Emilia A'Bell Platform9
(Gentle music) >> Hello and welcome to the Cube here in Palo Alto, California. I'm John Furrier here, joined by Platform nine, Amelia Bell the Chief Revenue Officer, really digging into the conversation around Kubernetes Cloud native and the journey this next generation cloud. Amelia, thanks for coming in and joining me today. >> Thank you, thank you. Great pleasure to be here. >> So, CRO, chief Revenue Officer. So you're mainly in charge of serving the customers, making sure they're they're happy with the solution you guys have. >> That's right. >> And this market must be pretty exciting. >> Oh, it's very exciting and we are seeing a lot of new use cases coming up all the time. So part of my job is to obtain new customers but then of course, service our existing customers and then there's a constant evolution. Nothing is standing still right now. >> We've had all your co-founders on, on the show here and we've kind of talked about the trends and where you guys have come from, where you guys are going now. And it's interesting, if you look at the cloud native market, the scale is still huge. You seeing now this next wave of AI coming on, which I call that's the real web three in my mind in terms of like the next experiences really still points to data infrastructure scale. These next gen apps are coming. And so that's being built on the previous generation of DevSecOps. >> Right >> And so a lot of enterprises are having to grow up really, really fast >> Right. >> And figure out, okay, I got to have scale I got large scale data, I got horizontal scalability I got to apply machine learning now the new software engineering practice. And then, oh, by the way I got the Kubernetes clusters I got to manage >> Right. >> I got what's containers weather, the security problems. This is a really complicated but important area of build out right now in the marketplace. >> Right. What are you seeing? >> So it's, it's really important that the infrastructure is not the hindrance in these cases. And we, one of our customers is in fact a large AI company and we, I met with them yesterday and asked them, you know, why are you giving that to us? You've got really smart engineers. They can run and create the infrastructure, you know in a custom way that you want it. And they said, we've got to be core to our business. There's plenty of work to do just on delivering the AI capabilities, and there's plenty of work to do. We can't get bogged down in the infrastructure. We don't want to have people running the engine we want them driving the car. We want them creating value on top of that. so they can't have the infrastructure being the bottleneck for them. >> It's interesting, the AI companies, that's their value proposition to their customers is that they don't want the technical talent. >> Right. >> Working on, you know, non-differentiated heavy lifting things. >> Right. >> And automate those and scale it up. Can you talk about the problem that you guys are solving? Because there's a lot going on here. >> Yeah. >> You can look at all aspects of the DevOps scale. There's a lot of little problems, some big problems. What are you guys focusing on? What's the bullseye for Platform known? >> Okay, so the bullseye is that Kubernetes infrastructure is really hard, right? It's really hard to create and run. So we introduce a time to market efficiency, let's get this up and running and let's get you into production and and producing results for your customers fast. But at the same time, let's reduce your cost and complexity and increase reliability. So, >> And what are some of the things that they're having problems with that are breaking? Is it more of updates on code? Is it size of the, I mean clusters they have, what what is it more operational? What are the, what are some of the things that are that kind of get them to call you guys up? What's the main thing? >> It's the operations. It's all operations. So what, what happens is that if you have a look at Kubernetes platform it's made up of many, many components. And that's where it gets complex. It's not just Kubernetes. There's load balances, networking, there's observability. All these things have to operate together. And all the piece parts have to be upgraded and maintained. The integrations need to work, you need to have probes into the system to predict where problems can be coming. So the operational part of it is complex. So you need to be observing not only your clusters in the health of the clusters and the nodes and so on but the health of the platform itself. >> We're going to get Peter Frey in on here after I talk about some of the technical issues on deployments. But what's the, what's the big decision for the customer? Because there's kind of, there's two schools of thought. One is, I'm going to build my own and have my team build it or I'm going to go with a partner >> Right. >> Say platform nine, what's the trade offs there? Because it seems to me that, that there's a there's a certain area of where it's core competency but I can outsource it or partner with it and, and work with platform nine versus trying to take it all on internally >> Right. >> Of which requires more costs. So there's a, there's a line where you kind of like figure out that customers have to figure out that, that piece >> Right >> What do, what's your view on that? Because I'm hearing that more people are saying, hey I want to, I want to focus my people on solutions. The app side, not so much the ops >> Right. >> What's the trade off? How do you talk about? >> It's a really interesting question because most companies think they have two options. It's either a DIY option and they love that engineers love playing with the new and on the latest. And then they think the other option is going to cloud, public cloud and have it semi managed by them. And you get very different out of those. So in the DIY you get flexibility coz you get to choose your infrastructure but then you've got all the complexities of the DIY piece. You've got to not only choose all your components but you've got to keep them working. Now if you go to public cloud option, you lose flexibility because a lot of those choices are made for you but you gain agility because quite frankly it's really easy to spin up clusters. So what we are, is that in the middle we bring the agility and the flexibility because we bring the control plane that allows you to spin up clusters and and lifecycle manage them very quickly. So the agility's there but you can do it on the infrastructure of your choice. And in the DIY culture, one of the hardest things to do actually is to convince them they don't have to do it themselves. They can focus on higher value activities, which are more focused on delivering outcomes to their customers. >> So you provide the solution that allows them to feel like they're billing it themselves. >> Correct. >> And get these scale and speed and the efficiencies of the op side. So it's kind of the best of both worlds. It's not a full outsource. >> Right, right. >> You're bringing them in to make their jobs easier >> Right, That's right. So they get choices. >> Yeah. >> We, we, they get choices on how they build it and then we run and operate it for them. But they, they have all the observability. The benefit is that if we are managing their operations and most of our customers choose the managed operations piece of it, then they don't. If something goes wrong, we fix that and they, they they get told, oh, by the way, you had a problem. We've dealt with it. But in the other model is they've got to create all that observability themselves and they've got to get ahead of the issues themselves, and then they've got to raise tickets to whoever they need to raise tickets to. Whereas we have things like auto ticket generation and so on where, look, just drive the car let us worry about the engine and all of that. Let us deal with that. And you can choose whatever you want about the engine but let us manage it for you. So >> What do you, what do you say to folks out there that are may have a need for platform nine? What's the signals inside their company that they should be calling you guys up and, and leaning in with platform nine? >> Right. >> Is it more sprawl on on clusters? Is it more errors? Is it more tickets? Is it more hassle? What are some of the signs? If someone's watching this say, hey I have, I have an issue with this. >> I would say, if there's operational inefficiencies you can't get things to market fast enough because you are building this and it's just taking too long you're spending way too much time operationally on the infrastructure, then you are, you are not using your resources where they should best be used. And, and that is delivering services to the customer. >> Ed me Hora on for International Women's Day. And she was talking about how they love to solve complex problems on the engineering team at Platform nine. It's going to get pretty complex with the edge emerging >> Indeed >> and cloud native on-premises distributed computing. >> Indeed. >> essentially is what it is. That's kind of the core DNA of the team. >> Yeah. >> What, how does that translate to the customers? Because IT seems to be, okay, I have virtual machines were great, now I got to scale up and and convert over a transform to containers, Kubernetes >> Right. >> And then large scale app, app applications. >> Right, so when it comes to Edge it gets complex pretty fast because it's highly distributed. So how do you have standardization and governance across all the different edge locations? So what we bring into play is an ability to, um, at each edge, location eh, provision from bare metal up all the way up to the application. So let's say you have thousands of stores and you want to modernize those stores, you know rather than having a server being sent somewhere to have an image loaded up and then sent that and then you've got to send a technical guide to the store and you've got to implement it all there. Forget all that. That's just, that's just a ridiculous waste of time. So what we've done is we've created the ability where the server can just be sent to the store. You can get your barista or your chef just to plug it in, right? You don't need to send any technical person over there. As long as we have access to it, we get access to it and we provision the whole thing from bare metal up and then we can maintain it according to the standards that are needed and upgrade accordingly. And that gives standardization across all your stores or edge locations or 5G towers or whatever it is, distribution centers. And we can create nice governance and good standardization which allows them to innovate fast as well. >> So this is a real opportunity for you guys. >> Yeah. >> This is an advantage from your expertise. >> Yes. >> The edge piece, dropping in a box, self-provisioning. >> That's right. So yeah. >> Can people do that? What's the, >> No, actually it, it's, it's very difficult to do. I I, from my understanding, we're the only people that can provision it from bare metal up, right? So if anyone has a different story, I'd love to hear about that. But that's my understanding today. >> That's a good value purpose. So talk about the value of the customer. What kind of scope do you got? Can you scope some of the customer environments you have from >> Sure. >> From, you know, small to the large, how give us an idea of the order of magnitude of the >> Yeah, so, so small customers may have 20 clusters or something like that. 20 nodes, I beg your pardon. Our large customers, like we're we are scaling one particular distributed environment from 2200 nodes to 10,000 nodes by the end of this year and 26,000 nodes next year. We have another customer that's scaling up to 10,000 nodes this year as well. So we have some very large scale, but some smaller ones too. And we're, we're happy to work with either end. >> Okay, so pretend I'm a customer. I'm really, I got pain and Kubernetes like I want to, I can't hire enough people. I want to have my all focus. What's the pitch? >> Okay. So skill shortage is something that that everyone is facing right now. And if, if you've got skill shortage it's going to be really hard to hire if you are competing against really, you know, high salary you know, offering companies that are out there. So the pitch is, let us do it for you. We have, we have a team of excellent probably the best Kubernetes engineers on the planet. We will create your environment for you. We will get it up and running. We will allow you to, you know, run your applica, just consume the platform, we'll run it for you. We'll have SLAs and up times guaranteed and you can just focus on delivering the software and the value needed to your customers. >> What are some of the testimonials that you get from people? Just anecdotally, what do they say? Oh my god, you guys save. >> Yeah. >> Our butts. >> Yeah. >> This is amazing. We just shipped our code out much faster. >> Yeah. >> What are some of the things that you hear? >> So, so the number one thing I hear is it just works right? It's, we don't have to worry about it, it just works. So that, that's a really great feedback that we get. The other thing I hear is if we do have issues that your team are amazing, they they fix things, they're proactive, you know, they're we really enjoy working with you. So from, from that perspective, that's great. But the other side of it is we hear things like if we were to do that ourselves we would've taken six to 12 months to build that. And you guys have just saved us six to 12 months. The other thing that we hear is with the same two engineers we started on, you know, a hundred nodes we're now running thousands of nodes. We have not had to increase the size of the team and expand and scale exponentially. >> Awesome. What's next for you guys? What's on your, your plate? >> Yeah. >> With CRO, what's some of the goals you have? >> Yeah, so growth of course as a CRO, you don't get away from that. We've got some very exciting, actually, initiatives coming up. One of the things that we are seeing a lot of demand for and is, is in the area of virtualization bringing virtual machine, virtual virtual containers, sorry I'm saying that all wrong. Bringing virtual machine, the virtual machines onto the cloud native infrastructure using Kubernetes technology. So that provides a, an excellent stepping stone for those guys who are in the virtualization world. And they can't move to containers, they can't refactor their applications and workloads fast enough. So just bring your virtual machine and put it onto the container infrastructure. So we're seeing a lot of demand for that, because it provides an excellent stepping stone. Why not use Kubernetes to orchestrate virtual the virtual world? And then we've got some really interesting cost optimization. >> So a lot of migration kind of thinking around VMs and >> Oh, tremendous. The, the VM world is just massively bigger than the container world right now. So you can't ignore that. So we are providing basically the evolution, the the journey for the customers to utilize the greatest of technologies without having to do that in a, in a in a way that just breaks the bank and they can't get there fast enough. So we provide those stepping stones for them. Yeah. >> Amelia thank you for coming on. Sharing. >> Thank you. >> The update on platform nine. Congratulations on your big accounts you have and >> thank you. >> And the world could get more complex, which Means >> indeed >> have more customers. >> Thank you, thank you John. Appreciate that. Thank you. >> I'm John Furry. You're watching Platform nine and the Cube Conversations here. Thanks for watching. (gentle music)
SUMMARY :
and the journey this Great pleasure to be here. mainly in charge of serving the customers, And this market must and we are seeing a lot and where you guys have come from, I got the Kubernetes of build out right now in the marketplace. What are you seeing? that the infrastructure is not It's interesting, the AI Working on, you know, that you guys are solving? aspects of the DevOps scale. Okay, so the bullseye is into the system to predict of the technical issues out that customers have to The app side, not so much the ops So in the DIY you get flexibility So you provide the solution of the best of both worlds. So they get choices. get ahead of the issues are some of the signs? on the infrastructure, complex problems on the engineering team and cloud native on-premises is. That's kind of the core And then large scale So let's say you have thousands of stores opportunity for you guys. from your expertise. in a box, self-provisioning. So yeah. different story, I'd love to So talk about the value of the customer. by the end of this year What's the pitch? and the value needed to your customers. What are some of the testimonials This is amazing. of the team and expand What's next for you guys? and is, is in the area of virtualization So you can't ignore Amelia thank you for coming on. big accounts you have and Thank you. and the Cube Conversations here.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amelia | PERSON | 0.99+ |
Amelia Bell | PERSON | 0.99+ |
John | PERSON | 0.99+ |
six | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
yesterday | DATE | 0.99+ |
Emilia A'Bell | PERSON | 0.99+ |
John Furry | PERSON | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Peter Frey | PERSON | 0.99+ |
12 months | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
two engineers | QUANTITY | 0.99+ |
two options | QUANTITY | 0.99+ |
20 clusters | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
two schools | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
this year | DATE | 0.98+ |
today | DATE | 0.98+ |
20 nodes | QUANTITY | 0.97+ |
each edge | QUANTITY | 0.96+ |
Kubernetes | ORGANIZATION | 0.96+ |
thousands of stores | QUANTITY | 0.93+ |
end of this year | DATE | 0.93+ |
2200 nodes | QUANTITY | 0.93+ |
Cube | ORGANIZATION | 0.93+ |
10,000 nodes | QUANTITY | 0.93+ |
Kubernetes | TITLE | 0.92+ |
both worlds | QUANTITY | 0.91+ |
up to 10,000 nodes | QUANTITY | 0.88+ |
thousands of nodes | QUANTITY | 0.87+ |
Edge | TITLE | 0.84+ |
26,000 nodes | QUANTITY | 0.81+ |
Ed me Hora | PERSON | 0.8+ |
Platform nine | TITLE | 0.75+ |
hundred nodes | QUANTITY | 0.69+ |
DevSecOps | TITLE | 0.68+ |
Platform nine | ORGANIZATION | 0.68+ |
one thing | QUANTITY | 0.62+ |
wave | EVENT | 0.57+ |
Chief Revenue Officer | PERSON | 0.57+ |
nine | QUANTITY | 0.56+ |
CRO | PERSON | 0.54+ |
three | QUANTITY | 0.53+ |
nine | OTHER | 0.52+ |
DevOps | TITLE | 0.5+ |
next | EVENT | 0.49+ |
platform nine | OTHER | 0.49+ |
Cube | TITLE | 0.39+ |
Dominique Bastos, Persistent Systems | International Women's Day 2023
(gentle upbeat music) >> Hello, everyone, welcome to theCUBE's coverage of International Women's Day. I'm John Furrier host here in Palo Alto, California. theCUBE's second year covering International Women's Day. It's been a great celebration of all the smart leaders in the world who are making a difference from all kinds of backgrounds, from technology to business and everything in between. Today we've got a great guest, Dominique Bastos, who's the senior Vice President of Cloud at Persistent Systems, formerly with AWS. That's where we first met at re:Invent. Dominique, great to have you on the program here for International Women's Day. Thanks for coming on. >> Thank you John, for having me back on theCUBE. This is an honor, especially given the theme. >> Well, I'm excited to have you on, I consider you one of those typecast personas where you've kind of done a lot of things. You're powerful, you've got great business acumen you're technical, and we're in a world where, you know the world's coming completely digital and 50% of the world is women, 51%, some say. So you got mostly male dominated industry and you have a dual engineering background and that's super impressive as well. Again, technical world, male dominated you're in there in the mix. What inspires you to get these engineering degrees? >> I think even it was more so shifted towards males. When I had the inspiration to go to engineering school I was accused as a young girl of being a tomboy and fiddling around with all my brother's toys versus focusing on my dolls and other kind of stereotypical toys that you would give a girl. I really had a curiosity for building, a curiosity for just breaking things apart and putting them back together. I was very lucky in that my I guess you call it primary school, maybe middle school, had a program for, it was like electronics, that was the class electronics. So building circuit boards and things like that. And I really enjoyed that aspect of building. I think it was more actually going into engineering school. Picking that as a discipline was a little bit, my mom's reaction to when I announced that I wanted to do engineering which was, "No, that's for boys." >> Really. >> And that really, you know, I think she, it came from a good place in trying to protect me from what she has experienced herself in terms of how women are received in those spaces. So I kind of shrugged it off and thought "Okay, well I'm definitely now going to do this." >> (laughs) If I was told not to, you're going to do it. >> I was told not to, that's all I needed to hear. And also, I think my passion was to design cars and I figured if I enroll in an industrial engineering program I could focus on ergonomic design and ultimately, you know have a career doing something that I'm passionate about. So yeah, so my inspiration was kind of a little bit of don't do this, a lot of curiosity. I'm also a very analytical person. I've been, and I don't know what the science is around left right brain to be honest, but been told that I'm a very much a logical person versus a feeler. So I don't know if that's good or bad. >> Straight shooter. What were your engineering degrees if you don't mind sharing? >> So I did industrial engineering and so I did a dual degree, industrial engineering and robotics. At the time it was like a manufacturing robotics program. It was very, very cool because we got to, I mean now looking back, the evolution of robotics is just insane. But you, you know, programmed a robotic arm to pick things up. I actually crashed the Civil Engineering School's Concrete Canoe Building Competition where you literally have to design a concrete canoe and do all the load testing and the strength testing of the materials and basically then, you know you go against other universities to race the canoe in a body of water. We did that at, in Alabama and in Georgia. So I was lucky to experience that two times. It was a lot of fun. >> But you knew, so you knew, deep down, you were technical you had a nerd vibe you were geeking out on math, tech, robotics. What happened next? I mean, what were some of the challenges you faced? How did you progress forward? Did you have any blockers and roadblocks in front of you and how did you handle those? >> Yeah, I mean I had, I had a very eye-opening experience with, in my freshman year of engineering school. I kind of went in gung-ho with zero hesitation, all the confidence in the world, 'cause I was always a very big nerd academically, I hate admitting this but myself and somebody else got most intellectual, voted by the students in high school. It's like, you don't want to be voted most intellectual when you're in high school. >> Now it's a big deal. (laughs) >> Yeah, you want to be voted like popular or anything like that? No, I was a nerd, but in engineering school, it's a, it was very humbling. That whole confidence that I had. I experienced prof, ooh, I don't want to name the school. Everybody can google it though, but, so anyway so I had experience with some professors that actually looked at me and said, "You're in the wrong program. This is difficult." I, and I think I've shared this before in other forums where, you know, my thermodynamic teacher basically told me "Cheerleading's down the hall," and it it was a very shocking thing to hear because it really made me wonder like, what am I up against here? Is this what it's going to be like going forward? And I decided not to pay attention to that. I think at the moment when you hear something like that you just, you absorb it and you also don't know how to react. And I decided immediately to just walk right past him and sit down front center in the class. In my head I was cursing him, of course, 'cause I mean, let's be real. And I was like, I'm going to show this bleep bleep. And proceeded to basically set the curve class crushed it and was back to be the teacher's assistant. So I think that was one. >> But you became his teacher assistant after, or another one? >> Yeah, I gave him a mini speech. I said, do not do this. You, you could, you could have broken me and if you would've done this to somebody who wasn't as steadfast in her goals or whatever, I was really focused like I'm doing this, I would've backed out potentially and said, you know this isn't something I want to experience on the daily. So I think that was actually a good experience because it gave me an opportunity to understand what I was up against but also double down in how I was going to deal with it. >> Nice to slay the misogynistic teachers who typecast people. Now you had a very technical career but also you had a great career at AWS on the business side you've handled 'em all of the big accounts, I won't say the names, but like we're talking about monster accounts, sales and now basically it's not really selling, you're managing a big account, it's like a big business. It's a business development thing. Technical to business transition, how do you handle that? Was that something you were natural for? Obviously you, you stared down the naysayers out of the gate in college and then in business, did that continue and how did you drive through that? >> So I think even when I was coming out of university I knew that I wanted to have a balance between the engineering program and business. A lot of my colleagues went on to do their PEs so continue to get their masters basically in engineering or their PhDs in engineering. I didn't really have an interest for that. I did international business and finance as my MBA because I wanted to explore the ability of taking what I had learned in engineering school and applying it to building businesses. I mean, at the time I didn't have it in my head that I would want to do startups but I definitely knew that I wanted to get a feel for what are they learning in business school that I missed out in engineering school. So I think that helped me when I transitioned, well when I applied, I was asked to come apply at AWS and I kind of went, no I'm going to, the DNA is going to be rejected. >> You thought, you thought you'd be rejected from AWS. >> I thought I'd be, yeah, because I have very much a startup founder kind of disruptive personality. And to me, when I first saw AWS at the stage early 2016 I saw it as a corporation. Even though from a techie standpoint, I was like, these people are insane. This is amazing what they're building. But I didn't know what the cultural vibe would feel like. I had been with GE at the beginning of my career for almost three years. So I kind of equated AWS Amazon to GE given the size because in between, I had done startups. So when I went to AWS I think initially, and I do have to kind of shout out, you know Todd Weatherby basically was the worldwide leader for ProServe and it was being built, he built it and I went into ProServe to help from that standpoint. >> John: ProServe, Professional services >> Professional services, right. To help these big enterprise customers. And specifically my first customer was an amazing experience in taking, basically the company revolves around strategic selling, right? It's not like you take a salesperson with a conventional schooling that salespeople would have and plug them into AWS in 2016. It was very much a consultative strategic approach. And for me, having a technical background and loving to solve problems for customers, working with the team, I would say, it was a dream team that I joined. And also the ability to come to the table with a technical background, knowing how to interact with senior executives to help them envision where they want to go, and then to bring a team along with you to make that happen. I mean, that was like magical for me. I loved that experience. >> So you like the culture, I mean, Andy Jassy, I've interviewed many times, always talked about builders and been a builder mentality. You mentioned that earlier at the top of this interview you've always building things, curious and you mentioned potentially your confidence might have been shaken. So you, you had the confidence. So being a builder, you know, being curious and having confidence seems to be what your superpower is. A lot of people talk about the confidence angle. How important is that and how important is that for encouraging more women to get into tech? Because I still hear that all the time. Not that they don't have confidence, but there's so many signals that potentially could shake confidence in industry >> Yeah, that's actually a really good point that you're making. A lot of signals that women get could shake their confidence and that needs to be, I mean, it's easy to say that it should be innate. I mean that's kind of like textbook, "Oh it has to come from within." Of course it does. But also, you know, we need to understand that in a population where 50% of the population is women but only 7% of the positions in tech, and I don't know the most current number in tech leadership, is women, and probably a smaller percentage in the C-suite. When you're looking at a woman who's wanting to go up the trajectory in a tech company and then there's a subconscious understanding that there's a limit to how far you'll go, your confidence, you know, in even subconsciously gets shaken a little bit because despite your best efforts, you're already seeing the cap. I would say that we need to coach girls to speak confidently to navigate conflict versus running away from it, to own your own success and be secure in what you bring to the table. And then I think a very important thing is to celebrate each other and the wins that we see for women in tech, in the industry. >> That's awesome. What's, the, in your opinion, the, you look at that, the challenges for this next generation women, and women in general, what are some of the challenges for them and that they need to overcome today? I mean, obviously the world's changed for the better. Still not there. I mean the numbers one in four women, Rachel Thornton came on, former CMO of AWS, she's at MessageBird now. They had a study where only one in four women go to the executive board level. And so there's still, still numbers are bad and then the numbers still got to get up, up big time. That's, and the industry's working on that, but it's changed. But today, what are some of the challenges for this current generation and the next generation of women and how can we and the industry meet, we being us, women in the industry, be strong role models for them? >> Well, I think the challenge is one of how many women are there in the pipeline and what are we doing to retain them and how are we offering up the opportunities to fill. As you know, as Rachel said and I haven't had an opportunity to see her, in how are we giving them this opportunity to take up those seats in the C-suite right, in these leadership roles. And I think this is a little bit exacerbated with the pandemic in that, you know when everything shut down when people were going back to deal with family and work at the same time, for better or for worse the brunt of it fell on probably, you know the maternal type caregiver within the family unit. You know, I've been, I raised my daughter alone and for me, even without the pandemic it was a struggle constantly to balance the risk that I was willing to take to show up for those positions versus investing even more of that time raising a child, right? Nevermind the unconscious bias or cultural kind of expectations that you get from the male counterparts where there's zero understanding of what a mom might go through at home to then show up to a meeting, you know fully fresh and ready to kind of spit out some wisdom. It's like, you know, your kid just freaking lost their whatever and you know, they, so you have to sort a bunch of things out. I think the challenge that women are still facing and will we have to keep working at it is making sure that there's a good pipeline. A good amount of young ladies of people taking interest in tech. And then as they're, you know, going through the funnel at stages in their career, we're providing the mentoring we're, there's representation, right? To what they're aspiring to. We're celebrating their interest in the field, right? And, and I think also we're doing things to retain them, because again, the pandemic affected everybody. I think women specifically and I don't know the statistics but I was reading something about this were the ones to tend to kind of pull it back and say well now I need to be home with, you know you name how many kids and pets and the aging parents, people that got sick to take on that position. In addition to the career aspirations that they might have. We need to make it easier basically. >> I think that's a great call out and I appreciate you bringing that up about family and being a single mom. And by the way, you're savage warrior to doing that. It's amazing. You got to, I know you have a daughter in computer science at Stanford, I want to get to that in a second. But that empathy and I mentioned Rachel Thornton, who's the CMO MessageBird and former CMO of AWS. Her thing right now to your point is mentoring and sponsorship is very key. And her company and the video that's on the site here people should look at that and reference that. They talk a lot about that empathy of people's situation whether it's a single mom, family life, men and women but mainly women because they're the ones who people aren't having a lot of empathy for in that situation, as you called it out. This is huge. And I think remote work has opened up this whole aperture of everyone has to have a view into how people are coming to the table at work. So, you know, props are bringing that up, and I recommend everyone look at check out Rachel Thornton. So how do you balance that, that home life and talk about your daughter's journey because sounds like she's nerding out at Stanford 'cause you know Stanford's called Nerd Nation, that's their motto, so you must be proud. >> I am so proud, I'm so proud. And I will say, I have to admit, because I did encounter so many obstacles and so many hurdles in my journey, it's almost like I forgot that I should set that aside and not worry about my daughter. My hope for her was for her to kind of be artistic and a painter or go into something more lighthearted and fun because I just wanted to think, I guess my mom had the same idea, right? She, always been very driven. She, I want to say that I got very lucky that she picked me to be her mom. Biologically I'm her mom, but I told her she was like a little star that fell from the sky and I, and ended up with me. I think for me, balancing being a single mom and a career where I'm leading and mentoring and making big decisions that affect people's lives as well. You have to take the best of everything you get from each of those roles. And I think that the best way is play to your strengths, right? So having been kind of a nerd and very organized person and all about, you know, systems for effectiveness, I mean, industrial engineering, parenting for me was, I'm going to make it sound super annoying and horrible, but (laughs) >> It's funny, you know, Dave Vellante and I when we started SiliconANGLE and theCUBE years ago, one of the things we were all like sports lovers. So we liked sports and we are like we looked at the people in tech as tech athletes and except there's no men and women teams, it's one team. It's all one thing. So, you know, I consider you a tech athlete you're hard charging strong and professional and smart and beautiful and brilliant, all those good things. >> Thank you. >> Now this game is changing and okay, and you've done startups, and you've done corporate jobs, now you're in a new role. What's the current tech landscape from a, you know I won't say athletic per standpoint but as people who are smart. You have all kinds of different skill sets. You have the startup warriors, you have the folks who like to be in the middle of the corporate world grow up through corporate, climb the corporate ladder. You have investors, you have, you know, creatives. What have you enjoyed most and where do you see all the action? >> I mean, I think what I've enjoyed the most has been being able to bring all of the things that I feel I'm strong at and bring it together to apply that to whatever the problem is at hand, right? So kind of like, you know if you look at a renaissance man who can kind of pop in anywhere and, oh, he's good at, you know sports and he's good at reading and, or she's good at this or, take all of those strengths and somehow bring them together to deal with the issue at hand, versus breaking up your mindset into this is textbook what I learned and this is how business should be done and I'm going to draw these hard lines between personal life and work life, or between how you do selling and how you do engineering. So I think my, the thing that I loved, really loved about AWS was a lot of leaders saw something in me that I potentially didn't see, which was, yeah you might be great at running that big account but we need help over here doing go to market for a new product launch and boom, there you go. Now I'm in a different org helping solve that problem and getting something launched. And I think if you don't box yourself in to I'm only good at this, or, you know put a label on yourself as being the rockstar in that. It leaves room for opportunities to present themselves but also it leaves room within your own mind to see yourself as somebody capable of doing anything. Right, I don't know if I answered the question accurately. >> No, that's good, no, that's awesome. I love the sharing, Yeah, great, great share there. Question is, what do you see, what do you currently during now you're building a business of Persistent for the cloud, obviously AWS and Persistent's a leader global system integrator around the world, thousands and thousands of customers from what we know and been reporting on theCUBE, what's next for you? Where do you see yourself going? Obviously you're going to knock this out of the park. Where do you see yourself as you kind of look at the continuing journey of your mission, personal, professional what's on your mind? Where do you see yourself going next? >> Well, I think, you know, again, going back to not boxing yourself in. This role is an amazing one where I have an opportunity to take all the pieces of my career in tech and apply them to building a business within a business. And that involves all the goodness of coaching and mentoring and strategizing. And I'm loving it. I'm loving the opportunity to work with such great leaders. Persistent itself is very, very good at providing opportunities, very diverse opportunities. We just had a huge Semicolon; Hackathon. Some of the winners were females. The turnout was amazing in the CTO's office. We have very strong women leading the charge for innovation. I think to answer your question about the future and where I may see myself going next, I think now that my job, well they say the job is never done. But now that Chloe's kind of settled into Stanford and kind of doing her own thing, I have always had a passion to continue leading in a way that brings me to, into the fold a lot more. So maybe, you know, maybe in a VC firm partner mode or another, you know CEO role in a startup, or my own startup. I mean, I never, I don't know right now I'm super happy but you never know, you know where your drive might go. And I also want to be able to very deliberately be in a role where I can continue to mentor and support up and coming women in tech. >> Well, you got the smarts but you got really the building mentality, the curiosity and the confidence really sets you up nicely. Dominique great story, great inspiration. You're a role model for many women, young girls out there and women in tech and in celebration. It's a great day and thank you for sharing that story and all the good nuggets there. Appreciate you coming on theCUBE, and it's been my pleasure. Thanks for coming on. >> Thank you, John. Thank you so much for having me. >> Okay, theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE here in Palo Alto getting all the content, check out the other interviews some amazing stories, lessons learned, and some, you know some funny stories and some serious stories. So have some fun and enjoy the rest of the videos here for International Women's Days, thanks for watching. (gentle inspirational music)
SUMMARY :
Dominique, great to have you on Thank you John, for and 50% of the world is I guess you call it primary And that really, you know, (laughs) If I was told not design and ultimately, you know if you don't mind sharing? and do all the load testing the challenges you faced? I kind of went in gung-ho Now it's a big deal. and you also don't know how to react. and if you would've done this to somebody Was that something you were natural for? and applying it to building businesses. You thought, you thought and I do have to kind And also the ability to come to the table Because I still hear that all the time. and that needs to be, I mean, That's, and the industry's to be home with, you know and I appreciate you bringing that up and all about, you know, It's funny, you know, and where do you see all the action? And I think if you don't box yourself in I love the sharing, Yeah, I think to answer your and all the good nuggets there. Thank you so much for having me. learned, and some, you know
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Rachel Thornton | PERSON | 0.99+ |
Rachel | PERSON | 0.99+ |
Todd Weatherby | PERSON | 0.99+ |
Georgia | LOCATION | 0.99+ |
GE | ORGANIZATION | 0.99+ |
Dominique Bastos | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Alabama | LOCATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
Dominique | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
50% | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
Chloe | PERSON | 0.99+ |
two times | QUANTITY | 0.99+ |
International Women's Days | EVENT | 0.99+ |
International Women's Day | EVENT | 0.99+ |
51% | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Persistent | ORGANIZATION | 0.99+ |
ProServe | ORGANIZATION | 0.99+ |
Stanford | ORGANIZATION | 0.99+ |
Persistent Systems | ORGANIZATION | 0.99+ |
MessageBird | ORGANIZATION | 0.99+ |
second year | QUANTITY | 0.99+ |
7% | QUANTITY | 0.99+ |
early 2016 | DATE | 0.98+ |
one team | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
single | QUANTITY | 0.98+ |
Civil Engineering School | ORGANIZATION | 0.98+ |
four women | QUANTITY | 0.98+ |
today | DATE | 0.97+ |
Today | DATE | 0.97+ |
each | QUANTITY | 0.97+ |
pandemic | EVENT | 0.97+ |
first customer | QUANTITY | 0.97+ |
International Women's Day 2023 | EVENT | 0.95+ |
single mom | QUANTITY | 0.95+ |
Amazon | ORGANIZATION | 0.94+ |
Cloud | ORGANIZATION | 0.88+ |
one thing | QUANTITY | 0.87+ |
almost three years | QUANTITY | 0.87+ |
zero understanding | QUANTITY | 0.86+ |
Concrete Canoe Building Competition | EVENT | 0.86+ |
Nerd Nation | ORGANIZATION | 0.84+ |
zero | QUANTITY | 0.84+ |
second | QUANTITY | 0.8+ |
CTO | ORGANIZATION | 0.76+ |
SiliconANGLE | ORGANIZATION | 0.74+ |
Madhura Maskasky, Platform9 | International Women's Day
(bright upbeat music) >> Hello and welcome to theCUBE's coverage of International Women's Day. I'm your host, John Furrier here in Palo Alto, California Studio and remoting is a great guest CUBE alumni, co-founder, technical co-founder and she's also the VP of Product at Platform9 Systems. It's a company pioneering Kubernetes infrastructure, been doing it for a long, long time. Madhura Maskasky, thanks for coming on theCUBE. Appreciate you. Thanks for coming on. >> Thank you for having me. Always exciting. >> So I always... I love interviewing you for many reasons. One, you're super smart, but also you're a co-founder, a technical co-founder, so entrepreneur, VP of product. It's hard to do startups. (John laughs) Okay, so everyone who started a company knows how hard it is. It really is and the rewarding too when you're successful. So I want to get your thoughts on what's it like being an entrepreneur, women in tech, some things you've done along the way. Let's get started. How did you get into your career in tech and what made you want to start a company? >> Yeah, so , you know, I got into tech long, long before I decided to start a company. And back when I got in tech it was very clear to me as a direction for my career that I'm never going to start a business. I was very explicit about that because my father was an entrepreneur and I'd seen how rough the journey can be. And then my brother was also and is an entrepreneur. And I think with both of them I'd seen the ups and downs and I had decided to myself and shared with my family that I really want a very well-structured sort of job at a large company type of path for my career. I think the tech path, tech was interesting to me, not because I was interested in programming, et cetera at that time, to be honest. When I picked computer science as a major for myself, it was because most of what you would consider, I guess most of the cool students were picking that as a major, let's just say that. And it sounded very interesting and cool. A lot of people were doing it and that was sort of the top, top choice for people and I decided to follow along. But I did discover after I picked computer science as my major, I remember when I started learning C++ the first time when I got exposure to it, it was just like a light bulb clicking in my head. I just absolutely loved the language, the lower level nature, the power of it, and what you can do with it, the algorithms. So I think it ended up being a really good fit for me. >> Yeah, so it clicked for you. You tried it, it was all the cool kids were doing it. I mean, I can relate, I did the same thing. Next big thing is computer science, you got to be in there, got to be smart. And then you get hooked on it. >> Yeah, exactly. >> What was the next level? Did you find any blockers in your way? Obviously male dominated, it must have been a lot of... How many females were in your class? What was the ratio at that time? >> Yeah, so the ratio was was pretty, pretty, I would say bleak when it comes to women to men. I think computer science at that time was still probably better compared to some of the other majors like mechanical engineering where I remember I had one friend, she was the single girl in an entire class of about at least 120, 130 students or so. So ratio was better for us. I think there were maybe 20, 25 girls in our class. It was a large class and maybe the number of men were maybe three X or four X number of women. So relatively better. Yeah. >> How about the job when you got into the structured big company? How did that go? >> Yeah, so, you know, I think that was a pretty smooth path I would say after, you know, you graduated from undergrad to grad school and then when I got into Oracle first and VMware, I think both companies had the ratios were still, you know, pretty off. And I think they still are to a very large extent in this industry, but I think this industry in my experience does a fantastic job of, you know, bringing everybody and kind of embracing them and treating them at the same level. That was definitely my experience. And so that makes it very easy for self-confidence, for setting up a path for yourself to thrive. So that was it. >> Okay, so you got an undergraduate degree, okay, in computer science and a master's from Stanford in databases and distributed systems. >> That's right. >> So two degrees. Was that part of your pathway or you just decided, "I want to go right into school?" Did it go right after each other? How did that work out? >> Yeah, so when I went into school, undergrad there was no special major and I didn't quite know if I liked a particular subject or set of subjects or not. Even through grad school, first year it wasn't clear to me, but I think in second year I did start realizing that in general I was a fan of backend systems. I was never a front-end person. The backend distributed systems really were of interest to me because there's a lot of complex problems to solve, and especially databases and large scale distributed systems design in the context of database systems, you know, really started becoming a topic of interest for me. And I think luckily enough at Stanford there were just fantastic professors like Mendel Rosenblum who offered operating system class there, then started VMware and later on I was able to join the company and I took his class while at school and it was one of the most fantastic classes I've ever taken. So they really had and probably I think still do a fantastic curriculum when it comes to distributor systems. And I think that probably helped stoke that interest. >> How do you talk to the younger girls out there in elementary school and through? What's the advice as they start to get into computer science, which is changing and still evolving? There's backend, there's front-end, there's AI, there's data science, there's no code, low code, there's cloud. What's your advice when they say what's the playbook? >> Yeah, so I think two things I always say, and I share this with anybody who's looking to get into computer science or engineering for that matter, right? I think one is that it's, you know, it's important to not worry about what that end specialization's going to be, whether it's AI or databases or backend or front-end. It does naturally evolve and you lend yourself to a path where you will understand, you know, which systems, which aspect you like better. But it's very critical to start with getting the fundamentals well, right? Meaning all of the key coursework around algorithm, systems design, architecture, networking, operating system. I think it is just so crucial to understand those well, even though at times you make question is this ever going to be relevant and useful to me later on in my career? It really does end up helping in ways beyond, you know, you can describe. It makes you a much better engineer. So I think that is the most important aspect of, you know, I would think any engineering stream, but definitely true for computer science. Because there's also been a trend more recently, I think, which I'm not a big fan of, of sort of limited scoped learning, which is you decide early on that you're going to be, let's say a front-end engineer, which is fine, you know. Understanding that is great, but if you... I don't think is ideal to let that limit the scope of your learning when you are an undergrad phrase or grad school. Because later on it comes back to sort of bite you in terms of you not being able to completely understand how the systems work. >> It's a systems kind of thinking. You got to have that mindset of, especially now with cloud, you got distributed systems paradigm going to the edge. You got 5G, Mobile World Congress recently happened, you got now all kinds of IOT devices out there, IP of devices at the edge. Distributed computing is only getting more distributed. >> That's right. Yeah, that's exactly right. But the other thing is also happens... That happens in computer science is that the abstraction layers keep raising things up and up and up. Where even if you're operating at a language like Java, which you know, during some of my times of programming there was a period when it was popular, it already abstracts you so far away from the underlying system. So it can become very easier if you're doing, you know, Java script or UI programming that you really have no understanding of what's happening behind the scenes. And I think that can be pretty difficult. >> Yeah. It's easy to lean in and rely too heavily on the abstractions. I want to get your thoughts on blockers. In your career, have you had situations where it's like, "Oh, you're a woman, okay seat at the table, sit on the side." Or maybe people misunderstood your role. How did you deal with that? Did you have any of that? >> Yeah. So, you know, I think... So there's something really kind of personal to me, which I like to share a few times, which I think I believe in pretty strongly. And which is for me, sort of my personal growth began at a very early phase because my dad and he passed away in 2012, but throughout the time when I was growing up, I was his special little girl. And every little thing that I did could be a simple test. You know, not very meaningful but the genuine pride and pleasure that he felt out of me getting great scores in those tests sort of et cetera, and that I could see that in him, and then I wanted to please him. And through him, I think I build that confidence in myself that I am good at things and I can do good. And I think that just set the building blocks for me for the rest of my life, right? So, I believe very strongly that, you know, yes, there are occasions of unfair treatment and et cetera, but for the most part, it comes from within. And if you are able to be a confident person who is kind of leveled and understands and believes in your capabilities, then for the most part, the right things happen around you. So, I believe very strongly in that kind of grounding and in finding a source to get that for yourself. And I think that many women suffer from the biggest challenge, which is not having enough self-confidence. And I've even, you know, with everything that I said, I've myself felt that, experienced that a few times. And then there's a methodical way to get around it. There's processes to, you know, explain to yourself that that's actually not true. That's a fake feeling. So, you know, I think that is the most important aspect for women. >> I love that. Get the confidence. Find the source for the confidence. We've also been hearing about curiosity and building, you mentioned engineering earlier, love that term. Engineering something, like building something. Curiosity, engineering, confidence. This brings me to my next question for you. What do you think the key skills and qualities are needed to succeed in a technical role? And how do you develop to maintain those skills over time? >> Yeah, so I think that it is so critical that you love that technology that you are part of. It is just so important. I mean, I remember as an example, at one point with one of my buddies before we started Platform9, one of my buddies, he's also a fantastic computer scientists from VMware and he loves video games. And so he said, "Hey, why don't we try to, you know, hack up a video game and see if we can take it somewhere?" And so, it sounded cool to me. And then so we started doing things, but you know, something I realized very quickly is that I as a person, I absolutely hate video games. I've never liked them. I don't think that's ever going to change. And so I was miserable. You know, I was trying to understand what's going on, how to build these systems, but I was not enjoying it. So, I'm glad that I decided to not pursue that. So it is just so important that you enjoy whatever aspect of technology that you decide to associate yourself with. I think that takes away 80, 90% of the work. And then I think it's important to inculcate a level of discipline that you are not going to get sort of... You're not going to get jaded or, you know, continue with happy path when doing the same things over and over again, but you're not necessarily challenging yourself, or pushing yourself, or putting yourself in uncomfortable situation. I think a combination of those typically I think works pretty well in any technical career. >> That's a great advice there. I think trying things when you're younger, or even just for play to understand whether you abandon that path is just as important as finding a good path because at least you know that skews the value in favor of the choices. Kind of like math probability. So, great call out there. So I have to ask you the next question, which is, how do you keep up to date given all the changes? You're in the middle of a world where you've seen personal change in the past 10 years from OpenStack to now. Remember those days when I first interviewed you at OpenStack, I think it was 2012 or something like that. Maybe 10 years ago. So much changed. How do you keep up with technologies in your field and resources that you rely on for personal development? >> Yeah, so I think when it comes to, you know, the field and what we are doing for example, I think one of the most important aspect and you know I am product manager and this is something I insist that all the other product managers in our team also do, is that you have to spend 50% of your time talking to prospects, customers, leads, and through those conversations they do a huge favor to you in that they make you aware of the other things that they're keeping an eye on as long as you're doing the right job of asking the right questions and not just, you know, listening in. So I think that to me ends up being one of the biggest sources where you get tidbits of information, new things, et cetera, and then you pursue. To me, that has worked to be a very effective source. And then the second is, you know, reading and keeping up with all of the publications. You guys, you know, create a lot of great material, you interview a lot of people, making sure you are watching those for us you know, and see there's a ton of activities, new projects keeps coming along every few months. So keeping up with that, listening to podcasts around those topics, all of that helps. But I think the first one I think goes in a big way in terms of being aware of what matters to your customers. >> Awesome. Let me ask you a question. What's the most rewarding aspect of your job right now? >> So, I think there are many. So I think I love... I've come to realize that I love, you know, the high that you get out of being an entrepreneur independent of, you know, there's... In terms of success and failure, there's always ups and downs as an entrepreneur, right? But there is this... There's something really alluring about being able to, you know, define, you know, path of your products and in a way that can potentially impact, you know, a number of companies that'll consume your products, employees that work with you. So that is, I think to me, always been the most satisfying path, is what kept me going. I think that is probably first and foremost. And then the projects. You know, there's always new exciting things that we are working on. Even just today, there are certain projects we are working on that I'm super excited about. So I think it's those two things. >> So now we didn't get into how you started. You said you didn't want to do a startup and you got the big company. Your dad, your brother were entrepreneurs. How did you get into it? >> Yeah, so, you know, it was kind of surprising to me as well, but I think I reached a point of VMware after spending about eight years or so where I definitely packed hold and I could have pushed myself by switching to a completely different company or a different organization within VMware. And I was trying all of those paths, interviewed at different companies, et cetera, but nothing felt different enough. And then I think I was very, very fortunate in that my co-founders, Sirish Raghuram, Roopak Parikh, you know, Bich, you've met them, they were kind of all at the same journey in their careers independently at the same time. And so we would all eat lunch together at VMware 'cause we were on the same team and then we just started brainstorming on different ideas during lunchtime. And that's kind of how... And we did that almost for a year. So by the time that the year long period went by, at the end it felt like the most logical, natural next step to leave our job and to, you know, to start off something together. But I think I wouldn't have done that had it not been for my co-founders. >> So you had comfort with the team as you knew each other at VMware, but you were kind of a little early, (laughing) you had a vision. It's kind of playing out now. How do you feel right now as the wave is hitting? Distributed computing, microservices, Kubernetes, I mean, stuff you guys did and were doing. I mean, it didn't play out exactly, but directionally you were right on the line there. How do you feel? >> Yeah. You know, I think that's kind of the challenge and the fun part with the startup journey, right? Which is you can never predict how things are going to go. When we kicked off we thought that OpenStack is going to really take over infrastructure management space and things kind of went differently, but things are going that way now with Kubernetes and distributed infrastructure. And so I think it's been interesting and in every path that you take that does end up not being successful teaches you so much more, right? So I think it's been a very interesting journey. >> Yeah, and I think the cloud, certainly AWS hit that growth right at 2013 through '17, kind of sucked all the oxygen out. But now as it reverts back to this abstraction layer essentially makes things look like private clouds, but they're just essentially DevOps. It's cloud operations, kind of the same thing. >> Yeah, absolutely. And then with the edge things are becoming way more distributed where having a single large cloud provider is becoming even less relevant in that space and having kind of the central SaaS based management model, which is what we pioneered, like you said, we were ahead of the game at that time, is becoming sort of the most obvious choice now. >> Now you look back at your role at Stanford, distributed systems, again, they have world class program there, neural networks, you name it. It's really, really awesome. As well as Cal Berkeley, there was in debates with each other, who's better? But that's a separate interview. Now you got the edge, what are some of the distributed computing challenges right now with now the distributed edge coming online, industrial 5G, data? What do you see as some of the key areas to solve from a problem statement standpoint with edge and as cloud goes on-premises to essentially data center at the edge, apps coming over the top AI enabled. What's your take on that? >> Yeah, so I think... And there's different flavors of edge and the one that we focus on is, you know, what we call thick edge, which is you have this problem of managing thousands of as we call it micro data centers, rather than managing maybe few tens or hundreds of large data centers where the problem just completely shifts on its head, right? And I think it is still an unsolved problem today where whether you are a retailer or a telecommunications vendor, et cetera, managing your footprints of tens of thousands of stores as a retailer is solved in a very archaic way today because the tool set, the traditional management tooling that's designed to manage, let's say your data centers is not quite, you know, it gets retrofitted to manage these environments and it's kind of (indistinct), you know, round hole kind of situation. So I think the top most challenges are being able to manage this large footprint of micro data centers in the most effective way, right? Where you have latency solved, you have the issue of a small footprint of resources at thousands of locations, and how do you fit in your containerized or virtualized or other workloads in the most effective way? To have that solved, you know, you need to have the security aspects around these environments. So there's a number of challenges that kind of go hand-in-hand, like what is the most effective storage which, you know, can still be deployed in that compact environment? And then cost becomes a related point. >> Costs are huge 'cause if you move data, you're going to have cost. If you move compute, it's not as much. If you have an operating system concept, is the data and state or stateless? These are huge problems. This is an operating system, don't you think? >> Yeah, yeah, absolutely. It's a distributed operating system where it's multiple layers, you know, of ways of solving that problem just in the context of data like you said having an intermediate caching layer so that you know, you still do just in time processing at those edge locations and then send some data back and that's where you can incorporate some AI or other technologies, et cetera. So, you know, just data itself is a multi-layer problem there. >> Well, it's great to have you on this program. Advice final question for you, for the folks watching technical degrees, most people are finding out in elementary school, in middle school, a lot more robotics programs, a lot more tech exposure, you know, not just in Silicon Valley, but all around, you're starting to see that. What's your advice for young girls and people who are getting either coming into the workforce re-skilled as they get enter, it's easy to enter now as they stay in and how do they stay in? What's your advice? >> Yeah, so, you know, I think it's the same goal. I have two little daughters and it's the same principle I try to follow with them, which is I want to give them as much exposure as possible without me having any predefined ideas about what you know, they should pursue. But it's I think that exposure that you need to find for yourself one way or the other, because you really never know. Like, you know, my husband landed into computer science through a very, very meandering path, and then he discovered later in his career that it's the absolute calling for him. It's something he's very good at, right? But so... You know, it's... You know, the reason why he thinks he didn't pick that path early is because he didn't quite have that exposure. So it's that exposure to various things, even things you think that you may not be interested in is the most important aspect. And then things just naturally lend themselves. >> Find your calling, superpower, strengths. Know what you don't want to do. (John chuckles) >> Yeah, exactly. >> Great advice. Thank you so much for coming on and contributing to our program for International Women's Day. Great to see you in this context. We'll see you on theCUBE. We'll talk more about Platform9 when we go KubeCon or some other time. But thank you for sharing your personal perspective and experiences for our audience. Thank you. >> Fantastic. Thanks for having me, John. Always great. >> This is theCUBE's coverage of International Women's Day, I'm John Furrier. We're talking to the leaders in the industry, from developers to the boardroom and everything in between and getting the stories out there making an impact. Thanks for watching. (bright upbeat music)
SUMMARY :
and she's also the VP of Thank you for having me. I love interviewing you for many reasons. Yeah, so , you know, And then you get hooked on it. Did you find any blockers in your way? I think there were maybe I would say after, you know, Okay, so you got an pathway or you just decided, systems, you know, How do you talk to the I think one is that it's, you know, you got now all kinds of that you really have no How did you deal with that? And I've even, you know, And how do you develop to a level of discipline that you So I have to ask you the And then the second is, you know, reading Let me ask you a question. that I love, you know, and you got the big company. Yeah, so, you know, I mean, stuff you guys did and were doing. Which is you can never predict kind of the same thing. which is what we pioneered, like you said, Now you look back at your and how do you fit in your Costs are huge 'cause if you move data, just in the context of data like you said a lot more tech exposure, you know, Yeah, so, you know, I Know what you don't want to do. Great to see you in this context. Thanks for having me, John. and getting the stories
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Madhura Maskasky | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
2012 | DATE | 0.99+ |
20 | QUANTITY | 0.99+ |
2013 | DATE | 0.99+ |
Mendel Rosenblum | PERSON | 0.99+ |
Sirish Raghuram | PERSON | 0.99+ |
John | PERSON | 0.99+ |
50% | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
Roopak Parikh | PERSON | 0.99+ |
Platform9 Systems | ORGANIZATION | 0.99+ |
International Women's Day | EVENT | 0.99+ |
Java | TITLE | 0.99+ |
OpenStack | ORGANIZATION | 0.99+ |
Stanford | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
CUBE | ORGANIZATION | 0.99+ |
second year | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
both companies | QUANTITY | 0.99+ |
C++ | TITLE | 0.99+ |
10 years ago | DATE | 0.99+ |
'17 | DATE | 0.99+ |
today | DATE | 0.98+ |
KubeCon | EVENT | 0.98+ |
two little daughters | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
three | QUANTITY | 0.98+ |
25 girls | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
first year | QUANTITY | 0.98+ |
Cal Berkeley | ORGANIZATION | 0.98+ |
Bich | PERSON | 0.98+ |
two things | QUANTITY | 0.98+ |
four | QUANTITY | 0.98+ |
two degrees | QUANTITY | 0.98+ |
single girl | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
second | QUANTITY | 0.98+ |
about eight years | QUANTITY | 0.98+ |
single | QUANTITY | 0.97+ |
Oracle | ORGANIZATION | 0.97+ |
first time | QUANTITY | 0.97+ |
one friend | QUANTITY | 0.96+ |
5G | ORGANIZATION | 0.96+ |
one point | QUANTITY | 0.94+ |
first one | QUANTITY | 0.94+ |
theCUBE | ORGANIZATION | 0.94+ |
tens | QUANTITY | 0.92+ |
a year | QUANTITY | 0.91+ |
tens of thousands of stores | QUANTITY | 0.89+ |
Palo Alto, California Studio | LOCATION | 0.88+ |
Platform9 | ORGANIZATION | 0.88+ |
Kubernetes | ORGANIZATION | 0.86+ |
about at least 120 | QUANTITY | 0.85+ |
Mobile World Congress | EVENT | 0.82+ |
130 students | QUANTITY | 0.82+ |
hundreds of large data centers | QUANTITY | 0.8+ |
80, 90% | QUANTITY | 0.79+ |
VMware | TITLE | 0.73+ |
past 10 years | DATE | 0.72+ |
Teresa Carlson, Flexport | International Women's Day
(upbeat intro music) >> Hello everyone. Welcome to theCUBE's coverage of International Women's Day. I'm your host, John Furrier, here in Palo Alto, California. Got a special remote guest coming in. Teresa Carlson, President and Chief Commercial Officer at Flexport, theCUBE alumni, one of the first, let me go back to 2013, Teresa, former AWS. Great to see you. Thanks for coming on. >> Oh my gosh, almost 10 years. That is unbelievable. It's hard to believe so many years of theCUBE. I love it. >> It's been such a great honor to interview you and follow your career. You've had quite the impressive run, executive level woman in tech. You've done such an amazing job, not only in your career, but also helping other women. So I want to give you props to that before we get started. Thank you. >> Thank you, John. I, it's my, it's been my honor and privilege. >> Let's talk about Flexport. Tell us about your new role there and what it's all about. >> Well, I love it. I'm back working with another Amazonian, Dave Clark, who is our CEO of Flexport, and we are about 3,000 people strong globally in over 90 countries. We actually even have, we're represented in over 160 cities and with local governments and places around the world, which I think is super exciting. We have over 100 network partners and growing, and we are about empowering the global supply chain and trade and doing it in a very disruptive way with the use of platform technology that allows our customers to really have visibility and insight to what's going on. And it's a lot of fun. I'm learning new things, but there's a lot of technology in this as well, so I feel right at home. >> You quite have a knack from mastering growth, technology, and building out companies. So congratulations, and scaling them up too with the systems and processes. So I want to get into that. Let's get into your personal background. Then I want to get into the work you've done and are doing for empowering women in tech. What was your journey about, how did it all start? Like, I know you had a, you know, bumped into it, you went Microsoft, AWS. Take us through your career, how you got into tech, how it all happened. >> Well, I do like to give a shout out, John, to my roots and heritage, which was a speech and language pathologist. So I did start out in healthcare right out of, you know, university. I had an undergraduate and a master's degree. And I do tell everyone now, looking back at my career, I think it was super helpful for me because I learned a lot about human communication, and it has done me very well over the years to really try to understand what environments I'm in and what kind of individuals around the world culturally. So I'm really blessed that I had that opportunity to work in healthcare, and by the way, a shout out to all of our healthcare workers that has helped us get through almost three years of COVID and flu and neurovirus and everything else. So started out there and then kind of almost accidentally got into technology. My first small company I worked for was a company called Keyfile Corporation, which did workflow and document management out of Nashua, New Hampshire. And they were a Microsoft goal partner. And that is actually how I got into big tech world. We ran on exchange, for everybody who knows that term exchange, and we were a large small partner, but large in the world of exchange. And those were the days when you would, the late nineties, you would go and be in the same room with Bill Gates and Steve Ballmer. And I really fell in love with Microsoft back then. I thought to myself, wow, if I could work for a big tech company, I got to hear Bill on stage about saving, he would talk about saving the world. And guess what my next step was? I actually got a job at Microsoft, took a pay cut and a job downgrade. I tell this story all the time. Took like three downgrades in my role. I had been a SVP and went to a manager, and it's one of the best moves I ever made. And I shared that because I really didn't know the world of big tech, and I had to start from the ground up and relearn it. I did that, I just really loved that job. I was at Microsoft from 2000 to 2010, where I eventually ran all of the U.S. federal government business, which was a multi-billion dollar business. And then I had the great privilege of meeting an amazing man, Andy Jassy, who I thought was just unbelievable in his insights and knowledge and openness to understanding new markets. And we talked about government and how government needed the same great technology as every startup. And that led to me going to work for Andy in 2010 and starting up our worldwide public sector business. And I pinch myself some days because we went from two people, no offices, to the time I left we had over 10,000 people, billions in revenue, and 172 countries and had done really amazing work. I think changing the way public sector and government globally really thought about their use of technology and Cloud computing in general. And that kind of has been my career. You know, I was there till 2020, 21 and then did a small stint at Splunk, a small stint back at Microsoft doing a couple projects for Microsoft with CEO, Satya Nadella, who is also an another amazing CEO and leader. And then Dave called me, and I'm at Flexport, so I couldn't be more honored, John. I've just had such an amazing career working with amazing individuals. >> Yeah, I got to say the Amazon One well-documented, certainly by theCUBE and our coverage. We watched you rise and scale that thing. And like I said at a time, this will when we look back as a historic run because of the build out. I mean as a zero to massive billions at a historic time where government was transforming, I would say Microsoft had a good run there with Fed, but it was already established stuff. Federal business was like, you know, blocking and tackling. The Amazon was pure build out. So I have to ask you, what was your big learnings? Because one, you're a Seattle big tech company kind of entrepreneurial in the sense of you got, here's some working capital seed finance and go build that thing, and you're in DC and you're a woman. What did you learn? >> I learned that you really have to have a lot of grit. You, my mom and dad, these are kind of more southern roots words, but stick with itness, you know. you can't give up and no's not in your vocabulary. I found no is just another way to get to yes. That you have to figure out what are all the questions people are going to ask you. I learned to be very patient, and I think one of the things John, for us was our secret sauce was we said to ourselves, if we're going to do something super transformative and truly disruptive, like Cloud computing, which the government really had not utilized, we had to be patient. We had to answer all their questions, and we could not judge in any way what they were thinking because if we couldn't answer all those questions and prove out the capabilities of Cloud computing, we were not going to accomplish our goals. And I do give so much credit to all my colleagues there from everybody like Steve Schmidt who was there, who's still there, who's the CISO, and Charlie Bell and Peter DeSantis and the entire team there that just really helped build that business out. Without them, you know, we would've just, it was a team effort. And I think that's the thing I loved about it was it was not just sales, it was product, it was development, it was data center operations, it was legal, finance. Everybody really worked as a team and we were on board that we had to make a lot of changes in the government relations team. We had to go into Capitol Hill. We had to talk to them about the changes that were required and really get them to understand why Cloud computing could be such a transformative game changer for the way government operates globally. >> Well, I think the whole world and the tech world can appreciate your work and thank you later because you broke down those walls asking those questions. So great stuff. Now I got to say, you're in kind of a similar role at Flexport. Again, transformative supply chain, not new. Computing wasn't new when before Cloud came. Supply chain, not a new concept, is undergoing radical change and transformation. Online, software supply chain, hardware supply chain, supply chain in general, shipping. This is a big part of our economy and how life is working. Similar kind of thing going on, build out, growth, scale. >> It is, it's very much like that, John, I would say, it's, it's kind of a, the model with freight forwarding and supply chain is fairly, it's not as, there's a lot of technology utilized in this global supply chain world, but it's not integrated. You don't have a common operating picture of what you're doing in your global supply chain. You don't have easy access to the information and visibility. And that's really, you know, I was at a conference last week in LA, and it was, the themes were so similar about transparency, access to data and information, being able to act quickly, drive change, know what was happening. I was like, wow, this sounds familiar. Data, AI, machine learning, visibility, common operating picture. So it is very much the same kind of themes that you heard even with government. I do believe it's an industry that is going through transformation and Flexport has been a group that's come in and said, look, we have this amazing idea, number one to give access to everyone. We want every small business to every large business to every government around the world to be able to trade their goods, think about supply chain logistics in a very different way with information they need and want at their fingertips. So that's kind of thing one, but to apply that technology in a way that's very usable across all systems from an integration perspective. So it's kind of exciting. I used to tell this story years ago, John, and I don't think Michael Dell would mind that I tell this story. One of our first customers when I was at Keyfile Corporation was we did workflow and document management, and Dell was one of our customers. And I remember going out to visit them, and they had runners and they would run around, you know, they would run around the floor and do their orders, right, to get all those computers out the door. And when I think of global trade, in my mind I still see runners, you know, running around and I think that's moved to a very digital, right, world that all this stuff, you don't need people doing this. You have machines doing this now, and you have access to the information, and you know, we still have issues resulting from COVID where we have either an under-abundance or an over-abundance of our supply chain. We still have clogs in our shipping, in the shipping yards around the world. So we, and the ports, so we need to also, we still have some clearing to do. And that's the reason technology is important and will continue to be very important in this world of global trade. >> Yeah, great, great impact for change. I got to ask you about Flexport's inclusion, diversity, and equity programs. What do you got going on there? That's been a big conversation in the industry around keeping a focus on not making one way more than the other, but clearly every company, if they don't have a strong program, will be at a disadvantage. That's well reported by McKinsey and other top consultants, diverse workforces, inclusive, equitable, all perform better. What's Flexport's strategy and how are you guys supporting that in the workplace? >> Well, let me just start by saying really at the core of who I am, since the day I've started understanding that as an individual and a female leader, that I could have an impact. That the words I used, the actions I took, the information that I pulled together and had knowledge of could be meaningful. And I think each and every one of us is responsible to do what we can to make our workplace and the world a more diverse and inclusive place to live and work. And I've always enjoyed kind of the thought that, that I could help empower women around the world in the tech industry. Now I'm hoping to do my little part, John, in that in the supply chain and global trade business. And I would tell you at Flexport we have some amazing women. I'm so excited to get to know all. I've not been there that long yet, but I'm getting to know we have some, we have a very diverse leadership team between men and women at Dave's level. I have some unbelievable women on my team directly that I'm getting to know more, and I'm so impressed with what they're doing. And this is a very, you know, while this industry is different than the world I live in day to day, it's also has a lot of common themes to it. So, you know, for us, we're trying to approach every day by saying, let's make sure both our interviewing cycles, the jobs we feel, how we recruit people, how we put people out there on the platforms, that we have diversity and inclusion and all of that every day. And I can tell you from the top, from Dave and all of our leaders, we just had an offsite and we had a big conversation about this is something. It's a drum beat that we have to think about and live by every day and really check ourselves on a regular basis. But I do think there's so much more room for women in the world to do great things. And one of the, one of the areas, as you know very well, we lost a lot of women during COVID, who just left the workforce again. So we kind of went back unfortunately. So we have to now move forward and make sure that we are giving women the opportunity to have great jobs, have the flexibility they need as they build a family, and have a workplace environment that is trusted for them to come into every day. >> There's now clear visibility, at least in today's world, not withstanding some of the setbacks from COVID, that a young girl can look out in a company and see a path from entry level to the boardroom. That's a big change. A lot than even going back 10, 15, 20 years ago. What's your advice to the folks out there that are paying it forward? You see a lot of executive leaderships have a seat at the table. The board still underrepresented by most numbers, but at least you have now kind of this solidarity at the top, but a lot of people doing a lot more now than I've seen at the next levels down. So now you have this leveled approach. Is that something that you're seeing more of? And credit compare and contrast that to 20 years ago when you were, you know, rising through the ranks? What's different? >> Well, one of the main things, and I honestly do not think about it too much, but there were really no women. There were none. When I showed up in the meetings, I literally, it was me or not me at the table, but at the seat behind the table. The women just weren't in the room, and there were so many more barriers that we had to push through, and that has changed a lot. I mean globally that has changed a lot in the U.S. You know, if you look at just our U.S. House of Representatives and our U.S. Senate, we now have the increasing number of women. Even at leadership levels, you're seeing that change. You have a lot more women on boards than we ever thought we would ever represent. While we are not there, more female CEOs that I get an opportunity to see and talk to. Women starting companies, they do not see the barriers. And I will share, John, globally in the U.S. one of the things that I still see that we have that many other countries don't have, which I'm very proud of, women in the U.S. have a spirit about them that they just don't see the barriers in the same way. They believe that they can accomplish anything. I have two sons, I don't have daughters. I have nieces, and I'm hoping someday to have granddaughters. But I know that a lot of my friends who have granddaughters today talk about the boldness, the fortitude, that they believe that there's nothing they can't accomplish. And I think that's what what we have to instill in every little girl out there, that they can accomplish anything they want to. The world is theirs, and we need to not just do that in the U.S., but around the world. And it was always the thing that struck me when I did all my travels at AWS and now with Flexport, I'm traveling again quite a bit, is just the differences you see in the cultures around the world. And I remember even in the Middle East, how I started seeing it change. You've heard me talk a lot on this program about the fact in both Saudi and Bahrain, over 60% of the tech workers were females and most of them held the the hardest jobs, the security, the architecture, the engineering. But many of them did not hold leadership roles. And that is what we've got to change too. To your point, the middle, we want it to get bigger, but the top, we need to get bigger. We need to make sure women globally have opportunities to hold the most precious leadership roles and demonstrate their capabilities at the very top. But that's changed. And I would say the biggest difference is when we show up, we're actually evaluated properly for those kind of roles. We have a ways to go. But again, that part is really changing. >> Can you share, Teresa, first of all, that's great work you've done and I wan to give you props of that as well and all the work you do. I know you champion a lot of, you know, causes in in this area. One question that comes up a lot, I would love to get your opinion 'cause I think you can contribute heavily here is mentoring and sponsorship is huge, comes up all the time. What advice would you share to folks out there who were, I won't say apprehensive, but maybe nervous about how to do the networking and sponsorship and mentoring? It's not just mentoring, it's sponsorship too. What's your best practice? What advice would you give for the best way to handle that? >> Well yeah, and for the women out there, I would say on the mentorship side, I still see mentorship. Like, I don't think you can ever stop having mentorship. And I like to look at my mentors in different parts of my life because if you want to be a well-rounded person, you may have parts of your life every day that you think I'm doing a great job here and I definitely would like to do better there. Whether it's your spiritual life, your physical life, your work life, you know, your leisure life. But I mean there's, and there's parts of my leadership world that I still seek advice from as I try to do new things even in this world. And I tried some new things in between roles. I went out and asked the people that I respected the most. So I just would say for sure have different mentorships and don't be afraid to have that diversity. But if you have mentorships, the second important thing is show up with a real agenda and questions. Don't waste people's time. I'm very sensitive today. If you're, if you want a mentor, you show up and you use your time super effectively and be prepared for that. Sponsorship is a very different thing. And I don't believe we actually do that still in companies. We worked, thank goodness for my great HR team. When I was at AWS, we worked on a few sponsorship programs where for diversity in general, where we would nominate individuals in the company that we felt that weren't, that had a lot of opportunity for growth, but they just weren't getting a seat at the table. And we brought 'em to the table. And we actually kind of had a Chatham House rules where when they came into the meetings, they had a sponsor, not a mentor. They had a sponsor that was with them the full 18 months of this program. We would bring 'em into executive meetings. They would read docs, they could ask questions. We wanted them to be able to open up and ask crazy questions without, you know, feeling wow, I just couldn't answer this question in a normal environment or setting. And then we tried to make sure once they got through the program that we found jobs and support and other special projects that they could go do. But they still had that sponsor and that group of individuals that they'd gone through the program with, John, that they could keep going back to. And I remember sitting there and they asked me what I wanted to get out of the program, and I said two things. I want you to leave this program and say to yourself, I would've never had that experience if I hadn't gone through this program. I learned so much in 18 months. It would probably taken me five years to learn. And that it helped them in their career. The second thing I told them is I wanted them to go out and recruit individuals that look like them. I said, we need diversity, and unless you all feel that we are in an inclusive environment sponsoring all types of individuals to be part of this company, we're not going to get the job done. And they said, okay. And you know, but it was really one, it was very much about them. That we took a group of individuals that had high potential and a very diverse with diverse backgrounds, held 'em up, taught 'em things that gave them access. And two, selfishly I said, I want more of you in my business. Please help me. And I think those kind of things are helpful, and you have to be thoughtful about these kind of programs. And to me that's more sponsorship. I still have people reach out to me from years ago, you know, Microsoft saying, you were so good with me, can you give me a reference now? Can you talk to me about what I should be doing? And I try to, I'm not pray 100%, some things pray fall through the cracks, but I always try to make the time to talk to those individuals because for me, I am where I am today because I got some of the best advice from people like Don Byrne and Linda Zecker and Andy Jassy, who were very honest and upfront with me about my career. >> Awesome. Well, you got a passion for empowering women in tech, paying it forward, but you're quite accomplished and that's why we're so glad to have you on the program here. President and Chief Commercial Officer at Flexport. Obviously storied career and your other jobs, specifically Amazon I think, is historic in my mind. This next chapter looks like it's looking good right now. Final question for you, for the few minutes you have left. Tell us what you're up to at Flexport. What's your goals as President, Chief Commercial Officer? What are you trying to accomplish? Share a little bit, what's on your mind with your current job? >> Well, you kind of said it earlier. I think if I look at my own superpowers, I love customers, I love partners. I get my energy, John, from those interactions. So one is to come in and really help us build even a better world class enterprise global sales and marketing team. Really listen to our customers, think about how we interact with them, build the best executive programs we can, think about new ways that we can offer services to them and create new services. One of my favorite things about my career is I think if you're a business leader, it's your job to come back around and tell your product group and your services org what you're hearing from customers. That's how you can be so much more impactful, that you listen, you learn, and you deliver. So that's one big job. The second job for me, which I am so excited about, is that I have an amazing group called flexport.org under me. And flexport.org is doing amazing things around the world to help those in need. We just announced this new funding program for Tech for Refugees, which brings assistance to millions of people in Ukraine, Pakistan, the horn of Africa, and those who are affected by earthquakes. We just took supplies into Turkey and Syria, and Flexport, recently in fact, just did sent three air shipments to Turkey and Syria for these. And I think we did over a hundred trekking shipments to get earthquake relief. And as you can imagine, it was not easy to get into Syria. But you know, we're very active in the Ukraine, and we are, our goal for flexport.org, John, is to continue to work with our commercial customers and team up with them when they're trying to get supplies in to do that in a very cost effective, easy way, as quickly as we can. So that not-for-profit side of me that I'm so, I'm so happy. And you know, Ryan Peterson, who was our founder, this was his brainchild, and he's really taken this to the next level. So I'm honored to be able to pick that up and look for new ways to have impact around the world. And you know, I've always found that I think if you do things right with a company, you can have a beautiful combination of commercial-ity and giving. And I think Flexport does it in such an amazing and unique way. >> Well, the impact that they have with their system and their technology with logistics and shipping and supply chain is a channel for societal change. And I think that's a huge gift that you have that under your purview. So looking forward to finding out more about flexport.org. I can only imagine all the exciting things around sustainability, and we just had Mobile World Congress for Big Cube Broadcast, 5Gs right around the corner. I'm sure that's going to have a huge impact to your business. >> Well, for sure. And just on gas emissions, that's another thing that we are tracking gas, greenhouse gas emissions. And in fact we've already reduced more than 300,000 tons and supported over 600 organizations doing that. So that's a thing we're also trying to make sure that we're being climate aware and ensuring that we are doing the best job we can at that as well. And that was another thing I was honored to be able to do when we were at AWS, is to really cut out greenhouse gas emissions and really go global with our climate initiatives. >> Well Teresa, it's great to have you on. Security, data, 5G, sustainability, business transformation, AI all coming together to change the game. You're in another hot seat, hot roll, big wave. >> Well, John, it's an honor, and just thank you again for doing this and having women on and really representing us in a big way as we celebrate International Women's Day. >> I really appreciate it, it's super important. And these videos have impact, so we're going to do a lot more. And I appreciate your leadership to the industry and thank you so much for taking the time to contribute to our effort. Thank you, Teresa. >> Thank you. Thanks everybody. >> Teresa Carlson, the President and Chief Commercial Officer of Flexport. I'm John Furrier, host of theCUBE. This is International Women's Day broadcast. Thanks for watching. (upbeat outro music)
SUMMARY :
and Chief Commercial Officer It's hard to believe so honor to interview you I, it's my, it's been Tell us about your new role and insight to what's going on. and are doing for And that led to me going in the sense of you got, I learned that you really Now I got to say, you're in kind of And I remember going out to visit them, I got to ask you about And I would tell you at Flexport to 20 years ago when you were, you know, And I remember even in the Middle East, I know you champion a lot of, you know, And I like to look at my to have you on the program here. And I think we did over a I can only imagine all the exciting things And that was another thing I Well Teresa, it's great to have you on. and just thank you again for and thank you so much for taking the time Thank you. and Chief Commercial Officer of Flexport.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Satya Nadella | PERSON | 0.99+ |
Jeremy Burton | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Teresa Carlson | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Dave Vallente | PERSON | 0.99+ |
Ryan Peterson | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
Teresa | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Linda Zecker | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Mike | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Steve Ballmer | PERSON | 0.99+ |
Canada | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
AWS | ORGANIZATION | 0.99+ |
Flexport | ORGANIZATION | 0.99+ |
Dave Clark | PERSON | 0.99+ |
Mike Franco | PERSON | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Syria | LOCATION | 0.99+ |
Hallmark | ORGANIZATION | 0.99+ |
Ukraine | LOCATION | 0.99+ |
Don Byrne | PERSON | 0.99+ |
Keyfile Corporation | ORGANIZATION | 0.99+ |
Steve Schmidt | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
Dave Stanford | PERSON | 0.99+ |
Turkey | LOCATION | 0.99+ |
Boston | LOCATION | 0.99+ |
June | DATE | 0.99+ |
Middle East | LOCATION | 0.99+ |
second job | QUANTITY | 0.99+ |
Michael Dell | PERSON | 0.99+ |
dozens | QUANTITY | 0.99+ |
2013 | DATE | 0.99+ |
May | DATE | 0.99+ |
2019 | DATE | 0.99+ |
LA | LOCATION | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
100% | QUANTITY | 0.99+ |
Joseph Nelson, Roboflow | Cube Conversation
