend Bob wants to talk to you guys about. So back to you, Bob. >>Thanks, Michelle. It's such a great demo and so fun to see all the new work that's going on with thought. Spot one. All the happenings for the new features coming out that will be under the hood. But of course, on the design side, we're going to continue to evolve the front end as well, and this is what we're hoping to move towards. So here you'll see a new log in screen and then the new homepage. So compared to the material that you saw just a few minutes ago, you'll notice this look is much lighter. A little bit nicer use of color up in the top bar with search the features over here to allow you to switch between searching against answers at versus creating new answers, the settings and user profile controls down here and then on the search results page itself also lighter look and feel again. Mork color up in the search bar up the top. A little bit nicer treatments here. We'll continue to evolve the look and feel the product in coming months and quarters and look forward to continue to constantly improving thoughts about one Hannah back to you. >>Thanks, Bob, and thank you both for showing us the next generation of thought spot. I'd love to go a bit deeper on some of the points you touched on there. I've got a couple of questions here. Bob, how do you think about designing for consumer experience versus designing for enterprise solutions? >>Yes, I mentioned Hannah. We don't >>really try to distinguish so much between enterprise users and consumer users. It's really kind of two different context of use. But we still always think that users want some product and feature and experience that's easy to use and makes sense to them. So instead of trying to think about those is two completely different design processes I think about it may be the way Frank Lloyd Wright would approached architecture. >>Er I >>mean, in his career, he fluidly moved between residential architecture like falling water and the Robie House. But he also designed marquis buildings like the Johnson wax building. In each case, he simply looked at the requirements, thought about what was necessary for those users and designed accordingly. And that's really what we do. A thought spot. We spend time talking to customers. We spend time talking to users, and we spent a lot of time thinking through the problem and trying to solve it holistically. And it's simply a possible >>thanks, Bob. That's a beautiful analogy on one last question for you. Bischel. How frequently will you be adding features to this new experience, >>But I'm glad you asked that, Hannah, because this is something that we are really really excited about with thoughts about one being in the cloud. We want to go really, really fast. So we expect to eventually get to releasing new innovations every day. We expect that in the near future, we'll get to, you know, every month and every week, and we hope to get to everyday eventually fingers crossed on housing. That can happen. Great. Thanks, >>Michelle. And thank you, Bob. I'm so glad you could all join us this morning to hear more about thoughts about one. Stay close and get ready for the next session. which will be beginning in a few minutes. In it will be introduced to thoughts for >>everywhere are >>embedded analytics product on. We'll be hearing directly from our customers at Hayes about how they're using embedded analytics to help healthcare providers across billing compliance on revenue integrity functions. To make more informed decisions on make effective actions to avoid risk and maximize revenue. See you there.

Published Date : Dec 10 2020

SUMMARY :

I'm delighted to have you here today. It's great to be here with everybody today and really excited to be able to present to you thought spot one. And she can see that Midwest is still the region with the highest sales for jeans, So compared to the material that you saw just a few minutes ago, you'll notice this look is much lighter. I'd love to go a bit deeper on some of the points you touched on there. We don't that's easy to use and makes sense to them. In each case, he simply looked at the requirements, thought about what was necessary for those users and designed How frequently will you be adding features to this new experience, We expect that in the near future, and get ready for the next session. actions to avoid risk and maximize revenue.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

BobPERSON

0.99+

SureshPERSON

0.99+

MichellePERSON

0.99+

HannahPERSON

0.99+

Rachel ThioPERSON

0.99+

GoogleORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Frank Lloyd WrightPERSON

0.99+

YouTubeORGANIZATION

0.99+

$1.35 millionQUANTITY

0.99+

CharlottePERSON

0.99+

Bob BaxleyPERSON

0.99+

AndyPERSON

0.99+

WhatsAppORGANIZATION

0.99+

last weekDATE

0.99+

last yearDATE

0.99+

thirdQUANTITY

0.99+

BischelPERSON

0.99+

Hannah SindenPERSON

0.99+

second sectionQUANTITY

0.99+

about $4.24 millionQUANTITY

0.99+

each caseQUANTITY

0.99+

less than 30 minutesQUANTITY

0.99+

second pieceQUANTITY

0.99+

HotspotORGANIZATION

0.99+

first timeQUANTITY

0.99+

secondQUANTITY

0.99+

todayDATE

0.99+

over $23 millionQUANTITY

0.99+

first resultQUANTITY

0.99+

zeroQUANTITY

0.98+

two modesQUANTITY

0.98+

firstQUANTITY

0.98+

three main categoriesQUANTITY

0.98+

three searchesQUANTITY

0.98+

second teamQUANTITY

0.98+

iTunesTITLE

0.98+

HayesORGANIZATION

0.98+

three main sectionsQUANTITY

0.98+

one key pieceQUANTITY

0.97+

one last questionQUANTITY

0.97+

bothQUANTITY

0.97+

both thoughtsQUANTITY

0.97+

three metricsQUANTITY

0.97+

zero resultsQUANTITY

0.96+

about 10%QUANTITY

0.96+

oneQUANTITY

0.96+

three peopleQUANTITY

0.96+

one exampleQUANTITY

0.95+

almost $4.6 millionQUANTITY

0.94+

twoQUANTITY

0.92+

one more thingQUANTITY

0.9+

Answer ExplorerTITLE

0.88+

OmiyaPERSON

0.87+

MidwestLOCATION

0.87+

few minutes agoDATE

0.86+

X axisORGANIZATION

0.85+

Mobilizing Data for Marketing Transforming the Role of the CMO


 

