Image Title

Search Results for IBM CDO Strategy Summit:

Kickoff | IBM CDO Strategy Summit 2017


 

>> Live from Boston, Massachusetts, it's the CUBE, covering IBM Chief Data Officer Summit, brought to you by IBM. (soft electronic music) >> Welcome to theCUBE's coverage of IBM Chief Data Strategy Officer Summit here in Boston, Massachusetts. I'm your host, Rebecca Knight, co-hosting here today with Dave Vellante. >> Hey, Rebecca. >> Great to be working with you again. >> Good to see you again. It's been a while. >> It has. >> Last summer, in the heat of New York. >> That's right, and now here we are in the dreariness of Boston. Dave, we just finished up the keynote. As you said, it's a meaty keynote. It's a seminal time for Chief Data Officers at companies. What did you hear? What most interested you about what Joe Kavanaugh said? >> Well, a couple things. I think it's worthwhile going back a few years. The ascendancy of the Chief Data Officer as a role and a title kind of emerged from the back-office records management side of the house. It really started in regulated industries. Financial services, healthcare, and government. For obvious reasons. These are data-oriented companies. They're highly regulated. There's a lot of risk. So, there's really sort of a risk-first approach. Then, that sort of coincided with the big data meme exploding. Then, this whole discussion of is data an asset or a liability? Increasingly, organizations are looking at it, as we know, as an asset. So, the Chief Data Officer has emerged as the individual who is responsible for the data architecture of the company, trying to figure out how to monetize data. Not necessarily monetize explicitly the data, but how data contributes to the monetization of the organization. That has a lot of ripple effects, Rebecca, in terms of technology implications, skillsets, obviously security, relationships with line of business, and fundamentally the organization and the mission of the company. So, IBM has been pretty leading and aggressive about going after the Chief Data Officer role, and has events like this, the Chief Data Officer Summit. They do them, kind of signature moments, and these little its and bit events. I don't know how many people you think are here. >> 150, I think. >> 150? Okay. And they're the data-rowdy of the Boston community. They're chartered with figuring out what the data strategy is. How to value data and how to put data front and center. Everybody talks about being a data-driven organization, but most organizations-- Everybody talks about becoming a digital business, but a digital business means that you are data driven. The data is first. You understand how to monetize data. You know how to value data. Your decisions are data-driven. I would say that less than 10% of the organizations that we work with are of that ilk. So, it's early days still. What was interesting about what Jim Kavanaugh says, they put forth this cognitive blueprint that Inderpal Bhandari, who'll be on theCUBE later, envisioned and has brought to life in his two years as the Chief Data Officer here at IBM. Now, what I like about what IBM is doing is they're sharing their dog food experience with their clients. He talked about that enterprise blueprint architecture but he also talked about what IBM is doing to transform. So, James Kavanaugh is the Senior Vice President of Transformation at IBM, and works directly for Jenny Remetti. He fundamentally talked about IBM as an organization that is data-first, cloud, and consumerization was the other big trend. Now, I don't know if IBM's hit on all three of those yet but they're certainly working to get there. The other thing that was interesting is they talked about the data warehouse as the former king, and now process is king. What I think is interesting about that, I want to explore this with those guys, is that technology largely is well known today. People have access to technology. You can get security from-- You can log in with Twitter linked in our Facebook. You can-- Look at Uber and Waze. They're really software companies but they're built on other platforms, like the cloud, for example. These horizontal platforms. It's the processes that are new and unknown. You know, when you look at these emerging companies like Air BnB and Uber and Waze, and so forth, the processes by which consumers interact with businesses are totally changed. >> Exactly. That is what Jim and James and Inderpal were saying is that this explosion in data is really forcing companies to rethink their business models. And it's-- Their reporting structures, how they innovate, the kinds of things that they're working on, the kinds of risks that are keeping them up at night. >> Yeah, Kavanaugh cited a study for 4,000 CXOs and they said the number one factor impacting business sustainability in the next five years are technology-related. Which again, I want to poke at that a little bit, because to me technology is not the problem. It's process and skill sets and people are the really big challenges. But, I think really what I interpret from that data, what the CXOs are saying, the challenge is applying technology to create a business capability that involves all the process changes, the organizational changes, the people and skills set issues. Of course, they threw in a little fear, uncertainty, and doubt with GDPR, the recent breaches. The other big thing that you hear from IBM at these events is that IBM is a steward of your data. That it's your data, we're not going to-- They have this notion of data responsibility. He didn't mention-- He said the unnamed west coast companies. Of course, he's talking about Google and Amazon, who are sucking in our data and then advertising to us and telling us, hey there's a special and what to buy and what movie to watch, and so forth. That's not IBM's business. But, there's a nuance there that again, I want to explore with these guys if we have time is, while IBM is not taking your data and then turning it into business through advertising, IBM is training models. I'm interested in hearing IBM's response about where's the dividing line between the model-- sorry, the data, and the model. If the data is informing the model, the model then becomes IP. What happens to that IP? Does it get shared across the client base within an industry? So, I really want to understand that better. >> Right, and that is one thing that Jim Kavanaugh will talk about, definitely, is the responsibility that IBM has in terms of our data and protecting it and keeping it private. >> Yeah, so what I like about these events is they're intimate. We get into it with the CDOs. We got CDOs at banks, we have the influencer panel coming on, a lot are data practitioners. And, so much has changed over the last three or four years that we're happy to be here with the CUBE. >> It is. It's going to be a great day. So, we will have much more here at the IBM Chief Data Officer Strategy Summit. I'm Rebecca Knight for Dave Vallante. Stay tuned. (soft electronic music)

Published Date : Oct 26 2017

SUMMARY :

it's the CUBE, Welcome to theCUBE's coverage with you again. Good to see you again. in the dreariness of Boston. The ascendancy of the Chief Data Officer of the Boston community. the kinds of risks that are is not the problem. is the responsibility the last three or four years It's going to be a great day.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Rebecca KnightPERSON

0.99+

RebeccaPERSON

0.99+

IBMORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Dave VallantePERSON

0.99+

Joe KavanaughPERSON

0.99+

Jim KavanaughPERSON

0.99+

AmazonORGANIZATION

0.99+

James KavanaughPERSON

0.99+

Jenny RemettiPERSON

0.99+

New YorkLOCATION

0.99+

DavePERSON

0.99+

KavanaughPERSON

0.99+

Air BnBORGANIZATION

0.99+

two yearsQUANTITY

0.99+

Inderpal BhandariPERSON

0.99+

UberORGANIZATION

0.99+

BostonLOCATION

0.99+

less than 10%QUANTITY

0.99+

JimPERSON

0.99+

Boston, MassachusettsLOCATION

0.99+

todayDATE

0.99+

firstQUANTITY

0.99+

TwitterORGANIZATION

0.98+

GDPRTITLE

0.98+

Last summerDATE

0.98+

WazeORGANIZATION

0.98+

4,000 CXOsQUANTITY

0.96+

FacebookORGANIZATION

0.96+

JamesPERSON

0.95+

threeQUANTITY

0.94+

IBM Chief Data Officer SummitEVENT

0.93+

IBM Chief Data Strategy Officer SummitEVENT

0.91+

first approachQUANTITY

0.87+

Chief Data OfficerPERSON

0.86+

InderpalPERSON

0.85+

IBM CDO Strategy Summit 2017EVENT

0.82+

one thingQUANTITY

0.82+

four yearsQUANTITY

0.79+

150QUANTITY

0.79+

oneQUANTITY

0.76+

Data OfficerPERSON

0.74+

Strategy SummitEVENT

0.7+

theCUBEORGANIZATION

0.69+

CUBEORGANIZATION

0.69+

DataPERSON

0.67+

Chief Data Officer SummitEVENT

0.63+

next five yearsDATE

0.59+

lastDATE

0.49+

Wrap | IBM CDO Strategy Summit 2017


 

>> Live from Boston, Massachusetts, it's theCUBE, covering IBM Chief Data Officer Summit, brought to you by IBM. (techno music) >> We are wrapping up theCUBE's coverage of the IBM CDO Strategy Summit here in Boston, Massachusetts. I'm your host Rebecca Knight, along with Dave Vellante. It's been a great day here in Boston at the CDO Strategy Summit. >> Yeah, I like these events, they're packed with content, very intimate. You know, not a lot of vendor push -- well, one vendor I guess is pushing. >> (laughs) >> But I like the way, we were talking to Chris Penn about earned media and owned media and paid media - this is all media. It's really the quality of the content that differentiates those media, and IBM always has really solid content here. A lot of practitioners, a lot of, not so much how to but hands on stories, use cases. >> Right. >> Maturity models, things of that nature. And I think we are seeing the maturity of the CDO role from a back office function to one that's sort of morphed into or evolved into data quality and part of the whole data-warehouse-as-king push, and that meant a lot of reporting, a lot of compliance, a lot of governance, to one that is really supporting a monetization mission of the business. And when you think about monetization at the simplest level, there's two ways to get there. You cut costs and you grow revenue. Now you should be careful, not all of these companies are for-profit firms, but in a commercial sense those are really the two levers that you can push, in a lot of forms. Productivity, time to market, time to value, quality, things of that nature, but at the end of the day it comes down to spending less, making more. >> Right, exactly, and I think that you made a great point in that data was the back office, it was sort of something we had to worry about, manage a bit, but now it's really front and center in the organization, and then thinking about using it to make money and to save money. And I think that's what we're learning about too, and what I've appreciated is how candid IBM is being, frankly, about mistakes that it has made, and it's saying this is a blueprint because we've learned. We've learned where we went wrong, and here's what we have to offer other companies to learn from us. >> Well, it's interesting too, if you take my little simple model of how to get value out of data, from IBM's standpoint, it's really a lot of opportunities to cut costs. A huge organization, 300,000 employees so we heard, from Jim Cavanaugh and Indabal Bendari today, how they're applying a lot of their data driven expertise to not only capture that data but understand how they can become more efficient. We haven't seen the growth from IBM. >> That's true. >> Everybody talks about the string of quarterly declines in terms of revenue. The good news is the pace of that decline is slow, that's the best you could say about IBM's top line, but the bottom line seems to be working. And IBM's such a huge machine that you can actually squeeze a lot of cash flow by saving some money. And there are a lot of stories about IBM and the supply chain and making that more efficient, which as we heard was a main focus of a lot of the CFOs, or CXOs out there. So, I mean IBM, we always talk about the steamship, you know, turning, and this has been a five- to seven-year turn, it's going to be interesting to see if IBM really will be perceived as a data driven company. They're pushing cognitive, there's a lot of blow back about Watson and how it's very services-led. Having said that, IBM's trying to do things that Google and Facebook and Amazon aren't trying to do. IBM's trying to solve cancer, for example. >> Right, right. >> Those other companies are trying to push ads in your face. So, got to give props to IBM for that effort. >> The social innovation piece I think is really a part of this company's DNA. >> Yeah, I mean, you know, again, frankly the Silicon Valley crowd sort of poo poos Watson from a technological perspective, honestly I'm not really qualified to address that question, but IBM tends to take capital and pour it into long-term businesses and eventually gets there. So, it's not there yet, and so, but if IBM can use the data to become a more efficient company, be more responsive to its customers, understand the needs of its clients better, that's going to yield results. >> And I think the other part that we've heard a lot about today is the cultural transformation that's needed to make these dramatic changes in your business. As you said, IBM is a huge company, hundreds of thousands of employees dispersed across the globe, so teams working across time zones, across cultures, across languages. That is difficult to really say, no, this is where we're going, this is our blueprint for success. Everyone come on board. >> Well, and you've seen some real cultural shakeups inside of IBM. I mean I was mentioning just a very small example, when you go to the third floor at Armonk now, the big concrete building, it's now all open, this is a corporate executive office. It's an open area with open cubicles, they're nice cubes, believe me, the cubes are nicer than your office, I guarantee it. But they're open, you can see executives, you can talk to executives in an open way. That's not how IBM used to be, it was very closed off and compartmentalized. >> Or everyone was working from home. That frankly... >> Well, that's the other piece of it, right? >> Yeah. >> They said, hey, guys, time to create the beehive effect. And that's created a lot of dislocation, a lot of concerns and blow back, but personally I like that approach. If you're trying to foster collaboration, nothing beats face to face contact. That's why we still have events and that's why theCUBE... >> That's why we're here. >> ...comes to these events, right? >> No, you're absolutely right, a growing body of research has really pointed to the value and the benefit of an open office to spur collaboration, spur creativity, to get colleagues really working and understanding the rhythms of each other's interpersonal lives and work lives, and really that's where the good ideas come from. >> Yeah, so I mean those decisions are tough ones for organizations to make, but I'm presuming that IBM had some data... >> Yeah. >> ...related to this, I hope they did, and made that decision. You know, and it's way too early to tell if that was the right or the wrong move. Again, I tend to lean toward the beehive approach as a positive potential outcome. >> Right, exactly. So, the other piece that we've heard a little bit about today is this talent shortage, the skills shortage because you made this great point when we were talking to Chris Penn of Shift Communications. So much of all of this stuff is now math and science, and that's not what you typically think of as someone who's in marketing, for example. We have a real shortage of people who know data science and analytics, and that's a big problem that a lot of these companies are facing and trying to deal with, some more successfully than others. >> Yeah, I mean I think that the industry is going to address that problem because all this deep learning stuff and this machine learning and AI, it is largely math and it's math that's known. When you really peel the onion and get into the sort of the type of math, you hear things like, oh, support vector machines and probabilistic latent cement tech indexing. >> (laughs) >> Okay, but these are concepts in math and algorithms that have been proven over time, and so I guess my point is, I think organizations are going to bring people in with strong math and computer skills and people who like data and can hack data, and say, okay, you're a data scientist, now figure it out. And over time I think they will figure it out, they'll train people. The hard part about that is, not necessarily the math, if you're good at math you're good at math, it's applying that math to help your organization understand A. How to monetize data, B. How to have data that's trusted. We heard that a lot. >> Yeah. >> So the quality of the data. C. Who gets access to that data, how do you secure and protect that data, what are some of the policies around that data. And then in parallel, how do you form relationships with the line of business? You got geeks talking to wallets. >> Right, yeah. >> How do you deal with that? >> You need the intermediary who can speak both languages. >> And then ultimately the answer to that I think is in skill sets and evolving those skill sets. So those are sort of the five things that the chief data officer has to think about, three are in parallel, or, three are in sequential and two are in parallel. >> Yeah, you also mentioned the trust in the data, and you were talking about it from an internal standpoint of colleagues agreeing, alright, this is what the data is telling us, this is clearly the direction we go in, but then there's the trust on the other side too, which is the trust that the company has with customers and clients to feel okay about using our data, using my data to make decisions. >> Well, I think it's a great point. It was interesting to hear Chris Penn's response to that. He was basically saying, well, we could switch suits, but it's not going to have the same impact. I'm not buying it. I'm really going to keep pushing on this issue because, while I agree that IBM doesn't have the same proclivity to take data and push ads in front of your face, it's unclear to me how you train models and somehow those models don't seep out. Now, IBM has said, we heard some IBM executives say, no, they're the customers' models. But you know, ideas get in people's heads and things happen. And that's just one example. There are many, many other examples. So think about internet of things and the factory floor, and you've got some widget on the floor that's capturing data, and that widget manufacturer wants to use data for predictive analytics, for predictive failures, sending data back home, and then who knows what other insights they're going to gather from that data? Whose data is that? Is that data owned by the widget manufacturer, is that data owned by the factory? >> Right. >> It's their process, it's their work flow. Now of course if I'm the factory owner I'm going to say it's my data, if I'm the widget manufacturer I'm going to say that's my data, so... >> And you're both right. >> And you're both right. >> That's the problem here, is that there's no real arbiter to say, to make that determination. >> Yeah, and I don't think these things have been challenged in court and certainly not adequately, and so there's a lot of learnings that are going to occur over the next decade, and we'll watch that evolution. >> But Jim Cavanaugh is right, we are at a real seminal moment here for this explosion in data, which is really changing the role of the CDO and how it fits in with the rest of the organization. >> Yeah, and I think the other thing to watch is how (mumbles) talks about data driven organizations, digital businesses, cognitive businesses, what are those? Those are kind of buzzwords, but what do they mean? What they mean, in our view, is how well you leverage data to create a competitive advantage, and that's what a digital business does. It uses data differentially (chuckles) to retain customers, attract and retain customers. And so that's what a digital business is, that's what a cognitive business is. Most businesses really aren't digital businesses today, or cognitive businesses today, they're really few and far between. So a lot of work has to be done before we reach that vision. Yeah, everybody throws out the Ubers and the Airbnb's, those are sort of easy examples, but when you have giant logistic systems and supply chains and ERP systems and HR systems with all this stovepipe data, becoming a "digital business" ain't so easy. >> No, and we are really in early days, exactly. So that's something to discuss at the next CDO Strategy Summit. >> And I think there was a lot of discussion early on when the CDO role emerged that they're essentially going to replace the CIO, I don't see it that way. There's a lot of discussion about what's the growth path for the CIO, is it technology or is it business? But I think the CIO's okay. >> Yeah? >> I think the CDO, I think actually there's more overlap between the chief digital officer and the chief data officer, because if you buy the argument that digital equals data, then the chief data officer and the chief digital officer are kind of one in the same. >> Right, right. >> So that to me is a more interesting dynamic than the CIO versus the CDO. I don't see those two roles as highly overlapping and full of friction. I really see that the chief digital officer and the chief data officer are more, should be more aligned and maybe even be the same role. >> And it gets back to the organizational politics that are involved, with all of these massive changes taking place. >> Well, again, first, the starting point for a CDO in a for-profit company is, how can we use data to create value and monetize that value? Not necessarily sell the data, but how does data contribute to our value creation as a company? So, with that as the starting point, that leads to, okay, well, if you're going to be data driven, then you better have measurements, you better have a system. I mean do you use enterprise value, do you use simple ROI, do you use an IOR calculation, do you use a more sophisticated options-based calculation? I mean, how do you measure value and how do you determine capital allocation as a function of those value measurements? The vast majority of the companies out there certainly can't answer that across the board, the CFO's office might be able to answer some of that, but deep down the line of business in the field where decisions are being made, are they really data driven? They're just starting, I mean this is first, second inning. >> Right, right, right. So there's much more to come. Great. Well, you have watched theCUBE's coverage of the IBM CDO Summit. Thanks for tuning in. For Rebecca Knight and Dave Vellante, we'll see you next time. (techno music)

Published Date : Oct 25 2017

SUMMARY :

brought to you by IBM. of the IBM CDO Strategy You know, not a lot of vendor push -- But I like the way, we and part of the whole in the organization, We haven't seen the growth from IBM. but the bottom line seems to be working. So, got to give props of this company's DNA. the data to become a of employees dispersed across the globe, the big concrete building, Or everyone was working from home. to create the beehive effect. and the benefit of an open office but I'm presuming that and made that decision. and that's not what you typically think of the industry is going to not necessarily the math, and protect that data, what You need the intermediary who can speak the answer to that I think and clients to feel okay is that data owned by the factory? Now of course if I'm the factory owner That's the problem here, to occur over the next the role of the CDO the other thing to watch So that's something to discuss at the next for the CIO, is it and the chief data I really see that the And it gets back to the the CFO's office might be able to answer of the IBM CDO Summit.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Rebecca KnightPERSON

0.99+

Dave VellantePERSON

0.99+

Chris PennPERSON

0.99+

IBMORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Jim CavanaughPERSON

0.99+

GoogleORGANIZATION

0.99+

BostonLOCATION

0.99+

FacebookORGANIZATION

0.99+

twoQUANTITY

0.99+

threeQUANTITY

0.99+

Indabal BendariPERSON

0.99+

five thingsQUANTITY

0.99+

firstQUANTITY

0.99+

Boston, MassachusettsLOCATION

0.99+

300,000 employeesQUANTITY

0.99+

two waysQUANTITY

0.99+

third floorQUANTITY

0.99+

AirbnbORGANIZATION

0.99+

Boston, MassachusettsLOCATION

0.99+

Shift CommunicationsORGANIZATION

0.99+

both languagesQUANTITY

0.99+

bothQUANTITY

0.99+

two rolesQUANTITY

0.99+

one exampleQUANTITY

0.99+

two leversQUANTITY

0.99+

Silicon ValleyLOCATION

0.98+

todayDATE

0.97+

UbersORGANIZATION

0.97+

IBM CDO SummitEVENT

0.96+

seven-yearQUANTITY

0.96+

CDO Strategy SummitEVENT

0.96+

IBM CDO Strategy SummitEVENT

0.92+

second inningQUANTITY

0.91+

five-QUANTITY

0.91+

WatsonPERSON

0.91+

IBM CDO Strategy Summit 2017EVENT

0.89+

oneQUANTITY

0.89+

one vendorQUANTITY

0.88+

Chief Data Officer SummitEVENT

0.81+

theCUBEORGANIZATION

0.8+

ArmonkORGANIZATION

0.74+

hundreds of thousands of employeesQUANTITY

0.73+

next decadeDATE

0.69+

Mark Lack, Mueller | IBM CDO Strategy Summit 2017


 