(gentle music) >> Hello everyone. Welcome to this CUBE conversation here in Palo Alto, California. I'm John Furrier, host of theCUBE. We got a great remote guest coming in. Joseph Nelson, co-founder and CEO of RoboFlow hot startup in AI, computer vision. Really interesting topic in this wave of AI next gen hitting. Joseph, thanks for coming on this CUBE conversation. >> Thanks for having me. >> Yeah, I love the startup tsunami that's happening here in this wave. RoboFlow, you're in the middle of it. Exciting opportunities, you guys are in the cutting edge. I think computer vision's been talked about more as just as much as the large language models and these foundational models are merging. You're in the middle of it. What's it like right now as a startup and growing in this new wave hitting? >> It's kind of funny, it's, you know, I kind of describe it like sometimes you're in a garden of gnomes. It's like we feel like we've got this giant headstart with hundreds of thousands of people building with computer vision, training their own models, but that's a fraction of what it's going to be in six months, 12 months, 24 months. So, as you described it, a wave is a good way to think about it. And the wave is still building before it gets to its full size. So it's a ton of fun. >> Yeah, I think it's one of the most exciting areas in computer science. I wish I was in my twenties again, because I would be all over this. It's the intersection, there's so many disciplines, right? It's not just tech computer science, it's computer science, it's systems, it's software, it's data. There's so much aperture of things going on around your world. So, I mean, you got to be batting all the students away kind of trying to get hired in there, probably. I can only imagine you're hiring regiment. I'll ask that later, but first talk about what the company is that you're doing. How it's positioned, what's the market you're going after, and what's the origination story? How did you guys get here? How did you just say, hey, want to do this? What was the origination story? What do you do and how did you start the company? >> Yeah, yeah. I'll give you the what we do today and then I'll shift into the origin. RoboFlow builds tools for making the world programmable. Like anything that you see should be read write access if you think about it with a programmer's mind or legible. And computer vision is a technology that enables software to be added to these real world objects that we see. And so any sort of interface, any sort of object, any sort of scene, we can interact with it, we can make it more efficient, we can make it more entertaining by adding the ability for the tools that we use and the software that we write to understand those objects. And at RoboFlow, we've empowered a little over a hundred thousand developers, including those in half the Fortune 100 so far in that mission. Whether that's Walmart understanding the retail in their stores, Cardinal Health understanding the ways that they're helping their patients, or even electric vehicle manufacturers ensuring that they're making the right stuff at the right time. As you mentioned, it's early. Like I think maybe computer vision has touched one, maybe 2% of the whole economy and it'll be like everything in a very short period of time. And so we're focused on enabling that transformation. I think it's it, as far as I think about it, I've been fortunate to start companies before, start, sell these sorts of things. This is the last company I ever wanted to start and I think it will be, should we do it right, the world's largest in riding the wave of bringing together the disparate pieces of that technology. >> What was the motivating point of the formation? Was it, you know, you guys were hanging around? Was there some catalyst? What was the moment where it all kind of came together for you? >> You know what's funny is my co-founder, Brad and I, we were making computer vision apps for making board games more fun to play. So in 2017, Apple released AR kit, augmented reality kit for building augmented reality applications. And Brad and I are both sort of like hacker persona types. We feel like we don't really understand the technology until we build something with it and so we decided that we should make an app that if you point your phone at a Sudoku puzzle, it understands the state of the board and then it kind of magically fills in that experience with all the digits in real time, which totally ruins the game of Sudoku to be clear. But it also just creates this like aha moment of like, oh wow, like the ability for our pocket devices to understand and see the world as good or better than we can is possible. And so, you know, we actually did that as I mentioned in 2017, and the app went viral. It was, you know, top of some subreddits, top of Injure, Reddit, the hacker community as well as Product Hunt really liked it. So it actually won Product Hunt AR app of the year, which was the same year that the Tesla model three won the product of the year. So we joked that we share an award with Elon our shared (indistinct) But frankly, so that was 2017. RoboFlow wasn't incorporated as a business until 2019. And so, you know, when we made Magic Sudoku, I was running a different company at the time, Brad was running a different company at the time, and we kind of just put it out there and were excited by how many people liked it. And we assumed that other curious developers would see this inevitable future of, oh wow, you know. This is much more than just a pedestrian point your phone at a board game. This is everything can be seen and understood and rewritten in a different way. Things like, you know, maybe your fridge. Knowing what ingredients you have and suggesting recipes or auto ordering for you, or we were talking about some retail use cases of automated checkout. Like anything can be seen and observed and we presume that that would kick off a Cambrian explosion of applications. It didn't. So you fast forward to 2019, we said, well we might as well be the guys to start to tackle this sort of problem. And because of our success with board games before, we returned to making more board game solving applications. So we made one that solves Boggle, you know, the four by four word game, we made one that solves chess, you point your phone at a chess board and it understands the state of the board and then can make move recommendations. And each additional board game that we added, we realized that the tooling was really immature. The process of collecting images, knowing which images are actually going to be useful for improving model performance, training those models, deploying those models. And if we really wanted to make the world programmable, developers waiting for us to make an app for their thing of interest is a lot less efficient, less impactful than taking our tool chain and releasing that externally. And so, that's what RoboFlow became. RoboFlow became the internal tools that we used to make these game changing applications readily available. And as you know, when you give developers new tools, they create new billion dollar industries, let alone all sorts of fun hobbyist projects along the way. >> I love that story. Curious, inventive, little radical. Let's break the rules, see how we can push the envelope on the board games. That's how companies get started. It's a great story. I got to ask you, okay, what happens next? Now, okay, you realize this new tooling, but this is like how companies get built. Like they solve their own problem that they had 'cause they realized there's one, but then there has to be a market for it. So you actually guys knew that this was coming around the corner. So okay, you got your hacker mentality, you did that thing, you got the award and now you're like, okay, wow. Were you guys conscious of the wave coming? Was it one of those things where you said, look, if we do this, we solve our own problem, this will be big for everybody. Did you have that moment? Was that in 2019 or was that more of like, it kind of was obvious to you guys? >> Absolutely. I mean Brad puts this pretty effectively where he describes how we lived through the initial internet revolution, but we were kind of too young to really recognize and comprehend what was happening at the time. And then mobile happened and we were working on different companies that were not in the mobile space. And computer vision feels like the wave that we've caught. Like, this is a technology and capability that rewrites how we interact with the world, how everyone will interact with the world. And so we feel we've been kind of lucky this time, right place, right time of every enterprise will have the ability to improve their operations with computer vision. And so we've been very cognizant of the fact that computer vision is one of those groundbreaking technologies that every company will have as a part of their products and services and offerings, and we can provide the tooling to accelerate that future. >> Yeah, and the developer angle, by the way, I love that because I think, you know, as we've been saying in theCUBE all the time, developer's the new defacto standard bodies because what they adopt is pure, you know, meritocracy. And they pick the best. If it's sell service and it's good and it's got open source community around it, its all in. And they'll vote. They'll vote with their code and that is clear. Now I got to ask you, as you look at the market, we were just having this conversation on theCUBE in Barcelona at recent Mobile World Congress, now called MWC, around 5G versus wifi. And the debate was specifically computer vision, like facial recognition. We were talking about how the Cleveland Browns were using facial recognition for people coming into the stadium they were using it for ships in international ports. So the question was 5G versus wifi. My question is what infrastructure or what are the areas that need to be in place to make computer vision work? If you have developers building apps, apps got to run on stuff. So how do you sort that out in your mind? What's your reaction to that? >> A lot of the times when we see applications that need to run in real time and on video, they'll actually run at the edge without internet. And so a lot of our users will actually take their models and run it in a fully offline environment. Now to act on that information, you'll often need to have internet signal at some point 'cause you'll need to know how many people were in the stadium or what shipping crates are in my port at this point in time. You'll need to relay that information somewhere else, which will require connectivity. But actually using the model and creating the insights at the edge does not require internet. I mean we have users that deploy models on underwater submarines just as much as in outer space actually. And those are not very friendly environments to internet, let alone 5g. And so what you do is you use an edge device, like an Nvidia Jetson is common, mobile devices are common. Intel has some strong edge devices, the Movidius family of chips for example. And you use that compute that runs completely offline in real time to process those signals. Now again, what you do with those signals may require connectivity and that becomes a question of the problem you're solving of how soon you need to relay that information to another place. >> So, that's an architectural issue on the infrastructure. If you're a tactical edge war fighter for instance, you might want to have highly available and maybe high availability. I mean, these are words that mean something. You got storage, but it's not at the edge in real time. But you can trickle it back and pull it down. That's management. So that's more of a business by business decision or environment, right? >> That's right, that's right. Yeah. So I mean we can talk through some specifics. So for example, the RoboFlow actually powers the broadcaster that does the tennis ball tracking at Wimbledon. That runs completely at the edge in real time in, you know, technically to track the tennis ball and point the camera, you actually don't need internet. Now they do have internet of course to do the broadcasting and relay the signal and feeds and these sorts of things. And so that's a case where you have both edge deployment of running the model and high availability act on that model. We have other instances where customers will run their models on drones and the drone will go and do a flight and it'll say, you know, this many residential homes are in this given area, or this many cargo containers are in this given shipping yard. Or maybe we saw these environmental considerations of soil erosion along this riverbank. The model in that case can run on the drone during flight without internet, but then you only need internet once the drone lands and you're going to act on that information because for example, if you're doing like a study of soil erosion, you don't need to be real time. You just need to be able to process and make use of that information once the drone finishes its flight. >> Well I can imagine a zillion use cases. I heard of a use case interview at a company that does computer vision to help people see if anyone's jumping the fence on their company. Like, they know what a body looks like climbing a fence and they can spot it. Pretty easy use case compared to probably some of the other things, but this is the horizontal use cases, its so many use cases. So how do you guys talk to the marketplace when you say, hey, we have generative AI for commuter vision. You might know language models that's completely different animal because vision's like the world, right? So you got a lot more to do. What's the difference? How do you explain that to customers? What can I build and what's their reaction? >> Because we're such a developer centric company, developers are usually creative and show you the ways that they want to take advantage of new technologies. I mean, we've had people use things for identifying conveyor belt debris, doing gas leak detection, measuring the size of fish, airplane maintenance. We even had someone that like a hobby use case where they did like a specific sushi identifier. I dunno if you know this, but there's a specific type of whitefish that if you grew up in the western hemisphere and you eat it in the eastern hemisphere, you get very sick. And so there was someone that made an app that tells you if you happen to have that fish in the sushi that you're eating. But security camera analysis, transportation flows, plant disease detection, really, you know, smarter cities. We have people that are doing curb management identifying, and a lot of these use cases, the fantastic thing about building tools for developers is they're a creative bunch and they have these ideas that if you and I sat down for 15 minutes and said, let's guess every way computer vision can be used, we would need weeks to list all the example use cases. >> We'd miss everything. >> And we'd miss. And so having the community show us the ways that they're using computer vision is impactful. Now that said, there are of course commercial industries that have discovered the value and been able to be out of the gate. And that's where we have the Fortune 100 customers, like we do. Like the retail customers in the Walmart sector, healthcare providers like Medtronic, or vehicle manufacturers like Rivian who all have very difficult either supply chain, quality assurance, in stock, out of stock, anti-theft protection considerations that require successfully making sense of the real world. >> Let me ask you a question. This is maybe a little bit in the weeds, but it's more developer focused. What are some of the developer profiles that you're seeing right now in terms of low-hanging fruit applications? And can you talk about the academic impact? Because I imagine if I was in school right now, I'd be all over it. Are you seeing Master's thesis' being worked on with some of your stuff? Is the uptake in both areas of younger pre-graduates? And then inside the workforce, What are some of the devs like? Can you share just either what their makeup is, what they work on, give a little insight into the devs you're working with. >> Leading developers that want to be on state-of-the-art technology build with RoboFlow because they know they can use the best in class open source. They know that they can get the most out of their data. They know that they can deploy extremely quickly. That's true among students as you mentioned, just as much as as industries. So we welcome students and I mean, we have research grants that will regularly support for people to publish. I mean we actually have a channel inside our internal slack where every day, more student publications that cite building with RoboFlow pop up. And so, that helps inspire some of the use cases. Now what's interesting is that the use case is relatively, you know, useful or applicable for the business or the student. In other words, if a student does a thesis on how to do, we'll say like shingle damage detection from satellite imagery and they're just doing that as a master's thesis, in fact most insurance businesses would be interested in that sort of application. So, that's kind of how we see uptick and adoption both among researchers who want to be on the cutting edge and publish, both with RoboFlow and making use of open source tools in tandem with the tool that we provide, just as much as industry. And you know, I'm a big believer in the philosophy that kind of like what the hackers are doing nights and weekends, the Fortune 500 are doing in a pretty short order period of time and we're experiencing that transition. Computer vision used to be, you know, kind of like a PhD, multi-year investment endeavor. And now with some of the tooling that we're working on in open source technologies and the compute that's available, these science fiction ideas are possible in an afternoon. And so you have this idea of maybe doing asset management or the aerial observation of your shingles or things like this. You have a few hundred images and you can de-risk whether that's possible for your business today. So there's pretty broad-based adoption among both researchers that want to be on the state of the art, as much as companies that want to reduce the time to value. >> You know, Joseph, you guys and your partner have got a great front row seat, ground floor, presented creation wave here. I'm seeing a pattern emerging from all my conversations on theCUBE with founders that are successful, like yourselves, that there's two kind of real things going on. You got the enterprises grabbing the products and retrofitting into their legacy and rebuilding their business. And then you have startups coming out of the woodwork. Young, seeing greenfield or pick a specific niche or focus and making that the signature lever to move the market. >> That's right. >> So can you share your thoughts on the startup scene, other founders out there and talk about that? And then I have a couple questions for like the enterprises, the old school, the existing legacy. Little slower, but the startups are moving fast. What are some of the things you're seeing as startups are emerging in this field? >> I think you make a great point that independent of RoboFlow, very successful, especially developer focused businesses, kind of have three customer types. You have the startups and maybe like series A, series B startups that you're building a product as fast as you can to keep up with them, and they're really moving just as fast as as you are and pulling the product out at you for things that they need. The second segment that you have might be, call it SMB but not enterprise, who are able to purchase and aren't, you know, as fast of moving, but are stable and getting value and able to get to production. And then the third type is enterprise, and that's where you have typically larger contract value sizes, slower moving in terms of adoption and feedback for your product. And I think what you see is that successful companies balance having those three customer personas because you have the small startups, small fast moving upstarts that are discerning buyers who know the market and elect to build on tooling that is best in class. And so you basically kind of pass the smell test of companies who are quite discerning in their purchases, plus are moving so quick they're pulling their product out of you. Concurrently, you have a product that's enterprise ready to service the scalability, availability, and trust of enterprise buyers. And that's ultimately where a lot of companies will see tremendous commercial success. I mean I remember seeing the Twilio IPO, Uber being like a full 20% of their revenue, right? And so there's this very common pattern where you have the ability to find some of those upstarts that you make bets on, like the next Ubers of the world, the smaller companies that continue to get developed with the product and then the enterprise whom allows you to really fund the commercial success of the business, and validate the size of the opportunity in market that's being creative. >> It's interesting, there's so many things happening there. It's like, in a way it's a new category, but it's not a new category. It becomes a new category because of the capabilities, right? So, it's really interesting, 'cause that's what you're talking about is a category, creating. >> I think developer tools. So people often talk about B to B and B to C businesses. I think developer tools are in some ways a third way. I mean ultimately they're B to B, you're selling to other businesses and that's where your revenue's coming from. However, you look kind of like a B to C company in the ways that you measure product adoption and kind of go to market. In other words, you know, we're often tracking the leading indicators of commercial success in the form of usage, adoption, retention. Really consumer app, traditionally based metrics of how to know you're building the right stuff, and that's what product led growth companies do. And then you ultimately have commercial traction in a B to B way. And I think that that actually kind of looks like a third thing, right? Like you can do these sort of funny zany marketing examples that you might see historically from consumer businesses, but yet you ultimately make your money from the enterprise who has these de-risked high value problems you can solve for them. And I selfishly think that that's the best of both worlds because I don't have to be like Evan Spiegel, guessing the next consumer trend or maybe creating the next consumer trend and catching lightning in a bottle over and over again on the consumer side. But I still get to have fun in our marketing and make sort of fun, like we're launching the world's largest game of rock paper scissors being played with computer vision, right? Like that's sort of like a fun thing you can do, but then you can concurrently have the commercial validation and customers telling you the things that they need to be built for them next to solve commercial pain points for them. So I really do think that you're right by calling this a new category and it really is the best of both worlds. >> It's a great call out, it's a great call out. In fact, I always juggle with the VC. I'm like, it's so easy. Your job is so easy to pick the winners. What are you talking about its so easy? I go, just watch what the developers jump on. And it's not about who started, it could be someone in the dorm room to the boardroom person. You don't know because that B to C, the C, it's B to D you know? You know it's developer 'cause that's a human right? That's a consumer of the tool which influences the business that never was there before. So I think this direct business model evolution, whether it's media going direct or going direct to the developers rather than going to a gatekeeper, this is the reality. >> That's right. >> Well I got to ask you while we got some time left to describe, I want to get into this topic of multi-modality, okay? And can you describe what that means in computer vision? And what's the state of the growth of that portion of this piece? >> Multi modality refers to using multiple traditionally siloed problem types, meaning text, image, video, audio. So you could treat an audio problem as only processing audio signal. That is not multimodal, but you could use the audio signal at the same time as a video feed. Now you're talking about multi modality. In computer vision, multi modality is predominantly happening with images and text. And one of the biggest releases in this space is actually two years old now, was clip, contrastive language image pre-training, which took 400 million image text pairs and basically instead of previously when you do classification, you basically map every single image to a single class, right? Like here's a bunch of images of chairs, here's a bunch of images of dogs. What clip did is used, you can think about it like, the class for an image being the Instagram caption for the image. So it's not one single thing. And by training on understanding the corpora, you basically see which words, which concepts are associated with which pixels. And this opens up the aperture for the types of problems and generalizability of models. So what does this mean? This means that you can get to value more quickly from an existing trained model, or at least validate that what you want to tackle with a computer vision, you can get there more quickly. It also opens up the, I mean. Clip has been the bedrock of some of the generative image techniques that have come to bear, just as much as some of the LLMs. And increasingly we're going to see more and more of multi modality being a theme simply because at its core, you're including more context into what you're trying to understand about the world. I mean, in its most basic sense, you could ask yourself, if I have an image, can I know more about that image with just the pixels? Or if I have the image and the sound of when that image was captured or it had someone describe what they see in that image when the image was captured, which one's going to be able to get you more signal? And so multi modality helps expand the ability for us to understand signal processing. >> Awesome. And can you just real quick, define clip for the folks that don't know what that means? >> Yeah. Clip is a model architecture, it's an acronym for contrastive language image pre-training and like, you know, model architectures that have come before it captures the almost like, models are kind of like brands. So I guess it's a brand of a model where you've done these 400 million image text pairs to match up which visual concepts are associated with which text concepts. And there have been new releases of clip, just at bigger sizes of bigger encoding's, of longer strings of texture, or larger image windows. But it's been a really exciting advancement that OpenAI released in January, 2021. >> All right, well great stuff. We got a couple minutes left. Just I want to get into more of a company-specific question around culture. All startups have, you know, some sort of cultural vibe. You know, Intel has Moore's law doubles every whatever, six months. What's your culture like at RoboFlow? I mean, if you had to describe that culture, obviously love the hacking story, you and your partner with the games going number one on Product Hunt next to Elon and Tesla and then hey, we should start a company two years later. That's kind of like a curious, inventing, building, hard charging, but laid back. That's my take. How would you describe the culture? >> I think that you're right. The culture that we have is one of shipping, making things. So every week each team shares what they did for our customers on a weekly basis. And we have such a strong emphasis on being better week over week that those sorts of things compound. So one big emphasis in our culture is getting things done, shipping, doing things for our customers. The second is we're an incredibly transparent place to work. For example, how we think about giving decisions, where we're progressing against our goals, what problems are biggest and most important for the company is all open information for those that are inside the company to know and progress against. The third thing that I'd use to describe our culture is one that thrives with autonomy. So RoboFlow has a number of individuals who have founded companies before, some of which have sold their businesses for a hundred million plus upon exit. And the way that we've been able to attract talent like that is because the problems that we're tackling are so immense, yet individuals are able to charge at it with the way that they think is best. And this is what pairs well with transparency. If you have a strong sense of what the company's goals are, how we're progressing against it, and you have this ownership mentality of what can I do to change or drive progress against that given outcome, then you create a really healthy pairing of, okay cool, here's where the company's progressing. Here's where things are going really well, here's the places that we most need to improve and work on. And if you're inside that company as someone who has a preponderance to be a self-starter and even a history of building entire functions or companies yourself, then you're going to be a place where you can really thrive. You have the inputs of the things where we need to work on to progress the company's goals. And you have the background of someone that is just necessarily a fast moving and ambitious type of individual. So I think the best way to describe it is a transparent place with autonomy and an emphasis on getting things done. >> Getting shit done as they say. Getting stuff done. Great stuff. Hey, final question. Put a plug out there for the company. What are you going to hire? What's your pipeline look like for people? What jobs are open? I'm sure you got hiring all around. Give a quick plug for the company what you're looking for. >> I appreciate you asking. Basically you're either building the product or helping customers be successful with the product. So in the building product category, we have platform engineering roles, machine learning engineering roles, and we're solving some of the hardest and most impactful problems of bringing such a groundbreaking technology to the masses. And so it's a great place to be where you can kind of be your own user as an engineer. And then if you're enabling people to be successful with the products, I mean you're working in a place where there's already such a strong community around it and you can help shape, foster, cultivate, activate, and drive commercial success in that community. So those are roles that tend themselves to being those that build the product for developer advocacy, those that are account executives that are enabling our customers to realize commercial success, and even hybrid roles like we call it field engineering, where you are a technical resource to drive success within customer accounts. And so all this is listed on roboflow.com/careers. And one thing that I actually kind of want to mention John that's kind of novel about the thing that's working at RoboFlow. So there's been a lot of discussion around remote companies and there's been a lot of discussion around in-person companies and do you need to be in the office? And one thing that we've kind of recognized is you can actually chart a third way. You can create a third way which we call satellite, which basically means people can work from where they most like to work and there's clusters of people, regular onsite's. And at RoboFlow everyone gets, for example, $2,500 a year that they can use to spend on visiting coworkers. And so what's sort of organically happened is team numbers have started to pull together these resources and rent out like, lavish Airbnbs for like a week and then everyone kind of like descends in and works together for a week and makes and creates things. And we call this lighthouses because you know, a lighthouse kind of brings ships into harbor and we have an emphasis on shipping. >> Yeah, quality people that are creative and doers and builders. You give 'em some cash and let the self-governing begin, you know? And like, creativity goes through the roof. It's a great story. I think that sums up the culture right there, Joseph. Thanks for sharing that and thanks for this great conversation. I really appreciate it and it's very inspiring. Thanks for coming on. >> Yeah, thanks for having me, John. >> Joseph Nelson, co-founder and CEO of RoboFlow. Hot company, great culture in the right place in a hot area, computer vision. This is going to explode in value. The edge is exploding. More use cases, more development, and developers are driving the change. Check out RoboFlow. This is theCUBE. I'm John Furrier, your host. Thanks for watching. (gentle music)
SUMMARY :
Welcome to this CUBE conversation You're in the middle of it. And the wave is still building the company is that you're doing. maybe 2% of the whole economy And as you know, when you it kind of was obvious to you guys? cognizant of the fact that I love that because I think, you know, And so what you do is issue on the infrastructure. and the drone will go and the marketplace when you say, in the sushi that you're eating. And so having the And can you talk about the use case is relatively, you know, and making that the signature What are some of the things you're seeing and pulling the product out at you because of the capabilities, right? in the ways that you the C, it's B to D you know? And one of the biggest releases And can you just real quick, and like, you know, I mean, if you had to like that is because the problems Give a quick plug for the place to be where you can the self-governing begin, you know? and developers are driving the change.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brad | PERSON | 0.99+ |
Joseph | PERSON | 0.99+ |
Joseph Nelson | PERSON | 0.99+ |
January, 2021 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
Medtronic | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
2019 | DATE | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
400 million | QUANTITY | 0.99+ |
Evan Spiegel | PERSON | 0.99+ |
24 months | QUANTITY | 0.99+ |
2017 | DATE | 0.99+ |
RoboFlow | ORGANIZATION | 0.99+ |
15 minutes | QUANTITY | 0.99+ |
Rivian | ORGANIZATION | 0.99+ |
12 months | QUANTITY | 0.99+ |
20% | QUANTITY | 0.99+ |
Cardinal Health | ORGANIZATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Wimbledon | EVENT | 0.99+ |
roboflow.com/careers | OTHER | 0.99+ |
first | QUANTITY | 0.99+ |
second segment | QUANTITY | 0.99+ |
each team | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
both worlds | QUANTITY | 0.99+ |
2% | QUANTITY | 0.99+ |
two years later | DATE | 0.98+ |
Mobile World Congress | EVENT | 0.98+ |
Ubers | ORGANIZATION | 0.98+ |
third way | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
a week | QUANTITY | 0.98+ |
Magic Sudoku | TITLE | 0.98+ |
second | QUANTITY | 0.98+ |
Nvidia | ORGANIZATION | 0.98+ |
Sudoku | TITLE | 0.98+ |
MWC | EVENT | 0.97+ |
today | DATE | 0.97+ |
billion dollar | QUANTITY | 0.97+ |
one single thing | QUANTITY | 0.97+ |
over a hundred thousand developers | QUANTITY | 0.97+ |
four | QUANTITY | 0.97+ |
third | QUANTITY | 0.96+ |
Elon | ORGANIZATION | 0.96+ |
third thing | QUANTITY | 0.96+ |
Tesla | ORGANIZATION | 0.96+ |
Jetson | COMMERCIAL_ITEM | 0.96+ |
Elon | PERSON | 0.96+ |
RoboFlow | TITLE | 0.96+ |
ORGANIZATION | 0.95+ | |
Twilio | ORGANIZATION | 0.95+ |
twenties | QUANTITY | 0.95+ |
Product Hunt AR | TITLE | 0.95+ |
Moore | PERSON | 0.95+ |
both researchers | QUANTITY | 0.95+ |
one thing | QUANTITY | 0.94+ |
Robert Nishihara, Anyscale | CUBE Conversation
(upbeat instrumental) >> Hello and welcome to this CUBE conversation. I'm John Furrier, host of theCUBE, here in Palo Alto, California. Got a great conversation with Robert Nishihara who's the co-founder and CEO of Anyscale. Robert, great to have you on this CUBE conversation. It's great to see you. We did your first Ray Summit a couple years ago and congratulations on your venture. Great to have you on. >> Thank you. Thanks for inviting me. >> So you're first time CEO out of Berkeley in Data. You got the Databricks is coming out of there. You got a bunch of activity coming from Berkeley. It's like a, it really is kind of like where a lot of innovations going on data. Anyscale has been one of those startups that has risen out of that scene. Right? You look at the success of what the Data lakes are now. Now you've got the generative AI. This has been a really interesting innovation market. This new wave is coming. Tell us what's going on with Anyscale right now, as you guys are gearing up and getting some growth. What's happening with the company? >> Yeah, well one of the most exciting things that's been happening in computing recently, is the rise of AI and the excitement about AI, and the potential for AI to really transform every industry. Now of course, one of the of the biggest challenges to actually making that happen is that doing AI, that AI is incredibly computationally intensive, right? To actually succeed with AI to actually get value out of AI. You're typically not just running it on your laptop, you're often running it and scaling it across thousands of machines, or hundreds of machines or GPUs, and to, so organizations and companies and businesses that do AI often end up building a large infrastructure team to manage the distributed systems, the computing to actually scale these applications. And that's a, that's a, a huge software engineering lift, right? And so, one of the goals for Anyscale is really to make that easy. To get to the point where, developers and teams and companies can succeed with AI. Can build these scalable AI applications, without really you know, without a huge investment in infrastructure with a lot of, without a lot of expertise in infrastructure, where really all they need to know is how to program on their laptop, how to program in Python. And if you have that, then that's really all you need to succeed with AI. So that's what we've been focused on. We're building Ray, which is an open source project that's been starting to get adopted by tons of companies, to actually train these models, to deploy these models, to do inference with these models, you know, to ingest and pre-process their data. And our goals, you know, here with the company are really to make Ray successful. To grow the Ray community, and then to build a great product around it and simplify the development and deployment, and productionization of machine learning for, for all these businesses. >> It's a great trend. Everyone wants developer productivity seeing that, clearly right now. And plus, developers are voting literally on what standards become. As you look at how the market is open source driven, a lot of that I love the model, love the Ray project love the, love the Anyscale value proposition. How big are you guys now, and how is that value proposition of Ray and Anyscale and foundational models coming together? Because it seems like you guys are in a perfect storm situation where you guys could get a real tailwind and draft off the the mega trend that everyone's getting excited. The new toy is ChatGPT. So you got to look at that and say, hey, I mean, come on, you guys did all the heavy lifting. >> Absolutely. >> You know how many people you are, and what's the what's the proposition for you guys these days? >> You know our company's about a hundred people, that a bit larger than that. Ray's been going really quickly. It's been, you know, companies using, like OpenAI uses Ray to train their models, like ChatGPT. Companies like Uber run all their deep learning you know, and classical machine learning on top of Ray. Companies like Shopify, Spotify, Netflix, Cruise, Lyft, Instacart, you know, Bike Dance. A lot of these companies are investing heavily in Ray for their machine learning infrastructure. And I think it's gotten to the point where, if you're one of these, you know type of businesses, and you're looking to revamp your machine learning infrastructure. If you're looking to enable new capabilities, you know make your teams more productive, increase, speed up the experimentation cycle, you know make it more performance, like build, you know, run applications that are more scalable, run them faster, run them in a more cost efficient way. All of these types of companies are at least evaluating Ray and Ray is an increasingly common choice there. I think if they're not using Ray, if many of these companies that end up not using Ray, they often end up building their own infrastructure. So Ray has been, the growth there has been incredibly exciting over the, you know we had our first in-person Ray Summit just back in August, and planning the next one for, for coming September. And so when you asked about the value proposition, I think there's there's really two main things, when people choose to go with Ray and Anyscale. One reason is about moving faster, right? It's about developer productivity, it's about speeding up the experimentation cycle, easily getting their models in production. You know, we hear many companies say that they, you know they, once they prototype a model, once they develop a model, it's another eight weeks, or 12 weeks to actually get that model in production. And that's a reason they talk to us. We hear companies say that, you know they've been training their models and, and doing inference on a single machine, and they've been sort of scaling vertically, like using bigger and bigger machines. But they, you know, you can only do that for so long, and at some point you need to go beyond a single machine and that's when they start talking to us. Right? So one of the main value propositions is around moving faster. I think probably the phrase I hear the most is, companies saying that they don't want their machine learning people to have to spend all their time configuring infrastructure. All this is about productivity. >> Yeah. >> The other. >> It's the big brains in the company. That are being used to do remedial tasks that should be automated right? I mean that's. >> Yeah, and I mean, it's hard stuff, right? It's also not these people's area of expertise, and or where they're adding the most value. So all of this is around developer productivity, moving faster, getting to market faster. The other big value prop and the reason people choose Ray and choose Anyscale, is around just providing superior infrastructure. This is really, can we scale more? You know, can we run it faster, right? Can we run it in a more cost effective way? We hear people saying that they're not getting good GPU utilization with the existing tools they're using, or they can't scale beyond a certain point, or you know they don't have a way to efficiently use spot instances to save costs, right? Or their clusters, you know can't auto scale up and down fast enough, right? These are all the kinds of things that Ray and Anyscale, where Ray and Anyscale add value and solve these kinds of problems. >> You know, you bring up great points. Auto scaling concept, early days, it was easy getting more compute. Now it's complicated. They're built into more integrated apps in the cloud. And you mentioned those companies that you're working with, that's impressive. Those are like the big hardcore, I call them hardcore. They have a good technical teams. And as the wave starts to move from these companies that were hyper scaling up all the time, the mainstream are just developers, right? So you need an interface in, so I see the dots connecting with you guys and I want to get your reaction. Is that how you see it? That you got the alphas out there kind of kicking butt, building their own stuff, alpha developers and infrastructure. But mainstream just wants programmability. They want that heavy lifting taken care of for them. Is that kind of how you guys see it? I mean, take us through that. Because to get crossover to be democratized, the automation's got to be there. And for developer productivity to be in, it's got to be coding and programmability. >> That's right. Ultimately for AI to really be successful, and really you know, transform every industry in the way we think it has the potential to. It has to be easier to use, right? And that is, and being easier to use, there's many dimensions to that. But an important one is that as a developer to do AI, you shouldn't have to be an expert in distributed systems. You shouldn't have to be an expert in infrastructure. If you do have to be, that's going to really limit the number of people who can do this, right? And I think there are so many, all of the companies we talk to, they don't want to be in the business of building and managing infrastructure. It's not that they can't do it. But it's going to slow them down, right? They want to allocate their time and their energy toward building their product, right? To building a better product, getting their product to market faster. And if we can take the infrastructure work off of the critical path for them, that's going to speed them up, it's going to simplify their lives. And I think that is critical for really enabling all of these companies to succeed with AI. >> Talk about the customers you guys are talking to right now, and how that translates over. Because I think you hit a good thread there. Data infrastructure is critical. Managed services are coming online, open sources continuing to grow. You have these people building their own, and then if they abandon it or don't scale it properly, there's kind of consequences. 'Cause it's a system you mentioned, it's a distributed system architecture. It's not as easy as standing up a monolithic app these days. So when you guys go to the marketplace and talk to customers, put the customers in buckets. So you got the ones that are kind of leaning in, that are pretty peaked, probably working with you now, open source. And then what's the customer profile look like as you go mainstream? Are they looking to manage service, looking for more architectural system, architecture approach? What's the, Anyscale progression? How do you engage with your customers? What are they telling you? >> Yeah, so many of these companies, yes, they're looking for managed infrastructure 'cause they want to move faster, right? Now the kind of these profiles of these different customers, they're three main workloads that companies run on Anyscale, run with Ray. It's training related workloads, and it is serving and deployment related workloads, like actually deploying your models, and it's batch processing, batch inference related workloads. Like imagine you want to do computer vision on tons and tons of, of images or videos, or you want to do natural language processing on millions of documents or audio, or speech or things like that, right? So the, I would say the, there's a pretty large variety of use cases, but the most common you know, we see tons of people working with computer vision data, you know, computer vision problems, natural language processing problems. And it's across many different industries. We work with companies doing drug discovery, companies doing you know, gaming or e-commerce, right? Companies doing robotics or agriculture. So there's a huge variety of the types of industries that can benefit from AI, and can really get a lot of value out of AI. And, but the, but the problems are the same problems that they all want to solve. It's like how do you make your team move faster, you know succeed with AI, be more productive, speed up the experimentation, and also how do you do this in a more performant way, in a faster, cheaper, in a more cost efficient, more scalable way. >> It's almost like the cloud game is coming back to AI and these foundational models, because I was just on a podcast, we recorded our weekly podcast, and I was just riffing with Dave Vellante, my co-host on this, were like, hey, in the early days of Amazon, if you want to build an app, you just, you have to build a data center, and then you go to now you go to the cloud, cloud's easier, pay a little money, penny's on the dollar, you get your app up and running. Cloud computing is born. With foundation models in generative AI. The old model was hard, heavy lifting, expensive, build out, before you get to do anything, as you mentioned time. So I got to think that you're pretty much in a good position with this foundational model trend in generative AI because I just looked at the foundation map, foundation models, map of the ecosystem. You're starting to see layers of, you got the tooling, you got platform, you got cloud. It's filling out really quickly. So why is Anyscale important to this new trend? How do you talk to people when they ask you, you know what does ChatGPT mean for Anyscale? And how does the financial foundational model growth, fit into your plan? >> Well, foundational models are hugely important for the industry broadly. Because you're going to have these really powerful models that are trained that you know, have been trained on tremendous amounts of data. tremendous amounts of computes, and that are useful out of the box, right? That people can start to use, and query, and get value out of, without necessarily training these huge models themselves. Now Ray fits in and Anyscale fit in, in a number of places. First of all, they're useful for creating these foundation models. Companies like OpenAI, you know, use Ray for this purpose. Companies like Cohere use Ray for these purposes. You know, IBM. If you look at, there's of course also open source versions like GPTJ, you know, created using Ray. So a lot of these large language models, large foundation models benefit from training on top of Ray. And, but of course for every company training and creating these huge foundation models, you're going to have many more that are fine tuning these models with their own data. That are deploying and serving these models for their own applications, that are building other application and business logic around these models. And that's where Ray also really shines, because Ray you know, is, can provide common infrastructure for all of these workloads. The training, the fine tuning, the serving, the data ingest and pre-processing, right? The hyper parameter tuning, the and and so on. And so where the reason Ray and Anyscale are important here, is that, again, foundation models are large, foundation models are compute intensive, doing you know, using both creating and using these foundation models requires tremendous amounts of compute. And there there's a big infrastructure lift to make that happen. So either you are using Ray and Anyscale to do this, or you are building the infrastructure and managing the infrastructure yourself. Which you can do, but it's, it's hard. >> Good luck with that. I always say good luck with that. I mean, I think if you really need to do, build that hardened foundation, you got to go all the way. And I think this, this idea of composability is interesting. How is Ray working with OpenAI for instance? Take, take us through that. Because I think you're going to see a lot of people talking about, okay I got trained models, but I'm going to have not one, I'm going to have many. There's big debate that OpenAI is going to be the mother of all LLMs, but now, but really people are also saying that to be many more, either purpose-built or specific. The fusion and these things come together there's like a blending of data, and that seems to be a value proposition. How does Ray help these guys get their models up? Can you take, take us through what Ray's doing for say OpenAI and others, and how do you see the models interacting with each other? >> Yeah, great question. So where, where OpenAI uses Ray right now, is for the training workloads. Training both to create ChatGPT and models like that. There's both a supervised learning component, where you're pre-training this model on doing supervised pre-training with example data. There's also a reinforcement learning component, where you are fine-tuning the model and continuing to train the model, but based on human feedback, based on input from humans saying that, you know this response to this question is better than this other response to this question, right? And so Ray provides the infrastructure for scaling the training across many, many GPUs, many many machines, and really running that in an efficient you know, performance fault tolerant way, right? And so, you know, open, this is not the first version of OpenAI's infrastructure, right? They've gone through iterations where they did start with building the infrastructure themselves. They were using tools like MPI. But at some point, you know, given the complexity, given the scale of what they're trying to do, you hit a wall with MPI and that's going to happen with a lot of other companies in this space. And at that point you don't have many other options other than to use Ray or to build your own infrastructure. >> That's awesome. And then your vision on this data interaction, because the old days monolithic models were very rigid. You couldn't really interface with them. But we're kind of seeing this future of data fusion, data interaction, data blending at large scale. What's your vision? How do you, what's your vision of where this goes? Because if this goes the way people think. You can have this data chemistry kind of thing going on where people are integrating all kinds of data with each other at large scale. So you need infrastructure, intelligence, reasoning, a lot of code. Is this something that you see? What's your vision in all this? Take us through. >> AI is going to be used everywhere right? It's, we see this as a technology that's going to be ubiquitous, and is going to transform every business. I mean, imagine you make a product, maybe you were making a tool like Photoshop or, or whatever the, you know, tool is. The way that people are going to use your tool, is not by investing, you know, hundreds of hours into learning all of the different, you know specific buttons they need to press and workflows they need to go through it. They're going to talk to it, right? They're going to say, ask it to do the thing they want it to do right? And it's going to do it. And if it, if it doesn't know what it's want, what it's, what's being asked of it. It's going to ask clarifying questions, right? And then you're going to clarify, and you're going to have a conversation. And this is going to make many many many kinds of tools and technology and products easier to use, and lower the barrier to entry. And so, and this, you know, many companies fit into this category of trying to build products that, and trying to make them easier to use, this is just one kind of way it can, one kind of way that AI will will be used. But I think it's, it's something that's pretty ubiquitous. >> Yeah. It'll be efficient, it'll be efficiency up and down the stack, and will change the productivity equation completely. You just highlighted one, I don't want to fill out forms, just stand up my environment for me. And then start coding away. Okay well this is great stuff. Final word for the folks out there watching, obviously new kind of skill set for hiring. You guys got engineers, give a plug for the company, for Anyscale. What are you looking for? What are you guys working on? Give a, take the last minute to put a plug in for the company. >> Yeah well if you're interested in AI and if you think AI is really going to be transformative, and really be useful for all these different industries. We are trying to provide the infrastructure to enable that to happen, right? So I think there's the potential here, to really solve an important problem, to get to the point where developers don't need to think about infrastructure, don't need to think about distributed systems. All they think about is their application logic, and what they want their application to do. And I think if we can achieve that, you know we can be the foundation or the platform that enables all of these other companies to succeed with AI. So that's where we're going. I think something like this has to happen if AI is going to achieve its potential, we're looking for, we're hiring across the board, you know, great engineers, on the go-to-market side, product managers, you know people who want to really, you know, make this happen. >> Awesome well congratulations. I know you got some good funding behind you. You're in a good spot. I think this is happening. I think generative AI and foundation models is going to be the next big inflection point, as big as the pc inter-networking, internet and smartphones. This is a whole nother application framework, a whole nother set of things. So this is the ground floor. Robert, you're, you and your team are right there. Well done. >> Thank you so much. >> All right. Thanks for coming on this CUBE conversation. I'm John Furrier with theCUBE. Breaking down a conversation around AI and scaling up in this new next major inflection point. This next wave is foundational models, generative AI. And thanks to ChatGPT, the whole world's now knowing about it. So it really is changing the game and Anyscale is right there, one of the hot startups, that is in good position to ride this next wave. Thanks for watching. (upbeat instrumental)
SUMMARY :
Robert, great to have you Thanks for inviting me. as you guys are gearing up and the potential for AI to a lot of that I love the and at some point you need It's the big brains in the company. and the reason people the automation's got to be there. and really you know, and talk to customers, put but the most common you know, and then you go to now that are trained that you know, and that seems to be a value proposition. And at that point you don't So you need infrastructure, and lower the barrier to entry. What are you guys working on? and if you think AI is really is going to be the next And thanks to ChatGPT,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Robert Nishihara | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
12 weeks | QUANTITY | 0.99+ |
Robert | PERSON | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Lyft | ORGANIZATION | 0.99+ |
Shopify | ORGANIZATION | 0.99+ |
eight weeks | QUANTITY | 0.99+ |
Spotify | ORGANIZATION | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
August | DATE | 0.99+ |
September | DATE | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Cruise | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Instacart | ORGANIZATION | 0.99+ |
Anyscale | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
Photoshop | TITLE | 0.99+ |
One reason | QUANTITY | 0.99+ |
Bike Dance | ORGANIZATION | 0.99+ |
Ray | ORGANIZATION | 0.99+ |
Python | TITLE | 0.99+ |
thousands of machines | QUANTITY | 0.99+ |
Berkeley | LOCATION | 0.99+ |
two main things | QUANTITY | 0.98+ |
single machine | QUANTITY | 0.98+ |
Cohere | ORGANIZATION | 0.98+ |
Ray and Anyscale | ORGANIZATION | 0.98+ |
millions of documents | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
one kind | QUANTITY | 0.96+ |
first version | QUANTITY | 0.95+ |
CUBE | ORGANIZATION | 0.95+ |
about a hundred people | QUANTITY | 0.95+ |
hundreds of machines | QUANTITY | 0.95+ |
one | QUANTITY | 0.95+ |
OpenAI | ORGANIZATION | 0.94+ |
First | QUANTITY | 0.94+ |
hundreds of hours | QUANTITY | 0.93+ |
first time | QUANTITY | 0.93+ |
Databricks | ORGANIZATION | 0.91+ |
Ray and Anyscale | ORGANIZATION | 0.9+ |
tons | QUANTITY | 0.89+ |
couple years ago | DATE | 0.88+ |
Ray and | ORGANIZATION | 0.86+ |
ChatGPT | TITLE | 0.81+ |
tons of people | QUANTITY | 0.8+ |
SiliconANGLE News | Beyond the Buzz: A deep dive into the impact of AI
(upbeat music) >> Hello, everyone, welcome to theCUBE. I'm John Furrier, the host of theCUBE in Palo Alto, California. Also it's SiliconANGLE News. Got two great guests here to talk about AI, the impact of the future of the internet, the applications, the people. Amr Awadallah, the founder and CEO, Ed Alban is the CEO of Vectara, a new startup that emerged out of the original Cloudera, I would say, 'cause Amr's known, famous for the Cloudera founding, which was really the beginning of the big data movement. And now as AI goes mainstream, there's so much to talk about, so much to go on. And plus the new company is one of the, now what I call the wave, this next big wave, I call it the fifth wave in the industry. You know, you had PCs, you had the internet, you had mobile. This generative AI thing is real. And you're starting to see startups come out in droves. Amr obviously was founder of Cloudera, Big Data, and now Vectara. And Ed Albanese, you guys have a new company. Welcome to the show. >> Thank you. It's great to be here. >> So great to see you. Now the story is theCUBE started in the Cloudera office. Thanks to you, and your friendly entrepreneurship views that you have. We got to know each other over the years. But Cloudera had Hadoop, which was the beginning of what I call the big data wave, which then became what we now call data lakes, data oceans, and data infrastructure that's developed from that. It's almost interesting to look back 12 plus years, and see that what AI is doing now, right now, is opening up the eyes to the mainstream, and the application's almost mind blowing. You know, Sati Natel called it the Mosaic Moment, didn't say Netscape, he built Netscape (laughing) but called it the Mosaic Moment. You're seeing companies in startups, kind of the alpha geeks running here, because this is the new frontier, and there's real meat on the bone, in terms of like things to do. Why? Why is this happening now? What's is the confluence of the forces happening, that are making this happen? >> Yeah, I mean if you go back to the Cloudera days, with big data, and so on, that was more about data processing. Like how can we process data, so we can extract numbers from it, and do reporting, and maybe take some actions, like this is a fraud transaction, or this is not. And in the meanwhile, many of the researchers working in the neural network, and deep neural network space, were trying to focus on data understanding, like how can I understand the data, and learn from it, so I can take actual actions, based on the data directly, just like a human does. And we were only good at doing that at the level of somebody who was five years old, or seven years old, all the way until about 2013. And starting in 2013, which is only 10 years ago, a number of key innovations started taking place, and each one added on. It was no major innovation that just took place. It was a couple of really incremental ones, but they added on top of each other, in a very exponentially additive way, that led to, by the end of 2019, we now have models, deep neural network models, that can read and understand human text just like we do. Right? And they can reason about it, and argue with you, and explain it to you. And I think that's what is unlocking this whole new wave of innovation that we're seeing right now. So data understanding would be the essence of it. >> So it's not a Big Bang kind of theory, it's been evolving over time, and I think that the tipping point has been the advancements and other things. I mean look at cloud computing, and look how fast it just crept up on AWS. I mean AWS you back three, five years ago, I was talking to Swami yesterday, and their big news about AI, expanding the Hugging Face's relationship with AWS. And just three, five years ago, there wasn't a model training models out there. But as compute comes out, and you got more horsepower,, these large language models, these foundational models, they're flexible, they're not monolithic silos, they're interacting. There's a whole new, almost fusion of data happening. Do you see that? I mean is that part of this? >> Of course, of course. I mean this wave is building on all the previous waves. We wouldn't be at this point if we did not have hardware that can scale, in a very efficient way. We wouldn't be at this point, if we don't have data that we're collecting about everything we do, that we're able to process in this way. So this, this movement, this motion, this phase we're in, absolutely builds on the shoulders of all the previous phases. For some of the observers from the outside, when they see chatGPT for the first time, for them was like, "Oh my god, this just happened overnight." Like it didn't happen overnight. (laughing) GPT itself, like GPT3, which is what chatGPT is based on, was released a year ahead of chatGPT, and many of us were seeing the power it can provide, and what it can do. I don't know if Ed agrees with that. >> Yeah, Ed? >> I do. Although I would acknowledge that the possibilities now, because of what we've hit from a maturity standpoint, have just opened up in an incredible way, that just wasn't tenable even three years ago. And that's what makes it, it's true that it developed incrementally, in the same way that, you know, the possibilities of a mobile handheld device, you know, in 2006 were there, but when the iPhone came out, the possibilities just exploded. And that's the moment we're in. >> Well, I've had many conversations over the past couple months around this area with chatGPT. John Markoff told me the other day, that he calls it, "The five dollar toy," because it's not that big of a deal, in context to what AI's doing behind the scenes, and all the work that's done on ethics, that's happened over the years, but it has woken up the mainstream, so everyone immediately jumps to ethics. "Does it work? "It's not factual," And everyone who's inside the industry is like, "This is amazing." 'Cause you have two schools of thought there. One's like, people that think this is now the beginning of next gen, this is now we're here, this ain't your grandfather's chatbot, okay?" With NLP, it's got reasoning, it's got other things. >> I'm in that camp for sure. >> Yeah. Well I mean, everyone who knows what's going on is in that camp. And as the naysayers start to get through this, and they go, "Wow, it's not just plagiarizing homework, "it's helping me be better. "Like it could rewrite my memo, "bring the lead to the top." It's so the format of the user interface is interesting, but it's still a data-driven app. >> Absolutely. >> So where does it go from here? 'Cause I'm not even calling this the first ending. This is like pregame, in my opinion. What do you guys see this going, in terms of scratching the surface to what happens next? >> I mean, I'll start with, I just don't see how an application is going to look the same in the next three years. Who's going to want to input data manually, in a form field? Who is going to want, or expect, to have to put in some text in a search box, and then read through 15 different possibilities, and try to figure out which one of them actually most closely resembles the question they asked? You know, I don't see that happening. Who's going to start with an absolute blank sheet of paper, and expect no help? That is not how an application will work in the next three years, and it's going to fundamentally change how people interact and spend time with opening any element on their mobile phone, or on their computer, to get something done. >> Yes. I agree with that. Like every single application, over the next five years, will be rewritten, to fit within this model. So imagine an HR application, I don't want to name companies, but imagine an HR application, and you go into application and you clicking on buttons, because you want to take two weeks of vacation, and menus, and clicking here and there, reasons and managers, versus just telling the system, "I'm taking two weeks of vacation, going to Las Vegas," book it, done. >> Yeah. >> And the system just does it for you. If you weren't completing in your input, in your description, for what you want, then the system asks you back, "Did you mean this? "Did you mean that? "Were you trying to also do this as well?" >> Yeah. >> "What was the reason?" And that will fit it for you, and just do it for you. So I think the user interface that we have with apps, is going to change to be very similar to the user interface that we have with each other. And that's why all these apps will need to evolve. >> I know we don't have a lot of time, 'cause you guys are very busy, but I want to definitely have multiple segments with you guys, on this topic, because there's so much to talk about. There's a lot of parallels going on here. I was talking again with Swami who runs all the AI database at AWS, and I asked him, I go, "This feels a lot like the original AWS. "You don't have to provision a data center." A lot of this heavy lifting on the back end, is these large language models, with these foundational models. So the bottleneck in the past, was the energy, and cost to actually do it. Now you're seeing it being stood up faster. So there's definitely going to be a tsunami of apps. I would see that clearly. What is it? We don't know yet. But also people who are going to leverage the fact that I can get started building value. So I see a startup boom coming, and I see an application tsunami of refactoring things. >> Yes. >> So the replatforming is already kind of happening. >> Yes, >> OpenAI, chatGPT, whatever. So that's going to be a developer environment. I mean if Amazon turns this into an API, or a Microsoft, what you guys are doing. >> We're turning it into API as well. That's part of what we're doing as well, yes. >> This is why this is exciting. Amr, you've lived the big data dream, and and we used to talk, if you didn't have a big data problem, if you weren't full of data, you weren't really getting it. Now people have all the data, and they got to stand this up. >> Yeah. >> So the analogy is again, the mobile, I like the mobile movement, and using mobile as an analogy, most companies were not building for a mobile environment, right? They were just building for the web, and legacy way of doing apps. And as soon as the user expectations shifted, that my expectation now, I need to be able to do my job on this small screen, on the mobile device with a touchscreen. Everybody had to invest in re-architecting, and re-implementing every single app, to fit within that model, and that model of interaction. And we are seeing the exact same thing happen now. And one of the core things we're focused on at Vectara, is how to simplify that for organizations, because a lot of them are overwhelmed by large language models, and ML. >> They don't have the staff. >> Yeah, yeah, yeah. They're understaffed, they don't have the skills. >> But they got developers, they've got DevOps, right? >> Yes. >> So they have the DevSecOps going on. >> Exactly, yes. >> So our goal is to simplify it enough for them that they can start leveraging this technology effectively, within their applications. >> Ed, you're the COO of the company, obviously a startup. You guys are growing. You got great backup, and good team. You've also done a lot of business development, and technical business development in this area. If you look at the landscape right now, and I agree the apps are coming, every company I talk to, that has that jet chatGPT of, you know, epiphany, "Oh my God, look how cool this is. "Like magic." Like okay, it's code, settle down. >> Mm hmm. >> But everyone I talk to is using it in a very horizontal way. I talk to a very senior person, very tech alpha geek, very senior person in the industry, technically. they're using it for log data, they're using it for configuration of routers. And in other areas, they're using it for, every vertical has a use case. So this is horizontally scalable from a use case standpoint. When you hear horizontally scalable, first thing I chose in my mind is cloud, right? >> Mm hmm. >> So cloud, and scalability that way. And the data is very specialized. So now you have this vertical specialization, horizontally scalable, everyone will be refactoring. What do you see, and what are you seeing from customers, that you talk to, and prospects? >> Yeah, I mean put yourself in the shoes of an application developer, who is actually trying to make their application a bit more like magic. And to have that soon-to-be, honestly, expected experience. They've got to think about things like performance, and how efficiently that they can actually execute a query, or a question. They've got to think about cost. Generative isn't cheap, like the inference of it. And so you've got to be thoughtful about how and when you take advantage of it, you can't use it as a, you know, everything looks like a nail, and I've got a hammer, and I'm going to hit everything with it, because that will be wasteful. Developers also need to think about how they're going to take advantage of, but not lose their own data. So there has to be some controls around what they feed into the large language model, if anything. Like, should they fine tune a large language model with their own data? Can they keep it logically separated, but still take advantage of the powers of a large language model? And they've also got to take advantage, and be aware of the fact that when data is generated, that it is a different class of data. It might not fully be their own. >> Yeah. >> And it may not even be fully verified. And so when the logical cycle starts, of someone making a request, the relationship between that request, and the output, those things have to be stored safely, logically, and identified as such. >> Yeah. >> And taken advantage of in an ongoing fashion. So these are mega problems, each one of them independently, that, you know, you can think of it as middleware companies need to take advantage of, and think about, to help the next wave of application development be logical, sensible, and effective. It's not just calling some raw API on the cloud, like openAI, and then just, you know, you get your answer and you're done, because that is a very brute force approach. >> Well also I will point, first of all, I agree with your statement about the apps experience, that's going to be expected, form filling. Great point. The interesting about chatGPT. >> Sorry, it's not just form filling, it's any action you would like to take. >> Yeah. >> Instead of clicking, and dragging, and dropping, and doing it on a menu, or on a touch screen, you just say it, and it's and it happens perfectly. >> Yeah. It's a different interface. And that's why I love that UIUX experiences, that's the people falling out of their chair moment with chatGPT, right? But a lot of the things with chatGPT, if you feed it right, it works great. If you feed it wrong and it goes off the rails, it goes off the rails big. >> Yes, yes. >> So the the Bing catastrophes. >> Yeah. >> And that's an example of garbage in, garbage out, classic old school kind of comp-side phrase that we all use. >> Yep. >> Yes. >> This is about data in injection, right? It reminds me the old SQL days, if you had to, if you can sling some SQL, you were a magician, you know, to get the right answer, it's pretty much there. So you got to feed the AI. >> You do, Some people call this, the early word to describe this as prompt engineering. You know, old school, you know, search, or, you know, engagement with data would be, I'm going to, I have a question or I have a query. New school is, I have, I have to issue it a prompt, because I'm trying to get, you know, an action or a reaction, from the system. And the active engineering, there are a lot of different ways you could do it, all the way from, you know, raw, just I'm going to send you whatever I'm thinking. >> Yeah. >> And you get the unintended outcomes, to more constrained, where I'm going to just use my own data, and I'm going to constrain the initial inputs, the data I already know that's first party, and I trust, to, you know, hyper constrain, where the application is actually, it's looking for certain elements to respond to. >> It's interesting Amr, this is why I love this, because one we are in the media, we're recording this video now, we'll stream it. But we got all your linguistics, we're talking. >> Yes. >> This is data. >> Yep. >> So the data quality becomes now the new intellectual property, because, if you have that prompt source data, it makes data or content, in our case, the original content, intellectual property. >> Absolutely. >> Because that's the value. And that's where you see chatGPT fall down, is because they're trying to scroll the web, and people think it's search. It's not necessarily search, it's giving you something that you wanted. It is a lot of that, I remember in Cloudera, you said, "Ask the right questions." Remember that phrase you guys had, that slogan? >> Mm hmm. And that's prompt engineering. So that's exactly, that's the reinvention of "Ask the right question," is prompt engineering is, if you don't give these models the question in the right way, and very few people know how to frame it in the right way with the right context, then you will get garbage out. Right? That is the garbage in, garbage out. But if you specify the question correctly, and you provide with it the metadata that constrain what that question is going to be acted upon or answered upon, then you'll get much better answers. And that's exactly what we solved Vectara. >> Okay. So before we get into the last couple minutes we have left, I want to make sure we get a plug in for the opportunity, and the profile of Vectara, your new company. Can you guys both share with me what you think the current situation is? So for the folks who are now having those moments of, "Ah, AI's bullshit," or, "It's not real, it's a lot of stuff," from, "Oh my god, this is magic," to, "Okay, this is the future." >> Yes. >> What would you say to that person, if you're at a cocktail party, or in the elevator say, "Calm down, this is the first inning." How do you explain the dynamics going on right now, to someone who's either in the industry, but not in the ropes? How would you explain like, what this wave's about? How would you describe it, and how would you prepare them for how to change their life around this? >> Yeah, so I'll go first and then I'll let Ed go. Efficiency, efficiency is the description. So we figured that a way to be a lot more efficient, a way where you can write a lot more emails, create way more content, create way more presentations. Developers can develop 10 times faster than they normally would. And that is very similar to what happened during the Industrial Revolution. I always like to look at examples from the past, to read what will happen now, and what will happen in the future. So during the Industrial Revolution, it was about efficiency with our hands, right? So I had to make a piece of cloth, like this piece of cloth for this shirt I'm wearing. Our ancestors, they had to spend month taking the cotton, making it into threads, taking the threads, making them into pieces of cloth, and then cutting it. And now a machine makes it just like that, right? And the ancestors now turned from the people that do the thing, to manage the machines that do the thing. And I think the same thing is going to happen now, is our efficiency will be multiplied extremely, as human beings, and we'll be able to do a lot more. And many of us will be able to do things they couldn't do before. So another great example I always like to use is the example of Google Maps, and GPS. Very few of us knew how to drive a car from one location to another, and read a map, and get there correctly. But once that efficiency of an AI, by the way, behind these things is very, very complex AI, that figures out how to do that for us. All of us now became amazing navigators that can go from any point to any point. So that's kind of how I look at the future. >> And that's a great real example of impact. Ed, your take on how you would talk to a friend, or colleague, or anyone who asks like, "How do I make sense of the current situation? "Is it real? "What's in it for me, and what do I do?" I mean every company's rethinking their business right now, around this. What would you say to them? >> You know, I usually like to show, rather than describe. And so, you know, the other day I just got access, I've been using an application for a long time, called Notion, and it's super popular. There's like 30 or 40 million users. And the new version of Notion came out, which has AI embedded within it. And it's AI that allows you primarily to create. So if you could break down the world of AI into find and create, for a minute, just kind of logically separate those two things, find is certainly going to be massively impacted in our experiences as consumers on, you know, Google and Bing, and I can't believe I just said the word Bing in the same sentence as Google, but that's what's happening now (all laughing), because it's a good example of change. >> Yes. >> But also inside the business. But on the crate side, you know, Notion is a wiki product, where you try to, you know, note down things that you are thinking about, or you want to share and memorialize. But sometimes you do need help to get it down fast. And just in the first day of using this new product, like my experience has really fundamentally changed. And I think that anybody who would, you know, anybody say for example, that is using an existing app, I would show them, open up the app. Now imagine the possibility of getting a starting point right off the bat, in five seconds of, instead of having to whole cloth draft this thing, imagine getting a starting point then you can modify and edit, or just dispose of and retry again. And that's the potential for me. I can't imagine a scenario where, in a few years from now, I'm going to be satisfied if I don't have a little bit of help, in the same way that I don't manually spell check every email that I send. I automatically spell check it. I love when I'm getting type ahead support inside of Google, or anything. Doesn't mean I always take it, or when texting. >> That's efficiency too. I mean the cloud was about developers getting stuff up quick. >> Exactly. >> All that heavy lifting is there for you, so you don't have to do it. >> Right? >> And you get to the value faster. >> Exactly. I mean, if history taught us one thing, it's, you have to always embrace efficiency, and if you don't fast enough, you will fall behind. Again, looking at the industrial revolution, the companies that embraced the industrial revolution, they became the leaders in the world, and the ones who did not, they all like. >> Well the AI thing that we got to watch out for, is watching how it goes off the rails. If it doesn't have the right prompt engineering, or data architecture, infrastructure. >> Yes. >> It's a big part. So this comes back down to your startup, real quick, I know we got a couple minutes left. Talk about the company, the motivation, and we'll do a deeper dive on on the company. But what's the motivation? What are you targeting for the market, business model? The tech, let's go. >> Actually, I would like Ed to go first. Go ahead. >> Sure, I mean, we're a developer-first, API-first platform. So the product is oriented around allowing developers who may not be superstars, in being able to either leverage, or choose, or select their own large language models for appropriate use cases. But they that want to be able to instantly add the power of large language models into their application set. We started with search, because we think it's going to be one of the first places that people try to take advantage of large language models, to help find information within an application context. And we've built our own large language models, focused on making it very efficient, and elegant, to find information more quickly. So what a developer can do is, within minutes, go up, register for an account, and get access to a set of APIs, that allow them to send data, to be converted into a format that's easy to understand for large language models, vectors. And then secondarily, they can issue queries, ask questions. And they can ask them very, the questions that can be asked, are very natural language questions. So we're talking about long form sentences, you know, drill down types of questions, and they can get answers that either come back in depending upon the form factor of the user interface, in list form, or summarized form, where summarized equals the opportunity to kind of see a condensed, singular answer. >> All right. I have a. >> Oh okay, go ahead, you go. >> I was just going to say, I'm going to be a customer for you, because I want, my dream was to have a hologram of theCUBE host, me and Dave, and have questions be generated in the metaverse. So you know. (all laughing) >> There'll be no longer any guests here. They'll all be talking to you guys. >> Give a couple bullets, I'll spit out 10 good questions. Publish a story. This brings the automation, I'm sorry to interrupt you. >> No, no. No, no, I was just going to follow on on the same. So another way to look at exactly what Ed described is, we want to offer you chatGPT for your own data, right? So imagine taking all of the recordings of all of the interviews you have done, and having all of the content of that being ingested by a system, where you can now have a conversation with your own data and say, "Oh, last time when I met Amr, "which video games did we talk about? "Which movie or book did we use as an analogy "for how we should be embracing data science, "and big data, which is moneyball," I know you use moneyball all the time. And you start having that conversation. So, now the data doesn't become a passive asset that you just have in your organization. No. It's an active participant that's sitting with you, on the table, helping you make decisions. >> One of my favorite things to do with customers, is to go to their site or application, and show them me using it. So for example, one of the customers I talked to was one of the biggest property management companies in the world, that lets people go and rent homes, and houses, and things like that. And you know, I went and I showed them me searching through reviews, looking for information, and trying different words, and trying to find out like, you know, is this place quiet? Is it comfortable? And then I put all the same data into our platform, and I showed them the world of difference you can have when you start asking that question wholeheartedly, and getting real information that doesn't have anything to do with the words you asked, but is really focused on the meaning. You know, when I asked like, "Is it quiet?" You know, answers would come back like, "The wind whispered through the trees peacefully," and you know, it's like nothing to do with quiet in the literal word sense, but in the meaning sense, everything to do with it. And that that was magical even for them, to see that. >> Well you guys are the front end of this big wave. Congratulations on the startup, Amr. I know you guys got great pedigree in big data, and you've got a great team, and congratulations. Vectara is the name of the company, check 'em out. Again, the startup boom is coming. This will be one of the major waves, generative AI is here. I think we'll look back, and it will be pointed out as a major inflection point in the industry. >> Absolutely. >> There's not a lot of hype behind that. People are are seeing it, experts are. So it's going to be fun, thanks for watching. >> Thanks John. (soft music)
SUMMARY :
I call it the fifth wave in the industry. It's great to be here. and the application's almost mind blowing. And in the meanwhile, and you got more horsepower,, of all the previous phases. in the same way that, you know, and all the work that's done on ethics, "bring the lead to the top." in terms of scratching the surface and it's going to fundamentally change and you go into application And the system just does it for you. is going to change to be very So the bottleneck in the past, So the replatforming is So that's going to be a That's part of what and they got to stand this up. And one of the core things don't have the skills. So our goal is to simplify it and I agree the apps are coming, I talk to a very senior And the data is very specialized. and be aware of the fact that request, and the output, some raw API on the cloud, about the apps experience, it's any action you would like to take. you just say it, and it's But a lot of the things with chatGPT, comp-side phrase that we all use. It reminds me the old all the way from, you know, raw, and I'm going to constrain But we got all your So the data quality And that's where you That is the garbage in, garbage out. So for the folks who are and how would you prepare them that do the thing, to manage the current situation? And the new version of Notion came out, But on the crate side, you I mean the cloud was about developers so you don't have to do it. and the ones who did not, they all like. If it doesn't have the So this comes back down to Actually, I would like Ed to go first. factor of the user interface, I have a. generated in the metaverse. They'll all be talking to you guys. This brings the automation, of all of the interviews you have done, one of the customers I talked to Vectara is the name of the So it's going to be fun, Thanks John.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Markoff | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Ed Alban | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
30 | QUANTITY | 0.99+ |
10 times | QUANTITY | 0.99+ |
2006 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
two weeks | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Ed Albanese | PERSON | 0.99+ |
John | PERSON | 0.99+ |
five seconds | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Ed | PERSON | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
10 good questions | QUANTITY | 0.99+ |
Swami | PERSON | 0.99+ |
15 different possibilities | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Vectara | ORGANIZATION | 0.99+ |
Amr Awadallah | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Cloudera | ORGANIZATION | 0.99+ |
first time | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
end of 2019 | DATE | 0.99+ |
yesterday | DATE | 0.98+ |
Big Data | ORGANIZATION | 0.98+ |
40 million users | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
two great guests | QUANTITY | 0.98+ |
12 plus years | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
five dollar | QUANTITY | 0.98+ |
Netscape | ORGANIZATION | 0.98+ |
five years ago | DATE | 0.98+ |
SQL | TITLE | 0.98+ |
first inning | QUANTITY | 0.98+ |
Amr | PERSON | 0.97+ |
two schools | QUANTITY | 0.97+ |
first | QUANTITY | 0.97+ |
10 years ago | DATE | 0.97+ |
One | QUANTITY | 0.96+ |
first day | QUANTITY | 0.96+ |
three | DATE | 0.96+ |
chatGPT | TITLE | 0.96+ |
first places | QUANTITY | 0.95+ |
Bing | ORGANIZATION | 0.95+ |
Notion | TITLE | 0.95+ |
first thing | QUANTITY | 0.94+ |
theCUBE | ORGANIZATION | 0.94+ |
Beyond the Buzz | TITLE | 0.94+ |
Sati Natel | PERSON | 0.94+ |
Industrial Revolution | EVENT | 0.93+ |
one location | QUANTITY | 0.93+ |
three years ago | DATE | 0.93+ |
single application | QUANTITY | 0.92+ |
one thing | QUANTITY | 0.91+ |
first platform | QUANTITY | 0.91+ |
five years old | QUANTITY | 0.91+ |
Chris Jones, Platform9 | Finding your "Just Right” path to Cloud Native
(upbeat music) >> Hi everyone. Welcome back to this Cube conversation here in Palo Alto, California. I'm John Furrier, host of "theCUBE." Got a great conversation around Cloud Native, Cloud Native Journey, how enterprises are looking at Cloud Native and putting it all together. And it comes down to operations, developer productivity, and security. It's the hottest topic in technology. We got Chris Jones here in the studio, director of Product Management for Platform9. Chris, thanks for coming in. >> Hey, thanks. >> So when we always chat about, when we're at KubeCon. KubeConEU is coming up and in a few, in a few months, the number one conversation is developer productivity. And the developers are driving all the standards. It's interesting to see how they just throw everything out there and whatever gets adopted ends up becoming the standard, not the old school way of kind of getting stuff done. So that's cool. Security Kubernetes and Containers are all kind of now that next level. So you're starting to see the early adopters moving to the mainstream. Enterprises, a variety of different approaches. You guys are at the center of this. We've had a couple conversations with your CEO and your tech team over there. What are you seeing? You're building the products. What's the core product focus right now for Platform9? What are you guys aiming for? >> The core is that blend of enabling your infrastructure and PlatformOps or DevOps teams to be able to go fast and run in a stable environment, but at the same time enable developers. We don't want people going back to what I've been calling Shadow IT 2.0. It's, hey, I've been told to do something. I kicked off this Container initiative. I need to run my software somewhere. I'm just going to go figure it out. We want to keep those people productive. At the same time we want to enable velocity for our operations teams, be it PlatformOps or DevOps. >> Take us through in your mind and how you see the industry rolling out this Cloud Native journey. Where do you see customers out there? Because DevOps have been around, DevSecOps is rocking, you're seeing AI, hot trend now. Developers are still in charge. Is there a change to the infrastructure of how developers get their coding done and the infrastructure, setting up the DevOps is key, but when you add the Cloud Native journey for an enterprise, what changes? What is the, what is the, I guess what is the Cloud Native journey for an enterprise these days? >> The Cloud Native journey or the change? When- >> Let's start with the, let's start with what they want to do. What's the goal and then how does that happen? >> I think the goal is that promise land. Increased resiliency, better scalability, and overall reduced costs. I've gone from physical to virtual that gave me a higher level of density, packing of resources. I'm moving to Containers. I'm removing that OS layer again. I'm getting a better density again, but all of a sudden I'm running Kubernetes. What does that, what does that fundamentally do to my operations? Does it magically give me scalability and resiliency? Or do I need to change what I'm running and how it's running so it fits that infrastructure? And that's the reality, is you can't just take a Container and drop it into Kubernetes and say, hey, I'm now Cloud Native. I've got reduced cost, or I've got better resiliency. There's things that your engineering teams need to do to make sure that application is a Cloud Native. And then there's what I think is one of the largest shifts of virtual machines to containers. When I was in the world of application performance monitoring, we would see customers saying, well, my engineering team have this Java app, and they said it needs a VM with 12 gig of RAM and eight cores, and that's what we gave it. But it's running slow. I'm working with the application team and you can see it's running slow. And they're like, well, it's got all of its resources. One of those nice features of virtualization is over provisioning. So the infrastructure team would say, well, we gave it, we gave it all a RAM it needed. And what's wrong with that being over provisioned? It's like, well, Java expects that RAM to be there. Now all of a sudden, when you move to the world of containers, what we've got is that's not a set resource limit, really is like it used to be in a VM, right? When you set it for a container, your application teams really need to be paying attention to your resource limits and constraints within the world of Kubernetes. So instead of just being able to say, hey, I'm throwing over the fence and now it's just going to run on a VM, and that VMs got everything it needs. It's now really running on more, much more of a shared infrastructure where limits and constraints are going to impact the neighbors. They are going to impact who's making that decision around resourcing. Because that Kubernetes concept of over provisioning and the virtualization concept of over provisioning are not the same. So when I look at this problem, it's like, well, what changed? Well, I'll do my scale tests as an application developer and tester, and I'd see what resources it needs. I asked for that in the VM, that sets the high watermark, job's done. Well, Kubernetes, it's no longer a VM, it's a Kubernetes manifest. And well, who owns that? Who's writing it? Who's setting those limits? To me, that should be the application team. But then when it goes into operations world, they're like, well, that's now us. Can we change those? So it's that amalgamation of the two that is saying, I'm a developer. I used to pay attention, but now I need to pay attention. And an infrastructure person saying, I used to just give 'em what they wanted, but now I really need to know what they've wanted, because it's going to potentially have a catastrophic impact on what I'm running. >> So what's the impact for the developer? Because, infrastructure's code is what everybody wants. The developer just wants to get the code going and they got to pay attention to all these things, or don't they? Is that where you guys come in? How do you guys see the problem? Actually scope the problem that you guys solve? 'Cause I think you're getting at I think the core issue here, which is, I've got Kubernetes, I've got containers, I've got developer productivity that I want to focus on. What's the problem that you guys solve? >> Platform operation teams that are adopting Cloud Native in their environment, they've got that steep learning curve of Kubernetes plus this fundamental change of how an app runs. What we're doing is taking away the burden of needing to operate and run Kubernetes and giving them the choice of the flexibility of infrastructure and location. Be that an air gap environment like a, let's say a telco provider that needs to run a containerized network function and containerized workloads for 5G. That's one thing that we can deploy and achieve in a completely inaccessible environment all the way through to Platform9 running traditionally as SaaS, as we were born, that's remotely managing and controlling your Kubernetes environments on-premise AWS. That hybrid cloud experience that could be also Bare Metal, but it's our platform running your environments with our support there, 24 by seven, that's proactively reaching out. So it's removing a lot of that burden and the complications that come along with operating the environment and standing it up, which means all of a sudden your DevOps and platform operations teams can go and work with your engineers and application developers and say, hey, let's get, let's focus on the stuff that, that we need to be focused on, which is running our business and providing a service to our customers. Not figuring out how to upgrade a Kubernetes cluster, add new nodes, and configure all of the low level. >> I mean there are, that's operations that just needs to work. And sounds like as they get into the Cloud Native kind of ops, there's a lot of stuff that kind of goes wrong. Or you go, oops, what do we buy into? Because the CIOs, let's go, let's go Cloud Native. We want to, we got to get set up for the future. We're going to be Cloud Native, not just lift and shift and we're going to actually build it out right. Okay, that sounds good. And when we have to actually get done. >> Chris: Yeah. >> You got to spin things up and stand up the infrastructure. What specifically use case do you guys see that emerges for Platform9 when people call you up and you go talk to customers and prospects? What's the one thing or use case or cases that you guys see that you guys solve the best? >> So I think one of the, one of the, I guess new use cases that are coming up now, everyone's talking about economic pressures. I think the, the tap blows open, just get it done. CIO is saying let's modernize, let's use the cloud. Now all of a sudden they're recognizing, well wait, we're spending a lot of money now. We've opened that tap all the way, what do we do? So now they're looking at ways to control that spend. So we're seeing that as a big emerging trend. What we're also sort of seeing is people looking at their data centers and saying, well, I've got this huge legacy environment that's running a hypervisor. It's running VMs. Can we still actually do what we need to do? Can we modernize? Can we start this Cloud Native journey without leaving our data centers, our co-locations? Or if I do want to reduce costs, is that that thing that says maybe I'm repatriating or doing a reverse migration? Do I have to go back to my data center or are there other alternatives? And we're seeing that trend a lot. And our roadmap and what we have in the product today was specifically built to handle those, those occurrences. So we brought in KubeVirt in terms of virtualization. We have a long legacy doing OpenStack and private clouds. And we've worked with a lot of those users and customers that we have and asked the questions, what's important? And today, when we look at the world of Cloud Native, you can run virtualization within Kubernetes. So you can, instead of running two separate platforms, you can have one. So all of a sudden, if you're looking to modernize, you can start on that new infrastructure stack that can run anywhere, Kubernetes, and you can start bringing VMs over there as you are containerizing at the same time. So now you can keep your application operations in one environment. And this also helps if you're trying to reduce costs. If you really are saying, we put that Dev environment in AWS, we've got a huge amount of velocity out of it now, can we do that elsewhere? Is there a co-location we can go to? Is there a provider that we can go to where we can run that infrastructure or run the Kubernetes, but not have to run the infrastructure? >> It's going to be interesting too, when you see the Edge come online, you start, we've got Mobile World Congress coming up, KubeCon events we're going to be at, the conversation is not just about public cloud. And you guys obviously solve a lot of do-it-yourself implementation hassles that emerge when people try to kind of stand up their own environment. And we hear from developers consistency between code, managing new updates, making sure everything is all solid so they can go fast. That's the goal. And that, and then people can get standardized on that. But as you get public cloud and do it yourself, kind of brings up like, okay, there's some gaps there as the architecture changes to be more distributed computing, Edge, on-premises cloud, it's cloud operations. So that's cool for DevOps and Cloud Native. How do you guys differentiate from say, some the public cloud opportunities and the folks who are doing it themselves? How do you guys fit in that world and what's the pitch or what's the story? >> The fit that we look at is that third alternative. Let's get your team focused on what's high value to your business and let us deliver that public cloud experience on your infrastructure or in the public cloud, which gives you that ability to still be flexible if you want to make choices to run consistently for your developers in two different locations. So as I touched on earlier, instead of saying go figure out Kubernetes, how do you upgrade a hundred worker nodes in place upgrade. We've solved that problem. That's what we do every single day of the week. Don't go and try to figure out how to upgrade a cluster and then upgrade all of the, what I call Kubernetes friends, your core DNSs, your metrics server, your Kubernetes dashboard. These are all things that we package, we test, we version. So when you click upgrade, we've already handled that entire process. So it's saying don't have your team focused on that lower level piece of work. Get them focused on what is important, which is your business services. >> Yeah, the infrastructure and getting that stood up. I mean, I think the thing that's interesting, if you look at the market right now, you mentioned cost savings and recovery, obviously kind of a recession. I mean, people are tightening their belts for sure. I don't think the digital transformation and Cloud Native spend is going to plummet. It's going to probably be on hold and be squeezed a little bit. But to your point, people are refactoring looking at how to get the best out of what they got. It's not just open the tap of spend the cash like it used to be. Yeah, a couple months, even a couple years ago. So okay, I get that. But then you look at the what's coming, AI. You're seeing all the new data infrastructure that's coming. The containers, Kubernetes stuff, got to get stood up pretty quickly and it's got to be reliable. So to your point, the teams need to get done with this and move on to the next thing. >> Chris: Yeah, yeah, yeah. >> 'Cause there's more coming. I mean, there's a lot coming for the apps that are building in Data Native, AI-Native, Cloud Native. So it seems that this Kubernetes thing needs to get solved. Is that kind of what you guys are focused on right now? >> So, I mean to use a customer, we have a customer that's in AI/ML and they run their platform at customer sites and that's hardware bound. You can't run AI machine learning on anything anywhere. Well, with Platform9 they can. So we're enabling them to deliver services into their customers that's running their AI/ML platform in their customer's data centers anywhere in the world on hardware that is purpose-built for running that workload. They're not Kubernetes experts. That's what we are. We're bringing them that ability to focus on what's important and just delivering their business services whilst they're enabling our team. And our 24 by seven proactive management are always on assurance to keep that up and running for them. So when something goes bump at the night at 2:00am, our guys get woken up. They're the ones that are reaching out to the customer saying, your environments have a problem, we're taking these actions to fix it. Obviously sometimes, especially if it is running on Bare Metal, there's things you can't do remotely. So you might need someone to go and do that. But even when that happens, you're not by yourself. You're not sitting there like I did when I worked for a bank in one of my first jobs, three o'clock in the morning saying, wow, our end of day processing is stuck. Who else am I waking up? Right? >> Exactly, yeah. Got to get that cash going. But this is a great use case. I want to get to the customer. What do some of the successful customers say to you for the folks watching that aren't yet a customer of Platform9, what are some of the accolades and comments or anecdotes that you guys hear from customers that you have? >> It just works, which I think is probably one of the best ones you can get. Customers coming back and being able to show to their business that they've delivered growth, like business growth and productivity growth and keeping their organization size the same. So we started on our containerization journey. We went to Kubernetes. We've deployed all these new workloads and our operations team is still six people. We're doing way more with growth less, and I think that's also talking to the strength that we're bringing, 'cause we're, we're augmenting that team. They're spending less time on the really low level stuff and automating a lot of the growth activity that's involved. So when it comes to being able to grow their business, they can just focus on that, not- >> Well you guys do the heavy lifting, keep on top of the Kubernetes, make sure that all the versions are all done. Everything's stable and consistent so they can go on and do the build out and provide their services. That seems to be what you guys are best at. >> Correct, correct. >> And so what's on the roadmap? You have the product, direct product management, you get the keys to the kingdom. What is, what is the focus? What's your focus right now? Obviously Kubernetes is growing up, Containers. We've been hearing a lot at the last KubeCon about the security containers is getting better. You've seen verification, a lot more standards around some things. What are you focused on right now for at a product over there? >> Edge is a really big focus for us. And I think in Edge you can look at it in two ways. The mantra that I drive is Edge must be remote. If you can't do something remotely at the Edge, you are using a human being, that's not Edge. Our Edge management capabilities and being in the market for over two years are a hundred percent remote. You want to stand up a store, you just ship the server in there, it gets racked, the rest of it's remote. Imagine a store manager in, I don't know, KFC, just plugging in the server, putting in the ethernet cable, pressing the power button. The rest of all that provisioning for that Cloud Native stack, Kubernetes, KubeVirt for virtualization is done remotely. So we're continuing to focus on that. The next piece that is related to that is allowing people to run Platform9 SaaS in their data centers. So we do ag app today and we've had a really strong focus on telecommunications and the containerized network functions that come along with that. So this next piece is saying, we're bringing what we run as SaaS into your data center, so then you can run it. 'Cause there are many people out there that are saying, we want these capabilities and we want everything that the Platform9 control plane brings and simplifies. But unfortunately, regulatory compliance reasons means that we can't leverage SaaS. So they might be using a cloud, but they're saying that's still our infrastructure. We're still closed that network down, or they're still on-prem. So they're two big priorities for us this year. And that on-premise experiences is paramount, even to the point that we will be delivering a way that when you run an on-premise, you can still say, wait a second, well I can send outbound alerts to Platform9. So their support team can still be proactively helping me as much as they could, even though I'm running Platform9s control plane. So it's sort of giving that blend of two experiences. They're big, they're big priorities. And the third pillar is all around virtualization. It's saying if you have economic pressures, then I think it's important to look at what you're spending today and realistically say, can that be reduced? And I think hypervisors and virtualization is something that should be looked at, because if you can actually reduce that spend, you can bring in some modernization at the same time. Let's take some of those nos that exist that are two years into their five year hardware life cycle. Let's turn that into a Cloud Native environment, which is enabling your modernization in place. It's giving your engineers and application developers the new toys, the new experiences, and then you can start running some of those virtualized workloads with KubeVirt, there. So you're reducing cost and you're modernizing at the same time with your existing infrastructure. >> You know Chris, the topic of this content series that we're doing with you guys is finding the right path, trusting the right path to Cloud Native. What does that mean? I mean, if you had to kind of summarize that phrase, trusting the right path to Cloud Native, what does that mean? It mean in terms of architecture, is it deployment? Is it operations? What's the underlying main theme of that quote? What's the, what's? How would you talk to a customer and say, what does that mean if someone said, "Hey, what does that right path mean?" >> I think the right path means focusing on what you should be focusing on. I know I've said it a hundred times, but if your entire operations team is trying to figure out the nuts and bolts of Kubernetes and getting three months into a journey and discovering, ah, I need Metrics Server to make something function. I want to use Horizontal Pod Autoscaler or Vertical Pod Autoscaler and I need this other thing, now I need to manage that. That's not the right path. That's literally learning what other people have been learning for the last five, seven years that have been focused on Kubernetes solely. So the why- >> There's been a lot of grind. People have been grinding it out. I mean, that's what you're talking about here. They've been standing up the, when Kubernetes started, it was all the promise. >> Chris: Yep. >> And essentially manually kind of getting in in the weeds and configuring it. Now it's matured up. They want stability. >> Chris: Yeah. >> Not everyone can get down and dirty with Kubernetes. It's not something that people want to generally do unless you're totally into it, right? Like I mean, I mean ops teams, I mean, yeah. You know what I mean? It's not like it's heavy lifting. Yeah, it's important. Just got to get it going. >> Yeah, I mean if you're deploying with Platform9, your Ops teams can tinker to their hearts content. We're completely compliant upstream Kubernetes. You can go and change an API server flag, let's go and mess with the scheduler, because we want to. You can still do that, but don't, don't have your team investing in all this time to figure it out. It's been figured out. >> John: Got it. >> Get them focused on enabling velocity for your business. >> So it's not build, but run. >> Chris: Correct? >> Or run Kubernetes, not necessarily figure out how to kind of get it all, consume it out. >> You know we've talked to a lot of customers out there that are saying, "I want to be able to deliver a service to my users." Our response is, "Cool, let us run it. You consume it, therefore deliver it." And we're solving that in one hit versus figuring out how to first run it, then operate it, then turn that into a consumable service. >> So the alternative Platform9 is what? They got to do it themselves or use the Cloud or what's the, what's the alternative for the customer for not using Platform9? Hiring more people to kind of work on it? What's the? >> People, building that kind of PaaS experience? Something that I've been very passionate about for the past year is looking at that world of sort of GitOps and what that means. And if you go out there and you sort of start asking the question what's happening? Just generally with Kubernetes as well and GitOps in that scope, then you'll hear some people saying, well, I'm making it PaaS, because Kubernetes is too complicated for my developers and we need to give them something. There's some great material out there from the likes of Intuit and Adobe where for two big contributors to Argo and the Argo projects, they almost have, well they do have, different experiences. One is saying, we went down the PaaS route and it failed. The other one is saying, well we've built a really stable PaaS and it's working. What are they trying to do? They're trying to deliver an outcome to make it easy to use and consume Kubernetes. So you could go out there and say, hey, I'm going to build a Kubernetes cluster. Sounds like Argo CD is a great way to expose that to my developers so they can use Kubernetes without having to use Kubernetes and start automating things. That is an approach, but you're going to be going completely open source and you're going to have to bring in all the individual components, or you could just lay that, lay it down, and consume it as a service and not have to- >> And mentioned to it. They were the ones who kind of brought that into the open. >> They did. Inuit is the primary contributor to the Argo set of products. >> How has that been received in the market? I mean, they had the event at the Computer History Museum last fall. What's the momentum there? What's the big takeaway from that project? >> Growth. To me, growth. I mean go and track the stars on that one. It's just, it's growth. It's unlocking machine learning. Argo workflows can do more than just make things happen. Argo CD I think the approach they're taking is, hey let's make this simple to use, which I think can be lost. And I think credit where credit's due, they're really pushing to bring in a lot of capabilities to make it easier to work with applications and microservices on Kubernetes. It's not just that, hey, here's a GitOps tool. It can take something from a Git repo and deploy it and maybe prioritize it and help you scale your operations from that perspective. It's taking a step back and saying, well how did we get to production in the first place? And what can be done down there to help as well? I think it's growth expansion of features. They had a huge release just come out in, I think it was 2.6, that brought in things that as a product manager that I don't often look at like really deep technical things and say wow, that's powerful. But they have, they've got some great features in that release that really do solve real problems. >> And as the product, as the product person, who's the target buyer for you? Who's the customer? Who's making that? And you got decision maker, influencer, and recommender. Take us through the customer persona for you guys. >> So that Platform Ops, DevOps space, right, the people that need to be delivering Containers as a service out to their organization. But then it's also important to say, well who else are our primary users? And that's developers, engineers, right? They shouldn't have to say, oh well I have access to a Kubernetes cluster. Do I have to use kubectl or do I need to go find some other tool? No, they can just log to Platform9. It's integrated with your enterprise id. >> They're the end customer at the end of the day, they're the user. >> Yeah, yeah. They can log in. And they can see the clusters you've given them access to as a Platform Ops Administrator. >> So job well done for you guys. And your mind is the developers are moving 'em fast, coding and happy. >> Chris: Yeah, yeah. >> And and from a customer standpoint, you reduce the maintenance cost, because you keep the Ops smoother, so you got efficiency and maintenance costs kind of reduced or is that kind of the benefits? >> Yeah, yep, yeah. And at two o'clock in the morning when things go inevitably wrong, they're not there by themselves, and we're proactively working with them. >> And that's the uptime issue. >> That is the uptime issue. And Cloud doesn't solve that, right? Everyone experienced that Clouds can go down, entire regions can go offline. That's happened to all Cloud providers. And what do you do then? Kubernetes isn't your recovery plan. It's part of it, right, but it's that piece. >> You know Chris, to wrap up this interview, I will say that "theCUBE" is 12 years old now. We've been to OpenStack early days. We had you guys on when we were covering OpenStack and now Cloud has just been booming. You got AI around the corner, AI Ops, now you got all this new data infrastructure, it's just amazing Cloud growth, Cloud Native, Security Native, Cloud Native, Data Native, AI Native. It's going to be all, this is the new app environment, but there's also existing infrastructure. So going back to OpenStack, rolling our own cloud, building your own cloud, building infrastructure cloud, in a cloud way, is what the pioneers have done. I mean this is what we're at. Now we're at this scale next level, abstracted away and make it operational. It seems to be the key focus. We look at CNCF at KubeCon and what they're doing with the cloud SecurityCon, it's all about operations. >> Chris: Yep, right. >> Ops and you know, that's going to sound counterintuitive 'cause it's a developer open source environment, but you're starting to see that Ops focus in a good way. >> Chris: Yeah, yeah, yeah. >> Infrastructure as code way. >> Chris: Yep. >> What's your reaction to that? How would you summarize where we are in the industry relative to, am I getting, am I getting it right there? Is that the right view? What am I missing? What's the current state of the next level, NextGen infrastructure? >> It's a good question. When I think back to sort of late 2019, I sort of had this aha moment as I saw what really truly is delivering infrastructure as code happening at Platform9. There's an open source project Ironic, which is now also available within Kubernetes that is Metal Kubed that automates Bare Metal as code, which means you can go from an empty server, lay down your operating system, lay down Kubernetes, and you've just done everything delivered to your customer as code with a Cloud Native platform. That to me was sort of the biggest realization that I had as I was moving into this industry was, wait, it's there. This can be done. And the evolution of tooling and operations is getting to the point where that can be achieved and it's focused on by a number of different open source projects. Not just Ironic and and Metal Kubed, but that's a huge win. That is truly getting your infrastructure. >> John: That's an inflection point, really. >> Yeah. >> If you think about it, 'cause that's one of the problems. We had with the Bare Metal piece was the automation and also making it Cloud Ops, cloud operations. >> Right, yeah. I mean, one of the things that I think Ironic did really well was saying let's just treat that piece of Bare Metal like a Cloud VM or an instance. If you got a problem with it, just give the person using it or whatever's using it, a new one and reimage it. Just tell it to reimage itself and it'll just (snaps fingers) go. You can do self-service with it. In Platform9, if you log in to our SaaS Ironic, you can go and say, I want that physical server to myself, because I've got a giant workload, or let's turn it into a Kubernetes cluster. That whole thing is automated. To me that's infrastructure as code. I think one of the other important things that's happening at the same time is we're seeing GitOps, we're seeing things like Terraform. I think it's important for organizations to look at what they have and ask, am I using tools that are fit for tomorrow or am I using tools that are yesterday's tools to solve tomorrow's problems? And when especially it comes to modernizing infrastructure as code, I think that's a big piece to look at. >> Do you see Terraform as old or new? >> I see Terraform as old. It's a fantastic tool, capable of many great things and it can work with basically every single provider out there on the planet. It is able to do things. Is it best fit to run in a GitOps methodology? I don't think it is quite at that point. In fact, if you went and looked at Flux, Flux has ways that make Terraform GitOps compliant, which is absolutely fantastic. It's using two tools, the best of breeds, which is solving that tomorrow problem with tomorrow solutions. >> Is the new solutions old versus new. I like this old way, new way. I mean, Terraform is not that old and it's been around for about eight years or so, whatever. But HashiCorp is doing a great job with that. I mean, so okay with Terraform, what's the new address? Is it more complex environments? Because Terraform made sense when you had basic DevOps, but now it sounds like there's a whole another level of complexity. >> I got to say. >> New tools. >> That kind of amalgamation of that application into infrastructure. Now my app team is paying way more attention to that manifest file, which is what GitOps is trying to solve. Let's templatize things. Let's version control our manifest, be it helm, customize, or just a straight up Kubernetes manifest file, plain and boring. Let's get that version controlled. Let's make sure that we know what is there, why it was changed. Let's get some auditability and things like that. And then let's get that deployment all automated. So that's predicated on the cluster existing. Well why can't we do the same thing with the cluster, the inception problem. So even if you're in public cloud, the question is like, well what's calling that API to call that thing to happen? Where is that file living? How well can I manage that in a large team? Oh my God, something just changed. Who changed it? Where is that file? And I think that's one of big, the big pieces to be sold. >> Yeah, and you talk about Edge too and on-premises. I think one of the things I'm observing and certainly when DevOps was rocking and rolling and infrastructures code was like the real push, it was pretty much the public cloud, right? >> Chris: Yep. >> And you did Cloud Native and you had stuff on-premises. Yeah you did some lifting and shifting in the cloud, but the cool stuff was going in the public cloud and you ran DevOps. Okay, now you got on-premise cloud operation and Edge. Is that the new DevOps? I mean 'cause what you're kind of getting at with old new, old new Terraform example is an interesting point, because you're pointing out potentially that that was good DevOps back in the day or it still is. >> Chris: It is, I was going to say. >> But depending on how you define what DevOps is. So if you say, I got the new DevOps with public on-premise and Edge, that's just not all public cloud, that's essentially distributed Cloud Native. >> Correct. Is that the new DevOps in your mind or is that? How would you, or is that oversimplifying it? >> Or is that that term where everyone's saying Platform Ops, right? Has it shifted? >> Well you bring up a good point about Terraform. I mean Terraform is well proven. People love it. It's got great use cases and now there seems to be new things happening. We call things like super cloud emerging, which is multicloud and abstraction layers. So you're starting to see stuff being abstracted away for the benefits of moving to the next level, so teams don't get stuck doing the same old thing. They can move on. Like what you guys are doing with Platform9 is providing a service so that teams don't have to do it. >> Correct, yeah. >> That makes a lot of sense, So you just, now it's running and then they move on to the next thing. >> Chris: Yeah, right. >> So what is that next thing? >> I think Edge is a big part of that next thing. The propensity for someone to put up with a delay, I think it's gone. For some reason, we've all become fairly short-tempered, Short fused. You know, I click the button, it should happen now, type people. And for better or worse, hopefully it gets better and we all become a bit more patient. But how do I get more effective and efficient at delivering that to that really demanding- >> I think you bring up a great point. I mean, it's not just people are getting short-tempered. I think it's more of applications are being deployed faster, security is more exposed if they don't see things quicker. You got data now infrastructure scaling up massively. So, there's a double-edged swords to scale. >> Chris: Yeah, yeah. I mean, maintenance, downtime, uptime, security. So yeah, I think there's a tension around, and one hand enthusiasm around pushing a lot of code and new apps. But is the confidence truly there? It's interesting one little, (snaps finger) supply chain software, look at Container Security for instance. >> Yeah, yeah. It's big. I mean it was codified. >> Do you agree that people, that's kind of an issue right now. >> Yeah, and it was, I mean even the supply chain has been codified by the US federal government saying there's things we need to improve. We don't want to see software being a point of vulnerability, and software includes that whole process of getting it to a running point. >> It's funny you mentioned remote and one of the thing things that you're passionate about, certainly Edge has to be remote. You don't want to roll a truck or labor at the Edge. But I was doing a conversation with, at Rebars last year about space. It's hard to do brake fix on space. It's hard to do a, to roll a someone to configure satellite, right? Right? >> Chris: Yeah. >> So Kubernetes is in space. We're seeing a lot of Cloud Native stuff in apps, in space, so just an example. This highlights the fact that it's got to be automated. Is there a machine learning AI angle with all this ChatGPT talk going on? You see all the AI going the next level. Some pretty cool stuff and it's only, I know it's the beginning, but I've heard people using some of the new machine learning, large language models, large foundational models in areas I've never heard of. Machine learning and data centers, machine learning and configuration management, a lot of different ways. How do you see as the product person, you incorporating the AI piece into the products for Platform9? >> I think that's a lot about looking at the telemetry and the information that we get back and to use one of those like old idle terms, that continuous improvement loop to feed it back in. And I think that's really where machine learning to start with comes into effect. As we run across all these customers, our system that helps at two o'clock in the morning has that telemetry, it's got that data. We can see what's changing and what's happening. So it's writing the right algorithms, creating the right machine learning to- >> So training will work for you guys. You have enough data and the telemetry to do get that training data. >> Yeah, obviously there's a lot of investment required to get there, but that is something that ultimately that could be achieved with what we see in operating people's environments. >> Great. Chris, great to have you here in the studio. Going wide ranging conversation on Kubernetes and Platform9. I guess my final question would be how do you look at the next five years out there? Because you got to run the product management, you got to have that 20 mile steer, you got to look at the customers, you got to look at what's going on in the engineering and you got to kind of have that arc. This is the right path kind of view. What's the five year arc look like for you guys? How do you see this playing out? 'Cause KubeCon is coming up and we're you seeing Kubernetes kind of break away with security? They had, they didn't call it KubeCon Security, they call it CloudNativeSecurityCon, they just had in Seattle inaugural events seemed to go well. So security is kind of breaking out and you got Kubernetes. It's getting bigger. Certainly not going away, but what's your five year arc of of how Platform9 and Kubernetes and Ops evolve? >> It's to stay on that theme, it's focusing on what is most important to our users and getting them to a point where they can just consume it, so they're not having to operate it. So it's finding those big items and bringing that into our platform. It's something that's consumable, that's just taken care of, that's tested with each release. So it's simplifying operations more and more. We've always said freedom in cloud computing. Well we started on, we started on OpenStack and made that simple. Stable, easy, you just have it, it works. We're doing that with Kubernetes. We're expanding out that user, right, we're saying bring your developers in, they can download their Kube conflict. They can see those Containers that are running there. They can access the events, the log files. They can log in and build a VM using KubeVirt. They're self servicing. So it's alleviating pressures off of the Ops team, removing the help desk systems that people still seem to rely on. So it's like what comes into that field that is the next biggest issue? Is it things like CI/CD? Is it simplifying GitOps? Is it bringing in security capabilities to talk to that? Or is that a piece that is a best of breed? Is there a reason that it's been spun out to its own conference? Is this something that deserves a focus that should be a specialized capability instead of tooling and vendors that we work with, that we partner with, that could be brought in as a service. I think it's looking at those trends and making sure that what we bring in has the biggest impact to our users. >> That's awesome. Thanks for coming in. I'll give you the last word. Put a plug in for Platform9 for the people who are watching. What should they know about Platform9 that they might not know about it or what should? When should they call you guys and when should they engage? Take a take a minute to give the plug. >> The plug. I think it's, if your operations team is focused on building Kubernetes, stop. That shouldn't be the cloud. That shouldn't be in the Edge, that shouldn't be at the data center. They should be consuming it. If your engineering teams are all trying different ways and doing different things to use and consume Cloud Native services and Kubernetes, they shouldn't be. You want consistency. That's how you get economies of scale. Provide them with a simple platform that's integrated with all of your enterprise identity where they can just start consuming instead of having to solve these problems themselves. It's those, it's those two personas, right? Where the problems manifest. What are my operations teams doing, and are they delivering to my company or are they building infrastructure again? And are my engineers sprinting or crawling? 'Cause if they're not sprinting, you should be asked the question, do I have the right Cloud Native tooling in my environment and how can I get them back? >> I think it's developer productivity, uptime, security are the tell signs. You get that done. That's the goal of what you guys are doing, your mission. >> Chris: Yep. >> Great to have you on, Chris. Thanks for coming on. Appreciate it. >> Chris: Thanks very much. 0 Okay, this is "theCUBE" here, finding the right path to Cloud Native. I'm John Furrier, host of "theCUBE." Thanks for watching. (upbeat music)