>>Hello. Everyone were here in the Data Cloud Summit, and we had a real treat for you. I call it the CMO Power Panel. We're gonna explore how data is transforming marketing, branding and promotion, and with me, a three phenomenal marketing pros and chief marketing officers. Denise Person is the CMO Snowflakes Scott Holden of Thought Spot and Laura Langdon, of which pro folks great to see you. Thanks so much for coming on the Cube. >>Think >>great to be here with you, David. Awesome >>did. He's Let's let's start with you. I want to talk about the role and the changing role of the CMO. It's changed a lot, you know, sports, of course, with all this data, but I wonder what you're experiencing And can you share us share with us? Why marketing, especially, is being impacted by data? >>Well, data is really what has helped turn us marketers into revenue drivers into call centers, and it's clearly a much better place to be. What I'm personally most excited about is the real time access we have to data today. In the past, I used to get a stale report a few weeks after a marketing program was over and a tough time, but we couldn't make any. Changes to the investments were already made. Today we get data in the midst of running a program so we can reallocate investments at the time of program is up and running, and that's really a profound today as well. I would say that adaptability has truly become the true superpowers or marketing today and data. It's really what enables us to adapt to scale. We can adapt to customers, behavior and preferences at scale, and that's truly a profound new way of working as well. >>That's interesting what you say because, you know, in tough times used to be okay. Sales and engineering put a brick wall around those and you know the name it. Marketing, Say Okay, cut. But now it's like you go to marketing and say, Okay, what's the data say? How do we have to pivot and Scott? I wonder what of data and cloud really brought to the modern marketer that you might not have had before this modern era? Well, >>it's ah, this era. I don't think there's ever been a better time to be a marketer than there is right now. and the primary reason is that we have access to data and insights like we've never had. And I'm not exaggerating when I say that I have 100 times more access to data than I had a decade ago. It's just phenomenal when you look at the power cloud search AI these new consumer experiences for analytics, we can do things in seconds. It used to take days. And so it's B comments that he said, Ah, superpower for us toe. Have access to so much data. And it's, you know, Kobe has been hard. Ah, lot of our marketing teams who've never worked harder, making this pivot from the physical world to the virtual world. But there, you know, at least we're working, and three other part of it is that digital she's created this phenomenal opportunity for us because the beauty of digital and digital transformation is that everything now is trackable, which makes it measurable and means that we can actually get insights that we can act on in a smarter way. And you know, it's worth giving an example. If you just look at this show right, like this event that we're doing in a physical world. All of you watching at home, you'd be in front of us in a room and we'd be able to know if you're in the room, right? We tracking the scanners when you walked in. But that's basically it. At that point, we don't really get a good sense for how much you like what we're saying. Uh, maybe you filled out a survey, but only 5 to 10% of people ever do that. In the digital world. We know how long you stick around, and as a result, like, it's easy people can just with the click, you know, change the channel. And so the bar for content has gone way up as we do these events. But we know how long people are sticking around. And that's what's so special about it. You know Denise and her team as the host of this show, they're going to know how long people watch this segment and that knowing is powerful. I mean, it's simple. As you know, using a product like that spot, you could just ask a question. You know how many you know, what's the average you time by session and boom and chart pops up, you're gonna know what's working, what's not. And that's something that you could take and act on in the future. And that's what our That's what customers were doing. So you know, snowflake and the spot that we share a customer with Lulu and they're tracking programs. So what people are watching at home, how long they're watching what they're watching next, and they're able to do that in a super granular way and improve their content as a result. And that's the power of this new world we live in. Uh, that's made the cloud and data so accessible. Folks like us. >>Well, thank you for that. And I want to come back to that notion to understand how you're bringing data into your marketing office. But I want to bring Laura and Laura were pro You guys partner with a lot of brands, a lot of companies around the world. I mean, thousands of partners, obviously snowflake in in thought spot are are, too. How are you using data to optimize these co marketing relationships? You know specifically, what are the trends that you're seeing around around things like customer experience? >>So, you know, we used data for all of our marketing decisions, our own as well as with our partners. And I think what's really been interesting about partner marketing data is we can we can feed that back to our sales team, right? So it's very directional for them as well in their efforts moving forward. So I think that's a place where specifically to partners, it's really powerful. We can also use our collective data to go out to customers to better effect. And then, you know, regarding these trends, we just did a survey on the state of the intelligent enterprise. We we interviewed 300 companies, US and UK, and there were three Interesting. I thought statistics relevant to this, um only 22% of the companies that we interviewed felt that their marketing was where it needed to be from an automation standpoint. So lots of room for us to grow right. Lots of space for us to play, and 61% of them believed that it was critical that they implement this technology to become a more intelligent enterprise. But when they ranked readiness by function, marketing came in six right, So H R R and D finance were all ahead of marketing was followed by sales, you know. And then the final data point that I think was interesting was 40% of those agreed that while the technology was the most important thing, that thought leadership was critical, you know? And I think that's where marketers really could bring. You know, our tried and true experience to bear and merging with this technology. >>Great. Thank you. So so did he say I've been getting the Kool Aid injection this week around Data Cloud? I've been pushing people, but now that I have the CMO in front of me, I wanna ask about the data cloud and what it means specifically for the customers. And what are some of the learnings? Maybe that you've experienced that, that that can support some of the things that that Laura and Scott were just discussing. >>Yeah, As Scott said before, right, he had 100 times more data than he ever has before. And that's again if you look at all the companies we talked to around the world, it's not about the amount of data that they have. That is the problem is the ability to access that data that data for most companies is trapped across Silas across the organization. It's It's in data applications, systems of records. Some of that data sits with your partners that you want access, and that's really what the data clouds comes in. Data Cloud is really mobilizing that data for you. It brings all that data together for you in one place so you can finally access that data and really provide ubiquitous access to that data to everyone in your organization that needs it and can truly unlock the value off that data. And from a marketing perspective, I mean, we are responsible for the customer experience, you know, we provide to our customers, and if you have access toe all the data on your customers, that's when you have that customer 3 60 that we've all been talking about for so many years. If you have all the data, you can truly, you know, look at their, you know, buying behaviors, put all those adults together and create those exceptional customer experiences. You can do things such as the retailers do in terms of personal decision for, for instance, right, and those are the type of experiences in our customers are expecting today. They are expecting a 100% personalized experience for them, you know, all the time. And if you don't have all the data, you can't really put those experiences together at scale. And that is really where the data cloud comes in again. The data cloud is not only about mobilizing your own data within your enterprise. It's also about having access to data from your partners or extending access to your own data in a secure way to your partners within your ecosystems. >>Yeah, So I'm glad you mentioned a couple of things. I've been writing about this a lot, and particularly the 3 60 that we would dying for but haven't really been able to tap. I didn't call it the Data Cloud. I don't have a marketing gene. I had another sort of boring name for it, but I think there's, you know, similar vectors there. So I appreciate that, Scott, I want to come back to this notion of of building data DNA in your marketing, you know, fluency on and how you put data at the core of your marketing ops. I've been working with a lot of folks in banking and manufacturing and other industries that air that are struggling to do this. How are you doing it? What are some of the challenges that you can share and maybe some advice for your your peers out there? >>Yeah, sure, it's, um Well, you brought up this concept of data fluency and it zone important one. And there's been a lot of talking industry about data literacy on being able to read data. But I think it's more important to be able to speak data to be fluent. And as marketers, we're all storytellers. And when you combine data with storytelling, magic happens. And so getting the data fluency is a great goal for us toe have for all of the people in our companies. And to get to that end. I think one of the things that's happening is that people are hiring wrong and they're thinking about it. They're making some mistakes. And so a couple of things come to mind when, especially when I look at marketing teams that I'm familiar with, they're hiring a lot of data analysts and data scientists, and those folks are amazing and every team needs them. Uh, but if you go to big on that, you do yourself a disservice. The second key thing is that you're basically giving your frontline focus, your marketing managers or people on the front lines. An excuse not to get involved data. And I think that's a big mistake because it used to be really hard. But with the technologies available to us now, these new consumer like experiences for Data Analytics, anybody can do it. And so we as leaders have to encourage them to do it. And I'll give you just a you know, an example. You know, I've got about 32 people on my marketing team, and I don't have any data analysts on my team across our entire company. We have a couple of analysts and a couple of data engineers, and what's happening is the world is changing where those folks, their enablers, they architect the system, they bring in the different status sources they use. Technologies like snowflake has been so great at making it easier for people to pull technology together, and they get access data out of it quickly. But they're pulling it together, and then simple things like, Hey, I just want to see this weekly instead of monthly. You don't need to waste your expensive data science talent. You know, Gardner puts a stand out there. 50% of data scientists are doing basic visualization work. That's not a good use of their time. You The products are easy enough now that everyday marketing managers can do that. And when you have a marketing manager come to you and say, You know, I just figured out this this campaign, which looks great on the surface, is doing poorly. From our perspective, that's a magic moment. And so we all need to coach our teams to get there. And I would say, you know, lead by example, give them an opportunity Thio access data and turn it into a story that's really powerful. And then, lastly, praised people who do it like use it as something to celebrate inside our companies is a great way to kind of get this initiative. >>E love it. You talk about democratizing data, making it self service. People feel ownership, you know, Laura did. He starts talking about the ecosystem, and you're kind of the ecosystem pro here. How does the ecosystem help marketers succeed? Maybe you could talk about the power of of many versus the resource of one. >>So, you know, I think it's a it's a game changer and it will continue to be. And I think it's really the next level for marketers to harness this. This power that's out there and use it. Um, you know, it's something that's important to us, but it's also something we're starting to see our customers demand, you know, we went from a one size fits all solution, Thio. They want to bring the best in class to their organization. Um, we all need to be really agile and flexible right now. And I think this ecosystem allows that, you know, you think about the power of a snow plate snowflake mining data for you, and then a thought spot really giving you the dashboard toe, have what you want. And then, of course, on implementation partner like a whip Roh coming in and really being able to plug in whatever else you need to deliver. And I think it's really super powerful, and I think it gives us, you know, it just gives us so much to play with and so much room to grow market. >>Thank you. Did he say, Why don't you bring us home? We were almost out of time here, but marketing, art, science both. What do your thoughts? >>Definitely Both. I think that's exciting. Part about marketing. It is a balancing act between art and science. Clearly, it's probably mawr science today than it used to be. But the art part is really about inspiring change. It's about changing people's people's behavior and challenging the status quo, right? That's the art part. The science part. That's about making the right decisions all the time, right? It's making sure we are truly investing in what's gonna drive revenue for us. >>Guys, thanks so much for coming on the Cube. Great discussion. Really appreciate it. Okay. And thank you for watching. Keep it right there. Wall to wall coverage of the Snowflake Data Cloud Summit on the Cube.

Published Date : Nov 19 2020

SUMMARY :

I call it the CMO Power great to be here with you, David. It's changed a lot, you know, sports, of course, with all this data, but I wonder what you're experiencing And can What I'm personally most excited about is the real time access we have of data and cloud really brought to the modern marketer that you might not have had before And you know, it's worth giving an example. And I want to come back to that notion to understand how you're bringing data into your marketing And then, you know, regarding these trends, we just did a survey on I've been pushing people, but now that I have the CMO in front of me, I wanna ask about the data cloud and what it means And that's again if you look at all the companies we talked to around the world, What are some of the challenges that you can And I would say, you know, lead by example, you know, Laura did. powerful, and I think it gives us, you know, it just gives us so much to play with and so Did he say, Why don't you bring us home? But the art part is really about inspiring change. And thank you for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ScottPERSON