>> Live from Boston, Massachusetts, it's the CUBE covering IBM Chief Data Officer Summit. Brought to you by IBM. >> Welcome back to the CUBE's live coverage of the IBM CDO Strategy Summit here in Boston, Massachusetts. I'm your host, Rebecca Knight, along with my co-host Dave Vellante. We're joined by Mark Lack. He is the Strategy Analytics and Business Intelligence Manager at Mueller Inc. Thanks so much for joining us, Mark. >> Thank you for the invite. >> So why don't you tell our viewers a little bit about Mueller and about what you do there. >> Sure, Mueller Inc. is based in the southwest. Ballinger, Texas, to be specific. And, I don't expect anybody, unless they Google it right now, would be able to find that city. But that's where our corporate headquarters and our main manufacturing plant has been. And, we are a company that manufactures and retails steel building products. So, if you think of a warehouse, or a backyard building or even a metal roof, or even I was looking downtown, or downstairs, earlier today, this building is made out of big steel girders. We take those and form them into a product that a customer can use for storage or for living or for any of whatever their use happens to be. Typically, it might be agricultural, but you also find it in very, very large buildings. Mueller is a retailer that happens to manufacture its products. Now, that's a very important distinction, because the company, up until about 15, 20 years ago, viewed itself as a manufacturer that just happened to retail its products. And so when you take the change in the emphasis, your business changes. The way you approach your customers, the way you approach your products, the way you market yourself, is completely different from one side to the other. We've been in business since 1930s, been around for a very long time. It's a family owned business that has it's culture and it's success rooted in West Texas. We have 40 locations all over the southwest. We're headquartered in Ballinger, Texas. We're as far east as Oak Grove, Louisiana and as far west with locations as Albuquerque, New Mexico. >> So you do cognitive analytics for Mueller, so tell our viewers a little bit about what you do there. >> Sure. Mueller has always been on the forefront of technology. Not for technology's sake, but really for effectiveness and efficiency's sake. So Mueller did business process reengineering when it was common for much larger organizations to do. But Mueller took it under as the reality for us to manage our business in the future. We need to have the professional tools to be able to do this. So we set on in our industry using technology in novel ways that our competition just doesn't do. So with the implementation of technology, what you have is a lot of data that comes along. And so we've been very effective using it for our balance scorecard to report metrics and keep the organization on track with that. Giving information back to various parts of the organization and then also creating an analytics platform and program that allows us to really dive deep into the organization and the data and everything that's being thrown off from modern technology. So cognitive analytics. This is something, as you hear about in technology today is, from the robots to artificial intelligence. Cognitive analytics, I think is for us a better way of looking at it of augmented intelligence. We have all of this data, we have these wonderful systems that help give us information to give us the answers we need on our business processes. We have some predictive analytics that help us to identify the challenges going ahead. What we don't have is the deep dive into using these technologies of cognitive to take all of this big data and find answers to situations that it would take a hundred people a hundred years to find out to be able to mine through. So the cognitive analytics is our new direction of analytics, and to be honest with you it's really the natural progression from our traditional analytic system. So as I said before, we have the regular analytics, we have the predictive analytics. As we get into cognitive, this is the next generation of how do we take this data that we have, that's coming at a volume and a velocity and a variety that is so difficult to look at as it is in a spreadsheet, and offload this onto system that can help us to interpret, give us some answers that we can then judge and then make decisions from. >> So, as you said, you have a lot of data. You got customer data, you got supply chain data, you got product data, you got sales data, retail location data. What's the data architecture look like? I mean, some data is more important than other data. How did you approach this opportunity? >> So, a few years ago I went to the first World of Watson, which was in New York. There was about a thousand attendees and Ginni Rometty had had this great presentation and it was very inspiring and she asked, "What will you do with Watson?" And at the time I had no idea what we were going to do with Watson, and so I sat on the plane on the way back and I thought through what are the business case scenarios that we can use to use artificial intelligence in a steel building company in Ballinger, Texas. Don't forget the irony of that part. As we're going to to go back to start using cognitive. So I thought through this and I went to our owner and we had many, many conversations on cognitive. You had the jeopardy, the Watson championship and you started thinking about all of these systems. But the real question was how could we take a new technology and apply it to our existing business to make a difference? And I'm getting to the answer to your question on how it got structured. So we went down the path of investigating Watson, and we've realized that the cognitive is part of our future. And so we plan on leveraging cognitive in many ways. We'd like to see it sales effectiveness, operations effectiveness, transportation effectiveness. There are all sorts of great ideas that we have. One of the challenges we have, and the reason I'm here at the CDO Summit, is when we start to look at our data, the question is are we cognitive ready? And I'll be honest to you, we are for today for a sliver of what cognitive capability is. As you've always heard the numbers 80% of your data is in unstructured format. So we have lots and lots of unstructured data. We have a lot of structured data. When it comes to the analytics around our structured data, we're pretty good, but when you start talking about unstructured data, how do we now take this to add to our structured data and then have a more complete picture of the problem that we're searching? So what I'm hoping to gain here at the CDO Summit is talking to some of these world-class leaders in data operations and data management to help understand what their pain points were. Learn from them so I can take that back and help to architect what our needs are so that we can take advantage of this entire cognitive future that's... >> So you're precognitive. So cognitive ready, let's unpack that a little bit. That means, that what you've got a level of confidence in the data quality? You've got an understanding of how to secure it, govern it, who gets access to it? What does that mean, being cognitive ready? >> So it's going to to be all of those. All of the above. First is, do you have the data? And we all have data, whether it's in spreedsheet on our systems, whether it's in our mobile phone, whether it's on our websites, whether it's in our EIP systems, and I can keep going on >> You got data. >> We have data, but the question is, do we have access to the data? And if you talk to some people, well sure, we have access to the data. Just tell me what data you want and I'll get you access. Okay, well, that is one answer to a much larger problem, because that's only going to give you what your asking for. What the cognitive future is promising for us is we may not know the questions to ask. I think that's the difference between traditional analytics and then the cognitive analytics. One of the benefits of cognitive will be the fact that cognitive will give answers to questions that we're never asked. And so now that this happens, what do we do with it? You know, when we start thinking about having attacking a problem, you know, being data ready, having the data there, that's part of the problem. And I think most companies say we're pretty good with our data. But with the 80% that we don't have access to, the real question is, are we missing that crucial piece of information that prevents us from making the right decision at the right time? And so our approach, and what I'm going to go back with, is understanding the data architecture that those who have gone before me that I can pick up and bring back to my organization and help us to implement that in a way that will make it cognitive ready for the future. You know, it's not just the access to the data; it's having the data. And I had lunch a few years ago with Steve Mills who was a senior executive for IBM, and one of the people at lunch was bold enough to ask him, "How do we know what data to capture?" And he said, very bluntly, "All of it." Now this was about five years ago. So, back then, you're shaking your heads saying, "We don't have storage capabilities. "We don't have the ability to store all these data." But he had already seen the future, and what he was telling us right then was all of it is going to be valuable. So where we are today, we think we know what data's valuable. But cognitive's going to help us to understand what other data might me valuable as well. >> So I'm interested in your job from the perspective of the organizational change. And you work for, as you said, a small family-owned company. Smallish of family-owned company. And we've heard a lot of today about the business transformation, the technology involved, and how that has really changed dramatically over the last decade. But then, there's also this other piece which is the social and cultural change within these organizations. Can you describe your experience in terms of how your colleagues interpret your world? >> You're asking me those questions 'cause you can see the bruises from whatever I have to accomplish. (laughter) You know, within an organization, one of the benefits of working that I found at Muller, and it's a family organization, is that those who work there, and I've been there for 18 years, and I'm still considered a newcomer to the organization right after 18 years. But we're not there unless we have a strong commitment to the organization and to the culture of the company. So, while we may not always agree as to what the future needs to hold, okay? We all understand we need to do what's best for this company for its long term survival. At the end of the day, that's what we're there to do. So culturally, when you first come up with saying you're going to do artificial intelligence, you know, you got a lot of head-scratching, especially in West Texas. I have a hard time explaining even to those around me what it is that I do. But, once you start telling the story that we have data, we have lots of data, and that there might be information in that data that we don't know now but in the future we may have, and so, it's important for us to capture that data and store it. Whether or not we know that there's immediate value, we know there's some value, okay? And if we can take that leap that there's going to be some value, and we're here with the help of the organization faces, we know that there are challenges to every organization. We're a still building company in Ballinger, Texas. Now I know I keep saying that, but what if a company like Uber comes up with metal building and all of a sudden, we have new challenges that we never thought we'd face? Many organizations that have been up, industries that have been in upheaval from these changes in either technology access or a new idea that splits the difference. We want to make sure we can stay ahead, and so when we start talking about that from a culture, we're here for the long term value of the company. We're committed to this organization, so what it do we need to do? And so, you know, the term "out of the box thinking" is something that sometimes we have to do. That doesn't mean it's easy. It doesn't mean that we all immediately say, "Aha! This is what we're going to do." It takes convincing. It takes a lot of conversation, and it takes a lot of political capital to show that what it is that we're going to do is going to make sense and use a lot of good examples. >> Well, and you come to tongue-in-cheek about people rolling their eyes about AI and so forth, but any manufacturer who sees 3D printing and the way it's evolved goes "Wow!" And then the data that you can capture from that, so, I wanted to ask you, when you talk to your colleagues and people are afraid that robots are going to take over the world and so forth, but what are the things that when you think about augmented intelligence that, you know, where do the machines leave off and the humans pick up? What kinds of things do humans do in your world that machines don't do that well? >> So, you know, if I go back and think about analytics, for example, there's a lot of time collecting data, storing data, translating data, creating contract to retrieve that data, putting that data into a beautiful report and then handing it out. Think of all that time that it takes to get there, right? A lot of people who are in analytics think that they're adding value by doing it. But to be honest with you, they're not. There's no value in the construct. And so, what the value is in the interpretation of that data. So what do computers do well and what do we do well? We do well at interpreting what those findings tell us. If we can offload those transactions back to a machine that can set the data for us, automatically construct the data, put it into a situation for us that can then allow us to then interpret the results? Then we're spending the majority of our time adding value by interpreting and making changes with the company versus spending that same time going back and constructing something that may or may not be something that may add value. So we spend 80% of our time creating data for a report. The report, now we have to test the report to determine, can I communicate this the right way? You have machine learning now and you have tools that will then take this data and say, "Oh, this is numerical data. "This looks like general ledger data. This is the type of way this data should be displayed." So I don't have to think of a graph. It suggests one for me. So what it does is then allow me to interpret the results, not worry about the construct. >> So you can focus on the things that humans do well. But the other thing I want to talk to you about is the talent issue. I mean you guys, you've mentioned before that you're based in West Texas and you are working on a real vanguard in your industry. As I said, you were someone who is thinking about whether or not Uber is going to say, "Let's make steel buildings." I mean, is that a problem that you're facing, that your company is facing? >> Well, there is no joke, right, that the fact of the future's going to have a man and a dog. And the man's job is to feed the dog, and the dog's job is to bite the man if he tries to touch any of the machinery, right? So, I don't think that we're there. The jobs aren't going to be eliminated to where people are not able to add value. But finding a talent, back to your question, is the expectation that we have of talent, it is scarce. Finding people that have the skills to now interpret the data, so you can find people that have a lot of time that can do any of those steps in between. But now, what's happened is, you want people to add value, not create constructs that don't add the value. So the type of talent that you look for are people who can interpret this information to give us the better answers that we need for the organization to thrive. And that's really where I see the talent shifting is on more forward-looking, outcome-based, value-based decision making, not as much on the development of items that could be offloaded to a machine. >> Yeah, I mean, interpretation, creativity, ideation. I mean, machines have always replaced humans. We've talked about this on The Cube before, but the first time in human history, machines are replacing humans in cognitive functions. I mean, you gave an example of the workflow of developing a report, which... >> Kenney Company can relate to, yeah. >> But yeah, 10 years ago, that was like super valuable. Today it's like, "Let's automate that." >> Well, but the challenge I think where people have is where do they add value? What is the problem that we're trying to solve? It's where do we add value. If we add value creating the construct, you aren't going to be employed, because something else is going to do that. >> But if you add value on focusing on the output and being able to interpret that output in a way that adds value to your company, you'll be employed forever. So, you know, people that can solve problems, take the information, make decisions, make suggestions that are going to make the company better, will always be employed. But it's the people who think they add value flipping a switch or programming a lever, now, they think their value's very important there, but I think what we have to do and it behooves us, is to translate those jobs into where do you add value? Where is the most important thing you need to be doing for the success of this company? And that I think is really the future. >> Are you... We haven't asked any IoT questions today. I want to ask you, are you sort of digitizing, instrumenting for your customers the end products of what you guys produce, and how was that creating data? >> You know, we haven't, we talked about it. We don't have products that, we're not selling things that are machinery that might break down and give us information, and so, we're building final products that are there, that people will then do different things with. So, IoT hasn't worked for us from a product standpoint, but we are looking at our various machinery and making sure that we have understanding as to those events that are causing a break down. One of the challenges we have in our industry is if we have a line that manufactures apart, if it goes down, okay, now it shuts everything down. So we have a duplicate, which can get very expensive. We have duplicates of everything, and how many duplicates do you need to have to make sure you have duplicates of the duplicates? So if we can start to look at the state of this coming from our machinery, and use that as a predictor, then we can use that, and so you have sort of an IoT thing there by looking at the data that's there. But is it feeding back into our normal reporting systems? It's not necessarily like it is from a smartphone are enabled like that. >> No, but it's anticipating a potential outage. >> Sure. >> And avoiding that. Yeah, great. >> Well Mark, thanks so much for coming on The Cube. It was wonderful conversation. >> Thank you. >> I'm Rebecca Knight with Dave Vellante. We will have more from the CDO Summit just after this. (upbeat music)

Published Date : Oct 25 2017

SUMMARY :

Brought to you by IBM. CUBE's live coverage of the and about what you do there. customers, the way you approach bit about what you do there. of analytics, and to be honest with you What's the data architecture look like? One of the challenges we have, in the data quality? All of the above. the access to the data; from the perspective of in the future we may have, that can set the data for us, is the talent issue. and the dog's job is to bite the man example of the workflow that was like super valuable. What is the problem that and being able to interpret that output of what you guys produce, and and making sure that we have understanding No, but it's anticipating And avoiding that. It was wonderful conversation. We will have more from the

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Rebecca KnightPERSON

0.99+

UberORGANIZATION

0.99+

Steve MillsPERSON

0.99+

Mark LackPERSON

0.99+

IBMORGANIZATION

0.99+

New YorkLOCATION

0.99+

Ginni RomettyPERSON

0.99+

MarkPERSON

0.99+

80%QUANTITY

0.99+

18 yearsQUANTITY

0.99+

40 locationsQUANTITY

0.99+

FirstQUANTITY

0.99+

West TexasLOCATION

0.99+

Mueller Inc.ORGANIZATION

0.99+

Boston, MassachusettsLOCATION

0.99+

Ballinger, TexasLOCATION

0.99+

TodayDATE

0.99+

OneQUANTITY

0.99+

1930sDATE

0.98+

10 years agoDATE

0.98+

first timeQUANTITY

0.98+

CDO SummitEVENT

0.98+

todayDATE

0.98+

about a thousand attendeesQUANTITY

0.97+

Kenney CompanyORGANIZATION

0.97+

MullerORGANIZATION

0.97+

WatsonORGANIZATION

0.96+

firstQUANTITY

0.95+

earlier todayDATE

0.95+

CUBEORGANIZATION

0.94+

last decadeDATE

0.91+

few years agoDATE

0.91+

IBM CDO Strategy SummitEVENT

0.9+

one sideQUANTITY

0.89+

MuellerORGANIZATION

0.88+

about 15, 20 years agoDATE

0.87+

one answerQUANTITY

0.87+

Albuquerque, New MexicoLOCATION

0.84+

Oak Grove, LouisianaLOCATION

0.83+

IBMEVENT

0.82+

CDO Strategy Summit 2017EVENT

0.81+

few years agoDATE

0.81+

GoogleORGANIZATION

0.81+

hundred peopleQUANTITY

0.81+

about five years agoDATE

0.8+

one ofQUANTITY

0.8+

IBM Chief Data Officer SummitEVENT

0.79+

oneQUANTITY

0.77+

MuellerPERSON

0.76+

a hundred yearsQUANTITY

0.72+

peopleQUANTITY

0.63+

World of WatsonEVENT

0.63+

WatsonTITLE

0.46+

CubeORGANIZATION

0.45+

CubeCOMMERCIAL_ITEM

0.35+

Caitlin Halferty & John Backhouse | IBM CDO Strategy Summit 2017


 

>> Live from Boston, Massachusetts, it's the Cube, covering IBM Chief Data Officer Summit. Brought to you by IBM. >> Welcome back to the Cube's live coverage of the IBM CDO Summit here in Boston Massachusetts. I'm your host, Rebecca Knight, along with my co-host Dave Vellante. We are joined by Caitlin Halferty. She is the Chief of Staff IBM Data Office, and also John Backhouse, the chief information officer and senior VP at CareEnroll. Thank you both so much for coming on the Cube. >> Great to be here. >> Thank you, good to see you. >> So before the cameras were rolling, John, we were talking about how you have this very unique vantage point and perspective on the role of the CIO and CDO. Can you tell our viewers a bit about your background? >> Sure. I started off in the military. I was in the army for 12 years as a military intelligence officer. I then moved to the NHS, which is a national health service in England and where I wrote the Clinical Care Pathways for myocardial infraction and diabetes pre-hospital. I then moved to the USA and became Chief Data Officer for Envision Healthcare, one of the largest hybrid providers of insurance and clinical care. And then I became a CIO for a multi-state Medicare program. >> So you've been around, so to speak (laughter) But the last two roles, CIO and CDO, so how would you describe them? I mean obviously two different places, but is it adversarial? Is it cooperative? What is the relationship like? >> I think its, the last couple of years, CDO role has matured, and it's become a direct competition between a CIO and a CDO. As my experiences I've been fighting for the same budget. I've been fighting for the same bind, I've been fighting for the same executives to sponsor my programs and projects. I think now as the maturity of the CDO has stepped out, especially in health, the CDO has a lot more power between the conduit between the business and IT. If the CDO sits in IT he's doomed for failure because it's a direct competition of a CIO role. But I also think the CIO role has changed in the way that the innovation has stepped up. The CIO role used to be "Your career is over, CIO." (laughter) Now it's the innovational aspect of infrastructure, cloud cognitive analysts, cognitive solutions and analytics so that the way the data is monetized and sold and reused, in the way that the business makes decisions. So I see a big difference. >> How much of that, sort-of authority, if I can use that term, of the chief data officer inside of a regulated company versus you're in the office of the chief data officer in an unregulated company, compare and contrast. >> Well, the chief data officer's got all the new regulatory compliancies coming down the GDC, the security, safe harbor, and as the technology moves in to cloud it becomes even harder. As you get PCI, HIPPA and etc. So, everything you do is scrutinized to a point where you have to justify, why, what, and when. And then you have to have the custodian of who is responsible. So then no longer can you say, "I got the data for this reason." You have to justify why you have that information about anything. And I think that regulatory component is getting stronger and stronger. >> And you know, we've often talked about the rise of the CDO role and how it's changed over the last few years. Primarily it started in response to regulatory and compliance concerns within financial services industries as we know banking and insurance, healthcare. And we're seeing more and more retail consumer products. Other industries saying look, "We don't really have enterprise-wide management of data across the organization" Investing in that leadership role to drive that transformation. So I'm seeing that spread beyond the regulated industries. >> Well Caitlin, in the keynote you really kicked off this conference by reminding us of why we're all here and that is to bring chief data officers together, to share those practices, to share what they've learned in their own organizations. Hearing John talk about the fight for resources, the fight to justify its existence. What do you think, how would you tease out the best practices around that? >> The way we've approached it, you know, I've mentioned this cognitive enterprise blueprint that we highlighted and released this morning. And this has been an 18-month project for us. And we've done it in close partnership with folks like John, giving a lot of great insight and feedback. And essentially the way we see it is there's these four pillars. So it's the technology piece and getting the technology right. It's the business process, both CDO-owned processes as well as enterprise-wide. And then the new piece we've added is around data, understanding the data part of it is so important. And so we've delivered the blueprint and then taking it to the next level to figure out what are the top used cases. How do we prioritize to your question, where prioritized-used cases. >> So, come back to the overlap between the CIO and CDO. I remember when I first met Ender Paul, we had him on the Cube and he's seared into my brain he's five points that the CDO has to do, the imperative. And three were sequential two were in parallel. One was figure out how to monetize, how you're data can contribute to the monetization of your company. Second was data trust and sources, third was access to that data and those were sequential >> Right. Processes and then he said "Line of business and skill sets were the other two that you kind of do in parallel, >> Absolutely. forge relationships with a lot of businesses and re-skill. Okay, so with that as the Ender Paul framework for what a CDO's job was... I loved it, I wrote a blog about it, (laughter) I clipped it. >> That's very good >> But the CIO hits a lot of those areas, certainly data access, of trust and security, the skill sets. Thinking about that framework, first of all do you buy it? I presume it's pretty valid, but where do you see the overlap and the collaboration? >> So I think that the framework works out and what IBM has produced is very tangible, it means you can take the pieces and you can action them. So, before you have to reflect on one: building the team, getting the right numbers in the team, getting the right skill sets in the team. That was always a challenge because you're building a team but you're not quite sure what the skill set is until you've started the plan and the math and you've started down that pathway, so with that blueprint it helps you to understand what you're trying to recruit for, is one aspect, and then two is the monetization or getting the data or making it fit for purpose, that's a real challenge and there's no magic wand for this, you know it depends on what the business problem is, the business process and understanding it. I'm very unique cause not only have I understand the data and the technology I actually give it the clinical care as well, so I've got the translations in the clinical speak into data, into business value. So, I can take information and translate it into value very quickly, and create a solution but it comes back to that you must have a designer and the designer must be an innovator, and an innovator must stay within the curve and the object is the business problems. That enables, that blueprint to be taken and run with, and hit the ground very quickly in an actionable manner. for me information in health is about insights, everybody's already doing the medical record, the electronic record, the debtor exchange. It's a little immature in health and a proper interoperability but it there and it's coming it's the actually use of and the visualization of population analysis. It used to be population health, as in we knew what we were doing after the fact, now we need to know what we are doing before the fact so we can target the outreach and to move the right people in the right place at the right time for the right care, is a bigger insight and that's what cognitive and the blueprint enables. >> So Caitlin, it feels like these two worlds are really coming together, you know, in the early days it was just really regulated businesses. >> Correct. >> Now with GDPR now everybody is a regulated business, >> Right. >> And given that EMR, and Meaningful Use and things like that are kind of rote now. >> Yeah. >> Regulated industries are really driving for that value holy grail. >> Yeah. >> So, I wonder if you could share your perspectives on those two worlds coming together. >> Yeah I do see them coming together, as well as the leadership. >> Right, yeah. >> Across the C-sweep, it's interesting we host these two in-person summits, one in the spring in San Francisco one here in Boston in the fall and we get about 120 or so CDOs that join us. We pull for, what are top topics and we always get ones around data monetization, talent, the one again that came up this year was changing nature of to the point on building those deep analytics partnerships within the organization, changing the relationships between CDOs and C-sweep peers. We do a virtual call with about 25 CDO's and we had John as our guest speaker, recently >> Yeah. And it was our best attended call, (laughter) it was solely focused on how CDOs and CIOs can partner together to drive business critical cross-enterprise initiatives, like GDPR in ways that they haven't in the past. >> Yeah. >> It was a reinforcement to me that building those relationships, that analytic partnership piece, is still top of mind to our CDO community. >> Yeah, and I think that the call itself was like sun because I invited the chief of their office and now he's the innovator and the chief information officer used to be the guy who kept the lights on, that's no longer the fact. The chief information officer is the innovator of the infrastructure, the design, the monetization, the value, the business and the chief in their office now has become the chief designer of information to make it fit for purpose, for presentation, for analytics, for the cognitive use of the business. Those roles now, when you bring them together, is extremely powerful and as the maturity comes of these chief there officer roles with the modern approach to chief information then you have a powerful, powerful dynamic. >> Well let's talk about the chief innovator, it reminds me of 1999. (laughter) >> If you want to be a CEO you've got to go the CEO's office and then Y2K on the whole thing blew up. (laughter) >> What's different now though, is the data >> Yeah. - [Caitlin] Absolutely. >> There certainly was a lot of data back then but not nearly like it is today and the technology underneath it, the whole cloud piece, but I wonder if you could talk about the innovation piece of that a little bit more >> Sure. and it's relationship to the data. >> So, I mean we've always been let's all go to the data warehouse, let's have a data lake, let's get the data scientist to fix the data lake. (laughter) >> Yeah. >> And then he's like " Whoa, well what did he do?" "Does it do anything? Show me." And you know now that physical massive environment of big service and big cages and big rooms with big overhead expenses is no longer necessary. I've just put 91 servers for an entire state's data and population in a cloud environment, multiple security levels with multiple methods of new innovational cloud management. And I've been able to standup 91 server in six and a half minutes. I couldn't even procure that... (laughter) - Right. >> Before >> I'd be months, and months >> Yeah, to put physical architecture together like that but now I can do it in six and a half minutes, I can create DR rapidly, I can do flip over active-active and I can really make the sure of it. Not only can I use the infrastructure I can enable people to get information at the point where it's needed now, far easier than I ever did before. >> So talking about how the technology has moved and evolved and changed so rapidly for the better but yet there is still a massive talent shortage of the people who, as you said - [John] Yeah >> Who can speak the language and take the data and immediately translate it into business value. What are you doing now about this talent shortage? What's your take on it and what are we doing to fix it? >> Yeah >> I would say, in one of the morning keynotes, Jim Cavanaugh our SVP for transportation operations got that question around how do you educate internally what it means to be a cognitive enterprise when there are so many questions about what does that really mean? And then how do you access skill against those new capabilities? He spoke about some of the internal hackathons that we did and ran sort of an internal shark tank-like to see how those top projects rise, align resources against it and build those skills and we've invested quite a lot internally as I know many of our clients have around what we call cognitive academy to ensure that we've one: figured out and defined what it means in this new...what type of new skills and then make sure that we're able to retrain and then keep and retain some of our new talents. So I think we're trying that multi-prong approach to retrain and retain as well. >> You guys use the term cognitive business we use the term digital business cause we can't use IBM's terms (laughter) But to us there the same thing >> Why not? >> Cause it's all about... (laughter) >> Cause were independent - [Caitlin] Dave's upset here >> But to us it's all about how you leverage data >> Yeah. >> And how you use data to >> Yeah. >> Maintain and to get and maintain costumers. So since we're playing CX bingo >> Yeah right. >> Chief digital officer, Bob Lord >> Right >> Bob Lord and Ender Paul Endario are two totally different people and there roles are quite different, but if it's all about the data and you buy that premise what is the chief digital officer do? they are largely driving revenue >> Absolutely >> That's understandable but it's part of your job too >> Right >> Or former job as a CDO and now as an innovation officer. Where do those roles fit? >> I think there's a clear demarcation line and especially when you get into EIM solutions as in Enterprise Information Management. And you start breaking those down and you've got to break them down into master data management and you start putting the domains together, the multi-master domains, and one of them is media, and media needs someone to own it, be the custodian, manage it, and present it to the business for consumption, the other's are pure data driven. >> Yeah. >> Master patient, master member, master costumer, master product, they all need data driven analytics to present information to the business. You can't just show them a sequel schemer and say "There you go." >> Yeah. (laughter) >> It doesn't work so there is different demarcations of specialist skills and the presentation and it got to be that hybrid between the business and IT. The business and the data, the business and the consumer and that is, I think the maturity of way this X-sweet is going these days >> Yeah. >> One thing we've seen internally to that point, I agree there's a clear demarcation there, is when we do partner with the digital office it can be to aid say digital sellers so we have a joint project going where we are responsible for the data piece of it >> Yeah. >> And then we are enabling our digital sellers, we're calling it cognitive sales advisor to pull dispersed pieces of costumer data that are currently housed in cylos across the organization, pull that into a digital, user friendly app, that can really enable those sellers, so I think there's some nice opportunities just as there are CDOs and CIOs to partner, for a data officer and a digital officer as well. >> One of our earlier guests was talking about some of the things that he's hearing in the break out sessions and he said "You know they could have been talking about the same stuff ten years ago, these intractable organizations that aren't quite there yet." What do you think we will be talking about next CDO summit? Do you think there will come a point where were not talking about is data important? Or does data have a role in the organization? When do you think that will happen? (laughter) >> Every time I say we're done with governance right? >> Yeah >> We're done and then governance >> Comes right back - Top topic (laughter) >> If you get the answer to that can I have the locker notes? (laughter) >> Sure >> Exactly, Exactly >> I think in the next ten years we're not going to ask anymore about what did we do, we're going to be told what we did. As in we're going to be looking forward, thing are going to be coming out and saying this is the projected for the next minute, second, hour, month, year and that's the big change. We are all looking back, what did we do? How did we do? What was the goals we tried to achieve? I don't think that's going to be what we ask next month, next year, next week. It's going to be you're going to tell me what I did and you're going to tell me what I'm doing. And that's going to change, and also the healthcare market, the way that health is prescriptive, they're not prescribed anymore. They way that we diagnose things against the prognosis, I think that the way we manage that information is going to change dramatically. I would say too, I've been working quite a bit with a client in Vegas, a casino, and their current issue or problem is they have all this data on what their guest do from the moment they check in, they get their hotel key, they know where spend, where they go to dinner, what type of trip they're on, is it business is is pleasure. Are the kids in town, different behaviors, spending patterns accordingly. >> Yeah. >> And the main concern they relate to us is I can't do anything about it until my guest has exited the property and then I'm sending them outreach emails trying to get them back, or trying to offer a coupon. >> Yeah. >> You know post - [John] Yeah, yeah. >> And they're gone. >> And what if I could do some real time analysis and deliver something of value to my guest while they are on site and we are starting to see some of that with Disney and some other companies. - [John] Yeah. >> But I think we will see the ability to take all this data that we already have and deliver it. >> In real time. -[John] Yeah. >> Influence behavior >> Right >> And spending patterns in real time that's what I'm excited about. >> Yeah and these machines will actually start making decisions, certain decisions for the brand. >> Yeah >> Right >> At the point where it can affect an outcome. >> Right, right, Which I think is hard >> It's starting >> Yeah >> No question, you certainly see it in fraud detection today, you mentioned Disney. >> The magic bands >> Right >> And the ability to track >> Yeah >> Where you are and that type of thing, yeah >> Great >> We're starting cyber security cause cyber security, an aspect of user log, server log, network, are looking for behavioral patterns and those behavioral patterns are telling us where the risks and the vulnerabilities are coming from. >> Thing that humans >> Yep >> Would not see that >> People don't see the patterns, yep. >> You're absolutely right, >> right >> They just wouldn't see the patterns of the risk. >> Excellent, well John, Caitlin, thanks so much for coming on the Cube it's always a pleasure to talk to you. >> Thank you - Great, thank you. >> I'm Rebecca Knight for Dave Vellante we'll have more just after this.