SUMMARY :
And it comes down to operations, And the developers are I need to run my software somewhere. and the infrastructure, What's the goal and then I asked for that in the VM, What's the problem that you guys solve? and configure all of the low level. We're going to be Cloud Native, case or cases that you guys see We've opened that tap all the way, It's going to be interesting too, to your business and let us deliver the teams need to get Is that kind of what you guys are always on assurance to keep that up customers say to you of the best ones you can get. make sure that all the You have the product, and being in the market with you guys is finding the right path, So the why- I mean, that's what kind of getting in in the weeds Just got to get it going. to figure it out. velocity for your business. how to kind of get it all, a service to my users." and GitOps in that scope, of brought that into the open. Inuit is the primary contributor What's the big takeaway from that project? hey let's make this simple to use, And as the product, the people that need to at the end of the day, And they can see the clusters So job well done for you guys. the morning when things And what do you do then? So going back to OpenStack, Ops and you know, is getting to the point John: That's an 'cause that's one of the problems. that physical server to myself, It is able to do things. Terraform is not that the big pieces to be sold. Yeah, and you talk about Is that the new DevOps? I got the new DevOps with Is that the new DevOps Like what you guys are move on to the next thing. at delivering that to I think you bring up a great point. But is the confidence truly there? I mean it was codified. Do you agree that people, I mean even the supply and one of the thing things I know it's the beginning, and the information that we get back the telemetry to do get that could be achieved with what we see and you got to kind of have that arc. that is the next biggest issue? Take a take a minute to give the plug. and are they delivering to my company That's the goal of what Great to have you on, Chris. finding the right path to Cloud Native.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Chris | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Chris Jones | PERSON | 0.99+ |
12 gig | QUANTITY | 0.99+ |
five year | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
two years | QUANTITY | 0.99+ |
six people | QUANTITY | 0.99+ |
two personas | QUANTITY | 0.99+ |
Adobe | ORGANIZATION | 0.99+ |
Java | TITLE | 0.99+ |
three months | QUANTITY | 0.99+ |
20 mile | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Seattle | LOCATION | 0.99+ |
two tools | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
eight cores | QUANTITY | 0.99+ |
KubeCon | EVENT | 0.99+ |
last year | DATE | 0.99+ |
GitOps | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
over two years | QUANTITY | 0.99+ |
HashiCorp | ORGANIZATION | 0.99+ |
Terraform | ORGANIZATION | 0.99+ |
two separate platforms | QUANTITY | 0.99+ |
24 | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
two ways | QUANTITY | 0.98+ |
third alternative | QUANTITY | 0.98+ |
each release | QUANTITY | 0.98+ |
Intuit | ORGANIZATION | 0.98+ |
third pillar | QUANTITY | 0.98+ |
2:00am | DATE | 0.98+ |
first jobs | QUANTITY | 0.98+ |
Mobile World Congress | EVENT | 0.98+ |
Cloud Native | TITLE | 0.98+ |
this year | DATE | 0.98+ |
late 2019 | DATE | 0.98+ |
Platform9 | TITLE | 0.98+ |
one environment | QUANTITY | 0.98+ |
last fall | DATE | 0.97+ |
Kubernetes | TITLE | 0.97+ |
yesterday | DATE | 0.97+ |
two experiences | QUANTITY | 0.97+ |
about eight years | QUANTITY | 0.97+ |
DevSecOps | TITLE | 0.97+ |
Git | TITLE | 0.97+ |
Flux | ORGANIZATION | 0.96+ |
CNCF | ORGANIZATION | 0.96+ |
two big contributors | QUANTITY | 0.96+ |
Cloud Native | TITLE | 0.96+ |
DevOps | TITLE | 0.96+ |
Rebars | ORGANIZATION | 0.95+ |
Welcome to Supercloud2
(bright upbeat melody) >> Hello everyone, welcome back to Supercloud2. I'm John Furrier, my co-host Dave Vellante, here at theCUBE in Palo Alto, California, for our live stage performance all day for Supercloud2. Unpacking this next generation movement in cloud computing. Dave, Supercloud1 was in August. We had great response and acceleration of that momentum. We had some haters too. We had some folks out there throwing shade on this. But at the same time, a lot of leaders came out of the woodwork, a lot of practitioners. And this Supercloud2 event I think will expose and illustrate some of the examples of what's happening in the industry and more importantly, kind of where it's going. >> Well it's great to be back in our studios in Palo Alto, John. Seems like just yesterday was August 9th, where the community was really refining the definition of Super Cloud. We were identifying the essential characteristics, with some of the leading technologists in Silicon Valley. We were digging into the deployment models. Whereas this Supercloud, Supercloud2 is really taking a practitioner view. We're going to hear from Walmart today. They've built a Supercloud. They called it the Walmart Cloud native platform. We're going to hear from other data practitioners, like Saks. We're going to hear from Western Union. They've got 200 locations around the world, how they're dealing with data sovereignty. And of course we've got some local technologists and practitioners coming in, analysts, consultants, theCUBE community. I'm really excited to be here. >> And we've got some great keynotes from executives at VMware. We're going to expose some of the things that they're working on around cross cloud services, which leads into multicloud. I think the practitioner angle highlights my favorite part of this program, 'cause you're starting to see the builders, a term coined by Andy Jassy, early days of AWS. That builder movement has been continuing to go. And you're seeing the enterprise, global enterprises adopt this builder mentality with Cloud Native. This is going to power the next generation global economy. And I think the role of the cloud computing vendors like AWS, Azure, Google, Alibaba are going to be the source engine of innovation. And what gets built on top of and with the clouds will be a big significant market value for all businesses and their business models. So I think the market wants the supercloud, the business models are pointing to Supercloud. The technology needs supercloud. And society, from an economic standpoint and from a use case standpoint, needs supercloud. You're seeing it today. Everyone's talking about chat GPT. This is an example of what will come out of this next generation and it's just getting started. So to me, you're either on the supercloud side of the camp or you're on the old school, hugging onto the old school mentality of wait a minute, that's cloud computing. So I think if you're not on the super cloud wave, you're going to be driftwood. And that's a term coined by Pat Gelsinger. And this is really the reality. Are you on the super cloud side? Or are you on the old huggin' the old model? And that's going to be a determinant. And you're going to see who's going to be the players on that, Dave. This is going to be a real big year. >> Everybody's heard the phrase follow the money. Well, my philosophy is follow the data. And that's a big part of what Supercloud2 is, because the data is where the money is across the clouds. And people want more simplicity, or greater simplicity across the clouds. So it's really, there's two forces here. You've got the ecosystem that's saying, hey the hyperscalers, they've done a great job but there's problems that they're not solving. So we're going to lean in and solve those problems. At the same time, you have the practitioners saying we have multicloud, we have to deal with this, help us. It's got to be simpler. Because we want to share data across clouds. We want to build data products, we want to monetize and drive revenue and cut costs. >> This is the key thing. The builder movement is hitting a wall, and that wall will be broken down because the business models of the companies themselves are demanding that the value from the data with security has to be embedded. So I think you're going to see a big year this next year or so where the builders will accelerate through this next generation, supercloud wave, will be a builder's wave for business. And I think that's going to be the nuance here. And all the people that are on the side of Supercloud are all pro-business, pro-technology. The ones that aren't are like, wait a minute I used to do things differently. They're stuck. And so I think this is going to be a question of are we stuck? Are builders accelerating? Will the business models develop around it? That's digital transformation. At the end of the day, the market's speaking, Dave. The market wants more. Chat GPT, you're seeing AI starting to flourish, powered by data. It's unstoppable, supercloud's unstoppable. >> One of our headliners today is Zhamak Dehghani, the creator of Data Mesh. We've got some news around her. She's going to be live in studio. Super excited about that. Kit Colbert in Supercloud, the first Supercloud in last August, laid out an initial architecture for Supercloud. He's going to advance that today, tell us what's changed, and really dig into and really talk about the meat on the bone, if you will. And we've got some other technologists that are coming in saying, Hey, is it a platform? Is it an architecture? What's the right model here? So we're going to debate that a little bit today. >> And before we close, I'll just say look at the guests, look at the talk tracks. You're seeing a diversity of startups doing cloud networking, you're seeing big practitioners building their own thing, being builders for business value and business model advantages. And you got companies like VMware, who have been on the wave of virtualization. So the, everyone who's involved in super cloud, they're seeing it, they're on the front lines. They're seeing the trend. They are riding that wave. And they have, they're bringing data to the table. So to me, you look at who's involved and you judge it that way. To me, that's the way I look at this. And because we're making it open, Supercloud is going to continue to be debated. But more importantly, the results are going to come in. The market supports it, the business needs it, tech's there, and will it happen? So I think the builders movement, Dave, is going to be big to watch. And then ultimately how that business transformation kicks in, and I think those are the two variables that I would watch on Supercloud. >> Our mission has always been around free content, giving back to the community. So I really want to thank our sponsors today. We've had a great partnership with VMware, who's not only contributed some financial support, but also great content. Alkira, ChaosSearch, prosimo, all phenomenal, allowing us to achieve our mission of serving our audiences and really trying to give more than we take from. >> Free content, that's our mission. Dave, great to kick it off. Kickin' off Supercloud2 all day, we've got some great programs here. We've got VMware coming up next. We have Victoria Viering, who's been on before. He's got a great vision for cross cloud service. We're getting also a keynote with Kit Colbert, who's going to lay out the fragmentation and the benefits that that solves, from solvent fragmentation and silos, breaking down the silos and bringing multicloud future to the table via Super Cloud. So stay with us. We'll be right back after this short break. (bright upbeat music) (music fades)
SUMMARY :
and illustrate some of the examples We're going to hear from Walmart today. And that's going to be a determinant. At the same time, you And so I think this is going to the meat on the bone, if you will. Dave, is going to be big to watch. giving back to the community. and the benefits that that solves,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Pat Gelsinger | PERSON | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Silicon Valley | LOCATION | 0.99+ |
August | DATE | 0.99+ |
Victoria Viering | PERSON | 0.99+ |
August 9th | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
200 locations | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Supercloud2 | EVENT | 0.99+ |
two forces | QUANTITY | 0.99+ |
last August | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
first | QUANTITY | 0.99+ |
two variables | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
supercloud | ORGANIZATION | 0.98+ |
Azure | ORGANIZATION | 0.97+ |
ChaosSearch | ORGANIZATION | 0.95+ |
super cloud wave | EVENT | 0.94+ |
Supercloud1 | EVENT | 0.94+ |
Super Cloud | TITLE | 0.93+ |
Alkira | PERSON | 0.83+ |
Palo Alto, John | LOCATION | 0.83+ |
this next year | DATE | 0.81+ |
Data Mesh | ORGANIZATION | 0.8+ |
supercloud wave | EVENT | 0.79+ |
wave of | EVENT | 0.79+ |
Western Union | LOCATION | 0.78+ |
Saks | ORGANIZATION | 0.76+ |
GPT | ORGANIZATION | 0.73+ |
Supercloud2 | ORGANIZATION | 0.72+ |
Cloud Native | TITLE | 0.69+ |
Supercloud | TITLE | 0.67+ |
Supercloud2 | COMMERCIAL_ITEM | 0.66+ |
multicloud | ORGANIZATION | 0.57+ |
Supercloud | COMMERCIAL_ITEM | 0.53+ |
Supercloud2 | TITLE | 0.53+ |
theCUBE | ORGANIZATION | 0.51+ |
super cloud | TITLE | 0.51+ |
Cloud | TITLE | 0.41+ |
Supercloud Applications & Developer Impact | Supercloud2
(gentle music) >> Okay, welcome back to Supercloud 2, live here in Palo Alto, California for our live stage performance. Supercloud 2 is our second Supercloud event. We're going to get these out as fast as we can every couple months. It's our second one, you'll see two and three this year. I'm John Furrier, my co-host, Dave Vellante. A panel here to break down the Supercloud momentum, the wave, and the developer impact that we bringing back Vittorio Viarengo, who's a VP for Cross-Cloud Services at VMware. Sarbjeet Johal, industry influencer and Analyst at StackPayne, his company, Cube alumni and Influencer. Sarbjeet, great to see you. Vittorio, thanks for coming back. >> Nice to be here. >> My pleasure. >> Vittorio, you just gave a keynote where we unpacked the cross-cloud services, what VMware is doing, how you guys see it, not just from VMware's perspective, but VMware looking out broadly at the industry and developers came up and you were like, "Developers, developer, developers", kind of a goof on the Steve Ballmer famous meme that everyone's seen. This is a huge star, sorry, I mean a big piece of it. The developers are the canary in the coal mines. They're the ones who are being asked to code the digital transformation, which is fully business transformation and with the market the way it is right now in terms of the accelerated technology, every enterprise grade business model's changing. The technology is evolving, the builders are kind of, they want go faster. I'm saying they're stuck in a way, but that's my opinion, but there's a lot of growth. >> Yeah. >> The impact, they got to get released up and let it go. Those developers need to accelerate faster. It's been a big part of productivity, and the conversations we've had. So developer impact is huge in Supercloud. What's your, what do you guys think about this? We'll start with you, Sarbjeet. >> Yeah, actually, developers are the masons of the digital empires I call 'em, right? They lay every brick and build all these big empires. On the left side of the SDLC, or the, you know, when you look at the system operations, developer is number one cost from economic side of things, and from technology side of things, they are tech hungry people. They are developers for that reason because developer nights are long, hours are long, they forget about when to eat, you know, like, I've been a developer, I still code. So you want to keep them happy, you want to hug your developers. We always say that, right? Vittorio said that right earlier. The key is to, in this context, in the Supercloud context, is that developers don't mind mucking around with platforms or APIs or new languages, but they hate the infrastructure part. That's a fact. They don't want to muck around with servers. It's friction for them, it is like they don't want to muck around even with the VMs. So they want the programmability to the nth degree. They want to automate everything, so that's how they think and cloud is the programmable infrastructure, industrialization of infrastructure in many ways. So they are happy with where we are going, and we need more abstraction layers for some developers. By the way, I have this sort of thinking frame for last year or so, not all developers are same, right? So if you are a developer at an ISV, you behave differently. If you are a developer at a typical enterprise, you behave differently or you are forced to behave differently because you're not writing software.- >> Well, developers, developers have changed, I mean, Vittorio, you and I were talking earlier on the keynote, and this is kind of the key point is what is a developer these days? If everything is software enabled, I mean, even hardware interviews we do with Nvidia, and Amazon and other people building silicon, they all say the same thing, "It's software on a chip." So you're seeing the role of software up and down the stack and the role of the stack is changing. The old days of full stack developer, what does that even mean? I mean, the cloud is a half a stack kind of right there. So, you know, developers are certainly more agile, but cloud native, I mean VMware is epitome of operations, IT operations, and the Tan Zoo initiative, you guys started, you went after the developers to look at them, and ask them questions, "What do you need?", "How do you transform the Ops from virtualization?" Again, back to your point, so this hardware abstraction, what is software, what is cloud native? It's kind of messy equation these days. How do you guys grokel with that? >> I would argue that developers don't want the Supercloud. I dropped that up there, so, >> Dave: Why not? >> Because developers, they, once they get comfortable in AWS or Google, because they're doing some AI stuff, which is, you know, very trendy right now, or they are in IBM, any of the IPA scaler, professional developers, system developers, they love that stuff, right? Yeah, they don't, the infrastructure gets in the way, but they're just, the problem is, and I think the Supercloud should be driven by the operators because as we discussed, the operators have been left behind because they're busy with day-to-day jobs, and in most cases IT is centralized, developers are in the business units. >> John: Yeah. >> Right? So they get the mandate from the top, say, "Our bank, they're competing against". They gave teenagers or like young people the ability to do all these new things online, and Venmo and all this integration, where are we? "Oh yeah, we can do it", and then build it, and then deploy it, "Okay, we caught up." but now the operators are back in the private cloud trying to keep the backend system running and so I think the Supercloud is needed for the primarily, initially, for the operators to get in front of the developers, fit in the workflow, but lay the foundation so it is secure.- >> So, so I love this thinking because I love the rift, because the rift points to what is the target audience for the value proposition and if you're a developer, Supercloud enables you so you shouldn't have to deal with Supercloud. >> Exactly. >> What you're saying is get the operating environment or operating system done properly, whether it's architecture, building the platform, this comes back to architecture platform conversations. What is the future platform? Is it a vendor supplied or is it customer created platform? >> Dave: So developers want best to breed, is what you just said. >> Vittorio: Yeah. >> Right and operators, they, 'cause developers don't want to deal with governance, they don't want to deal with security, >> No. >> They don't want to deal with spinning up infrastructure. That's the role of the operator, but that's where Supercloud enables, to John's point, the developer, so to your question, is it a platform where the platform vendor is responsible for the architecture, or there is it an architectural standard that spans multiple clouds that has to emerge? Based on what you just presented earlier, Vittorio, you are the determinant of the architecture. It's got to be open, but you guys determine that, whereas the nirvana is, "Oh no, it's all open, and it just kind of works." >> Yeah, so first of all, let's all level set on one thing. You cannot tell developers what to do. >> Dave: Right, great >> At least great developers, right? Cannot tell them what to do. >> Dave: So that's what, that's the way I want to sort of, >> You can tell 'em what's possible. >> There's a bottle on that >> If you tell 'em what's possible, they'll test it, they'll look at it, but if you try to jam it down their throat, >> Yeah. >> Dave: You can't tell 'em how to do it, just like your point >> Let me answer your answer the question. >> Yeah, yeah. >> So I think we need to build an architect, help them build an architecture, but it cannot be proprietary, has to be built on what works in the cloud and so what works in the cloud today is Kubernetes, is you know, number of different open source project that you need to enable and then provide, use this, but when I first got exposed to Kubernetes, I said, "Hallelujah!" We had a runtime that works the same everywhere only to realize there are 12 different distributions. So that's where we come in, right? And other vendors come in to say, "Hey, no, we can make them all look the same. So you still use Kubernetes, but we give you a place to build, to set those operation policy once so that you don't create friction for the developers because that's the last thing you want to do." >> Yeah, actually, coming back to the same point, not all developers are same, right? So if you're ISV developer, you want to go to the lowest sort of level of the infrastructure and you want to shave off the milliseconds from to get that performance, right? If you're working at AWS, you are doing that. If you're working at scale at Facebook, you're doing that. At Twitter, you're doing that, but when you go to DMV and Kansas City, you're not doing that, right? So your developers are different in nature. They are given certain parameters to work with, certain sort of constraints on the budget side. They are educated at a different level as well. Like they don't go to that end of the degree of sort of automation, if you will. So you cannot have the broad stroking of developers. We are talking about a citizen developer these days. That's a extreme low, >> You mean Low-Code. >> Yeah, Low-Code, No-code, yeah, on the extreme side. On one side, that's citizen developers. On the left side is the professional developers, when you say developers, your mind goes to the professional developers, like the hardcore developers, they love the flexibility, you know, >> John: Well app, developers too, I mean. >> App developers, yeah. >> You're right a lot of, >> Sarbjeet: Infrastructure platform developers, app developers, yes. >> But there are a lot of customers, its a spectrum, you're saying. >> Yes, it's a spectrum >> There's a lot of customers don't want deal with that muck. >> Yeah. >> You know, like you said, AWS, Twitter, the sophisticated developers do, but there's a whole suite of developers out there >> Yeah >> That just want tools that are abstracted. >> Within a company, within a company. Like how I see the Supercloud is there shouldn't be anything which blocks the developers, like their view of the world, of the future. Like if you're blocked as a developer, like something comes in front of you, you are not developer anymore, believe me, (John laughing) so you'll go somewhere else >> John: First of all, I'm, >> You'll leave the company by the way. >> Dave: Yeah, you got to quit >> Yeah, you will quit, you will go where the action is, where there's no sort of blockage there. So like if you put in front of them like a huge amount of a distraction, they don't like it, so they don't, >> Well, the idea of a developer, >> Coming back to that >> Let's get into 'cause you mentioned platform. Get year in the term platform engineering now. >> Yeah. >> Platform developer. You know, I remember back in, and I think there's still a term used today, but when I graduated my computer science degree, we were called "Software engineers," right? Do people use that term "Software engineering", or is it "Software development", or they the same, are they different? >> Well, >> I think there's a, >> So, who's engineering what? Are they engineering or are they developing? Or both? Well, I think it the, you made a great point. There is a factor of, I had the, I was blessed to work with Adam Bosworth, that is the guy that created some of the abstraction layer, like Visual Basic and Microsoft Access and he had so, he made his whole career thinking about this layer, and he always talk about the professional developers, the developers that, you know, give him a user manual, maybe just go at the APIs, he'll build anything, right, from system engine, go down there, and then through obstruction, you get the more the procedural logic type of engineers, the people that used to be able to write procedural logic and visual basic and so on and so forth. I think those developers right now are a little cut out of the picture. There's some No-code, Low-Code environment that are maybe gain some traction, I caught up with Adam Bosworth two weeks ago in New York and I asked him "What's happening to this higher level developers?" and you know what he is told me, and he is always a little bit out there, so I'm going to use his thought process here. He says, "ChapGPT", I mean, they will get to a point where this high level procedural logic will be written by, >> John: Computers. >> Computers, and so we may not need as many at the high level, but we still need the engineers down there. The point is the operation needs to get in front of them >> But, wait, wait, you seen the ChatGPT meme, I dunno if it's a Dilbert thing where it's like, "Time to tic" >> Yeah, yeah, yeah, I did that >> "Time to develop the code >> Five minutes, time to decode", you know, to debug the codes like five hours. So you know, the whole equation >> Well, this ChatGPT is a hot wave, everyone's been talking about it because I think it illustrates something that's NextGen, feels NextGen, and it's just getting started so it's going to get better. I mean people are throwing stones at it, but I think it's amazing. It's the equivalent of me seeing the browser for the first time, you know, like, "Wow, this is really compelling." This is game-changing, it's not just keyword chat bots. It's like this is real, this is next level, and I think the Supercloud wave that people are getting behind points to that and I think the question of Ops and Dev comes up because I think if you limit the infrastructure opportunity for a developer, I think they're going to be handicapped. I mean that's a general, my opinion, the thesis is you give more aperture to developers, more choice, more capabilities, more good things could happen, policy, and that's why you're seeing the convergence of networking people, virtualization talent, operational talent, get into the conversation because I think it's an infrastructure engineering opportunity. I think this is a seminal moment in a new stack that's emerging from an infrastructure, software virtualization, low-code, no-code layer that will be completely programmable by things like the next Chat GPT or something different, but yet still the mechanics and the plumbing will still need engineering. >> Sarbjeet: Oh yeah. >> So there's still going to be more stuff coming on. >> Yeah, we have, with the cloud, we have made the infrastructure programmable and you give the programmability to the programmer, they will be very creative with that and so we are being very creative with our infrastructure now and on top of that, we are being very creative with the silicone now, right? So we talk about that. That's part of it, by the way. So you write the code to the particle's silicone now, and on the flip side, the silicone is built for certain use cases for AI Inference and all that. >> You saw this at CES? >> Yeah, I saw at CES, the scenario is this, the Bosch, I spoke to Bosch, I spoke to John Deere, I spoke to AWS guys, >> Yeah. >> They were showcasing their technology there and I was spoke to Azure guys as well. So the Bosch is a good example. So they are building, they are right now using AWS. I have that interview on camera, I will put it some sometime later on there online. So they're using AWS on the back end now, but Bosch is the number one, number one or number two depending on what day it is of the year, supplier of the componentry to the auto industry, and they are creating a platform for our auto industry, so is Qualcomm actually by the way, with the Snapdragon. So they told me that customers, their customers, BMW, Audi, all the manufacturers, they demand the diversity of the backend. Like they don't want all, they, all of them don't want to go to AWS. So they want the choice on the backend. So whatever they cook in the middle has to work, they have to sprinkle the data for the data sovereign side because they have Chinese car makers as well, and for, you know, for other reasons, competitive reasons and like use. >> People don't go to, aw, people don't go to AWS either for political reasons or like competitive reasons or specific use cases, but for the most part, generally, I haven't met anyone who hasn't gone first choice with either, but that's me personally. >> No, but they're building. >> Point is the developer wants choice at the back end is what I'm hearing, but then finish that thought. >> Their developers want the choice, they want the choice on the back end, number one, because the customers are asking for, in this case, the customers are asking for it, right? But the customers requirements actually drive, their economics drives that decision making, right? So in the middle they have to, they're forced to cook up some solution which is vendor neutral on the backend or multicloud in nature. So >> Yeah, >> Every >> I mean I think that's nirvana. I don't think, I personally don't see that happening right now. I mean, I don't see the parody with clouds. So I think that's a challenge. I mean, >> Yeah, true. >> I mean the fact of the matter is if the development teams get fragmented, we had this chat with Kit Colbert last time, I think he's going to come on and I think he's going to talk about his keynote in a few, in an hour or so, development teams is this, the cloud is heterogenous, which is great. It's complex, which is challenging. You need skilled engineering to manage these clouds. So if you're a CIO and you go all in on AWS, it's hard. Then to then go out and say, "I want to be completely multi-vendor neutral" that's a tall order on many levels and this is the multicloud challenge, right? So, the question is, what's the strategy for me, the CIO or CISO, what do I do? I mean, to me, I would go all in on one and start getting hedges and start playing and then look at some >> Crystal clear. Crystal clear to me. >> Go ahead. >> If you're a CIO today, you have to build a platform engineering team, no question. 'Cause if we agree that we cannot tell the great developers what to do, we have to create a platform engineering team that using pieces of the Supercloud can build, and let's make this very pragmatic and give examples. First you need to be able to lay down the run time, okay? So you need a way to deploy multiple different Kubernetes environment in depending on the cloud. Okay, now we got that. The second part >> That's like table stakes. >> That are table stake, right? But now what is the advantage of having a Supercloud service to do that is that now you can put a policy in one place and it gets distributed everywhere consistently. So for example, you want to say, "If anybody in this organization across all these different buildings, all these developers don't even know, build a PCI compliant microservice, They can only talk to PCI compliant microservice." Now, I sleep tight. The developers still do that. Of course they're going to get their hands slapped if they don't encrypt some messages and say, "Oh, that should have been encrypted." So number one. The second thing I want to be able to say, "This service that this developer built over there better satisfy this SLA." So if the SLA is not satisfied, boom, I automatically spin up multiple instances to certify the SLA. Developers unencumbered, they don't even know. So this for me is like, CIO build a platform engineering team using one of the many Supercloud services that allow you to do that and lay down. >> And part of that is that the vendor behavior is such, 'cause the incentive is that they don't necessarily always work together. (John chuckling) I'll give you an example, we're going to hear today from Western Union. They're AWS shop, but they want to go to Google, they want to use some of Google's AI tools 'cause they're good and maybe they're even arguably better, but they're also a Snowflake customer and what you'll hear from them is Amazon and Snowflake are working together so that SageMaker can be integrated with Snowflake but Google said, "No, you want to use our AI tools, you got to use BigQuery." >> Yeah. >> Okay. So they say, "Ah, forget it." So if you have a platform engineering team, you can maybe solve some of that vendor friction and get competitive advantage. >> I think that the future proximity concept that I talk about is like, when you're doing one thing, you want to do another thing. Where do you go to get that thing, right? So that is very important. Like your question, John, is that your point is that AWS is ahead of the pack, which is true, right? They have the >> breadth of >> Infrastructure by a lot >> infrastructure service, right? They breadth of services, right? So, how do you, When do you bring in other cloud providers, right? So I believe that you should standardize on one cloud provider, like that's your primary, and for others, bring them in on as needed basis, in the subsection or sub portfolio of your applications or your platforms, what ever you can. >> So yeah, the Google AI example >> Yeah, I mean, >> Or the Microsoft collaboration software example. I mean there's always or the M and A. >> Yeah, but- >> You're going to get to run Windows, you can run Windows on Amazon, so. >> By the way, Supercloud doesn't mean that you cannot do that. So the perfect example is say that you're using Azure because you have a SQL server intensive workload. >> Yep >> And you're using Google for ML, great. If you are using some differentiated feature of this cloud, you'll have to go somewhere and configure this widget, but what you can abstract with the Supercloud is the lifecycle manage of the service that runs on top, right? So how does the service get deployed, right? How do you monitor performance? How do you lifecycle it? How you secure it that you can abstract and that's the value and eventually value will win. So the customers will find what is the values, obstructing in making it uniform or going deeper? >> How about identity? Like take identity for instance, you know, that's an opportunity to abstract. Whether I use Microsoft Identity or Okta, and I can abstract that. >> Yeah, and then we have APIs and standards that we can use so eventually I think where there is enough pain, the right open source will emerge to solve that problem. >> Dave: Yeah, I can use abstract things like object store, right? That's pretty simple. >> But back to the engineering question though, is that developers, developers, developers, one thing about developers psychology is if something's not right, they say, "Go get fixing. I'm not touching it until you fix it." They're very sticky about, if something's not working, they're not going to do it again, right? So you got to get it right for developers. I mean, they'll maybe tolerate something new, but is the "juice worth the squeeze" as they say, right? So you can't go to direct say, "Hey, it's, what's a work in progress? We're going to get our infrastructure together and the world's going to be great for you, but just hang tight." They're going to be like, "Get your shit together then talk to me." So I think that to me is the question. It's an Ops question, but where's that value for the developer in Supercloud where the capabilities are there, there's less friction, it's simpler, it solves the complexity problem. I don't need these high skilled labor to manage Amazon. I got services exposed. >> That's what we talked about earlier. It's like the Walmart example. They basically, they took away from the developer the need to spin up infrastructure and worry about all the governance. I mean, it's not completely there yet. So the developer could focus on what he or she wanted to do. >> But there's a big, like in our industry, there's a big sort of flaw or the contention between developers and operators. Developers want to be on the cutting edge, right? And operators want to be on the stability, you know, like we want governance. >> Yeah, totally. >> Right, so they want to control, developers are like these little bratty kids, right? And they want Legos, like they want toys, right? Some of them want toys by way. They want Legos, they want to build there and they want make a mess out of it. So you got to make sure. My number one advice in this context is that do it up your application portfolio and, or your platform portfolio if you are an ISV, right? So if you are ISV you most probably, you're building a platform these days, do it up in a way that you can say this portion of our applications and our platform will adhere to what you are saying, standardization, you know, like Kubernetes, like slam dunk, you know, it works across clouds and in your data center hybrid, you know, whole nine yards, but there is some subset on the next door systems of innovation. Everybody has, it doesn't matter if you're DMV of Kansas or you are, you know, metaverse, right? Or Meta company, right, which is Facebook, they have it, they are building something new. For that, give them some freedom to choose different things like play with non-standard things. So that is the mantra for moving forward, for any enterprise. >> Do you think developers are happy with the infrastructure now or are they wanting people to get their act together? I mean, what's your reaction, or you think. >> Developers are happy as long as they can do their stuff, which is running code. They want to write code and innovate. So to me, when Ballmer said, "Developer, develop, Developer, what he meant was, all you other people get your act together so these developers can do their thing, and to me the Supercloud is the way for IT to get there and let developer be creative and go fast. Why not, without getting in trouble. >> Okay, let's wrap up this segment with a super clip. Okay, we're going to do a sound bite that we're going to make into a short video for each of you >> All right >> On you guys summarizing why Supercloud's important, why this next wave is relevant for the practitioners, for the industry and we'll turn this into an Instagram reel, YouTube short. So we'll call it a "Super clip. >> Alright, >> Sarbjeet, you want, you want some time to think about it? You want to go first? Vittorio, you want. >> I just didn't mind. (all laughing) >> No, okay, okay. >> I'll do it again. >> Go back. No, we got a fresh one. We'll going to already got that one in the can. >> I'll go. >> Sarbjeet, you go first. >> I'll go >> What's your super clip? >> In software systems, abstraction is your friend. I always say that. Abstraction is your friend, even if you're super professional developer, abstraction is your friend. We saw from the MFC library from C++ days till today. Abstract, use abstraction. Do not try to reinvent what's already being invented. Leverage cloud, leverage the platform side of the cloud. Not just infrastructure service, but platform as a service side of the cloud as well, and Supercloud is a meta platform built on top of these infrastructure services from three or four or five cloud providers. So use that and embrace the programmability, embrace the abstraction layer. That's the key actually, and developers who are true developers or professional developers as you said, they know that. >> Awesome. Great super clip. Vittorio, another shot at the plate here for super clip. Go. >> Multicloud is awesome. There's a reason why multicloud happened, is because gave our developers the ability to innovate fast and ever before. So if you are embarking on a digital transformation journey, which I call a survival journey, if you're not innovating and transforming, you're not going to be around in business three, five years from now. You have to adopt the Supercloud so the developer can be developer and keep building great, innovating digital experiences for your customers and IT can get in front of it and not get in trouble together. >> Building those super apps with Supercloud. That was a great super clip. Vittorio, thank you for sharing. >> Thanks guys. >> Sarbjeet, thanks for coming on talking about the developer impact Supercloud 2. On our next segment, coming up right now, we're going to hear from Walmart enterprise architect, how they are building and they are continuing to innovate, to build their own Supercloud. Really informative, instructive from a practitioner doing it in real time. Be right back with Walmart here in Palo Alto. Thanks for watching. (gentle music)
SUMMARY :
the Supercloud momentum, and developers came up and you were like, and the conversations we've had. and cloud is the and the role of the stack is changing. I dropped that up there, so, developers are in the business units. the ability to do all because the rift points to What is the future platform? is what you just said. the developer, so to your question, You cannot tell developers what to do. Cannot tell them what to do. You can tell 'em your answer the question. but we give you a place to build, and you want to shave off the milliseconds they love the flexibility, you know, platform developers, you're saying. don't want deal with that muck. that are abstracted. Like how I see the Supercloud is So like if you put in front of them you mentioned platform. and I think there's the developers that, you The point is the operation to decode", you know, the browser for the first time, you know, going to be more stuff coming on. and on the flip side, the middle has to work, but for the most part, generally, Point is the developer So in the middle they have to, the parody with clouds. I mean the fact of the matter Crystal clear to me. in depending on the cloud. So if the SLA is not satisfied, boom, 'cause the incentive is that So if you have a platform AWS is ahead of the pack, So I believe that you should standardize or the M and A. you can run Windows on Amazon, so. So the perfect example is abstract and that's the value Like take identity for instance, you know, the right open source will Dave: Yeah, I can use abstract things and the world's going to be great for you, the need to spin up infrastructure on the stability, you know, So that is the mantra for moving forward, Do you think developers are happy and to me the Supercloud is for each of you for the industry you want some time to think about it? I just didn't mind. got that one in the can. platform side of the cloud. Vittorio, another shot at the the ability to innovate thank you for sharing. the developer impact Supercloud 2.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
BMW | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Sarbjeet | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Bosch | ORGANIZATION | 0.99+ |
Vittorio | PERSON | 0.99+ |
Nvidia | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Audi | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Steve Ballmer | PERSON | 0.99+ |
Qualcomm | ORGANIZATION | 0.99+ |
Adam Bosworth | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
New York | LOCATION | 0.99+ |
Vittorio Viarengo | PERSON | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Ballmer | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
Sarbjeet Johal | PERSON | 0.99+ |
five hours | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Palo Alto, California | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Five minutes | QUANTITY | 0.99+ |
NextGen | ORGANIZATION | 0.99+ |
StackPayne | ORGANIZATION | 0.99+ |
Visual Basic | TITLE | 0.99+ |
second part | QUANTITY | 0.99+ |
12 different distributions | QUANTITY | 0.99+ |
CES | EVENT | 0.99+ |
First | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Kansas City | LOCATION | 0.99+ |
second one | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Kansas | LOCATION | 0.98+ |
first time | QUANTITY | 0.98+ |
Windows | TITLE | 0.98+ |
last year | DATE | 0.98+ |
AWS Startup Showcase S3E1
(upbeat electronic music) >> Hello everyone, welcome to this CUBE conversation here from the studios in the CUBE in Palo Alto, California. I'm John Furrier, your host. We're featuring a startup, Astronomer. Astronomer.io is the URL, check it out. And we're going to have a great conversation around one of the most important topics hitting the industry, and that is the future of machine learning and AI, and the data that powers it underneath it. There's a lot of things that need to get done, and we're excited to have some of the co-founders of Astronomer here. Viraj Parekh, who is co-founder of Astronomer, and Paola Peraza Calderon, another co-founder, both with Astronomer. Thanks for coming on. First of all, how many co-founders do you guys have? >> You know, I think the answer's around six or seven. I forget the exact, but there's really been a lot of people around the table who've worked very hard to get this company to the point that it's at. We have long ways to go, right? But there's been a lot of people involved that have been absolutely necessary for the path we've been on so far. >> Thanks for that, Viraj, appreciate that. The first question I want to get out on the table, and then we'll get into some of the details, is take a minute to explain what you guys are doing. How did you guys get here? Obviously, multiple co-founders, sounds like a great project. The timing couldn't have been better. ChatGPT has essentially done so much public relations for the AI industry to kind of highlight this shift that's happening. It's real, we've been chronicalizing, take a minute to explain what you guys do. >> Yeah, sure, we can get started. So, yeah, when Viraj and I joined Astronomer in 2017, we really wanted to build a business around data, and we were using an open source project called Apache Airflow that we were just using sort of as customers ourselves. And over time, we realized that there was actually a market for companies who use Apache Airflow, which is a data pipeline management tool, which we'll get into, and that running Airflow is actually quite challenging, and that there's a big opportunity for us to create a set of commercial products and an opportunity to grow that open source community and actually build a company around that. So the crux of what we do is help companies run data pipelines with Apache Airflow. And certainly we've grown in our ambitions beyond that, but that's sort of the crux of what we do for folks. >> You know, data orchestration, data management has always been a big item in the old classic data infrastructure. But with AI, you're seeing a lot more emphasis on scale, tuning, training. Data orchestration is the center of the value proposition, when you're looking at coordinating resources, it's one of the most important things. Can you guys explain what data orchestration entails? What does it mean? Take us through the definition of what data orchestration entails. >> Yeah, for sure. I can take this one, and Viraj, feel free to jump in. So if you google data orchestration, here's what you're going to get. You're going to get something that says, "Data orchestration is the automated process" "for organizing silo data from numerous" "data storage points, standardizing it," "and making it accessible and prepared for data analysis." And you say, "Okay, but what does that actually mean," right, and so let's give sort of an an example. So let's say you're a business and you have sort of the following basic asks of your data team, right? Okay, give me a dashboard in Sigma, for example, for the number of customers or monthly active users, and then make sure that that gets updated on an hourly basis. And then number two, a consistent list of active customers that I have in HubSpot so that I can send them a monthly product newsletter, right? Two very basic asks for all sorts of companies and organizations. And when that data team, which has data engineers, data scientists, ML engineers, data analysts get that request, they're looking at an ecosystem of data sources that can help them get there, right? And that includes application databases, for example, that actually have in product user behavior and third party APIs from tools that the company uses that also has different attributes and qualities of those customers or users. And that data team needs to use tools like Fivetran to ingest data, a data warehouse, like Snowflake or Databricks to actually store that data and do analysis on top of it, a tool like DBT to do transformations and make sure that data is standardized in the way that it needs to be, a tool like Hightouch for reverse ETL. I mean, we could go on and on. There's so many partners of ours in this industry that are doing really, really exciting and critical things for those data movements. And the whole point here is that data teams have this plethora of tooling that they use to both ingest the right data and come up with the right interfaces to transform and interact with that data. And data orchestration, in our view, is really the heartbeat of all of those processes, right? And tangibly the unit of data orchestration is a data pipeline, a set of tasks or jobs that each do something with data over time and eventually run that on a schedule to make sure that those things are happening continuously as time moves on and the company advances. And so, for us, we're building a business around Apache Airflow, which is a workflow management tool that allows you to author, run, and monitor data pipelines. And so when we talk about data orchestration, we talk about sort of two things. One is that crux of data pipelines that, like I said, connect that large ecosystem of data tooling in your company. But number two, it's not just that data pipeline that needs to run every day, right? And Viraj will probably touch on this as we talk more about Astronomer and our value prop on top of Airflow. But then it's all the things that you need to actually run data and production and make sure that it's trustworthy, right? So it's actually not just that you're running things on a schedule, but it's also things like CICD tooling, secure secrets management, user permissions, monitoring, data lineage, documentation, things that enable other personas in your data team to actually use those tools. So long-winded way of saying that it's the heartbeat, we think, of of the data ecosystem, and certainly goes beyond scheduling, but again, data pipelines are really at the center of it. >> One of the things that jumped out, Viraj, if you can get into this, I'd like to hear more about how you guys look at all those little tools that are out. You mentioned a variety of things. You look at the data infrastructure, it's not just one stack. You've got an analytic stack, you've got a realtime stack, you've got a data lake stack, you got an AI stack potentially. I mean you have these stacks now emerging in the data world that are fundamental, that were once served by either a full package, old school software, and then a bunch of point solution. You mentioned Fivetran there, I would say in the analytics stack. Then you got S3, they're on the data lake stack. So all these things are kind of munged together. >> Yeah. >> How do you guys fit into that world? You make it easier, or like, what's the deal? >> Great question, right? And you know, I think that one of the biggest things we've found in working with customers over the last however many years is that if a data team is using a bunch of tools to get what they need done, and the number of tools they're using is growing exponentially and they're kind of roping things together here and there, that's actually a sign of a productive team, not a bad thing, right? It's because that team is moving fast. They have needs that are very specific to them, and they're trying to make something that's exactly tailored to their business. So a lot of times what we find is that customers have some sort of base layer, right? That's kind of like, it might be they're running most of the things in AWS, right? And then on top of that, they'll be using some of the things AWS offers, things like SageMaker, Redshift, whatever, but they also might need things that their cloud can't provide. Something like Fivetran, or Hightouch, those are other tools. And where data orchestration really shines, and something that we've had the pleasure of helping our customers build, is how do you take all those requirements, all those different tools and whip them together into something that fulfills a business need? So that somebody can read a dashboard and trust the number that it says, or somebody can make sure that the right emails go out to their customers. And Airflow serves as this amazing kind of glue between that data stack, right? It's to make it so that for any use case, be it ELT pipelines, or machine learning, or whatever, you need different things to do them, and Airflow helps tie them together in a way that's really specific for a individual business' needs. >> Take a step back and share the journey of what you guys went through as a company startup. So you mentioned Apache, open source. I was just having an interview with a VC, we were talking about foundational models. You got a lot of proprietary and open source development going on. It's almost the iPhone/Android moment in this whole generative space and foundational side. This is kind of important, the open source piece of it. Can you share how you guys started? And I can imagine your customers probably have their hair on fire and are probably building stuff on their own. Are you guys helping them? Take us through, 'cause you guys are on the front end of a big, big wave, and that is to make sense of the chaos, rain it in. Take us through your journey and why this is important. >> Yeah, Paola, I can take a crack at this, then I'll kind of hand it over to you to fill in whatever I miss in details. But you know, like Paola is saying, the heart of our company is open source, because we started using Airflow as an end user and started to say like, "Hey wait a second," "more and more people need this." Airflow, for background, started at Airbnb, and they were actually using that as a foundation for their whole data stack. Kind of how they made it so that they could give you recommendations, and predictions, and all of the processes that needed orchestrated. Airbnb created Airflow, gave it away to the public, and then fast forward a couple years and we're building a company around it, and we're really excited about that. >> That's a beautiful thing. That's exactly why open source is so great. >> Yeah, yeah. And for us, it's really been about watching the community and our customers take these problems, find a solution to those problems, standardize those solutions, and then building on top of that, right? So we're reaching to a point where a lot of our earlier customers who started to just using Airflow to get the base of their BI stack down and their reporting in their ELP infrastructure, they've solved that problem and now they're moving on to things like doing machine learning with their data, because now that they've built that foundation, all the connective tissue for their data arriving on time and being orchestrated correctly is happening, they can build a layer on top of that. And it's just been really, really exciting kind of watching what customers do once they're empowered to pick all the tools that they need, tie them together in the way they need to, and really deliver real value to their business. >> Can you share some of the use cases of these customers? Because I think that's where you're starting to see the innovation. What are some of the companies that you're working with, what are they doing? >> Viraj, I'll let you take that one too. (group laughs) >> So you know, a lot of it is... It goes across the gamut, right? Because it doesn't matter what you are, what you're doing with data, it needs to be orchestrated. So there's a lot of customers using us for their ETL and ELT reporting, right? Just getting data from other disparate sources into one place and then building on top of that. Be it building dashboards, answering questions for the business, building other data products and so on and so forth. From there, these use cases evolve a lot. You do see folks doing things like fraud detection, because Airflow's orchestrating how transactions go, transactions get analyzed. They do things like analyzing marketing spend to see where your highest ROI is. And then you kind of can't not talk about all of the machine learning that goes on, right? Where customers are taking data about their own customers, kind of analyze and aggregating that at scale, and trying to automate decision making processes. So it goes from your most basic, what we call data plumbing, right? Just to make sure data's moving as needed, all the ways to your more exciting expansive use cases around automated decision making and machine learning. >> And I'd say, I mean, I'd say that's one of the things that I think gets me most excited about our future, is how critical Airflow is to all of those processes, and I think when you know a tool is valuable is when something goes wrong and one of those critical processes doesn't work. And we know that our system is so mission critical to answering basic questions about your business and the growth of your company for so many organizations that we work with. So it's, I think, one of the things that gets Viraj and I and the rest of our company up every single morning is knowing how important the work that we do for all of those use cases across industries, across company sizes, and it's really quite energizing. >> It was such a big focus this year at AWS re:Invent, the role of data. And I think one of the things that's exciting about the open AI and all the movement towards large language models is that you can integrate data into these models from outside. So you're starting to see the integration easier to deal with. Still a lot of plumbing issues. So a lot of things happening. So I have to ask you guys, what is the state of the data orchestration area? Is it ready for disruption? Has it already been disrupted? Would you categorize it as a new first inning kind of opportunity, or what's the state of the data orchestration area right now? Both technically and from a business model standpoint. How would you guys describe that state of the market? >> Yeah, I mean, I think in a lot of ways, in some ways I think we're category creating. Schedulers have been around for a long time. I released a data presentation sort of on the evolution of going from something like Kron, which I think was built in like the 1970s out of Carnegie Mellon. And that's a long time ago, that's 50 years ago. So sort of like the basic need to schedule and do something with your data on a schedule is not a new concept. But to our point earlier, I think everything that you need around your ecosystem, first of all, the number of data tools and developer tooling that has come out industry has 5X'd over the last 10 years. And so obviously as that ecosystem grows, and grows, and grows, and grows, the need for orchestration only increases. And I think, as Astronomer, I think we... And we work with so many different types of companies, companies that have been around for 50 years, and companies that got started not even 12 months ago. And so I think for us it's trying to, in a ways, category create and adjust sort of what we sell and the value that we can provide for companies all across that journey. There are folks who are just getting started with orchestration, and then there's folks who have such advanced use case, 'cause they're hitting sort of a ceiling and only want to go up from there. And so I think we, as a company, care about both ends of that spectrum, and certainly want to build and continue building products for companies of all sorts, regardless of where they are on the maturity curve of data orchestration. >> That's a really good point, Paola. And I think the other thing to really take into account is it's the companies themselves, but also individuals who have to do their jobs. If you rewind the clock like 5 or 10 years ago, data engineers would be the ones responsible for orchestrating data through their org. But when we look at our customers today, it's not just data engineers anymore. There's data analysts who sit a lot closer to the business, and the data scientists who want to automate things around their models. So this idea that orchestration is this new category is right on the money. And what we're finding is the need for it is spreading to all parts of the data team, naturally where Airflow's emerged as an open source standard and we're hoping to take things to the next level. >> That's awesome. We've been up saying that the data market's kind of like the SRE with servers, right? You're going to need one person to deal with a lot of data, and that's data engineering, and then you're got to have the practitioners, the democratization. Clearly that's coming in what you're seeing. So I have to ask, how do you guys fit in from a value proposition standpoint? What's the pitch that you have to customers, or is it more inbound coming into you guys? Are you guys doing a lot of outreach, customer engagements? I'm sure they're getting a lot of great requirements from customers. What's the current value proposition? How do you guys engage? >> Yeah, I mean, there's so many... Sorry, Viraj, you can jump in. So there's so many companies using Airflow, right? So the baseline is that the open source project that is Airflow that came out of Airbnb, over five years ago at this point, has grown exponentially in users and continues to grow. And so the folks that we sell to primarily are folks who are already committed to using Apache Airflow, need data orchestration in their organization, and just want to do it better, want to do it more efficiently, want to do it without managing that infrastructure. And so our baseline proposition is for those organizations. Now to Viraj's point, obviously I think our ambitions go beyond that, both in terms of the personas that we addressed and going beyond that data engineer, but really it's to start at the baseline, as we continue to grow our our company, it's really making sure that we're adding value to folks using Airflow and help them do so in a better way, in a larger way, in a more efficient way, and that's really the crux of who we sell to. And so to answer your question on, we get a lot of inbound because they're... >> You have a built in audience. (laughs) >> The world that use it. Those are the folks who we talk to and come to our website and chat with us and get value from our content. I mean, the power of the opensource community is really just so, so big, and I think that's also one of the things that makes this job fun. >> And you guys are in a great position. Viraj, you can comment a little, get your reaction. There's been a big successful business model to starting a company around these big projects for a lot of reasons. One is open source is continuing to be great, but there's also supply chain challenges in there. There's also we want to continue more innovation and more code and keeping it free and and flowing. And then there's the commercialization of productizing it, operationalizing it. This is a huge new dynamic, I mean, in the past 5 or so years, 10 years, it's been happening all on CNCF from other areas like Apache, Linux Foundation, they're all implementing this. This is a huge opportunity for entrepreneurs to do this. >> Yeah, yeah. Open source is always going to be core to what we do, because we wouldn't exist without the open source community around us. They are huge in numbers. Oftentimes they're nameless people who are working on making something better in a way that everybody benefits from it. But open source is really hard, especially if you're a company whose core competency is running a business, right? Maybe you're running an e-commerce business, or maybe you're running, I don't know, some sort of like, any sort of business, especially if you're a company running a business, you don't really want to spend your time figuring out how to run open source software. You just want to use it, you want to use the best of it, you want to use the community around it, you want to be able to google something and get answers for it, you want the benefits of open source. You don't have the time or the resources to invest in becoming an expert in open source, right? And I think that dynamic is really what's given companies like us an ability to kind of form businesses around that in the sense that we'll make it so people get the best of both worlds. You'll get this vast open ecosystem that you can build on top of, that you can benefit from, that you can learn from. But you won't have to spend your time doing undifferentiated heavy lifting. You can do things that are just specific to your business. >> It's always been great to see that business model evolve. We used a debate 10 years ago, can there be another Red Hat? And we said, not really the same, but there'll be a lot of little ones that'll grow up to be big soon. Great stuff. Final question, can you guys share the history of the company? The milestones of Astromer's journey in data orchestration? >> Yeah, we could. So yeah, I mean, I think, so Viraj and I have obviously been at Astronomer along with our other founding team and leadership folks for over five years now. And it's been such an incredible journey of learning, of hiring really amazing people, solving, again, mission critical problems for so many types of organizations. We've had some funding that has allowed us to invest in the team that we have and in the software that we have, and that's been really phenomenal. And so that investment, I think, keeps us confident, even despite these sort of macroeconomic conditions that we're finding ourselves in. And so honestly, the milestones for us are focusing on our product, focusing on our customers over the next year, focusing on that market for us that we know can get valuable out of what we do, and making developers' lives better, and growing the open source community and making sure that everything that we're doing makes it easier for folks to get started, to contribute to the project and to feel a part of the community that we're cultivating here. >> You guys raised a little bit of money. How much have you guys raised? >> Don't know what the total is, but it's in the ballpark over $200 million. It feels good to... >> A little bit of capital. Got a little bit of cap to work with there. Great success. I know as a Series C Financing, you guys have been down. So you're up and running, what's next? What are you guys looking to do? What's the big horizon look like for you from a vision standpoint, more hiring, more product, what is some of the key things you're looking at doing? >> Yeah, it's really a little of all of the above, right? Kind of one of the best and worst things about working at earlier stage startups is there's always so much to do and you often have to just kind of figure out a way to get everything done. But really investing our product over the next, at least over the course of our company lifetime. And there's a lot of ways we want to make it more accessible to users, easier to get started with, easier to use, kind of on all areas there. And really, we really want to do more for the community, right, like I was saying, we wouldn't be anything without the large open source community around us. And we want to figure out ways to give back more in more creative ways, in more code driven ways, in more kind of events and everything else that we can keep those folks galvanized and just keep them happy using Airflow. >> Paola, any final words as we close out? >> No, I mean, I'm super excited. I think we'll keep growing the team this year. We've got a couple of offices in the the US, which we're excited about, and a fully global team that will only continue to grow. So Viraj and I are both here in New York, and we're excited to be engaging with our coworkers in person finally, after years of not doing so. We've got a bustling office in San Francisco as well. So growing those teams and continuing to hire all over the world, and really focusing on our product and the open source community is where our heads are at this year. So, excited. >> Congratulations. 200 million in funding, plus. Good runway, put that money in the bank, squirrel it away. It's a good time to kind of get some good interest on it, but still grow. Congratulations on all the work you guys do. We appreciate you and the open source community does, and good luck with the venture, continue to be successful, and we'll see you at the Startup Showcase. >> Thank you. >> Yeah, thanks so much, John. Appreciate it. >> Okay, that's the CUBE Conversation featuring astronomer.io, that's the website. Astronomer is doing well. Multiple rounds of funding, over 200 million in funding. Open source continues to lead the way in innovation. Great business model, good solution for the next gen cloud scale data operations, data stacks that are emerging. I'm John Furrier, your host, thanks for watching. (soft upbeat music)
SUMMARY :
and that is the future of for the path we've been on so far. for the AI industry to kind of highlight So the crux of what we center of the value proposition, that it's the heartbeat, One of the things and the number of tools they're using of what you guys went and all of the processes That's a beautiful thing. all the tools that they need, What are some of the companies Viraj, I'll let you take that one too. all of the machine learning and the growth of your company that state of the market? and the value that we can provide and the data scientists that the data market's And so the folks that we sell to You have a built in audience. one of the things that makes this job fun. in the past 5 or so years, 10 years, that you can build on top of, the history of the company? and in the software that we have, How much have you guys raised? but it's in the ballpark What's the big horizon look like for you Kind of one of the best and worst things and continuing to hire the work you guys do. Yeah, thanks so much, John. for the next gen cloud
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Viraj Parekh | PERSON | 0.99+ |
Paola | PERSON | 0.99+ |
Viraj | PERSON | 0.99+ |
John | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
2017 | DATE | 0.99+ |
San Francisco | LOCATION | 0.99+ |
New York | LOCATION | 0.99+ |
Apache | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
Two | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Paola Peraza Calderon | PERSON | 0.99+ |
1970s | DATE | 0.99+ |
first question | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Airflow | TITLE | 0.99+ |
both | QUANTITY | 0.99+ |
Linux Foundation | ORGANIZATION | 0.99+ |
200 million | QUANTITY | 0.99+ |
Astronomer | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
over 200 million | QUANTITY | 0.99+ |
over $200 million | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
10 years ago | DATE | 0.99+ |
HubSpot | ORGANIZATION | 0.98+ |
Fivetran | ORGANIZATION | 0.98+ |
50 years ago | DATE | 0.98+ |
over five years | QUANTITY | 0.98+ |
one stack | QUANTITY | 0.98+ |
12 months ago | DATE | 0.98+ |
10 years | QUANTITY | 0.97+ |
Both | QUANTITY | 0.97+ |
Apache Airflow | TITLE | 0.97+ |
both worlds | QUANTITY | 0.97+ |
CNCF | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
ChatGPT | ORGANIZATION | 0.97+ |
5 | DATE | 0.97+ |
next year | DATE | 0.96+ |
Astromer | ORGANIZATION | 0.96+ |
today | DATE | 0.95+ |
5X | QUANTITY | 0.95+ |
over five years ago | DATE | 0.95+ |
CUBE | ORGANIZATION | 0.94+ |
two things | QUANTITY | 0.94+ |
each | QUANTITY | 0.93+ |
one person | QUANTITY | 0.93+ |
First | QUANTITY | 0.92+ |
S3 | TITLE | 0.91+ |
Carnegie Mellon | ORGANIZATION | 0.91+ |
Startup Showcase | EVENT | 0.91+ |
Brian Stevens, Neural Magic | Cube Conversation
>> John: Hello and welcome to this cube conversation here in Palo Alto, California. I'm John Furrier, host of theCUBE. We got a great conversation on making machine learning easier and more affordable in an era where everybody wants more machine learning and AI. We're featuring Neural Magic with the CEO is also Cube alumni, Brian Steve. CEO, Great to see you Brian. Thanks for coming on this cube conversation. Talk about machine learning. >> Brian: Hey John, happy to be here again. >> John: What a buzz that's going on right now? Machine learning, one of the hottest topics, AI front and center, kind of going mainstream. We're seeing the success of the, of the kind of NextGen capabilities in the enterprise and in apps. It's a really exciting time. So perfect timing. Great, great to have this conversation. Let's start with taking a minute to explain what you guys are doing over there at Neural Magic. I know there's some history there, neural networks, MIT. But the, the convergence of what's going on, this big wave hitting, it's an exciting time for you guys. Take a minute to explain the company and your mission. >> Brian: Sure, sure, sure. So, as you said, the company's Neural Magic and spun out at MIT four plus years ago, along with some people and, and some intellectual property. And you summarize it better than I can cause you said, we're just trying to make, you know, AI that much easier. And so, but like another level of specificity around it is. You know, in the world you have a lot of like data scientists really focusing on making AI work for whatever their use case is. And then the next phase of that, then they're looking at optimizing the models that they built. And then it's not good enough just to work on models. You got to put 'em into production. So, what we do is we make it easier to optimize the models that have been developed and trained and then trying to make it super simple when it comes time to deploying those in production and managing them. >> Brian: You know, we've seen this movie before with the cloud. You start to see abstractions come out. Data science we saw like was like the, the secret art of being like a data scientist now democratization of data. You're kind of seeing a similar wave with machine learning models, foundational models, some call it developers are getting involved. Model complexity's still there, but, but it's getting easier. There's almost like the democratization happening. You got complexity, you got deployment, it's challenges, cost, you got developers involved. So it's like how do you grow it? How do you get more horsepower? And then how do you make developers productive, right? So like, this seems to be the thread. So, so where, where do you see this going? Because there's going to be a massive demand for, I want to do more with my machine learning. But what's the data source? What's the formatting? This kind of a stack develop, what, what are you guys doing to address this? Can you take us through and demystify this, this wave that's hitting, that everyone's seeing? >> Brian: Yeah. Now like you said, like, you know, the democratization of all of it. And that brings me all the way back to like the roots of open source, right? When you think about like, like back in the day you had to build your own tech stack yourself. A lot of people probably probably don't remember that. And then you went, you're building, you're always starting on a body of code or a module that was out there with open source. And I think that's what I equate to where AI has gotten to with what you were talking about the foundational models that didn't really exist years ago. So you really were like putting the layers of your models together in the formulas and it was a lot of heavy lifting. And so there was so much time spent on development. With far too few success cases, you know, to get into production to solve like a business stereo technical need. But as these, what's happening is as these models are becoming foundational. It's meaning people don't have to start from scratch. They're actually able to, you know, the avant-garde now is start with existing model that almost does what you want, but then applying your data set to it. So it's, you know, it's really the industry moving forward. And then we, you know, and, and the best thing about it is open source plays a new dimension, but this time, you know, in the, in the realm of AI. And so to us though, like, you know, I've been like, I spent a career focusing on, I think on like the, not just the technical side, but the consumption of the technology and how it's still way too hard for somebody to actually like, operationalize technology that all those vendors throw at them. So I've always been like empathetic the user around like, you know what their job is once you give them great technology. And so it's still too difficult even with the foundational models because what happens is there's really this impedance mismatch between the development of the model and then where, where the model has to live and run and be deployed and the life cycle of the model, if you will. And so what we've done in our research is we've developed techniques to introduce what's known as sparsity into a machine learning model. It's already been developed and trained. And what that sparsity does is that unlocks by making that model so much smaller. So in many cases we can make a model 90 to 95% smaller, even smaller than that in research. So, and, and so by doing that, we do that in a way that preserves all the accuracy out of the foundational model as you talked about. So now all of a sudden you get this much smaller model just as accurate. And then the even more exciting part about it is we developed a software-based engine called Deep Source. And what that, what the Inference Runtime does is takes that now sparsified model and it runs it, but because you sparsified it, it only needs a fraction of the compute that it, that it would've needed otherwise. So what we've done is make these models much faster, much smaller, and then by pairing that with an inference runtime, you now can actually deploy that model anywhere you want on commodity hardware, right? So X 86 in the cloud, X 86 in the data center arm at the edge, it's like this massive unlock that happens because you get the, the state-of-the-art models, but you get 'em, you know, on the IT assets and the commodity infrastructure. That is where all the applications are running today. >> John: I want to get into the inference piece and the deep sparse you mentioned, but I first have to ask, you mentioned open source, Dave and I with some fellow cube alumnis. We're having a chat about, you know, the iPhone and Android moment where you got proprietary versus open source. You got a similar thing happening with some of these machine learning modules where there's a lot of proprietary things happening and there's open source movement is growing. So is there a balance there? Are they all trying to do the same thing? Is it more like a chip, you know, silicons involved, all kinds of things going on that are really fascinating from a science. What's your, what's your reaction to that? >> Brian: I think it's like anything that, you know, the way we talk about AI you think had been around for decades, but the reality is it's been some of the deep learning models. When we first, when we first started taking models that the brain team was working on at Google and billing APIs around them on Google Cloud where the first cloud to even have AI services was 2015, 2016. So when you think about it, it's really been what, 6 years since like this thing is even getting lift off. So I think with that, everybody's throwing everything at it. You know, there's tons of funded hardware thrown at specialty for training or inference new companies. There's legacy companies that are getting into like AI now and whether it's a, you know, a CPU company that's now building specialized ASEX for training. There's new tech stacks proprietary software and there's a ton of asset service. So it really is, you know, what's gone from nascent 8 years ago is the wild, wild west out there. So there's a, there's a little bit of everything right now and I think that makes sense because at the early part of any industry it really becomes really specialized. And that's the, you know, showing my age of like, you know, the early pilot of the two thousands, you know, red Hat people weren't running X 86 in enterprise back then and they thought it was a toy and they certainly weren't running open source, but you really, and it made sense that they weren't because it didn't deliver what they needed to at that time. So they needed specialty stacks, they needed expensive, they needed expensive hardware that did what an Oracle database needed to do. They needed proprietary software. But what happens is that commoditizes through both hardware and through open source and the same thing's really just starting with with AI. >> John: Yeah. And I think that's a great point before we to call that out because in any industry timing's everything, right? I mean I remember back in the 80s, late 80s and 90s, AI, you know, stuff was going on and it just wasn't, there wasn't enough horsepower, there wasn't enough tech. >> Brian: Yep. >> John: You mentioned some of the processing. So AI is this industry that has all these experts who have been itch scratching that itch for decades. And now with cloud and custom silicon. The tech fundamental at the lower end of the stack, if you will, on the performance side is significantly more performant. It's there you got more capabilities. >> Brian: Yeah. >> John: Now you're kicking into more software, faster software. So it just seems like we're at a tipping point where finally it's here, like that AI moment or machine learning and now data is, is involved. So this is where organizations I see really jumping in with the CEO mandate. Hey team, make ML work for us. Go figure it out. It's got to be an advantage for us. >> Brian: Yeah. >> John: So now they go, okay boss, we will. So what, what do they do? What's the steps does an enterprise take to get machine learning into their organizations? Cause you know, it's coming down from the boards, you know, how does this work for rob? >> Brian: Yeah. Like the, you know, the, what we're seeing is it's like anything, like it's, whether that was source adoption or whether that was cloud adoption, it always starts usually with one person. And increasingly it is the CEO, which realizes they're getting further behind the competition because they're not leaning in, you know, faster. But typically it really comes down to like a really strong practitioner that's inside the organization, right? And, that realizes that the number one goal isn't doing more and just training more models and and necessarily being proprietary about it. It's really around understanding the art of the possible. Something that's grounded in the art of the possible, what, what deep learning can do today and what business outcomes you can deliver, you know, if you can employ. And then there's well proven paths through that. It's just that because of where it's been, it's not that industrialized today. It's very much, you know, you see ML project by ML project is very snowflakey, right? And that was kind of the early days of open source as well. And so, we're just starting to get to the point where it's getting easier, it's getting more industrialized, there's less steps, there's less burdensome on developers, there's less burdensome on, on the deployment side. And we're trying to bring that, that whole last mile by saying, you know what? Deploying deep learning and AI models should be as easy as the as to deploy your application, right? You shouldn't have to take an extra step to deploy an AI model. It shouldn't have to require a new hardware, it shouldn't require a new process, a new DevOps model. It should be as simple as what you're already doing. >> John: What is the best practice for companies to effectively bring an acceptable level of machine learning and performance into their organizations? >> Brian: Yeah, I think like the, the number one start is like what you hinted at before is they, they have to know the use case. They have to, in most cases, you're going to find across every industry you know, that that problem's been tackled by some company, right? And then you have to have the best practice around fine-tuning the models already exist. So fine tuning that existing model. That foundational model on your unique dataset. You, you know, if you are in medical instruments, it's not good enough to identify that it's a medical instrument in the picture. You got to know what type of medical instrument. So there's always a fine tuning step. And so we've created open source tools that make it easy for you to do two things at once. You can fine tune that existing foundational model, whether that's in the language space or whether that's in the vision space. You can fine tune that on your dataset. And at the same time you get an optimized model that comes out the other end. So you get kind of both things. So you, you no longer have to worry about you're, we're freeing you from worrying about the complexity of that transfer learning, if you will. And we're freeing you from worrying about, well where am I going to deploy the model? Where does it need to be? Does it need to be on a device, an edge, a data center, a cloud edge? What kind of hardware is it? Is there enough hardware there? We're liberating you from all of that. Because what you want, what you can count on is there'll always be commodity capability, commodity CPUs where you want to deploy in abundance cause that's where your application is. And so all of a sudden we're just freeing you of that, of that whole step. >> John: Okay. Let's get into deep sparse because you mentioned that earlier. What inspired the creation of deep sparse and how does it differ from any other solutions in the market that are out there? >> Brian: Sure. So, so where unique is it? It starts by, by two things. One is what the industry's pretty good at from the optimization side is they're good at like this thing called quantization, which turns like, you know, big numbers into small numbers, lower precision. So a 32 bit representation of a, of AI weight into a bit. And they're good at like cutting out layers, which also takes away accuracy. What we've figured out is to take those, the industry techniques for those that are best practice, but we combined it with unstructured varsity. So by reducing that model by 90 to 95% in size, that's great because it's made it smaller. But we've taken that when it's the deep sparse engine, when you deploy it that looks at that model and says, because it's so much smaller, I no longer have to run the part of the model that's been essentially sparsified. So what that's done is, it's meant that you no longer need a supercomputer to run models because there's not nearly as much math and processing as there was before the model was optimized. So now what happens is, every CPU platform out there has, has an enormous amount of compute because we've sparsified the rest of it away. So you can pick a, you can pick your, your laptop and you have enough compute to run state-of-the-art models. The second thing that, and you need a software engine to do that cause it ignores the parts of the models. It doesn't need to run, which is what like specialized hardware can't do. The second part is it's then turned into a memory efficiency problem. So it's really around just getting memory, getting the models loaded into the cash of the computer and keeping it there. Never having to go back out to memory. So, so our techniques are both, we reduce the model size and then we only run the part of the model that matters and then we keep it all in cash. And so what that does is it gets us to like these, these low, low latency faster and we're able to increase, you know, the CPU processing by an order magnitude. >> John: Yeah. That low latency is key. And you got developers, you know, co coding super fast. We'll get to the developer angle in a second. I want to just follow up on this, this motivation behind the, the deep sparse because you know, as we were talking earlier before we came on camera about the old days, I mean, not too long ago, virtualization and VMware abstracted away the os from, from the hardware rights and the server virtualization changed the game. >> Brian: Yeah. >> John: And that basically invented cloud computing as we know it today. So, so we see that abstraction. >> Brian: Yeah. >> John: There seems to be a motivation behind abstracting the way the machine learning models away from the hardware. And that seems to be bringing advantages to the AI growth. Can you elaborate on, is that true? And it's, what's your comment? >> Brian: It's true. I think it's true for us. I don't think the industry's there yet, honestly. Cause I think the industry still is of that mindset that if I took, if it took these expensive GPUs to train my model, then I want to run my model on those same expensive GPUs. Because there's often like not a separation between the people that are developing AI and the people that have to manage and deploy at where you need it. So the reality is, is that that's everything that we're after. Like, do we decrease the cost? Yes. Do we make the models smaller? Yes. Do we make them faster? A yes. But I think the most amazing power is that we've turned AI into a docker based microservice. And so like who in the industry wants to deploy their apps the old way on a os without virtualization, without docker, without Kubernetes, without microservices, without service mesh without serverless. You want all those tools for your apps by converting AI models. So they can be run inside a docker container with no apologies around latency and performance cause it's faster. You get the best of that whole world that you just talked about, which is, you know, what we're calling, you know, software delivered AI. So now the AI lives in the same world. Organizations that have gone through that digital cloud transformation with their app infrastructure. AI fits into that world. >> John: And this is where the abstraction concepts matter. When you have these inflection points, the convergence of compute data, machine learning that powers AI, it really becomes a developer opportunity. Because now applications and businesses, when they actually go through the digital transformation, their businesses are completely transformed. There is no IT. Developers are the application. They are the company, right? So AI will be part of whatever business or app will be out there. So there is a application developer angle here. Brian, can you explain >> Brian: Oh completely. >> John: how they're going to use this? Because you mentioned docker container microservice, I mean this really is an insane flipping of the script for developers. >> Brian: Yeah. >> John: So what's that look like? >> Brian: Well speak, it's because like AI's kind of, I mean, again, like it's come so fast. So you figure there's my app team and here's my AI team, right? And they're in different places and the AI team is dragging in specialized infrastructure in support of that as well. And that's not how app developers think. Like they've ran on fungible infrastructure that subtracted and virtualized forever, right? And so what we've done is we've, in addition to fitting into that world that they, that they like, we've also made it simple for them for they don't have to be a machine learning engineer to be able to experiment with these foundational models and transfer learning 'em. We've done that. So they can do that in a couple of commands and it has a simple API that they can either link to their application directly as a library to make difference calls or they can stand it up as a standalone, you know, scale up, scale out inference server. They get two choices. But it really fits into that, you know, you know that world that the modern developer, whether they're just using Python or C or otherwise, we made it just simple. So as opposed to like Go learn something else, they kind of don't have to. So in a way though, it's made it. It's almost made it hard because people expect when we talk to 'em for the first time to be the old way. Like, how do you look like a piece of hardware? Are you compatible with my existing hardware that runs ML? Like, no, we're, we're not. Because you don't need that stack anymore. All you need is a library called to make your prediction and that's it. That's it. >> John: Well, I mean, we were joking on Twitter the other day with someone saying, is AI a pet or a cattle? Right? Because they love their, their AI bots right now. So, so I'd say pet there. But you look at a lot of, there's going to be a lot of AI. So on a more serious note, you mentioned in microservices, will deep sparse have an API for developers? And how does that look like? What do I do? >> Brian: Yeah. >> John: tell me what my, as a developer, what's the roadmap look like? What's the >> Brian: Yeah, it, it really looks, it really can go in both modes. It can go in a standalone server mode where it handles, you know, rest API and it can scale out with ES as the workload comes up and scale back and like try to make hardware do that. Hardware may scale back, but it's just sitting there dormant, you know, so with this, it scales the same way your application needs to. And then for a developer, they basically just, they just, the PIP install de sparse, you know, has one commanded to do an install, and then they do two calls, really. The first call is a library call that the app makes to create the model. And models really already trained, but they, it's called a model create call. And the second command they do is they make a call to do a prediction. And it's as simple as that. So it's, it's AI's as simple as using any other library that the developers are already using, which I, which sounds hard to fathom because it is just so simplified. >> John: Software delivered AI. Okay, that's a cool thing. I believe in it personally. I think that's the way to go. I think there's going to be plenty of hardware options if you look at the advances of cloud players that got more silicon coming out. Yeah. More GPU. I mean, there's more instance, I mean, everything's out there right now. So the question is how does that evolve in your mind? Because that's seems to be key. You have open source projects emerging. What, what path does this take? Is there a parallel mental model that you see, Brian, that is similar? You mentioned open source earlier. Is it more like a VMware virtualization thing or is it more of a cloud thing? Is there Yeah. Is it going to evolve in a, in a trajectory that looks similar to what we might've seen in the past? >> Brian: Yeah, we're, you know, when I, when when I got involved with the company, what I, when I thought about it and I was reasoning about it, like, do you, you know, you want to, like, we all do when you want to join something full-time. I thought about it and said, where will the industry eventually get to? Right? To fully realize the value of, of deep learning and what's plausible as it evolves. And to me, like I, I know it's the old adage of, you know, you know, software, its hardware, cloudy software. But it truly was like, you know, we can solve these problems in software. Like there's nothing special that's happening at the hardware layer and the processing AI. The reality is that it's just early in the industry. So the view that that we had was like, this is eventually the best place where the industry will be, is the liberation of being able to run AI anywhere. Like you're really not democratizing, you democratize the model. But if you can't run the model anywhere you want because these models are getting bigger and bigger with these large language models, then you're kind of not democratizing. And if you got to go and like by a cluster to run this thing on. So the democratization comes by if all of a sudden that model can be consumed anywhere on demand without planning, without provisioning, wherever infrastructure is. And so I think that's with or without Neural Magic, that's where the industry will go and will get to. I think we're the leaders, leaders in getting it there. It's right because we're more advanced on these techniques. >> John: Yeah. And your background too. You've seen OpenStack, pre-cloud, you saw open source grow and still exponentially growing. And so you have the same similar dynamic with machine learning models growing. And they're also segmenting into almost a, an ML stack or foundational model as we talk about. So you're starting to see the formation of tooling inference. So a lot of components coming. It's almost a stack, it's almost a, it literally is like an operating system problem space, you know? How do you run things, how do you link things? How do you bring things together? Is that what's going on here? Is this like a data modeling operating environment kind of red hat type thing going on? Like. >> Brian: Yeah. Yeah. Like I think there is, you know, I thought about that too. And I think there is the role of like distribution, because the industrialization not happening fast enough of this. Like, can I go back to like every customers, every, every user does it in their own kind of way. Like it's not, everyone's a little bit of a snowflake. And I think that's okay. There's definitely plenty of companies that want to come in and say, well, this is the way it's going to be and we industrialize it as long as you do it our way. The reality is technology doesn't get industrialized by one company just saying, do it our way. And so that's why like we've taken the approach through open source by saying like, Hey, you haven't really industrialized it if you said. We made it simple, but you always got to run AI here. Yeah, right. You only like really industrialize it if you break it down into components that are simple to use and they work integrated in the stack the way you want them to. And so to me, that first principles was getting thing into microservices and dockers that could be run on VMware, OpenShare on the cloud in the edge. And so that's the, that's the real part that we're happening with. The other part, like I do agree, like I think it's going to quickly move into less about the model. Less about the training of the model and the transfer learning, you know, the data set of the model. We're taking away the complexity of optimization. Giving liberating deployment to be anywhere. And I think the last mile, John is going to be around the ML ops around that. Because it's easy to think of like soft now that it's just a software problem, we've turned it into a software problem. So it's easy to think of software as like kind of a point release, but that's not the reality, right? It's a life cycle. And it's, and so I think ML very much brings in the what is the lifecycle of that deployment? And, you know, you get into more interesting conversations, to be honest than like, once you've deployed in a docking container is around like model drift and accuracy and the dataset changes and the user changes is how do you become from an ML perspective of where of that sending signal back retraining. And, and that's where I think a lot of the, in more of the innovation's going to start to move there. >> John: Yeah. And software also, the software problem, the software opportunity as well is developer focused. And if you look at the cloud native landscape now, similar stacks developing a lot of components. A lot of things to, to stitch together a lot of things that are automating under the hood. A lot of developer productivity conversations. I think this is going to go down that same road. I want to get your thoughts because developers will set the pace. And this is something that's clear in this next wave developer productivity. They're the defacto standards bodies. They will decide what microservices check, API check. Now, skill gap is going to be a problem because it's relatively new. So model sprawl, model sizes, proprietary versus open. There has to be a way to kind of crunch that down into a, like a DevOps, like just make it, get the developer out of the, the muck. So what's your view? Are we early days like that? Or what's the young kid in college studying CS or whatever degree who comes into this with, with both feet? What are they doing? >> Brian: I'll probably say like the, the non-popular answer to that. A little bit is it's happening so fast that it's going to get kind of boring fast. Meaning like, yeah, you could go to school and go to MIT, right? Sorry. Like, and you could get a hold through end like becoming a model architect, like inventing the next model, right? And the layers and combining 'em and et cetera, et cetera. And then what operators and, and building a model that's bigger than the last one and trains faster, right? And there will be those people, right? That actually, like they're building the engines the same way. You know, I grew up as an infrastructure software developer. There's not a lot of companies that hire those anymore because they're all sitting inside of three big clouds. Yeah. Right? So you better be a good app developer, but I think what you're going to see is before you had to be everything, you had to be the, if you were going to use infrastructure, you had to know how to build infrastructure. And I think the same thing's true around is quickly exiting ML is to be able to use ML in your company, you better be like, great at every aspect of ML, including every intricacy inside of the model and every operation's doing, that's quickly changing. Like, you're going to start with a starting point. You know, in the future you're not going to be like cracking open these GPT models, you're going to just be pulling them off the shelf, fine tuning 'em and go. You don't have to invent it. You don't have to understand it. And I think that's going to be a pivot point, you know, in the industry between, you know, what's the future? What's, what's the future of a, a data scientist? ML engineer researcher look like? >> John: I think that's, the outcome's going to be determined. I mean, you mentioned, you know, doing it yourself what an SRE is for a Google with the servers scale's huge. So yeah, it might have to, at the beginning get boring, you get obsolete quickly, but that means it's progressing. So, The scale becomes huge. And that's where I think it's going to be interesting when we see that scale. >> Brian: Yep. Yeah, I think that's right. I think that's right. And we always, and, and what I've always said, and much the, again, the distribute into my ML team is that I want every developer to be as adept at being able take advantage of ML as non ML engineer, right? It's got to be that simple. And I think, I think it's getting there. I really do. >> John: Well, Brian, great, great to have you on theCUBE here on this cube conversation. As part of the startup showcase that's coming up. You're going to be featured. Or your company would featured on the upcoming ABRA startup showcase on making machine learning easier and more affordable as more machine learning models come in. You guys got deep sparse and some great technology. We're going to dig into that next time. I'll give you the final word right now. What do you see for the company? What are you guys looking for? Give a plug for the company right now. >> Brian: Oh, give a plug that I haven't already doubled in as the plug. >> John: You're hiring engineers, I assume from MIT and other places. >> Brian: Yep. I think like the, the biggest thing is like, like we're on the developer side. We're here to make this easy. The majority of inference today is, is on CPUs already, believe it or not, as much as kind of, we like to talk about hardware and specialized hardware. The majority is already on CPUs. We're basically bringing 95% cost savings to CPUs through this acceleration. So, but we're trying to do it in a way that makes it community first. So I think the, the shout out would be come find the Neural Magic community and engage with us and you'll find, you know, a thousand other like-minded people in Slack that are willing to help you as well as our engineers. And, and let's, let's go take on some successful AI deployments. >> John: Exciting times. This is, I think one of the pivotal moments, NextGen data, machine learning, and now starting to see AI not be that chat bot, just, you know, customer support or some basic natural language processing thing. You're starting to see real innovation. Brian Stevens, CEO of Neural Magic, bringing the magic here. Thanks for the time. Great conversation. >> Brian: Thanks John. >> John: Thanks for joining me. >> Brian: Cheers. Thank you. >> John: Okay. I'm John Furrier, host of theCUBE here in Palo Alto, California for this cube conversation with Brian Stevens. Thanks for watching.