0.99+

LauraPERSON

0.99+

DavidPERSON

0.99+

DenisePERSON

0.99+

100 timesQUANTITY

0.99+

100%QUANTITY

0.99+

50%QUANTITY

0.99+

40%QUANTITY

0.99+

100 timesQUANTITY

0.99+

300 companiesQUANTITY

0.99+

61%QUANTITY

0.99+

TodayDATE

0.99+

threeQUANTITY

0.99+

UKLOCATION

0.99+

22%QUANTITY

0.99+

USLOCATION

0.99+

Laura LangdonPERSON

0.99+

sixQUANTITY

0.99+

KobePERSON

0.98+

Denise PersonPERSON

0.98+

todayDATE

0.98+

BothQUANTITY

0.98+

Snowflake Data Cloud SummitEVENT

0.98+

second keyQUANTITY

0.98+

bothQUANTITY

0.98+

gramsQUANTITY

0.98+

Data Cloud SummitEVENT

0.97+

Kool AidORGANIZATION

0.97+

5QUANTITY

0.97+

oneQUANTITY

0.97+

this weekDATE

0.97+

GardnerPERSON

0.97+

10%QUANTITY

0.96+

one placeQUANTITY

0.95+

3 60OTHER

0.94+

ThioPERSON

0.89+

a decade agoDATE

0.86+

one sizeQUANTITY

0.82+

about 32 peopleQUANTITY

0.81+

Thought SpotORGANIZATION

0.81+

thousands of partnersQUANTITY

0.8+

three phenomenal marketing prosQUANTITY

0.72+

Data CloudORGANIZATION

0.68+

HoldenORGANIZATION

0.63+

CubeCOMMERCIAL_ITEM

0.6+

CMO SnowflakesORGANIZATION

0.57+

H RORGANIZATION

0.55+

LuluORGANIZATION

0.53+

coupleQUANTITY

0.51+

officersQUANTITY

0.47+

RohPERSON

0.44+

ThoughtSpot Keynote v6


 