Published Date : Oct 25 2017

SUMMARY :

Massachusetts, it's the Cube, and also John Backhouse, the So before the cameras were rolling, one of the largest hybrid providers and analytics so that the of the chief data officer "I got the data for this data across the organization" the fight to justify its existence. and getting the technology right. that the CDO has to do, Processes and then he said of businesses and re-skill. But the CIO hits a lot target the outreach and to move in the early days it was just And given that EMR, and that value holy grail. So, I wonder if you could the leadership. one here in Boston in the And it was our best attended call, to me that building those the modern approach to Well let's talk about the got to go the CEO's and it's relationship to the data. data lake, let's get the And I've been able to standup I can really make the sure of it. and take the data and He spoke about some of the (laughter) Maintain and to get Where do those roles fit? for consumption, the other's present information to the business. (laughter) the business and the consumer across the organization, in the organization? and also the healthcare market, And the main concern to see some of that But I think we will see the ability to -[John] Yeah. And spending patterns in real time decisions for the brand. At the point where it No question, you certainly risks and the vulnerabilities the patterns of the risk. thanks so much for coming on the Cube I'm Rebecca Knight for Dave Vellante

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Rebecca KnightPERSON

0.99+

JohnPERSON

0.99+

Caitlin HalfertyPERSON

0.99+

Jim CavanaughPERSON

0.99+

EnglandLOCATION

0.99+

John BackhousePERSON

0.99+

12 yearsQUANTITY

0.99+

IBMORGANIZATION

0.99+

1999DATE

0.99+

CaitlinPERSON

0.99+

Bob LordPERSON

0.99+

BostonLOCATION

0.99+

18-monthQUANTITY

0.99+

next yearDATE

0.99+

San FranciscoLOCATION

0.99+

next weekDATE

0.99+

DisneyORGANIZATION

0.99+

USALOCATION

0.99+

five pointsQUANTITY

0.99+

VegasLOCATION

0.99+

SecondQUANTITY

0.99+

six and a half minutesQUANTITY

0.99+

OneQUANTITY

0.99+

threeQUANTITY

0.99+

91 serversQUANTITY

0.99+

next monthDATE

0.99+

thirdQUANTITY

0.99+

Boston, MassachusettsLOCATION

0.99+

twoQUANTITY

0.99+

Boston MassachusettsLOCATION

0.99+

IBM Data OfficeORGANIZATION

0.99+

bothQUANTITY

0.99+

DavePERSON

0.99+

six and a half minutesQUANTITY

0.99+

oneQUANTITY

0.99+

Envision HealthcareORGANIZATION

0.99+

GDPRTITLE

0.98+

two worldsQUANTITY

0.98+

Y2KORGANIZATION

0.98+

one aspectQUANTITY

0.98+

firstQUANTITY

0.98+

91 serverQUANTITY

0.97+

four pillarsQUANTITY

0.97+

todayDATE

0.96+

two different placesQUANTITY

0.96+

ten years agoDATE

0.95+

CareEnrollORGANIZATION

0.94+

this yearDATE

0.94+

about 120QUANTITY

0.93+

IBM CDO SummitEVENT

0.9+

two rolesQUANTITY

0.9+

this morningDATE

0.89+

Ender Paul EndarioPERSON

0.88+

Ender PaulPERSON

0.86+

two in-person summitsQUANTITY

0.85+

about 25 CDO'sQUANTITY

0.84+

IBM Chief Data Officer SummitEVENT

0.81+

CubeCOMMERCIAL_ITEM

0.81+

NHSORGANIZATION

0.8+

CX bingoTITLE

0.79+

yearsDATE

0.76+

two totally different peopleQUANTITY

0.75+

CDO Strategy Summit 2017EVENT

0.72+

CDOEVENT

0.7+

Seth Dobrin & Jennifer Gibbs | IBM CDO Strategy Summit 2017


 

>> Live from Boston, Massachusetts. It's The Cube! Covering IBM Chief Data Officer's Summit. Brought to you by IBM. (techno music) >> Welcome back to The Cube's live coverage of the IBM CDO Strategy Summit here in Boston, Massachusetts. I'm your host Rebecca Knight along with my Co-host Dave Vellante. We're joined by Jennifer Gibbs, the VP Enterprise Data Management of TD Bank, and Seth Dobrin who is VP and Chief Data Officer of IBM Analytics. Thanks for joining us Seth and Jennifer. >> Thanks for having us. >> Thank you. >> So Jennifer, I want to start with you can you tell our viewers a little about TD Bank, America's Most Convenient Bank. Based, of course, in Toronto. (laughs). >> Go figure. (laughs) >> So tell us a little bit about your business. >> So TD is a, um, very old bank, headquartered in Toronto. We do have, ah, a lot of business as well in the U.S. Through acquisition we've built quite a big business on the Eastern seaboard of the United States. We've got about 85 thousand employees and we're servicing 42 lines of business when it comes to our Data Management and our Analytics programs, bank wide. >> So talk about your Data Management and Analytics programs a little bit. Tell our viewers a little bit about those. >> So, we split up our office of the Chief Data Officer, about 3 to 4 years ago and so we've been maturing. >> That's relatively new. >> Relatively new, probably, not unlike peers of ours as well. We started off with a strong focus on Data Governance. Setting up roles and responsibilities, data storage organization and councils from which we can drive consensus and discussion. And then we started rolling out some of our Data Management programs with a focus on Data Quality Management and Meta Data Management, across the business. So setting standards and policies and supporting business processes and tooling for those programs. >> Seth when we first met, now you're a long timer at IBM. (laughs) When we first met you were a newbie. But we heard today, about,it used to be the Data Warehouse was king but now Process is king. Can you unpack that a little bit? What does that mean? >> So, you know, to make value of data, it's more than just having it in one place, right? It's what you do with the data, how you ingest the data, how you make it available for other uses. And so it's really, you know, data is not for the sake of data. Data is not a digital dropping of applications, right? The whole purpose of having and collecting data is to use it to generate new value for the company. And that new value could be cost savings, it could be a cost avoidance, or it could be net new revenue. Um, and so, to do that right, you need processes. And the processes are everything from business processes, to technical processes, to implementation processes. And so it's the whole, you need all of it. >> And so Jennifer, I don't know if you've seen kind of a similar evolution from data warehouse to data everywhere, I'm sure you have. >> Yeah. >> But the data quality problem was hard enough when you had this sort of central master data management approach. How are you dealing with it? Is there less of a single version of the truth now than there ever was, and how do you deal with the data quality challenge? >> I think it's important to scope out the work effort in a way that you can get the business moving in the right direction without overwhelming and focusing on the areas that are most important to the bank. So, we've identified and scoped out what we call critical data. So each line of business has to identify what's critical to them. Does relate very strongly to what Seth said around what are your core business processes and what data are you leveraging to provide value to that, to the bank. So, um, data quality for us is about a consistent approach, to ensure the most critical elements of data that used for business processes are where they need to be from a quality perspective. >> You can go down a huge rabbit whole with data quality too, right? >> Yeah. >> Data quality is about what's good enough, and defining, you know. >> Right. >> Mm-hmm (affirmative) >> It's not, I liked your, someone, I think you said, it's not about data quality, it's about, you know it's, you got to understand what good enough is, and it's really about, you know, what is the state of the data and under, it's really about understanding the data, right? Than it is perfection. There are some cases, especially in banking, where you need perfection, but there's tons of cases where you don't. And you shouldn't spend a lot of resources on something that's not value added. And I think it's important to do, even things like, data quality, around a specific use case so that you do it right. >> And what you were saying too, it that it's good enough but then that, that standard is changing too, all the time. >> Yeah and that changes over time and it's, you know, if you drive it by use case and not just, we have get this boil the ocean kind of approach where all data needs to be perfect. And all data will never be perfect. And back to your question about processes, usually, a data quality issue, is not a data issue, it's a process issue. You get bad data quality because a process is broken or it's not working for a business or it's changed and no one's documented it so there's a work around, right? And so that's really where your data quality issues come from. Um, and I think that's important to remember. >> Yeah, and I think also coming out of the data quality efforts that we're making, to your point, is it central wise or is it cross business? It's really driving important conversations around who's the producer of this data, who's the consumer of this data? What does data quality mean to you? So it's really generating a lot of conversation across lines of business so that we can start talking about data in more of a shared way versus more of a business by business point of view. So those conversations are important by-products I would say of the individual data quality efforts that we're doing across the bank. >> Well, and of course, you're in a regulated business so you can have the big hammer of hey, we've got regulations, so if somebody spins up a Hadoop Cluster in some line of business you can reel 'em in, presumably, more easily, maybe not always. Seth you operate in an unregulated business. You consult with clients that are in unregulated businesses, is that a bigger challenge for you to reel in? >> So, I think, um, I think that's changing. >> Mm-hmm (affirmative) >> You know, there's new regulations coming out in Europe that basically have global impact, right? This whole GDPR thing. It's not just if you're based in Europe. It's if you have a subject in Europe and that's an employee, a contractor, a customer. And so everyone is subject to regulations now, whether they like it or not. And, in fact, there was some level of regulation even in the U.S., which is kind of the wild, wild, west when it comes to regulations. But I think, um, you should, even doing it because of regulation is not the right answer. I mean it's a great stick to hold up. It's great to be able to go to your board and say, "Hey if we don't do this, we need to spend this money 'cause it's going to cost us, in the case of GDPR, four percent of our revenue per instance.". Yikes, right? But really it's about what's the value and how do you use that information to drive value. A lot of these regulation are about lineage, right? Understanding where your data came from, how it's being processed, who's doing what with it. A lot of it is around quality, right? >> Yep. >> And so these are all good things, even if you're not in a regulated industry. And they help you build a better connection with your customer, right? I think lots of people are scared of GDPR. I think it's a really good thing because it forces companies to build a personal relationship with each of their clients. Because you need to get consent to do things with their data, very explicitly. No more of these 30 pages, two point font, you know ... >> Click a box. >> Click a box. >> Yeah. >> It's, I am going to use your data for X. Are you okay with that? Yes or no. >> So I'm interested from, to hear from both of you, what are you hearing from customers on this? Because this is such a sensitive topic and, in particularly, financial data, which is so private. What are you, what are you hearing from customers on this? >> Um, I think customers are, um, are, especially us in our industry, and us as a bank. Our relationship with our customer is top priority and so maintaining that trust and confidence is always a top priority. So whenever we leverage data or look for use cases to leverage data, making sure that that trust will not be compromised is critically important. So finding that balance between innovating with data while also maintaining that trust and frankly being very transparent with customers around what we're using it for, why we're using it, and what value it brings to them, is something that we're focused on with, with all of our data initiatives. >> So, big part of your job is understanding how data can affect and contribute to the monetization, you know, of your businesses. Um, at the simplest level, two ways, cut costs, increase revenue. Where do you each see the emphasis? I'm sure both, but is there a greater emphasis on cutting costs 'cause you're both established, you know, businesses, with hundreds of thousands, well in your case, 85 thousand employees. Where do you see the emphasis? Is it greater on cutting costs or not necessarily? >> I think for us, I don't necessarily separate the two. Anything we can do to drive more efficiency within our business processes is going to help us focus our efforts on innovative use of data, innovative ways to interact with our customers, innovative ways to understand more about out customers. So, I see them both as, um, I don't see them mutually exclusive, I see them as contributing to each. >> Mm-hmm (affirmative) >> So our business cases tend to have an efficiency slant to them or a productivity slant to them and that helps us redirect effort to other, other things that provide extra value to our clients. So I'd say it's a mix. >> I mean I think, I think you have to do the cost savings and cost avoidance ones first. Um, you learn a lot about your data when you do that. You learn a lot about the gaps. You learn about how would I even think about bringing external data in to generate that new revenue if I don't understand my own data? How am I going to tie 'em all together? Um, and there's a whole lot of cultural change that needs to happen before you can even start generating revenue from data. And you kind of cut your teeth on that by doing the really, simple cost savings, cost avoidance ones first, right? Inevitably, maybe not in the bank, but inevitably most company's supply chain. Let's go find money we can take out of your supply chain. Most companies, if you take out one percent of the supply chain budget, you're talking a lot of money for the company, right? And so you can generate a lot of money to free up to spend on some of these other things. >> So it's a proof of concept to bring everyone along. >> Well it's a proof of concept but it's also, it's more of a cultural change, right? >> Mm-hmm (affirmative) It's not even, you don't even frame it up as a proof of concept for data or analytics, you just frame it up, we're going to save the company, you know, one percent of our supply chain, right? We're going to save the company a billion dollars. >> Yes. >> And then there's gain share there 'cause we're going to put that thing there. >> And then there's a gain share and then other people are like, "Well, how do I do that?". And how do I do that, and how do I do that? And it kind of picks up. >> Mm-hmm (affirmative) But I don't think you can jump just to making new revenue. You got to kind of get there iteratively. >> And it becomes a virtuous circle. >> It becomes a virtuous circle and you kind of change the culture as you do it. But you got to start with, I don't, I don't think they're mutually exclusive, but I think you got to start with the cost avoidance and cost savings. >> Mm-hmm (affirmative) >> Great. Well, Seth, Jennifer thanks so much for coming on The Cube. We've had a great conversation. >> Thanks for having us. >> Thanks. >> Thanks you guys. >> We will have more from the IBM CDO Summit in Boston, Massachusetts, just after this. (techno music)

Published Date : Oct 25 2017

SUMMARY :

Brought to you by IBM. Cube's live coverage of the So Jennifer, I want to start with you (laughs) So tell us a little of the United States. So talk about your Data Management and of the Chief Data Officer, And then we started met you were a newbie. And so it's the whole, you need all of it. to data everywhere, I'm sure you have. How are you dealing with it? So each line of business has to identify and defining, you know. And I think it's important to do, And what you were And back to your question about processes, across lines of business so that we can business so you can have the big hammer of So, I think, um, I and how do you use that And they help you build Are you okay with that? what are you hearing and so maintaining that Where do you each see the emphasis? as contributing to each. So our business cases tend to have And so you can generate a lot of money to bring everyone along. It's not even, you don't even frame it up to put that thing there. And it kind of picks up. But I don't think you can jump change the culture as you do it. much for coming on The Cube. from the IBM CDO Summit

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SethPERSON

0.99+

Dave VellantePERSON

0.99+

JenniferPERSON

0.99+

Rebecca KnightPERSON

0.99+

Jennifer GibbsPERSON

0.99+

EuropeLOCATION

0.99+

Seth DobrinPERSON

0.99+

TD BankORGANIZATION

0.99+

TorontoLOCATION

0.99+

IBMORGANIZATION

0.99+

TDORGANIZATION

0.99+

42 linesQUANTITY

0.99+

twoQUANTITY

0.99+

Boston, MassachusettsLOCATION

0.99+

30 pagesQUANTITY

0.99+

United StatesLOCATION

0.99+

one percentQUANTITY

0.99+

bothQUANTITY

0.99+

two pointQUANTITY

0.99+

U.S.LOCATION

0.99+

IBM AnalyticsORGANIZATION

0.99+

each lineQUANTITY

0.99+

GDPRTITLE

0.99+

todayDATE

0.98+

eachQUANTITY

0.98+

85 thousand employeesQUANTITY

0.98+

hundreds of thousandsQUANTITY

0.98+

four percentQUANTITY

0.97+

firstQUANTITY

0.97+

one placeQUANTITY

0.97+

two waysQUANTITY

0.97+

about 85 thousand employeesQUANTITY

0.95+

4 years agoDATE

0.93+

IBMEVENT

0.93+

IBM CDO SummitEVENT

0.91+

IBM CDO Strategy SummitEVENT

0.91+

Data WarehouseORGANIZATION

0.89+

billion dollarsQUANTITY

0.89+

IBM Chief Data Officer'sEVENT

0.88+

about 3DATE

0.81+

tons of casesQUANTITY

0.79+

AmericaORGANIZATION

0.77+

CDO Strategy Summit 2017EVENT

0.76+

single versionQUANTITY

0.67+

Data OfficerPERSON

0.59+

CubeORGANIZATION

0.58+

moneyQUANTITY

0.52+

lotQUANTITY

0.45+

The CubeORGANIZATION

0.36+

Joseph Selle, IBM | IBM CDO Strategy Summit 2017


 

>> Live from Boston, Massachusetts, it's theCube, covering IBM Chief Data Officer Summit. Brought to you by IBM. >> Welcome back to theCube's live coverage of the IBM CDO Strategy Summit here in Boston, Massachusetts. I'm your host, Rebecca Knight, along with my cohost, Dave Vellante. We are here with Joseph Selle, he is the Cognitive Transformation Lead at IBM. Thanks so much for joining us, Joe. >> Hi, Rebecca, thank you. Hi, Dave. >> Good to see you, Joe. >> You, too. >> So, your job is to help drive the internal transformation of IBM. Tell our viewers what that means and then talk about your approach. >> Right, it a very exciting, frankly, it's one of the best jobs I've ever had personally. It's wonderful. We're transforming the company from the inside out. We're engaging with all of the functional areas within IBM's operations, and we're challenging those functional teams to breakdown their business process and reinvent it using some new tooling. And in this case, it's cognitive approaches to data analysis, and to crowd sourcing information, and systems that learn. We've talked a lot about at this conference, machine learning and deep learning. We're providing all of these tools to these functional teams so they can go reinvent HR and procurement, and even our M&A process, everything is fair game. So, it's very exciting and it really allows us to reinvent IBM. >> So, reinventing all of these individual functions, I mean, where to do you start? How do you begin to build the blueprint? >> Well, in our case, where we started was we had to get the whole company thinking about a large-scale enterprise, cultural transformation. We have a company of 300-some odd thousand people, employees, speaking all languages, all over the globe. So, how do you move that mass? So, we had cognitive jam, that's basically a technology enabled brainstorm session that spreads across the entire globe. And, by engaging about 300,000 IBM'ers, we were able to call and bring together all kinds of very disruptive, interesting ideas to remake all these business processes. We culled those ideas, and through some prioritization, almost a shark tank-like process, we ended up with a few that were really worthy, we felt, of investment. We've put money in, and our cognitive reinvention was born. Just like that. >> That's a lot of brain power. (laughs) >> Well, that's why it's wonderful to be at IBM, 'cause we have hundreds of thousands of brainy people working for us. >> You have talked about, when he was a controller during the Gerstner transformation, I don't know were you there back then? >> Yes, I was. >> Okay, so you guys were young pups back then, still young pups, I guess. But, he talked about, as the controller, he was an unhappy customer because he didn't have the data. So, can you talk about, sort of, what's different today? I mean, it's a lot different, obviously, the state of the industry, the technology, the amount of the data, et cetera. But, maybe talk about data as the starting point and how that was different from, maybe, the Gerstner transformation. >> The early days. >> Which was epic, by the way. You know, took IBM to new levels and be part of what the company is today. >> And this story that I'm going to tell you, is generally applicable to most any company that's global in nature. The data are not visible and they're not easy to see and discern any value from in the early stages of your transformation. So, when Jim was controller, he had data that was one, hard to get, and two, he had no tools to organize it except for, maybe, some smart people with Excel and, whatever it was back then, LotusPro, or something, I can't remember the name of that. (laughter) >> Something that ran on OS/2. >> There was no tooling, no approach. And, the whole idea of big data was not even around at that point. Because the data was organized and disorganized in little towers and databases all around, but there wasn't a flood of data. So, what's different between those days and this time period that we're in is, you can see data now and data are everywhere. And they're coming at us in high, high volumes and at high speeds. If you think about The Weather Company, one of the acquisitions we made two years ago, that is a stream of huge, big data, coming at us very fast. You can think about The Weather Company as a giant internet of things, device, which is pulling data from the sky and from people interacting with the environment, and bringing that all together. And now, what can we do with that data? Well, we can use it to help predict when we're going to have a supply chain disruption, or, I mean in an almost obvious sense, or we can use it when we're trying to respond to some sort of operational disturbance. If we're looking at where we can reroute things, or if we're trying to anticipate some sort of blockage on our supply chain, incoming supply chain, or outgoing supply chain of products. Very important, and we just see much more now then Jim ever could when he was a controller. >> In the scope of your data initiative, is everything, I mean, he's mentioned supply chain, you got customer data? >> It is, it is. But, I'll say that, you know, if a company's going to embark down this path, you don't want to try to boil the ocean at the start. You want to try to go after some selective business challenges, that are persistent challenges that you wish you had a way to solve because a lot of value's at play. So, you go in there and you solve a few problems. You deal with a data integrity and access problem, on a, sort of a, confined basis. And you do this, maybe, several times across different parts of your company. Then, once you've done that four or five times, or some small number of times, you begin to learn how to handle the problem more generally, and you can distill approaches and tools that can then be applied broadly. And where we are in our evolution, is that Inderpal and Jim, and the internal workings of IBM, were building a cognitive enterprise data platform. So, we're taking all of these point solutions that I just referred to, bringing them together onto a platform, and applying some common tooling to all of these common types of problems around data organization, and governance, and meta-data tagging, and all this geeky stuff that you have to be able to do if you're going to make any value. You know, if you're going to make an important, valuable business decision, based on a stream of data. >> So, where has it had tangible, measurable, business impact, this sort of cognitive initiative? >> Well, a couple of the areas where we're most mature, one would be in supply chain and procurement. We've been able to take jobs that, frankly, involve a lot of churning analysis, and be able to say to a procurement specialist, okay, what used to take you six hours, or an hour, or what ever the task was, we can shrink that down using a cognitive tool, down to just a few minutes. So, procurement, we've been able to get staffing efficiencies, and we've been able, even more importantly, to make sure that we're buying things at the best possible price. Because those same analysts want to know what's happening in the market, where's the market sentiment going? Is this market tightening or loosening? Is it a buyer or a seller market? If we're trolling the web, bringing back information on the micro-movements of all the regional markets in various electronics commodities, we know an aggregate, whether we should be hard bargainers or easy bargainers, essentially. So, that's procurement. But, you could talk about human resources, where the Watson tool can recommend a game plan for how you would manage the career of a person. You don't want to lose your star people. And it's wonderful that deep, subject matter experts in HR know how to anticipate what you're thinking, and those are the people you want in charge of HR. But, there's a lot of other people who aren't, maybe, as good as that one person at HR, now the system can help you by giving you a playbook, making you a better HR manager. So, that's HR, but I got one more that's really exciting that I'm working on right now in the area of M&A. So, IBM and any large company that has multiple offerings and geographies is involved in M&A. We're using cognition and big data to speed up our M&A process. Now, we have a small team of M&A, so we're not going to make millions of dollars of staffing efficiencies, but, if we can capture a company, if we can be the first one to make an offer on a company, rather than the third one, then we're going to get the best company. And if you can bring the best company in, like The Weather Company as an example in that space, or like any other type of data-mining company or something, you want the best company. And if you can use cognition to enhance your process to move very quickly, that's going to really help you. >> So, this is a huge transformation of the business model, but then you've also talked about the cultural transformation of IBM. How would you describe this new IBM, going through this transformation? How would you describe the culture and collaboration? >> So, luckily, we're pretty far along in the transformation and we're at a stage where we actually have a data platform that's been deployed internally. And, people know about the potential of cognition to redefine and remake their business processing, create all this value. So, now we're getting people to come on to the platform as citizen analysts, if you want to call them that, they're not operations PhD's, they're not necessarily data scientists, they're regular business analysts. They're coming onto the platform and they're finding data and they're finding tools to manipulate that data. They're coming in on a self-service model and being able to gain insights to bring back into their business decisions without the CIO office being involved. >> So that's a workbench on the Cloud, essentially, is that right? >> Yes, that it a good way to put it, yep. >> Workbench, we out of trademark that. (laughs) >> Let's do that. >> Good descriptor, I think. >> Well, Joe, thanks so much for joining us, it's been a pleasure talking to you. >> My pleasure, thank you. >> Thanks, thanks a lot. >> I'm Rebecca Knight, for Dave Vellante, we will have more from IBM CDO Summit just after this.