SUMMARY :
CEO, Great to see you Brian. happy to be here again. minute to explain what you guys in the world you have a lot So it's like how do you grow it? like back in the day you had and the deep sparse you And that's the, you know, late 80s and 90s, AI, you know, It's there you got more capabilities. the CEO mandate. Cause you know, it's coming the as to deploy your application, right? And at the same time you get in the market that are out meant that you no longer need a the deep sparse because you know, John: And that basically And that seems to be bringing and the people that have to the convergence of compute data, insane flipping of the script But it really fits into that, you know, But you look at a lot of, call that the app makes to model that you see, Brian, the old adage of, you know, And so you have the same the way you want them to. And if you look at the to see is before you had to be I mean, you mentioned, you know, the distribute into my ML team great to have you on theCUBE already doubled in as the plug. and other places. the biggest thing is like, of the pivotal moments, Brian: Cheers. host of theCUBE here in Palo Alto,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Brian Stevens | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
95% | QUANTITY | 0.99+ |
2015 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
90 | QUANTITY | 0.99+ |
2016 | DATE | 0.99+ |
32 bit | QUANTITY | 0.99+ |
Neural Magic | ORGANIZATION | 0.99+ |
Brian Steve | PERSON | 0.99+ |
Neural Magic | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
two calls | QUANTITY | 0.99+ |
both things | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
second thing | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Python | TITLE | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
first call | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
second part | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
both feet | QUANTITY | 0.98+ |
Oracle | ORGANIZATION | 0.98+ |
both modes | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
80s | DATE | 0.98+ |
first | QUANTITY | 0.98+ |
second command | QUANTITY | 0.98+ |
AWS Startup Showcase S3E1
(soft music) >> Hello everyone, welcome to this Cube conversation here from the studios of theCube in Palo Alto, California. John Furrier, your host. We're featuring a startup, Astronomer, astronomer.io is the url. Check it out. And we're going to have a great conversation around one of the most important topics hitting the industry, and that is the future of machine learning and AI and the data that powers it underneath it. There's a lot of things that need to get done, and we're excited to have some of the co-founders of Astronomer here. Viraj Parekh, who is co-founder and Paola Peraza Calderon, another co-founder, both with Astronomer. Thanks for coming on. First of all, how many co-founders do you guys have? >> You know, I think the answer's around six or seven. I forget the exact, but there's really been a lot of people around the table, who've worked very hard to get this company to the point that it's at. And we have long ways to go, right? But there's been a lot of people involved that are, have been absolutely necessary for the path we've been on so far. >> Thanks for that, Viraj, appreciate that. The first question I want to get out on the table, and then we'll get into some of the details, is take a minute to explain what you guys are doing. How did you guys get here? Obviously, multiple co-founders sounds like a great project. The timing couldn't have been better. ChatGPT has essentially done so much public relations for the AI industry. Kind of highlight this shift that's happening. It's real. We've been chronologicalizing, take a minute to explain what you guys do. >> Yeah, sure. We can get started. So yeah, when Astronomer, when Viraj and I joined Astronomer in 2017, we really wanted to build a business around data and we were using an open source project called Apache Airflow, that we were just using sort of as customers ourselves. And over time, we realized that there was actually a market for companies who use Apache Airflow, which is a data pipeline management tool, which we'll get into. And that running Airflow is actually quite challenging and that there's a lot of, a big opportunity for us to create a set of commercial products and opportunity to grow that open source community and actually build a company around that. So the crux of what we do is help companies run data pipelines with Apache Airflow. And certainly we've grown in our ambitions beyond that, but that's sort of the crux of what we do for folks. >> You know, data orchestration, data management has always been a big item, you know, in the old classic data infrastructure. But with AI you're seeing a lot more emphasis on scale, tuning, training. You know, data orchestration is the center of the value proposition when you're looking at coordinating resources, it's one of the most important things. Could you guys explain what data orchestration entails? What does it mean? Take us through the definition of what data orchestration entails. >> Yeah, for sure. I can take this one and Viraj feel free to jump in. So if you google data orchestration, you know, here's what you're going to get. You're going to get something that says, data orchestration is the automated process for organizing silo data from numerous data storage points to organizing it and making it accessible and prepared for data analysis. And you say, okay, but what does that actually mean, right? And so let's give sort of an example. So let's say you're a business and you have sort of the following basic asks of your data team, right? Hey, give me a dashboard in Sigma, for example, for the number of customers or monthly active users and then make sure that that gets updated on an hourly basis. And then number two, a consistent list of active customers that I have in HubSpot so that I can send them a monthly product newsletter, right? Two very basic asks for all sorts of companies and organizations. And when that data team, which has data engineers, data scientists, ML engineers, data analysts get that request, they're looking at an ecosystem of data sources that can help them get there, right? And that includes application databases, for example, that actually have end product user behavior and third party APIs from tools that the company uses that also has different attributes and qualities of those customers or users. And that data team needs to use tools like Fivetran, to ingest data, a data warehouse like Snowflake or Databricks to actually store that data and do analysis on top of it, a tool like DBT to do transformations and make sure that that data is standardized in the way that it needs to be, a tool like Hightouch for reverse ETL. I mean, we could go on and on. There's so many partners of ours in this industry that are doing really, really exciting and critical things for those data movements. And the whole point here is that, you know, data teams have this plethora of tooling that they use to both ingest the right data and come up with the right interfaces to transform and interact with that data. And data orchestration in our view is really the heartbeat of all of those processes, right? And tangibly the unit of data orchestration, you know, is a data pipeline, a set of tasks or jobs that each do something with data over time and eventually run that on a schedule to make sure that those things are happening continuously as time moves on. And, you know, the company advances. And so, you know, for us, we're building a business around Apache Airflow, which is a workflow management tool that allows you to author, run and monitor data pipelines. And so when we talk about data orchestration, we talk about sort of two things. One is that crux of data pipelines that, like I said, connect that large ecosystem of data tooling in your company. But number two, it's not just that data pipeline that needs to run every day, right? And Viraj will probably touch on this as we talk more about Astronomer and our value prop on top of Airflow. But then it's all the things that you need to actually run data and production and make sure that it's trustworthy, right? So it's actually not just that you're running things on a schedule, but it's also things like CI/CD tooling, right? Secure secrets management, user permissions, monitoring, data lineage, documentation, things that enable other personas in your data team to actually use those tools. So long-winded way of saying that, it's the heartbeat that we think of the data ecosystem and certainly goes beyond scheduling, but again, data pipelines are really at the center of it. >> You know, one of the things that jumped out Viraj, if you can get into this, I'd like to hear more about how you guys look at all those little tools that are out there. You mentioned a variety of things. You know, if you look at the data infrastructure, it's not just one stack. You've got an analytic stack, you've got a realtime stack, you've got a data lake stack, you got an AI stack potentially. I mean you have these stacks now emerging in the data world that are >> Yeah. - >> fundamental, but we're once served by either a full package, old school software, and then a bunch of point solution. You mentioned Fivetran there, I would say in the analytics stack. Then you got, you know, S3, they're on the data lake stack. So all these things are kind of munged together. >> Yeah. >> How do you guys fit into that world? You make it easier or like, what's the deal? >> Great question, right? And you know, I think that one of the biggest things we've found in working with customers over, you know, the last however many years, is that like if a data team is using a bunch of tools to get what they need done and the number of tools they're using is growing exponentially and they're kind of roping things together here and there, that's actually a sign of a productive team, not a bad thing, right? It's because that team is moving fast. They have needs that are very specific to them and they're trying to make something that's exactly tailored to their business. So a lot of times what we find is that customers have like some sort of base layer, right? That's kind of like, you know, it might be they're running most of the things in AWS, right? And then on top of that, they'll be using some of the things AWS offers, you know, things like SageMaker, Redshift, whatever. But they also might need things that their Cloud can't provide, you know, something like Fivetran or Hightouch or anything of those other tools and where data orchestration really shines, right? And something that we've had the pleasure of helping our customers build, is how do you take all those requirements, all those different tools and whip them together into something that fulfills a business need, right? Something that makes it so that somebody can read a dashboard and trust the number that it says or somebody can make sure that the right emails go out to their customers. And Airflow serves as this amazing kind of glue between that data stack, right? It's to make it so that for any use case, be it ELT pipelines or machine learning or whatever, you need different things to do them and Airflow helps tie them together in a way that's really specific for a individual business's needs. >> Take a step back and share the journey of what your guys went through as a company startup. So you mentioned Apache open source, you know, we were just, I was just having an interview with the VC, we were talking about foundational models. You got a lot of proprietary and open source development going on. It's almost the iPhone, Android moment in this whole generative space and foundational side. This is kind of important, the open source piece of it. Can you share how you guys started? And I can imagine your customers probably have their hair on fire and are probably building stuff on their own. How do you guys, are you guys helping them? Take us through, 'cuz you guys are on the front end of a big, big wave and that is to make sense of the chaos, reigning it in. Take us through your journey and why this is important. >> Yeah Paola, I can take a crack at this and then I'll kind of hand it over to you to fill in whatever I miss in details. But you know, like Paola is saying, the heart of our company is open source because we started using Airflow as an end user and started to say like, "Hey wait a second". Like more and more people need this. Airflow, for background, started at Airbnb and they were actually using that as the foundation for their whole data stack. Kind of how they made it so that they could give you recommendations and predictions and all of the processes that need to be or needed to be orchestrated. Airbnb created Airflow, gave it away to the public and then, you know, fast forward a couple years and you know, we're building a company around it and we're really excited about that. >> That's a beautiful thing. That's exactly why open source is so great. >> Yeah, yeah. And for us it's really been about like watching the community and our customers take these problems, find solution to those problems, build standardized solutions, and then building on top of that, right? So we're reaching to a point where a lot of our earlier customers who started to just using Airflow to get the base of their BI stack down and their reporting and their ELP infrastructure, you know, they've solved that problem and now they're moving onto things like doing machine learning with their data, right? Because now that they've built that foundation, all the connective tissue for their data arriving on time and being orchestrated correctly is happening, they can build the layer on top of that. And it's just been really, really exciting kind of watching what customers do once they're empowered to pick all the tools that they need, tie them together in the way they need to, and really deliver real value to their business. >> Can you share some of the use cases of these customers? Because I think that's where you're starting to see the innovation. What are some of the companies that you're working with, what are they doing? >> Raj, I'll let you take that one too. (all laughing) >> Yeah. (all laughing) So you know, a lot of it is, it goes across the gamut, right? Because all doesn't matter what you are, what you're doing with data, it needs to be orchestrated. So there's a lot of customers using us for their ETL and ELT reporting, right? Just getting data from all the disparate sources into one place and then building on top of that, be it building dashboards, answering questions for the business, building other data products and so on and so forth. From there, these use cases evolve a lot. You do see folks doing things like fraud detection because Airflow's orchestrating how transactions go. Transactions get analyzed, they do things like analyzing marketing spend to see where your highest ROI is. And then, you know, you kind of can't not talk about all of the machine learning that goes on, right? Where customers are taking data about their own customers kind of analyze and aggregating that at scale and trying to automate decision making processes. So it goes from your most basic, what we call like data plumbing, right? Just to make sure data's moving as needed. All the ways to your more exciting and sexy use cases around like automated decision making and machine learning. >> And I'd say, I mean, I'd say that's one of the things that I think gets me most excited about our future is how critical Airflow is to all of those processes, you know? And I think when, you know, you know a tool is valuable is when something goes wrong and one of those critical processes doesn't work. And we know that our system is so mission critical to answering basic, you know, questions about your business and the growth of your company for so many organizations that we work with. So it's, I think one of the things that gets Viraj and I, and the rest of our company up every single morning, is knowing how important the work that we do for all of those use cases across industries, across company sizes. And it's really quite energizing. >> It was such a big focus this year at AWS re:Invent, the role of data. And I think one of the things that's exciting about the open AI and all the movement towards large language models, is that you can integrate data into these models, right? From outside, right? So you're starting to see the integration easier to deal with, still a lot of plumbing issues. So a lot of things happening. So I have to ask you guys, what is the state of the data orchestration area? Is it ready for disruption? Is it already been disrupted? Would you categorize it as a new first inning kind of opportunity or what's the state of the data orchestration area right now? Both, you know, technically and from a business model standpoint, how would you guys describe that state of the market? >> Yeah, I mean I think, I think in a lot of ways we're, in some ways I think we're categoric rating, you know, schedulers have been around for a long time. I recently did a presentation sort of on the evolution of going from, you know, something like KRON, which I think was built in like the 1970s out of Carnegie Mellon. And you know, that's a long time ago. That's 50 years ago. So it's sort of like the basic need to schedule and do something with your data on a schedule is not a new concept. But to our point earlier, I think everything that you need around your ecosystem, first of all, the number of data tools and developer tooling that has come out the industry has, you know, has some 5X over the last 10 years. And so obviously as that ecosystem grows and grows and grows and grows, the need for orchestration only increases. And I think, you know, as Astronomer, I think we, and there's, we work with so many different types of companies, companies that have been around for 50 years and companies that got started, you know, not even 12 months ago. And so I think for us, it's trying to always category create and adjust sort of what we sell and the value that we can provide for companies all across that journey. There are folks who are just getting started with orchestration and then there's folks who have such advanced use case 'cuz they're hitting sort of a ceiling and only want to go up from there. And so I think we as a company, care about both ends of that spectrum and certainly have want to build and continue building products for companies of all sorts, regardless of where they are on the maturity curve of data orchestration. >> That's a really good point Paola. And I think the other thing to really take into account is it's the companies themselves, but also individuals who have to do their jobs. You know, if you rewind the clock like five or 10 years ago, data engineers would be the ones responsible for orchestrating data through their org. But when we look at our customers today, it's not just data engineers anymore. There's data analysts who sit a lot closer to the business and the data scientists who want to automate things around their models. So this idea that orchestration is this new category is spot on, is right on the money. And what we're finding is it's spreading, the need for it, is spreading to all parts of the data team naturally where Airflows have emerged as an open source standard and we're hoping to take things to the next level. >> That's awesome. You know, we've been up saying that the data market's kind of like the SRE with servers, right? You're going to need one person to deal with a lot of data and that's data engineering and then you're going to have the practitioners, the democratization. Clearly that's coming in what you're seeing. So I got to ask, how do you guys fit in from a value proposition standpoint? What's the pitch that you have to customers or is it more inbound coming into you guys? Are you guys doing a lot of outreach, customer engagements? I'm sure they're getting a lot of great requirements from customers. What's the current value proposition? How do you guys engage? >> Yeah, I mean we've, there's so many, there's so many. Sorry Raj, you can jump in. - >> It's okay. So there's so many companies using Airflow, right? So our, the baseline is that the open source project that is Airflow that was, that came out of Airbnb, you know, over five years ago at this point, has grown exponentially in users and continues to grow. And so the folks that we sell to primarily are folks who are already committed to using Apache Airflow, need data orchestration in the organization and just want to do it better, want to do it more efficiently, want to do it without managing that infrastructure. And so our baseline proposition is for those organizations. Now to Raj's point, obviously I think our ambitions go beyond that, both in terms of the personas that we addressed and going beyond that data engineer, but really it's for, to start at the baseline. You know, as we continue to grow our company, it's really making sure that we're adding value to folks using Airflow and help them do so in a better way, in a larger way and a more efficient way. And that's really the crux of who we sell to. And so to answer your question on, we actually, we get a lot of inbound because they're are so many - >> A built-in audience. >> In the world that use it, that those are the folks who we talk to and come to our website and chat with us and get value from our content. I mean the power of the open source community is really just so, so big. And I think that's also one of the things that makes this job fun, so. >> And you guys are in a great position, Viraj, you can comment, to get your reaction. There's been a big successful business model to starting a company around these big projects for a lot of reasons. One is open source is continuing to be great, but there's also supply chain challenges in there. There's also, you know, we want to continue more innovation and more code and keeping it free and and flowing. And then there's the commercialization of product-izing it, operationalizing it. This is a huge new dynamic. I mean, in the past, you know, five or so years, 10 years, it's been happening all on CNCF from other areas like Apache, Linux Foundation, they're all implementing this. This is a huge opportunity for entrepreneurs to do this. >> Yeah, yeah. Open source is always going to be core to what we do because, you know, we wouldn't exist without the open source community around us. They are huge in numbers. Oftentimes they're nameless people who are working on making something better in a way that everybody benefits from it. But open source is really hard, especially if you're a company whose core competency is running a business, right? Maybe you're running e-commerce business or maybe you're running, I don't know, some sort of like any sort of business, especially if you're a company running a business, you don't really want to spend your time figuring out how to run open source software. You just want to use it, you want to use the best of it, you want to use the community around it. You want to take, you want to be able to google something and get answers for it. You want the benefits of open source. You don't want to have, you don't have the time or the resources to invest in becoming an expert in open source, right? And I think that dynamic is really what's given companies like us an ability to kind of form businesses around that, in the sense that we'll make it so people get the best of both worlds. You'll get this vast open ecosystem that you can build on top of, you can benefit from, that you can learn from, but you won't have to spend your time doing undifferentiated heavy lifting. You can do things that are just specific to your business. >> It's always been great to see that business model evolved. We used to debate 10 years ago, can there be another red hat? And we said, not really the same, but there'll be a lot of little ones that'll grow up to be big soon. Great stuff. Final question, can you guys share the history of the company, the milestones of the Astronomer's journey in data orchestration? >> Yeah, we could. So yeah, I mean, I think, so Raj and I have obviously been at astronomer along with our other founding team and leadership folks, for over five years now. And it's been such an incredible journey of learning, of hiring really amazing people. Solving again, mission critical problems for so many types of organizations. You know, we've had some funding that has allowed us to invest in the team that we have and in the software that we have. And that's been really phenomenal. And so that investment, I think, keeps us confident even despite these sort of macroeconomic conditions that we're finding ourselves in. And so honestly, the milestones for us are focusing on our product, focusing on our customers over the next year, focusing on that market for us, that we know can get value out of what we do. And making developers' lives better and growing the open source community, you know, and making sure that everything that we're doing makes it easier for folks to get started to contribute to the project and to feel a part of the community that we're cultivating here. >> You guys raised a little bit of money. How much have you guys raised? >> I forget what the total is, but it's in the ballpark of 200, over $200 million. So it feels good - >> A little bit of capital. Got a little bit of cash to work with there. Great success. I know it's a Series C financing, you guys been down, so you're up and running. What's next? What are you guys looking to do? What's the big horizon look like for you? And from a vision standpoint, more hiring, more product, what is some of the key things you're looking at doing? >> Yeah, it's really a little of all of the above, right? Like, kind of one of the best and worst things about working at earlier stage startups is there's always so much to do and you often have to just kind of figure out a way to get everything done, but really invest in our product over the next, at least the next, over the course of our company lifetime. And there's a lot of ways we wanting to just make it more accessible to users, easier to get started with, easier to use all kind of on all areas there. And really, we really want to do more for the community, right? Like I was saying, we wouldn't be anything without the large open source community around us. And we want to figure out ways to give back more in more creative ways, in more code driven ways and more kind of events and everything else that we can do to keep those folks galvanized and just keeping them happy using Airflow. >> Paola, any final words as we close out? >> No, I mean, I'm super excited. You know, I think we'll keep growing the team this year. We've got a couple of offices in the US which we're excited about, and a fully global team that will only continue to grow. So Viraj and I are both here in New York and we're excited to be engaging with our coworkers in person. Finally, after years of not doing so, we've got a bustling office in San Francisco as well. So growing those teams and continuing to hire all over the world and really focusing on our product and the open source community is where our heads are at this year, so. >> Congratulations. - >> Excited. 200 million in funding plus good runway. Put that money in the bank, squirrel it away. You know, it's good to kind of get some good interest on it, but still grow. Congratulations on all the work you guys do. We appreciate you and the open sourced community does and good luck with the venture. Continue to be successful and we'll see you at the Startup Showcase. >> Thank you. - >> Yeah, thanks so much, John. Appreciate it. - >> It's theCube conversation, featuring astronomer.io, that's the website. Astronomer is doing well. Multiple rounds of funding, over 200 million in funding. Open source continues to lead the way in innovation. Great business model. Good solution for the next gen, Cloud, scale, data operations, data stacks that are emerging. I'm John Furrier, your host. Thanks for watching. (soft music)
SUMMARY :
and that is the future of for the path we've been on so far. take a minute to explain what you guys do. and that there's a lot of, of the value proposition And that data team needs to use tools You know, one of the and then a bunch of point solution. and the number of tools they're using and that is to make sense of the chaos, and all of the processes that need to be That's a beautiful thing. you know, they've solved that problem What are some of the companies Raj, I'll let you take that one too. And then, you know, and the growth of your company So I have to ask you guys, and companies that got started, you know, and the data scientists that the data market's kind of you can jump in. And so the folks that we and come to our website and chat with us I mean, in the past, you to what we do because, you history of the company, and in the software that we have. How much have you guys raised? but it's in the ballpark What are you guys looking to do? and you often have to just kind of and the open source community the work you guys do. Yeah, thanks so much, John. that's the website.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Viraj Parekh | PERSON | 0.99+ |
Paola | PERSON | 0.99+ |
Viraj | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Raj | PERSON | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
2017 | DATE | 0.99+ |
New York | LOCATION | 0.99+ |
Paola Peraza Calderon | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Apache | ORGANIZATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
1970s | DATE | 0.99+ |
10 years | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Two | QUANTITY | 0.99+ |
first question | QUANTITY | 0.99+ |
over 200 million | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Both | QUANTITY | 0.99+ |
over $200 million | QUANTITY | 0.99+ |
Linux Foundation | ORGANIZATION | 0.99+ |
50 years ago | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
five | DATE | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
this year | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
Airflow | TITLE | 0.98+ |
10 years ago | DATE | 0.98+ |
Carnegie Mellon | ORGANIZATION | 0.98+ |
over five years | QUANTITY | 0.98+ |
200 | QUANTITY | 0.98+ |
12 months ago | DATE | 0.98+ |
both worlds | QUANTITY | 0.98+ |
5X | QUANTITY | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
first | QUANTITY | 0.98+ |
one stack | QUANTITY | 0.97+ |
one person | QUANTITY | 0.97+ |
two things | QUANTITY | 0.97+ |
Fivetran | ORGANIZATION | 0.96+ |
seven | QUANTITY | 0.96+ |
next year | DATE | 0.96+ |
today | DATE | 0.95+ |
50 years | QUANTITY | 0.95+ |
each | QUANTITY | 0.95+ |
theCube | ORGANIZATION | 0.94+ |
HubSpot | ORGANIZATION | 0.93+ |
Sigma | ORGANIZATION | 0.92+ |
Series C | OTHER | 0.92+ |
Astronomer | ORGANIZATION | 0.91+ |
astronomer.io | OTHER | 0.91+ |
Hightouch | TITLE | 0.9+ |
one place | QUANTITY | 0.9+ |
Android | TITLE | 0.88+ |
Startup Showcase | EVENT | 0.88+ |
Apache Airflow | TITLE | 0.86+ |
CNCF | ORGANIZATION | 0.86+ |
Jon Turow, Madrona Venture Group | CloudNativeSecurityCon 23
(upbeat music) >> Hello and welcome back to theCUBE. We're here in Palo Alto, California. I'm your host, John Furrier with a special guest here in the studio. As part of our Cloud Native SecurityCon Coverage we had an opportunity to bring in Jon Turow who is the partner at Madrona Venture Partners formerly with AWS and to talk about machine learning, foundational models, and how the future of AI is going to be impacted by some of the innovation around what's going on in the industry. ChatGPT has taken the world by storm. A million downloads, fastest to the million downloads there. Before some were saying it's just a gimmick. Others saying it's a game changer. Jon's here to break it down, and great to have you on. Thanks for coming in. >> Thanks John. Glad to be here. >> Thanks for coming on. So first of all, I'm glad you're here. First of all, because two things. One, you were formerly with AWS, got a lot of experience running projects at AWS. Now a partner at Madrona, a great firm doing great deals, and they had this future at modern application kind of thesis. Now you are putting out some content recently around foundational models. You're deep into computer vision. You were the IoT general manager at AWS among other things, Greengrass. So you know a lot about data. You know a lot about some of this automation, some of the edge stuff. You've been in the middle of all these kind of areas that now seem to be the next wave coming. So I wanted to ask you what your thoughts are of how the machine learning and this new automation wave is coming in, this AI tools are coming out. Is it a platform? Is it going to be smarter? What feeds AI? What's your take on this whole foundational big movement into AI? What's your general reaction to all this? >> So, thanks, Jon, again for having me here. Really excited to talk about these things. AI has been coming for a long time. It's been kind of the next big thing. Always just over the horizon for quite some time. And we've seen really compelling applications in generations before and until now. Amazon and AWS have introduced a lot of them. My firm, Madrona Venture Group has invested in some of those early players as well. But what we're seeing now is something categorically different. That's really exciting and feels like a durable change. And I can try and explain what that is. We have these really large models that are useful in a general way. They can be applied to a lot of different tasks beyond the specific task that the designers envisioned. That makes them more flexible, that makes them more useful for building applications than what we've seen before. And so that, we can talk about the depths of it, but in a nutshell, that's why I think people are really excited. >> And I think one of the things that you wrote about that jumped out at me is that this seems to be this moment where there's been a multiple decades of nerds and computer scientists and programmers and data thinkers around waiting for AI to blossom. And it's like they're scratching that itch. Every year is going to be, and it's like the bottleneck's always been compute power. And we've seen other areas, genome sequencing, all kinds of high computation things where required high forms computing. But now there's no real bottleneck to compute. You got cloud. And so you're starting to see the emergence of a massive acceleration of where AI's been and where it needs to be going. Now, it's almost like it's got a reboot. It's almost a renaissance in the AI community with a whole nother macro environmental things happening. Cloud, younger generation, applications proliferate from mobile to cloud native. It's the perfect storm for this kind of moment to switch over. Am I overreading that? Is that right? >> You're right. And it's been cooking for a cycle or two. And let me try and explain why that is. We have cloud and AWS launch in whatever it was, 2006, and offered more compute to more people than really was possible before. Initially that was about taking existing applications and running them more easily in a bigger scale. But in that period of time what's also become possible is new kinds of computation that really weren't practical or even possible without that vast amount of compute. And so one result that came of that is something called the transformer AI model architecture. And Google came out with that, published a paper in 2017. And what that says is, with a transformer model you can actually train an arbitrarily large amount of data into a model, and see what happens. That's what Google demonstrated in 2017. The what happens is the really exciting part because when you do that, what you start to see, when models exceed a certain size that we had never really seen before all of a sudden they get what we call emerging capabilities of complex reasoning and reasoning outside a domain and reasoning with data. The kinds of things that people describe as spooky when they play with something like ChatGPT. That's the underlying term. We don't as an industry quite know why it happens or how it happens, but we can measure that it does. So cloud enables new kinds of math and science. New kinds of math and science allow new kinds of experimentation. And that experimentation has led to this new generation of models. >> So one of the debates we had on theCUBE at our Supercloud event last month was, what's the barriers to entry for say OpenAI, for instance? Obviously, I weighed in aggressively and said, "The barriers for getting into cloud are high because all the CapEx." And Howie Xu formerly VMware, now at ZScaler, he's an AI machine learning guy. He was like, "Well, you can spend $100 million and replicate it." I saw a quote that set up for 180,000 I can get this other package. What's the barriers to entry? Is ChatGPT or OpenAI, does it have sustainability? Is it easy to get into? What is the market like for AI? I mean, because a lot of entrepreneurs are jumping in. I mean, I just read a story today. San Francisco's got more inbound migration because of the AI action happening, Seattle's booming, Boston with MIT's been working on neural networks for generations. That's what we've found the answer. Get off the neural network, Boston jump on the AI bus. So there's total excitement for this. People are enthusiastic around this area. >> You can think of an iPhone versus Android tension that's happening today. In the iPhone world, there are proprietary models from OpenAI who you might consider as the leader. There's Cohere, there's AI21, there's Anthropic, Google's going to have their own, and a few others. These are proprietary models that developers can build on top of, get started really quickly. They're measured to have the highest accuracy and the highest performance today. That's the proprietary side. On the other side, there is an open source part of the world. These are a proliferation of model architectures that developers and practitioners can take off the shelf and train themselves. Typically found in Hugging face. What people seem to think is that the accuracy and performance of the open source models is something like 18 to 20 months behind the accuracy and performance of the proprietary models. But on the other hand, there's infinite flexibility for teams that are capable enough. So you're going to see teams choose sides based on whether they want speed or flexibility. >> That's interesting. And that brings up a point I was talking to a startup and the debate was, do you abstract away from the hardware and be software-defined or software-led on the AI side and let the hardware side just extremely accelerate on its own, 'cause it's flywheel? So again, back to proprietary, that's with hardware kind of bundled in, bolted on. Is it accelerator or is it bolted on or is it part of it? So to me, I think that the big struggle in understanding this is that which one will end up being right. I mean, is it a beta max versus VHS kind of thing going on? Or iPhone, Android, I mean iPhone makes a lot of sense, but if you're Apple, but is there an Apple moment in the machine learning? >> In proprietary models, here does seem to be a jump ball. That there's going to be a virtuous flywheel that emerges that, for example, all these excitement about ChatGPT. What's really exciting about it is it's really easy to use. The technology isn't so different from what we've seen before even from OpenAI. You mentioned a million users in a short period of time, all providing training data for OpenAI that makes their underlying models, their next generation even better. So it's not unreasonable to guess that there's going to be power laws that emerge on the proprietary side. What I think history has shown is that iPhone, Android, Windows, Linux, there seems to be gravity towards this yin and yang. And my guess, and what other people seem to think is going to be the case is that we're going to continue to see these two poles of AI. >> So let's get into the relationship with data because I've been emerging myself with ChatGPT, fascinated by the ease of use, yes, but also the fidelity of how you query it. And I felt like when I was doing writing SQL back in the eighties and nineties where SQL was emerging. You had to be really a guru at the SQL to get the answers you wanted. It seems like the querying into ChatGPT is a good thing if you know how to talk to it. Labeling whether your input is and it does a great job if you feed it right. If you ask a generic questions like Google. It's like a Google search. It gives you great format, sounds credible, but the facts are kind of wrong. >> That's right. >> That's where general consensus is coming on. So what does that mean? That means people are on one hand saying, "Ah, it's bullshit 'cause it's wrong." But I look at, I'm like, "Wow, that's that's compelling." 'Cause if you feed it the right data, so now we're in the data modeling here, so the role of data's going to be critical. Is there a data operating system emerging? Because if this thing continues to go the way it's going you can almost imagine as you would look at companies to invest in. Who's going to be right on this? What's going to scale? What's sustainable? What could build a durable company? It might not look what like what people think it is. I mean, I remember when Google started everyone thought it was the worst search engine because it wasn't a portal. But it was the best organic search on the planet became successful. So I'm trying to figure out like, okay, how do you read this? How do you read the tea leaves? >> Yeah. There are a few different ways that companies can differentiate themselves. Teams with galactic capabilities to take an open source model and then change the architecture and retrain and go down to the silicon. They can do things that might not have been possible for other teams to do. There's a company that that we're proud to be investors in called RunwayML that provides video accelerated, sorry, AI accelerated video editing capabilities. They were used in everything, everywhere all at once and some others. In order to build RunwayML, they needed a vision of what the future was going to look like and they needed to make deep contributions to the science that was going to enable all that. But not every team has those capabilities, maybe nor should they. So as far as how other teams are going to differentiate there's a couple of things that they can do. One is called prompt engineering where they shape on behalf of their own users exactly how the prompt to get fed to the underlying model. It's not clear whether that's going to be a durable problem or whether like Google, we consumers are going to start to get more intuitive about this. That's one. The second is what's called information retrieval. How can I get information about the world outside, information from a database or a data store or whatever service into these models so they can reason about them. And the third is, this is going to sound funny, but attribution. Just like you would do in a news report or an academic paper. If you can state where your facts are coming from, the downstream consumer or the human being who has to use that information actually is going to be able to make better sense of it and rely better on it. So that's prompt engineering, that's retrieval, and that's attribution. >> So that brings me to my next point I want to dig in on is the foundational model stack that you published. And I'll start by saying that with ChatGPT, if you take out the naysayers who are like throwing cold water on it about being a gimmick or whatever, and then you got the other side, I would call the alpha nerds who are like they can see, "Wow, this is amazing." This is truly NextGen. This isn't yesterday's chatbot nonsense. They're like, they're all over it. It's that everybody's using it right now in every vertical. I heard someone using it for security logs. I heard a data center, hardware vendor using it for pushing out appsec review updates. I mean, I've heard corner cases. We're using it for theCUBE to put our metadata in. So there's a horizontal use case of value. So to me that tells me it's a market there. So when you have horizontal scalability in the use case you're going to have a stack. So you publish this stack and it has an application at the top, applications like Jasper out there. You're seeing ChatGPT. But you go after the bottom, you got silicon, cloud, foundational model operations, the foundational models themselves, tooling, sources, actions. Where'd you get this from? How'd you put this together? Did you just work backwards from the startups or was there a thesis behind this? Could you share your thoughts behind this foundational model stack? >> Sure. Well, I'm a recovering product manager and my job that I think about as a product manager is who is my customer and what problem he wants to solve. And so to put myself in the mindset of an application developer and a founder who is actually my customer as a partner at Madrona, I think about what technology and resources does she need to be really powerful, to be able to take a brilliant idea, and actually bring that to life. And if you spend time with that community, which I do and I've met with hundreds of founders now who are trying to do exactly this, you can see that the stack is emerging. In fact, we first drew it in, not in January 2023, but October 2022. And if you look at the difference between the October '22 and January '23 stacks you're going to see that holes in the stack that we identified in October around tooling and around foundation model ops and the rest are organically starting to get filled because of how much demand from the developers at the top of the stack. >> If you look at the young generation coming out and even some of the analysts, I was just reading an analyst report on who's following the whole data stacks area, Databricks, Snowflake, there's variety of analytics, realtime AI, data's hot. There's a lot of engineers coming out that were either data scientists or I would call data platform engineering folks are becoming very key resources in this area. What's the skillset emerging and what's the mindset of that entrepreneur that sees the opportunity? How does these startups come together? Is there a pattern in the formation? Is there a pattern in the competency or proficiency around the talent behind these ventures? >> Yes. I would say there's two groups. The first is a very distinct pattern, John. For the past 10 years or a little more we've seen a pattern of democratization of ML where more and more people had access to this powerful science and technology. And since about 2017, with the rise of the transformer architecture in these foundation models, that pattern has reversed. All of a sudden what has become broader access is now shrinking to a pretty small group of scientists who can actually train and manipulate the architectures of these models themselves. So that's one. And what that means is the teams who can do that have huge ability to make the future happen in ways that other people don't have access to yet. That's one. The second is there is a broader population of people who by definition has even more collective imagination 'cause there's even more people who sees what should be possible and can use things like the proprietary models, like the OpenAI models that are available off the shelf and try to create something that maybe nobody has seen before. And when they do that, Jasper AI is a great example of that. Jasper AI is a company that creates marketing copy automatically with generative models such as GPT-3. They do that and it's really useful and it's almost fun for a marketer to use that. But there are going to be questions of how they can defend that against someone else who has access to the same technology. It's a different population of founders who has to find other sources of differentiation without being able to go all the way down to the the silicon and the science. >> Yeah, and it's going to be also opportunity recognition is one thing. Building a viable venture product market fit. You got competition. And so when things get crowded you got to have some differentiation. I think that's going to be the key. And that's where I was trying to figure out and I think data with scale I think are big ones. Where's the vulnerability in the stack in terms of gaps? Where's the white space? I shouldn't say vulnerability. I should say where's the opportunity, where's the white space in the stack that you see opportunities for entrepreneurs to attack? >> I would say there's two. At the application level, there is almost infinite opportunity, John, because almost every kind of application is about to be reimagined or disrupted with a new generation that takes advantage of this really powerful new technology. And so if there is a kind of application in almost any vertical, it's hard to rule something out. Almost any vertical that a founder wishes she had created the original app in, well, now it's her time. So that's one. The second is, if you look at the tooling layer that we discussed, tooling is a really powerful way that you can provide more flexibility to app developers to get more differentiation for themselves. And the tooling layer is still forming. This is the interface between the models themselves and the applications. Tools that help bring in data, as you mentioned, connect to external actions, bring context across multiple calls, chain together multiple models. These kinds of things, there's huge opportunity there. >> Well, Jon, I really appreciate you coming in. I had a couple more questions, but I will take a minute to read some of your bios for the audience and we'll get into, I won't embarrass you, but I want to set the context. You said you were recovering product manager, 10 plus years at AWS. Obviously, recovering from AWS, which is a whole nother dimension of recovering. In all seriousness, I talked to Andy Jassy around that time and Dr. Matt Wood and it was about that time when AI was just getting on the radar when they started. So you guys started seeing the wave coming in early on. So I remember at that time as Amazon was starting to grow significantly and even just stock price and overall growth. From a tech perspective, it was pretty clear what was coming, so you were there when this tsunami hit. >> Jon: That's right. >> And you had a front row seat building tech, you were led the product teams for Computer Vision AI, Textract, AI intelligence for document processing, recognition for image and video analysis. You wrote the business product plan for AWS IoT and Greengrass, which we've covered a lot in theCUBE, which extends out to the whole edge thing. So you know a lot about AI/ML, edge computing, IOT, messaging, which I call the law of small numbers that scale become big. This is a big new thing. So as a former AWS leader who's been there and at Madrona, what's your investment thesis as you start to peruse the landscape and talk to entrepreneurs as you got the stack? What's the big picture? What are you looking for? What's the thesis? How do you see this next five years emerging? >> Five years is a really long time given some of this science is only six months out. I'll start with some, no pun intended, some foundational things. And we can talk about some implications of the technology. The basics are the same as they've always been. We want, what I like to call customers with their hair on fire. So they have problems, so urgent they'll buy half a product. The joke is if your hair is on fire you might want a bucket of cold water, but you'll take a tennis racket and you'll beat yourself over the head to put the fire out. You want those customers 'cause they'll meet you more than halfway. And when you find them, you can obsess about them and you can get better every day. So we want customers with their hair on fire. We want founders who have empathy for those customers, understand what is going to be required to serve them really well, and have what I like to call founder-market fit to be able to build the products that those customers are going to need. >> And because that's a good strategy from an emerging, not yet fully baked out requirements definition. >> Jon: That's right. >> Enough where directionally they're leaning in, more than in, they're part of the product development process. >> That's right. And when you're doing early stage development, which is where I personally spend a lot of my time at the seed and A and a little bit beyond that stage often that's going to be what you have to go on because the future is going to be so complex that you can't see the curves beyond it. But if you have customers with their hair on fire and talented founders who have the capability to serve those customers, that's got me interested. >> So if I'm an entrepreneur, I walk in and say, "I have customers that have their hair on fire." What kind of checks do you write? What's the kind of the average you're seeing for seed and series? Probably seed, seed rounds and series As. >> It can depend. I have seen seed rounds of double digit million dollars. I have seen seed rounds much smaller than that. It really depends on what is going to be the right thing for these founders to prove out the hypothesis that they're testing that says, "Look, we have this customer with her hair on fire. We think we can build at least a tennis racket that she can use to start beating herself over the head and put the fire out. And then we're going to have something really interesting that we can scale up from there and we can make the future happen. >> So it sounds like your advice to founders is go out and find some customers, show them a product, don't obsess over full completion, get some sort of vibe on fit and go from there. >> Yeah, and I think by the time founders come to me they may not have a product, they may not have a deck, but if they have a customer with her hair on fire, then I'm really interested. >> Well, I always love the professional services angle on these markets. You go in and you get some business and you understand it. Walk away if you don't like it, but you see the hair on fire, then you go in product mode. >> That's right. >> All Right, Jon, thank you for coming on theCUBE. Really appreciate you stopping by the studio and good luck on your investments. Great to see you. >> You too. >> Thanks for coming on. >> Thank you, Jon. >> CUBE coverage here at Palo Alto. I'm John Furrier, your host. More coverage with CUBE Conversations after this break. (upbeat music)
SUMMARY :
and great to have you on. that now seem to be the next wave coming. It's been kind of the next big thing. is that this seems to be this moment and offered more compute to more people What's the barriers to entry? is that the accuracy and the debate was, do you that there's going to be power laws but also the fidelity of how you query it. going to be critical. exactly how the prompt to get So that brings me to my next point and actually bring that to life. and even some of the analysts, But there are going to be questions Yeah, and it's going to be and the applications. the radar when they started. and talk to entrepreneurs the head to put the fire out. And because that's a good of the product development process. that you can't see the curves beyond it. What kind of checks do you write? and put the fire out. to founders is go out time founders come to me and you understand it. stopping by the studio More coverage with CUBE
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amazon | ORGANIZATION | 0.99+ |
Jon | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
January 2023 | DATE | 0.99+ |
Jon Turow | PERSON | 0.99+ |
October | DATE | 0.99+ |
18 | QUANTITY | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
$100 million | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
10 plus years | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
ORGANIZATION | 0.99+ | |
two | QUANTITY | 0.99+ |
October 2022 | DATE | 0.99+ |
hundreds | QUANTITY | 0.99+ |
Madrona | ORGANIZATION | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
Madrona Venture Partners | ORGANIZATION | 0.99+ |
January '23 | DATE | 0.99+ |
two groups | QUANTITY | 0.99+ |
Matt Wood | PERSON | 0.99+ |
Madrona Venture Group | ORGANIZATION | 0.99+ |
180,000 | QUANTITY | 0.99+ |
October '22 | DATE | 0.99+ |
Jasper | TITLE | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
six months | QUANTITY | 0.99+ |
2006 | DATE | 0.99+ |
million downloads | QUANTITY | 0.99+ |
Five years | QUANTITY | 0.99+ |
SQL | TITLE | 0.99+ |
last month | DATE | 0.99+ |
two poles | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Howie Xu | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
third | QUANTITY | 0.99+ |
20 months | QUANTITY | 0.99+ |
Greengrass | ORGANIZATION | 0.99+ |
Madrona Venture Group | ORGANIZATION | 0.98+ |
second | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
Supercloud | EVENT | 0.98+ |
RunwayML | TITLE | 0.98+ |
San Francisco | LOCATION | 0.98+ |
ZScaler | ORGANIZATION | 0.98+ |
yesterday | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
First | QUANTITY | 0.97+ |
CapEx | ORGANIZATION | 0.97+ |
eighties | DATE | 0.97+ |
ChatGPT | TITLE | 0.96+ |
Dr. | PERSON | 0.96+ |
Daniel Rethmeier & Samir Kadoo | Accelerating Business Transformation
(upbeat music) >> Hi everyone. Welcome to theCUBE special presentation here in Palo Alto, California. I'm John Furrier, host of theCUBE. We got two great guests, one for calling in from Germany, or videoing in from Germany, one from Maryland. We've got VMware and AWS. This is the customer successes with VMware Cloud on AWS Showcase: Accelerating Business Transformation. Here in the Showcase at Samir Kadoo, worldwide VMware strategic alliance solution architect leader with AWS. Samir, great to have you. And Daniel Rethmeier, principal architect global AWS synergy at VMware. Guys, you guys are working together, you're the key players in this relationship as it rolls out and continues to grow. So welcome to theCUBE. >> Thank you, greatly appreciate it. >> Great to have you guys both on. As you know, we've been covering this since 2016 when Pat Gelsinger, then CEO, and then then CEO AWS at Andy Jassy did this. It kind of got people by surprise, but it really kind of cleaned out the positioning in the enterprise for the success of VM workloads in the cloud. VMware's had great success with it since and you guys have the great partnerships. So this has been like a really strategic, successful partnership. Where are we right now? You know, years later, we got this whole inflection point coming, you're starting to see this idea of higher level services, more performance are coming in at the infrastructure side, more automation, more serverless, I mean and AI. I mean, it's just getting better and better every year in the cloud. Kind of a whole 'nother level. Where are we? Samir, let's start with you on the relationship. >> Yeah, totally. So I mean, there's several things to keep in mind, right? So in 2016, right, that's when the partnership between AWS and VMware was announced. And then less than a year later, that's when we officially launched VMware Cloud on AWS. Years later, we've been driving innovation, working with our customers, jointly engineering this between AWS and VMware. Day in, day out, as far as advancing VMware Cloud on AWS. You know, even if you look at the innovation that takes place with the solution, things have modernized, things have changed, there's been advancements. You know, whether it's security focus, whether it's platform focus, whether it's networking focus, there's been modifications along the way, even storage, right, more recently. One of the things to keep in mind is we're looking to deliver value to our customers together. These are our joint customers. So there's hundreds of VMware and AWS engineers working together on this solution. And then factor in even our sales teams, right? We have VMware and AWS sales teams interacting with each other on a constant daily basis. We're working together with our customers at the end of the day too. Then we're looking to even offer and develop jointly engineered solutions specific to VMware Cloud on AWS. And even with VMware to other platforms as well. Then the other thing comes down to is where we have dedicated teams around this at both AWS and VMware. So even from solutions architects, even to our sales specialists, even to our account teams, even to specific engineering teams within the organizations, they all come together to drive this innovation forward with VMware Cloud on AWS and the jointly engineered solution partnership as well. And then I think one of the key things to keep in mind comes down to we have nearly 600 channel partners that have achieved VMware Cloud on AWS service competency. So think about it from the standpoint, there's 300 certified or validated technology solutions, they're now available to our customers. So that's even innovation right off the top as well. >> Great stuff. Daniel, I want to get to you in a second upon this principal architect position you have. In your title, you're the global AWS synergy person. Synergy means bringing things together, making it work. Take us through the architecture, because we heard a lot of folks at VMware explore this year, formerly VMworld, talking about how the workloads on IT has been completely transforming into cloud and hybrid, right? This is where the action is. Where are you? Is your customers taking advantage of that new shift? You got AIOps, you got ITOps changing a lot, you got a lot more automation, edges right around the corner. This is like a complete transformation from where we were just five years ago. What's your thoughts on the relationship? >> So at first, I would like to emphasize that our collaboration is not just that we have dedicated teams to help our customers get the most and the best benefits out of VMware Cloud and AWS, we are also enabling us mutually. So AWS learns from us about the VMware technology, where VMware people learn about the AWS technology. We are also enabling our channel partners and we are working together on customer projects. So we have regular assembles globally and also virtually on Slack and the usual suspect tools working together and listening to customers. That's very important. Asking our customers where are their needs? And we are driving the solution into the direction that our customers get the best benefits out of VMware Cloud on AWS. And over the time, we really have involved the solution. As Samir mentioned, we just added additional storage solutions to VMware Cloud on AWS. We now have three different instance types that cover a broad range of workloads. So for example, we just edited the I4i host, which is ideally for workloads that require a lot of CPU power, such as, you mentioned it, AI workloads. >> Yeah, so I want to get us just specifically on the customer journey and their transformation, you know, we've been reporting on Silicon angle in theCUBE in the past couple weeks in a big way that the ops teams are now the new devs, right? I mean that sounds a little bit weird, but IT operations is now part of a lot more DataOps, security, writing code, composing. You know, with open source, a lot of great things are changing. Can you share specifically what customers are looking for when you say, as you guys come in and assess their needs, what are they doing, what are some of the things that they're doing with VMware on AWS specifically that's a little bit different? Can you share some of and highlights there? >> That's a great point, because originally, VMware and AWS came from very different directions when it comes to speaking people and customers. So for example, AWS, very developer focused, whereas VMware has a very great footprint in the ITOps area. And usually these are very different teams, groups, different cultures, but it's getting together. However, we always try to address the customer needs, right? There are customers that want to build up a new application from the scratch and build resiliency, availability, recoverability, scalability into the application. But there are still a lot of customers that say, "Well, we don't have all of the skills to redevelop everything to refactor an application to make it highly available. So we want to have all of that as a service. Recoverability as a service, scalability as a service. We want to have this from the infrastructure." That was one of the unique selling points for VMware on-premise and now we are bringing this into the cloud. >> Samir, talk about your perspective. I want to get your thoughts, and not to take a tangent, but we had covered the AWS re:MARS, actually it was Amazon re:MARS, machine learning automation, robotics and space was really kind of the confluence of industrial IoT, software, physical. And so when you look at like the IT operations piece becoming more software, you're seeing things about automation, but the skill gap is huge. So you're seeing low code, no code, automation, you know, "Hey Alexa, deploy a Kubernetes cluster." Yeah, I mean that's coming, right? So we're seeing this kind of operating automation meets higher level services, meets workloads. Can you unpack that and share your opinion on what you see there from an Amazon perspective and how it relates to this? >> Yeah. Yeah, totally, right? And you know, look at it from the point of view where we said this is a jointly engineered solution, but it's not migrating to one option or the other option, right? It's more or less together. So even with VMware Cloud on AWS, yes it is utilizing AWS infrastructure, but your environment is connected to that AWS VPC in your AWS account. So if you want to leverage any of the native AWS services, so any of the 200 plus AWS services, you have that option to do so. So that's going to give you that power to do certain things, such as, for example, like how you mentioned with IoT, even with utilizing Alexa, or if there's any other service that you want to utilize, that's the joining point between both of the offerings right off the top. Though with digital transformation, right, you have to think about where it's not just about the technology, right? There's also where you want to drive growth in the underlying technology even in your business. Leaders are looking to reinvent their business, they're looking to take different steps as far as pursuing a new strategy, maybe it's a process, maybe it's with the people, the culture, like how you said before, where people are coming in from a different background, right? They may not be used to the cloud, they may not be used to AWS services, but now you have that capability to mesh them together. >> Okay. >> Then also- >> Oh, go ahead, finish your thought. >> No, no, no, I was going to say what it also comes down to is you need to think about the operating model too, where it is a shift, right? Especially for that vStor admin that's used to their on-premises environment. Now with VMware Cloud on AWS, you have that ability to leverage a cloud, but the investment that you made and certain things as far as automation, even with monitoring, even with logging, you still have that methodology where you can utilize that in VMware Cloud on AWS too. >> Daniel, I want to get your thoughts on this because at Explore and after the event, as we prep for CubeCon and re:Invent coming up, the big AWS show, I had a couple conversations with a lot of the VMware customers and operators, and it's like hundreds of thousands of users and millions of people talking about and peaked on VMware, interested in VMware. The common thread was one person said, "I'm trying to figure out where I'm going to put my career in the next 10 to 15 years." And they've been very comfortable with VMware in the past, very loyal, and they're kind of talking about, I'm going to be the next cloud, but there's no like role yet. Architects, is it solution architect, SRE? So you're starting to see the psychology of the operators who now are going to try to make these career decisions. Like what am I going to work on? And then it's kind of fuzzy, but I want to get your thoughts, how would you talk to that persona about the future of VMware on, say, cloud for instance? What should they be thinking about? What's the opportunity? And what's going to happen? >> So digital transformation definitely is a huge change for many organizations and leaders are perfectly aware of what that means. And that also means to some extent, concerns with your existing employees. Concerns about do I have to relearn everything? Do I have to acquire new skills and trainings? Is everything worthless I learned over the last 15 years of my career? And the answer is to make digital transformation a success, we need not just to talk about technology, but also about process, people, and culture. And this is where VMware really can help because if you are applying VMware Cloud on AWS to your infrastructure, to your existing on-premise infrastructure, you do not need to change many things. You can use the same tools and skills, you can manage your virtual machines as you did in your on-premise environment, you can use the same managing and monitoring tools, if you have written, and many customers did this, if you have developed hundreds of scripts that automate tasks and if you know how to troubleshoot things, then you can use all of that in VMware Cloud on AWS. And that gives not just leaders, but also the architects at customers, the operators at customers, the confidence in such a complex project. >> The consistency, very key point, gives them the confidence to go. And then now that once they're confident, they can start committing themselves to new things. Samir, you're reacting to this because on your side, you've got higher level services, you've got more performance at the hardware level. I mean, a lot improvements. So, okay, nothing's changed, I can still run my job, now I got goodness on the other side. What's the upside? What's in it for the customer there? >> Yeah, so I think what it comes down to is they've already been so used to or entrenched with that VMware admin mentality, right? But now extending that to the cloud, that's where now you have that bridge between VMware Cloud on AWS to bridge that VMware knowledge with that AWS knowledge. So I will look at it from the point of view where now one has that capability and that ability to just learn about the cloud. But if they're comfortable with certain aspects, no one's saying you have to change anything. You can still leverage that, right? But now if you want to utilize any other AWS service in conjunction with that VM that resides maybe on-premises or even in VMware Cloud on AWS, you have that option to do so. So think about it where you have that ability to be someone who's curious and wants to learn. And then if you want to expand on the skills, you certainly have that capability to do so. >> Great stuff, I love that. Now that we're peeking behind the curtain here, I'd love to have you guys explain, 'cause people want to know what's goes on behind the scenes. How does innovation get happen? How does it happen with the relationships? Can you take us through a day in the life of kind of what goes on to make innovation happen with the joint partnership? Do you guys just have a Zoom meeting, do you guys fly out, you write code, go do you ship things? I mean, I'm making it up, but you get the idea. How does it work? What's going on behind the scenes? >> So we hope to get more frequently together in-person, but of course we had some difficulties over the last two to three years. So we are very used to Zoom conferences and Slack meetings. You always have to have the time difference in mind if you are working globally together. But what we try, for example, we have regular assembles now also in-person, geo-based, so for AMEA, for the Americas, for APJ. And we are bringing up interesting customer situations, architectural bits and pieces together. We are discussing it always to share and to contribute to our community. >> What's interesting, you know, as events are coming back, Samir, before you weigh in this, I'll comment as theCUBE's been going back out to events, we're hearing comments like, "What pandemic? We were more productive in the pandemic." I mean, developers know how to work remotely and they've been on all the tools there, but then they get in-person, they're happy to see people, but no one's really missed the beat. I mean, it seems to be very productive, you know, workflow, not a lot of disruption. More, if anything, productivity gains. >> Agreed, right? I think one of the key things to keep in mind is even if you look at AWS's, and even Amazon's leadership principles, right? Customer obsession, that's key. VMware is carrying that forward as well. Where we are working with our customers, like how Daniel said and meant earlier, right? We might have meetings at different time zones, maybe it's in-person, maybe it's virtual, but together we're working to listen to our customers. You know, we're taking and capturing that feedback to drive innovation in VMware Cloud on AWS as well. But one of the key things to keep in mind is yes, there has been the pandemic, we might have been disconnected to a certain extent, but together through technology, we've been able to still communicate, work with our customers, even with VMware in between, with AWS and whatnot, we had that flexibility to innovate and continue that innovation. So even if you look at it from the point of view, right? VMware Cloud on AWS Outposts, that was something that customers have been asking for. We've been able to leverage the feedback and then continue to drive innovation even around VMware Cloud on AWS Outposts. So even with the on-premises environment, if you're looking to handle maybe data sovereignty or compliance needs, maybe you have low latency requirements, that's where certain advancements come into play, right? So the key thing is always to maintain that communication track. >> In our last segment we did here on this Showcase, we listed the accomplishments and they were pretty significant. I mean geo, you got the global rollouts of the relationship. It's just really been interesting and people can reference that, we won't get into it here. But I will ask you guys to comment on, as you guys continue to evolve the relationship, what's in it for the customer? What can they expect next? Because again, I think right now, we're at an inflection point more than ever. What can people expect from the relationship and what's coming up with re:Invent? Can you share a little bit of kind of what's coming down the pike? >> So one of the most important things we have announced this year, and we will continue to evolve into that direction, is independent scale of storage. That absolutely was one of the most important items customer asked for over the last years. Whenever you are requiring additional storage to host your virtual machines, you usually in VMware Cloud on AWS, you have to add additional nodes. Now we have three different node types with different ratios of compute, storage, and memory. But if you only require additional storage, you always have to get also additional compute and memory and you have to pay for it. And now with two solutions which offer choice for the customers, like FS6 wanted a ONTAP and VMware Cloud Flex Storage, you now have two cost effective opportunities to add storage to your virtual machines. And that offers opportunities for other instance types maybe that don't have local storage. We are also very, very keen looking forward to announcements, exciting announcements, at the upcoming events. >> Samir, what's your reaction take on what's coming down on your side? >> Yeah, I think one of the key things to keep in mind is we're looking to help our customers be agile and even scaled with their needs, right? So with VMware Cloud on AWS, that's one of the key things that comes to mind, right? There are going to be announcements, innovations, and whatnot with upcoming events. But together, we're able to leverage that to advance VMware cloud on AWS. To Daniel's point, storage for example, even with host offerings. And then even with decoupling storage from compute and memory, right? Now you have the flexibility where you can do all of that. So to look at it from the standpoint where now with 21 regions where we have VMware Cloud on AWS available as well, where customers can utilize that as needed when needed, right? So it comes down to, you know, transformation will be there. Yes, there's going to be maybe where workloads have to be adapted where they're utilizing certain AWS services, but you have that flexibility and option to do so. And I think with the continuing events, that's going to give us the options to even advance our own services together. >> Well you guys are in the middle of it, you're in the trenches, you're making things happen, you've got a team of people working together. My final question is really more of a kind of a current situation, kind of future evolutionary thing that you haven't seen this before. I want to get both of your reaction to it. And we've been bringing this up in the open conversations on theCUBE is in the old days, let's go back this generation, you had ecosystems, you had VMware had an ecosystem, AWS had an ecosystem. You know, we have a product, you have a product, biz dev deals happen, people sign relationships, and they do business together and they sell each other's products or do some stuff. Now it's more about architecture, 'cause we're now in a distributed large scale environment where the role of ecosystems are intertwining and you guys are in the middle of two big ecosystems. You mentioned channel partners, you both have a lot of partners on both sides, they come together. So you have this now almost a three dimensional or multidimensional ecosystem interplay. What's your thoughts on this? Because it's about the architecture, integration is a value, not so much innovations only. You got to do innovation, but when you do innovation, you got to integrate it, you got to connect it. So how do you guys see this as an architectural thing, start to see more technical business deals? >> So we are removing dependencies from individual ecosystems and from individual vendors. So a customer no longer has to decide for one vendor and then it is a very expensive and high effort project to move away from that vendor, which ties customers even closer to specific vendors. We are removing these obstacles. So with VMware Cloud on AWS, moving to the cloud, firstly it's not a dead end. If you decide at one point in time because of latency requirements or maybe some compliance requirements, you need to move back into on-premise, you can do this. If you decide you want to stay with some of your services on-premise and just run a couple of dedicated services in the cloud, you can do this and you can man manage it through a single pane of glass. That's quite important. So cloud is no longer a dead end, it's no longer a binary decision, whether it's on-premise or the cloud, it is the cloud. And the second thing is you can choose the best of both worlds, right? If you are migrating virtual machines that have been running in your on-premise environment to VMware Cloud on AWS either way in a very, very fast cost effective and safe way, then you can enrich, later on enrich these virtual machines with services that are offered by AWS, more than 200 different services ranging from object-based storage, load balancing, and so on. So it's an endless, endless possibility. >> We call that super cloud in the way that we generically defining it where everyone's innovating, but yet there's some common services. But the differentiation comes from innovation where the lock in is the value, not some spec, right? Samir, this is kind of where cloud is right now. You guys are not commodity, amazon's completely differentiating, but there's some commodity things happen. You got storage, you got compute, but then you got now advances in all areas. But partners innovate with you on their terms. >> Absolutely. >> And everybody wins. >> Yeah, I 100% agree with you. I think one of the key things, you know, as Daniel mentioned before, is where it's a cross education where there might be someone who's more proficient on the cloud side with AWS, maybe more proficient with the VMware's technology. But then for partners, right? They bridge that gap as well where they come in and they might have a specific niche or expertise where their background, where they can help our customers go through that transformation. So then that comes down to, hey, maybe I don't know how to connect to the cloud, maybe I don't know what the networking constructs are, maybe I can leverage that partner. That's one aspect to go about it. Now maybe you migrated that workload to VMware Cloud on AWS. Maybe you want to leverage any of the native AWS services or even just off the top, 200 plus AWS services, right? But it comes down to that skillset, right? So again, solutions architecture at the back of the day, end of the day, what it comes down to is being able to utilize the best of both worlds. That's what we're giving our customers at the end of the day. >> I mean, I just think it's a refactoring and innovation opportunity at all levels. I think now more than ever, you can take advantage of each other's ecosystems and partners and technologies and change how things get done with keeping the consistency. I mean, Daniel, you nailed that, right? I mean you don't have to do anything. You still run it. Just spear the way you're working on it and now do new things. This is kind of a cultural shift. >> Yeah, absolutely. And if you look, not every customer, not every organization has the resources to refactor and re-platform everything. And we give them a very simple and easy way to move workloads to the cloud. Simply run them and at the same time, they can free up resources to develop new innovations and grow their business. >> Awesome. Samir, thank you for coming on. Daniel, thank you for coming to Germany. >> Thank you. Oktoberfest, I know it's evening over there, weekend's here. And thank you for spending the time. Samir, give you the final word. AWS re:Invent's coming up. We're preparing, we're going to have an exclusive with Adam, with Fryer, we'd do a curtain raise, and do a little preview. What's coming down on your side with the relationship and what can we expect to hear about what you got going on at re:Invent this year? The big show? >> Yeah, so I think Daniel hit upon some of the key points, but what I will say is we do have, for example, specific sessions, both that VMware's driving and then also that AWS is driving. We do have even where we have what are called chalk talks. So I would say, and then even with workshops, right? So even with the customers, the attendees who are there, whatnot, if they're looking to sit and listen to a session, yes that's there, but if they want to be hands-on, that is also there too. So personally for me as an IT background, been in sysadmin world and whatnot, being hands-on, that's one of the key things that I personally am looking forward. But I think that's one of the key ways just to learn and get familiar with the technology. >> Yeah, and re:Invent's an amazing show for the in-person. You guys nail it every year. We'll have three sets this year at theCUBE and it's becoming popular. We have more and more content. You guys got live streams going on, a lot of content, a lot of media. So thanks for sharing that. Samir, Daniel, thank you for coming on on this part of the Showcase episode of really the customer successes with VMware Cloud on AWS, really accelerating business transformation with AWS and VMware. I'm John Furrier with theCUBE, thanks for watching. (upbeat music)
SUMMARY :
This is the customer successes Great to have you guys both on. things to keep in mind, right? One of the things to keep in mind Daniel, I want to get to you in a second And over the time, we really that the ops teams are in the ITOps area. And so when you look at So that's going to give you even with logging, you in the next 10 to 15 years." And the answer is to make What's in it for the customer there? and that ability to just I'd love to have you guys explain, and to contribute to our community. but no one's really missed the beat. So the key thing is always to maintain But I will ask you guys to comment on, and memory and you have to pay for it. So it comes down to, you know, and you guys are in the is you can choose the best with you on their terms. on the cloud side with AWS, I mean you don't have to do anything. has the resources to refactor Samir, thank you for coming on. And thank you for spending the time. that's one of the key things of really the customer successes
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Daniel | PERSON | 0.99+ |
Samir | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Daniel Rethmeier | PERSON | 0.99+ |
Maryland | LOCATION | 0.99+ |
amazon | ORGANIZATION | 0.99+ |
Pat Gelsinger | PERSON | 0.99+ |
Germany | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
100% | QUANTITY | 0.99+ |
Samir Kadoo | PERSON | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Adam | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
21 regions | QUANTITY | 0.99+ |
both sides | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
VMworld | ORGANIZATION | 0.99+ |
two solutions | QUANTITY | 0.99+ |
Accelerating Business Transformation with VMware Cloud on AWS 10 31