>> Data is at the heart of transformation and the change every company needs to succeed, but it takes more than new technology. It's about teams, talent and cultural change. Empowering everyone on the front lines to make decisions all at the speed of digital. The transformation starts with you. It's time to lead the way it's time for Thought leaders. >> Welcome to "Thought Leaders" a digital event brought to you by ThoughtSpot. My name is Dave Vellante. The purpose of this day is to bring industry leaders and experts together to really try and understand the important issues around digital transformation. We have an amazing lineup of speakers and our goal is to provide you with some best practices that you can bring back and apply to your organization. Look, data is plentiful, but insights are not. ThoughtSpot is disrupting analytics by using search and machine intelligence to simplify data analysis and really empower anyone with fast access to relevant data. But in the last 150 days, we've had more questions than answers. Creating an organization that puts data and insights at their core requires not only modern technology, but leadership, a mindset and a culture that people often refer to as data-driven. What does that mean? How can we equip our teams with data and fast access to quality information that can turn insights into action. And today we're going to hear from experienced leaders who are transforming their organizations with data, insights and creating digital first cultures. But before we introduce our speakers, I'm joined today by two of my co-hosts from ThoughtSpot first chief data strategy officer at the ThoughtSpot is Cindi Howson. Cindi is an analytics and BI expert with 20 plus years experience and the author of "Successful Business Intelligence "Unlock the Value of BI & Big Data." Cindi was previously the lead analyst at Gartner for the data and analytics magic quadrant. And early last year, she joined ThoughtSpot to help CDOs and their teams understand how best to leverage analytics and AI for digital transformation. Cindi, great to see you welcome to the show. >> Thank you, Dave. Nice to join you virtually. >> Now our second cohost and friend of the cube is ThoughtSpot CEO Sudheesh Nair Hello, Sudheesh how are you doing today? >> I'm well Dave, it's good to talk to you again. >> It's great to see you thanks so much for being here. Now Sudheesh please share with us why this discussion is so important to your customers and of course, to our audience and what they're going to learn today. (upbeat music) >> Thanks, Dave. I wish you were there to introduce me into every room and that I walk into because you have such an amazing way of doing it. Makes me feel all so good. Look, since we have all been cooped up in our homes, I know that the vendors like us, we have amped up our sort of effort to reach out to you with invites for events like this. So we are getting very more invites for events like this than ever before. So when we started planning for this, we had three clear goals that we wanted to accomplish. And our first one that when you finish this and walk away, we want to make sure that you don't feel like it was a waste of time. We want to make sure that we value your time and this is going to be useful. Number two, we want to put you in touch with industry leaders and thought leaders, generally good people that you want to hang around with long after this event is over. And number three, as we plan through this, we are living through these difficult times. We want an event to be this event, to be more of an uplifting and inspiring event too. Now, the challenge is how do you do that with the team being change agents because change and as much as we romanticize it, it is not one of those uplifting things that everyone wants to do, or like to do. The way I think of it sort of like a, if you've ever done bungee jumping and it's like standing on the edges waiting to make that one more step, all you have to do is take that one step and gravity will do the rest, but that is the hardest step to take. Change requires a lot of courage. And when we are talking about data and analytics, which is already like such a hard topic, not necessarily an uplifting and positive conversation in most businesses, it is somewhat scary. Change becomes all the more difficult. Ultimately change requires courage. Courage to first of all challenge the status quo. People sometimes are afraid to challenge the status quo because they are thinking that maybe I don't have the power to make the change that the company needs. Sometimes they feel like I don't have the skills. Sometimes they may feel that I'm probably not the right person do it. Or sometimes the lack of courage manifest itself as the inability to sort of break the silos that are formed within the organizations, when it comes to data and insights that you talked about. There are people in the company who are going to hog the data because they know how to manage the data, how to inquire and extract. They know how to speak data. They have the skills to do that. But they are not the group of people who have sort of the knowledge, the experience of the business to ask the right questions off the data. So there is the silo of people with the answers, and there is a silo of people with the questions. And there is gap. This sort of silos are standing in the way of making that necessary change that we all know the business needs. And the last change to sort of bring an external force sometimes. It could be a tool. It could be a platform, it could be a person, it could be a process, but sometimes no matter how big the company is or how small the company is, you may need to bring some external stimuli to start the domino of the positive changes that are necessary. The group of people that we are brought in, the four people, including Cindi, that you will hear from today are really good at practically telling you how to make that step, how to step off that edge, how to dress the rope, that you will be safe and you're going to have fun. You will have that exhilarating feeling of jumping, for a bungee jump. All four of them are exceptional, but my honor is to introduce Michelle and she's our first speaker. Michelle, I am very happy after watching her presentation and reading our bio, that there are no country vital worldwide competition for cool patterns, because she will beat all of us because when her children were small, they were probably into Harry Potter and Disney. She was managing a business and leading change there. And then as her kids grew up and got to that age where they like football and NFL, guess what? She's the CIO of NFL. What a cool mom? I am extremely excited to see what she's going to talk about. I've seen the slides, tons of amazing pictures. I'm looking to see the context behind it. I'm very thrilled to make the acquaintance of Michelle and looking forward to her talk next. Welcome Michelle, it's over to you. (upbeat music) >> I'm delighted to be with you all today to talk about thought leadership. And I'm so excited that you asked me to join you because today I get to be a quarterback. I always wanted to be one. And I thought this is about as close as I'm ever going to get. So I want to talk to you about quarterbacking, our digital revolution using insights data. And of course, as you said, leadership, first a little bit about myself, a little background, as I said, I always wanted to play football. And this is something that I wanted to do since I was a child. But when I grew up, girls didn't get to play football. I'm so happy that that's changing and girls are now doing all kinds of things that they didn't get to do before. Just this past weekend on an NFL field, we had a female coach on two sidelines and a female official on the field. I'm a lifelong fan and student of the game of football. I grew up in the South. You can tell from the accent. And in the South football is like a religion and you pick sides. I chose Auburn university working in the athletic department. So I'm Testament to you can start the journey can be long. It took me many, many years to make it into professional sports. I graduated in 1987 and my little brother, well, not actually not so little. He played offensive line for the Alabama Crimson Tide. And for those of you who know SCC football, you know this is a really big rivalry. And when you choose sides, your family is divided. So it's kind of fun for me to always tell the story that my dad knew his kid would make it to the NFL. He just bet on the wrong one. My career has been about bringing people together for memorable moments at some of America's most iconic brands, delivering memories and amazing experiences that delight from Universal Studios, Disney to my current position as CIO of the NFL. In this job I'm very privileged to have the opportunity to work with the team that gets to bring America's game to millions of people around the world. Often I'm asked to talk about how to create amazing experiences for fans, guests, or customers. But today I really wanted to focus on something different and talk to you about being behind the scenes and backstage because behind every event, every game, every awesome moment is execution, precise, repeatable execution. And most of my career has been behind the scenes doing just that assembling teams to execute these plans. And the key way that companies operate at these exceptional levels is making good decisions, the right decisions at the right time and based upon data so that you can translate the data into intelligence and be a data-driven culture. Using data and intelligence is an important way that world-class companies do differentiate themselves. And it's the lifeblood of collaboration and innovation. Teams that are working on delivering these kinds of world casts experiences are often seeking out and leveraging next-generation technologies and finding new ways to work. I've been fortunate to work across three decades of emerging experiences, which each required emerging technologies to execute a little bit first about Disney in the 90s, I was at Disney leading a project called destination Disney, which it's a data project. It was a data project, but it was CRM before CRM was even cool. And then certainly before anything like a data-driven culture was ever brought up, but way back then we were creating a digital backbone that enabled many technologies for the things that you see today, like the magic band, Disney's magical express. My career at Disney began in finance, but Disney was very good about rotating you around. And it was during one of these rotations that I became very passionate about data. I kind of became a pain in the butt to the IT team asking for data more and more data. And I learned that all of that valuable data was locked up in our systems. All of our point of sales systems, our reservation systems, our operation systems. And so I became a shadow IT person in marketing, ultimately leading to moving into IT. And I haven't looked back since. In the early two thousands, I was at universal studios theme park as their CIO preparing for and launching "The Wizarding World of Harry Potter" bringing one of history's most memorable characters to life required many new technologies and a lot of data. Our data and technologies were embedded into the rides and attractions. I mean, how do you really think a wan selects you at a wan shop. As today at the NFL? I am constantly challenged to do leading edge technologies, using things like sensors, AI, machine learning, and all new communication strategies and using data to drive everything from player performance, contracts, to where we build new stadiums and hold events with this year being the most challenging yet rewarding year in my career at the NFL. In the middle of a global pandemic, the way we are executing on our season is leveraging data from contract tracing devices joined with testing data, talk about data, actually enabling your business without it w wouldn't be having a season right now. I'm also on the board of directors of two public companies where data and collaboration are paramount. First RingCentral, it's a cloud based unified communications platform and collaboration with video message and phone all in one solution in the cloud and Quotient technologies whose product is actually data. The tagline at Quotient is the result in knowing I think that's really important because not all of us are data companies where your product is actually data, but we should operate more like your product is data. I'd also like to talk to you about four areas of things to think about as thought leaders in your companies. First just hit on it is change how to be a champion and a driver of change. Second, how do you use data to drive performance for your company and measure performance of your company? Third, how companies now require intense collaboration to operate. And finally, how much of this is accomplished through solid data driven decisions. First let's hit on change. I mean, it's evident today more than ever, that we are in an environment of extreme change. I mean, we've all been at this for years and as technologists we've known it, believed it, lived it and thankfully for the most part, knock on what we were prepared for it. But this year everyone's cheese was moved. All the people in the back rooms, IT, data architects and others were suddenly called to the forefront because a global pandemic has turned out to be the thing that is driving intense change in how people work and analyze their business. On March 13th, we closed our office at the NFL in the middle of preparing for one of our biggest events, our kickoff event, the 2020 draft. We went from planning a large event in Las Vegas under the bright lights, red carpet stage to smaller events in club facilities. And then ultimately to one where everyone coaches GM's prospects and even our commissioner were at home in their basements. And we only had a few weeks to figure it out. I found myself for the first time being in the live broadcast event space, talking about bungee jumping. This is really what it felt like. It was one in which no one felt comfortable because it had not been done before. But leading through this, I stepped up, but it was very scary. It was certainly very risky, but it ended up being all so rewarding when we did it. And as a result of this, some things will change forever. Second, managing performance. I mean, data should inform how you're doing and how to get your company to perform at it's level. Highest level. As an example, the NFL has always measured performance, obviously, and it is one of the purest examples of how performance directly impacts outcome. I mean, you can see performance on the field. You can see points being scored in stats, and you immediately know that impact those with the best stats usually when the games. The NFL has always recorded stats since the beginning of time here at the NFL a little this year is our 101 year and athletes ultimate success as a player has also always been greatly impacted by his stats. But what has changed for us is both how much more we can measure and the immediacy with which it can be measured. And I'm sure in your business it's the same. The amount of data you must have has got to have quadrupled and how fast you need it and how quickly you need to analyze it is so important. And it's very important to break the silos between the keys, to the data and the use of the data. Our next generation stats platform is taking data to a next level. It's powered by Amazon web services. And we gathered this data real-time from sensors that are on players' bodies. We gather it in real time, analyze it, display it online and on broadcast. And of course it's used to prepare week to week in addition to what is a normal coaching plan would be. We can now analyze, visualize route patterns, speed match-ups, et cetera. So much faster than ever before. We're continuing to roll out sensors too that will gather more and more information about a player's performance as it relates to their health and safety. The third trend is really, I think it's a big part of what we're feeling today and that is intense collaboration. And just for sort of historical purposes, it's important to think about for those of you that are IT professionals and developers, more than 10 years ago, agile practices began sweeping companies where small teams would work together rapidly in a very flexible, adaptive, and innovative way. And it proved to be transformational. However, today, of course, that is no longer just small teams, the next big wave of change. And we've seen it through this pandemic is that it's the whole enterprise that must collaborate and be agile. If I look back on my career, when I was at Disney, we owned everything 100%. We made a decision, we implemented it. We were a collaborative culture, but it was much easier to push change because you own the whole decision. If there was buy-in from the top down, you've got the people from the bottom up to do it and you executed. At Universal we were a joint venture. Our attractions and entertainment was licensed. Our hotels were owned and managed by other third parties. So influence and collaboration and how to share across companies became very important. And now here I am at the NFL and even the bigger ecosystem, we have 32 clubs that are all separate businesses. 