Published Date : Oct 25 2017

SUMMARY :

Brought to you by IBM. of the IBM CDO Strategy Summit Hi, Rebecca, thank you. the internal transformation and to crowd sourcing information, that spreads across the entire globe. That's a lot of brain power. 'cause we have hundreds of and how that was different from, maybe, of what the company is today. in the early stages of and bringing that all together. and Jim, and the internal workings of IBM, now the system can help you of the business model, and being able to gain Workbench, we out of it's been a pleasure talking to you. we will have more from IBM

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Joseph SellePERSON

0.99+

JimPERSON

0.99+

Dave VellantePERSON

0.99+

Rebecca KnightPERSON

0.99+

Rebecca KnightPERSON

0.99+

RebeccaPERSON

0.99+

IBMORGANIZATION

0.99+

DavePERSON

0.99+

six hoursQUANTITY

0.99+

JoePERSON

0.99+

Joseph SellePERSON

0.99+

ExcelTITLE

0.99+

OS/2TITLE

0.99+

The Weather CompanyORGANIZATION

0.99+

Boston, MassachusettsLOCATION

0.99+

The Weather CompanyORGANIZATION

0.99+

an hourQUANTITY

0.99+

third oneQUANTITY

0.99+

twoQUANTITY

0.99+

two years agoDATE

0.99+

five timesQUANTITY

0.99+

GerstnerORGANIZATION

0.98+

fourQUANTITY

0.98+

LotusProTITLE

0.98+

first oneQUANTITY

0.98+

300QUANTITY

0.98+

oneQUANTITY

0.97+

M&ATITLE

0.97+

about 300,000QUANTITY

0.94+

IBMEVENT

0.94+

thousand peopleQUANTITY

0.93+

one personQUANTITY

0.92+

todayDATE

0.92+

hundreds of thousandsQUANTITY

0.9+

IBM Chief Data OfficerEVENT

0.88+

IBM CDO Strategy SummitEVENT

0.87+

M&A.TITLE

0.87+

IBM CDO SummitEVENT

0.86+

CDO Strategy Summit 2017EVENT

0.8+

millions of dollarsQUANTITY

0.79+

IBM'ersORGANIZATION

0.71+

InderpalPERSON

0.7+

WatsonTITLE

0.66+

brainyQUANTITY

0.55+

Christopher Penn, SHIFT Communications | IBM CDO Strategy Summit 2017


 

>> Live from Boston, Massachusetts, it's theCUBE, Covering IBM Chief Data Officer Summit. Brought to you by IBM. >> Welcome back to theCUBE's live coverage of IBM Chief Data Strategy Summit. My name is Rebecca Knight, and I'm here with my co-host Dave Vellante, we are joined by Christopher Penn, the VP of Marketing Technology at SHIFT Communications, here in Boston. >> Yes. >> Thanks so much for joining us. >> Thank you for having me. >> So we're going to talk about cognitive marketing. Tell our viewers: what is cognitive marketing, and what your approach to it is. >> Sure, so cognitive marketing essentially is applying machine learning and artificial intelligence strategies, tactics and technologies to the discipline of marketing. For a really long time marketing has been kind of known as the arts and crafts department, which was fine, and there's certainly, creativity is an essential part of the discipline, that's never going away. But we have been tasked with proving our value. What's the ROI of things, is a common question. Where's the data live? The chief data officer would be asking, like, who's responsible for this? And if we don't have good answers to those things, we kind of get shown the door. >> Well it sort of gets back to that old adage in advertising, I know half my marketing budget is wasted, I just don't know which half. >> Exactly. >> So now we're really able to know which half is working. >> Yeah, so I mean, one of the more interesting things that I've been working on recently is using what's called Markov chains, which is a type of very primitive machine learning, to do attribution analysis, to say what actually caused someone to become a new viewer of theCUBE, for example. And you would take all this data that you have from your analytics. Most of it that we have, we don't really do anything with. You might pull up your Google Analytics console, and go, "Okay, I got more visitors today than yesterday." but you don't really get a lot of insights from the stock software. But using a lot of tools, many of which are open source and free of financial cost, if you have technical skills you can get much deeper insights into your marketing. >> So I wonder, just if we can for our audience... When we talk about machine learning, and deep learning, and A.I., we're talking about math, right, largely? >> Well so let's actually go through this, because this is important. A.I. is a bucket category. It means teaching a machine to behave as though it had human intelligence. So if your viewers can see me, and disambiguate me from the background, they're using vision, right? If you're hearing sounds coming out of my mouth and interpreting them into words, that's natural language processing. Humans do this naturally. It is now trying to teach machines to do these things, and we've been trying to do this for centuries, in a lot of ways, right? You have the old Mechanical Turks and stuff like that. Machine learning is based on algorithms, and it is mostly math. And there's two broad categories, supervised and unsupervised. Supervised is you put a bunch of blocks on the table, kids blocks, and you hold the red one, and you show the machine over and over again this is red, this is red, and eventually you train it, that's red. Unsupervised is- >> Not a hot dog. (Laughter) >> This is an apple, not a banana. Sorry CNN. >> Silicon Valley fans. >> Unsupervised is there's a whole bunch of blocks on the table, "Machine, make as many different sequences as possible," some are big, some are small, some are red, some are blue, and so on, and so forth. You can sort, and then you figure out what's in there, and that's a lot of what we do. So if you were to take, for example, all of the comments on every episode of theCUBE, that's a lot, right? No humans going to be able to get through that, but you can take a machine and digest through, just say, what's in the bag? And then there's another category, beyond machine learning, called deep learning, and that's where you hear a lot of talk today. Deep learning, if you think of machine learning as a pancake, now deep learnings like a stack of pancakes, where the data gets passed from one layer to the next, until what you get at the bottom is a much better, more tuned out answer than any human can deliver, because it's like having a hundred humans all at once coming up with the answer. >> So when you hear about, like, rich neural networks, and deep neural networks, that's what we're talking about. >> Exactly, generative adversarial networks. All those things are ... Any kind of a lot of the neural network stuff is deep learning. It's tying all these piece together, so that in concert, they're greater than the sum of any one. >> And the math, I presume, is not new math, right? >> No. >> SVM and, it's stuff that's been around forever, it's just the application of that math. And why now? Cause there's so much data? Cause there's so much processing power? What are the factors that enable this? >> The main factor's cloud. There's a great shirt that says: "There's no cloud, it's just somebody else's computer." Well it's absolutely true, it's all somebody else's computer but because of the scale of this, all these tech companies have massive server farms that are kind of just waiting for something to do. And so they offer this as a service, so now you have computational power that is significantly greater than we've ever had in human history. You have the internet, which is a major contributor, the ability to connect machines and people. And you have all these devices. I mean, this little laptop right here, would have been a supercomputer twenty years ago, right? And the fact that you can go to a service like GitHub or Stack Exchange, and copy and paste some code that someone else has written that's open source, you can run machine learning stuff right on this machine, and get some incredible answers. So that's why now, because you've got this confluence of networks, and cloud, and technology, and processing power that we've never had before. >> Well with this emphasis on math and science in marketing, how does this change the composition of the marketing department at companies around the world? >> So, that's a really interesting question because it means very different skill sets for people. And a lot of people like to say, well there's the left brain and then there's a right brain. The right brains the creative, the left brains the quant, and you can't really do that anymore. You actually have to be both brained. You have to be just as creative as you've always been, but now you have to at least have an understanding of this technology and what to do with it. You may not necessarily have to write code, but you'd better know how to think like a coder, and say, how can I approach this problem systematically? This is kind of a popular culture joke: Is there an app for that, right? Well, think about that with every business problem you face. Is there an app for that? Is there an algorithm for that? Can I automate this? And once you go down that path of thinking, you're on the path towards being a true marketing technologist. >> Can you talk about earned, paid, and owned media? How those lines are blurring, or not, and the relationship between sort of those different forms of media, and results in PR or advertising. >> Yeah, there is no difference, media is media, because you can take a piece of content that this media, this interview that we're doing here on theCUBE is technically earned media. If I go and embed this on my website, is that owned media? Well it's still the same thing, and if I run some ads to it, is it technically now paid media? It's the thing, it's content that has value, and then what we do with it, how we distribute it, is up to us, and who our audience is. One of the things that a lot of veteran marketing and PR practitioners have to overcome is this idea that the PR folks sit over there, and they just smile and dial and get hits, go get another hit. And then the ad folks are over here... No, it's all the same thing. And if we don't, as an industry realize that those silos are artificially imposed, basically to keep people in certain jobs, we will eventually end up turning over all of it to the machines, because the machines will be able to cross those organizational barriers much faster. When you have the data, and whatever the data says that's what you do. So if the data says this channels going to be more effective, yes it's a CUBE interview, but actually it's better off as a paid YouTube video. So the machine will just go do that for us. >> I want to go back to something you were talking about at the very beginning of the conversation, which is really understanding, companies understanding, how their marketing campaigns and approaches are effectively working or not working. So without naming names of clients, can you talk about some specific examples of what you've seen, and how it's really changed the way companies are reaching customers? >> The number one thing that does not work, is for any business executive to have a pre-conceived idea of the way things should be, right? "Well we're the industry leader in this, we should have all the market share." Well no, the world doesn't work like that anymore. This lovely device that we all carry around in our pockets is literally a slot-machine for your attention. >> I like it, you've got to copyright that. A slot machine for your attention. >> And there's a million and a half different options, cause that's how many apps there are in the app store. There's a million and half different options that are more exciting than your white paper. (Laughter) Right, so for companies that are successful, they realize this, they realize they can't boil the ocean, that you are competing every single day with the Pope, the president, with Netflix, you know, all these things. So it's understanding: When is my audience interested in something? Then, what are they interested in? And then, how do I reach those people? There was a story on the news relatively recently, Facebook is saying, "Oh brand pages, we're not going to show "your stuff in the regular news feed anymore, "there will be a special feed over here "that no one will ever look at, unless you pay up." So understanding that if we don't understand our audiences, and recruit these influencers, these people who have the ability to reach these crowds, our ability to do so through the "free" social media continues to dwindle, and that's a major change. >> So the smart companies get this, where are we though, in terms of the journey? >> We're in still very early days. I was at major Fortune 50, not too long ago, who just installed Google Analytics on their website, and this is a company that if I named the name you would know it immediately. They make billions of dollars- >> It would embarrass them. >> They make billions of dollars, and it's like, "Yeah, we're just figuring out this whole internet thing." And I'm like, "Cool, we'd be happy to help you, but why, what took so long?" And it's a lot of organizational inertia. Like, "Well, this is the way we've always done it, and it's gotten us this far." But what they don't realize is the incredible amount of danger they're in, because their more agile competitors are going to eat them for lunch. >> Talking about organizational inertia, and this is a very big problem, we're here at a CDO summit to share best practices, and what to learn from each other, what's your advice for a viewer there who's part of an organization that isn't working fast enough on this topic? >> Update your LinkedIn profile. (Laughter) >> Move on, it's a lost cause. >> One of the things that you have to do an honest assessment of, is whether the organization you're in is capable of pivoting quickly enough to outrun its competition. And in some cases, you may be that laboratory inside, but if you don't have that executive buy in, you're going to be stymied, and your nearest competitor that does have that willingness to pivot, and bet big on a relatively proven change, like hey data is important, yeah, you make want to look for greener pastures. >> Great, well Chris thanks so much for joining us. >> Thank you for having me. >> I'm Rebecca Knight, for Dave Vellante, we will have more of theCUBE's coverage of the IBM Chief Data Strategy Officer Summit, after this.

Published Date : Oct 25 2017

SUMMARY :

Brought to you by IBM. the VP of Marketing Technology and what your approach to it is. of the discipline, Well it sort of gets back to that to know which half is working. of the more interesting and A.I., we're talking the red one, and you show Not a hot dog. This is an apple, not a banana. and that's where you So when you hear about, greater than the sum of any one. it's just the application of that math. And the fact that you can And a lot of people like to and the relationship between So if the data says this channels beginning of the conversation, is for any business executive to have a got to copyright that. that you are competing every that if I named the name is the incredible amount Update your LinkedIn profile. One of the things that you have to do so much for joining us. the IBM Chief Data Strategy

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Rebecca KnightPERSON

0.99+

Rebecca KnightPERSON

0.99+

Christopher PennPERSON

0.99+

IBMORGANIZATION

0.99+

ChrisPERSON

0.99+

BostonLOCATION

0.99+

YouTubeORGANIZATION

0.99+

CNNORGANIZATION

0.99+

FacebookORGANIZATION

0.99+

NetflixORGANIZATION

0.99+

yesterdayDATE

0.99+

billions of dollarsQUANTITY

0.99+

Boston, MassachusettsLOCATION

0.99+

a million and halfQUANTITY

0.99+

billions of dollarsQUANTITY

0.99+

GitHubORGANIZATION

0.99+

todayDATE

0.98+

bothQUANTITY

0.98+

PopePERSON

0.98+

a million and a halfQUANTITY

0.98+

one layerQUANTITY

0.98+

LinkedInORGANIZATION

0.98+

Google AnalyticsTITLE

0.97+

twenty years agoDATE

0.97+

two broad categoriesQUANTITY

0.96+

Silicon ValleyLOCATION

0.95+

SHIFT CommunicationsORGANIZATION

0.95+

oneQUANTITY

0.94+

Google AnalyticsTITLE

0.94+

IBM Chief Data Strategy SummitEVENT

0.94+

OneQUANTITY

0.93+

Stack ExchangeORGANIZATION

0.9+

IBM Chief Data Strategy Officer SummitEVENT

0.88+

IBM Chief Data Officer SummitEVENT

0.87+

Fortune 50ORGANIZATION

0.86+

centuriesQUANTITY

0.86+

IBMEVENT

0.82+

CDO Strategy Summit 2017EVENT

0.79+

a hundred humansQUANTITY

0.79+

muchQUANTITY

0.77+

single dayQUANTITY

0.74+

theCUBEORGANIZATION

0.72+

VPPERSON

0.72+

halfQUANTITY

0.71+

CUBEORGANIZATION

0.63+

TechnologyPERSON

0.6+

CDOEVENT

0.51+

TurksORGANIZATION

0.39+

IBM CDO Social Influencers | IBM CDO Strategy Summit 2017


 

>> Live from Boston, Massachusetts, it's The Cube! Covering IBM Chief Data Officer Summit, brought to you by IBM. >> Welcome back to The Cube's live coverage of IBM's Chief Data Strategy Summit, I'm your host Rebecca Knight, along with my cohost Dave Vellante. We have a big panel today, these are our social influencers. Starting at the top, we have Christopher Penn, VP Marketing of Shift Communications, then Tripp Braden, Executive Coach and Growth Strategist at Strategic Performance Partners, Mike Tamir, Chief Data Science Officer at TACT, Bob Hayes, President of Business Over Broadway. Thanks so much for joining us. >> Thank you. >> So we're talking about data as a way to engage customers, a way to engage employees. What business functions would you say stand to benefit the most from using data? >> I'll take a whack at that. I don't know if it's the biggest function, but I think the customer experience and customer success. How do you use data to help predict what customers will do, and how do you then use that information to kind of personalize that experience for them and drive up recommendations, retention, upselling, things like that. >> So it's really the customer experience that you're focusing on? >> Yes, and I just released a study. I found that analytical-leading companies tend to use analytics to understand their customers more than say analytical laggards. So those kind of companies who can actually get value from data, they focus their efforts around improving customer loyalty by just gaining a deeper understanding about their customers. >> Chris, you want to jump in here with- >> I was just going to say, as many of us said, we have three things we really care about as business people, right? We want to save money, save time, or make money. So any function that meets those qualifications, is a functional benefit from data. >> I think there's also another interesting dimension to this, when you start to look at the leadership team in the company, now having the ability to anticipate the future. I mean now, we are no longer just looking at static data. We are now looking at anticipatory capability and seeing around corners, so that the person comes to the team, they're bringing something completely different than the team has had in the past. This whole competency of being able to anticipate the future and then take from that, where you take your organization in the future. >> So follow up on that, Tripp, does data now finally trump gut feel? Remember the HBR article of 10, 15 years ago, can't beat gut feel? Is that, we hit a new era now? >> Well, I think we're moving into an era where we have both. I think it's no longer an either or, we have intuition or we have data. Now we have both. The organizations who can leverage both at the same time and develop that capability and earn the trust of the other members by doing that. I see the Chief Data Officer really being a catalyst for organizational change. >> So Dr. Tamir I wonder if I could ask you a question? Maybe the whole panel, but so we've all followed the big data trend and the meme, AI, deep learning, machine learning, same wine, new bottle, or is there something substantive behind it? >> So certainly our capabilities are growing, our capabilities in machine learning, and I think that's part of why now there's this new branding of AI. AI is not what your mother might have thought AI is. It's not robots and cylons and that sort of thing that are going to be able to think intelligently. They just did intelligence tests on the different, like Siri and Alexa, quote AIs from different companies, and they scored horribly. They scored much worse than my, much worse than my very intelligent seven-year old. And that's not a comment on the deficiencies in Alexa or in Siri. It's a comment on these are not actually artificial intelligences. These are just tools that apply machine learning strategically. >> So you are all thinking about data and how it is going to change the future and one of the things you said, Tripp, is that we can now see the future. Talk to me about some of the most exciting things that you're seeing that companies do that are anticipating what customers want. >> Okay, so for example, in the customer success space, a lot of Sass businesses have a monthly subscription, so they're very worried about customer churn. So companies are now leveraging all the user behavior to understand which customers are likely to leave next month, and if they know that, they can reach out to them with maybe some retention campaigns, or even use that data to find out who's most likely to buy more from you in the next month, and then market to those in effective ways. So don't just do a blast for everybody, focus on particular customers, their needs, and try to service them or market to them in a way that resonates with them that increases retention, upselling, and recommendations. >> So they've already seen certain behaviors that show a customer is maybe not going to re-up? >> Exactly, so you just, you throw this data in a machine learning, right. You find the predictors of your outcome that interest you, and then using that information, you say oh, maybe predictors A, B, and C, are the ones that actually drive loyalty behaviors, then you can use that information to segment your customers and market to them appropriately. It's pretty cool stuff. >> February 18th, 2018. >> Okay. >> So we did a study recently just for fun of when people search for the term "Outlook, out of office." Yeah, and you really only search for that term for one reason, you're going on vacation, and you want to figure out how to turn the feature on. So we did a five-year data poll of people, of the search times for that and then inverted it, so when do people search least for that term. That's when they're in the office, and it's the week of February 18th, 2018, will be that time when people like, yep, I'm at the office, I got to work. And knowing that, prediction and data give us specificity, like yeah, we know the first quarter is busy, we know between memorial Day and Labor Day is not as busy in the B to B world. But as a marketer, we need to put specificity, data and predictive analytics gives us specificity. We know what week to send our email campaigns, what week to turn our ad budgets all the way to full, and so on and so forth. If someone's looking for The Cube, when will they be doing that, you know, going forward? That's the power of this stuff, is that specificity. >> They know what we're going to search for before we search for it. (laughter) >> I'd like to know where I'm going to be next week. Why that date? >> That's the date that people least search for the term, "Outlook, out of office." >> Okay. >> So, they're not looking for that feature, which logically means they're in the office. >> Or they're on vacation. (laughter) Right, I'm just saying. >> That brings up a good point on not just, what you're predicting for interactions right now, but also anticipating the trends. So Bob brought up a good point about figuring out when people are churning. There's a flip side to that, which is how do you get your customers to be more engaged? And now we have really an explosion in reinforcement learning in particular, which is a tool for figuring out, not just how to interact with you right now as a one off, statically. But how do I interact with you over time, this week, next week, the week after that? And using reinforcement learning, you can actually do that. This is the the sort-of technique that they used to beat Alpha-Go or to beat humans with Alpha-Go. Machine-learning algorithms, supervised learning, works well when you get that immediate feedback, but if you're playing a game, you don't get that feedback that you're going to win 300 turns from now, right now. You have to create more advanced value functions and ways of anticipating where things are going, this move, so that you see things are on track for winning in 20, 30, 40 moves, down the road. And it's the same thing when you're dealing with customer engagement. You want to, you can make a decision, I'm going to give this customer a coupon that's going to make them spend 50 cents more today, or you can make decisions algorithmically that are going to give them a 50 cent discount this week, next week, and the week after that, that are going to make them become a coffee drinker for life, or customer for life. >> It's about finding those customers for life. >> IBM uses the term cognitive business. We go to these conferences, everybody talks about digital transformation. At the end of the day it's all about how you use data. So my question is, if you think about the bell curve of organizations that you work with, how do they, what's the shape of that curve, part one. And then part two is, where do you see IBM on that curve? >> Well I think a lot of my clients make a living predicting the future, they're insurance companies and financial services. That's where the CDO currently resides and they get a lot of benefit. But one of things we're all talking about, but talking around, is that human element. So now, how do we take the human element and incorporate this into the structure of how we make our decisions? And how do we take this information, and how do we learn to trust that? The one thing I hear from most of the executives I talk to, when they talk about how data is being used in their organizations is the lack of trust. Now, when you have that, and you start to look at the trends that we're dealing with, and we call them data points verses calling them people, now you have a problem, because people become very, almost analytically challenged, right? So how do we get people to start saying, okay, let's look at this from the point of view of, it's not an either or solution in the world we live in today. Cognitive organizations are not going to happen tomorrow morning, even the most progressive organizations are probably five years away from really deploying them completely. But the organizations who take a little bit of an edge, so five, ten percent edge out of there, they now have a really, a different advantage in their markets. And that's what we're talking about, hyper-critical thinking skills. I mean, when you start to say, how do I think like Warren Buffet, how do I start to look and make these kinds of decisions analytically? How do I recreate an artificial intelligence when machine-learning practice, and program that's going to provide that solution for people. And that's where I think organizations that are forward-leaning now are looking and saying, how do I get my people to use these capabilities and ultimately trust the data that they're told. >> So I forget who said it, but it was early on in the big data movement, somebody said that we're further away from a single version of the truth than ever, and it's just going to get worse. So as a data scientist, what say you? >> I'm not familiar with the truth quote, but I think it's very relevant, well very relevant to where we are today. There's almost an arms race of, you hear all the time about automating, putting out fake news, putting out misinformation, and how that can be done using all the technology that we have at our disposal for disbursing that information. The only way that that's going to get solved is also with algorithmic solutions with creating algorithms that are going to be able to detect, is this news, is this something that is trying to attack my emotions and convince me just based on fear, or is this an article that's trying to present actual facts to me and you can do that with machine-learning algorithms. Now we have the technology to do that, algorithmically. >> Better algos than like and share. >> From a technological perspective, to your question about where IBM is, IBM has a ton of stuff that I call AI as a service, essentially where if you're a developer on Bluemix, for example, you can plug in to the different components of Watson at literally pennies per usage, to say I want to do sentiment analysis, I want to do tone analysis, I want personality insights, about this piece, who wrote this piece of content. And to Dr. Tamir's point, this is stuff that, we need these tools to do things like, fingerprint this piece of text. Did the supposed author actually write this? You can tell that, so of all the four magi, we call it, the Microsoft, Amazon, Google, IBM, getting on board, and adding that five or ten percent edge that Tripp was talking about, is easiest with IBM Bluemix. >> Great. >> Well, one of the other parts of this is you start to talk about what we're doing and you start to look at the players that are doing this. They are all organizations that I would not call classical technology organizations. They were 10 years ago, look at a Microsoft. But you look at the leadership of Microsoft today, and they're much more about figuring out what the formula is for success for business, and that's the other place I think we're seeing a transformation occurring, and the early adopters, is they have gone through the first generation, and the pain, you know, of having to have these kinds of things, and now they're moving to that second generation, where they're looking for the gain. And they're looking for people who can bring them capability and have the conversation, and discuss them in ways that they can see the landscape. I mean part of this is if you get caught in the bits and bites, you miss the landscape that you should be seeing in the market, and that's why I think there's a tremendous opportunity for us to really look at multiple markets of the same data. I mean, imagine looking and here's what I see, everyone in this group would have a different opinion in what they're seeing, but now we have the ability to see it five different ways and share that with our executive team and what we're seeing, so we can make better decisions. >> I wonder if we could have a frank conversation, an honest conversation about the data and the data ownership. You heard IBM this morning, saying hey we're going to protect your data, but I'd love you guys, as independents to weigh in. You got this data, you guys are involved with your clients, building models, the data trains the model. I got to believe that that model gets used at a lot of different places, within an industry, like insurance or across retail, whatever it is. So I'm afraid that my data is, my IP is going to seep across the industry. Should I not be worried about that? I wonder if you guys could weigh in. >> Well if you work with a particular vendor, sometimes vendors have a stipulation that we will not share your models with other clients, so you just got to stick to that. But in terms of science, I mean you build a model, right? You want to generalize that to other businesses. >> Right! >> (drowned out by others talking) So maybe if you could work somehow with your existing clients, say here, this is what we want to do, we just want to elevate the waters for everybody, right? So everybody wins when all boats rise, right? So if you can kind of convince your clients that we just want to help the world be better, and function better, make employees happier, customers happier, let's take that approach and just use models in a, that may be generalized to other situations and use them. If if you don't, then you just don't. >> Right, that's your choice. >> It's a choice, it's a choice you have to make. >> As long as you're transparent about it. >> I'm not super worried, I mean, you, Dave, Tripp, and I are all dressed similarly, right? We have the model of shirt and tie so, if I put on your clothes, we wouldn't, but if I were to put on your clothes, it would not be, even though it's the same model, it's just not going to be the same outcome. It's going to look really bad, right, so. Yes, companies can share the models and the general flows and stuff, but there's so much, if a company's doing machine learning well, there's so much feature engineering that's unique to that company that trying to apply that somewhere else, is just going to blow up. >> Yeah, but we could switch ties, like Tripp has got a really cool tie, I'd be using that tie on July 4th. >> This is turning into a different kind of panel (laughter) Chris, Tripp, Mike, and Bob, thanks so much for joining us. This has been a really fun and interesting panel. >> Thank you very much. Thank you. >> Thanks you guys. >> We will have more from the IBM Summit in Boston just after this. (techno music)