>>Hi everyone. Welcome to the Cube special presentation here in Palo Alto, California. I'm John Foer, host of the Cube. We've got two great guests, one for calling in from Germany, our videoing in from Germany, one from Maryland. We've got VMware and aws. This is the customer successes with VMware cloud on AWS showcase, accelerating business transformation here in the showcase with Samir Candu Worldwide. VMware strategic alliance solution, architect leader with AWS Samir. Great to have you and Daniel Re Myer, principal architect global AWS synergy at VMware. Guys, you guys are, are working together. You're the key players in the re relationship as it rolls out and continues to grow. So welcome to the cube. >>Thank you. Greatly appreciate it. >>Great to have you guys both on, As you know, we've been covering this since 2016 when Pat Geling, then CEO and then then CEO AWS at Andy Chasy did this. It kind of got people by surprise, but it really kind of cleaned out the positioning in the enterprise for the success. OFM workloads in the cloud. VMware's had great success with it since, and you guys have the great partnerships. So this has been like a really strategic, successful partnership. Where are we right now? You know, years later we got this whole inflection point coming. You're starting to see, you know, this idea of higher level services, more performance are coming in at the infrastructure side. More automation, more serverless, I mean, and a, I mean it's just getting better and better every year in the cloud. Kinda a whole nother level. Where are we, Samir? Let's start with you on, on the relationship. >>Yeah, totally. So I mean, there's several things to keep in mind, right? So in 2016, right, that's when the partnership between AWS and VMware was announced, and then less than a year later, that's when we officially launched VMware cloud on aws. Years later, we've been driving innovation, working with our customers, jointly engineering this between AWS and VMware day in, day out. As far as advancing VMware cloud on aws. You know, even if you look at the innovation that takes place with a solution, things have modernized, things have changed, there's been advancements, you know, whether it's security focus, whether it's platform focus, whether it's networking focus, there's been modifications along the way, even storage, right? More recently, one of the things to keep in mind is we're looking to deliver value to our customers together. These are our joint customers. So there's hundreds of VMware and AWS engineers working together on this solution. >>And then factor in even our sales teams, right? We have VMware and AWS sales teams interacting with each other on a constant daily basis. We're working together with our customers at the end of the day too. Then we're looking to even offer and develop jointly engineered solutions specific to VMware cloud on aws, and even with VMware's, other platforms as well. Then the other thing comes down to is where we have dedicated teams around this at both AWS and VMware. So even from solutions architects, even to our sales specialists, even to our account teams, even to specific engineering teams within the organizations, they all come together to drive this innovation forward with VMware cloud on AWS and the jointly engineered solution partnership as well. And then I think one of the key things to keep in mind comes down to we have nearly 600 channel partners that have achieved VMware cloud on AWS service competency. So think about it from the standpoint there's 300 certified or validated technology solutions, they're now available to our customers. So that's even innovation right off the top as well. >>Great stuff. Daniel, I wanna get to you in a second. Upon this principal architect position you have in your title, you're the global a synergy person. Synergy means bringing things together, making it work. Take us through the architecture, because we heard a lot of folks at VMware explore this year, formerly world, talking about how the, the workloads on it has been completely transforming into cloud and hybrid, right? This is where the action is. Where are you? Is your customers taking advantage of that new shift? You got AI ops, you got it. Ops changing a lot, you got a lot more automation edges right around the corner. This is like a complete transformation from where we were just five years ago. What's your thoughts on the >>Relationship? So at at, at first, I would like to emphasize that our collaboration is not just that we have dedicated teams to help our customers get the most and the best benefits out of VMware cloud on aws. We are also enabling US mutually. So AWS learns from us about the VMware technology, where VMware people learn about the AWS technology. We are also enabling our channel partners and we are working together on customer projects. So we have regular assembled globally and also virtually on Slack and the usual suspect tools working together and listening to customers, that's, that's very important. Asking our customers where are their needs? And we are driving the solution into the direction that our customers get the, the best benefits out of VMware cloud on aws. And over the time we, we really have involved the solution. As Samia mentioned, we just added additional storage solutions to VMware cloud on aws. We now have three different instance types that cover a broad range of, of workload. So for example, we just added the I four I host, which is ideally for workloads that require a lot of CPU power, such as you mentioned it, AI workloads. >>Yeah. So I wanna guess just specifically on the customer journey and their transformation. You know, we've been reporting on Silicon angle in the queue in the past couple weeks in a big way that the OPS teams are now the new devs, right? I mean that sounds OP a little bit weird, but operation IT operations is now part of the, a lot more data ops, security writing code composing, you know, with open source, a lot of great things are changing. Can you share specifically what customers are looking for when you say, as you guys come in and assess their needs, what are they doing? What are some of the things that they're doing with VMware on AWS specifically that's a little bit different? Can you share some of and highlights there? >>That, that's a great point because originally VMware and AWS came from very different directions when it comes to speaking people at customers. So for example, aws very developer focused, whereas VMware has a very great footprint in the IT ops area. And usually these are very different, very different teams, groups, different cultures, but it's, it's getting together. However, we always try to address the customers, right? There are customers that want to build up a new application from the scratch and build resiliency, availability, recoverability, scalability into the application. But there are still a lot of customers that say, well we don't have all of the skills to redevelop everything to refactor an application to make it highly available. So we want to have all of that as a service, recoverability as a service, scalability as a service. We want to have this from the infrastructure. That was one of the unique selling points for VMware on premise and now we are bringing this into the cloud. >>Samir, talk about your perspective. I wanna get your thoughts, and not to take a tangent, but we had covered the AWS remar of, actually it was Amazon res machine learning automation, robotics and space. It was really kinda the confluence of industrial IOT software physical. And so when you look at like the IT operations piece becoming more software, you're seeing things about automation, but the skill gap is huge. So you're seeing low code, no code automation, you know, Hey Alexa, deploy a Kubernetes cluster. Yeah, I mean, I mean that's coming, right? So we're seeing this kind of operating automation meets higher level services meets workloads. Can you unpack that and share your opinion on, on what you see there from an Amazon perspective and how it relates to this? >>Yeah, totally. Right. And you know, look at it from the point of view where we said this is a jointly engineered solution, but it's not migrating to one option or the other option, right? It's more or less together. So even with VMware cloud on aws, yes it is utilizing AWS infrastructure, but your environment is connected to that AWS VPC in your AWS account. So if you wanna leverage any of the native AWS services, so any of the 200 plus AWS services, you have that option to do so. So that's gonna give you that power to do certain things, such as, for example, like how you mentioned with iot, even with utilizing Alexa or if there's any other service that you wanna utilize, that's the joining point between both of the offerings. Right off the top though, with digital transformation, right? You, you have to think about where it's not just about the technology, right? There's also where you want to drive growth in the underlying technology. Even in your business leaders are looking to reinvent their business. They're looking to take different steps as far as pursuing a new strategy. Maybe it's a process, maybe it's with the people, the culture, like how you said before, where people are coming in from a different background, right? They may not be used to the cloud, they may not be used to AWS services, but now you have that capability to mesh them together. Okay. Then also, Oh, >>Go ahead, finish >>Your thought. No, no, I was gonna say, what it also comes down to is you need to think about the operating model too, where it is a shift, right? Especially for that VS four admin that's used to their on-premises at environment. Now with VMware cloud on aws, you have that ability to leverage a cloud, but the investment that you made and certain things as far as automation, even with monitoring, even with logging, yeah. You still have that methodology where you can utilize that in VMware cloud on AWS two. >>Danielle, I wanna get your thoughts on this because at at explore and, and, and after the event, now as we prep for Cuban and reinvent coming up the big AWS show, I had a couple conversations with a lot of the VMware customers and operators and it's like hundreds of thousands of, of, of, of users and millions of people talking about and and peaked on VM we're interested in v VMware. The common thread was one's one, one person said, I'm trying to figure out where I'm gonna put my career in the next 10 to 15 years. And they've been very comfortable with VMware in the past, very loyal, and they're kind of talking about, I'm gonna be the next cloud, but there's no like role yet architects, is it Solution architect sre. So you're starting to see the psychology of the operators who now are gonna try to make these career decisions, like how, what am I gonna work on? And it's, and that was kind of fuzzy, but I wanna get your thoughts. How would you talk to that persona about the future of VMware on, say, cloud for instance? What should they be thinking about? What's the opportunity and what's gonna happen? >>So digital transformation definitely is a huge change for many organizations and leaders are perfectly aware of what that means. And that also means in, in to to some extent, concerns with your existing employees. Concerns about do I have to relearn everything? Do I have to acquire new skills? And, and trainings is everything worthless I learned over the last 15 years of my career? And the, the answer is to make digital transformation a success. We need not just to talk about technology, but also about process people and culture. And this is where VMware really can help because if you are applying VMware cloud on a, on AWS to your infrastructure, to your existing on-premise infrastructure, you do not need to change many things. You can use the same tools and skills, you can manage your virtual machines as you did in your on-premise environment. You can use the same managing and monitoring tools. If you have written, and many customers did this, if you have developed hundreds of, of scripts that automate tasks and if you know how to troubleshoot things, then you can use all of that in VMware cloud on aws. And that gives not just leaders, but but also the architects at customers, the operators at customers, the confidence in, in such a complex project, >>The consistency, very key point, gives them the confidence to go and, and then now that once they're confident they can start committing themselves to new things. Samir, you're reacting to this because you know, on your side you've got higher level services, you got more performance at the hardware level. I mean, lot improvement. So, okay, nothing's changed. I can still run my job now I got goodness on the other side. What's the upside? What's in it for the, for the, for the customer there? >>Yeah, so I think what it comes down to is they've already been so used to or entrenched with that VMware admin mentality, right? But now extending that to the cloud, that's where now you have that bridge between VMware cloud on AWS to bridge that VMware knowledge with that AWS knowledge. So I will look at it from the point of view where now one has that capability and that ability to just learn about the cloud, but if they're comfortable with certain aspects, no one's saying you have to change anything. You can still leverage that, right? But now if you wanna utilize any other AWS service in conjunction with that VM that resides maybe on premises or even in VMware cloud on aws, you have that option to do so. So think about it where you have that ability to be someone who's curious and wants to learn. And then if you wanna expand on the skills, you certainly have that capability to do so. >>Great stuff. I love, love that. Now that we're peeking behind the curtain here, I'd love to have you guys explain, cuz people wanna know what's goes on in behind the scenes. How does innovation get happen? How does it happen with the relationship? Can you take us through a day in the life of kind of what goes on to make innovation happen with the joint partnership? You guys just have a zoom meeting, Do you guys fly out, you write go do you ship thing? I mean I'm making it up, but you get the idea, what's the, what's, how does it work? What's going on behind the scenes? >>So we hope to get more frequently together in person, but of course we had some difficulties over the last two to three years. So we are very used to zoom conferences and and Slack meetings. You always have to have the time difference in mind if we are working globally together. But what we try, for example, we have reg regular assembled now also in person geo based. So for emia, for the Americas, for aj. And we are bringing up interesting customer situations, architectural bits and pieces together. We are discussing it always to share and to contribute to our community. >>What's interesting, you know, as, as events are coming back to here, before you get, you weigh in, I'll comment, as the cube's been going back out to events, we are hearing comments like what, what pandemic we were more productive in the pandemic. I mean, developers know how to work remotely and they've been on all the tools there, but then they get in person, they're happy to see people, but there's no one's, no one's really missed the beat. I mean it seems to be very productive, you know, workflow, not a lot of disruption. More if anything, productivity gains. >>Agreed, right? I think one of the key things to keep in mind is, you know, even if you look at AWS's and even Amazon's leadership principles, right? Customer obsession, that's key. VMware is carrying that forward as well. Where we are working with our customers, like how Daniel said met earlier, right? We might have meetings at different time zones, maybe it's in person, maybe it's virtual, but together we're working to listen to our customers. You know, we're taking and capturing that feedback to drive innovation and VMware cloud on AWS as well. But one of the key things to keep in mind is yes, there have been, there has been the pandemic, we might have been disconnected to a certain extent, but together through technology we've been able to still communicate work with our customers. Even with VMware in between, with AWS and whatnot. We had that flexibility to innovate and continue that innovation. So even if you look at it from the point of view, right? VMware cloud on AWS outposts, that was something that customers have been asking for. We've been been able to leverage the feedback and then continue to drive innovation even around VMware cloud on AWS outposts. So even with the on premises environment, if you're looking to handle maybe data sovereignty or compliance needs, maybe you have low latency requirements, that's where certain advancements come into play, right? So the key thing is always to maintain that communication track. >>And our last segment we did here on the, on this showcase, we listed the accomplishments and they were pretty significant. I mean go, you got the global rollouts of the relationship. It's just really been interesting and, and people can reference that. We won't get into it here, but I will ask you guys to comment on, as you guys continue to evolve the relationship, what's in it for the customer? What can they expect next? Cuz again, I think right now we're in at a, an inflection point more than ever. What can people expect from the relationship and what's coming up with reinvent? Can you share a little bit of kind of what's coming down the pike? >>So one of the most important things we have announced this year, and we will continue to evolve into that direction, is independent scale of storage. That absolutely was one of the most important items customer asked us for over the last years. Whenever, whenever you are requiring additional storage to host your virtual machines, you usually in VMware cloud on aws, you have to add additional notes. Now we have three different note types with different ratios of compute, storage and memory. But if you only require additional storage, you always have to get also additional compute and memory and you have to pay. And now with two solutions which offer choice for the customers, like FS six one, NetApp onap, and VMware cloud Flex Storage, you now have two cost effective opportunities to add storage to your virtual machines. And that offers opportunities for other instance types maybe that don't have local storage. We are also very, very keen looking forward to announcements, exciting announcements at the upcoming events. >>Samir, what's your, what's your reaction take on the, on what's coming down on your side? >>Yeah, I think one of the key things to keep in mind is, you know, we're looking to help our customers be agile and even scale with their needs, right? So with VMware cloud on aws, that's one of the key things that comes to mind, right? There are gonna be announcements, innovations and whatnot with outcoming events. But together we're able to leverage that to advance VMware cloud on AWS to Daniel's point storage, for example, even with host offerings. And then even with decoupling storage from compute and memory, right now you have the flexibility where you can do all of that. So to look at it from the standpoint where now with 21 regions where we have VMware cloud on AWS available as well, where customers can utilize that as needed when needed, right? So it comes down to, you know, transformation will be there. Yes, there's gonna be maybe where workloads have to be adapted where they're utilizing certain AWS services, but you have that flexibility and option to do so. And I think with the continuing events that's gonna give us the options to even advance our own services together. >>Well you guys are in the middle of it, you're in the trenches, you're making things happen, you've got a team of people working together. My final question is really more of a kind of a current situation, kind of future evolutionary thing that you haven't seen this before. I wanna get both of your reaction to it. And we've been bringing this up in, in the open conversations on the cube is in the old days it was going back this generation, you had ecosystems, you had VMware had an ecosystem they did best, had an ecosystem. You know, we have a product, you have a product, biz dev deals happen, people sign relationships and they do business together and they, they sell to each other's products or do some stuff. Now it's more about architecture cuz we're now in a distributed large scale environment where the role of ecosystems are intertwining. >>And this, you guys are in the middle of two big ecosystems. You mentioned channel partners, you both have a lot of partners on both sides. They come together. So you have this now almost a three dimensional or multidimensional ecosystem, you know, interplay. What's your thoughts on this? And, and, and because it's about the architecture, integration is a value, not so much. Innovation is only, you gotta do innovation, but when you do innovation, you gotta integrate it, you gotta connect it. So what is, how do you guys see this as a, as an architectural thing, start to see more technical business deals? >>So we are, we are removing dependencies from individual ecosystems and from individual vendors. So a customer no longer has to decide for one vendor and then it is a very expensive and high effort project to move away from that vendor, which ties customers even, even closer to specific vendors. We are removing these obstacles. So with VMware cloud on aws moving to the cloud, firstly it's, it's not a dead end. If you decide at one point in time because of latency requirements or maybe it's some compliance requirements, you need to move back into on-premise. You can do this if you decide you want to stay with some of your services on premise and just run a couple of dedicated services in the cloud, you can do this and you can mana manage it through a single pane of glass. That's quite important. So cloud is no longer a dead and it's no longer a binary decision, whether it's on premise or the cloud. It it is the cloud. And the second thing is you can choose the best of both works, right? If you are migrating virtual machines that have been running in your on-premise environment to VMware cloud on aws, by the way, in a very, very fast cost effective and safe way, then you can enrich later on enrich these virtual machines with services that are offered by aws. More than 200 different services ranging from object based storage, load balancing and so on. So it's an endless, endless possibility. >>We, we call that super cloud in, in a, in a way that we be generically defining it where everyone's innovating, but yet there's some common services. But the differentiation comes from innovation where the lock in is the value, not some spec, right? Samir, this is gonna where cloud is right now, you guys are, are not commodity. Amazon's completely differentiating, but there's some commodity things. Having got storage, you got compute, but then you got now advances in all areas. But partners innovate with you on their terms. Absolutely. And everybody wins. >>Yeah. And a hundred percent agree with you. I think one of the key things, you know, as Daniel mentioned before, is where it it, it's a cross education where there might be someone who's more proficient on the cloud side with aws, maybe more proficient with the viewers technology, but then for partners, right? They bridge that gap as well where they come in and they might have a specific niche or expertise where their background, where they can help our customers go through that transformation. So then that comes down to, hey, maybe I don't know how to connect to the cloud. Maybe I don't know what the networking constructs are. Maybe I can leverage that partner. That's one aspect to go about it. Now maybe you migrated that workload to VMware cloud on aws. Maybe you wanna leverage any of the native AWS services or even just off the top 200 plus AWS services, right? But it comes down to that skill, right? So again, solutions architecture at the back of, back of the day, end of the day, what it comes down to is being able to utilize the best of both worlds. That's what we're giving our customers at the end of the >>Day. I mean, I just think it's, it's a, it's a refactoring and innovation opportunity at all levels. I think now more than ever, you can take advantage of each other's ecosystems and partners and technologies and change how things get done with keeping the consistency. I mean, Daniel, you nailed that, right? I mean, you don't have to do anything. You still run the fear, the way you working on it and now do new things. This is kind of a cultural shift. >>Yeah, absolutely. And if, if you look, not every, not every customer, not every organization has the resources to refactor and re-platform everything. And we gave, we give them a very simple and easy way to move workloads to the cloud. Simply run them and at the same time they can free up resources to develop new innovations and, and grow their business. >>Awesome. Samir, thank you for coming on. Danielle, thank you for coming to Germany, Octoberfest, I know it's evening over there, your weekend's here. And thank you for spending the time. Samir final give you the final word, AWS reinvents coming up. Preparing. We're gonna have an exclusive with Adam, but Fry, we do a curtain raise, a dual preview. What's coming down on your side with the relationship and what can we expect to hear about what you got going on at reinvent this year? The big show? >>Yeah, so I think, you know, Daniel hit upon some of the key points, but what I will say is we do have, for example, specific sessions, both that VMware's driving and then also that AWS is driving. We do have even where we have what I call a chalk talks. So I would say, and then even with workshops, right? So even with the customers, the attendees who are there, whatnot, if they're looking for to sit and listen to a session, yes that's there. But if they wanna be hands on, that is also there too. So personally for me as an IT background, you know, been in CIS admin world and whatnot, being hands on, that's one of the key things that I personally am looking forward. But I think that's one of the key ways just to learn and get familiar with the technology. Yeah, >>Reinvents an amazing show for the in person. You guys nail it every year. We'll have three sets this year at the cube. It's becoming popular. We more and more content. You guys got live streams going on, a lot of content, a lot of media, so thanks, thanks for sharing that. Samir Daniel, thank you for coming on on this part of the showcase episode of really the customer successes with VMware Cloud Ons, really accelerating business transformation withs and VMware. I'm John Fur with the cube, thanks for watching. Hello everyone. Welcome to this cube showcase, accelerating business transformation with VMware cloud on it's a solution innovation conversation with two great guests, Fred and VP of commercial services at aws and NA Ryan Bard, who's the VP and general manager of cloud solutions at VMware. Gentlemen, thanks for joining me on this showcase. >>Great to be here. >>Hey, thanks for having us on. It's a great topic. You know, we, we've been covering this VMware cloud on abus since, since the launch going back and it's been amazing to watch the evolution from people saying, Oh, it's the worst thing I've ever seen. It's what's this mean? And depress work were, we're kind of not really on board with kind of the vision, but as it played out as you guys had announced together, it did work out great for VMware. It did work out great for a D and it continues two years later and I want just get an update from you guys on where you guys see this has been going. I'll see multiple years. Where is the evolution of the solution as we are right now coming off VMware explorer just recently and going in to reinvent, which is only a couple weeks away, feels like tomorrow. But you know, as we prepare a lot going on, where are we with the evolution of the solution? >>I mean, first thing I wanna say is, you know, PBO 2016 was a someon moment and the history of it, right? When Pat Gelsinger and Andy Jessey came together to announce this and I think John, you were there at the time I was there, it was a great, great moment. We launched the solution in 2017, the year after that at VM Word back when we called it Word, I think we have gone from strength to strength. One of the things that has really mattered to us is we have learned froms also in the processes, this notion of working backwards. So we really, really focused on customer feedback as we build a service offering now five years old, pretty remarkable journey. You know, in the first years we tried to get across all the regions, you know, that was a big focus because there was so much demand for it. >>In the second year we started going really on enterprise grade features. We invented this pretty awesome feature called Stretch clusters, where you could stretch a vSphere cluster using VSA and NSX across two AZs in the same region. Pretty phenomenal four nine s availability that applications start started to get with that particular feature. And we kept moving forward all kinds of integration with AWS direct connect transit gateways with our own advanced networking capabilities. You know, along the way, disaster recovery, we punched out two, two new services just focused on that. And then more recently we launched our outposts partnership. We were up on stage at Reinvent, again with Pat Andy announcing AWS outposts and the VMware flavor of that VMware cloud and AWS outposts. I think it's been significant growth in our federal sector as well with our federal and high certification more recently. So all in all, we are super excited. We're five years old. The customer momentum is really, really strong and we are scaling the service massively across all geos and industries. >>That's great, great update. And I think one of the things that you mentioned was how the advantages you guys got from that relationship. And, and this has kind of been the theme for AWS since I can remember from day one. Fred, you guys do the heavy lifting as as, as you always say for the customers here, VMware comes on board, takes advantage of the AWS and kind of just doesn't miss a beat, continues to move their workloads that everyone's using, you know, vSphere and these are, these are big workloads on aws. What's the AWS perspective on this? How do you see it? >>Yeah, it's pretty fascinating to watch how fast customers can actually transform and move when you take the, the skill set that they're familiar with and the advanced capabilities that they've been using on Preem and then overlay it on top of the AWS infrastructure that's, that's evolving quickly and, and building out new hardware and new instances we'll talk about. But that combined experience between both of us on a jointly engineered solution to bring the best security and the best features that really matter for those workloads drive a lot of efficiency and speed for the, for the customer. So it's been well received and the partnership is stronger than ever from an engineering standpoint, from a business standpoint. And obviously it's been very interesting to look at just how we stay day one in terms of looking at new features and work and, and responding to what customers want. So pretty, pretty excited about just seeing the transformation and the speed that which customers can move to bmc. Yeah, >>That's what great value publish. We've been talking about that in context too. Anyone building on top of the cloud, they can have their own supercloud as we call it. If you take advantage of all the CapEx and and investment Amazon's made and AWS has made and, and and continues to make in performance IAS and pass all great stuff. I have to ask you guys both as you guys see this going to the next level, what are some of the differentiations you see around the service compared to other options on the market? What makes it different? What's the combination? You mentioned jointly engineered, what are some of the key differentiators of the service compared to others? >>Yeah, I think one of the key things Fred talked about is this jointly engineered notion right from day one. We were the earlier doctors of AWS Nitro platform, right? The reinvention of E two back five years ago. And so we have been, you know, having a very, very strong engineering partnership at that level. I think from a VMware customer standpoint, you get the full software defined data center or compute storage networking on EC two, bare metal across all regions. You can scale that elastically up and down. It's pretty phenomenal just having that consistency globally, right on aws EC two global regions. Now the other thing that's a real differentiator for us that customers tell us about is this whole notion of a managed service, right? And this was somewhat new to VMware, but we took away the pain of this undifferentiated heavy lifting where customers had to provision rack, stack hardware, configure the software on top, and then upgrade the software and the security batches on top. >>So we took, took away all of that pain as customers transitioned to VMware cloud and aws. In fact, my favorite story from last year when we were all going through the lock for j debacle industry was just going through that, right? Favorite proof point from customers was before they put even race this issue to us, we sent them a notification saying we already patched all of your systems, no action from you. The customers were super thrilled. I mean these are large banks, many other customers around the world, super thrilled they had to take no action, but a pretty incredible industry challenge that we were all facing. >>Nora, that's a great, so that's a great point. You know, the whole managed service piece brings up the security, you kind of teasing at it, but you know, there's always vulnerabilities that emerge when you are doing complex logic. And as you grow your solutions, there's more bits. You know, Fred, we were commenting before we came on camera, there's more bits than ever before and, and at at the physics layer too, as well as the software. So you never know when there's gonna be a zero day vulnerability out there. Just, it happens. We saw one with fornet this week, this came outta the woodwork. But moving fast on those patches, it's huge. This brings up the whole support angle. I wanted to ask you about how you guys are doing that as well, because to me we see the value when we, when we talk to customers on the cube about this, you know, it was a real, real easy understanding of how, what the cloud means to them with VMware now with the aws. But the question that comes up that we wanna get more clarity on is how do you guys handle support together? >>Well, what's interesting about this is that it's, it's done mutually. We have dedicated support teams on both sides that work together pretty seamlessly to make sure that whether there's a issue at any layer, including all the way up into the app layer, as you think about some of the other workloads like sap, we'll go end to end and make sure that we support the customer regardless of where the particular issue might be for them. And on top of that, we look at where, where we're improving reliability in, in as a first order of, of principle between both companies. So from an availability and reliability standpoint, it's, it's top of mind and no matter where the particular item might land, we're gonna go help the customer resolve. That works really well >>On the VMware side. What's been the feedback there? What's the, what are some of the updates? >>Yeah, I think, look, I mean, VMware owns and operates the service, but we have a phenomenal backend relationship with aws. Customers call VMware for the service for any issues and, and then we have a awesome relationship with AWS on the backend for support issues or any hardware issues. The BASKE management that we jointly do, right? All of the hard problems that customers don't have to worry about. I think on the front end, we also have a really good group of solution architects across the companies that help to really explain the solution. Do complex things like cloud migration, which is much, much easier with VMware cloud aws, you know, we are presenting that easy button to the public cloud in many ways. And so we have a whole technical audience across the two companies that are working with customers every single day. >>You know, you had mentioned, I've got a list here, some of the innovations the, you mentioned the stretch clustering, you know, getting the GOs working, Advanced network, disaster recovery, you know, fed, Fed ramp, public sector certifications, outposts, all good. You guys are checking the boxes every year. You got a good, good accomplishments list there on the VMware AWS side here in this relationship. The question that I'm interested in is what's next? What recent innovations are you doing? Are you making investments in what's on the lists this year? What items will be next year? How do you see the, the new things, the list of accomplishments, people wanna know what's next. They don't wanna see stagnant growth here, they wanna see more action, you know, as as cloud kind of continues to scale and modern applications cloud native, you're seeing more and more containers, more and more, you know, more CF C I C D pipe pipelining with with modern apps, put more pressure on the system. What's new, what's the new innovations? >>Absolutely. And I think as a five yearold service offering innovation is top of mind for us every single day. So just to call out a few recent innovations that we announced in San Francisco at VMware Explorer. First of all, our new platform i four I dot metal, it's isolate based, it's pretty awesome. It's the latest and greatest, all the speeds and feeds that we would expect from VMware and aws. At this point in our relationship. We announced two different storage options. This notion of working from customer feedback, allowing customers even more price reductions, really take off that storage and park it externally, right? And you know, separate that from compute. So two different storage offerings there. One is with AWS Fsx, with NetApp on tap, which brings in our NetApp partnership as well into the equation and really get that NetApp based, really excited about this offering as well. >>And the second storage offering for VMware cloud Flex Storage, VMware's own managed storage offering. Beyond that, we have done a lot of other innovations as well. I really wanted to talk about VMware cloud Flex Compute, where previously customers could only scale by hosts and a host is 36 to 48 cores, give or take. But with VMware cloud Flex Compute, we are now allowing this notion of a resource defined compute model where customers can just get exactly the V C P memory and storage that maps to the applications, however small they might be. So this notion of granularity is really a big innovation that that we are launching in the market this year. And then last but not least, talk about ransomware. Of course it's a hot topic in industry. We are seeing many, many customers ask for this. We are happy to announce a new ransomware recovery with our VMware cloud DR solution. >>A lot of innovation there and the way we are able to do machine learning and make sure the workloads that are covered from snapshots and backups are actually safe to use. So there's a lot of differentiation on that front as well. A lot of networking innovations with Project Knot star for ability to have layer flow through layer seven, you know, new SaaS services in that area as well. Keep in mind that the service already supports managed Kubernetes for containers. It's built in to the same clusters that have virtual machines. And so this notion of a single service with a great TCO for VMs and containers and sort of at the heart of our office, >>The networking side certainly is a hot area to keep innovating on. Every year it's the same, same conversation, get better, faster networking, more, more options there. The flex computes. Interesting. If you don't mind me getting a quick clarification, could you explain the Drew screen resource defined versus hardware defined? Because this is kind of what we had saw at Explore coming out, that notion of resource defined versus hardware defined. What's the, what does that mean? >>Yeah, I mean I think we have been super successful in this hardware defined notion. We we're scaling by the hardware unit that we present as software defined data centers, right? And so that's been super successful. But we, you know, customers wanted more, especially customers in different parts of the world wanted to start even smaller and grow even more incrementally, right? Lower their costs even more. And so this is the part where resource defined starts to be very, very interesting as a way to think about, you know, here's my bag of resources exactly based on what the customers request for fiber machines, five containers, its size exactly for that. And then as utilization grows, we elastically behind the scenes, we're able to grow it through policies. So that's a whole different dimension. It's a whole different service offering that adds value and customers are comfortable. They can go from one to the other, they can go back to that post based model if they so choose to. And there's a jump off point across these two different economic models. >>It's kind of cloud of flexibility right there. I like the name Fred. Let's get into some of the examples of customers, if you don't mind. Let's get into some of the ex, we have some time. I wanna unpack a little bit of what's going on with the customer deployments. One of the things we've heard again on the cube is from customers is they like the clarity of the relationship, they love the cloud positioning of it. And then what happens is they lift and shift the workloads and it's like, feels great. It's just like we're running VMware on AWS and then they would start consuming higher level services, kind of that adoption next level happens and because it it's in the cloud, so, So can you guys take us through some recent examples of customer wins or deployments where they're using VMware cloud on AWS on getting started, and then how do they progress once they're there? How does it evolve? Can you just walk us through a couple of use cases? >>Sure. There's a, well there's a couple. One, it's pretty interesting that, you know, like you said, as there's more and more bits you need better and better hardware and networking. And we're super excited about the I four and the capabilities there in terms of doubling and or tripling what we're doing around a lower variability on latency and just improving all the speeds. But what customers are doing with it, like the college in New Jersey, they're accelerating their deployment on a, on onboarding over like 7,400 students over a six to eight month period. And they've really realized a ton of savings. But what's interesting is where and how they can actually grow onto additional native services too. So connectivity to any other services is available as they start to move and migrate into this. The, the options there obviously are tied to all the innovation that we have across any services, whether it's containerized and with what they're doing with Tanu or with any other container and or services within aws. >>So there's, there's some pretty interesting scenarios where that data and or the processing, which is moved quickly with full compliance, whether it's in like healthcare or regulatory business is, is allowed to then consume and use things, for example, with tech extract or any other really cool service that has, you know, monthly and quarterly innovations. So there's things that you just can't, could not do before that are coming out and saving customers money and building innovative applications on top of their, their current app base in, in a rapid fashion. So pretty excited about it. There's a lot of examples. I think I probably don't have time to go into too, too many here. Yeah. But that's actually the best part is listening to customers and seeing how many net new services and new applications are they actually building on top of this platform. >>Nora, what's your perspective from the VMware sy? So, you know, you guys have now a lot of headroom to offer customers with Amazon's, you know, higher level services and or whatever's homegrown where's being rolled out? Cuz you now have a lot of hybrid too, so, so what's your, what's your take on what, what's happening in with customers? >>I mean, it's been phenomenal, the, the customer adoption of this and you know, banks and many other highly sensitive verticals are running production grade applications, tier one applications on the service over the last five years. And so, you know, I have a couple of really good examples. S and p Global is one of my favorite examples. Large bank, they merge with IHS market, big sort of conglomeration. Now both customers were using VMware cloud and AWS in different ways. And with the, with the use case, one of their use cases was how do I just respond to these global opportunities without having to invest in physical data centers? And then how do I migrate and consolidate all my data centers across the global, which there were many. And so one specific example for this company was how they migrated thousand 1000 workloads to VMware cloud AWS in just six weeks. Pretty phenomenal. If you think about everything that goes into a cloud migration process, people process technology and the beauty of the technology going from VMware point A to VMware point B, the the lowest cost, lowest risk approach to adopting VMware, VMware cloud, and aws. So that's, you know, one of my favorite examples. There are many other examples across other verticals that we continue to see. The good thing is we are seeing rapid expansion across the globe that constantly entering new markets with the limited number of regions and progressing our roadmap there. >>Yeah, it's great to see, I mean the data center migrations go from months, many, many months to weeks. It's interesting to see some of those success stories. So congratulations. One >>Of other, one of the other interesting fascinating benefits is the sustainability improvement in terms of being green. So the efficiency gains that we have both in current generation and new generation processors and everything that we're doing to make sure that when a customer can be elastic, they're also saving power, which is really critical in a lot of regions worldwide at this point in time. They're, they're seeing those benefits. If you're running really inefficiently in your own data center, that is just a, not a great use of power. So the actual calculators and the benefits to these workloads is, are pretty phenomenal just in being more green, which I like. We just all need to do our part there. And, and this is a big part of it here. >>It's a huge, it's a huge point about the sustainability. Fred, I'm glad you called that out. The other one I would say is supply chain issues. Another one you see that constrains, I can't buy hardware. And the third one is really obvious, but no one really talks about it. It's security, right? I mean, I remember interviewing Stephen Schmidt with that AWS and many years ago, this is like 2013, and you know, at that time people were saying the cloud's not secure. And he's like, listen, it's more secure in the cloud on premise. And if you look at the security breaches, it's all about the on-premise data center vulnerabilities, not so much hardware. So there's a lot you gotta to stay current on, on the isolation there is is hard. So I think, I think the security and supply chain, Fred is, is another one. Do you agree? >>I I absolutely agree. It's, it's hard to manage supply chain nowadays. We put a lot of effort into that and I think we have a great ability to forecast and make sure that we can lean in and, and have the resources that are available and run them, run them more efficiently. Yeah, and then like you said on the security point, security is job one. It is, it is the only P one. And if you think of how we build our infrastructure from Nitro all the way up and how we respond and work with our partners and our customers, there's nothing more important. >>And naron your point earlier about the managed service patching and being on top of things, it's really gonna get better. All right, final question. I really wanna thank you for your time on this showcase. It's really been a great conversation. Fred, you had made a comment earlier. I wanna kind of end with kind of a curve ball and put you eyes on the spot. We're talking about a modern, a new modern shift. It's another, we're seeing another inflection point, we've been documenting it, it's almost like cloud hitting another inflection point with application and open source growth significantly at the app layer. Continue to put a lot of pressure and, and innovation in the infrastructure side. So the question is for you guys each to answer is what's the same and what's different in today's market? So it's kind of like we want more of the same here, but also things have changed radically and better here. What are the, what's, what's changed for the better and where, what's still the same kind of thing hanging around that people are focused on? Can you share your perspective? >>I'll, I'll, I'll, I'll tackle it. You know, businesses are complex and they're often unique that that's the same. What's changed is how fast you can innovate. The ability to combine manage services and new innovative services and build new applications is so much faster today. Leveraging world class hardware that you don't have to worry about that's elastic. You, you could not do that even five, 10 years ago to the degree you can today, especially with innovation. So innovation is accelerating at a, at a rate that most people can't even comprehend and understand the, the set of services that are available to them. It's really fascinating to see what a one pizza team of of engineers can go actually develop in a week. It is phenomenal. So super excited about this space and it's only gonna continue to accelerate that. That's my take. All right. >>You got a lot of platform to compete on with, got a lot to build on then you're Ryan, your side, What's your, what's your answer to that question? >>I think we are seeing a lot of innovation with new applications that customers are constant. I think what we see is this whole notion of how do you go from desktop to production to the secure supply chain and how can we truly, you know, build on the agility that developers desire and build all the security and the pipelines to energize that motor production quickly and efficiently. I think we, we are seeing, you know, we are at the very start of that sort of of journey. Of course we have invested in Kubernetes the means to an end, but there's so much more beyond that's happening in industry. And I think we're at the very, very beginning of this transformations, enterprise transformation that many of our customers are going through and we are inherently part of it. >>Yeah. Well gentlemen, I really appreciate that we're seeing the same thing. It's more the same here on, you know, solving these complexities with distractions. Whether it's, you know, higher level services with large scale infrastructure at, at your fingertips. Infrastructures, code, infrastructure to be provisioned, serverless, all the good stuff happen in Fred with AWS on your side. And we're seeing customers resonate with this idea of being an operator, again, being a cloud operator and developer. So the developer ops is kind of, DevOps is kind of changing too. So all for the better. Thank you for spending the time and we're seeing again, that traction with the VMware customer base and of us getting, getting along great together. So thanks for sharing your perspectives, >>I appreciate it. Thank you so >>Much. Okay, thank you John. Okay, this is the Cube and AWS VMware showcase, accelerating business transformation. VMware cloud on aws, jointly engineered solution, bringing innovation to the VMware customer base, going to the cloud and beyond. I'm John Fur, your host. Thanks for watching. Hello everyone. Welcome to the special cube presentation of accelerating business transformation on vmc on aws. I'm John Furrier, host of the Cube. We have dawan director of global sales and go to market for VMware cloud on adb. This is a great showcase and should be a lot of fun. Ashish, thanks for coming on. >>Hi John. Thank you so much. >>So VMware cloud on AWS has been well documented as this big success for VMware and aws. As customers move their workloads into the cloud, IT operations of VMware customers has signaling a lot of change. This is changing the landscape globally is on cloud migration and beyond. What's your take on this? Can you open this up with the most important story around VMC on aws? >>Yes, John. The most important thing for our customers today is the how they can safely and swiftly move their ID infrastructure and applications through cloud. Now, VMware cloud AWS is a service that allows all vSphere based workloads to move to cloud safely, swiftly and reliably. Banks can move their core, core banking platforms, insurance companies move their core insurance platforms, telcos move their goss, bss, PLA platforms, government organizations are moving their citizen engagement platforms using VMC on aws because this is one platform that allows you to move it, move their VMware based platforms very fast. Migrations can happen in a matter of days instead of months. Extremely securely. It's a VMware manage service. It's very secure and highly reliably. It gets the, the reliability of the underlyings infrastructure along with it. So win-win from our customers perspective. >>You know, we reported on this big news in 2016 with Andy Chas, the, and Pat Geling at the time, a lot of people said it was a bad deal. It turned out to be a great deal because not only could VMware customers actually have a cloud migrate to the cloud, do it safely, which was their number one concern. They didn't want to have disruption to their operations, but also position themselves for what's beyond just shifting to the cloud. So I have to ask you, since you got the finger on the pulse here, what are we seeing in the market when it comes to migrating and modern modernizing in the cloud? Because that's the next step. They go to the cloud, you guys have done that, doing it, then they go, I gotta modernize, which means kind of upgrading or refactoring. What's your take on that? >>Yeah, absolutely. Look, the first step is to help our customers assess their infrastructure and licensing and entire ID operations. Once we've done the assessment, we then create their migration plans. A lot of our customers are at that inflection point. They're, they're looking at their real estate, ex data center, real estate. They're looking at their contracts with colocation vendors. They really want to exit their data centers, right? And VMware cloud and AWS is a perfect solution for customers who wanna exit their data centers, migrate these applications onto the AWS platform using VMC on aws, get rid of additional real estate overheads, power overheads, be socially and environmentally conscious by doing that as well, right? So that's the migration story, but to your point, it doesn't end there, right? Modernization is a critical aspect of the entire customer journey as as well customers, once they've migrated their ID applications and infrastructure on cloud get access to all the modernization services that AWS has. They can correct easily to our data lake services, to our AIML services, to custom databases, right? They can decide which applications they want to keep and which applications they want to refactor. They want to take decisions on containerization, make decisions on service computing once they've come to the cloud. But the most important thing is to take that first step. You know, exit data centers, come to AWS using vmc or aws, and then a whole host of modernization options available to them. >>Yeah, I gotta say, we had this right on this, on this story, because you just pointed out a big thing, which was first order of business is to make sure to leverage the on-prem investments that those customers made and then migrate to the cloud where they can maintain their applications, their data, their infrastructure operations that they're used to, and then be in position to start getting modern. So I have to ask you, how are you guys specifically, or how is VMware cloud on s addressing these needs of the customers? Because what happens next is something that needs to happen faster. And sometimes the skills might not be there because if they're running old school, IT ops now they gotta come in and jump in. They're gonna use a data cloud, they're gonna want to use all kinds of machine learning, and there's a lot of great goodness going on above the stack there. So as you move with the higher level services, you know, it's a no brainer, obviously, but they're not, it's not yesterday's higher level services in the cloud. So how are, how is this being addressed? >>Absolutely. I think you hit up on a very important point, and that is skills, right? When our customers are operating, some of the most critical applications I just mentioned, core banking, core insurance, et cetera, they're most of the core applications that our customers have across industries, like even, even large scale ERP systems, they're actually sitting on VMware's vSphere platform right now. When the customer wants to migrate these to cloud, one of the key bottlenecks they face is skill sets. They have the trained manpower for these core applications, but for these high level services, they may not, right? So the first order of business is to help them ease this migration pain as much as possible by not wanting them to, to upscale immediately. And we VMware cloud and AWS exactly does that. I mean, you don't have to do anything. You don't have to create new skill set for doing this, right? Their existing skill sets suffice, but at the same time, it gives them that, that leeway to build that skills roadmap for their team. DNS is invested in that, right? Yes. We want to help them build those skills in the high level services, be it aml, be it, be it i t be it data lake and analytics. We want to invest in them, and we help our customers through that. So that ultimately the ultimate goal of making them drop data is, is, is a front and center. >>I wanna get into some of the use cases and success stories, but I want to just reiterate, hit back your point on the skill thing. Because if you look at what you guys have done at aws, you've essentially, and Andy Chassey used to talk about this all the time when I would interview him, and now last year Adam was saying the same thing. You guys do all the heavy lifting, but if you're a VMware customer user or operator, you are used to things. You don't have to be relearn to be a cloud architect. Now you're already in the game. So this is like almost like a instant path to cloud skills for the VMware. There's hundreds of thousands of, of VMware architects and operators that now instantly become cloud architects, literally overnight. Can you respond to that? Do you agree with that? And then give an example. >>Yes, absolutely. You know, if you have skills on the VMware platform, you know, know, migrating to AWS using via by cloud and AWS is absolutely possible. You don't have to really change the skills. The operations are exactly the same. The management systems are exactly the same. So you don't really have to change anything but the advantages that you get access to all the other AWS services. So you are instantly able to integrate with other AWS services and you become a cloud architect immediately, right? You are able to solve some of the critical problems that your underlying IT infrastructure has immediately using this. And I think that's a great value proposition for our customers to use this service. >>And just one more point, I want just get into something that's really kind of inside baseball or nuanced VMC or VMware cloud on AWS means something. Could you take a minute to explain what on AWS means? Just because you're like hosting and using Amazon as a, as a work workload? Being on AWS means something specific in your world, being VMC on AWS mean? >>Yes. This is a great question, by the way, You know, on AWS means that, you know, VMware's vse platform is, is a, is an iconic enterprise virtualization software, you know, a disproportionately high market share across industries. So when we wanted to create a cloud product along with them, obviously our aim was for them, for the, for this platform to have the goodness of the AWS underlying infrastructure, right? And, and therefore, when we created this VMware cloud solution, it it literally use the AWS platform under the eighth, right? And that's why it's called a VMs VMware cloud on AWS using, using the, the, the wide portfolio of our regions across the world and the strength of the underlying infrastructure, the reliability and, and, and sustainability that it offers. And therefore this product is called VMC on aws. >>It's a distinction I think is worth noting, and it does reflect engineering and some levels of integration that go well beyond just having a SaaS app and, and basically platform as a service or past services. So I just wanna make sure that now super cloud, we'll talk about that a little bit in another interview, but I gotta get one more question in before we get into the use cases and customer success stories is in, in most of the VM world, VMware world, in that IT world, it used to, when you heard migration, people would go, Oh my God, that's gonna take months. And when I hear about moving stuff around and doing cloud native, the first reaction people might have is complexity. So two questions for you before we move on to the next talk. Track complexity. How are you addressing the complexity issue and how long these migrations take? Is it easy? Is it it hard? I mean, you know, the knee jerk reaction is month, You're very used to that. If they're dealing with Oracle or other old school vendors, like, they're, like the old guard would be like, takes a year to move stuff around. So can you comment on complexity and speed? >>Yeah. So the first, first thing is complexity. And you know, what makes what makes anything complex is if you're, if you're required to acquire new skill sets or you've gotta, if you're required to manage something differently, and as far as VMware cloud and AWS on both these aspects, you don't have to do anything, right? You don't have to acquire new skill sets. Your existing idea operation skill sets on, on VMware's platforms are absolutely fine and you don't have to manage it any differently like, than what you're managing your, your ID infrastructure today. So in both these aspects, it's exactly the same and therefore it is absolutely not complex as far as, as far as, as far as we cloud and AWS is concerned. And the other thing is speed. This is where the huge differentiation is. You have seen that, you know, large banks and large telcos have now moved their workloads, you know, literally in days instead of months. >>Because because of VMware cloud and aws, a lot of time customers come to us with specific deadlines because they want to exit their data centers on a particular date. And what happens, VMware cloud and AWS is called upon to do that migration, right? So speed is absolutely critical. The reason is also exactly the same because you are using the exactly the same platform, the same management systems, people are available to you, you're able to migrate quickly, right? I would just reference recently we got an award from President Zelensky of Ukraine for, you know, migrating their entire ID digital infrastructure and, and that that happened because they were using VMware cloud database and happened very swiftly. >>That's been a great example. I mean, that's one political, but the economic advantage of getting outta the data center could be national security. You mentioned Ukraine, I mean Oscar see bombing and death over there. So clearly that's a critical crown jewel for their running their operations, which is, you know, you know, world mission critical. So great stuff. I love the speed thing. I think that's a huge one. Let's get into some of the use cases. One of them is, the first one I wanted to talk about was we just hit on data, data center migration. It could be financial reasons on a downturn or our, or market growth. People can make money by shifting to the cloud, either saving money or making money. You win on both sides. It's a, it's a, it's almost a recession proof, if you will. Cloud is so use case for number one data center migration. Take us through what that looks like. Give an example of a success. Take us through a day, day in the life of a data center migration in, in a couple minutes. >>Yeah. You know, I can give you an example of a, of a, of a large bank who decided to migrate, you know, their, all their data centers outside their existing infrastructure. And they had, they had a set timeline, right? They had a set timeline to migrate the, the, they were coming up on a renewal and they wanted to make sure that this set timeline is met. We did a, a complete assessment of their infrastructure. We did a complete assessment of their IT applications, more than 80% of their IT applications, underlying v vSphere platform. And we, we thought that the right solution for them in the timeline that they wanted, right, is VMware cloud ands. And obviously it was a large bank, it wanted to do it safely and securely. It wanted to have it completely managed, and therefore VMware cloud and aws, you know, ticked all the boxes as far as that is concerned. >>I'll be happy to report that the large bank has moved to most of their applications on AWS exiting three of their data centers, and they'll be exiting 12 more very soon. So that's a great example of, of, of the large bank exiting data centers. There's another Corolla to that. Not only did they manage to manage to exit their data centers and of course use and be more agile, but they also met their sustainability goals. Their board of directors had given them goals to be carbon neutral by 2025. They found out that 35% of all their carbon foot footprint was in their data centers. And if they moved their, their ID infrastructure to cloud, they would severely reduce the, the carbon footprint, which is 35% down to 17 to 18%. Right? And that meant their, their, their, their sustainability targets and their commitment to the go to being carbon neutral as well. >>And that they, and they shift that to you guys. Would you guys take that burden? A heavy lifting there and you guys have a sustainability story, which is a whole nother showcase in and of itself. We >>Can Exactly. And, and cause of the scale of our, of our operations, we are able to, we are able to work on that really well as >>Well. All right. So love the data migration. I think that's got real proof points. You got, I can save money, I can, I can then move and position my applications into the cloud for that reason and other reasons as a lot of other reasons to do that. But now it gets into what you mentioned earlier was, okay, data migration, clearly a use case and you laid out some successes. I'm sure there's a zillion others. But then the next step comes, now you got cloud architects becoming minted every, and you got managed services and higher level services. What happens next? Can you give us an example of the use case of the modernization around the NextGen workloads, NextGen applications? We're starting to see, you know, things like data clouds, not data warehouses. We're not gonna data clouds, it's gonna be all kinds of clouds. These NextGen apps are pure digital transformation in action. Take us through a use case of how you guys make that happen with a success story. >>Yes, absolutely. And this is, this is an amazing success story and the customer here is s and p global ratings. As you know, s and p global ratings is, is the world leader as far as global ratings, global credit ratings is concerned. And for them, you know, the last couple of years have been tough as far as hardware procurement is concerned, right? The pandemic has really upended the, the supply chain. And it was taking a lot of time to procure hardware, you know, configure it in time, make sure that that's reliable and then, you know, distribute it in the wide variety of, of, of offices and locations that they have. And they came to us. We, we did, again, a, a, a alar, a fairly large comprehensive assessment of their ID infrastructure and their licensing contracts. And we also found out that VMware cloud and AWS is the right solution for them. >>So we worked there, migrated all their applications, and as soon as we migrated all their applications, they got, they got access to, you know, our high level services be our analytics services, our machine learning services, our, our, our, our artificial intelligence services that have been critical for them, for their growth. And, and that really is helping them, you know, get towards their next level of modern applications. Right Now, obviously going forward, they will have, they will have the choice to, you know, really think about which applications they want to, you know, refactor or which applications they want to go ahead with. That is really a choice in front of them. And, but you know, the, we VMware cloud and AWS really gave them the opportunity to first migrate and then, you know, move towards modernization with speed. >>You know, the speed of a startup is always the kind of the Silicon Valley story where you're, you know, people can make massive changes in 18 months, whether that's a pivot or a new product. You see that in startup world. Now, in the enterprise, you can see the same thing. I noticed behind you on your whiteboard, you got a slogan that says, are you thinking big? I know Amazon likes to think big, but also you work back from the customers and, and I think this modern application thing's a big deal because I think the mindset has always been constrained because back before they moved to the cloud, most IT, and, and, and on-premise data center shops, it's slow. You gotta get the hardware, you gotta configure it, you gotta, you gotta stand it up, make sure all the software is validated on it, and loading a database and loading oss, I mean, mean, yeah, it got easier and with scripting and whatnot, but when you move to the cloud, you have more scale, which means more speed, which means it opens up their capability to think differently and build product. What are you seeing there? Can you share your opinion on that epiphany of, wow, things are going fast, I got more time to actually think about maybe doing a cloud native app or transforming this or that. What's your, what's your reaction to that? Can you share your opinion? >>Well, ultimately we, we want our customers to utilize, you know, most of our modern services, you know, applications should be microservices based. When desired, they should use serverless applic. So list technology, they should not have monolithic, you know, relational database contracts. They should use custom databases, they should use containers when needed, right? So ultimately, we want our customers to use these modern technologies to make sure that their IT infrastructure, their licensing, their, their entire IT spend is completely native to cloud technologies. They work with the speed of a startup, but it's important for them to, to, to get to the first step, right? So that's why we create this journey for our customers, where you help them migrate, give them time to build the skills, they'll help them mo modernize, take our partners along with their, along with us to, to make sure that they can address the need for our customers. That's, that's what our customers need today, and that's what we are working backwards from. >>Yeah, and I think that opens up some big ideas. I'll just say that the, you know, we're joking, I was joking the other night with someone here in, in Palo Alto around serverless, and I said, you know, soon you're gonna hear words like architectural list. And that's a criticism on one hand, but you might say, Hey, you know, if you don't really need an architecture, you know, storage lists, I mean, at the end of the day, infrastructure is code means developers can do all the it in the coding cycles and then make the operations cloud based. And I think this is kind of where I see the dots connecting. Final thought here, take us through what you're thinking around how this new world is evolving. I mean, architecturals kind of a joke, but the point is, you know, you have to some sort of architecture, but you don't have to overthink it. >>Totally. No, that's a great thought, by the way. I know it's a joke, but it's a great thought because at the end of the day, you know, what do the customers really want? They want outcomes, right? Why did service technology come? It was because there was an outcome that they needed. They didn't want to get stuck with, you know, the, the, the real estate of, of a, of a server. They wanted to use compute when they needed to, right? Similarly, what you're talking about is, you know, outcome based, you know, desire of our customers and, and, and that's exactly where the word is going to, Right? Cloud really enforces that, right? We are actually, you know, working backwards from a customer's outcome and using, using our area the breadth and depth of our services to, to deliver those outcomes, right? And, and most of our services are in that path, right? When we use VMware cloud and aws, the outcome is a, to migrate then to modernize, but doesn't stop there, use our native services, you know, get the business outcomes using this. So I think that's, that's exactly what we are going through >>Actually, should actually, you're the director of global sales and go to market for VMware cloud on Aus. I wanna thank you for coming on, but I'll give you the final minute. Give a plug, explain what is the VMware cloud on Aus, Why is it great? Why should people engage with you and, and the team, and what ultimately is this path look like for them going forward? >>Yeah. At the end of the day, we want our customers to have the best paths to the cloud, right? The, the best path to the cloud is making sure that they migrate safely, reliably, and securely as well as with speed, right? And then, you know, use that cloud platform to, to utilize AWS's native services to make sure that they modernize their IT infrastructure and applications, right? We want, ultimately that our customers, customers, customer get the best out of, you know, utilizing the, that whole application experience is enhanced tremendously by using our services. And I think that's, that's exactly what we are working towards VMware cloud AWS is, is helping our customers in that journey towards migrating, modernizing, whether they wanna exit a data center or whether they wanna modernize their applications. It's a essential first step that we wanna help our customers with >>One director of global sales and go to market with VMware cloud on neighbors. He's with aws sharing his thoughts on accelerating business transformation on aws. This is a showcase. We're talking about the future path. We're talking about use cases with success stories from customers as she's thank you for spending time today on this showcase. >>Thank you, John. I appreciate it. >>Okay. This is the cube, special coverage, special presentation of the AWS Showcase. I'm John Furrier, thanks for watching.
SUMMARY :
Great to have you and Daniel Re Myer, principal architect global AWS synergy Greatly appreciate it. You're starting to see, you know, this idea of higher level services, More recently, one of the things to keep in mind is we're looking to deliver value Then the other thing comes down to is where we Daniel, I wanna get to you in a second. lot of CPU power, such as you mentioned it, AI workloads. composing, you know, with open source, a lot of great things are changing. So we want to have all of that as a service, on what you see there from an Amazon perspective and how it relates to this? And you know, look at it from the point of view where we said this to leverage a cloud, but the investment that you made and certain things as far How would you talk to that persona about the future And that also means in, in to to some extent, concerns with your I can still run my job now I got goodness on the other side. on the skills, you certainly have that capability to do so. Now that we're peeking behind the curtain here, I'd love to have you guys explain, You always have to have the time difference in mind if we are working globally together. I mean it seems to be very productive, you know, I think one of the key things to keep in mind is, you know, even if you look at AWS's guys to comment on, as you guys continue to evolve the relationship, what's in it for So one of the most important things we have announced this year, Yeah, I think one of the key things to keep in mind is, you know, we're looking to help our customers You know, we have a product, you have a product, biz dev deals happen, people sign relationships and they do business And this, you guys are in the middle of two big ecosystems. You can do this if you decide you want to stay with some of your services But partners innovate with you on their terms. I think one of the key things, you know, as Daniel mentioned before, You still run the fear, the way you working on it and And if, if you look, not every, And thank you for spending the time. So personally for me as an IT background, you know, been in CIS admin world and whatnot, thank you for coming on on this part of the showcase episode of really the customer successes with VMware we're kind of not really on board with kind of the vision, but as it played out as you guys had announced together, across all the regions, you know, that was a big focus because there was so much demand for We invented this pretty awesome feature called Stretch clusters, where you could stretch a And I think one of the things that you mentioned was how the advantages you guys got from that and move when you take the, the skill set that they're familiar with and the advanced capabilities that I have to ask you guys both as you guys see this going to the next level, you know, having a very, very strong engineering partnership at that level. put even race this issue to us, we sent them a notification saying we And as you grow your solutions, there's more bits. the app layer, as you think about some of the other workloads like sap, we'll go end to What's been the feedback there? which is much, much easier with VMware cloud aws, you know, they wanna see more action, you know, as as cloud kind of continues to And you know, separate that from compute. And the second storage offering for VMware cloud Flex Storage, VMware's own managed storage you know, new SaaS services in that area as well. If you don't mind me getting a quick clarification, could you explain the Drew screen resource defined versus But we, you know, because it it's in the cloud, so, So can you guys take us through some recent examples of customer The, the options there obviously are tied to all the innovation that we So there's things that you just can't, could not do before I mean, it's been phenomenal, the, the customer adoption of this and you know, Yeah, it's great to see, I mean the data center migrations go from months, many, So the actual calculators and the benefits So there's a lot you gotta to stay current on, Yeah, and then like you said on the security point, security is job one. So the question is for you guys each to Leveraging world class hardware that you don't have to worry production to the secure supply chain and how can we truly, you know, Whether it's, you know, higher level services with large scale Thank you so I'm John Furrier, host of the Cube. Can you open this up with the most important story around VMC on aws? platform that allows you to move it, move their VMware based platforms very fast. They go to the cloud, you guys have done that, So that's the migration story, but to your point, it doesn't end there, So as you move with the higher level services, So the first order of business is to help them ease Because if you look at what you guys have done at aws, the advantages that you get access to all the other AWS services. Could you take a minute to explain what on AWS on AWS means that, you know, VMware's vse platform is, I mean, you know, the knee jerk reaction is month, And you know, what makes what the same because you are using the exactly the same platform, the same management systems, which is, you know, you know, world mission critical. decided to migrate, you know, their, So that's a great example of, of, of the large bank exiting data And that they, and they shift that to you guys. And, and cause of the scale of our, of our operations, we are able to, We're starting to see, you know, things like data clouds, And for them, you know, the last couple of years have been tough as far as hardware procurement is concerned, And, and that really is helping them, you know, get towards their next level You gotta get the hardware, you gotta configure it, you gotta, you gotta stand it up, most of our modern services, you know, applications should be microservices based. I mean, architecturals kind of a joke, but the point is, you know, the end of the day, you know, what do the customers really want? I wanna thank you for coming on, but I'll give you the final minute. customers, customer get the best out of, you know, utilizing the, One director of global sales and go to market with VMware cloud on neighbors. I'm John Furrier, thanks for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Samir | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Maryland | LOCATION | 0.99+ |
Pat Geling | PERSON | 0.99+ |
John Foer | PERSON | 0.99+ |
Andy Chassey | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
Daniel | PERSON | 0.99+ |
Andy Jessey | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
Daniel Re Myer | PERSON | 0.99+ |
Germany | LOCATION | 0.99+ |
Fred | PERSON | 0.99+ |
Samir Daniel | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Stephen Schmidt | PERSON | 0.99+ |
Danielle | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Samia | PERSON | 0.99+ |
two companies | QUANTITY | 0.99+ |
2025 | DATE | 0.99+ |
Andy Chas | PERSON | 0.99+ |
John Fur | PERSON | 0.99+ |
San Francisco | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
36 | QUANTITY | 0.99+ |
Pat Gelsinger | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
two questions | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Nora | PERSON | 0.99+ |
SuperComputing Intro | SuperComputing22
>>Hello everyone. My name is Savannah Peterson, coming to you from the Cube Studios in Palo Alto, California. We're gonna be talking about super computing an event coming up in Dallas this November. I'm joined by the infamous John Furrier. John, thank you for joining me today. >>Great to see you. You look great. >>Thank you. You know, I don't know if anyone's checked out the conference colors for for supercomputing, but I happen to match the accent pink and you are rocking their blue. I got the so on >>There it is. >>We don't always tie our fashion to the tech ladies and gentlemen, but we're, we're a new crew here at, at the Cube and I think it should be a thing that we, that we do moving forward. So John, you are a veteran and I'm a newbie to Supercomputing. It'll be my first time in Dallas. What can I expect? >>Basically it's a hardware nerd fest, basically of the top >>Minds. So it's like ces, >>It's like CES for like, like hardware. It's like really the coolest show if you're into like high performance computing, I mean game changing kind of, you know, physics, laws of physics and hardware. This is the show. I mean this is like the confluence of it's, it's really old. It started when I graduated college, 1988. And back then it was servers, you know, super computing was a concept. It was usually a box and it was hardware, big machine. And it would crank out calculations, simulations and, and you know, you were limited to the processor and all the, the systems components, just the architecture system software, I mean it was technical, it was, it was, it was hardware, it was fun. Very cool back then. But you know, servers got bigger and you got grid computing, you got clusters and then it be really became high performance computing concept. But that's now multiple disciplines, hence it's been around for a while. It's evergreen in the sense it's always changing, attracting talent, students, mentors, scholarships. It's kind of big funding and big companies are behind it. Wl, look, Packard Enterprise, Dell computing startups and hardware matters more than ever. You look at the cloud, what Amazon and, and the cloud hyper skills, they're building the fastest chips down at the root level hardware's back. And I think this show's gonna show a lot of that. >>There isn't the cloud without hardware to support it. So I think it's important that we're all headed here. You, you touched on the evolution there from super computing in the beginning and complex calculations and processing to what we're now calling high performance computing. Can you go a little bit deeper? What is, what does that mean, What does that cover? >>Well, I mean high high performance computing and now is a range of different things. So the super computing needs to be like a thing now. You got clusters and grids that's distributed, you got a backbone, it's well architected and there's a lot involved. This network and security, there's system software. So now it's multiple disciplines in high performance computing and you can do a lot more. And now with cloud computing you can do simulations, say drug research or drug testing. You have, you can do all kinds of cal genome sequencing. I mean the, the, the ability to actually use compute right now is so awesome. The field's got, you know, is rebooting itself in real time, you know, pun intended. So it's like really, it's really good thing. More compute makes things go faster, especially with more data. So high encapsulates all the, the engineering behind it. A lot of robotics coming in the future. All this is gonna be about the edge. You're seeing a lot more hardware making noise around things that are new use cases. You know, your Apple watch that's, you know, very high functionality to a cell tower. Cars again, high performance computing hits all these new use cases. >>It yeah, it absolutely does. I mean high performance computing touches pretty much every aspect of our lives in some capacity at this point and including how we drive our cars to, to get to the studio here in Palo Alto. Do you think that we're entering an era when all of this is about to scale exponentially versus some of the linear growth that we've seen in the space due to the frustration of some of us in the hardware world the last five to 10 years? >>Well, it's a good question. I think everyone has, has seen Moore's law, right? They've seen, you know, that's been, been well documented. I think the world's changing. You're starting to see the trend of more hardware that's specialized like DPU are now out there. You got GPUs, you're seeing the, you know, Bolton hardware, accelerators, you got chi layer software abstraction. So essentially it's, it's a software industry that's in impacted the hardware. So hardware really is software too and it's a lot more software in there. Again, system software's a lot different. So it's, I think it's, it's boomerang back up. I think there's an inflection point because if you look at cyber security and physical devices, they all kind of play in this world where they need compute at the edge. Edge is gonna be a big use case. You can see Dell Technologies there. I think they have a really big opportunity to sell more hardware. H WL Packard Enterprise, others, these are old school >>Box companies. >>So I think the distributed nature of cloud and hybrid and multi-cloud coming on earth and in space means a lot more high performance computing will be sold and and implemented. So that's my take on it. I just think I'm very bullish on this space. >>Ah, yes. And you know me, I get really personally excited about the edge. So I can't wait to see what's in store. Thinking about the variety of vendors and companies, I know we see some of the biggest players in the space. Who are you most excited to see in Dallas coming up in November? >>You know, HP enter, you look back on enterprise has always been informally, HP huge on hpc, Dell and hpe. This is their bread and butter. They've been making servers from many computers to Intel based servers now to arm-based servers and and building their own stuff. So you're gonna start to see a lot more of those players kind of transforming. We're seeing both Dell and HPE transforming and you're gonna see a lot of chip companies there. I'm sure you're gonna see a lot more younger talent, a lot, a lot of young talent are coming, like I said, robotics and the new physical world we're living in is software and IP connected. So it's not like the old school operational technology systems. You have, you know, IP enabled devices that opens up all kinds of new challenges around security vulnerabilities and also capabilities. So it's, I think it's gonna be a lot younger crowd I think than we usually see this year. And you seeing a lot of students, and again universities participating. >>Yeah, I noticed that they have a student competition that's a, a big part of the event. I'm curious when you say younger, are you expecting to see new startups and some interesting players in the space that maybe we haven't heard of before? >>I think we might see more use cases that are different. When I say younger, I don't mean so much on the Democratic but young, younger i new ideas, right? So I think you're gonna see a lot of smart people coming in that might not have the, you know, the, the lens from when it started in 1988 and remember 1988 to now so much has changed. In fact we just did AEG a segment on the cube called does hardware matter because for many, many years, over the past decades, like hardware doesn't matter, it's all about the cloud and we're not a box company. Boxes are coming back. So you know, that's gonna be music for for into the years of Dell Technologies HPE the world. But like hardware does matter and this, you're starting to see that here. So I think you'll see a lot a younger thinking, a little bit different thinking. You're gonna start to see more conf confluence of like machine learning. You're gonna see security and again, I mentioned space. These are areas where you're starting to see where hardware and high performance is gonna be part of all the new systems. And so it's just gonna be industrial to i o is gonna be a big part too. >>Yeah, absolutely. I, I was thinking about some of these use cases, I don't know if you heard about the new drones they're sending up into hurricanes, but it takes literally what a, what an edge use case, how durable it has to be and the rapid processing that has to happen as a result of the software. So many exciting things we could dive down the rabbit hole with. What can folks expect to see here on the cube during supercomputing? >>Well we're gonna talk to a lot of the leaders on the cube from this community, mostly from the practitioner's side, expert side. We're gonna have, we're gonna hear from Dell Technologies, Hewlett Packer Enterprise and a lot of other executives who are investing wanna find out what they're investing in, how it ties into the cloud. Cuz the cloud has become a great environment for multi-cloud with more grid-like capability and what's the future? Where's the hardware going, what's the evolution of the components? How is it being designed? And then how does it fit into the overall software open source market that's booming right now that cloud technology has been doing. So I wanna, we wanna try to connect the dots on the cube. >>Great. So we have a very easy task ahead of us. Hopefully everyone will enjoy the content and the guests that we leaving to, to our table here from from the show floor. When we think about, do you think there's gonna be any trends that we've seen in the past that might not be there? Has anything phased out of the super computing world? You're someone who's been around this game for a while? >>Yeah, that's a good question. I think the game is still the same but the players might shift a little bit. So for example, a lot more with the supply chain challenges you might see that impact. We're gonna watch that very closely to find out what components are gonna be in what. But I'm thinking more about system architecture because the use case is interesting. You know, I was talking to Dell folks about this, you know they have standard machines but then they have use cases for how do you put the equivalent of a data center next to say a mobile cell tower because now you have the capability for wireless and 5g. You gotta put the data center like CAPA speed functionality and capacity for compute at these edges in a smaller form factor. How do you do that? How do you handle all the IO and that's gonna be all these, all these things are nerd again nerdy conversations but they're gonna be very relevant. So I like the new use cases of power more compute in places that they've never been before. So I think that to me is where the exciting part is. Like okay, who's got the, who's really got the real deal going on here? That's something be the fun part. >>I think it allows for a new era in innovation and I don't say that lightly, but when we can put processing power literally anywhere, it certainly thrills the minds of hardware nerds. Like me, my I'm OG hardware, I know you are too, I won't reveal your roots, but I got my, my start in in hardware product design back in the day. So I can't wait >>To, well you then, you know, you know hardware, when you talk about processing power and memory, you can never have enough compute and memory. It's like, it's like the internet bandwidth. You can't never have enough bandwidth. Bandwidth, right? Network power, compute power, you know, bring it on, you know, >>Even battery life, simple things like that when it comes to hardware, especially when we're talking about being on the edge. It's just like our cell phones. Our cell phones are an edge device >>And we get, well when you combine cloud on premises hybrid and then multi-cloud and edge, you now have the ability to get compute at capabilities that were never fathom in the past. And most of the creativity is limited to the hardware capability and now that's gonna be unleashed. I think a lot of creativity. That's again back to the use cases and yes, again, you're gonna start to see more industrial stuff come out edge and I, I, I love the edge. I think this is a great use case for the edge. >>Me too. A absolutely so bold claim. I don't know if you're ready to, to draw a line in the sand. Are we on the precipice of a hardware renaissance? >>Definitely no doubt about it. When we, when we did the does hardware matter segment, it was really kind of to test, you know, everyone's talking about the cloud, but cloud also runs hardware. You look at what AWS is doing, for instance, all the innovation, it's at robotics, it's at that at the physical level, pro, pro, you know you got physics, I mean they're working on so low level engineering and the speed difference. I think from a workload standpoint, whoever can get the best out of the physics and the materials will have a winning formula. Cause you can have a lot more processing specialized processors. That's a new system architecture. And so to me the hype, definitely the HPC high press computing fits perfectly into that construct because now you got more power so that software can be more capable. And I think at the end of the day, nobody wants to write a app on our workload to run on on bad hardware, not have enough compute. >>Amen to that. On that note, John, how can people get in touch with you and us here on the show in anticipation of supercomputing? >>Of course hit the cube handle at the cube at Furrier, my last name F U R R I E R. And of course my dms are always open for scoops and story ideas. And go to silicon angle.com and the cube.net. >>Fantastic. John, I look forward to joining you in Dallas and thank you for being here with me today. And thank you all for joining us for this super computing preview. My name is Savannah Peterson and we're here on the cube live. Well not live prerecorded from Palo Alto. And look forward to seeing you for some high performance computing excitement soon.