31 different stadiums that are owned by a variety of people. We have licensees, we have sponsors, we have broadcast partners. So it seems that as my career has evolved, centralized control has gotten less and less and has been replaced by intense collaboration, not only within your own company, but across companies. The ability to work in a collaborative way across businesses and even other companies that has been a big key to my success in my career. I believe this whole vertical integration and big top-down decision-making is going by the wayside in favor of ecosystems that require cooperation yet competition to co-exist. I mean, the NFL is a great example of what we call co-op petition, which is cooperation and competition. We're in competition with each other, but we cooperate to make the company the best it can be. And at the heart of these items really are data driven decisions and culture. Data on its own isn't good enough. You must be able to turn it to insights. Partnerships between technology teams who usually hold the keys to the raw data and business units who have the knowledge to build the right decision models is key. If you're not already involved in this linkage, you should be. Data mining isn't new for sure. The availability of data is quadrupling and it's everywhere. How do you know what to even look at? How do you know where to begin? How do you know what questions to ask it's by using the tools that are available for visualization and analytics and knitting together strategies of the company. So it begins with first of all, making sure you do understand the strategy of the company. So in closing, just to wrap up a bit, many of you joined today, looking for thought leadership on how to be a change agent, a change champion, and how to lead through transformation. Some final thoughts are be brave and drive. Don't do the ride along program. It's very important to drive. Driving can be high risk, but it's also high reward. Embracing the uncertainty of what will happen is how you become brave. Get more and more comfortable with uncertainty, be calm and let data be your map on your journey. Thanks. >> Michelle, tank you so much. So you and I share a love of data and a love of football. You said you want to be the quarterback. I'm more an old line person. (Michelle and Cindi laughing) >> Well, then I can do my job without you. >> Great. And I'm getting the feeling now, Sudheesh is talking about bungee jumping. My vote is when we're past this pandemic, we both take them to the Delaware water gap and we do the cliff jumping. >> That sounds good, I'll watch. >> Yeah, you'll watch, okay. So Michelle, you have so many stakeholders when you're trying to prioritize the different voices. You have the players, you have the owners, you have the league, as you mentioned, the broadcasters, your partners here and football mamas like myself. How do you prioritize when there's so many different stakeholders that you need to satisfy? >> I think balancing across stakeholders starts with, aligning on a mission. And if you spend a lot of time understanding where everyone's coming from, and you can find the common thread that ties them all together, you sort of do get them to naturally prioritize their work. And I think that's very important. So for us, at the NFL and even at Disney, it was our core values and our core purpose, is so well known and when anything challenges that we're able to sort of lay that out. But as a change agent, you have to be very empathetic. And I would say empathy is probably your strongest skill if you're a change agent. And that means listening to every single stakeholder, even when they're yelling at you, even when they're telling you your technology doesn't work and you know that it's user error, or even when someone is just emotional about what's happening to them and that they're not comfortable with it. So I think being empathetic and having a mission and understanding it is sort of how I prioritize and balance. >> Yeah, empathy, a very popular word this year. I can imagine those coaches and owners yelling. So, thank you for your leadership here. So Michelle, I look forward to discussing this more with our other customers and disruptors joining us in a little bit. (upbeat music) So we're going to take a hard pivot now and go from football to Chernobyl. Chernobyl what went wrong? 1986, as the reactors were melting down, they had the data to say, this is going to be catastrophic. And yet the culture said, "no, we're perfect, hide it. "Don't dare tell anyone." Which meant they went ahead and had celebrations in Kiev. Even though that increased the exposure, the additional thousands getting cancer and 20,000 years before the ground around there can even be inhabited again, this is how powerful and detrimental a negative culture, a culture that is unable to confront the brutal facts that hides data. This is what we have to contend with. And this is why I want you to focus on having, fostering a data-driven culture. I don't want you to be a laggard. I want you to be a leader in using data to drive your digital transformation. So I'll talk about culture and technology. Is it really two sides of the same coin, real-world impacts and then some best practices you can use to and innovate your culture. Now, oftentimes I would talk about culture and I talk about technology. And recently a CDO said to me, "Cindi, I actually think this is two sides "of the same coin. "One reflects the other." What do you think? Let me walk you through this. So let's take a laggard. What does the technology look like? Is it based on 1990s BI and reporting largely parametrized reports, on premises data, warehouses, or not even that operational reports at best one enterprise data warehouse, very slow moving and collaboration is only email. What does that culture tell you? Maybe there's a lack of leadership to change, to do the hard work that Sudheesh referred to, or is there also a culture of fear, afraid of failure, resistance to change complacency. And sometimes that complacency it's not because people are lazy. It's because they've been so beaten down every time a new idea is presented. It's like, no we're measured on least cost to serve. So politics and distrust, whether it's between business and IT or individual stakeholders is the norm. So data is hoarded. Let's contrast that with a leader, a data and analytics leader, what is their technology look like? Augmented analytics search and AI driven insights, not on premises, but in the cloud and maybe multiple clouds. And the data is not in one place, but it's in a data Lake and in a data warehouse, a logical data warehouse. The collaboration is being a newer methods, whether it's Slack or teams allowing for that real time decisioning or investigating a particular data point. So what is the culture in the leaders? It's transparent and trust. There is a trust that data will not be used to punish that there is an ability to confront the bad news. It's innovation, valuing innovation in pursuit of the company goals, whether it's the best fan experience and player safety in the NFL or best serving your customers. It's innovative and collaborative. There's none of this. Oh, well, I didn't invent that. I'm not going to look at that. There's still pride of ownership, but it's collaborating to get to a better place faster. And people feel empowered to present new ideas to fail fast, and they're energized knowing that they're using the best technology and innovating at the pace that business requires. So data is democratized. And democratized, not just for power users or analysts, but really at the point of impact what we like to call the new decision-makers or really the frontline workers. So Harvard business review partnered with us to develop this study to say, just how important is this? We've been working at BI and analytics as an industry for more than 20 years. Why is it not at the front lines? Whether it's a doctor, a nurse, a coach, a supply chain manager, a warehouse manager, a financial services advisor. Everyone said that if our 87% said, they would be more successful if frontline workers were empowered with data driven insights, but they recognize they need new technology to be able to do that. It's not about learning hard tools. The sad reality, only 20% of organizations are actually doing this. These are the data-driven leaders. So this is the culture in technology. How did we get here? It's because state-of-the-art keeps changing. So the first-generation BI and analytics platforms were deployed on premises on small datasets, really just taking data out of ERP systems that were also on premises. And state-of-the-art was maybe getting a management report, an operational report. Over time visual-based data discovery vendors disrupted these traditional BI vendors, empowering now analysts to create visualizations with the flexibility on a desktop, sometimes larger data, sometimes coming from a data warehouse. The current state of the art though, Gartner calls it augmented analytics at ThoughtSpot, we call it search and AI driven analytics. And this was pioneered for large scale datasets, whether it's on premises or leveraging the cloud data warehouses. And I think this is an important point. Oftentimes you, the data and analytics leaders will look at these two components separately, but you have to look at the BI and analytics tier in lockstep with your data architectures to really get to the granular insights and to leverage the capabilities of AI. Now, if you've never seen ThoughtSpot, I'll just show you what this looks like. Instead of somebody hard coding, a report it's typing in search keywords and very robust keywords contains rank top bottom, getting to a visual visualization that then can be pinned to an existing Pin board that might also contain insights generated by an AI engine. So it's easy enough for that new decision maker, the business user, the non analyst to create themselves. Modernizing the data and analytics portfolio is hard because the pace of change has accelerated. You use to be able to create an investment place a bet for maybe 10 years, a few years ago, that time horizon was five years, now it's maybe three years and the time to maturity has also accelerated. So you have these different components, the search and AI tier, the data science tier, data preparation and virtualization. But I would also say equally important is the cloud data warehouse and pay attention to how well these analytics tools can unlock the value in these cloud data warehouses. So ThoughtSpot was the first to market with search and AI driven insights. Competitors have followed suit, but be careful if you look at products like power BI or SAP analytics cloud, they might demo well, but do they let you get to all the data without moving it in products like Snowflake, Amazon Redshift, or Azure synapse or Google big query, they do not. They require you to move it into a smaller in memory engine. So it's important how well these new products inter operate. the pace of change, its acceleration Gartner recently predicted that by 2022, 65% of analytical queries will be generated using search or NLP or even AI. And that is roughly three times the prediction they had just a couple years ago. So let's talk about the real world impact of culture. And if you read any of my books or used any of the maturity models out there, whether the Gartner IT score that I worked on, or the data warehousing Institute also has the money surety model. We talk about these five pillars to really become data-driven. As Michelle, I spoke about it's focusing on the business outcomes, leveraging all the data, including new data sources, it's the talent, the people, the technology, and also the processes. And often when I would talk about the people and the talent, I would lump the culture as part of that. But in the last year, as I've traveled the world and done these digital events for Thought leaders, you have told me now culture is absolutely so important. And so we've pulled it out as a separate pillar. And in fact, in polls that we've done in these events, look at how much more important culture is as a barrier to becoming data-driven it's three times as important as any of these other pillars. That's how critical it is. And let's take an example of where you can have great data, but if you don't have the right culture, there's devastating impacts. And I will say, I have been a loyal customer of Wells Fargo for more than 20 years. But look at what happened in the face of negative news with data, it said, "hey, we're not doing good cross selling, "customers do not have both a checking account "and a credit card and a savings account and a mortgage." They opened fake accounts facing billions in fines, change in leadership that even the CEO attributed to a toxic sales culture, and they're trying to fix this. But even recently there's been additional employee backlash saying the culture has not changed. Let's contrast that with some positive examples, Medtronic, a worldwide company in 150 countries around the world. They may not be a household name to you, but if you have a loved one or yourself, you have a pacemaker, spinal implant diabetes, you know this brand. And at the start of COVID when they knew their business would be slowing down, because hospitals would only be able to take care of COVID patients. They took the bold move of making their IP for ventilators publicly available. That is the power of a positive culture. Or Verizon, a major telecom organization looking at late payments of their customers. And even though the U.S federal government said, "well, you can't turn them off. They said, "we'll extend that even beyond "the mandated guidelines." And facing a slow down in the business because of the tough economy, they said, you know what? "We will spend the time up skilling our people, "giving them the time to learn more "about the future of work, the skills and data "and analytics," for 20,000 of their employees, rather than furloughing them. That is the power of a positive culture. So how can you transform your culture to the best in class? I'll give you three suggestions, bring in a change agent, identify the relevance, or I like to call it WIFM and organize for collaboration. So the CDO, whatever your title is, chief analytics officer, chief digital officer, you are the most important change agent. And this is where you will hear that oftentimes a change agent has to come from outside the organization. So this is where, for example, in Europe, you have the CDO of Just Eat a takeout food delivery organization coming from the airline industry or in Australia, National Australian bank, taking a CDO within the same sector from TD bank going to NAB. So these change agents come in disrupt. It's a hard job. As one of you said to me, it often feels like Sisyphus. I make one step forward and I get knocked down again. I get pushed back. It is not for the faint of heart, but it's the most important part of your job. The other thing I'll talk about is WIFM. What is in it for me? And this is really about understanding the motivation, the relevance that data has for everyone on the frontline, as well as those analysts, as well as the executives. So if we're talking about players in the NFL, they want to perform better and they want to stay safe. That is why data matters to them. If we're talking about financial services, this may be a wealth management advisor. Okay we could say commissions, but it's really helping people have their dreams come true, whether it's putting their children through college or being able to retire without having to work multiple jobs still into your 70s or 80s for the teachers, teachers, you ask them about data. They'll say we don't, we don't need that. I care about the student. So if you can use data to help a student perform better, that is WIFM. And sometimes we spend so much time talking the technology, we forget what is the value we're trying to deliver with it. And we forget the impact on the people that it does require change. In fact, the Harvard business review study found that 44% said lack of change management is the biggest barrier to leveraging both new technology, but also being empowered to act on those data-driven insights. The third point organize for collaboration. This does require diversity of thought, but also bringing the technology, the data and the business people together. Now there's not a single one size fits all model for data and analytics. At one point in time, even having a BICC, a BI competency center was considered state-of-the-art. Now for the biggest impact what I recommend is that you have a federated model centralized for economies of scale. That could be the common data, but then in bed, these evangelists, these analysts of the future within every business unit, every functional domain. And as you see this top bar, all models are possible, but the hybrid model has the most impact, the most leaders. So as we look ahead to the months ahead, to the year