Published Date : Oct 25 2017

SUMMARY :

brought to you by IBM. Starting at the top, we stand to benefit the most from using data? and how do you then use tend to use analytics to understand their So any function that meets so that the person comes and earn the trust I could ask you a question? that are going to be able one of the things you said, to buy more from you in the next month, to segment your customers and is not as busy in the B to B world. going to search for I'd like to know where That's the date that people least looking for that feature, Right, I'm just saying. that are going to make them become It's about finding of organizations that you and program that's going to it's just going to get worse. that are going to be able the four magi, we call it, and now they're moving to that and the data ownership. that to other businesses. that may be generalized to choice you have to make. is just going to blow up. Yeah, but we could switch Chris, Tripp, Mike, and Bob, Thank you very much. in Boston just after this.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Rebecca KnightPERSON

0.99+

AmazonORGANIZATION

0.99+

Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

ChrisPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Christopher PennPERSON

0.99+

Mike TamirPERSON

0.99+

GoogleORGANIZATION

0.99+

Bob HayesPERSON

0.99+

February 18th, 2018DATE

0.99+

BobPERSON

0.99+

July 4thDATE

0.99+

fiveQUANTITY

0.99+

20QUANTITY

0.99+

five-yearQUANTITY

0.99+

MikePERSON

0.99+

TamirPERSON

0.99+

50 centsQUANTITY

0.99+

next weekDATE

0.99+

DavePERSON

0.99+

Tripp BradenPERSON

0.99+

TrippPERSON

0.99+

SiriTITLE

0.99+

next weekDATE

0.99+

Warren BuffetPERSON

0.99+

30QUANTITY

0.99+

tomorrow morningDATE

0.99+

February 18th, 2018DATE

0.99+

this weekDATE

0.99+

Boston, MassachusettsLOCATION

0.99+

50 centQUANTITY

0.99+

bothQUANTITY

0.99+

next monthDATE

0.99+

first generationQUANTITY

0.99+

five yearsQUANTITY

0.99+

300 turnsQUANTITY

0.99+

AlexaTITLE

0.99+

second generationQUANTITY

0.99+

BostonLOCATION

0.99+

10 years agoDATE

0.99+

TACTORGANIZATION

0.98+

five different waysQUANTITY

0.98+

seven-year oldQUANTITY

0.97+

oneQUANTITY

0.96+

40 movesQUANTITY

0.96+

todayDATE

0.96+

HBRORGANIZATION

0.96+

IBM SummitEVENT

0.96+

Strategic Performance PartnersORGANIZATION

0.96+

10, 15 years agoDATE

0.95+

Labor DayEVENT

0.94+

PresidentPERSON

0.93+

one reasonQUANTITY

0.93+

ten percentQUANTITY

0.93+

Shift CommunicationsORGANIZATION

0.92+

SassTITLE

0.92+

Over BroadwayORGANIZATION

0.91+

Alpha-GoTITLE

0.91+

IBMEVENT

0.89+

single versionQUANTITY

0.88+

first quarterDATE

0.87+

this morningDATE

0.87+

IBM Chief Data Officer SummitEVENT

0.82+

memorial DayEVENT

0.8+

CDO Strategy Summit 2017EVENT

0.8+

Sanjay Saxena, Northern Trust Corporation | IBM CDO Strategy Summit 2017


 

>> Announcer: Live from Boston Massachusetts. It's the cube. Covering IBM Chief Data Officer Summit, brought to you by IBM. >> Welcome back to the cube's coverage of the IBM Chief Data Officer Strategy Summit. I'm your host Rebecca Knight, along with my co-host Dave Vallante. We're joined by Sanjay Saxena, He is the senior vice president, enterprise data governance at Northern trust Corporation. Thanks so much for joining us Sanjay. >> Thank you. Thank you for having me. >> So, before the cameras were rolling, we were talking about how data governance is really now seen as a business imperative. Can you talk about what's driving that? >> Initially, when we started our data governance program it was very much a regulatory program, focused on regulations, such as GDPR, anti-money laundering etc. But now, as we have evolved, most of the program in my company is focused on business and business initiatives and a lot of that is actually driven by our customers, who want to clean data. We are custodians of the data. We do asset servicing, asset management, and what the customers have, are expecting, as stable stakes, is really clean data. So, more and more, I'm seeing it as a customer driven initiative. >> Clean data. can you ... >> So, many many businesses rely on data, financial services. It's all about data and technology, but when we talk about clean data, you're talking about providing data at a certain threshold. At a certain level of expectation. You are used to data quality when it comes to cars and gadgets and things like that. But, think about data and having a certain threshold that you and your customer can agree on as the right quality of data is really important. >> Well, and that's a lot of the, sort of, governance role, some of the back-office role, but then it evolved. >> Right. >> And begin to add value, particularly in the days where IBM was talking about data warehouse was king. You know master data management and single version of the truth. Data quality became a way in which folks in your role could really add business value. >> That's right. >> How has that evolved in terms of the challenge of that with all the data explosion? You know, how to do been big data it just increased the volumes of data by massive massive amounts and then lines of business started to initiate projects. What did that do for data quality, the data quality challenge? >> So the data quality challenge has grown on two dimensions. One, is the volume of data. You simply have more data to manage, more data to govern and provide an attestation or a certification, you say "Hey, it's clean data. It's good data." The other dimension is really around discoverability of that data. We have so much of data lying in data lakes and we have so many so much of meta-data about the data, that even governing that is becoming a challenge. So, I think both those dimensions are important and are making the jobs of a CDO more complex. >> And do you feel maybe not specific to you but just as an industry that, Let's take financial services, is the industry keeping pace? Because for years very few organizations, if any have tamed the data. Just a matter of keeping up. >> Has that changed or is it sort of still that treadmill? >> It's still evolving. It's still evolving in my from my perspective. Industries, again are starting to manage their models that they have to deliver to the regulators as essential, right? Now, more and more, they're looking at customer data. their saying "Look, my email IDs have to be correct. My customer addresses have to be correct." It's really important to have an effective customer relationship. Right? So, more and more, we are seeing front-office driving data quality and data quality initiatives. But have we attained a state of perfection? No. We are getting there, in terms of more optimization, more emphasis, more money and financials being put on data quality. But still it is evolving as a >> You talk a little bit about the importance of the customer relationship and this conference is really all about sharing best practices. What you've learned along the way, even from the stakes. Can you share a little bit with our viewers about what you think are sort of the pillars of a strong customer relationship, particularly with a financial services company? >> Right. So, in the industry that we are in, we do a lot of wealth management. We have institutional customers, but let's save the example of wealth management. These are wealthy, wealthy individuals, who have assets all around the world. Right? It's a high touch customer relationship kind of a game. So, we need to not only understand them, we need to understand their other relationships, their accountants, who their doctors are etc. So, in that kind of a business, not only it is about high touch and really understanding what the customer needs are. Right? And going more towards analytics and understanding what customers want, but really having correct data about them. Right? Where they live, who are their kids etc. So, it's really data and CRM, they actually come together in that kind of environment and data plays a pivotal role, when it comes to really effective CRM. >> Sanjay, last time we talked a little bit about GDPR. Can you give us an update on where you're at? I mean, like it or not, it's coming. How does it affect your organization and where are you and being ready for the, I mean GDPR has taken effect. people don't realize that, but the penalties go into effect next May. So, where are you guys at? >> So, we are progressing well on our GDPR program and we are, as we talked before this interview, we are treating GDPR as a foundation to our data governance program and that's how I would like other companies to treat GDP our program as well. Because not only what we are doing in GDPR, which is mapping out sensitive data across hundreds of applications and creating that baseline for the whole company. So that anytime a regulator comes in and wants to know where a particular person's information is, we should be able to tell them with in no uncertain terms. So we are using that to build a foundation for our data governance program. We are progressing well, in terms of all aspects of the program. The other interesting aspect, which is really important to highlight, which I didn't last time is that, there's a huge amount of synergy between GDPR and information security. Which is a much older discipline and data protection, so all companies have to protect the data anyway, right? Think about it. So, now a regulation comes along and we are, in a systematic fashion, trying to figure out where all where all our sensitive data is and whether it is controlled protected etc. It is helping our data protection program as well. So all these things, they come together very nicely from a GDPR perspective. >> I wonder, you, you remember Federal Rules of Civil Procedure. That was a big deal back in 2006, and the courts, you know maybe weren't as advanced and understanding technology as technology wasn't as advanced. What happened back then and I wonder if we could compare it to what you think will happen or is happening with GDPRs. It was impossible to solve the problem. So, people just said "Alright, we're going to fix email archiving and plug a hole." and then it became a case where, if a company could show that it had processes these procedures in place, they were covered, and that gave them defense and litigation. Do you expect the same will happen here or is the bar much much higher with GDPR. >> I believe the bar is much much higher. Because when you look at the different provisions of the regulation, right, customers consent is a big big deal, right? No longer can you use customer data for purposes other than what the customer has given you the consent for. Nor can you collect additional data, right? Historically, companies have gone out and collected not just your basic information, but may have collected other things that are relevant to them but not relevant to you or the relationship that you have with them. So it is, the laws are becoming or the regulations are becoming more restrictive, and really it's not just a matter of checking a box. It is really actually being able to prove that you have your data under control. >> Yeah so, my follow-up there is, can you use technology to prove that? Because you can't manually figure through this stuff. Are things like machine learning and so-called AI coming in to play to help with that problem. Yes, absolutely. So one aspect that we didn't talk about is that GDPR covers not just structured data but it covers unstructured data, which is huge and it's growing by tons. So, there are two tools available in the marketplace including IBM's tools which help you map the data or what we call as the lineage for the data. There are other tools that help you develop a meta-data repository to say "Hey, if it is date of birth, where does it reside in the repository, in all the depositories, in fact?" So, there are tools around meta-data management. There are tools around lineage. There are tools around unstructured data discovery, which is an add-on to the conventional tools and software that we have. So all those are things that you have in your repository that you can use to effectively implement GDPR. >> So my next follow-up on that is, does that lead to a situation where somebody in the governance role can actually, you know going back to the data quality conversation, can actually demonstrate incremental value to the business as a result of becoming expert at using that tooling? >> Absolutely, so as I mentioned earlier on in the conversation, right? You need govern data not just for your customers, for your regulators, but for your analytics. >> Right. >> Right. Now, analytics is yet another dimension effect. So you take all this information that now you're collecting for your GDPR, right? And it's the same information that somebody would need to effectively do a marketing campaign, or effectively do insights on the customer, right? Assuming you have the consent of course, right? We talked about that, right? So, you can mine the same information. Now, you have that information tagged. It's all nicely calibrated in repositories etc. Now, you can use that for your analytics, You can use that for your top line growth or even see what your internal processes are, that can make you more effective from an operations perspective. And how you can get that. >> So you're talking about these new foundations of your data governance strategy and yet we're also talking about this at a time where there's a real shortage of people who are data experts and analytics experts. What are what is Northern Trust doing right now to make sure that you are you have enough talent to fill the pipeline? >> So, we are doing multiple things. Like most companies, we are trying a lot of different things. It's hard to recruit in these areas, especially in the data science area, where analytics. And people not only need to have a certain broad understanding of your business, but they also need to have a deep understanding of all of the statistical techniques etc., right? So, that combination is very hard to find. So, what we do is typically, we get interns, from the universities who have the technology knowledge and we couple them up with business experts. And we work in those collaborated kind of teams, right? Think about agile teams that are working with business experts and technology experts together. So that's one way to solve for that problem. >> Great, well Sanjay, thank you so much for joining us here on the cube. >> Thank you. Thank you. >> Good to see you again. >> We will have more from the IBM CDO Summit just after this.

Published Date : Oct 25 2017

SUMMARY :

brought to you by IBM. of the IBM Chief Data Officer Strategy Summit. Thank you for having me. So, before the cameras were rolling, We are custodians of the data. can you ... having a certain threshold that you and your customer governance role, some of the back-office role, of the truth. in terms of the challenge of that with So the data quality challenge has grown on two dimensions. And do you feel maybe not specific to you So, more and more, we are seeing front-office driving data You talk a little bit about the importance of the customer So, in the industry that we are in, we do a lot of So, where are you guys at? So, we are progressing well on our GDPR program and the courts, you know It is really actually being able to prove that you have your There are other tools that help you develop a meta-data in the conversation, right? So, you can mine the same information. you are you have enough talent to fill the pipeline? especially in the data science area, where analytics. here on the cube. Thank you. We will have more from the IBM CDO Summit

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Rebecca KnightPERSON

0.99+

Dave VallantePERSON

0.99+

SanjayPERSON

0.99+

IBMORGANIZATION

0.99+

Sanjay SaxenaPERSON

0.99+

2006DATE

0.99+

two toolsQUANTITY

0.99+

hundredsQUANTITY

0.99+

next MayDATE

0.99+

Boston MassachusettsLOCATION

0.99+

two dimensionsQUANTITY

0.99+

bothQUANTITY

0.99+

Northern Trust CorporationORGANIZATION

0.99+

GDPRTITLE

0.99+

Federal Rules of Civil ProcedureTITLE

0.99+

Northern TrustORGANIZATION

0.99+

Northern trust CorporationORGANIZATION

0.99+

OneQUANTITY

0.97+

one aspectQUANTITY

0.96+

IBM CDO SummitEVENT

0.94+

one wayQUANTITY

0.92+

IBM CDO Strategy Summit 2017EVENT

0.89+

applicationsQUANTITY

0.84+

IBM Chief Data Officer SummitEVENT

0.82+

OfficerEVENT

0.68+

single versionQUANTITY

0.68+

GDPRsTITLE

0.64+

ChiefEVENT

0.62+

tonsQUANTITY

0.61+

Strategy SummitEVENT

0.61+

James Kavanaugh & Inderpal Bhandari, IBM | IBM CDO Strategy Summit 2017


 

>> Announcer: Live from Boston, Massachusetts, it's theCUBE, covering IBM Chief Data Officer Summit, brought to you by IBM. (upbeat electronic music) >> Welcome back to theCUBE's coverage of the IBM Chief Data Officer Strategy Summit here in Boston, Massachusetts. I'm your host, Rebecca Knight, along with my co-host Dave Vellante. We are joined by Jim Kavanaugh. He is the Senior Vice President transformation and operations at IBM. And Inderpal Bhandari he is the chief, the global chief data officer at IBM. Thanks so much for joining us. >> Thanks for having us. >> Happy to be here. >> So, you both spoke in the key note today and Jim, you were talking about how we're in a real seminal moment for businesses with this digital, this explosion in digital and data. CEOs get this obviously, but how do you think, do companies in general get it? What's the buy-in, in terms of understanding just how big a moment we're in? >> Well, as I said in the key note, to your point, I truly believe that all businesses in every industry are in a true, seminal moment. Why? Because this phenomenon, the digital disruption, is impacting everything, changing the nature of competition, altering industry structures, and forcing companies to really rethink to design a business at its core. And that's what we've been doin' here at IBM, trying to understand how we transition from an old world of going after pure efficiency just by gettin' after economies of scale, process standardization, to really know, how do you drive efficiency to enable you to get competitive advantage? And that has been the essence of what we've been trying to do at IBM to really reinvent our company from the core. >> So most people today have multiple jobs. You guys, of course, have multiple jobs. You've got an internal facing and an external facing so you come to events like this and you share knowledge. Inderpal, when we first met last year, you had a lot of knowledge up here, but you didn't have the cognitive blueprint, ya know, so you were sharing your experiences, but, year plus in now, you've developed this cognitive blueprint that you're sharing customers. So talk about that a little bit. >> Yeah so, we are internally transforming IBM to become a cognitive enterprise. And that just makes for a tremendous showcase for our enterprise customers like the large enterprises that are like IBM. They look at what we're doing internally and then they're able to understand what it means to create a cognitive enterprise. So we've now created a blueprint, a cognitive enterprise blueprint. Which really has four pillars, which we understand by now, given our own experience, that that's going to be relevant as you try to move forward and create a cognitive enterprise. They're around technology, organization considerations, and cultural considerations, data, and also business process. So we're not just documenting that. We're actually sharing not just those documents, but the architecture, the strategies, pretty much all our failures as we're learning going forward with this, in terms of, developing our own recipes as we eat our own cooking. We're sharing that with our clients and customers as a starting point. So you can imagine the acceleration that that's affording them to be able to get to process transformation which, as Jim mentioned, that's eventually where there's value to be created. >> And you talked about transparency being an important part of that. So Jim, you talked about three fundamentals shifts going on that are relevant, obviously, for IBM and your clients, data, cloud, and engagement, but you're really talking about consumerization. And then you shared with us the results of a 4,000 CXO survey where they said technology was the key to sustainable business over the next four or five years. What I want to ask you, square the circle for me, data warehouse used to be the king. I remember those days, (laughing) it was tough, and technology was very difficult, but now you're saying process is the king, but the technology is largely plentiful and not mysterious as it is anymore. The process is kind of the unknown. What do you take away from that survey? Is it the application of technology, the people and process? How does that fit into that transformation that you talked about? >> Well, the survey that you talked about came from our global businesses services organization that we went out and we interviewed 4,000 CXOs around the world and we asked one fundamental question which is, what is number one factor concerning your long term sustainability of your business? And for the first time ever, technology factors came out as the number one risk to identify. And it goes back to, what we see, as those three fundamental shifts all converging and occurring at the same time. Data, cloud, engagement. Each of those impacting how you have to rethink your design of business and drive competitive advantage going forward. So underneath that, the data architecture, we always start, as you stated, prior, this was around data warehouse technology, et cetera. You applied technology to drive efficiency and productivity back into your business. I think it's fundamentally changed now. When we look at IBM internally, I always build the blueprint that Inderpal has talked about, which everything starts with a foundation of your data architecture, strategy governance, and then business process optimization, and then determining your system's architecture. So as we're looking inside of IBM and redesigning IBM around enabling end-to-end process optimization, quote-to-cash, source to pay, hire to exit. Many different horizontal process orientation. We are first gettin' after, with Inderpal, with the cognitive enterprise data platform what is that standard data architecture, so then we can transform the business process. And just to tie this all together to your question earlier, we have not only the responsibility of transforming IBM, to improve our competitiveness and deliver value, we actually are becoming the showcase for our commercialized entities of software solutions, hardware, and services. To go sell that value back to clients over all. >> And part of that is responsibility for data ownership. Who owns the data. You talked about the West Coast, the unnamed West Coast companies which I of course tweeted out to talk about Google and Amazon. And, but I want to press on that a little bit because data scientists, you guys know a lot of them especially acquiring The Weather Company They will use data to train models. Those models, IP data seeps into those models. How do you protect your clients from that IP, ya know, seepage? Maybe you could talk about that. >> Talk about trust as a service and what it means. >> Yeah, ya know, I mentioned that in my talk at the key note, this is a critical, critical point with regard to these intelligent systems, AI systems, cognitive systems, in that, they end up capturing a lot of the intellectual capital that the company has that goes to the core of the value that the company brings to it's clients and customers. So, in our mind, we're very clear, that the client's data is their data. But not only that, but if there's insights drawn from that data, that insight too belongs to them. And so, we are very clear about that. It's architected into our setup, you know, our cloud is architected from the ground up to be able to support that. And we've thought that through very deeply. To some extent, you know, one would argue that that's taken us some time to do that, but these are very deep and fundamental issues and we had to get them right. And now, of course, we feel very confident that that's something that we are able to actually protect on the behalf of our clients, and to move forward and enable them to truly become cognitive enterprises, taking that concern off the table. >> And that is what it's all about, is helping other companies move to become cognitive enterprises as you say. >> Based on trust, at the end of the day, at the heart of our data responsibility at IBM, it's around a trusted partner, right, to protect their data, to protect their insights. And we firmly believe, companies like IBM that capture data, store data, process data, have an obligation to responsibly handle that data, and that's what Jenny Rometty has just published around data responsibility at IBM. >> Great, well thank you so much Inderpal, Jim. We really appreciate you coming on theCUBE. >> [Jim and Inderpal] Thank you. >> We will have more from the IBM Chief Data Officer Strategy Summit, just after this. (upbeat music)

Published Date : Oct 25 2017

SUMMARY :

brought to you by IBM. of the IBM Chief Data Officer Strategy Summit and Jim, you were talking about Well, as I said in the key note, to your point, so you were sharing your experiences, that that's going to be relevant as you try to move forward that you talked about? Well, the survey that you talked about And part of that is responsibility for data ownership. that the company has that goes to the core of the value to become cognitive enterprises as you say. handle that data, and that's what Jenny Rometty We really appreciate you coming on theCUBE. from the IBM Chief Data Officer Strategy Summit,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Rebecca KnightPERSON

0.99+

JimPERSON

0.99+

Jim KavanaughPERSON

0.99+

IBMORGANIZATION

0.99+

Inderpal BhandariPERSON

0.99+

InderpalPERSON

0.99+

Jenny RomettyPERSON

0.99+

AmazonORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

last yearDATE

0.99+

4,000 CXOsQUANTITY

0.99+

James KavanaughPERSON

0.99+

Boston, MassachusettsLOCATION

0.99+

EachQUANTITY

0.98+

todayDATE

0.98+

InderpalORGANIZATION

0.98+

threeQUANTITY

0.96+

firstQUANTITY

0.96+

IBM Chief Data Officer Strategy SummitEVENT

0.96+

first timeQUANTITY

0.95+

IBM Chief Data Officer SummitEVENT

0.95+

bothQUANTITY

0.94+

one fundamental questionQUANTITY

0.94+

OfficerEVENT

0.94+

theCUBEORGANIZATION

0.92+

four pillarsQUANTITY

0.89+

4,000QUANTITY

0.88+

Strategy SummitEVENT

0.87+

IBMEVENT

0.84+

CDO Strategy Summit 2017EVENT

0.82+

West CoastLOCATION

0.76+

ChiefEVENT

0.7+

number one factorQUANTITY

0.68+

Weather CompanyORGANIZATION

0.68+

yearsDATE

0.54+

next fourDATE

0.52+

fiveQUANTITY

0.5+

oneQUANTITY

0.5+

CXOORGANIZATION

0.46+

DataPERSON

0.34+

Gene LeGanza, Forrester Research | IBM CDO Strategy Summit 2017


 