SUMMARY :
My name is Savannah Peterson, coming to you from the Cube Studios Great to see you. supercomputing, but I happen to match the accent pink and you are rocking their blue. So John, you are a veteran and I'm a newbie to Supercomputing. So it's like ces, And back then it was servers, you know, super computing was a So I think it's important that we're all headed here. So now it's multiple disciplines in high performance computing and you can do a lot more. Do you think that we're entering an era when all of this is about to scale exponentially I think there's an inflection point because if you look at cyber security and physical devices, So I think the distributed nature of cloud and hybrid and multi-cloud coming on And you know me, I get really personally excited about the edge. So it's not like the old school operational technology systems. I'm curious when you say younger, are you expecting to see new startups and some interesting players in the space that maybe So you know, that's gonna be music for I, I was thinking about some of these use cases, I don't know if you heard about the new Cuz the cloud has become a great environment for multi-cloud with more grid-like When we think about, do you think there's gonna be any So I like the new use cases of Like me, my I'm OG hardware, I know you are too, bring it on, you know, It's just like our cell phones. And most of the creativity is limited to the hardware capability and now that's gonna to draw a line in the sand. it's at that at the physical level, pro, pro, you know you got physics, On that note, John, how can people get in touch with you and us here on And go to silicon angle.com and the cube.net. And look forward to seeing you for some high performance computing excitement
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Dallas | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
1988 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Hewlett Packer Enterprise | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
H WL Packard Enterprise | ORGANIZATION | 0.99+ |
November | DATE | 0.99+ |
hpc | ORGANIZATION | 0.99+ |
HP | ORGANIZATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
today | DATE | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
Packard Enterprise | ORGANIZATION | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
Cube | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
first time | QUANTITY | 0.97+ |
hpe | ORGANIZATION | 0.95+ |
this year | DATE | 0.95+ |
CES | EVENT | 0.94+ |
10 years | QUANTITY | 0.92+ |
earth | LOCATION | 0.9+ |
Bolton | ORGANIZATION | 0.87+ |
AEG | ORGANIZATION | 0.85+ |
5g | QUANTITY | 0.85+ |
Cube Studios | ORGANIZATION | 0.81+ |
Furrier | ORGANIZATION | 0.81+ |
five | QUANTITY | 0.81+ |
Moore | PERSON | 0.78+ |
Intel | ORGANIZATION | 0.75+ |
cube.net | OTHER | 0.74+ |
this November | DATE | 0.71+ |
silicon angle.com | OTHER | 0.71+ |
past decades | DATE | 0.63+ |
Democratic | ORGANIZATION | 0.55+ |
Daniel Rethmeier & Samir Kadoo | Accelerating Business Transformation
(upbeat music) >> Hi everyone. Welcome to theCUBE special presentation here in Palo Alto, California. I'm John Furrier, host of theCUBE. We got two great guests, one for calling in from Germany, or videoing in from Germany, one from Maryland. We've got VMware and AWS. This is the customer successes with VMware Cloud on AWS Showcase: Accelerating Business Transformation. Here in the Showcase at Samir Kadoo, worldwide VMware strategic alliance solution architect leader with AWS. Samir, great to have you. And Daniel Rethmeier, principal architect global AWS synergy at VMware. Guys, you guys are working together, you're the key players in this relationship as it rolls out and continues to grow. So welcome to theCUBE. >> Thank you, greatly appreciate it. >> Great to have you guys both on. As you know, we've been covering this since 2016 when Pat Gelsinger, then CEO, and then then CEO AWS at Andy Jassy did this. It kind of got people by surprise, but it really kind of cleaned out the positioning in the enterprise for the success of VM workloads in the cloud. VMware's had great success with it since and you guys have the great partnerships. So this has been like a really strategic, successful partnership. Where are we right now? You know, years later, we got this whole inflection point coming, you're starting to see this idea of higher level services, more performance are coming in at the infrastructure side, more automation, more serverless, I mean and AI. I mean, it's just getting better and better every year in the cloud. Kind of a whole 'nother level. Where are we? Samir, let's start with you on the relationship. >> Yeah, totally. So I mean, there's several things to keep in mind, right? So in 2016, right, that's when the partnership between AWS and VMware was announced. And then less than a year later, that's when we officially launched VMware Cloud on AWS. Years later, we've been driving innovation, working with our customers, jointly engineering this between AWS and VMware. You know, one of the key things... Together, day in, day out, as far as advancing VMware Cloud on AWS. You know, even if you look at the innovation that takes place with the solution, things have modernized, things have changed, there's been advancements. You know, whether it's security focus, whether it's platform focus, whether it's networking focus, there's been modifications along the way, even storage, right, more recently. One of the things to keep in mind is we're looking to deliver value to our customers together. These are our joint customers. So there's hundreds of VMware and AWS engineers working together on this solution. And then factor in even our sales teams, right? We have VMware and AWS sales teams interacting with each other on a constant daily basis. We're working together with our customers at the end of the day too. Then we're looking to even offer and develop jointly engineered solutions specific to VMware Cloud on AWS. And even with VMware to other platforms as well. Then the other thing comes down to is where we have dedicated teams around this at both AWS and VMware. So even from solutions architects, even to our sales specialists, even to our account teams, even to specific engineering teams within the organizations, they all come together to drive this innovation forward with VMware Cloud on AWS and the jointly engineered solution partnership as well. And then I think one of the key things to keep in mind comes down to we have nearly 600 channel partners that have achieved VMware Cloud on AWS service competency. So think about it from the standpoint, there's 300 certified or validated technology solutions, they're now available to our customers. So that's even innovation right off the top as well. >> Great stuff. Daniel, I want to get to you in a second upon this principal architect position you have. In your title, you're the global AWS synergy person. Synergy means bringing things together, making it work. Take us through the architecture, because we heard a lot of folks at VMware explore this year, formerly VMworld, talking about how the workloads on IT has been completely transforming into cloud and hybrid, right? This is where the action is. Where are you? Is your customers taking advantage of that new shift? You got AIOps, you got ITOps changing a lot, you got a lot more automation, edges right around the corner. This is like a complete transformation from where we were just five years ago. What's your thoughts on the relationship? >> So at first, I would like to emphasize that our collaboration is not just that we have dedicated teams to help our customers get the most and the best benefits out of VMware Cloud and AWS, we are also enabling us mutually. So AWS learns from us about the VMware technology, where VMware people learn about the AWS technology. We are also enabling our channel partners and we are working together on customer projects. So we have regular assembles globally and also virtually on Slack and the usual suspect tools working together and listening to customers. That's very important. Asking our customers where are their needs? And we are driving the solution into the direction that our customers get the best benefits out of VMware Cloud on AWS. And over the time, we really have involved the solution. As Samir mentioned, we just added additional storage solutions to VMware Cloud on AWS. We now have three different instance types that cover a broad range of workloads. So for example, we just edited the I4i host, which is ideally for workloads that require a lot of CPU power, such as, you mentioned it, AI workloads. >> Yeah, so I want to get us just specifically on the customer journey and their transformation, you know, we've been reporting on Silicon angle in theCUBE in the past couple weeks in a big way that the ops teams are now the new devs, right? I mean that sounds a little bit weird, but IT operations is now part of a lot more DataOps, security, writing code, composing. You know, with open source, a lot of great things are changing. Can you share specifically what customers are looking for when you say, as you guys come in and assess their needs, what are they doing, what are some of the things that they're doing with VMware on AWS specifically that's a little bit different? Can you share some of and highlights there? >> That's a great point, because originally, VMware and AWS came from very different directions when it comes to speaking people and customers. So for example, AWS, very developer focused, whereas VMware has a very great footprint in the ITOps area. And usually these are very different teams, groups, different cultures, but it's getting together. However, we always try to address the customer needs, right? There are customers that want to build up a new application from the scratch and build resiliency, availability, recoverability, scalability into the application. But there are still a lot of customers that say, "Well, we don't have all of the skills to redevelop everything to refactor an application to make it highly available. So we want to have all of that as a service. Recoverability as a service, scalability as a service. We want to have this from the infrastructure." That was one of the unique selling points for VMware on-premise and now we are bringing this into the cloud. >> Samir, talk about your perspective. I want to get your thoughts, and not to take a tangent, but we had covered the AWS re:MARS, actually it was Amazon re:MARS, machine learning automation, robotics and space was really kind of the confluence of industrial IoT, software, physical. And so when you look at like the IT operations piece becoming more software, you're seeing things about automation, but the skill gap is huge. So you're seeing low code, no code, automation, you know, "Hey Alexa, deploy a Kubernetes cluster." Yeah, I mean that's coming, right? So we're seeing this kind of operating automation meets higher level services, meets workloads. Can you unpack that and share your opinion on what you see there from an Amazon perspective and how it relates to this? >> Yeah. Yeah, totally, right? And you know, look at it from the point of view where we said this is a jointly engineered solution, but it's not migrating to one option or the other option, right? It's more or less together. So even with VMware Cloud on AWS, yes it is utilizing AWS infrastructure, but your environment is connected to that AWS VPC in your AWS account. So if you want to leverage any of the native AWS services, so any of the 200 plus AWS services, you have that option to do so. So that's going to give you that power to do certain things, such as, for example, like how you mentioned with IoT, even with utilizing Alexa, or if there's any other service that you want to utilize, that's the joining point between both of the offerings right off the top. Though with digital transformation, right, you have to think about where it's not just about the technology, right? There's also where you want to drive growth in the underlying technology even in your business. Leaders are looking to reinvent their business, they're looking to take different steps as far as pursuing a new strategy, maybe it's a process, maybe it's with the people, the culture, like how you said before, where people are coming in from a different background, right? They may not be used to the cloud, they may not be used to AWS services, but now you have that capability to mesh them together. >> Okay. >> Then also- >> Oh, go ahead, finish your thought. >> No, no, no, I was going to say what it also comes down to is you need to think about the operating model too, where it is a shift, right? Especially for that vStor admin that's used to their on-premises environment. Now with VMware Cloud on AWS, you have that ability to leverage a cloud, but the investment that you made and certain things as far as automation, even with monitoring, even with logging, you still have that methodology where you can utilize that in VMware Cloud on AWS too. >> Daniel, I want to get your thoughts on this because at Explore and after the event, as we prep for CubeCon and re:Invent coming up, the big AWS show, I had a couple conversations with a lot of the VMware customers and operators, and it's like hundreds of thousands of users and millions of people talking about and peaked on VMware, interested in VMware. The common thread was one person said, "I'm trying to figure out where I'm going to put my career in the next 10 to 15 years." And they've been very comfortable with VMware in the past, very loyal, and they're kind of talking about, I'm going to be the next cloud, but there's no like role yet. Architects, is it solution architect, SRE? So you're starting to see the psychology of the operators who now are going to try to make these career decisions. Like what am I going to work on? And then it's kind of fuzzy, but I want to get your thoughts, how would you talk to that persona about the future of VMware on, say, cloud for instance? What should they be thinking about? What's the opportunity? And what's going to happen? >> So digital transformation definitely is a huge change for many organizations and leaders are perfectly aware of what that means. And that also means to some extent, concerns with your existing employees. Concerns about do I have to relearn everything? Do I have to acquire new skills and trainings? Is everything worthless I learned over the last 15 years of my career? And the answer is to make digital transformation a success, we need not just to talk about technology, but also about process, people, and culture. And this is where VMware really can help because if you are applying VMware Cloud on AWS to your infrastructure, to your existing on-premise infrastructure, you do not need to change many things. You can use the same tools and skills, you can manage your virtual machines as you did in your on-premise environment, you can use the same managing and monitoring tools, if you have written, and many customers did this, if you have developed hundreds of scripts that automate tasks and if you know how to troubleshoot things, then you can use all of that in VMware Cloud on AWS. And that gives not just leaders, but also the architects at customers, the operators at customers, the confidence in such a complex project. >> The consistency, very key point, gives them the confidence to go. And then now that once they're confident, they can start committing themselves to new things. Samir, you're reacting to this because on your side, you've got higher level services, you've got more performance at the hardware level. I mean, a lot improvements. So, okay, nothing's changed, I can still run my job, now I got goodness on the other side. What's the upside? What's in it for the customer there? >> Yeah, so I think what it comes down to is they've already been so used to or entrenched with that VMware admin mentality, right? But now extending that to the cloud, that's where now you have that bridge between VMware Cloud on AWS to bridge that VMware knowledge with that AWS knowledge. So I will look at it from the point of view where now one has that capability and that ability to just learn about the cloud. But if they're comfortable with certain aspects, no one's saying you have to change anything. You can still leverage that, right? But now if you want to utilize any other AWS service in conjunction with that VM that resides maybe on-premises or even in VMware Cloud on AWS, you have that option to do so. So think about it where you have that ability to be someone who's curious and wants to learn. And then if you want to expand on the skills, you certainly have that capability to do so. >> Great stuff, I love that. Now that we're peeking behind the curtain here, I'd love to have you guys explain, 'cause people want to know what's goes on behind the scenes. How does innovation get happen? How does it happen with the relationships? Can you take us through a day in the life of kind of what goes on to make innovation happen with the joint partnership? Do you guys just have a Zoom meeting, do you guys fly out, you write code, go do you ship things? I mean, I'm making it up, but you get the idea. How does it work? What's going on behind the scenes? >> So we hope to get more frequently together in-person, but of course we had some difficulties over the last two to three years. So we are very used to Zoom conferences and Slack meetings. You always have to have the time difference in mind if you are working globally together. But what we try, for example, we have regular assembles now also in-person, geo-based, so for AMEA, for the Americas, for APJ. And we are bringing up interesting customer situations, architectural bits and pieces together. We are discussing it always to share and to contribute to our community. >> What's interesting, you know, as events are coming back, Samir, before you weigh in this, I'll comment as theCUBE's been going back out to events, we're hearing comments like, "What pandemic? We were more productive in the pandemic." I mean, developers know how to work remotely and they've been on all the tools there, but then they get in-person, they're happy to see people, but no one's really missed the beat. I mean, it seems to be very productive, you know, workflow, not a lot of disruption. More, if anything, productivity gains. >> Agreed, right? I think one of the key things to keep in mind is even if you look at AWS's, and even Amazon's leadership principles, right? Customer obsession, that's key. VMware is carrying that forward as well. Where we are working with our customers, like how Daniel said and meant earlier, right? We might have meetings at different time zones, maybe it's in-person, maybe it's virtual, but together we're working to listen to our customers. You know, we're taking and capturing that feedback to drive innovation in VMware Cloud on AWS as well. But one of the key things to keep in mind is yes, there has been the pandemic, we might have been disconnected to a certain extent, but together through technology, we've been able to still communicate, work with our customers, even with VMware in between, with AWS and whatnot, we had that flexibility to innovate and continue that innovation. So even if you look at it from the point of view, right? VMware Cloud on AWS Outposts, that was something that customers have been asking for. We've been able to leverage the feedback and then continue to drive innovation even around VMware Cloud on AWS Outposts. So even with the on-premises environment, if you're looking to handle maybe data sovereignty or compliance needs, maybe you have low latency requirements, that's where certain advancements come into play, right? So the key thing is always to maintain that communication track. >> In our last segment we did here on this Showcase, we listed the accomplishments and they were pretty significant. I mean geo, you got the global rollouts of the relationship. It's just really been interesting and people can reference that, we won't get into it here. But I will ask you guys to comment on, as you guys continue to evolve the relationship, what's in it for the customer? What can they expect next? Because again, I think right now, we're at an inflection point more than ever. What can people expect from the relationship and what's coming up with re:Invent? Can you share a little bit of kind of what's coming down the pike? >> So one of the most important things we have announced this year, and we will continue to evolve into that direction, is independent scale of storage. That absolutely was one of the most important items customer asked for over the last years. Whenever you are requiring additional storage to host your virtual machines, you usually in VMware Cloud on AWS, you have to add additional nodes. Now we have three different node types with different ratios of compute, storage, and memory. But if you only require additional storage, you always have to get also additional compute and memory and you have to pay for it. And now with two solutions which offer choice for the customers, like FS6 wanted a ONTAP and VMware Cloud Flex Storage, you now have two cost effective opportunities to add storage to your virtual machines. And that offers opportunities for other instance types maybe that don't have local storage. We are also very, very keen looking forward to announcements, exciting announcements, at the upcoming events. >> Samir, what's your reaction take on what's coming down on your side? >> Yeah, I think one of the key things to keep in mind is we're looking to help our customers be agile and even scaled with their needs, right? So with VMware Cloud on AWS, that's one of the key things that comes to mind, right? There are going to be announcements, innovations, and whatnot with upcoming events. But together, we're able to leverage that to advance VMware cloud on AWS. To Daniel's point, storage for example, even with host offerings. And then even with decoupling storage from compute and memory, right? Now you have the flexibility where you can do all of that. So to look at it from the standpoint where now with 21 regions where we have VMware Cloud on AWS available as well, where customers can utilize that as needed when needed, right? So it comes down to, you know, transformation will be there. Yes, there's going to be maybe where workloads have to be adapted where they're utilizing certain AWS services, but you have that flexibility and option to do so. And I think with the continuing events, that's going to give us the options to even advance our own services together. >> Well you guys are in the middle of it, you're in the trenches, you're making things happen, you've got a team of people working together. My final question is really more of a kind of a current situation, kind of future evolutionary thing that you haven't seen this before. I want to get both of your reaction to it. And we've been bringing this up in the open conversations on theCUBE is in the old days, let's go back this generation, you had ecosystems, you had VMware had an ecosystem, AWS had an ecosystem. You know, we have a product, you have a product, biz dev deals happen, people sign relationships, and they do business together and they sell each other's products or do some stuff. Now it's more about architecture, 'cause we're now in a distributed large scale environment where the role of ecosystems are intertwining and you guys are in the middle of two big ecosystems. You mentioned channel partners, you both have a lot of partners on both sides, they come together. So you have this now almost a three dimensional or multidimensional ecosystem interplay. What's your thoughts on this? Because it's about the architecture, integration is a value, not so much innovations only. You got to do innovation, but when you do innovation, you got to integrate it, you got to connect it. So how do you guys see this as an architectural thing, start to see more technical business deals? >> So we are removing dependencies from individual ecosystems and from individual vendors. So a customer no longer has to decide for one vendor and then it is a very expensive and high effort project to move away from that vendor, which ties customers even closer to specific vendors. We are removing these obstacles. So with VMware Cloud on AWS, moving to the cloud, firstly it's not a dead end. If you decide at one point in time because of latency requirements or maybe some compliance requirements, you need to move back into on-premise, you can do this. If you decide you want to stay with some of your services on-premise and just run a couple of dedicated services in the cloud, you can do this and you can man manage it through a single pane of glass. That's quite important. So cloud is no longer a dead end, it's no longer a binary decision, whether it's on-premise or the cloud, it is the cloud. And the second thing is you can choose the best of both worlds, right? If you are migrating virtual machines that have been running in your on-premise environment to VMware Cloud on AWS either way in a very, very fast cost effective and safe way, then you can enrich, later on enrich these virtual machines with services that are offered by AWS, more than 200 different services ranging from object-based storage, load balancing, and so on. So it's an endless, endless possibility. >> We call that super cloud in the way that we generically defining it where everyone's innovating, but yet there's some common services. But the differentiation comes from innovation where the lock in is the value, not some spec, right? Samir, this is kind of where cloud is right now. You guys are not commodity, amazon's completely differentiating, but there's some commodity things happen. You got storage, you got compute, but then you got now advances in all areas. But partners innovate with you on their terms. >> Absolutely. >> And everybody wins. >> Yeah, I 100% agree with you. I think one of the key things, you know, as Daniel mentioned before, is where it's a cross education where there might be someone who's more proficient on the cloud side with AWS, maybe more proficient with the VMware's technology. But then for partners, right? They bridge that gap as well where they come in and they might have a specific niche or expertise where their background, where they can help our customers go through that transformation. So then that comes down to, hey, maybe I don't know how to connect to the cloud, maybe I don't know what the networking constructs are, maybe I can leverage that partner. That's one aspect to go about it. Now maybe you migrated that workload to VMware Cloud on AWS. Maybe you want to leverage any of the native AWS services or even just off the top, 200 plus AWS services, right? But it comes down to that skillset, right? So again, solutions architecture at the back of the day, end of the day, what it comes down to is being able to utilize the best of both worlds. That's what we're giving our customers at the end of the day. >> I mean, I just think it's a refactoring and innovation opportunity at all levels. I think now more than ever, you can take advantage of each other's ecosystems and partners and technologies and change how things get done with keeping the consistency. I mean, Daniel, you nailed that, right? I mean you don't have to do anything. You still run it. Just spear the way you're working on it and now do new things. This is kind of a cultural shift. >> Yeah, absolutely. And if you look, not every customer, not every organization has the resources to refactor and re-platform everything. And we give them a very simple and easy way to move workloads to the cloud. Simply run them and at the same time, they can free up resources to develop new innovations and grow their business. >> Awesome. Samir, thank you for coming on. Daniel, thank you for coming to Germany. >> Thank you. Oktoberfest, I know it's evening over there, weekend's here. And thank you for spending the time. Samir, give you the final word. AWS re:Invent's coming up. We're preparing, we're going to have an exclusive with Adam, with Fryer, we'd do a curtain raise, and do a little preview. What's coming down on your side with the relationship and what can we expect to hear about what you got going on at re:Invent this year? The big show? >> Yeah, so I think Daniel hit upon some of the key points, but what I will say is we do have, for example, specific sessions, both that VMware's driving and then also that AWS is driving. We do have even where we have what are called chalk talks. So I would say, and then even with workshops, right? So even with the customers, the attendees who are there, whatnot, if they're looking to sit and listen to a session, yes that's there, but if they want to be hands-on, that is also there too. So personally for me as an IT background, been in sysadmin world and whatnot, being hands-on, that's one of the key things that I personally am looking forward. But I think that's one of the key ways just to learn and get familiar with the technology. >> Yeah, and re:Invent's an amazing show for the in-person. You guys nail it every year. We'll have three sets this year at theCUBE and it's becoming popular. We have more and more content. You guys got live streams going on, a lot of content, a lot of media. So thanks for sharing that. Samir, Daniel, thank you for coming on on this part of the Showcase episode of really the customer successes with VMware Cloud on AWS, really accelerating business transformation with AWS and VMware. I'm John Furrier with theCUBE, thanks for watching. (upbeat music)
SUMMARY :
This is the customer successes Great to have you guys both on. One of the things to keep in mind Daniel, I want to get to you in a second And over the time, we really that the ops teams are in the ITOps area. And so when you look at So that's going to give you even with logging, you in the next 10 to 15 years." And the answer is to make What's in it for the customer there? and that ability to just I'd love to have you guys explain, and to contribute to our community. but no one's really missed the beat. So the key thing is always to maintain But I will ask you guys to comment on, and memory and you have to pay for it. So it comes down to, you know, and you guys are in the is you can choose the best with you on their terms. on the cloud side with AWS, I mean you don't have to do anything. has the resources to refactor Samir, thank you for coming on. And thank you for spending the time. that's one of the key things of really the customer successes
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amazon | ORGANIZATION | 0.99+ |
Daniel Rethmeier | PERSON | 0.99+ |
Daniel | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Samir | PERSON | 0.99+ |
Maryland | LOCATION | 0.99+ |
Pat Gelsinger | PERSON | 0.99+ |
amazon | ORGANIZATION | 0.99+ |
Germany | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
100% | QUANTITY | 0.99+ |
Adam | PERSON | 0.99+ |
Samir Kadoo | PERSON | 0.99+ |
more than 200 different services | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
two solutions | QUANTITY | 0.99+ |
both sides | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
CubeCon | EVENT | 0.99+ |
Madhura Maskasky, Platform9 | Cloud Native at Scale
(uplifting music) >> Hello and welcome to The Cube, here in Palo Alto, California for a special program on cloud-native at scale, enabling next generation cloud or SuperCloud for modern application cloud-native developers. I'm John Furrier, host of The Cube. My pleasure to have here Madhura Maskasky, co-founder and VP of Product at Platform9. Thanks for coming in today for this cloud-native at scale conversation. >> Thank you for having me. >> So, cloud-native at scale, something that we're talking about because we're seeing the next level of mainstream success of containers, Kubernetes and cloud-native developers, basically DevOps in the CICD pipeline. It's changing the landscape of infrastructure as code, it's accelerating the value proposition and the SuperCloud as we call it, has been getting a lot of traction because this next generation cloud is looking a lot different, but kind of the same as the first generation. What's your view on SuperCloud as it fits to cloud-native as scales up? >> Yeah, you know, I think what's interesting, and I think the reason why SuperCloud is a really good and a really fit term for this, and I think, I know my CEO was chatting with you as well, and he was mentioning this as well, but I think there needs to be a different term than just multi-cloud or cloud. And the reason is because as cloud-native and cloud deployments have scaled, I think we've reached a point now where, instead of having the traditional data center style model where you have a few large distributors of infrastructure and workload at a few locations, I think the model is kind of flipped around, right, where you have a large number of micro sites. These micro sites could be your public cloud deployment, your private, on-prem infrastructure deployments, or it could be your edge environment, right? And every single enterprise, every single industry is moving that direction. And so you got to refer that with a terminology that indicates the scale and complexity of it. And so I think SuperCloud is an appropriate term for that. >> So, you brought a couple things I want to dig into. You mentioned edge nodes. We're seeing not only edge nodes being the next kind of area of innovation, mainly because it's just popping up everywhere. And that's just the beginning. What even know what's around the corner. You got buildings, you got IOT, OT and IT kind of coming together, but you also got this idea of regions, global infrastructure is a big part of it. I just saw some news around CloudFlare shutting down a site here. There's policies being made at scale. These new challenges there. Can you share, because you got to have edge. So, hybrid cloud is a winning formula. Everybody knows that it's a steady state. >> Madhura: Yeah. >> But across multiple clouds brings in this new un-engineered area, yet it hasn't been done yet. Spanning clouds. People say they're doing it, but you start to see the toe in the water, it's happening, it's going to happen. It's only going to get accelerated with the edge and beyond globally. So I have to ask you, what is the technical challenges in doing this? Because it's something business consequences as well, but there are technical challenges. Can you share your view on what the technical challenges are for the SuperCloud or across multiple edges and regions? >> Yeah, absolutely. So, I think, you know, in the context of this, this term of SuperCloud, I think, it's sometimes easier to visualize things in terms of two axes, right? I think on one end you can think of the scale in terms of just pure number of nodes that you have, deploy number of clusters in the Kubernetes space. And then, on the other access you would have your distribution factor, right? Which is, do you have these tens of thousands of nodes in one site or do you have them distributed across tens of thousands of sites with one node at each site? Right? And if you have just one flavor of this, there is enough complexity but potentially manageable. But when you are expanding on both these axes you really get to a point where that scale really needs some well thought out, well structured solutions to address it. Right? A combination of homegrown tooling along with your, you know, favorite distribution of Kubernetes is not a strategy that can help you in this environment. It may help you when you have one of this or when your scale is not at the level. >> Can you scope the complexity? Because I mean, I hear a lot of moving parts going on there, the technology's also getting better. We're seeing cloud-native becomes successful. There's a lot to configure, there's a lot to install. Can you scope the scale of the problem? Because about at scale, >> Madhura: Yeah. >> Challenges here. >> Yeah. Absolutely. And I think, you know, I like to call it, you know, the problem that the scale creates, you know, there's various problems, but I think one problem, one way to think about it is you know, it works on my cluster problem, right? So, you know, I come from engineering background and there's a, you know, there's a famous saying between engineers and QA and the support folks, right. Which is, it works on my laptop, which is I tested this change, everything was fantastic, it worked flawlessly on my machine, on production, it's not working. And the exact same problem now happens in these distributed environments, but at massive scale, right. Which is that, you know, developers test their applications, et cetera within the sanctity of their sandbox environments. But once you expose that change in the wild world of your production deployment, right. And the production deployment could be going at the radio cell tower at the edge location where a cluster is running there, or it could be sending, you know, these applications and having them run at my customer site where they might not have configured that cluster exactly the same way as I configured it, or they configured the cluster right. But maybe they didn't deploy the security policies or they didn't deploy the other infrastructure plugins that my app relies on. All of these various factors add their own layer of complexity. And there really isn't a simple way to solve that today. And that is just, you know, one example of an issue that happens. I think another, you know, whole new ballgame of issues come in the context of security, right? Because when you are deploying applications at scale in a distributed manner, you got to make sure someone's job is on the line to ensure that the right security policies are enforced regardless of that scale factor. So, I think that's another example of problems that occur. >> Okay. So, I have to ask about scale because there are a lot of multiple steps involved when you see the success of cloud native. You know, you see some, you know, some experimentation. They set up a cluster, say, it's containers and Kubernetes, and then you say, okay, we got this, we configure it. And then, they do it again and again, they call it day two. Some people call it day one, day two operation, whatever you call it. Once you get past the first initial thing, then you got to scale it. Then you're seeing security breaches, you're seeing configuration errors. This seems to be where the hotspot is. And when companies transition from, I got this to, oh no, it's harder than I thought at scale. Can you share your reaction to that and how you see this playing out? >> Yeah, so, you know, I think it's interesting. There's multiple problems that occur when, you know, the two factors of scale, as we talked about start expanding. I think, one of them is what I like to call the, you know, it works fine on my cluster problem, which is back in, when I was a developer, we used to call this, it works on my laptop problem, which is, you know, you have your perfectly written code that is operating just fine on your machine, your sandbox environment. But the moment it runs production, it comes back with P zeros and P ones from support teams, et cetera. And those issues can be really difficult to triage. Right. And so, in the Kubernetes environment, this problem kind of multi-folds, it goes, you know, escalates to a higher degree because you have your sandbox developer environments, they have their clusters and things work perfectly fine in those clusters because these clusters are typically handcrafted or a combination of some scripting and handcrafting. And so, as you give that change to then run at your production edge location, like say your radio cell tower site or you hand it over to a customer to run it on their cluster, they might not have configured that cluster exactly how you did, or they might not have configured some of the infrastructure plugins. And so the things don't work. And when things don't work, triaging them becomes like (indistinct) hard, right? It's just one of the examples of the problem. Another whole bucket of issues is security, which is you have these distributed clusters at scale, you got to ensure someone's job is on the line to make sure that the security policies are configured properly. >> So, this is a huge problem. I love that comment. That's not happening on my system. It's the classic, you know, debugging mentality. >> Madhura: Yeah. >> But at scale it's hard to do that with error prone. I can see that being a problem. And you guys have a solution you're launching. Can you share what Arlon is this new product? What is it all about? Talk about this new introduction. >> Yeah, absolutely. I'm very, very excited. You know, it's one of the projects that we've been working on for some time now because we are very passionate about this problem and just solving problems at scale in on-prem or at in the cloud or at edge environments. And what Arlon is, it's an open source project and it is a tool, it's a Kubernetes native tool for a complete end-to-end management of not just your clusters, but your clusters, all of the infrastructure that goes within and along the sites of those clusters, security policies, your middleware plugins, and finally your applications. So, what Arlon lets you do in a nutshell is in a declarative way, it lets you handle the configuration and management of all of these components in at scale. >> So, what's the elevator pitch simply put for what dissolves in terms of the chaos you guys are reigning in, what's the bumper sticker? >> Yeah. >> What would it do? >> There's a perfect analogy that I love to reference in this context, which is think of your assembly line, you know, in a traditional, let's say, you know, an auto manufacturing factory or et cetera, and the level of efficiency at scale that assembly line brings, right? Arlon, and if you look at the logo we've designed, it's this funny little robot, and it's because when we think of Arlon, we think of these enterprise large scale environments, you know, sprawling at scale creating chaos because there isn't necessarily a well thought through, well-structured solution that's similar to an assembly line, which is taking each component, you know, addressing them, manufacturing, processing them in a standardized way, then handing to the next stage where again, it gets, you know, processed in a standardized way. And that's what Arlon really does. That's like deliver the pitch. If you have problems of scale of managing your infrastructure, you know, that is distributed. Arlon brings the assembly line level of efficiency and consistency for those. >> So keeping it smooth, the assembly line, things are flowing, CICD, pipelining. >> Madhura: Exactly. >> So, that's what you're trying to simplify that OPS piece for the developer. I mean, it's not really OPS, it's their OPS, it's coding. >> Yeah. Not just developer, the OPS, the operations folks as well, right? Because developers, you know, there is, developers are responsible for one picture of that layer, which is my apps, and then maybe that middle layer of applications that they interface with, but then they hand it over to someone else who's then responsible to ensure that these apps are secured properly, that they are logging, logs are being collected properly, monitoring and observability is integrated. And so, it solves problems for both those teams. >> Yeah, it's DevOps. So, the DevOps is the cloud-needed developer. The option teams have to kind of set policies. Is that where the declarative piece comes in? Is that why that's important? >> Absolutely. Yeah. And, you know, Kubernetes really introduced or elevated this declarative management, right? Because you know, Kubernetes clusters are, or your, yeah, you know, specifications of components that go in Kubernetes are defined in declarative way, and Kubernetes always keeps that state consistent with your defined state. But when you go outside of that world of a single cluster, and when you actually talk about defining the clusters or defining everything that's around it, there really isn't a solution that does that today. And so Arlon addresses that problem at the heart of it, and it does that using existing open source, well-known solutions. >> And, I want get into the benefits, what's in it for me as the customer, developer, but I want to finish this out real quick and get your thoughts. You mentioned open source. Why open source? What's the current state of the product? You run the product group over there, Platform9, is it open source? And you guys have a product that's commercial. Can you explain the open-source dynamic? And first of all, why open source? >> Madhura: Yeah. >> And what is the consumption? I mean, open source is great, people want open source, they can download it, look up the code, but you know, maybe want to buy the commercial. So, I'm assuming you have that thought through, can you share? >> Madhura: Yeah. >> Open source and commercial relationship. >> Yeah. I think, you know, starting with why open source, I think, it's, you know, we as a company, we have, you know, one of the things that's absolutely critical to us is that we take mainstream open-source technologies components, and then we, you know, make them available to our customers at scale through either a SaaS model or on-prem model, right? But, so as we are a company or startup or a company that benefits, you know, in a massive way by this open-source economy, it's only right, I think in my mind that, we do our part of the duty, right? And contribute back to the community that feeds us. And so, you know, we have always held that strongly as one of our principles. And we have, you know, created and built independent products starting all the way with Fission, which was a serverless product, you know, that we had built to various other, you know, examples that I can give. But that's one of the main reasons why open source and also open source because we want the community to really firsthand engage with us on this problem, which is very difficult to achieve if your product is behind a wall, you know, behind a block box. >> Well, and that's what the developers want too. I mean, what we're seeing in reporting with SuperCloud is the new model of consumption is I want to look at the code and see what's in there. >> Madhura: That's right. >> And then also, if I want to use it, I'll do it. Great. That's open source, that's the value. But then at the end of the day, if I want to move fast, that's when people buy in. So it's a new kind of freemium, I guess, business model. I guess that's the way is, well, but that's the benefit of open source. This is why standards and open source growing so fast, you have that confluence of, you know, a way for us to try before they buy, but also actually kind of date the application, if you will. We, you know, Adrian (indistinct) uses the dating metaphor, you know, hey, you know, I want to check it out first before I get married. >> Madhura: Right. >> And that's what open source. So, this is the new, this is how people are selling. This is not just open source, this is how companies are selling. >> Absolutely. Yeah. Yeah. You know, I think in, you know, two things, I think one is just, you know, this cloud-native space is so vast that if you're building a close flow solution, sometimes there's also a risk that it may not apply to every single enterprise's use cases. And so having it open source gives them an opportunity to extend it, expand it, to make it proper to their use case if they choose to do so. Right? But at the same time, what's also critical to us is we are able to provide a supported version of it with an SLA that we, you know, that's backed by us, a Saas-hosted version of it as well, for those customers who choose to go that route, you know, once they have used the open-source version and loved it and want to take it at scale and in production and need a partner to collaborate with, who can, you know, support them for that production environment. >> I have to ask you. Now, let's get into what's in it for the customer. I'm a customer, why should I be enthused about Arlon? What's in it for me? You know. 'Cause if I'm not enthused about it, I'm not going to be confident and it's going to be hard for me to get behind this. Can you share your enthusiastic view of, you know, why I should be enthused about Arlon? I'm a customer. >> Yeah, absolutely. And so, and there's multiple, you know, enterprises that we talk to, many of them, you know, our customers, where this is a very kind of typical story that you hear, which is we have, you know, a Kubernetes distribution. It could be on premise, it could be public cloud-native Kubernetes, and then, we have our CICD pipelines that are automating the deployment of applications, et cetera. And then, there's this gray zone. And the gray zone is well before you can, your CICD pipelines can deploy the apps, somebody needs to do all of that groundwork of, you know, defining those clusters and yeah, you know, properly configuring them. And as these things start by being done hand grown. And then, as you scale, what typically enterprises would do today is they will have their homegrown DIY solutions for this. I mean, a number of folks that I talk to that have built Terraform automation, and then, you know, some of those key developers leave. So, it's a typical open source or typical, you know, DIY challenge. And the reason that they're writing it themselves is not because they want to. I mean, of course, technology is always interesting to everybody, but it's because they can't find a solution that's out there that perfectly fits the problem. And so that's that pitch. I think, (indistinct) would be delighted. The folks that we've talk, you know, spoken with, have been absolutely excited and have, you know, shared that this is a major challenge we have today because we have, you know, few hundreds of clusters on EKS Amazon, and we want to scale them to few thousands, but we don't think we are ready to do that. And this will give us the ability to, >> Yeah, I think, people are scared. I won't say scare, that's a bad word. Maybe I should say that they feel nervous because, you know, at scale, small mistakes can become large mistakes. This is something that is concerning to enterprises. And I think, this is going to come up at (indistinct) this year where enterprises are going to say, okay, I need to see SLAs. I want to see track record, I want to see other companies that have used it. >> Madhura: Yeah. >> How would you answer that question to, or challenge, you know, hey, I love this, but is there any guarantees? Is there any, what's the SLA, I'm an enterprise, I got tight, you know, I love the open source trying to free fast and loose, but I need hardened code. >> Yeah, absolutely. So, two parts to that, right? One is Arlon leverages existing open-source components, products that are extremely popular. Two specifically. One is Arlon uses ArgoCD, which is probably one of the highest rated and used CD open-source tools that's out there, right? It's created by folks that are as part of into team now, you know, really brilliant team. And it's used at scale across enterprises. That's one. Second is Arlon also makes use of cluster API (indistinct), which is a Kubernetes' sub-component, right? For life cycle management of clusters. So, there is enough of, you know, community users, et cetera, around these two products, right? Or open-source projects that will find Arlon to be right up in their alley because they're already comfortable, familiar with ArgoCD. Now, Arlon just extends the scope of what ArgoCD can do. And so, that's one. And then, the second part is going back to your point of the comfort. And that's where, you know, Platform9 has a role to play, which is when you are ready to deploy Arlon at scale, because you've been, you know, playing with it in your (indistinct) test environments, you're happy with what you get with it, then Platform9 will stand behind it and provide that SLA. >> And what's been the reaction from customers you've talked to Platform9 customers with, that are familiar with Argo and then Arlon? What's been some of the feedback? >> Yeah, I think, the feedback's been fantastic. I mean, I can give examples of customers where, you know, initially, you know, when you are telling them about your entire portfolio of solutions, it might not strike a card right away. But then we start talking about Arlon, and we talk about the fact that it uses ArgoCD they start opening up, they say, we have standardized on Argo and we have built these components, homegrown, we would be very interested. Can we co-develop? Does it support these use cases? So, we've had that kind of validation. We've had validation all the way at the beginning of Arlon before we even wrote a single line of code saying, this is something we plan on doing. And the customer said, if you had it today, I would've purchased it. So, it's been really great validation. >> All right. So, next question is, what is the solution to the customer? If I asked you, look at, I have, I'm so busy, my team's overworked. I got a skills gap, I don't need another project that's so I'm so tied up right now, and I'm just chasing my tail. How does Platform9 help me? >> Yeah, absolutely. So I think, you know, one of the core tenants of Platform9 has always been that, we try to bring that public cloud like simplicity by hosting, you know, this in a lot of such similar tools in a SaaS-hosted manner for our customers, right? So, our goal behind doing that is taking away or trying to take away all of that complexity from customer's hands and offloading it to our hands, right? And giving them that full white glove treatment as we call it. And so, from a customer's perspective, one, something like Arlon will integrate with what they have, so, they don't have to rip and replace anything. In fact, it will, even in the next versions, it may even discover your clusters that you have today, and, you know, give you an inventory. And then, >> So, customers have clusters that are growing, that's a sign, >> Correct. >> Call you guys. >> Absolutely. Either they have massive large clusters. Right. That they want to split into smaller clusters, but they're not comfortable doing that today, or they've done that already on say, public cloud or otherwise. And now, they have management challenges. >> So, especially, operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure >> Madhura: Yeah. >> And or scale out. >> That's right. Exactly. >> And you provide that layer of policy. >> Absolutely. Yes. >> That's the key value here. >> That's right. >> So, policy-based configuration for cluster scale up. >> Profile and policy-based, declarative configuration and life cycle management for clusters. >> If I asked you how this enables SuperCloud, what would you say to that? >> I think, this is one of the key ingredients to SuperCloud, right? If you think about a SuperCloud environment, there is at least few key ingredients that come to my mind that are really critical. Like they are, you know, life-saving ingredients at that scale. One is having a really good strategy for managing that scale. You know, in a, going back to assembly line in a very consistent, predictable way. So, that Arlon solves, then you need to compliment that with the right kind of observability and monitoring tools at scale, right? Because ultimately issues are going to happen and you're going to have to figure out, you know, how to solve them fast. And Arlon by the way, also helps in that direction, but you also need observability tools. And then, especially if you're running at on the public cloud, you need some cost management tools. In my mind, these three things are like the most necessary ingredients to make SuperCloud successful. And you know, Arlon flows in one, >> Okay, so now, the next level is, okay, that makes sense. It's under the covers kind of speak under the hood. >> Madhura: Yeah. >> How does that impact the app developers of the cloud-native modern application workflows? Because the impact to me seems the apps are going to be impacted. Are they going to be faster, stronger? I mean, what's the impact, if you do all those things as you mentioned, what's the impact of the apps? >> Yeah, the impact is that your apps are more likely to operate in production the way you expect them to, because the right checks and balances have gone through, and any discrepancies have been identified prior to those apps, prior to your customer running into them, right? Because developers run into this challenge today where there's a split responsibility, right? I'm responsible for my code, I'm responsible for some of these other plugins, but I don't own the stack end to end. I have to rely on my OPS counterpart to do their part, right? And so, this really gives them, you know, the right tooling for that. >> So, this is actually a great kind of relevant point, you know, as cloud becomes more scalable, you're starting to see this fragmentation gone of the days of the full-stack developer to the more specialized role. But this is a key point, and I have to ask you because if this Arlon solution takes place, as you say, and the apps are going to be (indistinct), they're designed to do, the question is, what does the current pain look like? Are the apps breaking? What is the signals to the customer, >> Madhura: Yeah. >> That they should be calling you guys up into implementing Arlon, Argo, and on all the other goodness to automate, what does some of the signals, is it downtime? Is it failed apps, is it latency? What are some of the things that, >> Madhura: Yeah, absolutely. >> Would be indications of things are F'ed up a little bit. >> Yeah. More frequent down times, down times that are, that take longer to triage. And so your, you know, your mean times on resolution, et cetera, are escalating or growing larger, right? Like we have environments of customers where they have a number of folks on in the field that have to take these apps and run them at customer sites. And that's one of our partners, and they're extremely interested in this because the rate of failures they're encountering for this, you know, the field when they're running these apps on site, because the field is automating their clusters that are running on sites using their own scripts. So, these are the kinds of challenges, and those are the pain points, which is, you know, if you're looking to reduce your mean time to resolution, if you're looking to reduce the number of failures that occur on your production site, that's one. And second, if you're looking to manage these at scale environments with a relatively small, focused, nimble OPS team, which has an immediate impact on your budget. So, those are the signals. >> This is the cloud-native at scale situation, the innovation going on. Final thought is your reaction to the idea that, if the world goes digital, which it is, and the confluence of physical and digital coming together, and cloud continues to do its thing, the company becomes the application, not where IT used to be supporting the business, you know, the back office and the (indistinct) terminals and some PCs and handhelds. Now, if technology's running, the business is the business. >> Yeah. >> Company is the application. >> Yeah. >> So, it can't be down. So, there's a lot of pressure on CSOs and CIOs now and boards is saying, how is technology driving the top-line revenue? That's the number one conversation. >> Yeah. >> Do you see the same thing? >> Yeah, it's interesting. I think there's multiple pressures at the CXO, CIO level, right? One is that there needs to be that visibility and clarity and guarantee almost that, you know, the technology that's, you know, that's going to drive your top line is going to drive that in a consistent, reliable, predictable manner. And then second, there is the constant pressure to do that while always lowering your costs of doing it, right? Especially, when you're talking about, let's say, retailers or those kinds of large-scale vendors, they many times make money by lowering the amount that they spend on, you know, providing those goods to their end customers. So, I think those, both those factors kind of come into play and the solution to all of them is usually in a very structured strategy around automation. >> Final question. What does cloud-native at scale look like to you? If all the things happen the way we want them to happen, the magic wand, the magic dust, what does it look like? >> What that looks like to me is a CIO sipping at his desk on coffee, production is running absolutely smooth. And he's running that at a nimble, nimble team size of at the most, a handful of folks that are just looking after things, but things are just taking care of themselves. >> John: And the CIO doesn't exist and there's no CISO, there at the beach. >> (laughs) Yeah. >> Thank you for coming on, sharing the cloud-native at scale here on The Cube. Thank you for your time. >> Fantastic. Thanks for having me. >> Okay. I'm John Furrier here, for special program presentation, special programming cloud-native at scale, enabling SuperCloud modern applications with Platform9. Thanks for watching. (gentle music)
SUMMARY :
My pleasure to have here Madhura Maskasky, and the SuperCloud as we call it, Yeah, you know, I And that's just the beginning. Can you share your view on what So, I think, you know, Can you scope the And that is just, you know, Kubernetes, and then you say, I like to call the, you know, you know, debugging mentality. And you guys have a and along the sites of those in a traditional, let's say, you know, the assembly line, piece for the developer. Because developers, you know, there is, So, the DevOps is the Because you know, Kubernetes clusters are, And you guys have a look up the code, but you know, Open source and And we have, you know, created and built the developers want too. the application, if you will. And that's what open to go that route, you know, enthusiastic view of, you know, And so, and there's multiple, you know, And I think, this is going to I'm an enterprise, I got tight, you know, And that's where, you know, of customers where, you know, and I'm just chasing my tail. clusters that you have today, And now, they have management challenges. That's right. Absolutely. So, policy-based configuration and life cycle management for clusters. at on the public cloud, you Okay, so now, the next level is, Because the impact to me seems the way you expect them to, and I have to ask you Would be indications of points, which is, you know, supporting the business, you know, That's the number one conversation. the technology that's, you know, If all the things happen the What that looks like to me John: And the CIO doesn't Thank you for your time. Thanks for having me. for special program presentation,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Madhura Maskasky | PERSON | 0.99+ |
John | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Madhura | PERSON | 0.99+ |
second part | QUANTITY | 0.99+ |
Arlon | ORGANIZATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
one | QUANTITY | 0.99+ |
one site | QUANTITY | 0.99+ |
Two | QUANTITY | 0.99+ |
first generation | QUANTITY | 0.99+ |
two factors | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
each site | QUANTITY | 0.99+ |
each component | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Platform9 | ORGANIZATION | 0.99+ |
one flavor | QUANTITY | 0.99+ |
Argo | ORGANIZATION | 0.98+ |
two parts | QUANTITY | 0.98+ |
second | QUANTITY | 0.98+ |
Second | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
SuperCloud | TITLE | 0.98+ |
Adrian | PERSON | 0.98+ |
tens of thousands of nodes | QUANTITY | 0.98+ |
one problem | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
one node | QUANTITY | 0.98+ |
two products | QUANTITY | 0.97+ |
tens of thousands of sites | QUANTITY | 0.97+ |
one picture | QUANTITY | 0.97+ |
The Cube | ORGANIZATION | 0.96+ |
one end | QUANTITY | 0.96+ |
CloudFlare | TITLE | 0.96+ |
Platform9 | TITLE | 0.95+ |
this year | DATE | 0.95+ |
CXO | ORGANIZATION | 0.95+ |
two axes | QUANTITY | 0.94+ |
three things | QUANTITY | 0.94+ |
EKS | ORGANIZATION | 0.93+ |
single line | QUANTITY | 0.92+ |
one example | QUANTITY | 0.91+ |
single cluster | QUANTITY | 0.91+ |
Platform9, Cloud Native at Scale
>>Everyone, welcome to the cube here in Palo Alto, California for a special presentation on Cloud native at scale, enabling super cloud modern applications with Platform nine. I'm John Furry, your host of The Cube. We've got a great lineup of three interviews we're streaming today. Mattor Makki, who's the co-founder and VP of Product of Platform nine. She's gonna go into detail around Arlon, the open source products, and also the value of what this means for infrastructure as code and for cloud native at scale. Bickley the chief architect of Platform nine Cube alumni. Going back to the OpenStack days. He's gonna go into why Arlon, why this infrastructure as code implication, what it means for customers and the implications in the open source community and where that value is. Really great wide ranging conversation there. And of course, Vascar, Gort, the CEO of Platform nine, is gonna talk with me about his views on Super Cloud and why Platform nine has a scalable solutions to bring cloud native at scale. So enjoy the program, see you soon. Hello and welcome to the cube here in Palo Alto, California for a special program on cloud native at scale, enabling next generation cloud or super cloud for modern application cloud native developers. I'm John Forry, host of the Cube. Pleasure to have here me Makowski, co-founder and VP of product at Platform nine. Thanks for coming in today for this Cloudnative at scale conversation. >>Thank you for having >>Me. So Cloudnative at scale, something that we're talking about because we're seeing the, the next level of mainstream success of containers Kubernetes and cloud native develop, basically DevOps in the C I C D pipeline. It's changing the landscape of infrastructure as code, it's accelerating the value proposition and the super cloud as we call it, has been getting a lot of traction because this next generation cloud is looking a lot different, but kind of the same as the first generation. What's your view on Super cloud as it fits to cloud native as scales up? >>Yeah, you know, I think what's interesting, and I think the reason why Super Cloud is a really good and a really fit term for this, and I think, I know my CEO was chatting with you as well, and he was mentioning this as well, but I think there needs to be a different term than just multi-cloud or cloud. And the reason is because as cloud native and cloud deployments have scaled, I think we've reached a point now where instead of having the traditional data center style model, where you have a few large distributors of infrastructure and workload at a few locations, I think the model is kind of flipped around, right? Where you have a large number of micro sites. These micro sites could be your public cloud deployment, your private on-prem infrastructure deployments, or it could be your edge environment, right? And every single enterprise, every single industry is moving in that direction. And so you gotta rougher that with a terminology that, that, that indicates the scale and complexity of it. And so I think super cloud is a, is an appropriate term for >>That. So you brought a couple things I want to dig into. You mentioned Edge Notes. We're seeing not only edge nodes being the next kind of area of innovation, mainly because it's just popping up everywhere. And that's just the beginning. Wouldn't even know what's around the corner. You got buildings, you got iot, o ot, and it kind of coming together, but you also got this idea of regions, global infrastructures, big part of it. I just saw some news around cloud flare shutting down a site here, there's policies being made at scale. These new challenges there. Can you share because you can have edge. So hybrid cloud is a winning formula. Everybody knows that it's a steady state. Yeah. But across multiple clouds brings in this new un engineered area, yet it hasn't been done yet. Spanning clouds. People say they're doing it, but you start to see the toe in the water, it's happening, it's gonna happen. It's only gonna get accelerated with the edge and beyond globally. So I have to ask you, what is the technical challenges in doing this? Because it's something business consequences as well, but there are technical challenge. Can you share your view on what the technical challenges are for the super cloud across multiple edges and >>Regions? Yeah, absolutely. So I think, you know, in in the context of this, the, this, this term of super cloud, I think it's sometimes easier to visualize things in terms of two access, right? I think on one end you can think of the scale in terms of just pure number of nodes that you have, deploy number of clusters in the Kubernetes space. And then on the other access you would have your distribution factor, right? Which is, do you have these tens of thousands of nodes in one site or do you have them distributed across tens of thousands of sites with one node at each site? Right? And if you have just one flavor of this, there is enough complexity, but potentially manageable. But when you are expanding on both these access, you really get to a point where that skill really needs some well thought out, well-structured solutions to address it, right? A combination of homegrown tooling along with your, you know, favorite distribution of Kubernetes is not a strategy that can help you in this environment. It may help you when you have one of this or when you, when you scale, is not at the level. >>Can you scope the complexity? Because I mean, I hear a lot of moving parts going on there, the technology's also getting better. We we're seeing cloud native become successful. There's a lot to configure, there's a lot to install. Can you scope the scale of the problem? Because we're talking about at scale Yep. Challenges here. >>Yeah, absolutely. And I think, you know, I I like to call it, you know, the, the, the problem that the scale creates, you know, there's various problems, but I think one, one problem, one way to think about it is, is, you know, it works on my cluster problem, right? So, you know, I come from engineering background and there's a, you know, there's a famous saying between engineers and QA and the support folks, right? Which is, it works on my laptop, which is I tested this change, everything was fantastic, it worked flawlessly on my machine, on production, It's not working. The exact same problem now happens and these distributed environments, but at massive scale, right? Which is that, you know, developers test their applications, et cetera within the sanctity of their sandbox environments. But once you expose that change in the wild world of your production deployment, right? >>And the production deployment could be going at the radio cell tower at the edge location where a cluster is running there, or it could be sending, you know, these applications and having them run at my customer's site where they might not have configured that cluster exactly the same way as I configured it, or they configured the cluster, right? But maybe they didn't deploy the security policies or they didn't deploy the other infrastructure plugins that my app relies on all of these various factors at their own layer of complexity. And there really isn't a simple way to solve that today. And that is just, you know, one example of an issue that happens. I think another, you know, whole new ball game of issues come in the context of security, right? Because when you are deploying applications at scale in a distributed manner, you gotta make sure someone's job is on the line to ensure that the right security policies are enforced regardless of that scale factor. So I think that's another example of problems that occur. >>Okay. So I have to ask about scale because there are a lot of multiple steps involved when you see the success cloud native, you know, you see some, you know, some experimentation. They set up a cluster, say it's containers and Kubernetes, and then you say, Okay, we got this, we can configure it. And then they do it again and again, they call it day two. Some people call it day one, day two operation, whatever you call it. Once you get past the first initial thing, then you gotta scale it. Then you're seeing security breaches, you're seeing configuration errors. This seems to be where the hotpot is. And when companies transition from, I got this to, Oh no, it's harder than I thought at scale. Can you share your reaction to that and how you see this playing out? >>Yeah, so, you know, I think it's interesting. There's multiple problems that occur when, you know, the, the two factors of scale is we talked about start expanding. I think one of them is what I like to call the, you know, it, it works fine on my cluster problem, which is back in, when I was a developer, we used to call this, it works on my laptop problem, which is, you know, you have your perfectly written code that is operating just fine on your machine, your sandbox environment. But the moment it runs production, it comes back with p zeros and POS from support teams, et cetera. And those issues can be really difficult to try us, right? And so in the Kubernetes environment, this problem kind of multi folds, it goes, you know, escalates to a higher degree because yeah, you have your sandbox developer environments, they have their clusters and things work perfectly fine in those clusters because these clusters are typically handcrafted or a combination of some scripting and handcrafting. >>And so as you give that change to then run at your production edge location, like say you radio sell tower site, or you hand it over to a customer to run it on their cluster, they might not have not have configured that cluster exactly how you did it, or they might not have configured some of the infrastructure plugins. And so the things don't work. And when things don't work, triaging them becomes like ishly hard, right? It's just one of the examples of the problem. Another whole bucket of issues is security, which is, is you have these distributed clusters at scale, you gotta ensure someone's job is on the line to make sure that these security policies are configured properly. >>So this is a huge problem. I love that comment. That's not not happening on my system. It's the classic, you know, debugging mentality. Yeah. But at scale it's hard to do that with error prone. I can see that being a problem. And you guys have a solution you're launching, Can you share what our lawn is, this new product, What is it all about? Talk about this new introduction. >>Yeah, absolutely. I'm very, very excited. You know, it's one of the projects that we've been working on for some time now because we are very passionate about this problem and just solving problems at scale in on-prem or at in the cloud or at edge environments. And what arwan is, it's an open source project and it is a tool, it's a Kubernetes native tool for complete end to end management of not just your clusters, but your clusters. All of the infrastructure that goes within and along the sites of those clusters, security policies, your middleware plugins, and finally your applications. So what alarm lets you do in a nutshell is in a declarative way, it lets you handle the configuration and management of all of these components in at scale. >>So what's the elevator pitch simply put for what this solves in, in terms of the chaos you guys are reigning in. What's the, what's the bumper sticker? Yeah, >>What would it do? There's a perfect analogy that I love to reference in this context, which is think of your assembly line, you know, in a traditional, let's say, you know, an auto manufacturing factory or et cetera, and the level of efficiency at scale that that assembly line brings, right online. And if you look at the logo we've designed, it's this funny little robot. And it's because when we think of online, we, we think of these enterprise large scale environments, you know, sprawling at scale creating chaos because there isn't necessarily a well thought through, well structured solution that's similar to an assembly line, which is taking each components, you know, addressing them, manufacturing, processing them in a standardized way, then handing to the next stage. But again, it gets, you know, processed in a standardized way. And that's what Arlon really does. That's like the I pitch. If you have problems of scale of managing your infrastructure, you know, that is distributed. Arlon brings the assembly line level of efficiency and consistency >>For those. So keeping it smooth, the assembly on things are flowing. C C I CD pipelining. Exactly. So that's what you're trying to simplify that ops piece for the developer. I mean, it's not really ops, it's their ops, it's coding. >>Yeah. Not just developer, the ops, the operations folks as well, right? Because developers, you know, there is, the developers are responsible for one picture of that layer, which is my apps, and then maybe that middleware of application that they interface with, but then they hand it over to someone else who's then responsible to ensure that these apps are secure properly, that they are logging, logs are being collected properly, monitoring and observability integrated. And so it solves problems for both those >>Teams. Yeah. It's DevOps. So the DevOps is the cloud native developer. The OP teams have to kind of set policies. Is that where the declarative piece comes in? Is that why that's important? >>Absolutely. Yeah. And, and, and, and you know, Kubernetes really in introduced or elevated this declarative management, right? Because, you know, c communities clusters are Yeah. Or your, yeah, you know, specifications of components that go in Kubernetes are defined in a declarative way. And Kubernetes always keeps that state consistent with your defined state. But when you go outside of that world of a single cluster, and when you actually talk about defining the clusters or defining everything that's around it, there really isn't a solution that does that today. And so online addresses that problem at the heart of it, and it does that using existing open source well known solutions. >>Ed, do I wanna get into the benefits? What's in it for me as the customer developer? But I want to finish this out real quick and get your thoughts. You mentioned open source. Why open source? What's the, what's the current state of the product? You run the product group over at platform nine, is it open source? And you guys have a product that's commercial? Can you explain the open source dynamic? And first of all, why open source? Yeah. And what is the consumption? I mean, open source is great, People want open source, they can download it, look up the code, but maybe wanna buy the commercial. So I'm assuming you have that thought through, can you share open source and commercial relationship? >>Yeah, I think, you know, starting with why open source? I think it's, you know, we as a company, we have, you know, one of the things that's absolutely critical to us is that we take mainstream open source technologies components and then we, you know, make them available to our customers at scale through either a SaaS model on from model, right? But, so as we are a company or startup or a company that benefits, you know, in a massive way by this open source economy, it's only right, I think in my mind that we do our part of the duty, right? And contribute back to the community that feeds us. And so, you know, we have always held that strongly as one of our principles. And we have, you know, created and built independent products starting all the way with fi, which was a serverless product, you know, that we had built to various other, you know, examples that I can give. But that's one of the main reasons why opensource and also opensource because we want the community to really firsthand engage with us on this problem, which is very difficult to achieve if your product is behind a wall, you know, behind, behind a block box. >>Well, and that's, that's what the developers want too. I mean, what we're seeing in reporting with Super Cloud is the new model of consumption is I wanna look at the code and see what's in there. That's right. And then also, if I want to use it, I, I'll do it. Great. That's open source, that's the value. But then at the end of the day, if I wanna move fast, that's when people buy in. So it's a new kind of freemium, I guess, business model. I guess that's the way that, Well, but that's, that's the benefit. Open source. This is why standards and open source is growing so fast. You have that confluence of, you know, a way for helpers to try before they buy, but also actually kind of date the application, if you will. We, you know, Adrian Karo uses the dating me metaphor, you know, Hey, you know, I wanna check it out first before I get married. Right? And that's what open source, So this is the new, this is how people are selling. This is not just open source, this is how companies are selling. >>Absolutely. Yeah. Yeah. You know, I think, and you know, two things. I think one is just, you know, this, this, this cloud native space is so vast that if you, if you're building a close flow solution, sometimes there's also a risk that it may not apply to every single enterprises use cases. And so having it open source gives them an opportunity to extend it, expand it, to make it proper to their use case if they choose to do so, right? But at the same time, what's also critical to us is we are able to provide a supported version of it with an SLA that we, you know, that's backed by us, a SAS hosted version of it as well, for those customers who choose to go that route, you know, once they have used the open source version and loved it and want to take it at scale and in production and need, need, need a partner to collaborate with, who can, you know, support them for that production >>Environment. I have to ask you now, let's get into what's in it for the customer. I'm a customer, why should I be enthused about Arlo? What's in it for me? You know? Cause if I'm not enthused about it, I'm not gonna be confident and it's gonna be hard for me to get behind this. Can you share your enthusiastic view of, you know, why I should be enthused about Arlo customer? >>Yeah, absolutely. And so, and there's multiple, you know, enterprises that we talk to, many of them, you know, our customers, where this is a very kind of typical story that you hear, which is we have, you know, a Kubernetes distribution. It could be on premise, it could be public clouds, native es, and then we have our C I CD pipelines that are automating the deployment of applications, et cetera. And then there's this gray zone. And the gray zone is well before you can you, your CS CD pipelines can deploy the apps. Somebody needs to do all of their groundwork of, you know, defining those clusters and yeah. You know, properly configuring them. And as these things, these things start by being done hand grown. And then as the, as you scale, what typically enterprises would do today is they will have their home homegrown DIY solutions for this. >>I mean, the number of folks that I talk to that have built Terra from automation, and then, you know, some of those key developers leave. So it's a typical open source or typical, you know, DIY challenge. And the reason that they're writing it themselves is not because they want to. I mean, of course technology is always interesting to everybody, but it's because they can't find a solution that's out there that perfectly fits the problem. And so that's that pitch. I think Spico would be delighted. The folks that we've talked, you know, spoken with, have been absolutely excited and have, you know, shared that this is a major challenge we have today because we have, you know, few hundreds of clusters on s Amazon and we wanna scale them to few thousands, but we don't think we are ready to do that. And this will give us >>Stability. Yeah, I think people are scared, not sc I won't say scare, that's a bad word. Maybe I should say that they feel nervous because, you know, at scale small mistakes can become large mistakes. This is something that is concerning to enterprises. And, and I think this is gonna come up at co con this year where enterprises are gonna say, Okay, I need to see SLAs. I wanna see track record, I wanna see other companies that have used it. Yeah. How would you answer that question to, or, or challenge, you know, Hey, I love this, but is there any guarantees? Is there any, what's the SLAs? I'm an enterprise, I got tight, you know, I love the open source trying to free fast and loose, but I need hardened code. >>Yeah, absolutely. So, so two parts to that, right? One is Arlan leverages existing open source components, products that are extremely popular. Two specifically. One is Lon uses Argo cd, which is probably one of the highest rated and used CD open source tools that's out there, right? It's created by folks that are as part of Intuit team now, you know, really brilliant team. And it's used at scale across enterprises. That's one. Second is arlon also makes use of cluster api capi, which is a ES sub-component, right? For lifecycle management of clusters. So there is enough of, you know, community users, et cetera, around these two products, right? Or, or, or open source projects that will find Arlan to be right up in their alley because they're already comfortable, familiar with algo cd. Now Arlan just extends the scope of what Algo CD can do. And so that's one. And then the second part is going back to a point of the comfort. And that's where, you know, Platform nine has a role to play, which is when you are ready to deploy Alon at scale, because you've been, you know, playing with it in your DEF test environments, you're happy with what you get with it, then Platform nine will stand behind it and provide that sla. >>And what's been the reaction from customers you've talked to Platform nine customers with, with, that are familiar with, with Argo and then Arlo? What's been some of the feedback? >>Yeah, I, I, I think the feedback's been fantastic. I mean, I can give you examples of customers where, you know, initially, you know, when you are, when you're telling them about your entire portfolio of solutions, it might not strike a card right away. But then we start talking about Arlan and, and we talk about the fact that it uses Argo CD and they start opening up, they say, We have standardized on Argo and we have built these components, homegrown, we would be very interested. Can we co-develop? Does it support these use cases? So we've had that kind of validation. We've had validation all the way at the beginning of our line before we even wrote a single line of code saying this is something we plan on doing. And the customer said, If you had it today, I would've purchased it. So it's been really great validation. >>All right. So next question is, what is the solution to the customer? If I asked you, Look it, I have, I'm so busy, my team's overworked. I got a skills gap. I don't need another project that's, I'm so tied up right now and I'm just chasing my tail. How does Platform nine help me? >>Yeah, absolutely. So I think, you know, one of the core tenets of Platform nine has always been that we try to bring that public cloud like simplicity by hosting, you know, this in a lot of such similar tools in a SaaS hosted manner for our customers, right? So our goal behind doing that is taking away or trying to take away all of that complexity from customer's hands and offloading it to our hands, right? And giving them that full white glove treatment as we call it. And so from a customer's perspective, one, something like arlon will integrate with what they have so they don't have to rip and replace anything. In fact, it will, even in the next versions, it may even discover your clusters that you have today and, you know, give you an inventory and that, >>So customers have clusters that are growing, that's a sign correct call you guys. >>Absolutely. Either they're, they have massive large clusters, right? That they wanna split into smaller clusters, but they're not comfortable doing that today, or they've done that already on say, public cloud or otherwise. And now they have management challenges. So >>Especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure Yeah. And or scale out. >>That's right. Exactly. >>And you provide that layer of policy. >>Absolutely. >>Yes. That's the key value >>Here. That's right. >>So policy based configuration for cluster scale up >>Profile and policy based declarative configuration and life cycle management for clusters. >>If I asked you how this enables Super club, what would you say to that? >>I think this is one of the key ingredients to super cloud, right? If you think about a super cloud environment, there's at least few key ingredients that that come to my mind that are really critical. Like they are, you know, life saving ingredients at that scale. One is having a really good strategy for managing that scale, you know, in a, going back to assembly line in a very consistent, predictable way so that our lot solves then you, you need to compliment that with the right kind of observability and monitoring tools at scale, right? Because ultimately issues are gonna happen and you're gonna have to figure out, you know, how to solve them fast. And alon by the way, also helps in that direction, but you also need observability tools. And then especially if you're running it on the public cloud, you need some cost management tools. In my mind, these three things are like the most necessary ingredients to make Super Cloud successful. And, you know, alarm flows >>In one. Okay, so now the next level is, Okay, that makes sense. There's under the covers kind of speak under the hood. Yeah. How does that impact the app developers and the cloud native modern application workflows? Because the impact to me, seems the apps are gonna be impacted. Are they gonna be faster, stronger? I mean, what's the impact if you do all those things, as you mentioned, what's the impact of the apps? >>Yeah, the impact is that your apps are more likely to operate in production the way you expect them to, because the right checks and balances have gone through, and any discrepancies have been identified prior to those apps, prior to your customer running into them, right? Because developers run into this challenge to their, where there's a split responsibility, right? I'm responsible for my code, I'm responsible for some of these other plugins, but I don't own the stack end to end. I have to rely on my ops counterpart to do their part, right? And so this really gives them, you know, the right tooling for >>That. So this is actually a great kind of relevant point, you know, as cloud becomes more scalable, you're starting to see this fragmentation gone of the days of the full stack developer to the more specialized role. But this is a key point, and I have to ask you because if this Arlo solution takes place, as you say, and the apps are gonna be stupid, there's designed to do, the question is, what did, does the current pain look like of the apps breaking? What does the signals to the customer Yeah. That they should be calling you guys up into implementing Arlo, Argo, and, and, and on all the other goodness to automate, What are some of the signals? Is it downtime? Is it, is it failed apps, Is it latency? What are some of the things that Yeah, absolutely would be in indications of things are effed up a little bit. >>Yeah. More frequent down times, down times that are, that take longer to triage. And so you are, you know, the, you know, your mean times on resolution, et cetera, are escalating or growing larger, right? Like we have environments of customers where they, they have a number of folks on in the field that have to take these apps and run them at customer sites. And that's one of our partners. And they're extremely interested in this because the, the rate of failures they're encountering for this, you know, the field when they're running these apps on site, because the field is automating their clusters that are running on sites using their own script. So these are the kinds of challenges, and those are the pain points, which is, you know, if you're looking to reduce your, your meantime to resolution, if you're looking to reduce the number of failures that occur on your production site, that's one. And second, if you are looking to manage these at scale environments with a relatively small, focused, nimble ops team, which has an immediate impact on your, So those are, those are the >>Signals. This is the cloud native at scale situation, the innovation going on. Final thought is your reaction to the idea that if the world goes digital, which it is, and the confluence of physical and digital coming together, and cloud continues to do its thing, the company becomes the application, not where it used to be supporting the business, you know, the back office and the IIA terminals and some PCs and handhelds. Now if technology's running, the business is the business. Yeah. The company's the application. Yeah. So it can't be down. So there's a lot of pressure on, on CSOs and CIOs now and see, and boards is saying, how is technology driving the top line revenue? That's the number one conversation. Yeah. Do you see that same thing? >>Yeah. It's interesting. I think there's multiple pressures at the CXO CIO level, right? One is that there needs to be that visibility and clarity and guarantee almost that, you know, that the, the technology that's, you know, that's gonna drive your top line is gonna drive that in a consistent, reliable, predictable manner. And then second, there is the constant pressure to do that while always lowering your costs of doing it, right? Especially when you're talking about, let's say retailers or those kinds of large scale vendors, they many times make money by lowering the amount that they spend on, you know, providing those goods to their end customers. So I think those, both those factors kind of come into play and the solution to all of them is usually in a very structured strategy around automation. >>Final question. What does cloudnative at scale look like to you? If all the things happen the way we want 'em to happen, The magic wand, the magic dust, what does it look like? >>What that looks like to me is a CIO sipping at his desk on coffee production is running absolutely smooth. And his, he's running that at a nimble, nimble team size of at the most, a handful of folks that are just looking after things with things. So just >>Taking care of, and the CIO doesn't exist. There's no CSO there at the beach. >>Yeah. >>Thank you for coming on, sharing the cloud native at scale here on the cube. Thank you for your time. >>Fantastic. Thanks for having >>Me. Okay. I'm John Fur here for special program presentation, special programming cloud native at scale, enabling super cloud modern applications with Platform nine. Thanks for watching. Welcome back everyone to the special presentation of cloud native at scale, the cube and platform nine special presentation going in and digging into the next generation super cloud infrastructure as code and the future of application development. We're here at Bickley, who's the chief architect and co-founder of Platform nine b. Great to see you Cube alumni. We, we met at an OpenStack event in about eight years ago, or well later, earlier when opens Stack was going. Great to see you and great to see congratulations on the success of platform nine. >>Thank you very much. >>Yeah. You guys have been at this for a while and this is really the, the, the year we're seeing the, the crossover of Kubernetes because of what happens with containers. Everyone now was realized, and you've seen what Docker's doing with the new docker, the open source Docker now just a success Exactly. Of containerization, right? And now the Kubernetes layer that we've been working on for years is coming, bearing fruit. This is huge. >>Exactly. Yes. >>And so as infrastructure's code comes in, we talked to Bacar talking about Super Cloud, I met her about, you know, the new Arlon, our R lawn you guys just launched, the infrastructure's code is going to another level. And then it's always been DevOps infrastructure is code. That's been the ethos that's been like from day one, developers just code. Then you saw the rise of serverless and you see now multi-cloud or on the horizon, connect the dots for us. What is the state of infrastructures code today? >>So I think, I think I'm, I'm glad you mentioned it, everybody or most people know about infrastructures code. But with Kubernetes, I think that project has evolved at the concept even further. And these dates, it's infrastructure as configuration, right? So, which is an evolution of infrastructure as code. So instead of telling the system, here's how I want my infrastructure by telling it, you know, do step A, B, C, and D instead with Kubernetes, you can describe your desired state declaratively using things called manifest resources. And then the system kind of magically figures it out and tries to converge the state towards the one that you specify. So I think it's, it's a even better version of infrastructures code. >>Yeah, yeah. And, and that really means it's developer just accessing resources. Okay. Not declaring, Okay, give me some compute, stand me up some, turn the lights on, turn 'em off, turn 'em on. That's kind of where we see this going. And I like the configuration piece. Some people say composability, I mean now with open source, so popular, you don't have to have to write a lot of code. It's code being developed. And so it's into integration, it's configuration. These are areas that we're starting to see computer science principles around automation, machine learning, assisting open source. Cuz you got a lot of code that's right in hearing software, supply chain issues. So infrastructure as code has to factor in these new, new dynamics. Can you share your opinion on these new dynamics of, as open source grows, the glue layers, the configurations, the integration, what are the core issues? >>I think one of the major core issues is with all that power comes complexity, right? So, you know, despite its expressive power systems like Kubernetes and declarative APIs let you express a lot of complicated and complex stacks, right? But you're dealing with hundreds if not thousands of these yamo files or resources. And so I think, you know, the emergence of systems and layers to help you manage that complexity is becoming a key challenge and opportunity in, in this space that, >>That's, I wrote a LinkedIn post today was comments about, you know, hey, enterprise is the new breed, the trend of SaaS companies moving our consumer comp consumer-like thinking into the enterprise has been happening for a long time, but now more than ever, you're seeing it the old way used to be solve complexity with more complexity and then lock the customer in. Now with open source, it's speed, simplification and integration, right? These are the new dynamic power dynamics for developers. Yeah. So as companies are starting to now deploy and look at Kubernetes, what are the things that need to be in place? Because you have some, I won't say technical debt, but maybe some shortcuts, some scripts here that make it look like infrastructure is code. People have done some things to simulate or or make infrastructure as code happen. Yes. But to do it at scale Yes. Is harder. What's your take on this? What's your >>View? It's hard because there's a per proliferation of methods, tools, technologies. So for example, today it's very common for DevOps and platform engineering tools, I mean, sorry, teams to have to deploy a large number of Kubernetes clusters, but then apply the applications and configurations on top of those clusters. And they're using a wide range of tools to do this, right? For example, maybe Ansible or Terraform or bash scripts to bring up the infrastructure and then the clusters. And then they may use a different set of tools such as Argo CD or other tools to apply configurations and applications on top of the clusters. So you have this sprawl of tools. You, you also have this sprawl of configurations and files because the more objects you're dealing with, the more resources you have to manage. And there's a risk of drift that people call that where, you know, you think you have things under control, but some people from various teams will make changes here and there and then before the end of the day systems break and you have no idea of tracking them. So I think there's real need to kind of unify, simplify, and try to solve these problems using a smaller, more unified set of tools and methodologies. And that's something that we try to do with this new project. Arlon. >>Yeah. So, so we're gonna get into Arlan in a second. I wanna get into the why Arlon. You guys announced that at our GoCon, which was put on here in Silicon Valley at the, at the by intu. They had their own little day over there at their headquarters. But before we get there, Vascar, your CEO came on and he talked about Super Cloud at our inaugural event. What's your definition of super cloud? If you had to kind of explain that to someone at a cocktail party or someone in the industry technical, how would you look at the super cloud trend that's emerging? It's become a thing. What's your, what would be your contribution to that definition or the narrative? >>Well, it's, it's, it's funny because I've actually heard of the term for the first time today, speaking to you earlier today. But I think based on what you said, I I already get kind of some of the, the gist and the, the main concepts. It seems like super cloud, the way I interpret that is, you know, clouds and infrastructure, programmable infrastructure, all of those things are becoming commodity in a way. And everyone's got their own flavor, but there's a real opportunity for people to solve real business problems by perhaps trying to abstract away, you know, all of those various implementations and then building better abstractions that are perhaps business or application specific to help companies and businesses solve real business problems. >>Yeah, I remember that's a great, great definition. I remember, not to date myself, but back in the old days, you know, IBM had a proprietary network operating system, so to deck for the mini computer vendors, deck net and SNA respectively. But T C P I P came out of the osi, the open systems interconnect and remember, ethernet beat token ring out. So not to get all nerdy for all the young kids out there, look, just look up token ring, you'll see, you've probably never heard of it. It's IBM's, you know, connection for the internet at the, the layer too is Amazon, the ethernet, right? So if T C P I P could be the Kubernetes and the container abstraction that made the industry completely change at that point in history. So at every major inflection point where there's been serious industry change and wealth creation and business value, there's been an abstraction Yes. Somewhere. Yes. What's your reaction to that? >>I think this is, I think a saying that's been heard many times in this industry and, and I forgot who originated it, but I think the saying goes like, there's no problem that can't be solved with another layer of indirection, right? And we've seen this over and over and over again where Amazon and its peers have inserted this layer that has simplified, you know, computing and, and infrastructure management. And I believe this trend is going to continue, right? The next set of problems are going to be solved with these insertions of additional abstraction layers. I think that that's really a, yeah, it's gonna continue. >>It's interesting. I just really wrote another post today on LinkedIn called the Silicon Wars AMD Stock is down arm has been on rise, we've remember pointing for many years now, that arm's gonna be hugely, it has become true. If you look at the success of the infrastructure as a service layer across the clouds, Azure, aws, Amazon's clearly way ahead of everybody. The stuff that they're doing with the silicon and the physics and the, the atoms, the pro, you know, this is where the innovation, they're going so deep and so strong at ISAs, the more that they get that gets come on, they have more performance. So if you're an app developer, wouldn't you want the best performance and you'd wanna have the best abstraction layer that gives you the most ability to do infrastructures, code or infrastructure for configuration, for provisioning, for managing services. And you're seeing that today with service MeSHs, a lot of action going on in the service mesh area in, in this community of co con, which will be a covering. So that brings up the whole what's next? You guys just announced our lawn at ar GoCon, which came out of Intuit. We've had Maria Teel at our super cloud event, She's a cto, you know, they're all in the cloud. So they contributed that project. Where did Arlon come from? What was the origination? What's the purpose? Why our lawn, why this announcement? Yeah, >>So the, the inception of the project, this was the result of us realizing that problem that we spoke about earlier, which is complexity, right? With all of this, these clouds, these infrastructure, all the variations around and you know, compute storage networks and the proliferation of tools we talked about the Ansibles and Terraforms and Kubernetes itself, you can think of that as another tool, right? We saw a need to solve that complexity problem, and especially for people and users who use Kubernetes at scale. So when you have, you know, hundreds of clusters, thousands of applications, thousands of users spread out over many, many locations, there, there needs to be a system that helps simplify that management, right? So that means fewer tools, more expressive ways of describing the state that you want and more consistency. And, and that's why, you know, we built AR lawn and we built it recognizing that many of these problems or sub problems have already been solved. So Arlon doesn't try to reinvent the wheel, it instead rests on the shoulders of several giants, right? So for example, Kubernetes is one building block, GI ops, and Argo CD is another one, which provides a very structured way of applying configuration. And then we have projects like cluster API and cross plane, which provide APIs for describing infrastructure. So arlon takes all of those building blocks and builds a thin layer, which gives users a very expressive way of defining configuration and desired state. So that's, that's kind of the inception of, And >>What's the benefit of that? What does that give the, what does that give the developer, the user, in this case, >>The developers, the, the platform engineer, team members, the DevOps engineers, they get a a ways to provision not just infrastructure and clusters, but also applications and configurations. They get a way, a system for provisioning, configuring, deploying, and doing life cycle management in a, in a much simpler way. Okay. Especially as I said, if you're dealing with a large number of applications. >>So it's like an operating fabric, if you will. Yes. For them. Okay, so let's get into what that means for up above and below the, the, this abstraction or thin layer below the infrastructure. We talked a lot about what's going on below that. Yeah. Above our workloads at the end of the day, and I talk to CXOs and IT folks that, that are now DevOps engineers. They care about the workloads and they want the infrastructure's code to work. They wanna spend their time getting in the weeds, figuring out what happened when someone made a push that that happened or something happened. They need observability and they need to, to know that it's working. That's right. And here's my workloads running effectively. So how do you guys look at the workload side of it? Cuz now you have multiple workloads on these fabric, right? >>So workloads, so Kubernetes has defined kind of a standard way to describe workloads and you can, you know, tell Kubernetes, I want to run this container this particular way, or you can use other projects that are in the Kubernetes cloud native ecosystem, like K native, where you can express your application in more at a higher level, right? But what's also happening is in addition to the workloads, DevOps and platform engineering teams, they need to very often deploy the applications with the clusters themselves. Clusters are becoming this commodity. It's, it's becoming this host for the application and it kind of comes bundled with it. In many cases it is like an appliance, right? So DevOps teams have to provision clusters at a really incredible rate and they need to tear them down. Clusters are becoming more, >>It's coming like an EC two instance, spin up a cluster. We've heard people used words like that. That's >>Right. And before arlon you kind of had to do all of that using a different set of tools as, as I explained. So with AR loan you can kind of express everything together. You can say I want a cluster with a health monitoring stack and a logging stack and this ingress controller and I want these applications and these security policies. You can describe all of that using something we call the profile. And then you can stamp out your app, your applications and your clusters and manage them in a very, So >>It's essentially standard, like creates a mechanism. Exactly. Standardized, declarative kind of configurations. And it's like a playbook, just deploy it. Now what there is between say a script like I'm, I have scripts, I can just automate scripts >>Or yes, this is where that declarative API and infrastructure as configuration comes in, right? Because scripts, yes you can automate scripts, but the order in which they run matters, right? They can break, things can break in the middle and, and sometimes you need to debug them. Whereas the declarative way is much more expressive and powerful. You just tell the system what you want and then the system kind of figures it out. And there are these things are controllers which will in the background reconcile all the state to converge towards your desire. It's a much more powerful, expressive and reliable way of getting things done. >>So infrastructure as configuration is built kind of on, it's a super set of infrastructures code because it's >>An evolution. >>You need edge's code, but then you can configure the code by just saying do it. You basically declaring saying Go, go do that. That's right. Okay, so, alright, so cloud native at scale, take me through your vision of what that means. Someone says, Hey, what does cloud native at scale mean? What's success look like? How does it roll out in the future as you, not future next couple years. I mean people are now starting to figure out, okay, it's not as easy as it sounds. Kubernetes has value. We're gonna hear this year at CubeCon a lot of this, what does cloud native at scale >>Mean? Yeah, there are different interpretations, but if you ask me, when people think of scale, they think of a large number of deployments, right? Geographies, many, you know, supporting thousands or tens or millions of, of users there, there's that aspect to scale. There's also an equally important a aspect of scale, which is also something that we try to address with Arran. And that is just complexity for the people operating this or configuring this, right? So in order to describe that desired state, and in order to perform things like maybe upgrades or updates on a very large scale, you want the humans behind that to be able to express and direct the system to do that in, in relatively simple terms, right? And so we want the tools and the abstractions and the mechanisms available to the user to be as powerful but as simple as possible. So there's, I think there's gonna be a number and there have been a number of CNCF and cloud native projects that are trying to attack that complexity problem as well. And Arlon kind of falls in in that >>Category. Okay, so I'll put you on the spot rogue, that CubeCon coming up and now this'll be shipping this segment series out before. What do you expect to see at this year? It's the big story this year. What's the, what's the most important thing happening? Is it in the open source community and also within a lot of the, the people jockeying for leadership. I know there's a lot of projects and still there's some white space in the overall systems map about the different areas get run time and there's ability in all these different areas. What's the, where's the action? Where, where's the smoke? Where's the fire? Where's the piece? Where's the tension? >>Yeah, so I think one thing that has been happening over the past couple of coupon and I expect to continue and, and that is the, the word on the street is Kubernetes is getting boring, right? Which is good, right? >>Boring means simple. >>Well, well >>Maybe, >>Yeah, >>Invisible, >>No drama, right? So, so the, the rate of change of the Kubernetes features and, and all that has slowed but in, in a, in a positive way. But there's still a general sentiment and feeling that there's just too much stuff. If you look at a stack necessary for hosting applications based on Kubernetes, there are just still too many moving parts, too many components, right? Too much complexity. I go, I keep going back to the complexity problem. So I expect Cube Con and all the vendors and the players and the startups and the people there to continue to focus on that complexity problem and introduce further simplifications to, to the stack. >>Yeah. Vic, you've had an storied career VMware over decades with them within 12 years with 14 years or something like that. Big number co-founder here a platform. I you's been around for a while at this game, man. We talked about OpenStack, that project we interviewed at one of their events. So OpenStack was the beginning of that, this new revolution. I remember the early days it was, it wasn't supposed to be an alternative to Amazon, but it was a way to do more cloud cloud native. I think we had a Cloud Aati team at that time. We would joke we, you know, about, about the dream. It's happening now, now at Platform nine. You guys have been doing this for a while. What's the, what are you most excited about as the chief architect? What did you guys double down on? What did you guys pivot from or two, did you do any pivots? Did you extend out certain areas? Cuz you guys are in a good position right now, a lot of DNA in Cloud native. What are you most excited about and what does Platform Nine bring to the table for customers and for people in the industry watching this? >>Yeah, so I think our mission really hasn't changed over the years, right? It's been always about taking complex open source software because open source software, it's powerful. It solves new problems, you know, every year and you have new things coming out all the time, right? Opens Stack was an example and then Kubernetes took the world by storm. But there's always that complexity of, you know, just configuring it, deploying it, running it, operating it. And our mission has always been that we will take all that complexity and just make it, you know, easy for users to consume regardless of the technology, right? So the successor to Kubernetes, you know, I don't have a crystal ball, but you know, you have some indications that people are coming up of new and simpler ways of running applications. There are many projects around there who knows what's coming next year or the year after that. But platform will a, platform nine will be there and we will, you know, take the innovations from the the community. We will contribute our own innovations and make all of those things very consumable to customers. >>Simpler, faster, cheaper. Exactly. Always a good business model technically to make that happen. Yes. Yeah, I think the, the reigning in the chaos is key, you know, Now we have now visibility into the scale. Final question before we depart this segment. What is at scale, how many clusters do you see that would be a watermark for an at scale conversation around an enterprise? Is it workloads we're looking at or, or clusters? How would you, Yeah, how would you describe that? When people try to squint through and evaluate what's a scale, what's the at scale kind of threshold? >>Yeah. And, and the number of clusters doesn't tell the whole story because clusters can be small in terms of the number of nodes or they can be large. But roughly speaking when we say, you know, large scale cluster deployments, we're talking about maybe hundreds, two thousands. >>Yeah. And final final question, what's the role of the hyperscalers? You got AWS continuing to do well, but they got their core ias, they got a PAs, they're not too too much putting a SaaS out there. They have some SaaS apps, but mostly it's the ecosystem. They have marketplaces doing, doing over $2 billion billions of transactions a year and, and it's just like, just sitting there. It hasn't really, they're now innovating on it, but that's gonna change ecosystems. What's the role the cloud play in the cloud need of its scale? >>The, the hyper squares? >>Yeah, yeah. A's Azure Google, >>You mean from a business perspective, they're, they have their own interests that, you know, that they're, they will keep catering to, they, they will continue to find ways to lock their users into their ecosystem of services and, and APIs. So I don't think that's gonna change, right? They're just gonna keep well, >>They got great performance. I mean, from a, from a hardware standpoint, yes. That's gonna be key, >>Right? Yes. I think the, the move from X 86 being the dominant way and platform to run workloads is changing, right? That, that, that, that, and I think the, the hyper skaters really want to be in the game in terms of, you know, the, the new risk and arm ecosystems, the platforms. >>Yeah. Not joking aside, Paul Morritz, when he was the CEO of VMware, when he took over once said, I remember our first year doing the cube. Oh the cloud is one big distributed computer. It's, it's hardware and you got software and you got middleware and he kinda over, well he's kind of tongue in cheek, but really you're talking about large compute and sets of services that is essentially a distributed computer. Yes, >>Exactly. >>It's, we're back in the same game. Thank you for coming on the segment. Appreciate your time. This is cloud native at scale special presentation with Platform nine. Really unpacking super cloud Arlon open source and how to run large scale applications on the cloud, cloud native develop for developers. And John Furrier with the cube. Thanks for Washington. We'll stay tuned for another great segment coming right up. Hey, welcome back everyone to Super Cloud 22. I'm John Fur, host of the Cuba here all day talking about the future of cloud. Where's it all going? Making it super multi-cloud is around the corner and public cloud is winning. Got the private cloud on premise and Edge. Got a great guest here, Vascar Gorde, CEO of Platform nine, just on the panel on Kubernetes. An enabler blocker. Welcome back. Great to have you on. >>Good to see you >>Again. So Kubernetes is a blocker enabler by, with a question mark I put on on there. Panel was really to discuss the role of Kubernetes. Now great conversation operations is impacted. What's just thing about what you guys are doing at Platform nine? Is your role there as CEO and the company's position, kind of like the world spun into the direction of Platform nine while you're at the helm, right? >>Absolutely. In fact, things are moving very well and since they came to us, it was an insight to call ourselves the platform company eight years ago, right? So absolutely whether you are doing it in public clouds or private clouds, you know, the application world is moving very fast in trying to become digital and cloud native. There are many options for you to run the infrastructure. The biggest blocking factor now is having a unified platform. And that's what where we come into >>Patrick, we were talking before we came on stage here about your background and we were kind of talking about the glory days in 2000, 2001 when the first ASPs application service providers came out. Kind of a SaaS vibe, but that was kind of all kind of cloud-like >>It wasn't, >>And web services started then too. So you saw that whole growth. Now, fast forward 20 years later, 22 years later, where we are now, when you look back then to here and all the different cycles, >>In fact, you know, as we were talking offline, I was in one of those ASPs in the year 2000 where it was a novel concept of saying we are providing a software and a capability as a service, right? You sign up and start using it. I think a lot has changed since then. The tooling, the tools, the technology has really skyrocketed. The app development environment has really taken off exceptionally well. There are many, many choices of infrastructure now, right? So I think things are in a way the same but also extremely different. But more importantly now for any company, regardless of size, to be a digital native, to become a digital company is extremely mission critical. It's no longer a nice to have everybody's in the journey somewhere. >>Everyone is going digital transformation here. Even on a so-called downturn recession that's upcoming inflations sea year. It's interesting. This is the first downturn, the history of the world where the hyperscale clouds have been pumping on all cylinders as an economic input. And if you look at the tech trends, GDPs down, but not tech. Nope. Cause pandemic showed everyone digital transformation is here and more spend and more growth is coming even in, in tech. So this is a unique factor which proves that that digital transformation's happening and company, every company will need a super cloud. >>Everyone, every company, regardless of size, regardless of location, has to become modernize their infrastructure. And modernizing infrastructure is not just some, you know, new servers and new application tools. It's your approach, how you're serving your customers, how you're bringing agility in your organization. I think that is becoming a necessity for every enterprise to survive. >>I wanna get your thoughts on Super Cloud because one of the things Dave Alon and I want to do with Super Cloud and calling it that was we, I, I personally, and I know Dave as well, he can, I'll speak from, he can speak for himself. We didn't like multi-cloud. I mean not because Amazon said don't call things multi-cloud, it just didn't feel right. I mean everyone has multiple clouds by default. If you're running productivity software, you have Azure and Office 365. But it wasn't truly distributed. It wasn't truly decentralized, it wasn't truly cloud enabled. It didn't, it felt like they're not ready for a market yet. Yet public clouds booming on premise. Private cloud and Edge is much more on, you know, more, More dynamic, more unreal. >>Yeah. I think the reason why we think Super cloud is a better term than multi-cloud. Multi-cloud are more than one cloud, but they're disconnected. Okay, you have a productivity cloud, you have a Salesforce cloud, you may have, everyone has an internal cloud, right? So, but they're not connected. So you can say, okay, it's more than one cloud. So it's, you know, multi-cloud. But super cloud is where you are actually trying to look at this holistically. Whether it is on-prem, whether it is public, whether it's at the edge, it's a store at the branch. You are looking at this as one unit. And that's where we see the term super cloud is more applicable because what are the qualities that you require if you're in a super cloud, right? You need choice of infrastructure, you need, but at the same time you need a single pan or a single platform for you to build your innovations on, regardless of which cloud you're doing it on, right? So I think Super Cloud is actually a more tightly integrated orchestrated management philosophy we think. >>So let's get into some of the super cloud type trends that we've been reporting on. Again, the purpose of this event is as a pilot to get the conversations flowing with, with the influencers like yourselves who are running companies and building products and the builders, Amazon and Azure are doing extremely well. Google's coming up in third Cloudworks in public cloud. We see the use cases on premises use cases. Kubernetes has been an interesting phenomenon because it's become from the developer side a little bit, but a lot of ops people love Kubernetes. It's really more of an ops thing. You mentioned OpenStack earlier. Kubernetes kind of came out of that open stack. We need an orchestration. And then containers had a good shot with, with Docker. They re pivoted the company. Now they're all in an open source. So you got containers booming and Kubernetes as a new layer there. >>What's, >>What's the take on that? What does that really mean? Is that a new defacto enabler? It >>Is here. It's for here for sure. Every enterprise somewhere in the journey is going on. And you know, most companies are, 70 plus percent of them have 1, 2, 3 container based, Kubernetes based applications now being rolled out. So it's very much here. It is in production at scale by many customers. And it, the beauty of it is yes, open source, but the biggest gating factor is the skill set. And that's where we have a phenomenal engineering team, right? So it's, it's one thing to buy a tool and >>Just be clear, you're a managed service for Kubernetes. >>We provide, provide a software platform for cloud acceleration as a service and it can run anywhere. It can run in public private. We have customers who do it in truly multi-cloud environments. It runs on the edge, it runs at this in stores about thousands of stores in a retailer. So we provide that and also for specific segments where data sovereignty and data residency are key regulatory reasons. We also un on-prem as an air gap version. Can >>You give an example on how you guys are deploying your platform to enable a super cloud experience for your customer? Right. >>So I'll give you two different examples. One is a very large networking company, public networking company. They have hundreds of products, hundreds of r and d teams that are building different, different products. And if you look at few years back, each one was doing it on a different platforms, but they really needed to bring the agility. And they worked with us now over three years where we are their build test dev pro platform where all their products are built on, right? And it has dramatically increased their agility to release new products. Number two, it actually is a light out operation. In fact, the customer says like, like the Maytag service person, cuz we provide it as a service and it barely takes one or two people to maintain it for them. >>So it's kinda like an SRE vibe. One person managing a >>Large 4,000 engineers building infrastructure >>On their tools, >>Whatever they want on their tools. They're using whatever app development tools they use, but they use our platform. What >>Benefits are they seeing? Are they seeing speed? >>Speed, definitely. Okay. Definitely they're speeding. Speed uniformity because now they're building able to build, so their customers who are using product A and product B are seeing a similar set of tools that are being used. >>So a big problem that's coming outta this super cloud event that we're, we're seeing and we heard it all here, ops and security teams. Cause they're kind of part of one thing, but option security specifically need to catch up speed wise. Are you delivering that value to ops and security? Right? >>So we, we work with ops and security teams and infrastructure teams and we layer on top of that. We have like a platform team. If you think about it, depending on where you have data centers, where you have infrastructure, you have multiple teams, okay, but you need a unified platform. Who's your buyer? Our buyer is usually, you know, the product divisions of companies that are looking at or the CTO would be a buyer for us functionally cio definitely. So it it's, it's somewhere in the DevOps to infrastructure. But the ideal one we are beginning to see now many large corporations are really looking at it as a platform and saying we have a platform group on which any app can be developed and it is run on any infrastructure. So the platform engineering teams. So >>You working two sides to that coin. You've got the dev side and then >>And then infrastructure >>Side. >>Okay. Another customer that I give an example, which I would say is kind of the edge of the store. So they have thousands of stores. Retail, retail, you know food retailer, right? They have thousands of stores that are on the globe, 50,000, 60,000. And they really want to enhance the customer experience that happens when you either order the product or go into the store and pick up your product or buy or browse or sit there. They have applications that were written in the nineties and then they have very modern AIML applications today. They want something that will not have to send an IT person to install a rack in the store or they can't move everything to the cloud because the store operations has to be local. The menu changes based on it's classic edge. It's classic edge, yeah. Right? They can't send it people to go install rack access servers then they can't sell software people to go install the software and any change you wanna put through that, you know, truck roll. So they've been working with us where all they do is they ship, depending on the size of the store, one or two or three little servers with instructions that >>You, you say little servers like how big one like a box, like a small little box, >>Right? And all the person in the store has to do like what you and I do at home and we get a, you know, a router is connect the power, connect the internet and turn the switch on. And from there we pick it up. >>Yep. >>We provide the operating system, everything and then the applications are put on it. And so that dramatically brings the velocity for them. They manage thousands of >>Them. True plug and play >>Two, plug and play thousands of stores. They manage it centrally. We do it for them, right? So, so that's another example where on the edge then we have some customers who have both a large private presence and one of the public clouds. Okay. But they want to have the same platform layer of orchestration and management that they can use regardless of the locations. >>So you guys got some success. Congratulations. Got some traction there. It's awesome. The question I want to ask you is that's come up is what is truly cloud native? Cuz there's lift and shift of the cloud >>That's not cloud native. >>Then there's cloud native. Cloud native seems to be the driver for the super cloud. How do you talk to customers? How do you explain when someone says what's cloud native, what isn't cloud native? >>Right. Look, I think first of all, the best place to look at what is the definition and what are the attributes and characteristics of what is truly a cloud native, is CNC foundation. And I think it's very well documented, very well. >>Tucan, of course Detroit's >>Coming so, so it's already there, right? So we follow that very closely, right? I think just lifting and shifting your 20 year old application onto a data center somewhere is not cloud native. Okay? You can't put to cloud, not you have to rewrite and redevelop your application in business logic using modern tools. Hopefully more open source and, and I think that's what Cloudnative is and we are seeing a lot of our customers in that journey. Now everybody wants to be cloudnative, but it's not that easy, okay? Because it's, I think it's first of all, skill set is very important. Uniformity of tools that there's so many tools there. Thousands and thousands of tools you could spend your time figuring out which tool to use. Okay? So I think the complexity is there, but the business benefits of agility and uniformity and customer experience are truly being done. >>And I'll give you an example, I don't know how clear native they are, right? And they're not a customer of ours, but you order pizzas, you do, right? If you just watch the pizza industry, how dominoes actually increase their share and mind share and wallet share was not because they were making better pizzas or not, I don't know anything about that, but the whole experience of how you order, how you watch what's happening, how it's delivered. There were a pioneer in it. To me, those are the kinds of customer experiences that cloud native can provide. >>Being agility and having that flow to the application changes what the expectations >>Are >>For the customer. Customer, >>The customer's expectations change, right? Once you get used to a better customer experience, you learn. >>That's to wrap it up. I wanna just get your perspective again. One of the benefits of chatting with you here and having you part of the Super Cloud 22 is you've seen many cycles, you have a lot of insights. I want to ask you, given your career where you've been and what you've done and now let's CEO platform nine, how would you compare what's happening now with other inflection points in the industry? And you've been, again, you've been an entrepreneur, you sold your company to Oracle, you've been seeing the big companies, you've seen the different waves. What's going on right now put into context this moment in time around Super Cloud. >>Sure. I think as you said, a lot of battles. CARSs being been in an asb, being in a real time software company, being in large enterprise software houses and a transformation. I've been on the app side, I did the infrastructure right and then tried to build our own platforms. I've gone through all of this myself with lot of lessons learned in there. I think this is an event which is happening now for companies to go through to become cloud native and digitalize. If I were to look back and look at some parallels of the tsunami that's going on is a couple of paddles come to me. One is, think of it, which was forced to honors like y2k. Everybody around the world had to have a plan, a strategy, and an execution for y2k. I would say the next big thing was e-commerce. I think e-commerce has been pervasive right across all industries. >>And disruptive. >>And disruptive, extremely disruptive. If you did not adapt and adapt and accelerate your e-commerce initiative, you were, it was an existence question. Yeah. I think we are at that pivotal moment now in companies trying to become digital and cloudnative. You know, that is what I see >>Happening there. I think that that e-commerce is interesting and I think just to riff with you on that is that it's disrupting and refactoring the business models. I think that is something that's coming out of this is that it's not just completely changing the gain, it's just changing how you operate, >>How you think and how you operate. See, if you think about the early days of e-commerce, just putting up a shopping cart that made you an e-commerce or e retailer or an e e e customer, right? Or so. I think it's the same thing now is I think this is a fundamental shift on how you're thinking about your business. How are you gonna operate? How are you gonna service your customers? I think it requires that just lift and shift is not gonna work. >>Nascar, thank you for coming on, spending the time to come in and share with our community and being part of Super Cloud 22. We really appreciate, we're gonna keep this open. We're gonna keep this conversation going even after the event, to open up and look at the structural changes happening now and continue to look at it in the open in the community. And we're gonna keep this going for, for a long, long time as we get answers to the problems that customers are looking for with cloud cloud computing. I'm Sean Fur with Super Cloud 22 in the Cube. Thanks for watching. >>Thank you. Thank you. >>Hello and welcome back. This is the end of our program, our special presentation with Platform nine on cloud native at scale, enabling the super cloud. We're continuing the theme here. You heard the interviews Super Cloud and its challenges, new opportunities around solutions around like Platform nine and others with Arlon. This is really about the edge situations on the internet and managing the edge multiple regions, avoiding vendor lock in. This is what this new super cloud is all about. The business consequences we heard and and the wide ranging conversations around what it means for open source and the complexity problem all being solved. I hope you enjoyed this program. There's a lot of moving pieces and things to configure with cloud native install, all making it easier for you here with Super Cloud and of course Platform nine contributing to that. Thank you for watching.