ahead an exciting time, because data is helping organizations better navigate a tough economy, lock in the customer loyalty. And I look forward to seeing how you foster that culture that's collaborative with empathy and bring the best of technology, leveraging the cloud, all your data. So thank you for joining us at Thought Leaders. And next I'm pleased to introduce our first change agent, Tom Mazzaferro chief data officer of Western union. And before joining Western union, Tom made his Mark at HSBC and JPMorgan Chase spearheading digital innovation in technology, operations, risk compliance, and retail banking. Tom, thank you so much for joining us today. (upbeat music) >> Very happy to be here and looking forward to talking to all of you today. So as we look to move organizations to a data-driven, capability into the future, there is a lot that needs to be done on the data side, but also how does data connect and enable different business teams and technology teams into the future. As you look across, our data ecosystems and our platforms and how we modernize that to the cloud in the future, it all needs to basically work together, right? To really be able to drive and over the shift from a data standpoint, into the future, that includes being able to have the right information with the right quality of data, at the right time to drive informed business decisions, to drive the business forward. As part of that, we actually have partnered with ThoughtSpot, to actually bring in the technology to help us drive that as part of that partnership. And it's how we've looked to integrate it into our overall business as a whole we've looked at how do we make sure that our business and our professional lives right, are enabled in the same ways as our personal lives. So for example, in your personal lives, when you want to go and find something out, what do you do? You go onto google.com or you go on to Bing we go onto Yahoo and you search for what you want search to find and answer. ThoughtSpot for us as the same thing, but in the business world. So using ThoughtSpot and other AI capability it's allowed us to actually, enable our overall business teams in our company to actually have our information at our fingertips. So rather than having to go and talk to someone or an engineer to go pull information or pull data, we actually can have the end-users or the business executives, right. Search for what they need, what they want at the exact time that action need it to go and drive the business forward. This is truly one of those transformational things that we've put in place. On top of that, we are on the journey to modernize our larger ecosystem as a whole. That includes modernizing our underlying data warehouses, our technology, or our Eloqua environments. And as we move that, we've actually picked two of our cloud providers going to AWS and GCP. We've also adopted Snowflake to really drive and to organize our information and our data then drive these new solutions and capabilities forward. So they portion of us though is culture. So how do we engage with the business teams and bring the IT teams together to really drive these holistic end to end solutions and capabilities to really support the actual business into the future? That's one of the keys here, as we look to modernize and to really enhance our organizations to become data-driven, this is the key. If you can really start to provide answers to business questions before they're even being asked and to predict based upon different economic trends or different trends in your business, what does this is maybe be made and actually provide those answers to the business teams before they're even asking for it, that is really becoming a data-driven organization. And as part of that, it's really then enables the business to act quickly and take advantage of opportunities as they come in based upon, industries based upon markets, based upon products, solutions, or partnerships into the future. These are really some of the keys that become crucial as you move forward, right, into this new age, especially with COVID. With COVID now taking place across the world, right? Many of these markets, many of these digital transformations are accelerating and are changing rapidly to accommodate and to support customers in these very difficult times, as part of that, you need to make sure you have the right underlying foundation ecosystems and solutions to really drive those capabilities and those solutions forward. As we go through this journey, both of my career, but also each of your careers into the future, right? It also needs to evolve, right? Technology has changed so drastically in the last 10 years, and that change is only accelerating. So as part of that, you have to make sure that you stay up to speed, up to date with new technology changes both on the platform standpoint tools, but also what do our customers want? What do our customers need and how do we then service them with our information, with our data, with our platform and with our products and our services to meet those needs and to really support and service those customers into the future. This is all around becoming a more data organization such as how do you use your data to support the current business lines, but how do you actually use your information, your data to actually put a better support your customers, better support your business, better support your employees, your operations teams, and so forth, and really creating that full integration in that ecosystem is really when you start to get large dividends from this investments into the future. But that being said, hope you enjoy the segment on how to become and how to drive it data driven organization. And, looking forward to talking to you again soon. Thank you. >> Tom that was great thanks so much. Now I'm going to have to brag on you for a second as a change agent you've come in disrupted and how long have you been at Western union? >> Only nine months, so just started this year, but, doing some great opportunities and great changes. And we have a lot more to go, but, we're really driving things forward in partnership with our business teams and our colleagues to support those customers going forward. >> Tom, thank you so much. That was wonderful. And now I'm excited to introduce you to Gustavo Canton, a change agent that I've had the pleasure of working with meeting in Europe, and he is a serial change agent, most recently with Schneider electric, but even going back to Sam's clubs, Gustavo welcome. (upbeat music) >> So, hey everyone, my name is Gustavo Canton and thank you so much, Cindi, for the intro, as you mentioned, doing transformations is high effort, high reward situation. I have empowered many transformations and I have led many transformations. And what I can tell you is that it's really hard to predict the future, but if you have a North star and where you're going, the one thing that I want you to take away from this discussion today is that you need to be bold to evolve. And so in today, I'm going to be talking about culture and data, and I'm going to break this down in four areas. How do we get started barriers or opportunities as I see it, the value of AI, and also, how do you communicate, especially now in the workforce of today with so many different generations, you need to make sure that you are communicating in ways that are non-traditional sometimes. And so how do we get started? So I think the answer to that is you have to start for you yourself as a leader and stay tuned. And by that, I mean, you need to understand not only what is happening in your function or your field, but you have to be varying into what is happening in society, socioeconomically speaking wellbeing. The common example is a great example. And for me personally, it's an opportunity because the one core value that I have is well-being, I believe that for human potential, for customers and communities to grow wellbeing should be at the center of every decision. And as somebody mentioned is great to be, stay in tune and have the skillset and the courage. But for me personally, to be honest, to have this courage is not about not being afraid. You're always afraid when you're making big changes when you're swimming upstream, but what gives me the courage is the empathy part. Like I think empathy is a huge component because every time I go into an organization or a function, I try to listen very attentively to the needs of the business and what the leaders are trying to do. What I do it thinking about the mission of how do I make change for the bigger, workforce? for the bigger good. Despite this fact that this might have a perhaps implication on my own self-interest in my career, right? Because you have to have that courage sometimes to make choices that I know we'll see in politically speaking, what are the right thing to do? And you have to push through it. And you have to push through it. So the bottom line for me is that I don't think they're transforming fast enough. And the reality is I speak with a lot of leaders and we have seen stories in the past. And what they show is that if you look at the four main barriers that are basically keeping us behind budget, inability to act cultural issues, politics, and lack of alignment, those are the top four. But the interesting thing is that as Cindi has mentioned, these topics culture is actually gaining, gaining more and more traction. And in 2018, there was a story from HBR and it was about 45%. I believe today it's about 55%, 60% of respondents say that this is the main area that we need to focus on. So again, for all those leaders and all the executives who understand and are aware that we need to transform, commit to the transformation and set a state, deadline to say, "hey, in two years, we're going to make this happen. "What do we need to do to empower and enable "this change engines to make it happen?" You need to make the tough choices. And so to me, when I speak about being bold is about making the right choices now. So I'll give you samples of some of the roadblocks that I went through as I think transformation most recently, as Cindi mentioned in Schneider. There are three main areas, legacy mindset. And what that means is that we've been doing this in a specific way for a long time and here is how we have been successful what was working the past is not going to work now. The opportunity there is that there is a lot of leaders who have a digital mindset and there're up and coming leaders that are not yet fully developed. We need to mentor those leaders and take bets on some of these talent, including young talent. We cannot be thinking in the past and just wait for people, three to five years for them to develop because the world is going to in a way that is super fast. The second area, and this is specifically to implementation of AI is very interesting to me because just example that I have with ThoughtSpot, right, we went to implementation and a lot of the way is the IT team function of the leaders look at technology, they look at it from the prism of the prior all success criteria for the traditional Bi's. And that's not going to work. Again the opportunity here is that you need to really find what successful look like. In my case, I want the user experience of our workforce to be the same as user experience you have at home is a very simple concept. And so we need to think about how do we gain the user experience with this augmented analytics tools and then work backwards to have the right talent processes and technology to enable that. And finally, with COVID a lot of pressuring organizations, and companies to do more with less. And the solution that most leaders I see are taking is to just minimize costs, sometimes in cut budget, we have to do the opposite. We have to actually invest some growth areas, but do it by business question. Don't do it by function. If you actually invest in these kind of solutions, if you actually invest on developing your talent, your leadership to see more digitally, if you actually invest on fixing your data platform, it's not just an incremental cost. It's actually this investment is going to offset all those hidden costs and inefficiencies that you have on your system, because people are doing a lot of work and working very hard, but it's not efficiency, and it's not working in the way that you might want to work. So there is a lot of opportunity there. And you just to put into some perspective, there have studies in the past about, how do we kind of measure the impact of data. And obviously this is going to vary by your organization maturity, is going to, there's going to be a lot of factors. I've been in companies who have very clean, good data to work with. And I think with companies that we have to start basically from scratch. So it all depends on your maturity level, but in this study, what I think is interesting is they try to put attack line or attack price to what is the cost of incomplete data. So in this case, it's about 10 times as much to complete a unit of work when you have data that is flawed as opposed to have perfect data. So let me put that just in perspective, just as an example, right? Imagine you are trying to do something and you have to do 100 things in a project, and each time you do something, it's going to cost you a dollar. So if you have perfect data, the total cost of that project might be $100. But now let's say you have any percent perfect data and 20% flawed data by using this assumption that flawed data is 10 times as costly as perfect data. Your total costs now becomes $280 as opposed to $100. This is just for you to really think about as a CIO CTO, CHRO CEO, are we really paying attention and really closing the gaps that we have on our data infrastructure. If we don't do that, it's hard sometimes to see the snowball effect or to measure the overall impact. But as you can tell the price that goes up very, very quickly. So now, if I were to say, how do I communicate this? Or how do I break through some of these challenges or some of these various, right. I think the key is I am in analytics. I know statistics obviously, and love modeling and data and optimization theory and all that stuff. That's what I came to analytics. But now as a leader and as a change agent, I need to speak about value. And in this case, for example, for Schneider, there was this tagline called free up your energy. So the number one thing that they were asking from the analytics team was actually efficiency, which to me was very interesting. But once I understood that I understood what kind of language to use, how to connect it to the overall strategy and basically how to bring in the, the right leaders, because you need to focus on the leaders that you're going to make the most progress. Again, low effort, high value. You need to make sure you centralize all the data as you can. You need to bring in some kind of augmented analytics solution. And finally you need to make it super simple for the, in this case, I was working with the HR teams in other areas, so they can have access to one portal. They don't have to be confused in looking for 10 different places to find information. I think if you can actually have those four foundational pillars, obviously under the guise of having a data-driven culture, that's when you can actually make the impact. So in our case, it was about three years total transformation, but it was two years for this component of augmented analytics. It took about two years to talk to IT get leadership support, find the budgeting, get everybody on board, make sure the safe criteria was correct. And we call this initiative, the people analytics portal, it was actually launched in July of this year. And we were very excited and the audience was very excited to do this. In this case, we did our pilot in North America for many, many manufacturers. But one thing that is really important is as you bring along your audience on this, you're going from Excel, in some cases or Tableau to other tools like, ThoughtSpot, you need to really explain them what is the difference and how these tools can truly replace, some of the spreadsheets or some of the views that you might have on these other kind of tools. Again, Tableau, I think it's a really good tool. There are other many tools that you might have in your toolkit. But in my case, personally, I feel that you need to have one portal going back to Cindi's point. I really truly enable the end user. And I feel that this is the right solution for us, right? And I will show you some of the findings that we had in the pilot in the last two months. So this was a huge victory, and I will tell you why, because it took a lot of effort for us to get to the station. Like I said, it's been years for us to kind of lay the foundation, get the leadership, and shaping culture so people can understand why you truly need to invest on (indistinct) analytics. And so what I'm showing here is an example of how do we use basically, a tool to capture in video the qualitative findings that we had, plus the quantitative insights that we have. So in this case, our preliminary results based on our ambition for three main