>> Announcer: Live from Boston, Massachusetts, it's theCube, covering IBM Chief Data Officer's Summit, brought to you by IBM. (upbeat music) >> Welcome back to theCUBE's live coverage of the IBM CDO Strategy Summit here in Boston, Massachusetts. I'm your host, Rebecca Knight, along with my co-host, Dave Vellante. >> Hey, hey. We are joined by Gene Leganza, he is the vice president and research director at Forrester Research. Thanks so much for coming on theCUBE. >> Pleasure, thanks for having me. >> So, before the cameras were rolling, we were talking about this transformation, putting data at the front and center of an organization, and you were saying how technology is a piece of the puzzle, a very important piece of the puzzle, but so much of this transformation involves these cultural, social, organizational politics issues that can be just as big and as onerous as the technology, and maybe bigger. >> Bigger in a sense that there can be intractable without any clear path forward. I was just in a session, at a breakout session, at the conference, as I was saying before, we could have had the same discussion 15 or 20 years ago in terms of how do you get people on board for things like data governance, things that sound painful and onerous to business people, something that sound like IT should take care of that, this is not something that a business person should get involved in. But the whole notion of the value of data as an asset to drive an organization forward, to do things you couldn't do before, to be either driven by insights, and if you're even advanced, AI, and cognitive sort of things, really advancing your organization forward, data's obviously very critical. And the things that you can do should be getting business people excited, but they're still having the same complaints about 20 years ago about this is something somebody should do for me. So, clearly the message is not getting throughout the organization that data is a new and fascinating thing that they should care about. There's a disconnect for a lot of organizations, I think. >> So, from your perspective, what is the push back? I mean, as you said, the fact that data is this asset should be getting the business guys' eyes lighting up. What do you see as sort of biggest obstacle and stumbling block here? >> I think it's easy to characterize the people we talk about. I came from IT myself, so the business is always the guys that don't get it, and in this case, the people who are not on board are somehow out of it, they're really bad corporate citizens, they're just not on board in some way that characterizes them as missing something. But I think what no one ever does who's in the position of trying to sell the value of data and data processes and data capabilities, is the fact that these folks are all doing their best to do their job. I mean, nobody thinks about that, right? They just think they're intractable, they like doing things the way they've always done them, they don't like change, and they're going to resist everything I try to do. But the fact is, from their perspective, they know how to be successful, and they know when risk is going to introduce something that they don't want to go there. It's unjustifiable risk. So the missing link is that no one's made that light bulb go off, to say, there is actually a good reason to change the way you've done things, right? And it's like, maybe it's in your best interest to do things differently, and to care more about something that sounds like IT stuff, like data governance, and data quality. So, that's why I think the chief data officer role, whether it's that title or chief analytics officer, or there's actually a chief artificial intelligence officer at the conference this time around, someone has to be the evangelist who can tell really meaningful stories. I mean, you know, 20 years ago, when IT was trying to convince the business that they should care more about data, data architects and DBAs could talk till they're blue in the face about why data was important. No one wanted to hear it. People get turned off even faster now than they did before, because they have a shorter attention span now than they did before. The fact is that somebody with a lot of credibility on the business side, people who kind of really believe it's capable of driving the business forward, hasta have a very meaningful message, not a half-hour wrap on why data is good for you, but what, specifically, can change in your business that you should want to change. I mean, basically, if you can't put it in terms of what's in it for me, why should they listen to you, right? And so yeah, you know, we've got this thing goin' on, it's really important, and everybody's behind it, and I can give you a list of people whose job title begins with C who really thinks that this is a really important idea, get right down to it, if it's not going to make their area of the business work better, or more efficiently, or, especially with, you know, top line growth sort of issues, they're not going to be that interested. And so it's the job of the person who's trying to evangelize these things to put it in those terms. And it might take some research, it certainly would take some in-depth business knowledge about what happens in that area of the business, you can't give an example from another industry or even another company. You've got to go around and find out what's broken, and talk about what can be fixed, you have to have some really good ideas about what can be innovative in very material terms. One of the breakout sessions I had earlier today, well, they're all around how you define new data products, and get innovative, and very interesting to hear some of the techniques by the folks who'd been successful there, down to, you know, it was somebody's job to go around, and when I say somebody, I don't mean a flunky, I need a chief analytics officer sort of person, talking to people about, you know, what did they hate about their job. Finding, collecting all the things that are broken, and thinking about what could be my best path forward to fix something that's going to get a lot of attention, that I can actually build a marketing message here about why everybody should care about this. And so, the missing link is really not seeing the value in changing behaviors. >> So one of the things that I've always respected about George Colony is he brings people into Forrester that care about social, cultural, organizational issues, not just technology. One of your counterparts, Doug Laney, just wrote a book called Infonomics. You mighta seen it on Twitter, there's a little bit of noise going around it. Premise of the book is essentially that organization shouldn't wait for the accounting industry to tell them how to value data. They should take it upon themselves, and he went into a lot of very detailed, you know, kind of mind-numbing calculations and ways to apply it. But there's a real cultural issue there. First of all, do you buy the premise, and what are you seeing in your client base in terms of the culture of data first, data value, and understanding data value? >> Really good question, really good question. And I do follow what Doug Laney does. Actually, Peter Burris, who you folks know, a long time ago, when he was at Forrester, said, "You know what Doug Laney is doing? "We better be doing that sort of thing." So he brought my attention to it a long time ago. I'm really glad he's working on that area, and I've been in conversations with him at other conferences, where people get into those mind-numbing discussions about the details and how to measure the value of data and stuff, and it's a really good thing that that is going on, and those discussions have to happen. To link my answer to that to answer to your second part of your question about what am I seeing in our client base, is that I'm not seeing a technical answer about how to value data in the books, in a spreadsheet, in some counting rules, going to be the differentiator. The missing link has not been that we haven't had the right rules in place to take X terabytes of data and turn it into X dollars of assets on the books. To me, the problem with that point of view is just that there is data that will bring you gold, and there's data that'll sit there, and it's valuable, but it's not really all that valuable. You know, it's a matter of what do you do with it. You know, I can have a hunk of wood on this table, and it's a hunk of wood, and how much it is, you know, what kind of wood is it and how much does it cost. If I make something out of it that's really valuable to somebody else, it'll cost something completely different based on what its function is, or its value as an art piece or whatever it might be. So, it's so much the product end of it. It's like, what do you do with it, and whether there's an asset value in terms of how it supports the business, in terms of got some regular reporting, but where all the interest is at these days, and why there's a lot of interest in it is like, okay, what are we missing about our business model that can be different, because now that everything's digitized, there are products people aren't thinking of. There are, you know, things that we can sell that may be related to our business, and somehow it's not even related our business, it's just that we now have this data, and it's unique to us, and there's something we can do with it. So the value is very much in terms of who would care about this, and what can I do with it to make it into an analytics product, or, you know, at very least I've got valuable data, I think this is how people tend to think of monetizing data, I've got valuable data, maybe I can put it somewhere people will download it and pay me for it. It's more that I can take this, and then from there do something really interesting with it and create a product, or a service, it's really it's on an app, it's on a phone, or it's on a website, or it's something that you deliver in person, but is giving somebody something they didn't have before. >> So what would you say, from your perspective, what are the companies that are being the most innovative at creating new data products, monetizing, creating new analytics products? What are they doing? What are the best practices of those companies from your perspective? >> You know, I think the best practice of those companies are they've got people who are actively trying to answer the question of, what can I do with this that's new, and interesting, and innovative. I'd say, in the examples I've seen, there been more small to medium companies doing interesting things than really, really huge companies. Or if they're huge companies, they're pockets of huge companies. It's kind of very hard to kind of institutionalize at the enterprise level. It's when you have somebody who gets it about the value of data, working to understand the business at a detailed level enough to understand what might be valuable to somebody in that business if I have a product, is when the magic can potentially happen. And what I've heard people doing are things like that hackathons, where in order to kind of surface these ideas, you get a bunch of folks who kind of get technology and data together with folks who get the business. And they play around with stuff, and they're matching the data to the business problem, comin' up with really kind of cool ideas. Those kind of things tend to happen on a smaller scale. You don't have a hackathon, as far as I can tell, with a couple thousand people in a room. It's usually a smaller sort of operation, where people are digging this up. So, it's folks who kind of get it, because they've been kind of working to find the value in analytics, and it's where there's pockets of people who're kind of working together with the business to make it happen. The profile is such that it's organizations that tend to be more mature about data. They're not complaining that data is something IT should take care of for me. They've kind of been there 10 years ago, or five years ago even, and they've gotten at a point where they actually wanted to move forward from defense and do some offensive playing. They're looking for those kind of cool things to do. So, they're more mature, certainly, than folks who aren't doing it. They're more agile and nimble, I think, than your typical organization in the sense of they can build cross disciplinary teams to make this happen, and that's really where the magic happens. You don't get a genius in the room to come up with this, you get this combination of technical skills, and data knowledge, and data engineering skills, and business smarts all in the same room, and that might be four or five different people to kind of brainstorm until they kind of come up with this. And so the folks who recognize that problem, make that happen, regardless of the industry, regardless of the size of the company, are where it's actually happening. >> I know we have to go, but I wanted to ask you, what about the IBM scorecard in terms of how they're doing in that regard? >> You know, I want to talk to them more. From what they said, you know, in a day, you hear a lot of talk, it's been a long day of hearing people talk about this. It sounds pretty amazing, you know, and I think, actually, we had a half hour session with Inderpal after his keynote, I'm going to get together with him more, and hear more about what's going on under the covers, 'cause it sounds like they're being very effective in kind of making this happen at the enterprise level. And I think that's the unusual thing. I mean, IBM is a huge, huge place. So the notion that you can take these cool ideas and make them work in pockets is one thing. Trying to make it enterprise class, scalable, cognitive-driven organization, with all the right wheels in motion to the data, and analytics, and process, and business change, and operating model change, is kind of amazing. From what I've heard so far, they're actually making it happen. And if it's really, really true, it's really amazing. So it makes me want to hear more, certainly, I have no reason to doubt that what they're saying is happening is happening, I just would love to hear just some more of the story. >> Yeah, you're making us all want to hear more. Well, thanks so much, Gene. It's been a pleasure-- >> Not a problem. >> having you on the show. >> A pleasure. >> Thanks. >> Thank you. >> I'm Rebecca Knight, for Dave Vellante, we will have more from the CDO Summit just after this. (upbeat music)

Published Date : Oct 24 2017

SUMMARY :

brought to you by IBM. of the IBM CDO Strategy Summit here We are joined by Gene Leganza, he is the vice president and you were saying how technology And the things that you can do I mean, as you said, the fact that data is this asset talking to people about, you know, and what are you seeing in your client base about the details and how to measure the value of data You don't get a genius in the room to come up with this, So the notion that you can take these cool ideas It's been a pleasure-- we will have more from the CDO Summit just after this.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Rebecca KnightPERSON

0.99+

Gene LeganzaPERSON

0.99+

Peter BurrisPERSON

0.99+

Doug LaneyPERSON

0.99+

Gene LeGanzaPERSON

0.99+

IBMORGANIZATION

0.99+

GenePERSON

0.99+

George ColonyPERSON

0.99+

second partQUANTITY

0.99+

fourQUANTITY

0.99+

Boston, MassachusettsLOCATION

0.99+

InderpalPERSON

0.99+

Forrester ResearchORGANIZATION

0.99+

OneQUANTITY

0.99+

CDO SummitEVENT

0.98+

ForresterLOCATION

0.97+

oneQUANTITY

0.97+

15DATE

0.96+

five years agoDATE

0.96+

10 years agoDATE

0.96+

20 years agoDATE

0.93+

IBM CDO Strategy SummitEVENT

0.92+

TwitterORGANIZATION

0.92+

a dayQUANTITY

0.91+

terabytesQUANTITY

0.9+

earlier todayDATE

0.89+

FirstQUANTITY

0.89+

theCUBEORGANIZATION

0.88+

IBM CDO Strategy Summit 2017EVENT

0.88+

half hourQUANTITY

0.87+

firstQUANTITY

0.83+

five different peopleQUANTITY

0.83+

one thingQUANTITY

0.79+

a half-hourQUANTITY

0.79+

couple thousand peopleQUANTITY

0.77+

ForresterORGANIZATION

0.76+

aboutDATE

0.75+

Officer's SummitEVENT

0.74+

InfonomicsTITLE

0.56+

dataQUANTITY

0.51+

theCubeCOMMERCIAL_ITEM

0.46+

ChiefEVENT

0.38+

Caitlin Halferty Lepech, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE


 

(hip-hop music) (electronic music) >> Announcer: Live from Fisherman's Wharf in San Francisco, it's theCUBE, covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. (crowd) >> Hey welcome back everybody, Jeff Fricke here with Peter Burris. We're wrapping up a very full day here at the IBM Chief Data Officer Strategy Summit Spring 2017, Fisherman's Wharf, San Francisco. An all-day affair, really an intimate affair, 170 people, but Chief Data Officers with their peers, sharing information, getting good information from IBM. And it's an interesting event. They're doing a lot of them around the country, and eventually around the world. And we're excited to have kind of the power behind the whole thing. (laughing) Caitlin Lepech, she's the one who's driving the train. Don't believe the guys in the front. She's the one behind the curtain that's pulling all the levers. So we wanted to wrap the day. It's been a really good day, some fantastic conversations, great practitioners. >> Right. >> Want to get your impression of the day? Right, it's been great. The thing I love about this event the most is this is all client-led discussion, client-led conversation. And we're quite fortunate in that we get a lot leading CDOs to come join us. I've seen quite a number this time. We tried something new. We expanded to this 170 attendees, by far the largest group that we've ever had, so we ran these four breakout session tracks. And I am hearing some good feedback about some of the discussions. So I think it's been a good and full day (laughing). >> Yes, it has been. Any surprises? Anything that kind of jumped out to you that you didn't expect? >> Yeah, a couple of things. So we structure these breakout sessions... Pointed feedback from last session was, Hey, we want the opportunity to network with peers, share use cases, learn from each other, so I've got my notes here, and that we did a function builder. So these are all our CDOs that are starting to build the CDO office. They're new in the journey, right. We've got our data integrators, so they're really our data management, data wranglers, the business optimizers, thinking about how do I make sure I've got the impact throughout the business, and then market innovators. And one of the surprises is how many people are doing really innovative things, and they don't realize it. They tell me-- >> Jeff: Oh, really. >> Ahhh, I'm just in the early stages of setting up the office. I don't have the good use cases to share. And they absolutely do! They absolutely do! So that's always the surprise, is how many are actually quite more innovative than I think they give themselves credit. >> Well, that was a pretty consistent theme that came out today, is that you can't do all the foundational work, and then wait to get that finished before you start actually innovating delivering value. >> If you want to be successful. >> (laughing) Right, and keep your job (laughing) If you're one of the 41%. So you have to be parallel tracking, that first process'll never finish, but you've got to find some short-term wins that you can execute on right away. >> And that was one of our major objectives and sort of convening this event, and continuing to invest in the CDO community, is how do I improve the failure rate? We all agree, growth in the role, okay. But over half are going to fail. >> Right. >> And we start to see some of these folks now that they're four, six years in having some challenges. And so, what we're trying to do is reduce that failure rate. >> Jeff: Yeah, hopefully they-- >> But still four to six years in is still not a bad start. >> Caitlin: Yeah, yeah. >> There's most functions that fail quick... That fail tend to fail pretty quickly. >> Yeah. >> So one of the things that I was struck by, and I want to get your feedback on this, is that 170 people, sounds like a lot. >> Caitlin: Yeah, yeah. >> But it's not so much if there is a unity of purpose. >> Caitlin: Correct, correct! >> If there's pretty clear understanding of what it is they do and how they do it, and I think the CDO's role is still evolving very rapidly. So everybody's coming at this from a different perspective. And you mentioned the four tracks. But they seem to be honing in on the same end-state. >> Absolutely. >> So talk about what you think that end-state is. Where is the CDO in five years? >> Absolutely, so I did some live polling, as we kicked off the morning, and asked a couple of questions along those lines. Where do folks report? I think we mentioned this-- >> Right. >> When we kicked off. >> Right. >> A third to the CEO, a third to CIO, and a third to a CXO-type role, functional role. And reflected in the room was about that split. I saw about a third, third, third. And, yet, regardless of where in the organization, it's how do we get data governance, right? How do we get data management, right? And then there's this, I think, reflection around, okay, machine learning, deep learning, some of these new opportunities, new technologies. What sort of skills do we need to deliver? I had an interesting conversation with a CDO that said, We make a call across the board. We're not investing to build these technical skills in-house because we know in two years the guys I had doing Python and all that stuff, it's on to the next thing. And now I've got to get machine learning, deep learning, two years I need to move to the next. So it's more identifying technologies in partnership bringing those and bringing us through, and driving the business results. >> And we heard also very frequently the role the politics played. >> Caitlin: Oh, absolutely. >> And, in fact, Fow-wad Boot from-- >> Kaiser. >> Kaiser Permanente, yeah. >> Specifically talked about this... He's looking in the stewards that he's hiring in his function. He's looking for people that have learned the fine art of influencing others. >> And I think it's a stretch for a lot of these folks. Another poll we did is, who comes from an engineering, technical background. A lot of hands in the room. And we're seeing more and more come from line of business, and more and more emphasize the relationship component of it, relationship skills, which is I think is very interesting. We also see a high number of women in CDO roles, as compared to other C-suite roles. And I like to think, perhaps, it has to do-- >> Jeff: Right, right. >> With the relationship component of it as well because it is... >> Jeff: Yeah, well-- >> Peter: That's interesting. I'm not going to touch it, but it's interesting (laughing). >> Well, no, we were-- >> (laughing) I threw it out there. >> We were at the Stanford-- >> No, no, we-- >> Women in Data Science event, which is a phenomenal event. We've covered it for a couple years, and Jayna George from Western Digital, phenomenal, super smart lady, so it is an opportunity, and I don't think it's got so much of the legacy stuff that maybe some of the other things had that people can jump in. Diane Green kicked it off-- >> Yeah. >> So I think there is a lot of examples women doing their own thing in data science. >> Yeah, I agree, and I'll give you another context. In another CUBE, another event, I actually raised that issue, relationships, because men walk into a room, they get very competitive very quickly, who's the smartest guy in the room. And on what days is blah, blah, blah. And we're talking about the need to forge relationships that facilitate influence. >> Absolutely. >> And sharing of insight and sharing of knowledge. And it was a woman guest, and she... And I said, Do you see that women are better at this than others? And she looked at me, she said, Well, that's sexist. (laughing). And it was! I guess it kind of was. >> Right, right. >> But do you... You're saying that it's a place where, perhaps, women can actually take a step into senior roles in a technology-oriented space. >> Yeah. >> And have enormous success because of some of the things that they bring to the table. >> Yeah, one quote stuck with me is, when someone comes in with great experience, really smart, Are they here to hurt me or help me? And the trust component of it and building the trust, And I think there is one event we do here, the second day of all of our CDO summits, so women in breakfast, the data divas' breakfast. And we explore some opportunities for women leaders, and it was well-attended by men and women. And I think there really is when you're establishing a data strategy for your entire organization, and you need lines of business to contribute money and funding and resources, and sign off, there is I feel sometimes like we're on the Hill. I'm back in D.C., working on Capitol Hill (laughing), and we're shopping around to deliver, so absolutely. Another tying back to what you mentioned about something that was surprising today, we started building out this trust as a service idea. And a couple people on panels mentioned thinking about the value of trust and how you instill trust. I'm hearing more and more about that, so that was interesting. >> We actually brought that up. >> Caitlin: Oh, did you! >> Yeah, we actually brought it up here in theCUBE. And it was specifically and I made an observation that when you start thinking about Watson and you start thinking about potentially-competitive offerings at some point in time they're going to offer alternative opinions-- >> Absolutely. >> And find ways to learn to offer their opinions better than their's just for competitive purposes. >> Absolutely. >> And so, this notion of trust becomes essential to the brand. >> Absolutely. >> My system is working in your best interest. >> Absolutely. >> Not my best interest. And that's not something that people have spent a lot of time thinking about. >> Exactly, and what it means when we say, when we work with clients and say, It's your data, your insight. So we certainly tap that information-- >> Sure. >> And that data to train Watson, but it's not... We don't to keep that, right. It's back to you, but how do you design that engagement model to fulfill the privacy concerns, the ethical use of data, establish that trust. >> Right. >> I think it's something we're just starting to really dig into. >> But also if you think about something like... I don't know if you ever heard of this, but this notion of principal agent theory. >> Umm-hmm. >> Where the principal being the owner, in typical-- >> Right. >> Economic terms. The agent being the manager that's working on behalf of the owner. >> Right. >> And how do their agendas align or misalign. >> Right. >> The same thing is just here. We're not talking about systems that have... Are able to undertake very, very complex problems. >> Right. >> Sometimes will do so, and people will sit back and say, I'm not sure how it actually worked. >> Yeah. >> So they have to be a good agent for the business. >> Absolutely, absolutely, definitely. >> And this notion of trust is essential to that. >> Absolutely, and it's both... It originated internally, right, trying to trust the answers you're getting-- >> Sure! >> On a client. Who's our largest... Where's our largest client opportunity, you get multiple answers, so it's kind of trusting the voracity of the data, but now it's also a competitive differentiator. As a brand you can offer that to your client. >> Right, the other big thing that came up is you guys doing it internally, and trying to drive your own internal transformation at IBM, which is interesting in of itself, but more interesting is the fact that (laughing) you actually want to publish what you're doing and how you did it-- >> Yeah. >> As a road map. I think you guys are calling it the Blueprint-- >> Yes. >> For your customers. And talk about publishing that actually in October, so I wonder if you can share a little bit more color around what exactly is this Blueprint-- >> Sure. >> How's it's going to be exposed? >> What should people look forward to? >> Sure, I'm very fortunate in that Inderpal Bhandari when he came on board as IBM's First Chief Data Officer, said, I want to be completely transparent with clients on what we're doing. And it started with the data strategy, here's how we arrived at the data strategy, here's how we're setting up our organization internally, here's how we're prioritizing selecting use cases, so client prefixes is important to us, here's why. Down at every level we've been very transparent about what we're doing internally. Here's the skill sets I'm bringing on board and why. One thing we've talked a lot about is the Business Unit Data Officer, so having someone that sits in the business unit responsible for requirements from the unit, but also ensuring that there's some level of consistency at the enterprise level. >> Right. >> So, we've had some Business Unit Data Officers that we've plucked (laughing) from other organizations that have come and joined IBM last year, which is great. And so, what we wanted to do is follow that up with an actual Blueprint, so I own the Blueprint for Inderpal, and what we want to do is deliver it along three components, so one, the technology component, what technology can you leverage. Two, the business processes both the CDO processes and the enterprise, like HR, finance, supply chain, procurement, et cetera. And then finally the organizational considerations, so what sort of strategy, culture, what talent do you need to recruit, how do you retain your existing workforce to meet some of these new technology needs. And then all the sort of relationship piece we were talking about earlier, the culture changes required. >> Right. >> How do you go out and solicit that buy-in. And so, our intent is to come back around in October and deliver that Blueprint in a way that can be implemented within organization. And, oh, one thing we were saying is the homework assignment from this event (laughing), we're going to send out the template. >> Right. And our version of it, and be very transparent, here's how we're doing it internally. And inviting clients to come back to say-- >> Right. >> You need to dig in deeper here, this part's relevant to me, along the information governance, the master data management, et cetera. And then hopefully come back in October and deliver something that's really of value and usable for our clients across the industry. >> So for folks who didn't make it today, too bad for them. >> Exactly, we missed them, (laughing) but... >> So what's the next summit? Where's it's going to be, how do people get involved? Give us a kind of a plug for the other people that wished they were here, but weren't able to make it today. >> Sure, so we will come back around in the fall, September, October timeframe, in Boston, and do our east coast version of this summit. So I hope to see you guys there. >> Jeff: Sure, we'll be there. >> It should be a lot of fun. And at that point we'll deliver the Blueprint, and I think that will be a fantastic event. We committed to 170 data executives here, which fortunately we were able to get to that point, and are targeting a little over 200 for the fall, so looking to, again, expand, continue to expand and invite folks to join us. >> Be careful, you're going to be interconnected before you know. >> (laughing) No, no, no, I want it small! >> (laughing) Okay. >> And then also as I mentioned earlier, we're starting to see more industry-specific financial services, government. We have a government CDO summit coming up, June six, seven, in Washington D.C. So I think that'll be another great event. And then we're starting to see outside of the U.S., outside of North America, more of the GO summits as well, so... >> Very exciting times. Well, thanks for inviting us along. >> Sure, it's been a great day! It's been a lot of fun. Thank you so much! >> (laughing) Alright, thank you, Caitlin. I'm Jeff Fricke with Peter Burris. You're watching theCUBE. We've been here all day at the IBM Chief Data Officer Strategy Summit, that's right the Spring version, 2017, in Fisherman's Wharf, San Francisco. Thanks for watching. We'll see you next time. (electronic music) (upbeat music)

Published Date : Mar 30 2017

SUMMARY :

Brought to you by IBM. and eventually around the world. of the day? Anything that kind of jumped out to you And one of the surprises is how many people are I don't have the good use cases to share. and then wait to get that finished before you start that you can execute on right away. And that was one of our major objectives And we start to But still four to six years in That fail tend to fail pretty quickly. So one of the things that And you mentioned the four tracks. Where is the CDO in five years? and asked a couple of questions along those lines. And reflected in the room was about that split. And we heard also very frequently He's looking for people that have learned the fine art and more and more emphasize the relationship With the relationship component of it as well I'm not going to touch it, that maybe some of the other things had So I think there is a lot and I'll give you another context. And I said, Do you see that women are better You're saying that it's a place where, perhaps, because of some of the things that they bring to the table. And the trust component of it and building the trust, and I made an observation that And find ways to learn And so, this notion of in your best interest. And that's not something that people have spent a lot Exactly, and what it means when we say, And that data I think it's something I don't know if you ever heard of this, of the owner. Are able to undertake very, very complex problems. and people will sit back and say, a good agent for the business. Absolutely, and it's both... As a brand you can offer that to your client. I think you guys are calling it the Blueprint-- And talk about publishing that actually in October, so having someone that sits in the business unit and the enterprise, like HR, finance, supply chain, And so, our intent is to come back around in October And our version of it, along the information governance, So for folks who didn't make it today, Where's it's going to be, So I hope to see you guys there. and are targeting a little over 200 for the fall, before you know. more of the GO summits as well, so... Well, thanks for inviting us along. Thank you so much! We've been here all day at the