SUMMARY :
So enjoy the program, see you soon. a lot different, but kind of the same as the first generation. And so you gotta rougher and it kind of coming together, but you also got this idea of regions, So I think, you know, in in the context of this, the, Can you scope the scale of the problem? And I think, you know, I I like to call it, you know, And that is just, you know, one example of an issue that happens. you know, you see some, you know, some experimentation. which is, you know, you have your perfectly written code that is operating just fine on your And so as you give that change to then run at your production edge location, And you guys have a solution you're launching, Can you share what So what alarm lets you do in a in terms of the chaos you guys are reigning in. And if you look at the logo we've designed, So keeping it smooth, the assembly on things are flowing. Because developers, you know, there is, the developers are responsible for one picture of So the DevOps is the cloud native developer. And so online addresses that problem at the heart of it, and it does that using So I'm assuming you have that thought through, can you share open source and commercial relationship? products starting all the way with fi, which was a serverless product, you know, that we had built to buy, but also actually kind of date the application, if you will. I think one is just, you know, this, this, this cloud native space is so vast I have to ask you now, let's get into what's in it for the customer. And so, and there's multiple, you know, enterprises that we talk to, shared that this is a major challenge we have today because we have, you know, I'm an enterprise, I got tight, you know, I love the open source trying to It's created by folks that are as part of Intuit team now, you know, And the customer said, If you had it today, I would've purchased it. So next question is, what is the solution to the customer? So I think, you know, one of the core tenets of Platform nine has always been that And now they have management challenges. Especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure That's right. And alon by the way, also helps in that direction, but you also need I mean, what's the impact if you do all those things, as you mentioned, what's the impact of the apps? And so this really gives them, you know, the right tooling for But this is a key point, and I have to ask you because if this Arlo solution of challenges, and those are the pain points, which is, you know, if you're looking to reduce your, not where it used to be supporting the business, you know, that, you know, that the, the technology that's, you know, that's gonna drive your top line is If all the things happen the way we want 'em to happen, The magic wand, the magic dust, he's running that at a nimble, nimble team size of at the most, Taking care of, and the CIO doesn't exist. Thank you for your time. Thanks for having of Platform nine b. Great to see you Cube alumni. And now the Kubernetes layer that we've been working on for years is Exactly. you know, the new Arlon, our R lawn you guys just launched, you know, do step A, B, C, and D instead with Kubernetes, I mean now with open source, so popular, you don't have to have to write a lot of code. you know, the emergence of systems and layers to help you manage that complexity is becoming That's, I wrote a LinkedIn post today was comments about, you know, hey, enterprise is the new breed, the trend of SaaS you know, you think you have things under control, but some people from various teams will make changes here in the industry technical, how would you look at the super cloud trend that's emerging? the way I interpret that is, you know, clouds and infrastructure, It's IBM's, you know, connection for the internet at the, this layer that has simplified, you know, computing and, the physics and the, the atoms, the pro, you know, this is where the innovation, all the variations around and you know, compute storage networks the DevOps engineers, they get a a ways to So how do you guys look at the workload side of it? like K native, where you can express your application in more at a higher level, It's coming like an EC two instance, spin up a cluster. And then you can stamp out your app, your applications and your clusters and manage them And it's like a playbook, just deploy it. You just tell the system what you want and then You need edge's code, but then you can configure the code by just saying do it. And that is just complexity for the people operating this or configuring this, What do you expect to see at this year? If you look at a stack necessary for hosting We would joke we, you know, about, about the dream. So the successor to Kubernetes, you know, I don't Yeah, I think the, the reigning in the chaos is key, you know, Now we have now visibility into But roughly speaking when we say, you know, They have some SaaS apps, but mostly it's the ecosystem. you know, that they're, they will keep catering to, they, they will continue to find I mean, from a, from a hardware standpoint, yes. terms of, you know, the, the new risk and arm ecosystems, It's, it's hardware and you got software and you got middleware and he kinda over, Great to have you on. What's just thing about what you guys are doing at Platform nine? clouds, you know, the application world is moving very fast in trying to Patrick, we were talking before we came on stage here about your background and we were kind of talking about the glory days So you saw that whole growth. In fact, you know, as we were talking offline, I was in one of those And if you look at the tech trends, GDPs down, but not tech. some, you know, new servers and new application tools. you know, more, More dynamic, more unreal. So it's, you know, multi-cloud. the purpose of this event is as a pilot to get the conversations flowing with, with the influencers like yourselves And you know, most companies are, 70 plus percent of them have 1, 2, 3 container It runs on the edge, You give an example on how you guys are deploying your platform to enable a super And if you look at few years back, each one was doing So it's kinda like an SRE vibe. Whatever they want on their tools. to build, so their customers who are using product A and product B are seeing a similar set Are you delivering that value to ops and security? Our buyer is usually, you know, the product divisions of companies You've got the dev side and then enhance the customer experience that happens when you either order the product or go into And all the person in the store has to do like And so that dramatically brings the velocity for them. of the public clouds. So you guys got some success. How do you explain when someone says what's cloud native, what isn't cloud native? is the definition and what are the attributes and characteristics of what is truly a cloud native, Thousands and thousands of tools you could spend your time figuring I don't know anything about that, but the whole experience of how you order, For the customer. Once you get used to a better customer experience, One of the benefits of chatting with you here and been on the app side, I did the infrastructure right and then tried to build our If you did not adapt and adapt and accelerate I think that that e-commerce is interesting and I think just to riff with you on that is that it's disrupting How are you gonna service your Nascar, thank you for coming on, spending the time to come in and share with our community and being part of Thank you. I hope you enjoyed this program.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Vascar | PERSON | 0.99+ |
Mattor Makki | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Paul Morritz | PERSON | 0.99+ |
Sean Fur | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Patrick | PERSON | 0.99+ |
Vascar Gorde | PERSON | 0.99+ |
Adrian Karo | PERSON | 0.99+ |
John Forry | PERSON | 0.99+ |
John Furry | PERSON | 0.99+ |
John Fur | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
50,000 | QUANTITY | 0.99+ |
Dave Alon | PERSON | 0.99+ |
2000 | DATE | 0.99+ |
Maria Teel | PERSON | 0.99+ |
14 years | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
tens | QUANTITY | 0.99+ |
millions | QUANTITY | 0.99+ |
Gort | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Nascar | PERSON | 0.99+ |
2001 | DATE | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
One | QUANTITY | 0.99+ |
4,000 engineers | QUANTITY | 0.99+ |
one site | QUANTITY | 0.99+ |
Two | QUANTITY | 0.99+ |
second part | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
two people | QUANTITY | 0.99+ |
Arlon | ORGANIZATION | 0.99+ |
hundreds | QUANTITY | 0.99+ |
Office 365 | TITLE | 0.99+ |
Makowski | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
today | DATE | 0.99+ |
Arlo | ORGANIZATION | 0.99+ |
two sides | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
two parts | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
both | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
first generation | QUANTITY | 0.99+ |
22 years later | DATE | 0.99+ |
1 | QUANTITY | 0.99+ |
first downturn | QUANTITY | 0.99+ |
Platform nine | ORGANIZATION | 0.99+ |
one unit | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
one flavor | QUANTITY | 0.98+ |
more than one cloud | QUANTITY | 0.98+ |
two thousands | QUANTITY | 0.98+ |
One person | QUANTITY | 0.98+ |
Bickley | PERSON | 0.98+ |
Bacar | PERSON | 0.98+ |
12 years | QUANTITY | 0.98+ |
first time | QUANTITY | 0.98+ |
GoCon | EVENT | 0.98+ |
each site | QUANTITY | 0.98+ |
thousands of stores | QUANTITY | 0.98+ |
Azure | TITLE | 0.98+ |
20 years later | DATE | 0.98+ |
Madhura Maskasky, Platform9 Cloudnative at Scale
>>Hello everyone. Welcome to the cube here in Palo Alto, California for a special program on cloud native at scale, enabling next generation cloud or super cloud for modern application cloud native developers. I'm John Forer, host of the Cube. My pleasure to have here me Makoski, co-founder and VP of product at Platform nine. Thanks for coming in today for this Cloudnative at scale conversation. Thank >>You for having >>Me. So Cloudnative at scale, something that we're talking about because we're seeing the, the next level of mainstream success of containers Kubernetes and cloud native develop, basically DevOps in the C I C D pipeline. It's changing the landscape of infrastructure as code, it's accelerating the value proposition and the super cloud as we call it, has been getting a lot of traction because this next generation cloud is looking a lot different, but kind of the same as the first generation. What's your view on super cloud as it fits to cloud native as scales up? >>Yeah. You know, I think what's interesting, and I think the reason why Super Cloud is a really good and a really fit term for this, and I think, I know my CEO was chatting with you as well, and he was mentioning this as well, but I think there needs to be a different term than just multi-cloud or cloud. And the reason is because as cloud native and cloud deployments have scaled, I think we've reached a point now where instead of having the traditional data center style model where you have a few large distributors of infrastructure and workload at a few locations, I think the model is kind of flipped around, right? Where you have a large number of micro sites. These micro sites could be your public cloud deployment, your private on-prem infrastructure deployments, or it could be your edge environment, right? And every single enterprise, every single industry is moving that direction. And so you gotta rougher that with a terminology that, that, that indicates the scale and complexity of it. And so I think super cloud is a, is an appropriate term >>For that. So you brought a couple things I want to dig into. You mentioned edge nodes. We're seeing not only edge nodes being the next kind of area of innovation, mainly because it's just popping up everywhere. And that's just the beginning. We even know what's around the corner. You got buildings, you got I O D OT and IT kind of coming together. But you also got this idea of regions, global infrastructure is big part of it. I just saw some news around CloudFlare shutting down a site here. There's policies being made at scale. These new challenges there, can you share because you gotta have edge. So hybrid cloud is a winning formula. Everybody knows that it's a steady state. Yeah. But across multiple clouds brings in this new un engineered area, yet it hasn't been done yet. Spanning clouds. People say they're doing it, but you start to see the toe in the water, it's happening, it's gonna happen. It's only gonna get accelerated with the edge and beyond globally. So I have to ask you, what is the technical challenges in doing this? Because there's some business consequences as well, but there are technical challenges. Can you share your view on what the technical challenges are for the super cloud or across multiple edges and regions? >>Yeah, absolutely. So I think, you know, in in the context of this, the, this, this term of super cloud, I think it's sometimes easier to visualize things in terms of two access, right? I think on one end you can think of the scale in terms of just pure number of nodes that you have, deploy number of clusters in the Kubernetes space. And then on the other access you would have your distribution factor, right? Which is, do you have these tens of thousands of notes in one site or do you have them distributed across tens of thousands of sites with one node at each site? Right? And if you have just one flavor of this, there is enough complexity, but potentially manageable. But when you are expanding on both these access, you really get to a point where that scale really needs some well thought out, well structured solutions to address it, right? A combination of homegrown tooling along with your, you know, favorite distribution of Kubernetes is not a strategy that can help you in this environment. It may help you when you have one of this or when you, when your scale is not at the level, >>Can you scope the complexity? Because I mean, I hear a lot of moving parts going on there, the technology's also getting better. We we're seeing cloud data become successful. There's a lot to configure, there's a lot to install. Can you scope the scale of the problem? Because we're about at scale Yep. Challenges here. Yeah, >>Absolutely. And I think, you know, I I like to call it, you know, the, the problem that the scale creates, you know, there's various problems, but I think one, one problem, one way to think about it is, is you know, it works on my cluster problem, right? So, you know, I come from engineering background and there's a, you know, there's a famous saying between engineers and QA and the support folks, right? Which is, it works on my laptop, which is I tested this change, everything was fantastic, it worked flawlessly on my machine, on production, it's not working. And the exact same problem now happens in these distributed environments, but at massive scale, right? Which is that, you know, developers test their applications, et cetera within the sanctity of their sandbox environments. But once you expose that change in the wild world of your production deployment, right? >>And the production deployment could be going at the radio cell tower at the edge location where a cluster is running there, or it could be sending, you know, these applications and having them run at my customer site where they might not have configured that cluster exactly the same way as I configured it, or they configured the cluster, right? But maybe they didn't deploy the security policies or they didn't deploy the other infrastructure plugins that my app relies on. All of these various factors add their own layer of complexity. And there really isn't a simple way to solve that today. And that is just, you know, one example of an issue that happens. I think another, you know, whole new ball game of issues come in the context of security, right? Because when you are deploying applications at scale in a distributed manner, you gotta make sure someone's job is on the line to ensure that the right security policies are enforced regardless of that scale factor. So I think that's another example of problems that >>Occur. Okay. So I have to ask about scale because there are a lot of multiple steps involved when you see the success cloud native, you know, you see some, you know, some experimentation. They set up a cluster, say it's containers and Kubernetes, and then you say, Okay, we got this, we can figure it. And then they do it again and again, they call it day two. Some people call it day one, day two operation, whatever you call it. Once you get past the first initial thing, then you gotta scale it. Then you're seeing security breaches, you're seeing configuration errors. This seems to be where the hotspot is. And when companies transition from, I got this to, Oh no, it's harder than I thought at scale. Can you share your reaction to that and how you see this playing out? >>Yeah, so, you know, I think it's interesting. There's multiple problems that occur when, you know, the, the two factors of scale is we talked about start expanding. I think one of them is what I like to call the, you know, it, it works fine on my cluster problem, which is back in, when I was a developer, we used to call this, it works on my laptop problem, which is, you know, you have your perfectly written code that is operating just fine on your machine, your sandbox environment. But the moment it runs production, it comes back with p zeros and POS from support teams, et cetera. And those issues can be really difficult to triage us, right? And so in the Kubernetes environment, this problem kind of multi folds, it goes, you know, escalate to a higher degree because you have your sandbox developer environments, they have their clusters and things work perfectly fine in those clusters because these clusters are typically handcrafted or a combination of some scripting and handcrafting. >>And so as you give that change to then run at your production edge location, like say your radio cell tower site or you hand it over to a customer to run it on their cluster, they might not have not have configured that cluster exactly how you did, or they might not have configured some of the infrastructure plugins. And so the things don't work. And when things don't work, triaging them becomes like ishly hard, right? It's just one of the examples of the problem. Another whole bucket of issues is security, which is, is you have these distributed clusters at scale, you gotta ensure someone's job is on the line to make sure that the security policies are configured >>Properly. So this is a huge problem. I love that comment. That's not not happening on my system. It's the classic, you know, debugging mentality. Yeah. But at scale it's hard to do that with error prone. I can see that being a problem. And you guys have a solution you're launching. Can you share what Arlon is this new product? What is it all about? Talk about this new introduction. >>Yeah, absolutely. I'm very, very excited. You know, it's one of the projects that we've been working on for some time now because we are very passionate about this problem and just solving problems at scale in on-prem or at in the cloud or at edge environments. And what arwan is, it's an open source project and it is a tool, it's a Kubernetes native tool for complete end-to-end management of not just your clusters, but your clusters. All of the infrastructure that goes within and along the sites of those clusters, security policies, your middleware plugins, and finally your applications. So what Arlan lets you do in a nutshell is in a declarative way, it lets you handle the configuration and management of all of these components in at scale. >>So what's the elevator pitch simply put for what dissolves in, in terms of the chaos you guys are reigning in, what's the, what's the bumper sticker? Yeah, >>What would it do? There's a perfect analogy that I love to reference in this context, which is think of your assembly line, you know, in a traditional, let's say, you know, an auto manufacturing factory or et cetera, and the level of efficiency at scale that that assembly line brings, right? Lon. And if you look at the logo we've designed, it's this funny little robot, and it's because when we think of lon, we think of these enterprise large scale environments, you know, sprawling at scale creating chaos because there isn't necessarily a well thought through, well-structured solution that's similar to an assembly line, which is taking each component, you know, addressing them, manufacturing, processing them in a standardized way, then handing to the next stage where again, it gets, you know, processed in a standardized way. And that's what Alon really does. That's like the deliver pitch. If you have problems of scale of managing your infrastructure, you know, that is distributed. Arlon brings the assembly line level of efficiency and consistency for those. >>So keeping it smooth, the assembly line, things are flowing. See c i CD pipelining. Exactly. So that's what you're trying to simplify that ops piece for the developer. I mean, it's not really ops, it's their ops is coding. >>Yeah. Not just developer, the ops, the operations folks as well, right? Because developers, you know, there is, developers are responsible for one picture of that layer, which is my apps, and then maybe that middleware of applications that they interface with, but then they hand it over to someone else who's then responsible to ensure that these apps are secured properly, that they are logging, logs are being collected properly, monitoring and observability is integrated. And so it solves problems for both those teams. >>Yeah, it's dev op, So the DevOps is the cloud needed developer, The kins have to kind of set policies. Is that where the declarative piece comes in? Is that why that's important? >>Absolutely. Yeah. And, and, and, and you know, es really in introduced or elevated this declarative management, right? Because you know, Kubernetes clusters are Yeah. Or your, yeah, you know, specifications of components that go in Kubernetes are defined in a declarative way. And Kubernetes always keeps that state consistent with your defined state. But when you go outside of that world of a single cluster, and when you actually talk about defining the clusters or defining everything that's around it, there really isn't a solution that does that today. And so Arlan addresses that problem at the heart of it, and it does that using existing open source, well known solutions. >>Medo, I want to get into the benefits, what's in it for me as the customer developer, but I want to finish this out real quick and get your thoughts. You mentioned open source. Why open source? What's the, what's the current state of the product? You run the product group over there, Platform nine, is it open source? And you guys have a product that's commercial. Can you explain the open source dynamic? And first of all, why open source? Yeah. And what is the consumption? I mean, open source is great, People want open source, they can download it, look up the code, but maybe wanna buy the commercial. So I'm assuming you have that thought through, can you share that open source and commercial relationship? >>Yeah, I think, you know, starting with why open source? I think it's, you know, we as a company, we have, you know, one of the things that's absolutely critical to us is that we take mainstream open source technologies components and then we, you know, make them available to our customers at scale through either a SAS model or onpro model, right? But, so as we are a company or startup or a company that benefits, you know, in a massive way by this open source economy, it's only right, I think in my mind that we do our part of the duty, right? And contribute back to the community that feeds us. And so, you know, we have always held that strongly as one of our principles. And we have, you know, created and built independent products starting all the way with fi, which was a serverless product, you know, that we had built to various other, you know, examples that I can give. But that's one of the main reasons why open source and also open source because we want the community to really firsthand engage with us on this problem, which is very difficult to achieve if your product is behind a wall, you know, behind, behind a blog box. >>Well, and that's, that's what the developers want too. And what we're seeing in reporting with Super Cloud is the new model of consumption is I wanna look at the code and see what's in there. That's right. And then also, if I want to use it, I, I'll do it. Great. That's open source, that's the value. But then at the end of the day, if I wanna move fast, that's when people buy in. So it's a new kind of freemium, I guess, business model. I guess that's the way it is. Well, but that's, that's the benefit. Open source. This is why standards and open source growing so fast, you have that confluence of, you know, a way fors to try before they buy, but also actually kind of date the application, if you will. We, you know, Adrian Karo uses the dating metaphor, you know, Hey, you know, I wanna check it out first before I get married. Right? And that's what open source, So this is the new, this is how people are selling. This is not just open source, this is how companies are selling. >>Absolutely. Yeah. Yeah. You know, I think in, you know, two things, I think one is just, you know, this, this, this cloud native space is so vast that if you, if you're building a close flow solution, sometimes there's also a risk that it may not apply to every single enterprise's use cases. And so having it open source gives them an opportunity to extend it, expand it, to make it proper to their use case if they choose to do so, right? But at the same time, what's also critical to us is we are able to provide a supported version of it with an SLA that we, you know, that's backed by us, a sa hosted version of it as well, for those customers who choose to go that route, you know, once they have used the open source version and loved it and want to take it at scale and in production and need, need, need a partner to collaborate with, who can, you know, support them for that production environment. I >>Have to ask you now, let's get into what's in it for the customer. I'm a customer, why should I be enthused about Arlo? What's in it for me? You know? Cause if I'm not enthused about it, I'm not gonna be confident and it's gonna be hard for me to get behind this. Can you share your enthusiastic view of, you know, why I should be enthused about Arlo if I'm a >>Customer? Yeah, absolutely. And so, and there's multiple, you know, enterprises that we talk to, many of them, you know, our customers, where this is a very kind of typical story that you will hear, which is we have, you know, a Kubernetes distribution. It could be on premise, it could be public clouds, native Kubernetes, and then we have our C I C D pipelines that are automating the deployment of applications, et cetera. And then there's this gray zone. And the gray zone is well before you can you, your CS CD pipelines can deploy the apps. Somebody needs to do all of that groundwork of, you know, defining those clusters and yeah. You know, properly configuring them. And as these things, these things start by being done hand grown. And then as the, as you scale, what typically enterprises would do today is they will have their home homegrown DIY solutions for this. >>I mean, the number of folks that I talk to that have built Terra from automation, and then, you know, some of those key developers leave. So it's a typical open source or typical, you know, DIY challenge. And the reason that they're writing it themselves is not because they want to. I mean, of course technology is always interesting to everybody, but it's because they can't find a solution that's out there that perfectly fits the problem. And so that's that pitch. I think spic would be delighted. The folks that we've spoken, you know, spoken with, have been absolutely excited and have, you know, shared that this is a major challenge we have today because we have, you know, few hundreds of clusters on s Amazon and we wanna scale them to few thousands, but we don't think we are ready to do that. And this will give us the ability. >>Yeah, I think people are scared. Not, I won't say scare, that's a a bad word. Maybe I should say that they feel nervous because, you know, at scale small mistakes can become large mistakes. This is something that is concerning to enterprises and, and I think this is gonna come up at Cuban this year where enterprises are gonna say, Okay, I need to see SLAs. I wanna see track record, I wanna see other companies that have used it. Yeah. How would you answer that question to, or, or challenge, you know, Hey, I love this, but is there any guarantees? Is there any, what's the sla I'm an enterprise, I got tight, you know, I love the open source kind of free, fast and loose, but I need hardened code. >>Yeah, absolutely. So, so two parts to that, right? One is Arlan leverages existing open source components, products that are extremely popular. Two specifically. One is Arlan uses Argo cd, which is probably one of the highest rated and used CD open source tools that's out there, right? It's created by folks that are as part of into team now, you know, really brilliant team. And it's used at scale across enterprises. That's one. Second is arlon also makes use of cluster api capi, which is a sub-component, right? For lifecycle management of clusters. So there is enough of, you know, community users, et cetera, around these two products, right? Or, or, or open source projects that will find Arlan to be right up in their alley because they're already comfortable, familiar with algo cd. Now Arlan just extends the scope of what Algo CD can do. And so that's one. And then the second part is going back to your point of the comfort. And that's where, you know, Platform nine has a role to play, which is when you are ready to deploy arlon at scale, because you've been, you know, playing with it in your dev tested environments, you're happy with what you get with it, then Platform nine will stand behind it and provide that sla. >>And what's been the reaction from customers you've talked to Platform nine customers with, with, that are familiar with, with Argo and then Arlo? What's been some of the feedback? >>Yeah, I, I, I think the feedback's been fantastic. I mean, I can give you examples of customers where, you know, initially, you know, when you are, when you're telling them about your entire portfolio of solutions, it might not strike a card right away. But then we start talking about Arlan and, and we talk about the fact that it uses Argo cdn, they start opening up, they say, We have standardized on Argo and we have built these components, homegrown, we would be very interested. Can we co-develop? Does it support these use cases? So we've had that kind of validation. We've had validation all the way at the beginning of our lawn before we even wrote a single line of code saying this is something we plan on doing. And the customer said, If you had it today, I would've purchased it. So it's been really great validation. >>All right. So next question is, what is the solution to the customer? If I asked you, Look it, I have, I'm so busy, my team's overworked. I got a skills gap. I don't need another project that's, I'm so tied up right now and I'm just chasing my tail. How does Platform nine help me? >>Yeah, absolutely. So I think, you know, one of the core tenets of Platform nine has always been that we try to bring that public cloud like simplicity by hosting, you know, this in a lot of such similar tools in a SAS hosted manner for our customers, right? So our goal behind doing that is taking away or trying to take away all of that complexity from customer's hands and offloading it to our hands, right? And giving them that full white glove treatment as we call it. And so from a customer's perspective, one, something like arlon will integrate with what they have so they don't have to rip and replace anything. In fact, it will, even in the next versions, it may even discover your clusters that you have today and, you know, give you an inventory. And so >>Customers have clusters that are growing, that's a sign correct call you guys. >>Absolutely. Either they're, they have massive large clusters, right? That they wanna split into smaller clusters, but they're not comfortable doing that today, or they've done that already on say, public cloud or otherwise. And now they have management challenges. >>So especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure Yep. And or scale out. >>That's right. Exactly. And >>You provide that layer of policy. >>Absolutely. Yes. >>That's the key value >>Here. That's right. >>So policy based configuration for cluster scale >>Up, well profile and policy based declarative configuration and lifecycle management for >>Clusters. If I asked you how this enables Super Cloud, what would you say to that? >>I think this is one of the key ingredients to super cloud, right? If you think about a super cloud environment, there is at least few key ingredients that that come to my mind that are really critical. Like they are, you know, life saving ingredients at that scale. One is having a really good strategy for managing that scale. You know, in a, going back to assembly line in a very consistent, predictable way. So that are land solves, then you, you need to compliment that with the right kind of observability and monitoring tools at scale, right? Because ultimately issues are gonna happen and you're gonna have to figure out, you know, how to solve them fast. And arlon by the way, also helps in that direction, but you also need observability tools. And then especially if you're running at, on the public cloud, you need some cost management tools. In my mind, these three things are like the most necessary ingredients to make Super Cloud successful. And, you know, our long flows >>In one. Okay, so now the next level is, Okay, that makes sense. Is under the covers kind of speak under the hood. Yeah. How does that impact the app developers of the cloud native modern application workflows? Because the impact to me seems the apps are gonna be impacted. Are they gonna be faster, stronger? I mean, what's the impact if you do all those things as you mentioned, what's the impact of the apps? >>Yeah, the impact is that your apps are more likely to operate in production the way you expect them to, because the right checks and balances have gone through, and any discrepancies have been identified prior to those apps, prior to your customer running into them, right? Because developers run into this challenge today where there's a split responsibility, right? I'm responsible for my code, I'm responsible for some of these other plugins, but I don't own these stack end to end. I have to rely on my ops counterpart to do their part, right? And so this really gives them, you know, the right tooling for >>That. So this is actually a great kind of relevant point, you know, as cloud becomes more scalable, you're starting to see this fragmentation gone of the days of the fulls stack developer to the more specialized role. But this is a key point, and I have to ask you because if this, our low solution takes place, as you say, and the apps are gonna be stupid, they designed to do, the question is, what did, does the current pain look like? Are the apps breaking? What is the signals to the customer Yeah. That they should be calling you guys up into implementing Arlo, Argo and, and all the other goodness to automate? What does some of the signals, is it downtime? Is it, is it failed apps, is it latency? What are some of the things that Yeah, absolutely. That would be indications of things are effed up a little bit. >>Yeah. More frequent down times, down times that are, that take longer to triage. And so your, you know, the, you know, your mean times on resolution, et cetera, are escalating or growing larger, right? Like we have environments of customers where they're, they have a number of folks on in the field that have to take these apps and run them at customer sites. And that's one of our partners, and they're extremely interested in this because the, the, the rate of failures they're encountering for this, you know, the field when they're running these apps on site, because the field is automating their clusters that are running on sites using their own scripts. So these are the kinds of challenges, and those are the pain points, which is, you know, if you're looking to reduce your meantime to resolution, if you're looking to reduce the number of failures that occur on your production site, that's one. And second, if you're looking to manage these at scale environments with a relatively small, focused, nimble ops team, which has an immediate impact on your budget. So those are, those are the signals. >>This is the cloud native at scale situation, the innovation going on. Final thought is your reaction to the idea that if the world goes digital, which it is, and the confluence of physical and digital coming together, and cloud continues to do its thing, the company becomes the application not where it used to be supporting the business, you know, the back office and the immediate terminals and some PCs and handhelds. Now if technology's running, the business is the business. Yeah. Company's the application. Yeah. So it can't be down. So there's a lot of pressure on, on CSOs and CIOs now and boards are saying, How is technology driving the top line revenue? That's the number one conversation. Yep. Do you see the same thing? >>Yeah, it's interesting. I think there's multiple pressures at the cx, OCI O level, right? One is that there needs to be that visibility and clarity and guarantee almost that, you know, the, the, the technology that's, you know, that's gonna drive your top line is gonna drive that in a consistent, reliable, predictable manner. And then second, there is the constant pressure to do that while always lowering your costs of doing it right? Especially when you're talking about, let's say retailers or those kinds of large scale vendors, they many times make money by lowering the amount that they spend on, you know, providing those goods to their end customers. So I think those, both those factors kind of come into play and the solution to all of them is usually in a very structured strategy around automation. >>Final question. What does cloud native at scale look like to you? If all the things happen the way we want 'em to happen, The magic wand, the magic dust, what does it look like? >>What that looks like to me is a CIO sipping at his desk on coffee production is running absolutely smooth. And his, he's running that at a nimble, nimble team size of at the most, a handful of folks that are just looking after things, but things are just taking >>Care and the CIO doesn't exist. There's no seeso there at the beach. >>Yep. >>Thank you for coming on, sharing the cloud native at scale here on the cube. Thank you for your time. >>Fantastic. Thanks for >>Having me. Okay. I'm John Fur here for special program presentation, special programming cloud native at scale, enabling super cloud modern applications with Platform nine. Thanks for watching.
SUMMARY :
I'm John Forer, host of the Cube. a lot different, but kind of the same as the first generation. And so you gotta rougher that with a terminology that, Can you share your view on what the technical challenges So I think, you know, in in the context of this, the, this, Can you scope the scale of the problem? the problem that the scale creates, you know, there's various problems, but I think one, And that is just, you know, one example of an issue that happens. cloud native, you know, you see some, you know, some experimentation. you know, you have your perfectly written code that is operating just fine on your machine, And so as you give that change to then run at your production edge location, And you guys have a solution you're launching. So what Arlan lets you do in a then handing to the next stage where again, it gets, you know, processed in a standardized way. So keeping it smooth, the assembly line, things are flowing. Because developers, you know, there is, developers are responsible for one picture of Yeah, it's dev op, So the DevOps is the cloud needed developer, The kins have to kind of set policies. of that world of a single cluster, and when you actually talk about defining the clusters or defining And you guys have a product that's commercial. products starting all the way with fi, which was a serverless product, you know, that we had built to of date the application, if you will. choose to go that route, you know, once they have used the open source enthusiastic view of, you know, why I should be enthused about Arlo if I'm a And so, and there's multiple, you know, enterprises that we talk to, The folks that we've spoken, you know, spoken with, have been absolutely excited Is there any, what's the sla I'm an enterprise, I got tight, you know, I love the open source kind of free, It's created by folks that are as part of into team now, you know, you know, initially, you know, when you are, when you're telling them about your entire So next question is, what is the solution to the customer? So I think, you know, one of the core tenets of Platform nine has always been that And now they have management challenges. So especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure And Absolutely. And arlon by the way, also helps in that direction, but you also need I mean, what's the impact if you do all those things as you mentioned, And so this really gives them, you know, the right tooling for But this is a key point, and I have to ask you because if this, our low solution So these are the kinds of challenges, and those are the pain points, which is, you know, to be supporting the business, you know, the back office and the immediate terminals and some that, you know, the, the, the technology that's, you know, that's gonna drive your top line is gonna If all the things happen the way we want 'em to happen, The magic wand, the magic dust, he's running that at a nimble, nimble team size of at the most, Care and the CIO doesn't exist. Thank you for your time. Thanks for at scale, enabling super cloud modern applications with Platform nine.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Madhura Maskasky | PERSON | 0.99+ |
Adrian Karo | PERSON | 0.99+ |
John Forer | PERSON | 0.99+ |
John Fur | PERSON | 0.99+ |
second part | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Two | QUANTITY | 0.99+ |
one site | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
two things | QUANTITY | 0.99+ |
two parts | QUANTITY | 0.99+ |
two factors | QUANTITY | 0.99+ |
one flavor | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
tens of thousands of notes | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
first generation | QUANTITY | 0.99+ |
each component | QUANTITY | 0.99+ |
one picture | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
each site | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Medo | PERSON | 0.98+ |
Second | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
Arlan | ORGANIZATION | 0.98+ |
second | QUANTITY | 0.98+ |
tens of thousands of sites | QUANTITY | 0.98+ |
three things | QUANTITY | 0.98+ |
Argo | ORGANIZATION | 0.98+ |
Makoski | PERSON | 0.97+ |
two products | QUANTITY | 0.97+ |
Platform nine | TITLE | 0.96+ |
one problem | QUANTITY | 0.96+ |
single line | QUANTITY | 0.96+ |
Arlon | ORGANIZATION | 0.95+ |
this year | DATE | 0.95+ |
CloudFlare | TITLE | 0.95+ |
one node | QUANTITY | 0.95+ |
algo cd | TITLE | 0.94+ |
customers | QUANTITY | 0.93+ |
hundreds | QUANTITY | 0.92+ |
lon | ORGANIZATION | 0.92+ |
Arlan | PERSON | 0.92+ |
arlon | ORGANIZATION | 0.91+ |
one example | QUANTITY | 0.91+ |
Kubernetes | TITLE | 0.9+ |
single cluster | QUANTITY | 0.89+ |
Arlo | ORGANIZATION | 0.89+ |
Platform nine | ORGANIZATION | 0.87+ |
one way | QUANTITY | 0.85+ |
day two | QUANTITY | 0.85+ |
day one | QUANTITY | 0.82+ |
Cloudnative | ORGANIZATION | 0.8+ |
two access | QUANTITY | 0.79+ |
one end | QUANTITY | 0.78+ |
Cuban | LOCATION | 0.78+ |
Platform9 | ORGANIZATION | 0.78+ |
Alon | ORGANIZATION | 0.77+ |
thousands | QUANTITY | 0.77+ |
Platform9, Cloud Native at Scale
>>Hello, welcome to the Cube here in Palo Alto, California for a special presentation on Cloud native at scale, enabling super cloud modern applications with Platform nine. I'm John Furr, your host of The Cube. We had a great lineup of three interviews we're streaming today. Meor Ma Makowski, who's the co-founder and VP of Product of Platform nine. She's gonna go into detail around Arlon, the open source products, and also the value of what this means for infrastructure as code and for cloud native at scale. Bickley the chief architect of Platform nine Cube alumni. Going back to the OpenStack days. He's gonna go into why Arlon, why this infrastructure as code implication, what it means for customers and the implications in the open source community and where that value is. Really great wide ranging conversation there. And of course, Vascar, Gort, the CEO of Platform nine, is gonna talk with me about his views on Super Cloud and why Platform nine has a scalable solutions to bring cloudnative at scale. So enjoy the program. See you soon. Hello everyone. Welcome to the cube here in Palo Alto, California for special program on cloud native at scale, enabling next generation cloud or super cloud for modern application cloud native developers. I'm John Furry, host of the Cube. A pleasure to have here, me Makoski, co-founder and VP of product at Platform nine. Thanks for coming in today for this Cloudnative at scale conversation. Thank >>You for having me. >>So Cloudnative at scale, something that we're talking about because we're seeing the, the next level of mainstream success of containers Kubernetes and cloud native develop, basically DevOps in the C I C D pipeline. It's changing the landscape of infrastructure as code, it's accelerating the value proposition and the super cloud as we call it, has been getting a lot of traction because this next generation cloud is looking a lot different, but kind of the same as the first generation. What's your view on super cloud as it fits to cloud native as scales up? >>Yeah, you know, I think what's interesting, and I think the reason why Super Cloud is a really good, in a really fit term for this, and I think, I know my CEO was chatting with you as well, and he was mentioning this as well, but I think there needs to be a different term than just multi-cloud or cloud. And the reason is because as cloud native and cloud deployments have scaled, I think we've reached a point now where instead of having the traditional data center style model where you have a few large distributions of infrastructure and workload at a few locations, I think the model is kind of flipped around, right? Where you have a large number of microsites, these microsites could be your public cloud deployment, your private on-prem infrastructure deployments, or it could be your edge environment, right? And every single enterprise, every single industry is moving in that direction. And so you gotta rougher that with a terminology that, that, that indicates the scale and complexity of it. And so I think supercloud is a, is an appropriate term for that. >>So you brought a couple of things I want to dig into. You mentioned edge nodes. We're seeing not only edge nodes being the next kind of area of innovation, mainly because it's just popping up everywhere. And that's just the beginning. Wouldn't even know what's around the corner. You got buildings, you got iot, ot, and IT kind of coming together, but you also got this idea of regions, global infras infrastructures, big part of it. I just saw some news around CloudFlare shutting down a site here. There's policies being made at scale, These new challenges there. Can you share because you can have edge. So hybrid cloud is a winning formula. Everybody knows that it's a steady state. Yeah. But across multiple clouds brings in this new un engineered area, yet it hasn't been done yet. Spanning clouds. People say they're doing it, but you start to see the toe in the water, it's happening, it's gonna happen. It's only gonna get accelerated with the edge and beyond globally. So I have to ask you, what is the technical challenges in doing this? Because there's something business consequences as well, but there are technical challenges. Can you share your view on what the technical challenges are for the super cloud or across multiple edges and regions? >>Yeah, absolutely. So I think, you know, in in the context of this, the, this, this term of super cloud, I think it's sometimes easier to visualize things in terms of two access, right? I think on one end you can think of the scale in terms of just pure number of nodes that you have deploy a number of clusters in the Kubernetes space. And then on the other axis you would have your distribution factor, right? Which is, do you have these tens of thousands of nodes in one site or do you have them distributed across tens of thousands of sites with one node at each site? Right? And if you have just one flavor of this, there is enough complexity, but potentially manageable. But when you are expanding on both these access, you really get to a point where that scale really needs some well thought out, well structured solutions to address it, right? A combination of homegrown tooling along with your, you know, favorite distribution of Kubernetes is not a strategy that can help you in this environment. It may help you when you have one of this or when you, when you scale, is not at the level. >>Can you scope the complexity? Because I mean, I hear a lot of moving parts going on there, the technology's also getting better. We we're seeing cloud native become successful. There's a lot to configure, there's a lot to install. Can you scope the scale of the problem? Because we're talking about at scale Yep. Challenges here. Yeah, >>Absolutely. And I think, you know, I I like to call it, you know, the, the, the problem that the scale creates, you know, there's various problems, but I think one, one problem, one way to think about it is, is, you know, it works on my cluster problem, right? So I, you know, I come from engineering background and there's a, you know, there's a famous saying between engineers and QA and the support folks, right? Which is, it works on my laptop, which is I tested this chain, everything was fantastic, it worked flawlessly on my machine, on production, It's not working. The exact same problem now happens and these distributed environments, but at massive scale, right? Which is that, you know, developers test their applications, et cetera within the sanctity of their sandbox environments. But once you expose that change in the wild world of your production deployment, right? >>And the production deployment could be going at the radio cell tower at the edge location where a cluster is running there, or it could be sending, you know, these applications and having them run at my customer site where they might not have configured that cluster exactly the same way as I configured it, or they configured the cluster, right? But maybe they didn't deploy the security policies, or they didn't deploy the other infrastructure plugins that my app relies on. All of these various factors are their own layer of complexity. And there really isn't a simple way to solve that today. And that is just, you know, one example of an issue that happens. I think another, you know, whole new ball game of issues come in the context of security, right? Because when you are deploying applications at scale in a distributed manner, you gotta make sure someone's job is on the line to ensure that the right security policies are enforced regardless of that scale factor. So I think that's another example of problems that occur. >>Okay. So I have to ask about scale, because there are a lot of multiple steps involved when you see the success of cloud native. You know, you see some, you know, some experimentation. They set up a cluster, say it's containers and Kubernetes, and then you say, Okay, we got this, we can figure it. And then they do it again and again, they call it day two. Some people call it day one, day two operation, whatever you call it. Once you get past the first initial thing, then you gotta scale it. Then you're seeing security breaches, you're seeing configuration errors. This seems to be where the hotspot is in when companies transition from, I got this to, Oh no, it's harder than I thought at scale. Can you share your reaction to that and how you see this playing out? >>Yeah, so, you know, I think it's interesting. There's multiple problems that occur when, you know, the two factors of scale, as we talked about, start expanding. I think one of them is what I like to call the, you know, it, it works fine on my cluster problem, which is back in, when I was a developer, we used to call this, it works on my laptop problem, which is, you know, you have your perfectly written code that is operating just fine on your machine, your sandbox environment. But the moment it runs production, it comes back with p zeros and pos from support teams, et cetera. And those issues can be really difficult to triage us, right? And so in the Kubernetes environment, this problem kind of multi folds, it goes, you know, escalates to a higher degree because you have your sandbox developer environments, they have their clusters and things work perfectly fine in those clusters because these clusters are typically handcrafted or a combination of some scripting and handcrafting. >>And so as you give that change to then run at your production edge location, like say your radio cell tower site, or you hand it over to a customer to run it on their cluster, they might not have not have configured that cluster exactly how you did, or they might not have configured some of the infrastructure plugins. And so the things don't work. And when things don't work, triaging them becomes nightmarishly hard, right? It's just one of the examples of the problem, another whole bucket of issues is security, which is, is you have these distributed clusters at scale, you gotta ensure someone's job is on the line to make sure that these security policies are configured properly. >>So this is a huge problem. I love that comment. That's not not happening on my system. It's the classic, you know, debugging mentality. Yeah. But at scale it's hard to do that with error prone. I can see that being a problem. And you guys have a solution you're launching. Can you share what Arlon is this new product? What is it all about? Talk about this new introduction. >>Yeah, absolutely. Very, very excited. You know, it's one of the projects that we've been working on for some time now because we are very passionate about this problem and just solving problems at scale in on-prem or at in the cloud or at edge environments. And what arlon is, it's an open source project, and it is a tool, it's a Kubernetes native tool for complete end to end management of not just your clusters, but your clusters. All of the infrastructure that goes within and along the site of those clusters, security policies, your middleware, plug-ins, and finally your applications. So what our LA you do in a nutshell is in a declarative way, it lets you handle the configuration and management of all of these components in at scale. >>So what's the elevator pitch simply put for what dissolves in, in terms of the chaos you guys are reigning in, what's the, what's the bumper sticker? Yeah, what >>Would it do? There's a perfect analogy that I love to reference in this context, which is think of your assembly line, you know, in a traditional, let's say, you know, an auto manufacturing factory or et cetera, and the level of efficiency at scale that that assembly line brings, right? Our line, and if you look at the logo we've designed, it's this funny little robot. And it's because when we think of online, we think of these enterprise large scale environments, you know, sprawling at scale, creating chaos because there isn't necessarily a well thought through, well structured solution that's similar to an assembly line, which is taking each component, you know, addressing them, manufacturing, processing them in a standardized way, then handing to the next stage. But again, it gets, you know, processed in a standardized way. And that's what arlon really does. That's like the deliver pitch. If you have problems of scale of managing your infrastructure, you know, that is distributed. Arlon brings the assembly line level of efficiency and consistency for >>Those. So keeping it smooth, the assembly on things are flowing. See c i CD pipe pipelining. Exactly. So that's what you're trying to simplify that ops piece for the developer. I mean, it's not really ops, it's their ops, it's coding. >>Yeah. Not just developer, the ops, the operations folks as well, right? Because developers, you know, there is, developers are responsible for one picture of that layer, which is my apps, and then maybe that middleware of applications that they interface with, but then they hand it over to someone else who's then responsible to ensure that these apps are secure properly, that they are logging, logs are being collected properly, monitoring and observability integrated. And so it solves problems for both >>Those teams. Yeah. It's DevOps. So the DevOps is the cloud needed developer's. That's right. The option teams have to kind of set policies. Is that where the declarative piece comes in? Is that why that's important? >>Absolutely. Yeah. And, and, and, and you know, ES really in introduced or elevated this declarative management, right? Because, you know, s clusters are Yeah. Or your, yeah, you know, specifications of components that go in Kubernetes are defined a declarative way, and Kubernetes always keeps that state consistent with your defined state. But when you go outside of that world of a single cluster, and when you actually talk about defining the clusters or defining everything that's around it, there really isn't a solution that does that today. And so Arlon addresses that problem at the heart of it, and it does that using existing open source well known solutions. >>And do I want to get into the benefits? What's in it for me as the customer developer? But I want to finish this out real quick and get your thoughts. You mentioned open source. Why open source? What's the, what's the current state of the product? You run the product group over at Platform nine, is it open source? And you guys have a product that's commercial? Can you explain the open source dynamic? And first of all, why open source? Yeah. And what is the consumption? I mean, open source is great, People want open source, they can download it, look up the code, but maybe wanna buy the commercial. So I'm assuming you have that thought through, can you share open source and commercial relationship? >>Yeah, I think, you know, starting with why open source? I think it's, you know, we as a company, we have, you know, one of the things that's absolutely critical to us is that we take mainstream open source technologies components and then we, you know, make them available to our customers at scale through either a SaaS model or on-prem model, right? But, so as we are a company or startup or a company that benefits, you know, in a massive way by this open source economy, it's only right, I think in my mind that we do our part of the duty, right? And contribute back to the community that feeds us. And so, you know, we have always held that strongly as one of our principles. And we have, you know, created and built independent products starting all the way with fision, which was a serverless product, you know, that we had built to various other, you know, examples that I can give. But that's one of the main reasons why opensource and also open source, because we want the community to really firsthand engage with us on this problem, which is very difficult to achieve if your product is behind a wall, you know, behind, behind a block box. >>Well, and that's, that's what the developers want too. And what we're seeing in reporting with Super Cloud is the new model of consumption is I wanna look at the code and see what's in there. That's right. And then also, if I want to use it, I'll do it. Great. That's open source, that's the value. But then at the end of the day, if I wanna move fast, that's when people buy in. So it's a new kind of freemium, I guess, business model. I guess that's the way that long. But that's, that's the benefit. Open source. This is why standards and open source is growing so fast. You have that confluence of, you know, a way for developers to try before they buy, but also actually kind of date the application, if you will. We, you know, Adrian Karo uses the dating met metaphor, you know, Hey, you know, I wanna check it out first before I get married. Right? And that's what open source, So this is the new, this is how people are selling. This is not just open source, this is how companies are selling. >>Absolutely. Yeah. Yeah. You know, I think, and you know, two things. I think one is just, you know, this, this, this cloud native space is so vast that if you, if you're building a close flow solution, sometimes there's also a risk that it may not apply to every single enterprises use cases. And so having it open source gives them an opportunity to extend it, expand it, to make it proper to their use case if they choose to do so, right? But at the same time, what's also critical to us is we are able to provide a supported version of it with an SLA that we, you know, that's backed by us, a SAS hosted version of it as well, for those customers who choose to go that route, you know, once they have used the open source version and loved it and want to take it at scale and in production and need, need, need a partner to collaborate with, who can, you know, support them for that production >>Environment. I have to ask you now, let's get into what's in it for the customer. I'm a customer. Yep. Why should I be enthused about Arla? What's in it for me? You know? Cause if I'm not enthused about it, I'm not gonna be confident and it's gonna be hard for me to get behind this. Can you share your enthusiastic view of, you know, why I should be enthused about Arlo? I'm a >>Customer. Yeah, absolutely. And so, and there's multiple, you know, enterprises that we talk to, many of them, you know, our customers, where this is a very kind of typical story that you hear, which is we have, you know, a Kubernetes distribution. It could be on premise, it could be public clouds, native Kubernetes, and then we have our C I C D pipelines that are automating the deployment of applications, et cetera. And then there's this gray zone. And the gray zone is well before you can you, your CS c D pipelines can deploy the apps. Somebody needs to do all of that groundwork of, you know, defining those clusters and yeah. You know, properly configuring them. And as these things, these things start by being done hand grown. And then as the, as you scale, what typically enterprises would do today is they will have their home homegrown DIY solutions for this. >>I mean, the number of folks that I talk to that have built Terra from automation, and then, you know, some of those key developers leave. So it's a typical open source or typical, you know, DIY challenge. And the reason that they're writing it themselves is not because they want to. I mean, of course technology is always interesting to everybody, but it's because they can't find a solution that's out there that perfectly fits the problem. And so that's that pitch. I think Ops FICO would be delighted. The folks that we've talk, you know, spoken with, have been absolutely excited and have, you know, shared that this is a major challenge we have today because we have, you know, few hundreds of clusters on ecos Amazon, and we wanna scale them to few thousands, but we don't think we are ready to do that. And this will give us the >>Ability to, Yeah, I think people are scared. Not sc I won't say scare, that's a bad word. Maybe I should say that they feel nervous because, you know, at scale small mistakes can become large mistakes. This is something that is concerning to enterprises. And, and I think this is gonna come up at co con this year where enterprises are gonna say, Okay, I need to see SLAs. I wanna see track record, I wanna see other companies that have used it. Yeah. How would you answer that question to, or, or challenge, you know, Hey, I love this, but is there any guarantees? Is there any, what's the SLAs? I'm an enterprise, I got tight, you know, I love the open source trying to free fast and loose, but I need hardened code. >>Yeah, absolutely. So, so two parts to that, right? One is Arlan leverages existing open source components, products that are extremely popular. Two specifically. One is Arlan uses Argo cd, which is probably one of the highest and used CD open source tools that's out there. Right's created by folks that are as part of into team now, you know, really brilliant team. And it's used at scale across enterprises. That's one. Second is Alon also makes use of Cluster api cappi, which is a Kubernetes sub-component, right? For lifecycle management of clusters. So there is enough of, you know, community users, et cetera, around these two products, right? Or, or, or open source projects that will find Arlan to be right up in their alley because they're already comfortable, familiar with Argo cd. Now Arlan just extends the scope of what City can do. And so that's one. And then the second part is going back to a point of the comfort. And that's where, you know, platform line has a role to play, which is when you are ready to deploy online at scale, because you've been, you know, playing with it in your DEF test environments, you're happy with what you get with it, then Platform nine will stand behind it and provide that >>Sla. And what's been the reaction from customers you've talked to Platform nine customers with, with that are familiar with, with Argo and then rlo? What's been some of the feedback? >>Yeah, I, I think the feedback's been fantastic. I mean, I can give you examples of customers where, you know, initially, you know, when you are, when you're telling them about your entire portfolio of solutions, it might not strike a card right away. But then we start talking about Arlan and, and we talk about the fact that it uses Argo adn, they start opening up, they say, We have standardized on Argo and we have built these components, homegrown, we would be very interested. Can we co-develop? Does it support these use cases? So we've had that kind of validation. We've had validation all the way at the beginning of our land before we even wrote a single line of code saying this is something we plan on doing. And the customer said, If you had it today, I would've purchased it. So it's been really great validation. >>All right. So next question is, what is the solution to the customer? If I asked you, Look it, I have, I'm so busy, my team's overworked. I got a skills gap. I don't need another project that's, I'm so tied up right now and I'm just chasing my tail. How does Platform nine help me? >>Yeah, absolutely. So I think, you know, one of the core tenets of Platform nine has always been been that we try to bring that public cloud like simplicity by hosting, you know, this in a lot of such similar tools in a SaaS hosted manner for our customers, right? So our goal behind doing that is taking away or trying to take away all of that complexity from customers' hands and offloading it to our hands, right? And giving them that full white glove treatment, as we call it. And so from a customer's perspective, one, something like arlon will integrate with what they have so they don't have to rip and replace anything. In fact, it will, even in the next versions, it may even discover your clusters that you have today and you know, give you an inventory. And that will, >>So if customers have clusters that are growing, that's a sign correct call you guys. >>Absolutely. Either they're, they have massive large clusters, right? That they wanna split into smaller clusters, but they're not comfortable doing that today, or they've done that already on say, public cloud or otherwise. And now they have management challenges. So >>Especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure Yep. And or scale out. >>That's right. Exactly. And >>You provide that layer of policy. >>Absolutely. >>Yes. That's the key value here. >>That's right. >>So policy based configuration for cluster scale up, >>Well profile and policy based declarative configuration and lifecycle management for clusters. >>If I asked you how this enables supercloud, what would you say to that? >>I think this is one of the key ingredients to super cloud, right? If you think about a super cloud environment, there's at least few key ingredients that that come to my mind that are really critical. Like they are, you know, life saving ingredients at that scale. One is having a really good strategy for managing that scale, you know, in a, going back to assembly line in a very consistent, predictable way so that our lot solves then you, you need to compliment that with the right kind of observability and monitoring tools at scale, right? Because ultimately issues are gonna happen and you're gonna have to figure out, you know, how to solve them fast. And arlon by the way, also helps in that direction, but you also need observability tools. And then especially if you're running it on the public cloud, you need some cost management tools. In my mind, these three things are like the most necessary ingredients to make Super Cloud successful. And you know, our alarm fills in >>One. Okay. So now the next level is, Okay, that makes sense. Is under the covers kind of speak under the hood. Yeah. How does that impact the app developers and the cloud native modern application workflows? Because the impact to me, seems the apps are gonna be impacted. Are they gonna be faster, stronger? I mean, what's the impact if you do all those things, as you mentioned, what's the impact of the apps? >>Yeah, the impact is that your apps are more likely to operate in production the way you expect them to, because the right checks and balances have gone through, and any discrepancies have been identified prior to those apps, prior to your customer running into them, right? Because developers run into this challenge to their, where there's a split responsibility, right? I'm responsible for my code, I'm responsible for some of these other plugins, but I don't own the stack end to end. I have to rely on my ops counterpart to do their part, right? And so this really gives them, you know, the right tooling for that. >>So this is actually a great kind of relevant point, you know, as cloud becomes more scalable, you're starting to see this fragmentation gone of the days of the full stack developer to the more specialized role. But this is a key point, and I have to ask you because if this RLO solution takes place, as you say, and the apps are gonna be stupid, they're designed to do, the question is, what did does the current pain look like of the apps breaking? What does the signals to the customer Yeah. That they should be calling you guys up into implementing Arlo, Argo and, and all the other goodness to automate? What are some of the signals? Is it downtime? Is it, is it failed apps, Is it latency? What are some of the things that Yeah, absolutely would be indications of things are effed up a little bit. Yeah. >>More frequent down times, down times that are, that take longer to triage. And so you are, you know, the, you know, your mean times on resolution, et cetera, are escalating or growing larger, right? Like we have environments of customers where they're, they have a number of folks on in the field that have to take these apps and run them at customer sites. And that's one of our partners. And they're extremely interested in this because they're the, the rate of failures they're encountering for this, you know, the field when they're running these apps on site, because the field is automating their clusters that are running on sites using their own script. So these are the kinds of challenges, and those are the pain points, which is, you know, if you're looking to reduce your meantime to resolution, if you're looking to reduce the number of failures that occur on your production site, that's one. And second, if you are looking to manage these at scale environments with a relatively small, focused, nimble ops team, which has an immediate impact on your budget. So those are, those are the signals. >>This is the cloud native at scale situation, the innovation going on. Final thought is your reaction to the idea that if the world goes digital, which it is, and the confluence of physical and digital coming together, and cloud continues to do its thing, the company becomes the application, not where it used to be supporting the business, you know, the back office and the maybe terminals and some PCs and handhelds. Now if technology's running, the business is the business. Yeah. Company's the application. Yeah. So it can't be down. So there's a lot of pressure on, on CSOs and CIOs now and boards is saying, How is technology driving the top line revenue? That's the number one conversation. Yep. Do you see that same thing? >>Yeah. It's interesting. I think there's multiple pressures at the CXO CIO level, right? One is that there needs to be that visibility and clarity and guarantee almost that, you know, that the, the technology that's, you know, that's gonna drive your top line is gonna drive that in a consistent, reliable, predictable manner. And then second, there is the constant pressure to do that while always lowering your costs of doing it, right? Especially when you're talking about, let's say retailers or those kinds of large scale vendors, they many times make money by lowering the amount that they spend on, you know, providing those goods to their end customers. So I think those, both those factors kind of come into play and the solution to all of them is usually in a very structured strategy around automation. >>Final question. What does cloudnative at scale look like to you? If all the things happen the way we want 'em to happen, The magic wand, the magic dust, what does it look like? >>What that looks like to me is a CIO sipping at his desk on coffee production is running absolutely smooth. And his, he's running that at a nimble, nimble team size of at the most, a handful of folks that are just looking after things, but things are >>Just taking care of the CIO doesn't exist. There's no ciso, they're at the beach. >>Yep. >>Thank you for coming on, sharing the cloud native at scale here on the cube. Thank you for your time. >>Fantastic. Thanks for >>Having me. Okay. I'm John Fur here for special program presentation, special programming cloud native at scale, enabling super cloud modern applications with Platform nine. Thanks for watching. Welcome back everyone to the special presentation of cloud native at scale, the cube and platform nine special presentation going in and digging into the next generation super cloud infrastructure as code and the future of application development. We're here with Bickley, who's the chief architect and co-founder of Platform nine Pick. Great to see you Cube alumni. We, we met at an OpenStack event in about eight years ago, or later, earlier when OpenStack was going. Great to see you and great to see congratulations on the success of platform nine. >>Thank you very much. >>Yeah. You guys have been at this for a while and this is really the, the, the year we're seeing the, the crossover of Kubernetes because of what happens with containers. Everyone now has realized, and you've seen what Docker's doing with the new docker, the open source Docker now just the success Exactly. Of containerization, right? And now the Kubernetes layer that we've been working on for years is coming, bearing fruit. This is huge. >>Exactly. Yes. >>And so as infrastructures code comes in, we talked to Bacar talking about Super Cloud, I met her about, you know, the new Arlon, our, our lawn, and you guys just launched the infrastructures code is going to another level, and then it's always been DevOps infrastructures code. That's been the ethos that's been like from day one, developers just code. Then you saw the rise of serverless and you see now multi-cloud or on the horizon, connect the dots for us. What is the state of infrastructure as code today? >>So I think, I think I'm, I'm glad you mentioned it, everybody or most people know about infrastructures code. But with Kubernetes, I think that project has evolved at the concept even further. And these dates, it's infrastructure is configuration, right? So, which is an evolution of infrastructure as code. So instead of telling the system, here's how I want my infrastructure by telling it, you know, do step A, B, C, and D instead with Kubernetes, you can describe your desired state declaratively using things called manifest resources. And then the system kind of magically figures it out and tries to converge the state towards the one that you specified. So I think it's, it's a even better version of infrastructures code. >>Yeah. And that really means it's developer just accessing resources. Okay. That declare, Okay, give me some compute, stand me up some, turn the lights on, turn 'em off, turn 'em on. That's kind of where we see this going. And I like the configuration piece. Some people say composability, I mean now with open source so popular, you don't have to have to write a lot of code, this code being developed. And so it's into integration, it's configuration. These are areas that we're starting to see computer science principles around automation, machine learning, assisting open source. Cuz you got a lot of code that's right in hearing software, supply chain issues. So infrastructure as code has to factor in these new dynamics. Can you share your opinion on these new dynamics of, as open source grows, the glue layers, the configurations, the integration, what are the core issues? >>I think one of the major core issues is with all that power comes complexity, right? So, you know, despite its expressive power systems like Kubernetes and declarative APIs let you express a lot of complicated and complex stacks, right? But you're dealing with hundreds if not thousands of these yamo files or resources. And so I think, you know, the emergence of systems and layers to help you manage that complexity is becoming a key challenge and opportunity in, in this space. >>That's, I wrote a LinkedIn post today was comments about, you know, hey, enterprise is a new breed. The trend of SaaS companies moving our consumer comp consumer-like thinking into the enterprise has been happening for a long time, but now more than ever, you're seeing it the old way used to be solve complexity with more complexity and then lock the customer in. Now with open source, it's speed, simplification and integration, right? These are the new dynamic power dynamics for developers. Yeah. So as companies are starting to now deploy and look at Kubernetes, what are the things that need to be in place? Because you have some, I won't say technical debt, but maybe some shortcuts, some scripts here that make it look like infrastructure is code. People have done some things to simulate or or make infrastructure as code happen. Yes. But to do it at scale Yes. Is harder. What's your take on this? What's your view? >>It's hard because there's a per proliferation of methods, tools, technologies. So for example, today it's very common for DevOps and platform engineering tools, I mean, sorry, teams to have to deploy a large number of Kubernetes clusters, but then apply the applications and configurations on top of those clusters. And they're using a wide range of tools to do this, right? For example, maybe Ansible or Terraform or bash scripts to bring up the infrastructure and then the clusters. And then they may use a different set of tools such as Argo CD or other tools to apply configurations and applications on top of the clusters. So you have this sprawl of tools. You, you also have this sprawl of configurations and files because the more objects you're dealing with, the more resources you have to manage. And there's a risk of drift that people call that where, you know, you think you have things under control, but some people from various teams will make changes here and there and then before the end of the day systems break and you have no idea of tracking them. So I think there's real need to kind of unify, simplify, and try to solve these problems using a smaller, more unified set of tools and methodologies. And that's something that we try to do with this new project. Arlon. >>Yeah. So, so we're gonna get into Arlan in a second. I wanna get into the why Arlon. You guys announced that at AR GoCon, which was put on here in Silicon Valley at the, at the community meeting by in two, they had their own little day over there at their headquarters. But before we get there, vascar, your CEO came on and he talked about Super Cloud at our in AAL event. What's your definition of super cloud? If you had to kind of explain that to someone at a cocktail party or someone in the industry technical, how would you look at the super cloud trend that's emerging? It's become a thing. What's your, what would be your contribution to that definition or the narrative? >>Well, it's, it's, it's funny because I've actually heard of the term for the first time today, speaking to you earlier today. But I think based on what you said, I I already get kind of some of the, the gist and the, the main concepts. It seems like super cloud, the way I interpret that is, you know, clouds and infrastructure, programmable infrastructure, all of those things are becoming commodity in a way. And everyone's got their own flavor, but there's a real opportunity for people to solve real business problems by perhaps trying to abstract away, you know, all of those various implementations and then building better abstractions that are perhaps business or applications specific to help companies and businesses solve real business problems. >>Yeah, I remember that's a great, great definition. I remember, not to date myself, but back in the old days, you know, IBM had a proprietary network operating system, so of deck for the mini computer vendors, deck net and SNA respectively. But T C P I P came out of the osi, the open systems interconnect and remember, ethernet beat token ring out. So not to get all nerdy for all the young kids out there, look, just look up token ring, you'll see, you've probably never heard of it. It's IBM's, you know, connection for the internet at the, the layer two is Amazon, the ethernet, right? So if T C P I P could be the Kubernetes and the container abstraction that made the industry completely change at that point in history. So at every major inflection point where there's been serious industry change and wealth creation and business value, there's been an abstraction Yes. Somewhere. Yes. What's your reaction to that? >>I think this is, I think a saying that's been heard many times in this industry and, and I forgot who originated it, but I think that the saying goes like, there's no problem that can't be solved with another layer of indirection, right? And we've seen this over and over and over again where Amazon and its peers have inserted this layer that has simplified, you know, computing and, and infrastructure management. And I believe this trend is going to continue, right? The next set of problems are going to be solved with these insertions of additional abstraction layers. I think that that's really a, yeah, it's gonna >>Continue. It's interesting. I just, when I wrote another post today on LinkedIn called the Silicon Wars AMD stock is down arm has been on a rise. We remember pointing for many years now that arm's gonna be hugely, it has become true. If you look at the success of the infrastructure as a service layer across the clouds, Azure, aws, Amazon's clearly way ahead of everybody. The stuff that they're doing with the silicon and the physics and the, the atoms, the pro, you know, this is where the innovation, they're going so deep and so strong at ISAs, the more that they get that gets come on, they have more performance. So if you're an app developer, wouldn't you want the best performance and you'd wanna have the best abstraction layer that gives you the most ability to do infrastructures, code or infrastructure for configuration, for provisioning, for managing services. And you're seeing that today with service MeSHs, a lot of action going on in the service mesh area in in this community of, of co con, which will be a covering. So that brings up the whole what's next? You guys just announced our lawn at Argo Con, which came out of Intuit. We've had Mariana Tessel at our super cloud event. She's the cto, you know, they're all in the cloud. So they contributed that project. Where did Arlon come from? What was the origination? What's the purpose? Why our lawn, why this announcement? >>Yeah, so the, the inception of the project, this was the result of us realizing that problem that we spoke about earlier, which is complexity, right? With all of this, these clouds, these infrastructure, all the variations around and, you know, compute storage networks and the proliferation of tools we talked about the Ansibles and Terraforms and Kubernetes itself. You can, you can think of that as another tool, right? We saw a need to solve that complexity problem, and especially for people and users who use Kubernetes at scale. So when you have, you know, hundreds of clusters, thousands of applications, thousands of users spread out over many, many locations, there, there needs to be a system that helps simplify that management, right? So that means fewer tools, more expressive ways of describing the state that you want and more consistency. And, and that's why, you know, we built our lawn and we built it recognizing that many of these problems or sub problems have already been solved. So Arlon doesn't try to reinvent the wheel, it instead rests on the shoulders of several giants, right? So for example, Kubernetes is one building block, GI ops, and Argo CD is another one, which provides a very structured way of applying configuration. And then we have projects like cluster API and cross plane, which provide APIs for describing infrastructure. So arlon takes all of those building blocks and builds a thin layer, which gives users a very expressive way of defining configuration and desired state. So that's, that's kind of the inception of, And >>What's the benefit of that? What does that give the, what does that give the developer, the user, in this case, >>The developers, the, the platform engineer, team members, the DevOps engineers, they get a a ways to provision not just infrastructure and clusters, but also applications and configurations. They get a way, a system for provisioning, configuring, deploying, and doing life cycle management in a, in a much simpler way. Okay. Especially as I said, if you're dealing with a large number of applications. >>So it's like an operating fabric, if you will. Yes. For them. Okay, so let's get into what that means for up above and below the the, this abstraction or thin layer below as the infrastructure. We talked a lot about what's going on below that. Yeah. Above our workloads. At the end of the day, you know, I talk to CXOs and IT folks that are now DevOps engineers. They care about the workloads and they want the infrastructures code to work. They wanna spend their time getting in the weeds, figuring out what happened when someone made a push that that happened or something happened. They need observability and they need to, to know that it's working. That's right. And is my workloads running effectively? So how do you guys look at the workload side of it? Cuz now you have multiple workloads on these fabric, >>Right? So workloads, so Kubernetes has defined kind of a standard way to describe workloads and you can, you know, tell Kubernetes, I want to run this container this particular way, or you can use other projects that are in the Kubernetes cloud native ecosystem like K native, where you can express your application in more at a higher level, right? But what's also happening is in addition to the workloads, DevOps and platform engineering teams, they need to very often deploy the applications with the clusters themselves. Clusters are becoming this commodity. It's, it's becoming this host for the application and it kind of comes bundled with it. In many cases it is like an appliance, right? So DevOps teams have to provision clusters at a really incredible rate and they need to tear them down. Clusters are becoming more, >>It's kinda like an EC two instance, spin up a cluster. We very, people used words like that. That's >>Right. And before arlon you kind of had to do all of that using a different set of tools as, as I explained. So with Armon you can kind of express everything together. You can say I want a cluster with a health monitoring stack and a logging stack and this ingress controller and I want these applications and these security policies. You can describe all of that using something we call a profile. And then you can stamp out your app, your applications and your clusters and manage them in a very, so >>Essentially standard creates a mechanism. Exactly. Standardized, declarative kind of configurations. And it's like a playbook. You deploy it. Now what's there is between say a script like I'm, I have scripts, I could just automate scripts >>Or yes, this is where that declarative API and infrastructures configuration comes in, right? Because scripts, yes you can automate scripts, but the order in which they run matters, right? They can break, things can break in the middle and, and sometimes you need to debug them. Whereas the declarative way is much more expressive and powerful. You just tell the system what you want and then the system kind of figures it out. And there are these things about controllers which will in the background reconcile all the state to converge towards your desire. It's a much more powerful, expressive and reliable way of getting things done. >>So infrastructure has configuration is built kind of on, it's as super set of infrastructures code because it's >>An evolution. >>You need edge's code, but then you can configure the code by just saying do it. You basically declaring and saying Go, go do that. That's right. Okay, so, alright, so cloud native at scale, take me through your vision of what that means. Someone says, Hey, what does cloud native at scale mean? What's success look like? How does it roll out in the future as you, not future next couple years? I mean people are now starting to figure out, okay, it's not as easy as it sounds. Could be nice, it has value. We're gonna hear this year coan a lot of this. What does cloud native at scale >>Mean? Yeah, there are different interpretations, but if you ask me, when people think of scale, they think of a large number of deployments, right? Geographies, many, you know, supporting thousands or tens or millions of, of users there, there's that aspect to scale. There's also an equally important a aspect of scale, which is also something that we try to address with Arran. And that is just complexity for the people operating this or configuring this, right? So in order to describe that desired state and in order to perform things like maybe upgrades or updates on a very large scale, you want the humans behind that to be able to express and direct the system to do that in, in relatively simple terms, right? And so we want the tools and the abstractions and the mechanisms available to the user to be as powerful but as simple as possible. So there's, I think there's gonna be a number and there have been a number of CNCF and cloud native projects that are trying to attack that complexity problem as well. And Arlon kind of falls in in that >>Category. Okay, so I'll put you on the spot road that CubeCon coming up and obviously this will be shipping this segment series out before. What do you expect to see at Coan this year? What's the big story this year? What's the, what's the most important thing happening? Is it in the open source community and also within a lot of the, the people jogging for leadership. I know there's a lot of projects and still there's some white space in the overall systems map about the different areas get run time and there's ability in all these different areas. What's the, where's the action? Where, where's the smoke? Where's the fire? Where's the piece? Where's the tension? >>Yeah, so I think one thing that has been happening over the past couple of cons and I expect to continue and, and that is the, the word on the street is Kubernetes is getting boring, right? Which is good, right? >>Boring means simple. >>Well, well >>Maybe, >>Yeah, >>Invisible, >>No drama, right? So, so the, the rate of change of the Kubernetes features and, and all that has slowed but in, in a, in a positive way. But there's still a general sentiment and feeling that there's just too much stuff. If you look at a stack necessary for hosting applications based on Kubernetes, there are just still too many moving parts, too many components, right? Too much complexity. I go, I keep going back to the complexity problem. So I expect Cube Con and all the vendors and the players and the startups and the people there to continue to focus on that complexity problem and introduce further simplifications to, to the stack. >>Yeah. Vic, you've had an storied career, VMware over decades with them obviously in 12 years with 14 years or something like that. Big number co-founder here at Platform. Now you guys have been around for a while at this game. We, man, we talked about OpenStack, that project you, we interviewed at one of their events. So OpenStack was the beginning of that, this new revolution. And I remember the early days it was, it wasn't supposed to be an alternative to Amazon, but it was a way to do more cloud cloud native. I think we had a cloud ERO team at that time. We would to joke we, you know, about, about the dream. It's happening now, now at Platform nine. You guys have been doing this for a while. What's the, what are you most excited about as the chief architect? What did you guys double down on? What did you guys tr pivot from or two, did you do any pivots? Did you extend out certain areas? Cuz you guys are in a good position right now, a lot of DNA in Cloud native. What are you most excited about and what does Platform nine bring to the table for customers and for people in the industry watching this? >>Yeah, so I think our mission really hasn't changed over the years, right? It's been always about taking complex open source software because open source software, it's powerful. It solves new problems, you know, every year and you have new things coming out all the time, right? OpenStack was an example when the Kubernetes took the world by storm. But there's always that complexity of, you know, just configuring it, deploying it, running it, operating it. And our mission has always been that we will take all that complexity and just make it, you know, easy for users to consume regardless of the technology, right? So the successor to Kubernetes, you know, I don't have a crystal ball, but you know, you have some indications that people are coming up of new and simpler ways of running applications. There are many projects around there who knows what's coming next year or the year after that. But platform will a, platform nine will be there and we will, you know, take the innovations from the the community. We will contribute our own innovations and make all of those things very consumable to customers. >>Simpler, faster, cheaper. Exactly. Always a good business model technically to make that happen. Yes. Yeah, I think the, the reigning in the chaos is key, you know, Now we have now visibility into the scale. Final question before we depart this segment. What is at scale, how many clusters do you see that would be a watermark for an at scale conversation around an enterprise? Is it workloads we're looking at or, or clusters? How would you, Yeah, how would you describe that? When people try to squint through and evaluate what's a scale, what's the at scale kind of threshold? >>Yeah. And, and the number of clusters doesn't tell the whole story because clusters can be small in terms of the number of nodes or they can be large. But roughly speaking when we say, you know, large scale cluster deployments, we're talking about maybe hundreds, two thousands. >>Yeah. And final final question, what's the role of the hyperscalers? You got AWS continuing to do well, but they got their core ias, they got a PAs, they're not too too much putting a SaaS out there. They have some SaaS apps, but mostly it's the ecosystem. They have marketplaces doing over $2 billion billions of transactions a year and, and it's just like, just sitting there. It hasn't really, they're now innovating on it, but that's gonna change ecosystems. What's the role the cloud play in the cloud native of its scale? >>The, the hyperscalers, >>Yeahs Azure, Google. >>You mean from a business perspective? Yeah, they're, they have their own interests that, you know, that they're, they will keep catering to, they, they will continue to find ways to lock their users into their ecosystem of services and, and APIs. So I don't think that's gonna change, right? They're just gonna keep, >>Well they got great I performance, I mean from a, from a hardware standpoint, yes, that's gonna be key, right? >>Yes. I think the, the move from X 86 being the dominant way and platform to run workloads is changing, right? That, that, that, that, and I think the, the hyperscalers really want to be in the game in terms of, you know, the the new risk and arm ecosystems and the platforms. >>Yeah, not joking aside, Paul Morritz, when he was the CEO of VMware, when he took over once said, I remember our first year doing the cube. Oh the cloud is one big distributed computer, it's, it's hardware and he got software and you got middleware and he kind over, well he's kind of tongue in cheek, but really you're talking about large compute and sets of services that is essentially a distributed computer. >>Yes, >>Exactly. It's, we're back on the same game. Vic, thank you for coming on the segment. Appreciate your time. This is cloud native at scale special presentation with Platform nine. Really unpacking super cloud Arlon open source and how to run large scale applications on the cloud Cloud Native Phil for developers and John Furrier with the cube. Thanks for Washington. We'll stay tuned for another great segment coming right up. Hey, welcome back everyone to Super Cloud 22. I'm John Fur, host of the Cuba here all day talking about the future of cloud. Where's it all going? Making it super multi-cloud clouds around the corner and public cloud is winning. Got the private cloud on premise and edge. Got a great guest here, Vascar Gorde, CEO of Platform nine, just on the panel on Kubernetes. An enabler blocker. Welcome back. Great to have you on. >>Good to see you >>Again. So Kubernetes is a blocker enabler by, with a question mark. I put on on that panel was really to discuss the role of Kubernetes. Now great conversation operations is impacted. What's interest thing about what you guys are doing at Platform nine? Is your role there as CEO and the company's position, kind of like the world spun into the direction of Platform nine while you're at the helm? Yeah, right. >>Absolutely. In fact, things are moving very well and since they came to us, it was an insight to call ourselves the platform company eight years ago, right? So absolutely whether you are doing it in public clouds or private clouds, you know, the application world is moving very fast in trying to become digital and cloud native. There are many options for you do on the infrastructure. The biggest blocking factor now is having a unified platform. And that's what we, we come into, >>Patrick, we were talking before we came on stage here about your background and we were gonna talk about the glory days in 2000, 2001, when the first as piece application service providers came out, kind of a SaaS vibe, but that was kind of all kind of cloudlike. >>It wasn't, >>And and web services started then too. So you saw that whole growth. Now, fast forward 20 years later, 22 years later, where we are now, when you look back then to here and all the different cycles, >>I, in fact you, you know, as we were talking offline, I was in one of those ASPs in the year 2000 where it was a novel concept of saying we are providing a software and a capability as a service, right? You sign up and start using it. I think a lot has changed since then. The tooling, the tools, the technology has really skyrocketed. The app development environment has really taken off exceptionally well. There are many, many choices of infrastructure now, right? So I think things are in a way the same but also extremely different. But more importantly now for any company, regardless of size, to be a digital native, to become a digital company is extremely mission critical. It's no longer a nice to have everybody's in the journey somewhere. >>Everyone is going digital transformation here. Even on a so-called downturn recession that's upcoming inflation's here. It's interesting. This is the first downturn in the history of the world where the hyperscale clouds have been pumping on all cylinders as an economic input. And if you look at the tech trends, GDPs down, but not tech. >>Nope. >>Cuz the pandemic showed everyone digital transformation is here and more spend and more growth is coming even in, in tech. So this is a unique factor which proves that that digital transformation's happening and company, every company will need a super cloud. >>Everyone, every company, regardless of size, regardless of location, has to become modernize their infrastructure. And modernizing Infras infrastructure is not just some new servers and new application tools, It's your approach, how you're serving your customers, how you're bringing agility in your organization. I think that is becoming a necessity for every enterprise to survive. >>I wanna get your thoughts on Super Cloud because one of the things Dave Ante and I want to do with Super Cloud and calling it that was we, I, I personally, and I know Dave as well, he can, I'll speak from, he can speak for himself. We didn't like multi-cloud. I mean not because Amazon said don't call things multi-cloud, it just didn't feel right. I mean everyone has multiple clouds by default. If you're running productivity software, you have Azure and Office 365. But it wasn't truly distributed. It wasn't truly decentralized, it wasn't truly cloud enabled. It didn't, it felt like they're not ready for a market yet. Yet public clouds booming on premise. Private cloud and Edge is much more on, you know, more, more dynamic, more real. >>Yeah. I think the reason why we think super cloud is a better term than multi-cloud. Multi-cloud are more than one cloud, but they're disconnected. Okay, you have a productivity cloud, you have a Salesforce cloud, you may have, everyone has an internal cloud, right? So, but they're not connected. So you can say okay, it's more than one cloud. So it's you know, multi-cloud. But super cloud is where you are actually trying to look at this holistically. Whether it is on-prem, whether it is public, whether it's at the edge, it's a store at the branch. You are looking at this as one unit. And that's where we see the term super cloud is more applicable because what are the qualities that you require if you're in a super cloud, right? You need choice of infrastructure, you need, but at the same time you need a single pain, a single platform for you to build your innovations on regardless of which cloud you're doing it on, right? So I think Super Cloud is actually a more tightly integrated orchestrated management philosophy we think. >>So let's get into some of the super cloud type trends that we've been reporting on. Again, the purpose of this event is to, as a pilots, to get the conversations flowing with with the influencers like yourselves who are running companies and building products and the builders, Amazon and Azure are doing extremely well. Google's coming up in third cloudworks in public cloud. We see the use cases on premises use cases. Kubernetes has been an interesting phenomenon because it's become from the developer side a little bit, but a lot of ops people love Kubernetes. It's really more of an ops thing. You mentioned OpenStack earlier. Kubernetes kind of came out of that open stack. We need an orchestration and then containers had a good shot with, with Docker. They re pivoted the company. Now they're all in an open source. So you got containers booming and Kubernetes as a new layer there. What's the, what's the take on that? What does that really mean? Is that a new defacto enabler? It >>Is here. It's for here for sure. Every enterprise somewhere else in the journey is going on. And you know, most companies are, 70 plus percent of them have won two, three container based, Kubernetes based applications now being rolled out. So it's very much here, it is in production at scale by many customers. And the beauty of it is, yes, open source, but the biggest gating factor is the skill set. And that's where we have a phenomenal engineering team, right? So it's, it's one thing to buy a tool >>And just be clear, you're a managed service for Kubernetes. >>We provide, provide a software platform for cloud acceleration as a service and it can run anywhere. It can run in public private. We have customers who do it in truly multi-cloud environments. It runs on the edge, it runs at this in stores are thousands of stores in a retailer. So we provide that and also for specific segments where data sovereignty and data residency are key regulatory reasons. We also un OnPrem as an air gap version. >>Can you give an example on how you guys are deploying your platform to enable a super cloud experience for your >>Customer? Right. So I'll give you two different examples. One is a very large networking company, public networking company. They have, I dunno, hundreds of products, hundreds of r and d teams that are building different, different products. And if you look at few years back, each one was doing it on a different platforms but they really needed to bring the agility and they worked with us now over three years where we are their build test dev pro platform where all their products are built on, right? And it has dramatically increased their agility to release new products. Number two, it actually is a light out operation. In fact the customer says like, like the Maytag service person cuz we provide it as a service and it barely takes one or two people to maintain it for them. >>So it's kinda like an SRE vibe. One person managing a >>Large 4,000 engineers building infrastructure >>On their tools, >>Whatever they want on their tools. They're using whatever app development tools they use, but they use our platform. >>What benefits are they seeing? Are they seeing speed? >>Speed, definitely. Okay. Definitely they're speeding. Speed uniformity because now they're building able to build, so their customers who are using product A and product B are seeing a similar set of tools that are being used. >>So a big problem that's coming outta this super cloud event that we're, we're seeing and we've heard it all here, ops and security teams cuz they're kind of too part of one theme, but ops and security specifically need to catch up speed wise. Are you delivering that value to ops and security? Right. >>So we, we work with ops and security teams and infrastructure teams and we layer on top of that. We have like a platform team. If you think about it, depending on where you have data centers, where you have infrastructure, you have multiple teams, okay, but you need a unified platform. Who's your buyer? Our buyer is usually, you know, the product divisions of companies that are looking at or the CTO would be a buyer for us functionally cio definitely. So it it's, it's somewhere in the DevOps to infrastructure. But the ideal one we are beginning to see now many large corporations are really looking at it as a platform and saying we have a platform group on which any app can be developed and it is run on any infrastructure. So the platform engineering teams, >>You working two sides of that coin. You've got the dev side and then >>And then infrastructure >>Side side, okay. >>Another customer like give you an example, which I would say is kind of the edge of the store. So they have thousands of stores. Retail, retail, you know food retailer, right? They have thousands of stores that are on the globe, 50,000, 60,000. And they really want to enhance the customer experience that happens when you either order the product or go into the store and pick up your product or buy or browse or sit there. They have applications that were written in the nineties and then they have very modern AIML applications today. They want something that will not have to send an IT person to install a rack in the store or they can't move everything to the cloud because the store operations has to be local. The menu changes based on, It's a classic edge. It's classic edge. Yeah. Right. They can't send it people to go install rack access servers then they can't sell software people to go install the software and any change you wanna put through that, you know, truck roll. So they've been working with us where all they do is they ship, depending on the size of the store, one or two or three little servers with instructions that >>You, you say little servers like how big one like a net box box, like a small little >>Box and all the person in the store has to do like what you and I do at home and we get a, you know, a router is connect the power, connect the internet and turn the switch on. And from there we pick it up. >>Yep. >>We provide the operating system, everything and then the applications are put on it. And so that dramatically brings the velocity for them. They manage >>Thousands of them. True plug and play >>Two, plug and play thousands of stores. They manage it centrally. We do it for them, right? So, so that's another example where on the edge then we have some customers who have both a large private presence and one of the public clouds. Okay. But they want to have the same platform layer of orchestration and management that they can use regardless of the location. So >>You guys got some success. Congratulations. Got some traction there. It's awesome. The question I want to ask you is that's come up is what is truly cloud native? Cuz there's lift and shift of the cloud >>That's not cloud native. >>Then there's cloud native. Cloud native seems to be the driver for the super cloud. How do you talk to customers? How do you explain when someone says what's cloud native, what isn't cloud native? >>Right. Look, I think first of all, the best place to look at what is the definition and what are the attributes and characteristics of what is truly a cloud native, is CNC foundation. And I think it's very well documented where you, well >>Con of course Detroit's >>Coming here, so, so it's already there, right? So, so we follow that very closely, right? I think just lifting and shifting your 20 year old application onto a data center somewhere is not cloud native. Okay? You can't put to cloud native, you have to rewrite and redevelop your application and business logic using modern tools. Hopefully more open source and, and I think that's what Cloudnative is and we are seeing a lot of our customers in that journey. Now everybody wants to be cloudnative, but it's not that easy, okay? Because it's, I think it's first of all, skill set is very important. Uniformity of tools that there's so many tools there. Thousands and thousands of tools you could spend your time figuring out which tool to use. Okay? So I think the complexities there, but the business benefits of agility and uniformity and customer experience are truly them. >>And I'll give you an example. I don't know how clear native they are, right? And they're not a customer of ours, but you order pizzas, you do, right? If you just watch the pizza industry, how dominoes actually increase their share and mind share and wallet share was not because they were making better pizzas or not, I don't know anything about that, but the whole experience of how you order, how you watch what's happening, how it's delivered. There were a pioneer in it. To me, those are the kinds of customer experiences that cloud native can provide. >>Being agility and having that flow to the application changes what the expectations of the, for the customer. >>Customer, the customer's expectations change, right? Once you get used to a better customer experience, you learn >>Best car. To wrap it up, I wanna just get your perspective again. One of the benefits of chatting with you here and having you part of the Super Cloud 22 is you've seen many cycles, you have a lot of insights. I want to ask you, given your career where you've been and what you've done and now the CEO platform nine, how would you compare what's happening now with other inflection points in the industry? And you've been, again, you've been an entrepreneur, you sold your company to Oracle, you've been seeing the big companies, you've seen the different waves. What's going on right now put into context this moment in time around Super >>Cloud. Sure. I think as you said, a lot of battles. Cars being been, been in an asp, been in a realtime software company, being in large enterprise software houses and a transformation. I've been on the app side, I did the infrastructure right and then tried to build our own platforms. I've gone through all of this myself with a lot of lessons learned in there. I think this is an event which is happening now for companies to go through to become cloud native and digitalize. If I were to look back and look at some parallels of the tsunami that's going on is a couple of paddles come to me. One is, think of it, which was forced to honors like y2k. Everybody around the world had to have a plan, a strategy, and an execution for y2k. I would say the next big thing was e-commerce. I think e-commerce has been pervasive right across all industries. >>And disruptive. >>And disruptive, extremely disruptive. If you did not adapt and adapt and accelerate your e-commerce initiative, you were, it was an existence question. Yeah. I think we are at that pivotal moment now in companies trying to become digital and cloudnative that know that is what I see >>Happening there. I think that that e-commerce was interesting and I think just to riff with you on that is that it's disrupting and refactoring the business models. I think that is something that's coming out of this is that it's not just completely changing the game, it's just changing how you operate, >>How you think, and how you operate. See, if you think about the early days of eCommerce, just putting up a shopping cart didn't made you an eCommerce or an E retailer or an e e customer, right? Or so. I think it's the same thing now is I think this is a fundamental shift on how you're thinking about your business. How are you gonna operate? How are you gonna service your customers? I think it requires that just lift and shift is not gonna work. >>Mascar, thank you for coming on, spending the time to come in and share with our community and being part of Super Cloud 22. We really appreciate, we're gonna keep this open. We're gonna keep this conversation going even after the event, to open up and look at the structural changes happening now and continue to look at it in the open in the community. And we're gonna keep this going for, for a long, long time as we get answers to the problems that customers are looking for with cloud cloud computing. I'm Sean Feer with Super Cloud 22 in the Cube. Thanks for watching. >>Thank you. Thank you, John. >>Hello. Welcome back. This is the end of our program, our special presentation with Platform nine on cloud native at scale, enabling the super cloud. We're continuing the theme here. You heard the interviews Super Cloud and its challenges, new opportunities around the solutions around like Platform nine and others with Arlon. This is really about the edge situations on the internet and managing the edge multiple regions, avoiding vendor lock in. This is what this new super cloud is all about. The business consequences we heard and and the wide ranging conversations around what it means for open source and the complexity problem all being solved. I hope you enjoyed this program. There's a lot of moving pieces and things to configure with cloud native install, all making it easier for you here with Super Cloud and of course Platform nine contributing to that. Thank you for watching.