metrics, hours saved user experience and adoption. So for hours saved or a mission was to have 10 hours per week per employee save on average user experience, or ambition was 4.5. And adoption, 80%. In just two months, two months and a half of the pilot, we were able to achieve five hours per week per employee savings. Our user experience for 4.3 out of five and adoption of 60%. Really, really amazing work. But again, it takes a lot of collaboration for us to get to the stage from IT, legal, communications, obviously the operations teams and the users in HR safety and other areas that might be, basically stakeholders in this whole process. So just to summarize this kind of effort takes a lot of energy. You are a change agent. You need to have a courage to make the decision and understand that I feel that in this day and age, with all this disruption happening, we don't have a choice. We have to take the risk, right? And in this case, I feel a lot of satisfaction in how we were able to gain all these very source for this organization. And that gave me the confidence to know that the work has been done and we are now in a different stage for the organization. And so for me, it to say, thank you for everybody who has believed, obviously in our vision, everybody who has believe in the word that we were trying to do and to make the life of four workforce or customers or in community better. As you can tell, there is a lot of effort. There is a lot of collaboration that is needed to do something like this. In the end, I feel very satisfied. With the accomplishments of this transformation, and I just want to tell for you, if you are going right now in a moment that you feel that you have to swim upstream what would mentors, what would people in this industry that can help you out and guide you on this kind of a transformation is not easy to do is high effort, but is well worth it. And with that said, I hope you are well, and it's been a pleasure talking to you. Talk to you soon, take care. >> Thank you, Gustavo, that was amazing. All right, let's go to the panel. (air whooshing) >> Okay, now we're going to go into the panel and bring Cindi, Michelle, Tom, and Gustavo back and have an open discussion. And I think we can all agree how valuable it is to hear from practitioners. And I want to thank the panel for sharing their knowledge with the community. And one common challenge that I heard you all talk about was bringing your leadership and your teams along on the journey with you. We talk about this all the time, and it is critical to have support from the top. Why? Because it directs the middle and then it enables bottoms up innovation effects from the cultural transformation that you guys all talked about. It seems like another common theme we heard is that you all prioritize database decision-making in your organizations and you combine two of your most valuable assets to do that and create leverage, employees on the front lines. And of course the data. And as you rightly pointed out, Tom, the pandemic has accelerated the need for really leaning into this. The old saying, if it ain't broke don't fix it. Well COVID is broken everything. And it's great to hear from our experts, how to move forward. So let's get right into it. So Gustavo, let's start with you if I'm an aspiring change agent and let's say I'm a budding data leader. What do I need to start doing? What habits do I need to create for long lasting success? >> I think curiosity is very important. You need to be, like I say, in tune to what is happening, not only in your specific field, like I have a passion for analytics, I can do this for 50 years plus, but I think you need to understand wellbeing other areas across not only a specific business, as you know I come from, Sam's club Walmart, retail, I mean energy management technology. So you have to try to push yourself and basically go out of your comfort zone. I mean, if you are staying in your comfort zone and you want to use lean continuous improvement, that's just going to take you so far. What you have to do is, and that's what I try to do is I try to go into areas, businesses, and transformation that make me stretch and develop as a leader. That's what I'm looking to do so I can help transform the functions organizations and do the change management, change of mindset required for these kinds of efforts. >> Michelle, you're at the intersection of tech and sports and what a great combination, but they're both typically male oriented fields. I mean, we've talked a little bit about how that's changing, but two questions. Tell us how you found your voice and talk about why diversity matters so much more than ever now. >> No, I found my voice really as a young girl, and I think I had such amazing support from men in my life. And I think the support and sponsorship as well as sort of mentorship along the way, I've had amazing male mentors who have helped me understand that my voice is just as important as anyone else's. I mean, I have often heard, and I think it's been written about that a woman has to believe they'll 100% master topic before they'll talk about it where a man can feel much less mastery and go on and on. So I was that way as well. And I learned just by watching and being open, to have my voice. And honestly at times demand a seat at the table, which can be very uncomfortable. And you really do need those types of, support networks within an organization. And diversity of course is important and it has always been. But I think if anything, we're seeing in this country right now is that diversity among all types of categories is front and center. And we're realizing that we don't all think alike. We've always known this, but we're now talking about things that we never really talked about before. And we can't let this moment go unchecked and on, and not change how we operate. So having diverse voices within your company and in the field of tech and sports, I am often the first and only I'm was the first, CIO at the NFL, the first female senior executive. It was fun to be the first, but it's also, very challenging. And my responsibility is to just make sure that, I don't leave anyone behind and make sure that I leave it good for the next generation. >> Well, thank you for that. That is inspiring. And Cindi, you love data and the data's pretty clear that diversity is a good business, but I wonder if you can add your perspectives to this conversation? >> Yeah, so Michelle has a new fan here because she has found her voice. I'm still working on finding mine. And it's interesting because I was raised by my dad, a single dad. So he did teach me how to work in a predominantly male environment, but why I think diversity matters more now than ever before. And this is by gender, by race, by age, by just different ways of working in thinking is because as we automate things with AI, if we do not have diverse teams looking at the data and the models and how they're applied, we risk having bias at scale. So this is why I think I don't care what type of minority you are finding your voice, having a seat at the table and just believing in the impact of your work has never been more important. And as Michelle said more possible. >> Great perspectives, thank you. Tom I want to go to you. I mean, I feel like everybody in our businesses in some way, shape or form become a COVID expert, but what's been the impact of the pandemic on your organization's digital transformation plans? >> We've seen a massive growth actually in a digital business over the last, 12 months, really, even in celebration, right? Once COVID hit, we really saw that in the 200 countries and territories that we operate in today and service our customers, today, that there's been a huge need, right? To send money, to support family, to support, friends and support loved ones across the world. And as part of that we are very, honored to get to support those customers that we, across all the centers today. But as part of that acceleration we need to make sure that we had the right architecture and the right platforms to basically scale, right, to basically support and provide the right kind of security for our customers going forward. So as part of that, we did do some pivots and we did accelerate some of our plans on digital to help support that overall growth coming in and to support our customers going forward, because there were these times during this pandemic, right? This is the most important time. And we need to support those that we love and those that we care about and doing that it's one of those ways is actually by sending money to them, support them financially. And that's where, really our part of that our services come into play that we really support those families. So it was really a great opportunity for us to really support and really bring some of our products to this level and supporting our business going forward. >> Awesome, thank you. Now I want to come back to Gustavo, Tom I'd love for you to chime in too. Did you guys ever think like you were, you were pushing the envelope too much in doing things with data or the technology that was just maybe too bold, maybe you felt like at some point it was failing or you're pushing your people too hard. Can you share that experience and how you got through it? >> Yeah, the way I look at it is, again, whenever I go to an organization, I ask the question, hey, how fast you would like transform. And, based on the agreements from the leadership and the vision that we want to take place, I take decisions. And I collaborate in a specific way now, in the case of COVID, for example, right. It forces us to remove silos and collaborate in a faster way. So to me, it was an opportunity to actually integrate with other areas and drive decisions faster, but make no mistake about it. When you are doing a transformation, you are obviously trying to do things faster than sometimes people are comfortable doing, and you need to be okay with that. Sometimes you need to be okay with tension, or you need to be okay debating points or making repetitive business cases until people connect with the decision because you understand, and you are seeing that, "hey, the CEO is making a one two year, efficiency goal. "The only way for us to really do more with less "is for us to continue this path. "We cannot just stay with the status quo. "We need to find a way to accelerate the transformation." That's the way I see it. >> How about you Tom, we were talking earlier with Sudheesh and Cindi, about that bungee jumping moment. What could you share? >> Yeah, I think you hit upon it, right now, the pace of change with the slowest pace that you see for the rest of your career. So as part of that, right, that's what I tell my team is that you need to be, you need to feel comfortable being uncomfortable. I mean, that we have to be able to basically scale, right, expand and support that the ever-changing needs in the marketplace and industry our customers today, and that pace of change that's happening, right. And what customers are asking for and the competition in the marketplace, it's only going to accelerate. So as part of that, as you look at what, how you're operating today in your current business model, right. Things are only going to get faster. So you have to plan into a line into drive the agile transformation so that you can scale even faster in the future. So as part of that, that's what we're putting in place here, right, is how do we create that underlying framework and foundation that allows the organization to basically continue to scale and evolve into the future? >> Yeah, we're definitely out of our comfort zones, but we're getting comfortable with it. So, Cindi, last question, you've worked with hundreds of organizations, and I got to believe that, some of the advice you gave when you were at Gartner, which is pre COVID, maybe sometimes clients didn't always act on it. They're not on my watch for whatever variety of reasons, but it's being forced on them now. But knowing what you know now that we're all in this isolation economy, how would you say that advice has changed? Has it changed? What's your number one action and recommendation today? >> Yeah, well, first off, Tom just freaked me out. What do you mean? This is the slowest ever even six months ago I was saying the pace of change in data and analytics is frenetic. So, but I think you're right, Tom, the business and the technology together is forcing this change. Now, Dave, to answer your question, I would say the one bit of advice, maybe I was a little more, very aware of the power and politics and how to bring people along in a way that they are comfortable. And now I think it's, you know what you can't get comfortable. In fact, we know that the organizations that were already in the cloud have been able to respond and pivot faster. So if you really want to survive as Tom and Gustavo said, get used to being uncomfortable, the power and politics are going to happen. Break the rules, get used to that and be bold. Do not be afraid to tell somebody they're wrong and they're not moving fast enough. I do think you have to do that with empathy, as Michelle said, and Gustavo, I think that's one of the key words today besides the bungee jumping. So I want to know where's the dish going to go bungee jumping. >> Guys fantastic discussion, really. Thanks again to all the panelists and the guests. It was really a pleasure speaking with you today. Really virtually all of the leaders that I've spoken to in the Cube program. Recently, they tell me that the pandemic is accelerating so many things, whether it's new ways to work, we heard about new security models and obviously the need for cloud. I mean, all of these things are driving true enterprise wide digital transformation, not just, as I said before, lip service. Sometimes we minimize the importance and the challenge of building culture and in making this transformation possible. But when it's done, right, the right culture is going to deliver tremendous results. Yeah, what does that mean getting it right? Everybody's trying to get it right. My biggest takeaway today is it means making data part of the DNA of your organization. And that means making it accessible to the people in your organization that are empowered to make decisions, decisions that can drive new revenue, cut costs, speed access to critical care, whatever the mission is of your organization. Data can create insights and informed decisions that drive value. Okay. Let's bring back Sudheesh and wrap things up. Sudheesh, please bring us home. >> Thank you. Thank you, Dave. Thank you, the Cube team, and thank goes to all of our customers and partners who joined us and thanks to all of you for spending the time with us. I want to do three quick things and then close it off. The first thing is I want to summarize the key takeaways that I had from all four of our distinguished speakers. First, Michelle, I will simply put it. She said it really well. That is be brave and drive. Don't go for a drive along. That is such an important point. Oftentimes, you know that I think that you have to do to make the positive change that you want to see happen but you wait for someone else to do it, not just, why not you? Why don't you be the one making that change happen? That's the thing that I've picked up from Michelle's talk. Cindi talked about finding the importance of finding your voice. Taking that chair, whether it's available or not, and making sure that your ideas, your voices are heard, and if it requires some force, then apply that force. Make sure your ideas are heard. Gustavo talked about the importance of building consensus, not going at things all alone sometimes building the importance of building the quorum. And that is critical because if you want the changes to last, you want to make sure that the organization is fully behind it. Tom, instead of a single takeaway, what I was inspired by is the fact that a company that is 170 years old, 170 years old, 200 companies and 200 countries they're operating in. And they were able to make the change that is necessary through this difficult time. So in a matter of months, if they could do it, anyone could. The second thing I want to do is to leave you with a takeaway that is I would like you to go to topspot.com/nfl because our team has made an app for NFL on Snowflake. I think you will find this interesting now that you are inspired and excited because of Michelle's talk. And the last thing is please go to thoughtspot.com/beyond our global user conference is happening in this December. We would love to have you join us. It's again, virtual, you can join from anywhere. We are expecting anywhere from five to 10,000 people, and we would love to have you join and see what we've been up to since last year. We have a lot of amazing things in store for you, our customers, our partners, our collaborators, they will be coming and sharing. We'll be sharing things that we've have been working to release something that will come out next year. And also some of the crazy ideas our engineers have been cooking up. All of those things will be available for you at the Thought Spot Beyond. Thank you. Thank you so much.