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Caitlin LepechPERSON

0.99+

JeffPERSON

0.99+

Jayna GeorgePERSON

0.99+

Diane GreenPERSON

0.99+

IBMORGANIZATION

0.99+

Jeff FrickePERSON

0.99+

Peter BurrisPERSON

0.99+

CaitlinPERSON

0.99+

BostonLOCATION

0.99+

OctoberDATE

0.99+

PeterPERSON

0.99+

Washington D.C.LOCATION

0.99+

fourQUANTITY

0.99+

41%QUANTITY

0.99+

last yearDATE

0.99+

June sixDATE

0.99+

D.C.LOCATION

0.99+

2017DATE

0.99+

thirdQUANTITY

0.99+

170 attendeesQUANTITY

0.99+

Inderpal BhandariPERSON

0.99+

PythonTITLE

0.99+

170 data executivesQUANTITY

0.99+

six yearsQUANTITY

0.99+

170 peopleQUANTITY

0.99+

InderpalORGANIZATION

0.99+

North AmericaLOCATION

0.99+

four tracksQUANTITY

0.99+

bothQUANTITY

0.99+

two yearsQUANTITY

0.99+

one quoteQUANTITY

0.99+

U.S.LOCATION

0.99+

SeptemberDATE

0.99+

Capitol HillLOCATION

0.98+

San FranciscoLOCATION

0.98+

second dayQUANTITY

0.98+

one eventQUANTITY

0.98+

TwoQUANTITY

0.98+

Western DigitalORGANIZATION

0.98+

WatsonPERSON

0.98+

todayDATE

0.98+

Caitlin Halferty LepechPERSON

0.98+

oneQUANTITY

0.97+

five yearsQUANTITY

0.97+

firstQUANTITY

0.97+

three componentsQUANTITY

0.97+

sevenDATE

0.96+

Chief Data OfficerEVENT

0.96+

OneQUANTITY

0.96+

over 200QUANTITY

0.95+

Fisherman's Wharf, San FranciscoLOCATION

0.94+

over halfQUANTITY

0.94+

First Chief Data OfficerPERSON

0.9+

BlueprintORGANIZATION

0.87+

Women in Data ScienceEVENT

0.86+

Kaiser PermanenteORGANIZATION

0.86+

Fisherman's WharfLOCATION

0.81+

Chief Data Officer Strategy Summit Spring 2017EVENT

0.8+

#IBMCDOORGANIZATION

0.8+

Strategy SummitEVENT

0.78+

Bruce Tyler, IBM & Fawad Butt | IBM CDO Strategy Summit 2017


 

(dramatic music) >> Narrator: Live from Fisherman's Wharf in San Francisco. It's theCube. Covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. >> Hey, welcome back, everybody. Jeff Frank here with theCube. We are wrapping up day one at the IBM CEO Strategy Summit Spring 2017 here at the Fisherman's Wharf Hyatt. A new venue for us, never been here. It's kind of a cool venue. Joined by Peter Burris, Chief Research Officer from Wikibon, and we're excited to have practitioners. We love getting practitioners on. So we're joined by this segment by Bruce Tyler. He's a VP Data Analytics for IBM Global Business Services. Bruce, nice to see you. >> Thank you. >> And he's brought along Fawad Butt, the Chief Data Governance Officer for Kaiser Permanente. Welcome. >> Thank you, thank you. >> So Kaiser Permanente. Regulated industry, health care, a lot of complex medical issues, medical devices, electronic health records, insurance. You are in a data cornucopia, I guess. >> It's data heaven all the way. So as you mentioned, Kaiser is a vertically integrated organization, Kaiser Permanente is. And as such the opportunity for us is the fact that we have access to a tremendous amount of data. So we sell insurance, we run hospitals, medical practices, pharmacies, research labs, you name it. So it's an end to end healthcare system that generates a tremendous amount of dataset. And for us the real opportunity is to be able to figure out all the data we have and the best uses for it. >> I guess I never really thought of it from the vertical stack perspective. I used to think it was just the hospital, but the fact that you have all those layers of the cake, if you will, and can operate within them, trade data within them, and it gives you a lot of kind of classic vertical stack integration. That fits. >> Very much so. And I didn't give you the whole stack. I mean, we're actually building a medical school in Southern California. We have a residency program in addition to everything else we've talked about. But yeah, the vertical stack does provide us access to data and assets related to data that are quite unique. On the one side, it's a great opportunity. On the other side, it has to be all managed and protected and served in the best interest of our patrons and members. >> Jeff: Right, right. And just the whole electronic health records by themselves that people want access to that, they want to take them with. But then there's all kinds of scary regulations around access to that data. >> So the portability, I think what you're talking about is the medical record portability, which is becoming a really new construct in the industry because people want to be able to move from practitioner to practitioner and have that access to records. There are some regulation that provide cover at a national scale but a lot of this also is impacted by the states that you're operating in. So there's a lot of opportunities where I can tell some of the regulation in this space over time and I think that will, then we'll see a lot more adoption in terms of these portability standards which tend to be a little one off right now. >> Right, right. So I guess the obvious question is how the heck do you prioritize? (laughter) You got a lot of things going on. >> You know, I think it's really the standard blocking/tackling sort of situation, right? So one of the things that we've done is taken a look at our holistic dataset end to end and broken it down into pieces. How do you solve this big problem? You solve it by piecing it out a little bit. So what we've done is that we've put our critical dataset into a set of what we call data domains. Patient, member, providers, workers, HR, finance, you name it. And then that gives us the opportunity to not only just say how good is our data holistically but we can also go and say how good is our patient data versus member data versus provider data versus HR data. And then not only just know how good it is but it also gives us the opportunity to sort of say, "Hey, there's no conceivable way we can invest "in all 20 of these areas at any given point." So what's the priority that aligns with business objectives and goals? If you think about corporate strategy in general, it's based on customers and demand and availability and opportunities but now we're adding one more tool set and giving that to our executives. As they're making decisions on investments in longer term, and this isn't just KP, it's happening across industries, is that the data folks are bringing another lens to the table, which is to say what dataset do we want to invest in over the course of the next five years? If you had to choose between 20, what are the three that you prioritize first versus the other. So I think it's another lever, it's another mechanism to prioritize your strategy and your investments associated with that. >> But you're specifically focused on governance. >> Fawad: I am. >> In the health care industry, software for example is governed by a different set of rules as softwares in other areas. Data is governed by a different set of rules than data is governed in most other industries. >> Fawad: Correct. >> Finance has its own set of things and then some others. What does data governance mean at KP? Which is a great company by the way. A Bay Area company. >> Absolutely. >> What does it mean to KP? >> It's a great question, first of all. Every data governance program has to be independent and unique because it should be trying to solve for a set of things that are relevant in that context. For us at KP, there are a few drivers. So first is, as you mentioned, regulation. There's increased regulation. There's increased regulatory scrutiny in pressure. Some things that have happened in financial services over the last eight or ten years are starting to come and trickle in to the healthcare space. So there's that. There's also a changing environment in terms of how, at least from an insurance standpoint, how people acquire health insurance. It used to be that your employer provided a lot of that, those services and those insurances. Now you have private marketplaces where a lot of people are buying their own insurance. And you're going from a B2B construct to a B2C construct in certain ways. And these folks are walking around with their Android phones or their iPhones and they're used to accessing all sorts of information. So that's the customer experience that you to to deliver to them. So there's this digital transformation that's happening that's driving some of the need around governance. The other areas that I think are front and center for us are obviously privacy and security. So we're custodians of a lot of datasets that relate to patients' health information and their personal information. And that's a great responsibility and I think from a governance standpoint that's one of the key drivers that define our focus areas in the governance space. There are other things that are happening. There's obviously our mission within the organization which is to deliver the highest coverage and care at the lowest cost. So there's the ability for us to leverage our data and govern our data in a way which supports those two mission statements, but the bigger challenge in nuts and bolts terms for organizations like ours, which are vertically integrated, is around understanding and taking stock of the entire dataset first. Two, protecting it and making sure that all the defenses are in place. But then three, figuring out the right purposes to use this, to use the data. So data production is great but data consumption is where a lot of the value gets captured. So for us some of the things that data governance facilitates above all is what data gets shared for what purposes and how. Those are things that an organization of our size deliver a tremendous amount of value both on the offensive and the defensive side. >> So in our research we've discovered that there are a lot of big data functions or analytic functions that fail because they started with the idea of setting up the infrastructure, creating a place to put the data. Then they never actually got to the use case or when they did get to the use case they didn't know what to do next. And what a surprise. No returns, lot of costs, boom. >> Yep. >> The companies that tend to start with the use case independently individual technologies actually have a clear path and then the challenge is to accrete knowledge, >> Yes. >> accrete experience and turn it into knowledge. So from a governance standpoint, what role do you play at KP to make sure that people stay focused in use cases, that the lessons you learn about pursuing those use cases then turn to a general business capability in KP. >> I mean, again, I think you hit it right on the head. Data governance, data quality, data management, they're all great words, right? But what do they support in terms of the outcomes? So from our standpoint, we have a tremendous amount of use cases that if we weren't careful, we would sort of be scatterbrained around. You can't solve for everything all at once. So you have to find the first set of key use cases that you were trying to solve for. For us, privacy and security is a big part of that. To be able to, there's a regulatory pressure there so in some cases if you lose a patient record, it may end up costing you $250,000 for a record. So I think it's clear and critical for us to be able to continue to support that function in an outstanding way. The second thing is agility. So for us one of the things that we're trying to do with governance and data management in general, is to increase our agility. If you think about it, a lot of companies go on these transformation journeys. Whether it's transforming HR or trying to transform their finance functions or their business in general, and that requires transforming their systems. A lot of that work, people don't realize, is supported and around data. It's about integrating your old data with the new business processes that you're putting out. And if you don't have that governance or that data management function in place to be able to support that from the beginning or have some maturity in place, a lot of those activities end up costing you a lot more, taking a lot longer, having a lower success rate. So for us delivering value by creating additional agility for a set of activities that as an organization, we have committed to, is one for of core use cases. So we're doing a transformation. We're doing some transformation around HR. That's an area where we're making a lot of investments from a data governance standpoint to be able to support that as well as inpatient care and membership management. >> Great, great lessons. Really good feedback for fellow practitioners. Bruce, I want to get your perspective. You're kind of sitting on the other side of the table. As you look at the experience at Kaiser Permanente, how does this equate with what you're seeing with some of your other customers, is this leading edge or? >> Clearly on point. In fact, we were talking about this before we came up and I'm not saying that you guys led, we led the witness here but really how do you master around the foundational aspects around the data, because at the end of the day it's always about the data. But then how do you start to drive the value out of that and go down that cognitive journey that's going to either increase value onto your insights or improve your business optimization? We've done a healthy business within IBM helping customers go through those transformation processes. I would say five years ago or even three years ago we would start big. Let's solve the data aspect of it. Let's build the foundational management processes around there so that it ensures that level of integrity and trusted data source that you need across an organization like KP because they're massive because of all the different types of business entities that they have. So those transformation initiatives, they delivered but it was more from an IT perspective so the business partners that really need to adopt and are going to get the value out of that were kind of in a waiting game until that came about. So what we're seeing now is looking at things around from a use case-driven approach. Let's start small. So whether you're looking at trying to do something within your call center and looking at how to improve automation and insights in that spec, build a proof of value point around a subset of the data, prove that value, and those things can typically go from 10 to 12 weeks, and once you've demonstrated that, now how do can you scale? But you're doing it under your core foundational aspects around the architecture, how you're going to be able to sustain and maintain and govern the data that you have out there. >> It's a really important lesson all three of you have mentioned now. That old method of let's just get all the infrastructure in place is really not a path to success. You getting hung up, spend a lot of money, people get pissed off and oh by the way, today your competitors are transforming right around you while you're >> Unless they're also putting >> tying your shoes. >> infrastructure. >> Unless they're also >> That's right. (laughter) >> tying their shoes too. >> Build it and they will come sounds great, but in the data space, it's a change management function. One of my favorite lines that I use these days is data management is a team sport. So this isn't about IT, or this isn't just about business, and can you can't call business one monolith. So it's about the various stakeholders and their needs and your ability to satisfy them to the changes you're about to implement. And I think that gets lost a lot of times. It turns into a technical conversation around just capability development versus actually solving and solutioning for that business problem set that are at hand. >> Jeff: Yeah. >> Peter: But you got to do both, right? >> You have to. >> Bruce: Absolutely, yeah. >> Can I ask you, do we have time for another couple of questions? >> Absolutely. >> So really quickly, Fawad, do you have staff? >> Fawad: I do. >> Tell us about the people on your staff, where they came from, what you're looking for. >> So one of the core components of data governance program are stewards, data stewards. So to me, there are multiple dimensions to what stewards, what skills they should have. So for stewards, I'm looking for somebody that has some sort of data background. They would come from design, they would come from architecture, they would come from development. It doesn't really matter as long as they have some understanding. >> As long as you know what a data structure is and how you do data monitoring. >> Absolutely. The second aspect is that they have to have an understanding of what influence means. Be able to influence outcomes, to be able to influence conversations and discussions way above their pay grade, so to be able to punch above your weight so to speak in the influence game. And that's a science. That's a very, very definitive science. >> Yeah, we've heard many times today that politics is an absolute crucial game you have to play. >> It is part of the game and if you're not accounting for it, it's going to hit you in the face when you least expect it. >> Right. >> And the third thing is, I look for people that have some sort of an execution background. So ability to execute. It's great to be able to know data and understand data and go out and influence people and get them to agree with you, but then you have to deliver. So you have to be able to deliver against that. So those are the dimensions I look at typically when I'm looking at talent as it relates particularly to stewardship talent. In terms of where I find it, I try to find it within the organization because if I do find it within the organization, it gives me that organizational understanding and those relationship portfolios that people bring to the table which tend to be part of that influence-building process. I can teach people data, I can teach them some execution, I can't teach them how to do influence management. That just has to-- >> You can't teach them to social network. >> Fawad: (laughing) That's exactly right. >> Are they like are the frustrated individuals that have been seen the data that they're like (screams) this is-- >> They come from a lot of different backgrounds. So I have a steward that is an attorney, is a lawyer. She comes from that background. I have a steward that used to be a data modeler. I have a steward that used to run compliance function within HR. I have a steward that comes from a strong IT background. So it's not one formula. It's a combination of skills and everybody's going to have a different set of strengths and weaknesses and as long as you can balance those out. >> So people who had an operational role, but now are more in an execution setup role. >> Fawad: Yeah, very much so. >> They probably have a common theme, though, across them that they understand the data, they understand the value of it, and they're able to build consensus to make an action. >> Fawad: That's correct. >> That's great. That's perfect close. They understand it and they can influence, and they can get to action. Pretty much sums it up, I think so. All right. >> Bruce: All right thank you. >> Well, thanks a lot, Bruce and Fawad for stopping by. Great story. Love all the commercials on the Warriors, I'm a big fan and watch KNBR. (laughter) But really a cool story and thanks for sharing it and continued success. >> Thank you for the opportunity. >> Absolutely. All right, with Peter Burris, I'm Jeff Frank. You're watching theCube from the IBM Chief Data Officer Strategy Summit Spring 2017 from Fisherman's Wharf, San Francisco. We'll be right back after this short break. Thanks for watching. (electronic music)

Published Date : Mar 30 2017

SUMMARY :

Brought to you by IBM. Bruce, nice to see you. the Chief Data Governance Officer for Kaiser Permanente. So Kaiser Permanente. So it's an end to end healthcare system but the fact that you have all those layers of the cake, On the other side, it has to be all managed And just the whole electronic health records and have that access to records. how the heck do you prioritize? and giving that to our executives. In the health care industry, software for example Which is a great company by the way. So that's the customer experience the infrastructure, creating a place to put the data. that the lessons you learn about pursuing those use cases So you have to find the first set of key use cases You're kind of sitting on the other side of the table. and I'm not saying that you guys led, in place is really not a path to success. That's right. So it's about the various stakeholders and their needs Tell us about the people on your staff, So to me, there are and how you do data monitoring. so to be able to punch above your weight is an absolute crucial game you have to play. for it, it's going to hit you in the face So you have to be able to deliver against that. So I have a steward that is an attorney, So people who had an operational role, and they're able to build consensus to make an action. and they can get to action. Love all the commercials on the Warriors, I'm a big fan from the IBM Chief Data Officer Strategy Summit Spring 2017

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Peter BurrisPERSON

0.99+

Jeff FrankPERSON

0.99+

BrucePERSON

0.99+

FawadPERSON

0.99+

JeffPERSON

0.99+

Kaiser PermanenteORGANIZATION

0.99+

IBMORGANIZATION

0.99+

Bruce TylerPERSON

0.99+

KaiserORGANIZATION

0.99+

PeterPERSON

0.99+

$250,000QUANTITY

0.99+

Southern CaliforniaLOCATION

0.99+

threeQUANTITY

0.99+

Fawad ButtPERSON

0.99+

bothQUANTITY

0.99+

10QUANTITY

0.99+

second aspectQUANTITY

0.99+

firstQUANTITY

0.99+

San FranciscoLOCATION

0.99+

20QUANTITY

0.99+

oneQUANTITY

0.99+

iPhonesCOMMERCIAL_ITEM

0.99+

TwoQUANTITY

0.99+

three years agoDATE

0.99+

Bay AreaLOCATION

0.99+

five years agoDATE

0.99+

12 weeksQUANTITY

0.99+

third thingQUANTITY

0.98+

IBM Global Business ServicesORGANIZATION

0.98+

WikibonORGANIZATION

0.97+

OneQUANTITY

0.97+

KPORGANIZATION

0.97+

second thingQUANTITY

0.96+

Fisherman's Wharf, San FranciscoLOCATION

0.96+

todayDATE

0.95+

day oneQUANTITY

0.94+

first setQUANTITY

0.94+

Strategy Summit Spring 2017EVENT

0.92+

one formulaQUANTITY

0.92+

one more toolQUANTITY

0.91+

IBMEVENT

0.91+

AndroidTITLE

0.91+

two mission statementsQUANTITY

0.91+

Strategy SummitEVENT

0.9+

Fisherman's Wharf HyattLOCATION

0.87+

Chief Data Governance OfficerPERSON

0.85+

CDO Strategy Summit 2017EVENT

0.85+

ten yearsQUANTITY

0.84+

CEO Strategy Summit Spring 2017EVENT

0.8+

KNBRTITLE

0.79+

2017EVENT

0.78+

couple of questionsQUANTITY

0.78+

next five yearsDATE

0.78+

SpringDATE

0.74+

uce TylerPERSON

0.67+

Chief Research OfficerPERSON

0.62+

FishermanORGANIZATION

0.61+

moneyQUANTITY

0.61+

key driversQUANTITY

0.54+

WarriorsORGANIZATION

0.51+

thingsQUANTITY

0.5+

Joe Selle | IBM CDO Strategy Summit 2017


 

>> Announcer: Live from Fisherman's Wharf in San Francisco. It's theCUBE. Covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. >> Hey Welcome back everybody. Jeff Frick with theCUBE, along with Peter Burris from Wikibon. We are in Fisherman's Wharf in San Francisco at the IBM Chief Data Officer Strategy Summit Spring 2017. Coming to the end of a busy day, running out of steam. Blah, blah, blah. I need more water. But Joe's going to take us home. We're joined by Joe Selle. He is the global operations analytic solution lead for IBM. Joe, welcome. >> Thank you, thank you very much. It's great to be here. >> So you've been in sessions all day. I'm just curious to get kind of your general impressions of the event and any surprises or kind of validations that are coming out of these sessions. >> Well, general impression is that everybody is thrilled to be here and the participants, the speakers, the audience members all know that they're at the cusp of a moment in business history of great change. And that is as we graduate from regular analytics which are descriptive and dashboarding into the world of cognitive which is taking the capabilities to a whole other level. Many levels actually advanced from the basic things. >> And you're in a really interesting position because IBM has accepted the charter of basically consuming your own champagne, drinking your own champagne, whatever expression you want to use. >> I'm so glad you said that cause most people say eating your dog food. >> Well, if we were in Germany we'd talk about beer, but you know, we'll stick with the champagne analogy. But really, trying to build, not only to build and demonstrate the values that you're trying to sell to your customers within IBM but then actually documenting it and delivering it basically, it's called the blueprint, in October. We've already been told it's coming in October. So what a great opportunity. >> Part of that is the fact that Ginni Rometty, our CEO, had her start in IBM in the consulting part of IBM, GBS, Global Business Services. She was all about consulting to clients and creating big change in other organizations. Then she went through a series of job roles and now she's CEO and she's driving two things. One is the internal transformation of IBM, which is where I am, part of my role is, I should say. Reporting to the chief data officer and the chief analytics officer and their jobs are to accelerate the transformation of big blue into the cognitive era. And Ginni also talks about showcasing what we're doing internally for the rest of the world and the rest of the economy to see because parts of this other companies can do. They can emulate our road map, the blueprint rather, sorry, that Inderpal introduced, is going to be presented in the fall. That's our own blueprint for how we've been transforming ourselves so, some part of that blueprint is going to be valid and relevant for other companies. >> So you have a dual reporting relationship, you said. The chief data officer, which is this group, but also the chief analytics officer. What's the difference between the Chief data officer, the chief data analytics officer and how does that combination drive your mission? >> Well, the difference really is the chief data officer is in charge of making some very long-term investments, including short-term investments, but let me talk about the long-term investment. Anything around an enterprise data lake would be considered a long-term investment. This is where you're creating an environment where users can go in, these would be internal to IBM or whatever client company we're talking about, where they can use some themes around self-service, get out this information, create analysis, everything's available to them. They can grab external data. They can grab internal data. They can observe Twitter feeds. They can look at weather company information. In our case we get that because we're partnered with the weather company. That's the long-term vision of the chief data officer is to create a data lake environment that serves to democratize all of this for users within a company, within IBM. The chief analytics officer has the responsibility to deliver projects that are sort of the leading projects that prove out the value of analytics. So on that side of my dual relationship, we're forming projects that can deliver a result literally in a 10 or a 12 week time period. Or a half a year. Not a year and a half but short term and we're sprinting to the finish, we're delivering something. It's quite minimally scaled. The first project is always a minimally viable product or project. It's using as few data sources as we can and still getting a notable result. >> The chief analytics officer is at the vanguard of helping the business think about use cases, going after those use cases, asking problems the right way, finding data with effectiveness as well as efficiency and leading the charge. And then the Chief data officer is helping to accrete that experience and institutionalize it in the technology, the practices, the people, et cetera. So the business builds a capability over time. >> Yes, scalable. It's sort of an issue of it can scale. Once Inderpal and the Chief data officer come to the equation, we're going to scale this thing massively. So, high volume, high speed, that's all coming from a data lake and the early wins and the medium term wins maybe will be more in the realm of the chief analytics officer. So on your first summary a second ago, you're right in that the chief analytics officer is going around, and the team that I'm working with is doing this, to each functional group of IBM. HR, Legal, Supply Chain, Finance, you name it, and we're engaging in cognitive discovery sessions with them. You know, what is your roadmap? You're doing some dashboarding now, you're doing some first generation analytics or something but, what is your roadmap for getting cognitive? So we're helping to burst the boundaries of what their roadmap is, really build it out into something that was bigger then they had been conceiving of it. Adding the cognitive projects and then, program managing this giant portfolio so that we're making some progress and milestones that we can report to various stake holders like Ginni Rometty or Jim Kavanaugh who are driving this from a senior senior executive standpoint. We need to be able to tell them, in one case, every couple of weeks, what have you gotten done. Which is a terrible cadence, by the way, it's too fast. >> So in many Respects-- >> But we have to get there every couple of weeks we've got to deliver another few nuggets. >> So in many respects, analytics becomes the capability and data becomes the asset. >> Yes, that's true. Analytics has assets as well though. >> Paul: Sure, of course. >> Because we have models and we have techniques and we bake the models into a business process to make it real so people actually use it. It doesn't just sit over there as this really nifty science experiment. >> Right but kind of where are we on the journey? It's real still early days, right? Because, you know, we hear all the time about machine learning and deep learning and AI and VR and AI and all this stuff. >> We're patchy, every organization is patchy even IBM, but I'm learning from being here, so this is end of day one, I'm learning. I'm getting a little more perspective on the fact that we at IBM are actually, 'cause we've been investing in this heavily for a number of years. I came through the ranks and supply chain. We've been investing in these capabilities for six or seven years. We were some of the early adopters within IBM. But, I would say that maybe 10% of the people at this conference are sort of in the category of I'm running fast and I'm doing things. So that's 10%. Then there's maybe another 30% that are jogging or fast walking. And then there's the rest of them, so maybe 50%, if my math is right, it's been a long day. Are kind of looking and saying, yeah, I got to get that going at some point and I have two or three initiatives but I'm really looking forward to scaling it at some point. >> Right. >> I've just painted a picture to you of the fact that the industry in general is just starting this whole journey and the big potential is still in front of us. >> And then on the Champagne. So you've got the cognitive, you've got the brute and then you've got the Watson. And you know, there's a lot of, from the outside looking in at IBM, there's a lot of messaging about Watson and a lot of messaging about cognitive. How the two mesh and do they mesh within some of the projects that you're working on? Or how should people think of the two of them? >> Well, people should know that Watson is a brand and there are many specific technologies under the Watson brand. So, and then, think of it more as capabilities instead of technologies. Things like being able to absorb unstructured information. So you've heard, if you've been to any conferences, whether they're analytics or data, any company, any industry, 80% of your data is unstructured and invisible and you're probably working with 20% of your data on an active basis. So, do you want to go the 80%-- >> With 40% shrinking. >> As a percentage. >> That's true. >> As a percentage. >> Yeah because the volumes are growing. >> Tripling in size but shrinking as a percentage. >> Right, right. So, just, you know, think about that. >> Is Watson really then kind of the packaging of cognitive, more specific application? Because we're walking for health or. >> I'll tell you, Watson is a mechanism and a tool to achieve the outcome of cognitive business. That's a good way to think of it. And Watson capabilities that I was just about to get to are things like reading, if you will. In Watson Health, he reads oncology articles and they know, once one of them has been read, it's never forgotten. And by the way, you can read 200 a week and you can create the smartest doctor that there is on oncology. So, a Watson capability is absorbing information, reading. It's in an automated fashion, improving its abilities. So these are concepts around deep learning and machine learning. So the algorithms are either self correcting or people are providing feedback to correct them. So there's two forms of learning in there. >> Right, right. >> But these are kind of capabilities all around Watson. I mean, there are so many more. Optical, character recognition. >> Right. >> Retrieve and rank. >> Right. >> So giving me a strategy and telling me there's an 85% chance, Joe, that you're best move right now, given all these factors is to do x. And then I can say, well, x wouldn't work because of this other constraint which maybe the system didn't know about. >> Jeff: Right. >> Then the system will tell me, in that case, you should consider y and it's still an 81% chance of success verses the first which was at 85. >> Jeff: Right. >> So retrieving and ranking, these are capabilities that we call Watson. >> Jeff: Okay. >> And we try to work those in to all the job roles. >> Jeff: Okay. >> So again, whether you're in HR, legal, intellectual property management, environmental compliance. You know, regulations around the globe are changing all the time. Trade compliance. And if you violate some of these rules and regs, then you're prohibited from doing business in a certain geography. >> Jeff: Right. >> It's devastating. The stakes are really high. So these are the kind of tools we want. >> So I'm just curious, from your perspective, you've got a corporate edict behind you at the highest level, and your customers, your internal customers, have that same edict to go execute quickly. So given that you're not in that kind of slow moving or walking or observing half, what are the biggest challenges that you have to overcome even given the fact that you've got the highest level most senior edict both behind you as well as your internal customers. >> Yeah, well it, guess what, it comes down to data. Often, a lot of times, it comes to data. We can put together an example of a solution that is a minimally viable solution which might have only three or four or five different pieces of data and that's pretty neat and we can deliver a good result. But if we want to scale it and really move the needle so that it's something that Ginni Rometty sees and cares about, or a shareholder, then we have to scale. Then we need a lot of data, so then we come back to Inderpal, and the chief data officer role. So the constraint is on many of the programs and projects is if you want to get beyond the initial proof of concept, >> Jeff: Right. >> You need to access and be able to manipulate the big data and then you need to train these cognitive systems. This is the other area that's taking a lot of time. And I think we're going to have some technology and innovation here, but you have to train a cognitive system. You don't program it. You do some painstaking back and forth. You take a room full of your best experts in whatever the process is and they interact with the system. They provide input, yes, no. They rank the efficacy of the recommendations coming out of the system and the system improves. But it takes months. >> That's even the starting point. >> Joe: That's a problem. >> And then you trade it over often, an extended period of time. >> Joe: A lot of it gets better over time. >> Exactly. >> As long as you use this thing, like a corpus of information is built and then you can mine the corpus. >> But a lot of people seem to believe that you roll all this data, you run a bunch of algorithms and suddenly, boom, you've got this new way of doing things. And it is a very very deep set of relationships between people who are being given recommendations as you said, weighing them, voting them, voting on them, et cetera. This is a highly interactive process. >> Yeah, it is. If you're expecting lightning fast results, you're really talking about a more deterministic kind of solution. You know, if/then. If this is, then that's the answer. But we're talking about systems that understand and they reason and they tap you on the shoulder with a recommendation and tell you that there's an 85% chance that this is what you should do. And you can talk back to the system, like my story a minute ago, and you can say, well it makes sense, but, or great, thanks very much Watson, and then go ahead and do it. Those systems that are expert systems that have expertise just woven through them, you cannot just turn those on. But, as I was saying, one of the things we talked about on some of the panels today, was there's new techniques around training. There's new techniques around working with these corpuses of information. Actually, I'm not sure what the plural of corpus. Corpi? It's not Corpi. >> Jeff: I can look that up. >> Yeah, somebody look that up. >> It's not corpi. >> So anyway, I want to give you the last word, Jeff. So you've been doing this for a while, what advice would you give to someone kind of in your role at another company who's trying to be the catalyst to get these things moving. What kind of tips and tricks would you share, you know, having gone through it and working on this for a while? >> Sure. I would, the first thing I would do is, in your first move, keep the projects tightly defined and small with a minimum of input and keep, contain your risk and your risk of failure, and make sure that if you do three projects, at least one of them is going to be a hands down winner. And then once you have a winner, tout it through your organization. A lot of folks get so enamored with the technology that they start talking more about the technology than the business impact. And what you should be touting and bragging about is not the fact that I was able to simultaneously read 5,000 procurement contracts with this tool, you should be saying, it used to take us three weeks in a conference room with a team of one dozen lawyers and now we can do that whole thing in one week with six lawyers. That's what you should talk about, not the technology piece of it. >> Great, great. Well thank you very much for sharing and I'm glad to hear the conference is going so well. Thank you. >> And it's Corpa. >> Corpa? >> The answer to the question? Corpa. >> Peter: Not corpuses. >> With Joe, Peter, and Jeff, you're watching theCUBE. We'll be right back from the IBM chief data operator's strategy summit. Thanks for watching.