SUMMARY :
See you soon. but kind of the same as the first generation. And so you gotta rougher and IT kind of coming together, but you also got this idea of regions, So I think, you know, in in the context of this, the, this, Can you scope the scale of the problem? the problem that the scale creates, you know, there's various problems, but I think one, And that is just, you know, one example of an issue that happens. Can you share your reaction to that and how you see this playing out? which is, you know, you have your perfectly written code that is operating just fine on your And so as you give that change to then run at your production edge location, And you guys have a solution you're launching. So what our LA you do in a But again, it gets, you know, processed in a standardized way. So keeping it smooth, the assembly on things are flowing. Because developers, you know, there is, developers are responsible for one picture of So the DevOps is the cloud needed developer's. And so Arlon addresses that problem at the heart of it, and it does that using existing So I'm assuming you have that thought through, can you share open source and commercial relationship? products starting all the way with fision, which was a serverless product, you know, that we had built to buy, but also actually kind of date the application, if you will. I think one is just, you know, this, this, this cloud native space is so vast I have to ask you now, let's get into what's in it for the customer. And so, and there's multiple, you know, enterprises that we talk to, shared that this is a major challenge we have today because we have, you know, I'm an enterprise, I got tight, you know, I love the open source trying And that's where, you know, platform line has a role to play, which is when been some of the feedback? And the customer said, If you had it today, I would've purchased it. So next question is, what is the solution to the customer? So I think, you know, one of the core tenets of Platform nine has always been been that And now they have management challenges. Especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and And And arlon by the way, also helps in that direction, but you also need I mean, what's the impact if you do all those things, as you mentioned, what's the impact of the apps? And so this really gives them, you know, the right tooling for that. So this is actually a great kind of relevant point, you know, as cloud becomes more scalable, So these are the kinds of challenges, and those are the pain points, which is, you know, if you're looking to to be supporting the business, you know, the back office and the maybe terminals and that, you know, that the, the technology that's, you know, that's gonna drive your top line is If all the things happen the way we want 'em to happen, The magic wand, the magic dust, he's running that at a nimble, nimble team size of at the most, Just taking care of the CIO doesn't exist. Thank you for your time. Thanks for Great to see you and great to see congratulations on the success And now the Kubernetes layer that we've been working on for years is Exactly. you know, the new Arlon, our, our lawn, and you guys just launched the So I think, I think I'm, I'm glad you mentioned it, everybody or most people know about infrastructures I mean now with open source so popular, you don't have to have to write a lot of code, you know, the emergence of systems and layers to help you manage that complexity is becoming That's, I wrote a LinkedIn post today was comments about, you know, hey, enterprise is a new breed. you know, you think you have things under control, but some people from various teams will make changes here in the industry technical, how would you look at the super cloud trend that's emerging? the way I interpret that is, you know, clouds and infrastructure, It's IBM's, you know, connection for the internet at the, this layer that has simplified, you know, computing and, the physics and the, the atoms, the pro, you know, this is where the innovation, the state that you want and more consistency. the DevOps engineers, they get a a ways to So how do you guys look at the workload native ecosystem like K native, where you can express your application in more at It's kinda like an EC two instance, spin up a cluster. And then you can stamp out your app, your applications and your clusters and manage them And it's like a playbook. You just tell the system what you want and then You need edge's code, but then you can configure the code by just saying do it. And that is just complexity for the people operating this or configuring this, What do you expect to see at Coan this year? If you look at a stack necessary for hosting We would to joke we, you know, about, about the dream. So the successor to Kubernetes, you know, I don't Yeah, I think the, the reigning in the chaos is key, you know, Now we have now visibility into But roughly speaking when we say, you know, They have some SaaS apps, but mostly it's the ecosystem. you know, that they're, they will keep catering to, they, they will continue to find terms of, you know, the the new risk and arm ecosystems it's, it's hardware and he got software and you got middleware and he kind over, Great to have you on. What's interest thing about what you guys are doing at Platform nine? clouds, you know, the application world is moving very fast in trying to Patrick, we were talking before we came on stage here about your background and we were gonna talk about the glory days in So you saw that whole growth. So I think things are in And if you look at the tech trends, GDPs down, but not tech. Cuz the pandemic showed everyone digital transformation is here and more And modernizing Infras infrastructure is not you know, more, more dynamic, more real. So it's you know, multi-cloud. So you got containers And you know, most companies are, 70 plus percent of them have won two, It runs on the edge, And if you look at few years back, each one was doing So it's kinda like an SRE vibe. Whatever they want on their tools. to build, so their customers who are using product A and product B are seeing a similar set Are you delivering that value to ops and security? Our buyer is usually, you know, the product divisions of companies You've got the dev side and then that happens when you either order the product or go into the store and pick up your product or like what you and I do at home and we get a, you know, a router is And so that dramatically brings the velocity for them. Thousands of them. of the public clouds. The question I want to ask you is that's How do you explain when someone says what's cloud native, what isn't cloud native? is the definition and what are the attributes and characteristics of what is truly a cloud native, Thousands and thousands of tools you could spend your time figuring out which I don't know anything about that, but the whole experience of how you order, Being agility and having that flow to the application changes what the expectations of One of the benefits of chatting with you here and been on the app side, I did the infrastructure right and then tried to build our own If you did not adapt and adapt and accelerate I think that that e-commerce was interesting and I think just to riff with you on that is that it's disrupting How are you gonna service your Mascar, thank you for coming on, spending the time to come in and share with our community and being part of Thank you, John. I hope you enjoyed this program.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Patrick | PERSON | 0.99+ |
Paul Morritz | PERSON | 0.99+ |
Vascar | PERSON | 0.99+ |
Adrian Karo | PERSON | 0.99+ |
Sean Feer | PERSON | 0.99+ |
2000 | DATE | 0.99+ |
John Furry | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
50,000 | QUANTITY | 0.99+ |
John | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
John Furr | PERSON | 0.99+ |
Vascar Gorde | PERSON | 0.99+ |
John Fur | PERSON | 0.99+ |
Meor Ma Makowski | PERSON | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
Makoski | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
14 years | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
12 years | QUANTITY | 0.99+ |
2001 | DATE | 0.99+ |
Gort | PERSON | 0.99+ |
Mascar | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Mariana Tessel | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
hundreds | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Two | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
millions | QUANTITY | 0.99+ |
two parts | QUANTITY | 0.99+ |
tens | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
next year | DATE | 0.99+ |
Arlon | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Kubernetes | TITLE | 0.99+ |
eight years ago | DATE | 0.99+ |
one site | QUANTITY | 0.99+ |
Thousands | QUANTITY | 0.99+ |
second part | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
each component | QUANTITY | 0.99+ |
AMD | ORGANIZATION | 0.99+ |
Office 365 | TITLE | 0.99+ |
one unit | QUANTITY | 0.99+ |
one flavor | QUANTITY | 0.99+ |
4,000 engineers | QUANTITY | 0.99+ |
first generation | QUANTITY | 0.99+ |
Super Cloud | TITLE | 0.99+ |
Dave Ante | PERSON | 0.99+ |
first | QUANTITY | 0.99+ |
Vic | PERSON | 0.99+ |
two sides | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
two thousands | QUANTITY | 0.99+ |
Bickley | PERSON | 0.98+ |
tens of thousands of nodes | QUANTITY | 0.98+ |
Azure | TITLE | 0.98+ |
two people | QUANTITY | 0.98+ |
each site | QUANTITY | 0.98+ |
Kubernetes | PERSON | 0.98+ |
super cloud | TITLE | 0.98+ |
One person | QUANTITY | 0.98+ |
two factors | QUANTITY | 0.98+ |
Arlan | ORGANIZATION | 0.98+ |
Amit Eyal Govrin, Kubiya.ai | Cube Conversation
(upbeat music) >> Hello everyone, welcome to this special Cube conversation here in Palo Alto, California. I'm John Furrier, host of theCUBE in theCUBE Studios. We've got a special video here. We love when we have startups that are launching. It's an exclusive video of a hot startup that's launching. Got great reviews so far. You know, word on the street is, they got something different and unique. We're going to' dig into it. Amit Govrin who's the CEO and co-founder of Kubiya, which stands for Cube in Hebrew, and they're headquartered in Bay Area and in Tel Aviv. Amit, congratulations on the startup launch and thanks for coming in and talk to us in theCUBE >> Thank you, John, very nice to be here. >> So, first of all, a little, 'cause we love the Cube, 'cause theCUBE's kind of an open brand. We've never seen the Cube in Hebrew, so is that true? Kubiya is? >> Kubiya literally means cube. You know, clearly there's some additional meanings that we can discuss. Obviously we're also launching a KubCon, so there's a dual meaning to this event. >> KubCon, not to be confused with CubeCon. Which is an event we might have someday and compete. No, I'm only kidding, good stuff. I want to get into the startup because I'm intrigued by your story. One, you know, conversational AI's been around, been a category. We've seen chat bots be all the rage and you know, I kind of don't mind chat bots on some sites. I can interact with some, you know, form based knowledge graph, whatever, knowledge database and get basic stuff self served. So I can see that, but it never really scaled or took off. And now with Cloud Native kind of going to the next level, we're starting to see a lot more open source and a lot more automation, in what I call AI as code or you know, AI as a service, machine learning, developer focused action. I think you guys might have an answer there. So if you don't mind, could you take a minute to explain what you guys are doing, what's different about Kubiya, what's happening? >> Certainly. So thank you for that. Kubiya is what we would consider the first, or one of the first, advanced virtual assitants with a domain specific expertise in DevOps. So, we respect all of the DevOps concepts, GitOps, workflow automation, of those categories you've mentioned, but also the added value of the conversational AI. That's really one of the few elements that we can really bring to the table to extract what we call intent based operations. And we can get into what that means in a little bit. I'll save that maybe for the next question. >> So the market you're going after is kind of, it's, I love to hear starters when they, they don't have a Gartner Magic quadrant, they can fit nicely, it means they're onto something. What is the market you're going after? Because you're seeing a lot of developers driving a lot of the key successes in DevOps. DevOps has evolved to the point where, and DevSecOps, where developers are driving the change. And so having something that's developer focused is key. Are you guys targeting the developers, IT buyers, cloud architects? Who are you looking to serve with this new opportunity? >> So essentially self-service in the world of DevOps, the end user typically would be a developer, but not only, and obviously the operators, those are the folks that we're actually looking to help augment a lot of their efforts, a lot of the toil that they're experiencing in a day to day. So there's subcategories within that. We can talk about the different internal developer tools, or platforms, shared services platforms, service catalogs are tangential categories that this kind of comes on. But on top of that, we're adding the element of conversational AI. Which, as I mentioned, that's really the "got you". >> I think you're starting to see a lot of autonomous stuff going on, autonomous pen testing. There's a company out there doing I've seen autonomous AI. Automation is a big theme of it. And I got to ask, are you guys on the business side purely in the cloud? Are you born in the cloud, is it a cloud service? What's the product choice there? It's a service, right? >> Software is a service. We have the classic, Multi-Tenancy SAAS, but we also have a hybrid SAAS solution, which allows our customers to run workflows using remote runners, essentially hosted at their own location. >> So primary cloud, but you're agnostic on where they could consume, how they want to' consume the product. >> Technology agnostic. >> Okay, so that's cool. So let's get into the problem you're solving. So take me through, this will drive a lot of value here, when you guys did the company, what problems did you hone in on and what are you guys seeing as the core problem that you solve? >> So we, this is a unique, I don't know how unique, but this is a interesting proposition because I come from the business side, so call it the top down. I've been in enterprise sales, I've been in a CRO, VP sales hat. My co-founder comes from the bottom up, right? He ran DevOps teams and SRE teams in his previous company. That's actually what he did. So, we met each other halfway, essentially with me seeing a lot of these problems of self-service not being so self-service after all, platforms hitting walls with adoption. And he actually created his own self-service platform, within his last company, to address his own personal pains. So we essentially kind of met with both perspectives. >> So you're absolutely hardcore on self-service. >> We're enabling self-service. >> And that basically is what everybody wants. I mean, the developers want self-service. I mean, that's kind of like, you know, that's the nirvana. So take us through what you guys are offering, give us an example of use cases and who's buying your product, why, and take us through that whole piece. >> Do you mind if I take a step back and say why we believe self-service has somewhat failed or not gotten off. >> Yeah, absolutely. >> So look, this is essentially how we're looking at it. All the analysts and the industry insiders are talking about self-service platforms as being what's going to' remove the dependency of the operator in the loop the entire time, right? Because the operator, that scarce resource, it's hard to hire, hard to train, hard to retain those folks, Developers are obviously dependent on them for productivity. So the operators in this case could be a DevOps, could be a SecOps, it could be a platform engineer. It comes in different flavors. But the common denominator, somebody needs an access request, provisioning a new environment, you name it, right? They go to somebody, that person is operator. The operator typically has a few things on their plate. It's not just attending and babysitting platforms, but it's also innovating, spinning up, and scaling services. So they see this typically as kind of, we don't really want to be here, we're going to' go and do this because we're on call. We have to take it on a chin, if you may, for this. >> It's their child, they got to' do it. >> Right, but it's KTLOs, right, keep the lights on, this is maintenance of a platform. It's not what they're born and bred to do, which is innovate. That's essentially what we're seeing, we're seeing that a lot of these platforms, once they finally hit the point of maturity, they're rolled out to the team. People come to serve themselves in platform, and low and behold, it's not as self-service as it may seem. >> We've seen that certainly with Kubernetes adoption being, I won't say slow, it's been fast, but it's been good. But I think this is kind of the promise of what SRE was supposed to be. You know, do it once and then babysit in the sense of it's working and automated. Nothing's broken yet. Don't call me unless you need something, I see that. So the question, you're trying to make it easier then, you're trying to free up the talent. >> Talent to operate and have essentially a human, like in the loop, essentially augment that person and give the end users all of the answers they require, as if they're talking to a person. >> I mean it's basically, you're taking the virtual assistant concept, or chat bot, to a level of expertise where there's intelligence, jargon, experience into the workflows that's known. Not just talking to chat bot, get a support number to rebook a hotel room. >> We're converting operational workflows into conversations. >> Give me an example, take me through an example. >> Sure, let's take a simple example. I mean, not everyone provisions EC2's with two days (indistinct). But let's say you want to go and provision new EC2 instances, okay? If you wanted to do it, you could go and talk to the assistant and say, "I want to spin up a new server". If it was a human in the loop, they would ask you the following questions: what type of environment? what are we attributing this to? what type of instance? security groups, machine images, you name it. So, these are the questions that typically somebody needs to be armed with before they can go and provision themselves, serve themselves. Now the problem is users don't always have these questions. So imagine the following scenario. Somebody comes in, they're in Jira ticket queue, they finally, their turn is up and the next question they don't have the answer to. So now they have to go and tap on a friend, or they have to go essentially and get that answer. By the time they get back, they lost their turn in queue. And then that happens again. So, they lose a context, they lose essentially the momentum. And a simple access request, or a simple provision request, can easily become a couple days of ping pong back and forth. This won't happen with the virtual assistant. >> You know, I think, you know, and you mentioned chat bots, but also RPA is out there, you've seen a lot of that growth. One of the hard things, and you brought this up, I want to get your reaction to, is contextualizing the workflow. It might not be apparent, but the answer might be there, it disrupts the entire experience at that point. RPA and chat bots don't have that contextualization. Is that what you guys do differently? Is that the unique flavor here? Is that difference between current chat bots and RPA? >> The way we see it, I alluded to the intent based operations. Let me give a tangible experience. Even not from our own world, this will be easy. It's a bidirectional feedback loop 'cause that's actually what feeds the context and the intent. We all know Waze, right, in the world of navigation. They didn't bring navigation systems to the world. What they did is they took the concept of navigation systems that are typically satellite guided and said it's not just enough to drive down the 280, which typically have no traffic, right, and to come across traffic and say, oh, why didn't my satellite pick that up? So they said, have the end users, the end nodes, feed that direction back, that feedback, right. There has to be a bidirectional feedback loop that the end nodes help educate the system, make the system be better, more customized. And that's essentially what we're allowing the end users. So the maintenance of the system isn't entirely in the hands of the operators, right? 'Cause that's the part that they dread. And the maintenance of the system is democratized across all the users that they can teach the system, give input to the system, hone in the system in order to make it more of the DNA of the organization. >> You and I were talking before you came on this camera interview, you said playfully that the Siri for DevOps, which kind of implies, hey infrastructure, do something for me. You know, we all know Siri, so we get that. So that kind of illustrates kind of where the direction is. Explain why you say that, what does that mean? Is that like a NorthStar vision that you guys are approaching? You want to' have a state where everything's automated in it's conversational deployments, that kind of thing. And take us through why that Siri for DevOps is. >> I think it helps anchor people to what a virtual assistant is. Because when you hear virtual assistant, that can mean any one of various connotations. So the Siri is actually a conversational assistant, but it's not necessarily a virtual assistant. So what we're saying is we're anchoring people to that thought and saying, we're actually allowing it to be operational, turning complex operations into simple conversations. >> I mean basically they take the automate with voice Google search or a query, what's the score of the game? And, it also, and talking to the guy who invented Siri, I actually interviewed on theCUBE, it's a learning system. It actually learns as it gets more usage, it learns. How do you guys see that evolving in DevOps? There's a lot of jargon in DevOps, a lot of configurations, a lot of different use cases, a lot of new technologies. What's the secret sauce behind what you guys do? Is it the conversational AI, is it the machine learning, is it the data, is it the model? Take us through the secret sauce. >> In fact, it's all the above. And I don't think we're bringing any one element to the table that hasn't been explored before, hasn't been done. It's a recipe, right? You give two people the same ingredients, they can have complete different results in terms of what they come out with. We, because of our domain expertise in DevOps, because of our familiarity with developer workflows with operators, we know how to give a very well suited recipe. Five course meal, hopefully with Michelin stars as part of that. So a few things, maybe a few of the secret sauce element, conversational AI, the ability to essentially go and extract the intent of the user, so that if we're missing context, the system is smart enough to go and to get that feedback and to essentially feed itself into that model. >> Someone might say, hey, you know, conversational AI, that was yesterday's trend, it never happened. It was kind of weak, chat bots were lame. What's different now and with you guys, and the market, that makes a redo or a second shot at this, a second bite at the apple, as they say. What do you guys see? 'Cause you know, I would argue that it's, you know, it's still early, real early. >> Certainly. >> How do you guys view that? How would you handle that objection? >> It's a fair question. I wasn't around the first time around to tell you what didn't work. I'm not afraid to share that the feedback that we're getting is phenomenal. People understand that we're actually customizing the workflows, the intent based operations to really help hone in on the dark spots. We call it last mile, you know, bottlenecks. And that's really where we're helping. We're helping in a way tribalize internal knowledge that typically hasn't been documented because it's painful enough to where people care about it but not painful enough to where you're going to' go and sit down an entire day and document it. And that's essentially what the virtual assistant can do. It can go and get into those crevices and help document, and operationalize all of those toils. And into workflows. >> Yeah, I mean some will call it grunt work, or low level work. And I think the automation is interesting. I think we're seeing this in a lot of these high scale situations where the talented hard to hire person is hired to do, say, things that were hard to do, but now harder things are coming around the corner. So, you know, serverless is great and all this is good, but it doesn't make the complexity go away. As these inflection points continue to drive more scale, the complexity kind of grows, but at the same time so is the ability to abstract away the complexity. So you're starting to see the smart, hired guns move to higher, bigger problems. And the automation seems to take the low level kind of like capabilities or the toil, or the grunt work, or the low level tasks that, you know, you don't want a high salaried person doing. Or I mean it's not so much that they don't want to' do it, they'll take one for the team, as you said, or take it on the chin, but there's other things to work on. >> I want to add one more thing, 'cause this goes into essentially what you just said. Think about it's not the virtual system, what it gives you is not just the intent and that's one element of it, is the ability to carry your operations with you to the place where you're not breaking your workflows, you're actually comfortable operating. So the virtual assistant lives inside of a command line interface, it lives inside of chat like Slack, and Teams, and Mattermost, and so forth. It also lives within a low-code editor. So we're not forcing anyone to use uncomfortable language or operations if they're not comfortable with. It's almost like Siri, it travels in your mobile phone, it's on your laptop, it's with you everywhere. >> It makes total sense. And the reason why I like this, and I want to' get your reaction on this because we've done a lot of interviews with DevOps, we've met at every CubeCon since it started, and Kubernetes kind of highlights the value of the containers at the orchestration level. But what's really going on is the DevOps developers, and the CICD pipeline, with infrastructure's code, they're basically have a infrastructure configuration at their disposal all the time. And all the ops challenges have been around that, the repetitive mundane tasks that most people do. There's like six or seven main use cases in DevOps. So the guardrails just need to be set. So it sounds like you guys are going down the road of saying, hey here's the use cases you can bounce around these use cases all day long. And just keep doing your jobs cause they're bolting on infrastructure to every application. >> There's one more element to this that we haven't really touched on. It's not just workflows and use cases, but it's also knowledge, right? Tribal knowledge, like you asked me for an example. You can type or talk to the assistant and ask, "How much am I spending on AWS, on US East 1, on so and so customer environment last week?", and it will know how to give you that information. >> Can I ask, should I buy a reserve instances or not? Can I ask that question? 'Cause there's always good trade offs between buying the reserve instances. I mean that's kind of the thing that. >> This is where our ecosystem actually comes in handy because we're not necessarily going to' go down every single domain and try to be the experts in here. We can tap into the partnerships, API, we have full extensibility in API and the software development kit that goes into. >> It's interesting, opinionated and declarative are buzzwords in developer language. So you started to get into this editorial thing. So I can bring up an example. Hey cube, implement the best service mesh. What answer does it give you? 'Cause there's different choices. >> Well this is actually where the operator, there's clearly guard rails. Like you can go and say, I want to' spin up a machine, and it will give you all of the machines on AWS. Doesn't mean you have to get the X one, that's good for a SAP environment. You could go and have guardrails in place where only the ones that are relevant to your team, ones that have resources and budgetary, you know, guidelines can be. So, the operator still has all the control. >> It was kind of tongue in cheek around the editorialized, but actually the answer seems to be as you're saying, whatever the customer decided their service mesh is. So I think this is where it gets into as an assistant to architecting and operating, that seems to be the real value. >> Now code snippets is a different story because that goes on to the web, that goes onto stock overflow, and that's actually one of the things. So inside the CLI, you could actually go and ask for code snippets and we could actually go and populate that, it's a smart CLI. So that's actually one of the things that are an added value of that. >> I was saying to a friend and we were talking about open source and how when I grew up, there was no open source. If you're a developer now, I mean there's so much code, it's not so much coding anymore as it is connecting and integrating. >> Certainly. >> And writing glue layers, if you will. I mean there's still code, but it's not, you don't have to build it from scratch. There's so much code out there. This low-code notion of a smart system is interesting 'cause it's very matrix like. It can build its own code. >> Yes, but I'm also a little wary with low-code and no code. I think part of the problem is we're so constantly focused on categories and categorizing ourselves, and different categories take on a life of their own. So low-code no code is not necessarily, even though we have the low-code editor, we're not necessarily considering ourselves low-code. >> Serverless, no code, low-code. I was so thrown on a term the other day, architecture-less. As a joke, no we don't need architecture. >> There's a use case around that by the way, yeah, we do. Show me my AWS architecture and it will build the architect diagram for you. >> Again, serverless architect, this is all part of infrastructure's code. At the end of the day, the developer has infrastructure with code. Again, how they deploy it is the neuron. That's what we've been striving for. >> But infrastructure is code. You can destroy, you know, terraform, you can go and create one. It's not necessarily going to' operate it for you. That's kind of where this comes in on top of that. So it's really complimentary to infrastructure. >> So final question, before we get into the origination story, data and security are two hot areas we're seeing fill the IT gap, that has moved into the developer role. IT is essentially provisioned by developers now, but the OP side shifted to large scale SRE like environments, security and data are critical. What's your opinion on those two things? >> I agree. Do you want me to give you the normal data as gravity? >> So you agree that IT is now, is kind of moved into the developer realm, but the new IT is data ops and security ops basically. >> A hundred percent, and the lines are so blurred. Like who's what in today's world. I mean, I can tell you, I have customers who call themselves five different roles in the same day. So it's, you know, at the end of the day I call 'em operators 'cause I don't want to offend anybody because that's just the way it is. >> Architectural-less, we're going to' come back to that. Well, I know we're going to' see you at CubeCon. >> Yes. >> We should catch up there and talk more. I'm looking forward to seeing how you guys get the feedback from the marketplace. It should be interesting to hear, the curious question I have for you is, what was the origination story? Why did you guys come together, was it a shared problem? Was it a big market opportunity? Was it an itch you guys were scratching? Did you feel like you needed to come together and start this company? What was the real vision behind the origination? Take a take a minute to explain the story. >> No, absolutely. So I've been living in Palo Alto for the last couple years. Previous, also a founder. So, you know, from my perspective, I always saw myself getting back in the game. Spent a few years in AWS essentially managing partnerships for tier one DevOps partners, you know, all of the known players. Some in public, some of them not. And really the itch was there, right. I saw what everyone's doing. I started seeing consistency in the pains that I was hearing back, in terms of what hasn't been solved. So I already had an opinion where I wanted to go. And when I was visiting actually Israel with the family, I was introduced by a mutual friend to Shaked, Shaked Askayo, my co-founder and CTO. Amazing guy, unbelievable technologists, probably one the most, you know, impressive folks I've had a chance to work with. And he actually solved a very similar problem, you know, in his own way in a previous company, BlueVine, a FinTech company where he was head of SRE, having to, essentially, oversee 200 developers in a very small team. The ratio was incongruent to what the SRE guideline would tell. >> That's more than 10 x rate developer. >> Oh, absolutely. Sure enough. And just imagine it's four different time zones. He finishes day shift and you already had the US team coming, asking for a question. He said, this is kind of a, >> Got to' clone himself, basically. >> Well, yes. He essentially said to me, I had no day, I had no life, but I had Corona, I had COVID, which meant I could work from home. And I essentially programed myself in the form of a bot. Essentially, when people came to him, he said, "Don't talk to me, talk to the bot". Now that was a different generation. >> Just a trivial example, but the idea was to automate the same queries all the time. There's an answer for that, go here. And that's the benefit of it. >> Yes, so he was able to see how easy it was to solve, I mean, how effective it was solving 70% of the toil in his organization. Scaling his team, froze the headcount and the developer team kept on going. So that meant that he was doing some right. >> When you have a problem, and you need to solve it, the creativity comes out of the woodwork, you know, invention is the mother of necessity. So final question for you, what's next? Got the launch, what are you guys hope to do over the next six months to a year, hiring? Put a plug in for the company. What are you guys looking to do? Take a minute to share the future vision and get a plug in. >> A hundred percent. So, Kubiya, as you can imagine, announcing ourselves at CubeCon, so in a couple weeks. Opening the gates towards the public beta and NGA in the next couple months. Essentially working with dozens of customers, Aston Martin, and business earn in. We have quite a few, our website's full of quotes. You can go ahead. But effectively we're looking to go and to bring the next operator, generation of operators, who value their time, who value the, essentially, the value of tribal knowledge that travels between organizations that could be essentially shared. >> How many customers do you guys have in your pre-launch? >> It's above a dozen. Without saying, because we're actually looking to onboard 10 more next week. So that's just an understatement. It changes from day to day. >> What's the number one thing people are saying about you? >> You got that right. I know it's, I'm trying to be a little bit more, you know. >> It's okay, you can be cocky, startups are good. But I mean they're obviously, they're using the product and you're getting good feedback. Saving time, are they saying this is a dream product? Got it right, what are some of the things? >> I think anybody who doesn't feel the pain won't know, but the folks who are in the trenches, or feeling the pain, or experiencing this toil, who know what this means, they said, "You're doing this different, you're doing this right. You architected it right. You know exactly what the developer workflows," you know, where all the areas, you know, where all the skeletons are hidden within that. And you're attending to that. So we're happy about that. >> Everybody wants to clone themselves, again, the tribal knowledge. I think this is a great example of where we see the world going. Make things autonomous, operationally automated for the use cases you know are lock solid. Why wouldn't you just deploy? >> Exactly, and we have a very generous free tier. People can, you know, there's a plugin, you can sign up for free until the end of the year. We have a generous free tier. Yeah, free forever tier, as well. So we're looking for people to try us out and to give us feedback. >> I think the self-service, I think the point is, we've talked about it on the Cube at our events, everyone says the same thing. Every developer wants self-service, period. Full stop, done. >> What they don't say is they need somebody to help them babysit to make sure they're doing it right. >> The old dashboard, green, yellow, red. >> I know it's an analogy that's not related, but have you been to Whole Foods? Have you gone through their self-service line? That's the beauty of it, right? Having someone in a loop helping you out throughout the time. You don't get confused, if something's not working, someone's helping you out, that's what people want. They want a human in the loop, or a human like in the loop. We're giving that next best thing. >> It's really the ratio, it's scale. It's a scaling. It's force multiplier, for sure. Amit, thanks for coming on, congratulations. >> Thank you so much. >> See you at KubeCon. Thanks for coming in, sharing the story. >> KubiyaCon. >> CubeCon. Cube in Hebrew, Kubiya. Founder, co-founder and CEO here, sharing the story in the launch. Conversational AI for DevOps, the theory of DevOps, really kind of changing the game, bringing efficiency, solving a lot of the pain points of large scale infrastructure. This is theCUBE, CUBE conversation, I'm John Furrier, thanks for watching. (upbeat electronic music)
SUMMARY :
on the startup launch We've never seen the Cube so there's a dual meaning to this event. I can interact with some, you know, but also the added value of the conversational AI. a lot of the key successes in DevOps. a lot of the toil that they're What's the product choice there? We have the classic, Multi-Tenancy SAAS, So primary cloud, So let's get into the call it the top down. So you're absolutely I mean, the developers want self-service. Do you mind if I take a step back So the operators in this keep the lights on, this is of the promise of what SRE all of the answers they require, experience into the We're converting operational take me through an example. So imagine the following scenario. Is that the unique flavor here? that the end nodes help the Siri for DevOps, So the Siri is actually a is it the data, is it the model? the system is smart enough to a second bite at the apple, as they say. on the dark spots. And the automation seems to it, is the ability to carry So the guardrails just need to be set. the assistant and ask, I mean that's kind of the thing that. and the software development implement the best service mesh. of the machines on AWS. but actually the answer So inside the CLI, you could actually go I was saying to a And writing glue layers, if you will. So low-code no code is not necessarily, I was so thrown on a term the around that by the way, At the end of the day, You can destroy, you know, terraform, that has moved into the developer role. the normal data as gravity? is kind of moved into the developer realm, in the same day. to' see you at CubeCon. the curious question I have for you is, And really the itch was there, right. the US team coming, asking for a question. myself in the form of a bot. And that's the benefit of it. and the developer team kept on going. of the woodwork, you know, and NGA in the next couple months. It changes from day to day. bit more, you know. It's okay, you can be but the folks who are in the for the use cases you know are lock solid. and to give us feedback. everyone says the same thing. need somebody to help them That's the beauty of it, right? It's really the ratio, it's scale. Thanks for coming in, sharing the story. sharing the story in the launch.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
70% | QUANTITY | 0.99+ |
Siri | TITLE | 0.99+ |
six | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amit | PERSON | 0.99+ |
Tel Aviv | LOCATION | 0.99+ |
Amit Govrin | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Amit Eyal Govrin | PERSON | 0.99+ |
two days | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
200 developers | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Bay Area | LOCATION | 0.99+ |
two people | QUANTITY | 0.99+ |
Israel | LOCATION | 0.99+ |
Aston Martin | ORGANIZATION | 0.99+ |
last week | DATE | 0.99+ |
Whole Foods | ORGANIZATION | 0.99+ |
two things | QUANTITY | 0.99+ |
next week | DATE | 0.99+ |
first | QUANTITY | 0.99+ |
Kubiya | ORGANIZATION | 0.99+ |
SRE | ORGANIZATION | 0.99+ |
KubeCon | EVENT | 0.99+ |
BlueVine | ORGANIZATION | 0.99+ |
EC2 | TITLE | 0.99+ |
DevOps | TITLE | 0.98+ |
five different roles | QUANTITY | 0.98+ |
Five course | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
Kubiya | PERSON | 0.98+ |
first time | QUANTITY | 0.97+ |
KubiyaCon | EVENT | 0.97+ |
second shot | QUANTITY | 0.96+ |
yesterday | DATE | 0.96+ |
hundred percent | QUANTITY | 0.96+ |
one element | QUANTITY | 0.96+ |
KubCon | EVENT | 0.96+ |
one more element | QUANTITY | 0.96+ |
second bite | QUANTITY | 0.95+ |
both perspectives | QUANTITY | 0.95+ |
Gartner | ORGANIZATION | 0.95+ |
ORGANIZATION | 0.95+ | |
Hebrew | OTHER | 0.94+ |
NorthStar | ORGANIZATION | 0.94+ |
Shaked Askayo | PERSON | 0.94+ |
Cube | ORGANIZATION | 0.93+ |
Shaked | PERSON | 0.93+ |
theCUBE Studios | ORGANIZATION | 0.93+ |
dozens of customers | QUANTITY | 0.93+ |
Corona | ORGANIZATION | 0.92+ |
DevSecOps | TITLE | 0.92+ |
theCUBE | ORGANIZATION | 0.92+ |
above a dozen | QUANTITY | 0.91+ |
One | QUANTITY | 0.9+ |
more than 10 x | QUANTITY | 0.9+ |
Siri for DevOps | TITLE | 0.9+ |
cube | PERSON | 0.9+ |
US East 1 | LOCATION | 0.89+ |
280 | QUANTITY | 0.89+ |
CubeCon | EVENT | 0.88+ |
two hot areas | QUANTITY | 0.87+ |
today | DATE | 0.87+ |
seven main use cases | QUANTITY | 0.84+ |
US | LOCATION | 0.84+ |
Michelin | TITLE | 0.83+ |
a year | QUANTITY | 0.83+ |
Ansiblefest 2022 Preview with Andrius Benokraitis
>>Hello, welcome to the Cube here in Palo Alto, California. We're here for a preview of Ansible Fest 2022 this year in Chicago, in Person. And I'm here with Andreas. I've been on Craus, who's a senior manager for Ansible Technical Marketing at Red Hat. And just great to see you Cube alumni. Thanks for coming on and giving us a preview of what to expect at Ansible Fest. Thanks. >>No problem. Thanks for having us and thanks for everyone tuning in. >>You know, one of the things that's exciting this year is one, it's back in person from 2019 was the last in person Ansible Fest. Always a great event for folks doing it. Cloud native configuration management and automation, I think, and last year in our virtual event was the three things where automation, automation, automation kind of drove the point home. This year it's, it's more exciting than ever because if you look at the growth of Cloud Native, we're seeing a lot more traction in mainstream enterprises with Kubernetes. And obviously containers continue to grow with open source, powering everything under the coverage. So like this has like become such a whole nother inflection point this year more than ever. There's a focus on not just automation, but where the dots are gonna connect into the future. So I'd like to get your thoughts on what we're gonna expect this year at Ansible Fest. What's the themes? What do you, what do you see coming down the pike? What can people expect, >>People can really expect? Thanks. Thanks very much John. Really excited. So we're gonna see a lot of what we've seen before, right? So a little difference is from the previous onsite Ansel Fest is, I think we no longer have to say, you know, what's Ansible? We typically have had to say, you know, what is this Ansible thing? I don't know what this is. This is automation. I think we've gone beyond that and this is great. Ansible itself is now the defacto, what we believe is the de facto kind of automation language and Ansible automation platform is the defacto automation platform. So as you move into this year, we we're gonna be able to see, be able to really hone in on really having those beginners starting off much, much more quickly. But also those that have no and love Ansible for over the years to take that automation to the next level to, to new areas. Either new domains going beyond the data center, into the cloud, and then going beyond by all the partner certifications, integrations that we have. So it's a lot, it's just more of, of everything I think. So it's more for everyone all the time. So it's not, it's you, it's, it's no longer kind of a beginner's for everything, but we go all the way to kind of crawl, walk, run for this one. >>You know, it always surprises me every year, I'm always surprised by how great open source I remember every year. It's like, pinch me, This is amazing. If you're a developer right now, it's a good time to be coding because of open source growth is, is at an all time high, continues to grow, more projects are emerging. DevOps, which really came out of the ethos of the kind of the early days of the cloud and, and and scaling infrastructure was, was about infrastructure as code, which was the dream we all had in the late two thousands. If you remember right now that's happened. DevOps is now in the C I C D pipeline. Developers are shifting. Left cloud native hybrid actually now is a steady state and that's pretty well documented. What, what's next beyond infrastructures code? What's beyond the on premise cloud integration from a, from a, from a tech standpoint, what are you guys seeing around infrastructures, code, what's next and then what's beyond on premise? >>I think the big thing is scale, right? So we've always been able to kind of automate people, developers, as you said, DevOps, you can automate from your laptop, you can open up your laptop, download some open source Ansible and you know, automate your windows, your Linux, your network, no problem. But how do you actually operationalize that in an enterprise way across large teams, right? A global environment and then being able to like actually secure that, right? Security is such a big, sp a big piece of that now. So being able to actually apply automation securely in secure environments. So, and wrap all of that around cloud, right? So we've always been talking about a, you, you mentioned it on premises going into the cloud, right? So being able to operationalize in the cloud. So being able to automate cloud targets. So being able to automate aws, Azure GCP targets, but also running your automation on the cloud like say OpenShift. So being able to dynamically load load balance, create execution on demand for Ansible in OpenShift. So it's kind of hard and we, we hope that an Ansible fest will be able to kind of like demystify that from like when you hear, when you hear the word cloud and, and cloud native and hybrid cloud, it kind of goes in your head. We hope to kind of clear that up for folks at, at the fest. >>Certainly we're gonna talk about Super Cloud as well with the cube there. I wanna hear your thoughts real quick on the edge. You know, we gonna hear anything about the edge. This, this year, again, Edge has become hugely important, but yet it's not clear to a lot of people what that looks like. Are we gonna hear anything there? >>Absolutely. Edges is huge. And to some people I will say that when, when you say edge automation, it may not click to some folks, but if you were to say automating wireless access points in a branch office, you thinking, oh, okay, I can't now I know what you're talking about. Right? So a lot of people really may not have made the connection to what Edge Automation is because we, you know, maybe that hasn't been defined. And as we start moving into edge automation, we can start talking about extending, right? We're already talking about extending the data center, especially for network automation. So network automation no longer is in data center. You can now extend that out to the branch office to campus Wireless, right? And you can also extend that out into other areas such as industrial applications, right? If you wanna move a glue gun from one end of the warehouse to the other, you know, that has to be automated and we'll be able to be able to do that by means of some of the enhancements we made for that. >>What can customers and attendees who are gonna be there either in person and after remote hybrid expect us hear about Ansible's automation platform this year? What's gonna be some of the announcements? Can you tease a little bit out on what >>I can tease a little bit? Yeah. You know, day one's gonna be more of making me upleveling what you have today. I think you're gonna see some of the, the futures, right? A lot of the things around Edge, you'll hear something called event driven automation. So you, this is, this is very akin to maybe self-driving or self-healing or, you know, being able to automatically say event is triggered and then you can actually cause some automation to be spun up to actually remediate those things. So going beyond observability, right? Observability is great, but just observing problems is, is, you know, I can look at a million things wrong in my network, but if they're not being remediated, you know, it doesn't really mean much. So, you know, talking about event driven there is gonna be really hot. And then a lot of the other use cases in frameworks, you know, going beyond the configuration, I think, yeah, >>I think they develop things. Cool. And, and final question for you, because one of the things that last year we came away with was automation. What's that next automation at scale. Because remember, you know, we remember where we came from writing scripts, automating things from just basic scripting and, and configuration automation to full scale automation. That's become a big part and we see a lot of that in the cloud. Native conversations with containers and whatnot. How do you scale at, at, at, in the cloud with the cloud na hyperscalers. So again, the relationship with the hyperscalers and scale, what can we expect to hear there? >>Oh, everything from, so we'll be teasing out a little bit. You, you know that we have Ansible automation platform on Azure as a marketplace offering. We may be extending that to maybe some other hyperscalers. So making it super easy for customers or prospects to get automating quickly in their hyperscaler of choice, using their own means and, and, and methods and processes. And then going beyond that and ensuring security. So I mess in security again, how do you ensure that what you're in, what you're actually automating is part of like a security supply chain is part of your content or part of your playbooks and keeping things actually running well at scale, like you said, >>Okay, you got Azure, I'll put, I'll put my guessing hat on. There's only a few others in the pull from. That's awesome. Congratulations. And looking forward to the event, final word here. What's, what's, what do you see outcome at the end of the event? What's gonna, what's in your mind's eye? What's the, what's the outcome look like? >>Yeah, I, I just gotta do a shameless plug. I'm actually running the labs and workshops. So if you're in person or if you're not, you know, come check out the labs and workshops. We have four rooms. You can just camp out and just do hands on learning with workshop instructor led learnings or self-paced training. You can see me and all that. But I think the future learnings here is really trying to futureproof everyone's use cases. So actually, you know, you talk about ai, you talk about Cloud native, talking about other Red Hat products being, being part of that conversation with re and OpenShift, it's really a great time to, to be automating right now. >>And it's interesting. And the Ansible community that's well, well known. They all know each other and it's, it, I won't say niche, it's not niche anymore. It used to be one of those areas where super important for making things run now we need to take cloud and cloud scale. Horizontal scalability across multiple environments is kind of an Ansible thing, right? It's like you need to think about how to scale the Ansible concept. And I think that's the big exciting thing that I see with Cloud Native Andrews is this idea that, you know, what Ansible stood for back then now applies to almost all environments. So the automation, the scaling of, of, of configurations and tearing stuff down and standing things up with machines and software is just, I think, an incredible opportunity. And I think it operations is now in the developer's hands and data and security ops are front and center in, in all these conversations. And it's gonna be super exciting. Can't wait to, can't wait to hear. Okay. Thanks for coming on. I really appreciate it. Thanks for, for giving your opinion. >>All right. I appreciate it. Thank you very much for hosting us. See you and we'll see you there in Chicago. >>Okay. Andrew's been a creative senior manager and it's potential marketing to breaking it down, getting the preview on what's coming, expect to hear more about automation and how it's relevant at scale and, and all new things are happening with cloud native inflection point. We're living right now. So we'll see you there. Thanks for watching.
SUMMARY :
And just great to see you Cube alumni. Thanks for having us and thanks for everyone tuning in. So I'd like to get your thoughts on what we're gonna expect this year at Ansible Fest. Ansel Fest is, I think we no longer have to say, you know, what's Ansible? premise cloud integration from a, from a, from a tech standpoint, what are you guys seeing around infrastructures, download some open source Ansible and you know, automate your windows, your Linux, I wanna hear your thoughts real quick on the edge. may not have made the connection to what Edge Automation is because we, you know, but just observing problems is, is, you know, I can look at a million things wrong in my network, So again, the relationship with the hyperscalers and scale, what can we expect to hear there? So I mess in security again, how do you ensure that what you're in, what's, what do you see outcome at the end of the event? you know, you talk about ai, you talk about Cloud native, talking about other Red Hat products you know, what Ansible stood for back then now applies to almost all environments. See you and we'll see you there in Chicago. So we'll see you there.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Chicago | LOCATION | 0.99+ |
John | PERSON | 0.99+ |
Andrius Benokraitis | PERSON | 0.99+ |
Andrew | PERSON | 0.99+ |
Andreas | PERSON | 0.99+ |
Ansible | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Linux | TITLE | 0.99+ |
this year | DATE | 0.98+ |
Ansel Fest | EVENT | 0.98+ |
Ansible Fest | EVENT | 0.98+ |
windows | TITLE | 0.98+ |
three things | QUANTITY | 0.97+ |
Cube | ORGANIZATION | 0.96+ |
Ansiblefest | EVENT | 0.96+ |
2019 | DATE | 0.96+ |
Ansible Fest 2022 | EVENT | 0.96+ |
four rooms | QUANTITY | 0.95+ |
Azure | TITLE | 0.94+ |
OpenShift | TITLE | 0.94+ |
This year | DATE | 0.94+ |
today | DATE | 0.94+ |
DevOps | TITLE | 0.93+ |
this year | DATE | 0.92+ |
one | QUANTITY | 0.89+ |
Cloud Native Andrews | ORGANIZATION | 0.87+ |
two thousands | QUANTITY | 0.77+ |
Edge Automation | ORGANIZATION | 0.74+ |
Craus | PERSON | 0.7+ |
one end | QUANTITY | 0.68+ |
Azure GCP | TITLE | 0.64+ |
Kubernetes | ORGANIZATION | 0.6+ |
2022 | DATE | 0.59+ |
million things | QUANTITY | 0.54+ |
Cloud Native | ORGANIZATION | 0.53+ |
every year | QUANTITY | 0.52+ |
Ansible | TITLE | 0.48+ |
Cloud | ORGANIZATION | 0.48+ |
Cloud | COMMERCIAL_ITEM | 0.47+ |
Edge | TITLE | 0.47+ |
Super | TITLE | 0.41+ |
HORSEMAN and HANLEY Fixed
(upbeat music) >> Hello everyone, welcome to this special Cube conversation. I'm John Furrier, host of theCube. We're here in Palo Alto. We've got some remote guests. Going to break down the Fortinet vulnerability, which was confirmed last week as a critical vulnerability that exposed a zero-day flaw for some of their key products, obviously, FortiOS and FortiProxy for remote attacks. So we're going to break this down. It's a real time vulnerability that happened is discovered in the industry. Horizon3.ai is one of the companies that was key in identifying this. And they have a product that helps companies detect and remediate and a bunch of other cool things you've heard on the cube here. We've got James Horseman, an exploit developer. Love the title. Got to got to say, I'm not going to lie. I like that one. And Zach Hanley, who's the chief attack engineer at Horizon3.ai. Gentlemen, first, thank you for joining the Cube conversation. >> Thank you. It's good to be here. >> Yeah, thank you so much for having us. >> So before we get into the whole Fortinet, this vulnerability that was exposed and how you guys are playing into this I just got to say I love the titles. Exploit developer, Chief Attack Engineers, you don't see that every day. Explain the titles Zach, let's start with you. Chief Attack Engineer, what do you do? >> Yeah, sure. So the gist of it is, is that there is a lot to do and the cybersecurity world. And we made up a new engineering title called Attack Engineer because there's so many different things an attacker will actually do over the course of attack. So we just named them an engineer. And I lead that team that helps develop the offensive capabilities for our product. >> Got it. James, you're the Exploit Developer, exploiting. What are you exploiting? What's going on there? >> So what I'll do in a day to day is we'll take N-days, which are vulnerabilities that have been disclosed to a vendor, but not yet publicly patched necessarily or a pocket exists for them. And I'll try to reverse engineer and find them, so we can integrate them into our product and our customers can use them to make sure that they're actually secure. And then if there's no interesting N-days to go after, we'll sometimes search for zero-days, which are vulnerabilities in products that the vendor doesn't yet know about. >> Yeah, and those are most critical. Those things can being really exploited and cause a lot of damage. Well James, thanks for coming on. We're here to talk about the vulnerability that happened with Fortinet and their products zero-day vulnerability. But first with the folks, for context, Horizon3.ai is a new startup rapidly growing. They've been on theCube. The CEOs, Snehal and team have described their product as an autonomous pen testing. But as part of that, they also have more of a different approach to testing environment. So they're constantly putting companies under pressure. Let's get into it. Let's get into this hack. So you guys are kind of like, I call it the early warning detection system. You're seeing things early because your product's constantly testing infrastructure. Okay? Over time, all the time always on. How did this come come about? How did you guys see this? What happened? Take us through. >> Yeah, sure. I'll start off. So on Friday, we saw on Twitter, which is actually a really good source of threat intelligence these days, We saw a person released details that 40 minutes sent advanced warning email that a critical vulnerability had been discovered and that an emergency patch was released. And the details that we saw, we saw that was an authentication bypass and we saw that it affected the 40 OS, 40 proxy and the 40 switch manager. And we knew right off the bat those are some of their most heavily used products. And for us to understand how this vulnerability worked and for us to actually help our clients and other people around the world understand it, we needed to get after it. So after that, James and I got on it, and then James can tell you what we did after we first heard. >> Yeah. Take us through play by play. >> Sure. So we saw it was a 9.8 CVSS, which means it's easy to exploit and low complexity and also kind of gives you the keys that take them. So we like to see those because they're easy to find, easy to go after. They're big wins. So as soon as we saw this come out we downloaded some firmware for 40 OS. And the first few hours were really about unpacking the firmware, seeing if we could even to get it run. We got it running a a VMware VMDK file. And then we started to unpack the firmware to see what we could find inside. And that was probably at least half of the time. There seemed to be maybe a little bit of obfuscation in the firmware. We were able to analyze the VDMK files and get them mounted and we saw that they were, their operating system was compressed. And when we went to decompress them we were getting some strange decompression errors, corruption errors. And we were kind of scratching our heads a little bit, like you know, "What's going on here?" "These look like they're legitimately compressed files." And after a while we noticed they had what seemed to be a different decompression tool than what we had on our systems also in that VMDK. And so we were able to get that running and decompress the firmware. And from there we were off to the races to dive deeper into the differences between the vulnerable firmware and the patch firmware. >> So the compressed files were hidden. They basically hid the compressed files. >> Yeah, we're not so sure if they were intentionally obfuscated or maybe it was just a really old version of that compression algorithm. It was the XZ compression tool. >> Got it. So what happens next? So take us through. So you discovered, you guys tested. What do you guys do next? How did this thing... I mean, I saw the news it hit heavily. You know, they updated, everyone updated their catalog for patching. So this kind of hangs out there. There's a time lag out there. What's the state of the security at that time? Say Friday, it breaks over the weekend, potentially a lot of attacks might have happened. >> Yeah, so they chose to release this emergency pre-warning on Friday, which is a terrible day because most people are probably already swamped with work or checking out for the weekend. And by Sunday, James and I had actually figured out the vulnerability. Well, to make the timeline a little shorter. But generally what we do between when we discover or hear news of the CV and when we actually pocket is there's a lot of what we call patch diffing. And that's when we take the patched version and the unpatched version and we run it through a tool that kind of shows us the differences. And those differences are really key insight into, "Hey, what was actually going on?" "How did this vulnerability happen?" So between Friday and Sunday, we were kind of scratching our heads and had some inspiration Sunday night and we actually figured it out. So Sunday night, we released news on Twitter that we had replicated the exploit. And the next day, Monday morning, finally, Fortinet actually released their PSIRT notice, where they actually announced to the world publicly that there was a vulnerability and here are the mitigation steps that you can take to mitigate the vulnerability if you cannot patch. And they also release some indicators of compromise but their indicators of compromise were very limited. And what we saw was a lot of people on social media, hey asking like, "These indicators of compromise aren't sufficient." "We can't tell if we've been compromised." "Can you please give us more information?" So because we already had the exploit, what we did was we exploited our test Fortinet devices in our lab and we collected our own indicators of compromise and we wrote those up and then released them on Tuesday, so that people would have a better indication to judge their environments if they've been already exploited in the wild by this issue. Which they also announced in their PSIRT that it was a zero-day being exploited in the wild It wasn't a security researcher that originally found the issue. >> So unpack the difference for the folks that don't know the difference between a zero-day versus a research note. >> Yeah, so a zero-day is essentially a vulnerability that is exploited and taken advantage of before it's made public. An N-day, where a security researcher may find something and report it, that and then once they announce the CVE, that's considered an N-day. So once it's known, it's an N-day and once if it's exploited before that, it's a zero-day. >> Yeah. And the difference is zero-day people can get in there and get into it. You guys saw it Friday on Twitter you move into action Fortinet goes public on Monday. The lag between those days is critical time. What was going on? Why are you guys doing this? Is this part of the autonomous pen testing product? Is this part of what you guys do? Why Horizon3.ai? Is this part of your business model? Or was this was one of those things where you guys just jumped on it? Take us through Friday to Monday. >> James, you want to take this one? >> Sure. So we want to hop on it because we want to be able to be the first to have a tool that we can use to exploit our customer system in a safe manner to prove that they're vulnerable, so then they can go and fix it. So the earlier that we have these tools to exploit the quicker our customers can patch and verify that they are no longer vulnerable. So that's the drive for us to go after these breaking exploits. So like I said, Friday we were able to get the firmware, get it decompressed. We actually got a test system up and running, familiarized ourself with the system a little bit. And we just started going through the patch. And one of the first things we noticed was in their API server, they had a a dip where they started including some extra HTTP headers when they proxied a connection to one of their backend servers. And there were, I believe, three headers. There was a HTTP forwarded header, a Vdom header, and a Cert header. And so we took those strings and we put them into our de-compiled version of the firmware to kind of start to pinpoint an area for us to look because this firmware is gigantic. There's tons of files to look at. And so having that patch is really critical to being able to quickly reverse engineer what they did to find the original exploit. So after we put those strings into our firmware, we found some interesting parts centered around authorization and authentication for these devices. And what we found was when you set a specific forwarded header, the system, for lack of better term, thought that you were on the inside. So a lot of these systems they'll have kind of, two methods of entry. One is through the front door, where if you come in you have to provide some credentials. They don't really trust you. You have to provide a cookie or some kind of session ID in order to be allowed to make requests. And the other side is kind of through the back door, where it looks like you are part of the system itself. So if you want to ask for a particular resource, if you look like you're part of the system they're not going to scrutinize you too much. They'll just let you do whatever you want to do. So really the nature of this exploit was we were able to manipulate some of those HTP headers to trick the system into thinking that we were coming in through the back door when we really coming in through the front. >> So take me through that that impact. That means remote execution. I can come in remotely and anonymous and act like I'm on the inside system. >> Yeah. >> And that's the case of the kingdom as you said earlier, right? >> Yeah. So the crux of the vulnerability is it allows you to make any kind of request you want to this system as if you were an administrator. So it lets you control the interfaces, set them up or down, lets you create packet captures, lets you add and remove users. And what we tried to do, which surprisingly the exploit didn't let us do was to create a new admin user. So there was some kind of extra code in there to stop somebody that did get that extra access to create an admin user. And so that kind of bummed us out. And so after we discovered the exploit we were kind of poking around to see what we could do with it, couldn't create an admin user. We were like, "Oh no, what are we going to do?" And eventually we came up with the idea to modify the existing administrator user. And that the exploit did allow us to do. So our initial POC, took some SSH keys adding them to an existing administrative user and then we were able to SSH in through the system. >> Awesome. Great, description. All right, so Zach, let's get to you for a second. So how does this happen? What does this... How did we get here? What was the motivation? If you're the chief attacker and you want to make this exploit happen, take me through what the other guy's thinking and what he did or she. >> Sure. So you mean from like the attacker's perspective, why are they doing this? >> Yeah. How'd this exploit happen? >> Yeah. >> And what was it motivated by? Was it a mistake? Was it intentional? >> Yeah, ultimately, like, I don't think any vendor purposefully creates vulnerabilities, but as you create a system and it builds and builds, it gets more complex and naturally logic bugs happen. And this was a logic bug. So there's no blame Fortinet for like, having this vulnerability and like, saying it's like, a back door. It just happens. You saw throughout this last year, F5 had a very similar vulnerability, VMware had a very similar vulnerability, all introducing authentication bypasses. So from the attacker's mindset, why they're actually going after this is a lot of these devices that Fortinet has, are on the edge of corporate networks and ransomware and whatever else. If you're a an APT, you want to get into organizations. You want to get from the outside to the inside. So these edge devices are super important and they're going to get a lot of eyes from attackers trying to figure out different ways to get into the system. And as you saw, this was in the wild exploited and that's how Fortinet became aware of it. So obviously there are some attackers out there doing this right now. >> Well, this highlights your guys' business model. I love what you guys do. I think it's a unique and needed approach. You take on the role of, I guess white hacker as... white hat hacker as a service. I don't know what to call it. You guys are constantly penetrating, testing, creating value for the customers to avoid in this case a product that's popular that just had the situation and needed to be resolved. And the hard part is how do you do it, right? So again, there's all these things are going on. This is the future of security where you need to have these, I won't say simulations, but constant kind of testing at scale. >> Yeah. >> I mean, you got the edge, it takes one little entry point to get into the network. It could be anywhere. >> Yeah, it definitely security, it has to be continuous these days. Because if you're only doing a pen test once a year or twice a year you have a year to six months of risk just building and building. And there's countless vulnerabilities and countless misconfigurations that can be introduced into a your network as the time goes on. >> Well, autonomous pen testing- >> Just because you're- >> ... is great. That's awesome stuff. I think it just frees up the talent in the organization to do other things and again, get on the real important stuff. >> Just because your network was secure yesterday doesn't mean it's going to be secure today. So in addition to your defense in depth and making sure that you have all the right configurations, you want to be continuously testing the security of your network to make sure that no new vulnerabilities have been introduced. >> And with the cloud native modern application environment we have now, hardware's got to keep up. More logic potential vulnerability could emerge. You just never know when that one N-vulnerability is going to be there. And so constantly looking out for is a really big deal. >> Definitely. Yeah, the switch to cloud and moving into hybrid cloud has introduced a lot more complexity in environments. And it's definitely another hole attackers going and after. >> All right. Well I got you guys here. I really appreciate the commentary on this vulnerability and this exploit opportunity that Fortinet had to move fast and you guys helped them and the customers. In general, as you guys see the security business now and the practitioners out there, there's a lot of pain points. What are the most powerful acute pain points that the security ops guys (laughing) are dealing with right now? Is it just the constant barrage of attacks? What's the real pain right now? >> I think it really matters on the organization. I think if you're looking at it from a in the news level, where you're constantly seeing all these security products being offered. The reality is, is that the majority of companies in the US actually don't have a security staff. They maybe have an IT guy, just one and he's not a security guy. So he's having to manage helping his company have the resources he needs, but also then he's overwhelmed with all the security things that are happening in the world. So I think really time and resources are the pain points right now. >> Awesome. James, any comment? >> Yeah, just to add to what Zach said, these IT guys they're put under pressure. These Fortinet devices, they could be used in a company that just recently transitioned to a lot of work from home because of COVID and whatnot. And they put these devices online and now they're under pressure to keep them up to date, keep them configured and keep them patched. But anytime you make a change to a system, there's a risk that it goes down. And if the employees can't VPN or log in from home anymore, then they can't work. The company can't make money. So it's really a balancing act for that IT guy to make sure that his environment is up to date, while also making sure it's not taken down for any reason. So it's a challenging position to be in and prioritizing what you need to fix and when is definitely a difficult problem. >> Well, this is a great example, this news article and this. Fortinet news highlights the Horizon3.ai advantage and what you guys do. I think this is going to be the table stakes for security in the industry as people have to build their own, I call it the militia. You got to have your own testing. (laughing) You got to have your own way to help protect yourself. And one of them is to know what's going on all the time every day, today and tomorrow. So congratulations and thanks for sharing the exploit here on this zero-day flaw that was exposed. Thanks for for coming on. >> Yeah, thanks for having us. >> Thank you. >> Okay. This is theCube here in Palo Alto, California. I'm John Furrier. You're watching security update, security news, breaking down the exploit, the zero-day flaw that was exploited at least one attack that was documented. Fortinet devices now identified and patched. This is theCube. Thanks for watching. (upbeat music)
SUMMARY :
Horizon3.ai is one of the companies It's good to be here. and how you guys are playing into this So the gist of it is, is that What are you exploiting? that the vendor doesn't yet know about. I call it the early And the details that we saw, And the first few hours were really about So the compressed files were hidden. of that compression algorithm. I mean, I saw the news and here are the mitigation steps for the folks that don't that and then once they announce the CVE, And the difference is zero-day And one of the first things we noticed was and act like I'm on the inside system. And that the exploit did allow us to do. let's get to you for a second. So you mean from like the How'd this exploit happen? So from the attacker's mindset, And the hard part is to get into the network. it has to be continuous these days. get on the real important stuff. and making sure that you have is going to be there. Yeah, the switch to cloud and the practitioners out there, The reality is, is that the James, any comment? And if the employees can't VPN and what you guys do. the zero-day flaw that was exploited
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Zach Hanley | PERSON | 0.99+ |
James | PERSON | 0.99+ |
James Horseman | PERSON | 0.99+ |
Fortinet | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Zach | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Tuesday | DATE | 0.99+ |
Friday | DATE | 0.99+ |
Monday | DATE | 0.99+ |
Sunday night | DATE | 0.99+ |
six months | QUANTITY | 0.99+ |
US | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
Sunday | DATE | 0.99+ |
HANLEY | PERSON | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Snehal | PERSON | 0.99+ |
Monday morning | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
40 minutes | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
last year | DATE | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
Horizon3.ai | ORGANIZATION | 0.98+ |
One | QUANTITY | 0.98+ |
three headers | QUANTITY | 0.98+ |
two methods | QUANTITY | 0.97+ |
next day | DATE | 0.97+ |
HORSEMAN | PERSON | 0.97+ |
once a year | QUANTITY | 0.96+ |
a year | QUANTITY | 0.96+ |
twice a year | QUANTITY | 0.96+ |
40 OS | QUANTITY | 0.95+ |
tons of files | QUANTITY | 0.94+ |
zero | QUANTITY | 0.93+ |
first things | QUANTITY | 0.91+ |
VMware | ORGANIZATION | 0.9+ |
ORGANIZATION | 0.89+ | |
VMDK | TITLE | 0.88+ |
zero-day | QUANTITY | 0.85+ |
Horizon3.ai | TITLE | 0.84+ |
COVID | OTHER | 0.83+ |
first few hours | QUANTITY | 0.79+ |
Attack Engineer | TITLE | 0.76+ |
days | QUANTITY | 0.76+ |
one little entry point | QUANTITY | 0.72+ |
F5 | TITLE | 0.71+ |
one attack | QUANTITY | 0.71+ |
FortiProxy | TITLE | 0.7+ |
Cube | ORGANIZATION | 0.62+ |
Cube | COMMERCIAL_ITEM | 0.62+ |
VMware | TITLE | 0.58+ |