Published Date : Oct 8 2020

SUMMARY :

and the change every Cindi, great to see you Nice to join you virtually. it's good to talk to you again. and of course, to our audience but that is the hardest step to take. and talk to you about being So you and I share a love of And I'm getting the feeling now, that you need to satisfy? And that means listening to and the time to maturity the business to act quickly and how long have you to support those customers going forward. And now I'm excited to are the right thing to do? All right, let's go to the panel. and it is critical to that's just going to take you so far. Tell us how you found your voice and in the field of tech and sports, and the data's pretty clear and the models and how they're applied, everybody in our businesses and the right platforms and how you got through it? and the vision that we want to take place, How about you Tom, is that you need to be, some of the advice you gave and how to bring people along the right culture is going to is to leave you with a takeaway

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TomPERSON

0.99+

MichellePERSON

0.99+

Dave VellantePERSON

0.99+

VerizonORGANIZATION

0.99+

GustavoPERSON

0.99+

CindiPERSON

0.99+

SudheeshPERSON

0.99+

1987DATE

0.99+

EuropeLOCATION

0.99+

DavePERSON

0.99+

Tom MazzaferroPERSON

0.99+

DisneyORGANIZATION

0.99+

JPMorgan ChaseORGANIZATION

0.99+

MedtronicORGANIZATION

0.99+

AustraliaLOCATION

0.99+

$100QUANTITY

0.99+

HSBCORGANIZATION

0.99+

Wells FargoORGANIZATION

0.99+

20,000QUANTITY

0.99+

$280QUANTITY

0.99+

Las VegasLOCATION

0.99+

March 13thDATE

0.99+

50 yearsQUANTITY

0.99+

2018DATE

0.99+

ThoughtSpotORGANIZATION

0.99+

10 timesQUANTITY

0.99+

AmazonORGANIZATION

0.99+

twoQUANTITY

0.99+

two sidesQUANTITY

0.99+

60%QUANTITY

0.99+

80%QUANTITY

0.99+

Alabama Crimson TideORGANIZATION

0.99+

1986DATE

0.99+

20 plus yearsQUANTITY

0.99+

20%QUANTITY

0.99+

Universal StudiosORGANIZATION

0.99+

KievLOCATION

0.99+

Cindi HowsonPERSON

0.99+

10 yearsQUANTITY

0.99+

ExcelTITLE

0.99+

4.5QUANTITY

0.99+

101 yearQUANTITY

0.99+

fiveQUANTITY

0.99+

4.3QUANTITY

0.99+