Published Date : Mar 30 2017

SUMMARY :

Brought to you by IBM. He is the global operations analytic solution lead for IBM. It's great to be here. of the event and any surprises or kind of validations the audience members all know that they're at the cusp because IBM has accepted the charter of basically I'm so glad you said that cause most people and demonstrate the values that you're trying to Part of that is the fact that Ginni Rometty, but also the chief analytics officer. that prove out the value of analytics. of helping the business think about use cases, Once Inderpal and the Chief data officer But we have to get there every couple of weeks So in many respects, analytics becomes the capability Yes, that's true. and we bake the models into a business process to make Because, you know, we hear all the time about I'm getting a little more perspective on the fact that we and the big potential is still in front of us. How the two mesh and do they mesh within some of the So, do you want to go the 80%-- So, just, you know, think about that. of cognitive, more specific application? And by the way, you can read 200 a week and you can create But these are kind of capabilities all around Watson. given all these factors is to do x. Then the system will tell me, in that case, you should these are capabilities that we call Watson. You know, regulations around the globe So these are the kind of tools we want. challenges that you have to overcome even given the fact and the chief data officer role. and the system improves. And then you trade it over often, and then you can mine the corpus. But a lot of people seem to believe that you that there's an 85% chance that this is what you should do. What kind of tips and tricks would you share, you know, and make sure that if you do three projects, the conference is going so well. The answer to the question? We'll be right back from the IBM chief data

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IBMORGANIZATION

0.99+

JoePERSON

0.99+

JeffPERSON

0.99+

Peter BurrisPERSON

0.99+

Jeff FrickPERSON

0.99+

Ginni RomettyPERSON

0.99+

Joe SellePERSON

0.99+

GBSORGANIZATION

0.99+

OctoberDATE

0.99+

twoQUANTITY

0.99+

Jim KavanaughPERSON

0.99+

20%QUANTITY

0.99+

one weekQUANTITY

0.99+

PeterPERSON

0.99+

three weeksQUANTITY

0.99+

PaulPERSON

0.99+

10%QUANTITY

0.99+

10QUANTITY

0.99+

80%QUANTITY

0.99+

85%QUANTITY

0.99+

50%QUANTITY

0.99+

six lawyersQUANTITY

0.99+

sixQUANTITY

0.99+

firstQUANTITY

0.99+

GermanyLOCATION

0.99+

81%QUANTITY

0.99+

fourQUANTITY

0.99+

Global Business ServicesORGANIZATION

0.99+

12 weekQUANTITY

0.99+

40%QUANTITY

0.99+

OneQUANTITY

0.99+

two formsQUANTITY

0.99+

seven yearsQUANTITY

0.99+

three projectsQUANTITY

0.99+

30%QUANTITY

0.99+

GinniPERSON

0.99+

San FranciscoLOCATION

0.99+

one dozen lawyersQUANTITY

0.99+

one caseQUANTITY

0.99+

85QUANTITY

0.99+

todayDATE

0.99+

threeQUANTITY

0.98+

two thingsQUANTITY

0.98+

a yearQUANTITY

0.98+

5,000 procurement contractsQUANTITY

0.98+

bothQUANTITY

0.98+

first projectQUANTITY

0.98+

TwitterORGANIZATION

0.98+

oneQUANTITY

0.98+

WatsonPERSON

0.98+

CorpaORGANIZATION

0.98+

Fisherman's WharfLOCATION

0.98+

200 a weekQUANTITY

0.97+

three initiativesQUANTITY

0.97+

WatsonTITLE

0.96+

five different piecesQUANTITY

0.96+

first summaryQUANTITY

0.95+

WikibonORGANIZATION

0.93+

Priya Vijayarajendran & Rebecca Shockley, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE


 

(pulsating music) >> Live from Fisherman's Wharf in San Francisco, it's theCUBE! Covering IBM Chief Data Officer Strategy Summit, Spring 2017. Brought to you by IBM. >> Hey, welcome back everybody. Jeff Frick here with theCUBE. We're at Fisherman's Wharf in San Francisco at the IBM Chief Data Officer Strategy Summit, Spring 2017. It's a mouthful, it's a great event, and it's one of many CDO summits that IBM's putting in around the country, and soon around the world. So check it out. We're happy to be here and really talk to some of the thought leaders about getting into the nitty gritty detail of strategy and execution. So we're excited to be joined by our next guest, Rebecca Shockley. She's an Analytics Global Research Leader for the IBM Institute for Business Value. Welcome, Rebecca. I didn't know about the IBM Institute for Business Value. >> Thank you. >> Absolutely. And Priya V. She said Priya V's good, so you can see the whole name on the bottom, but Priya V. is the CTO of Cognitive/IOT/Watson Health at IBM. Welcome, Priya. >> Thank you. >> So first off, just impressions of the conference? It's been going on all day today. You've got 170 or some-odd CDO's here sharing best practices, listening to the sessions. Any surprising takeaways coming out of any of the sessions you've been at so far? >> On a daily basis I live and breathe data. That's what I help our customers to get better at it, and today is the day where we get to talk about how can we adopt something which is emerging in that space? We talk about data governance, what we need to look at in that space, and cognitive as being the fabric that we are integrating into this data governance actually. It's a great day, and I'm happy to talk to over, like you said, 170 CDO's representing different verticals. >> Excellent. And Rebecca, you do a lot of core research that feeds a lot of the statistics that we've seen on the keynote slides, this and that. And one of the interesting things we talked about off air, was really you guys are coming up with a playbook which is really to help CDO's basically execute and be successful CDO's. Can you tell us about the playbook? >> Well, the playbook was born out of a Gartner statistic that came out I guess two or three years ago that said by 2016 you'll have 90% of organizations will have a CDO and 50% of them will fail. And we didn't think that was very optimistic. >> Jeff: 90% will have them and 50% will fail? >> Yes, and so I can tell you that based on our survey of 6,000 global executives last fall, the number is at 41% in 2016. And I'm hoping that the playbook kept them from being a failure. So what we did with the playbook is basically laid out the six key questions that an organization needs to think about as they're either putting in a CDO office or revamping their CDO offices. Because Gartner wasn't completely unfounded in thinking a lot of CDO offices weren't doing well when they made that prediction. Because it is very difficult to put in place, mostly because of culture change, right? It's a very different kind of way to think. So, but we're certainly not seeing the turnover we were in the early years of CDO's or hopefully the failure rate that Gartner predicted. >> So what are the top two or three of those six that they need to be thinking about? >> So they need to think about their objectives. And one of the things that we found was that when we look at CDO's, there's three different categories that you can really put them in. A data integrator, so is the CDO primarily focused on getting the data together, getting the quality of the data, really bringing the organization up to speed. The next thing that most organizations look at is being a business optimizer. So can they use that data to optimize their internal processes or their external relationships? And then the third category is market innovator. Can they use that data to really innovate, bring in new business models, new data monetization strategies, things like that. The biggest problem we found is that CDO's that we surveyed, and we surveyed 800 CDO's, we're seeing that they're being assessed on all three of those things, and it's hard to do all three at once, largely because if you're still having to focus on getting your data in a place where you can start doing real science against it you're probably not going to be full-time market innovator either. You can't be full-time in two different places. That's not to say as a data integrator you can't bring in data scientists, do some skunk works on some of the early work, find... and we've seen organizations really, like Bank Itau down in Brazil, really in that early stages still come up with some very innovative things to do, but that's more of a one-off, right. If you're being judged on all three of those, that I think is where the failure rate comes in. >> But it sounds like those are kind of sequential, but you can't operate them sequentially cause in theory you never finish the first phase, right? >> You never finish, you're always keeping up with the data. But for some organizations, they really need to, they're still operating with very dirty, very siloed data that you really can't bring together for analytics. Now once you're able to look at that data, you can be doing the other two, optimizing and innovating, at the same time. But your primary focus has to be on getting the data straight. Once you've got a functioning data ecosystem, then the level of attention that you have to put there is going to go down, and you can start working on, focusing on innovation and optimization more as your full-time role. But no, data integrator never goes away completely. >> And cleanser. Then, that's a great strategy. Then, as you said, then the rubber's got to hit the road. And Priya, that's where you play in, the execution point. Like you say, you like to get your hands dirty with the CDO's. So what are you seeing from your point of view? In terms of actually executing, finding early wins, easy paths to success, you know, how to get those early wins basically, right? To validate what you're doing. That's right. Like you said, it's become a universal fact that data governance and things, everything around consolidating data and the value of insights we get off it, that's been established fact. Now CDO's and the rest of the organization, the CIO's and the CTO's, have this mandate to start executing on them. And how do we go about it? That's part of my job at IBM as well. As a CTO, I work with our customers to identify where are the dominant business value? Where are those things which is completely data-driven? Maybe it is cognitive forecasting, or your business requirement could be how can I maximize 40% of my service channel? Which in the end of the day could be a cognitive-enabled data-driven virtual assistant, which is automating and bringing a TCO of huge incredible value. Those are some of the key execution elements we are trying to bring. But like we said, yes, we have to bring in the data, we have to hire the right talent, and we have to have a strategy. All those great things happen. But I always start with a problem, a problem which actually anchors everything together. A problem is a business problem which demonstrates key business values, so we actually know what we are trying to solve, and work backwards in terms of what is the data element to it, what are the technologies and toolkits that we can put on top of it, and who are the right people that we can involve in parallel with the strategy that we have already established. So that's the way we've been going about. We have seen phenomenal successes, huge results, which has been transformative in nature and not just these 170 CDO's. I mean, we want to make sure every one of our customers is able to take advantage of that. >> But it's not just the CDO, it's the entire business. So the IBM Institute on Business Value looks at an enormous amount of research, or does an enormous amount of research and looks at a lot of different issues. So for example, your CDO report is phenomenal, I think you do one for the CMO, a number of different chief officers. How are other functions or other roles within business starting to acculturate to this notion of data as a driver of new behaviors? And then we can talk about, what are some of those new behaviors? The degree to which the leadership is ready to drive that? >> I think the executive suite is really starting to embrace data much more than it has in the past. Primarily because of the digitization of everything, right. Before, the amount of data that you had was somewhat limited. Often it was internal data, and the quality was suspect. As we started digitizing all the business processes and being able to bring in an enormous amount of external data, I think organizationally executives are getting much more comfortable with the ability to use that data to further their goals within the organization. >> So in general, the chief groups are starting to look at data as a way of doing things differently. >> Absolutely. >> And how is that translating into then doing things differently? >> Yeah, so I was just at the session where we talked about how organizations and business units are even coming together because of data governance and the data itself. Because they are having federated units where a certain part of business is enabled and having new insights because we are actually doing these things. And new businesses like monetizing data is something which is happening now. Data as a service. Actually having data as a platform where people can build new applications. I mean the whole new segment of people as data engineers, full stack developers, and data scientists actually. I mean, they are incubated and they end up building lots of new applications which has never been part of a typical business unit. So these are the cultural and the business changes we are starting to see in many organizations actually. Some of them are leading the way because they just did it without knowing actually that's the way they should be doing it. But that's how it influences many organizations. >> I think you were looking for kind of an example as well, so in the keynote this morning one of the gentlemen was talking about working with their CFO, their risk and compliance office, and were able to take the ability to identify a threat within their ecosystem from two days down to three milliseconds. So that's what can happen once you really start being able to utilize the data that's available to an organization much more effectively, is that kind of quantum leap change in being able to understand what's happening in the marketplace, bing able to understand what's happening with consumers or customers or clients, whichever flavor you have, and we see that throughout the organization. So it's not just the CFO, but the CMO, and being able to do much more targeted, much more focused on the consumer side or the client customer side, that's better for me, right. And the marketing teams are seeing 30, 40% increase in their ability to execute campaigns because they're more data-driven now. >> So has the bit flipped where the business units are now coming to the CDO's office and pounding on the door, saying "I need my team"? As opposed to trying to coerce that you no longer use intuition? >> So it depends upon where you are, where the company is. Because what we call that is the snowball effect. It's one of the reasons you have to have the governance in place and get things going kind of in parallel. Because what we see is that most organizations go in skeptically. They're used to running on their gut instinct. That's how they got their jobs mostly, right? They had good instincts, they made good decisions, they got promoted. And so making that transition to being a data-driven organization can be very difficult. What we find though, is that once one section, one segment, one flavor, one good campaign happens, as soon as those results start to mount up in the organization, you start to see a snowball effect. And what I was hearing particularly last year when I was talking to CDO's was that it had taken them so long to get started, but now they had so much demand coming from the business that they want to look at this, and they want to look at that, and they want to look at the other thing, because once you have results, everybody else in the organization wants those same kind of results. >> Just to add to that, data is not anymore viewed as a commodity. If you have seen valuable organizations who know what their asset is, it's not just a commodity. So the parity of... >> Peter: Or even a liability is what it used to be, right? >> Exactly. >> Peter: It's expensive to hold it and store it, and keep track of it. >> Exactly. So the parity of this is very different right now. So people are talking about, how can I take advantage of the intelligence? So business units, they don't come and pound the door rather they are trying to see what data that I can have, or what intelligence that I can have to make my business different shade, or I can value add something more. That's a type of... So I feel based on the experiences that we work with our customers, it's bringing organizations together. And for certain times, yes sometimes the smartness and the best practices come in place that how we can avoid some of the common mistakes that we do, in terms of replicating 800 times or not knowing who else is using. So some of the tools and techniques help us to master those things. It is bringing organizations and leveraging the intelligence that what you find might be useful to her, and what she finds might be useful. Or what we all don't know, that we go figure it out where we can get it. >> So what's the next step in the journey to increase the democratization of the utilization of that data? Because obviously Chief Data Officers, there aren't that many of them, their teams are relatively small. >> Well, 41% of businesses, so there's a large number of them out there. >> Yeah, but these are huge companies with a whole bunch of business units that have tremendous opportunity to optimize around things that they haven't done yet. So how do we continue to kind of move this democratization of both the access and the tools and the utilization of the insights that they're all sitting on? >> I have some bolder expectations on this, because data and the way in which data becomes an asset, not anymore a liability, actually folds up many of the layers of applications that we have. I used to come from an enterprise background in the past. We had layers of application programming which just used data as one single layer. In terms of opportunities for this, there is a lot more deserving silos and deserving layers of IT in a typical organization. When we build data-driven applications, this is all going to change. It's fascinating. This role is in the front and center of everything actually, around data-driven. And you also heard enough about cognitive computing these days, because it is the key ingredient for cognitive computing. We talked about full ease of cognitive computing. It has to start first learning, and data is the first step in terms of learning. And then it goes into process re-engineering, and then you reinvent things and you disrupt things and you bring new experiences or humanize your solution. So it's on a great trajectory. It's going tochange the way we do things. It's going to give new and unexpected things both from a consumer point and from an enterprise point as well. It'll bring effects like consumerization of enterprises and what-not. So I have bolder and broader expectations out of this fascinating data world. >> I think one of the things that made people hesitant before was an unfamiliarity with thinking about using data, say a CSR on the front line using data instead of the scripts he or she had been given, or their own experience. And I think what we're seeing now is A, everybody's personal life is much more digital than it was before, therefore everybody's somewhat more comfortable with interacting. And B, once you start to see those results and they realize that they can move from having to crunch numbers and do all the background work once we can automate that through robotic process automation or cognitive process automation, and let them focus on the more interesting, higher value parts of their job, we've seen that greatly impact the culture change. The culture change question comes whether people are thinking they're going to lose their job because of the data, or whether it's going to let them do more interesting things with their jobs. And I think hopefully we're getting past that "it's me or it" stage, into the, how can I use data to augment the work that I'm doing, and get more personal satisfaction, if not business satisfaction, out of the work that I'm doing. Hopefully getting rid of some of the mundane. >> I think there's also going to be a lot of software that's created that's going to be created in different ways and have different impacts. The reality is, we're creating data incredibly fast. We know that is has enormous value. People are not going to change that rapidly. New types of algorithms are coming on, but many of the algorithms are algorithms we've had for years, so in many respects it's how we render all of that in some of the new software that's not driven by process but driven by data. >> And the beauty of it is this software will be invisible. It will be self-healing, regeneratable software. >> Invisible to some, but very very highly visible to others. I think that's one of the big challenges that IT organizations face, and businesses face. Is how do they think through that new software? So you talked about today, or historically, you talked about your application stack, where you have stacks which would have some little view of the data, and in many respects we need to free that data up, remove it out of the application so we can do new things with it. So how is that process going to either be facilitated, or impeded by the fact that in so many organizations, data is regarded as a commodity, something that's disposable. Do we need to become more explicit in articulating or talking about what it means to think of data as an asset, as something that's valuable? What do you think? >> Yeah, so in the typical application world, when we start, if you really look at it, data comes at the very end of it. Because people start designing what is going to be their mockups, where are they going to integrate with what sources, am I talking to the bank as an API, et cetera. So the data representation comes at the very end. In the current generation of applications, the cognitive applications that we are building, first we start with the data. We understand what are we working on, and we start applying, taking advantage of machines and all these algorithms which existed like you said, many many decades ago. And we take advantage of machines to automate them to get the intelligence, and then we write applications. So you see the order has changed actually. It's a complete reversal. Yes we had typical three-tier, four-tier architecture. But the order of how we perceive and understand the problem is different. But we are very confident. We are trying to maximize 40% of your sales. We are trying to create digital connected dashboards for your CFO where the entire board can make decisions on the fly. So we know the business outcome, but we are starting with the data. So the fundamental change in how software is built, and all these modules of software which you are talking about, why I mentioned invisible, is some are generatable. The AI and cognitive is advanced in such a way that some are generatable. If it understands the data underlying, it can generate what it should do with the data. That's what we are teaching. That's what ontology and all this is about. So that's why I said it's limitless, it's pretty bold, and it's going to change the way we have done things in the past. And like she said, it's only going to complement humans, because we are always better decision-makers, but we need so much of cognitive capability to aid and supplement our decision-making. So that's going to be the way that we run our businesses. >> All right. Priya's painting a pretty picture. I like it. You know, some people see only the dark side. That's clearly the bright side. That's a terrific story, so thank you. So Priya and Rebecca, thanks for taking a few minutes. Hope you enjoy the rest of the show, surrounded by all this big brain power. And I appreciate you stopping by. >> Thanks so much. >> Thank you. >> All right. Jeff Frick and Peter Burris. You're watching theCUBE from the IBM Chief Data Officers Summit, Spring 2017. We'll be right back after this short break. Thanks for watching. (drums pound) (hands clap rhythmically) >> [Computerized Voice] You really crushed it. (quiet synthesizer music) >> My name is Dave Vellante, and I'm a long-time industry analyst. I was at IDC for a number of years and ran the company's largest and most profitable business. I focused on a lot of areas, infrastructure, software, organizations, the CIO community. Cut my teeth there.

Published Date : Mar 29 2017

SUMMARY :

Brought to you by IBM. and really talk to some of the thought leaders but Priya V. is the CTO of Cognitive/IOT/Watson Health So first off, just impressions of the conference? and cognitive as being the fabric that we are integrating And one of the interesting things we talked about off air, Well, the playbook was born out of a Gartner statistic And I'm hoping that the playbook And one of the things that we found was that is going to go down, and you can start working on, and the value of insights we get off it, So the IBM Institute on Business Value Before, the amount of data that you had So in general, the chief groups and the data itself. So it's not just the CFO, but the CMO, in the organization, you start to see a snowball effect. So the parity of... Peter: It's expensive to hold it and store it, and the best practices come in place in the journey to increase the democratization Well, 41% of businesses, and the utilization of the insights and data is the first step in terms of learning. because of the data, but many of the algorithms And the beauty of it is this software will be invisible. and in many respects we need to free that data up, So that's going to be the way that we run our businesses. You know, some people see only the dark side. from the IBM Chief Data Officers Summit, Spring 2017. [Computerized Voice] You really crushed it. and ran the company's largest and most profitable business.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
RebeccaPERSON

0.99+

Dave VellantePERSON

0.99+

Rebecca ShockleyPERSON

0.99+

Peter BurrisPERSON

0.99+

IBMORGANIZATION

0.99+

PriyaPERSON

0.99+

Jeff FrickPERSON

0.99+

2016DATE

0.99+

Priya VijayarajendranPERSON

0.99+

90%QUANTITY

0.99+

50%QUANTITY

0.99+

PeterPERSON

0.99+

40%QUANTITY

0.99+

BrazilLOCATION

0.99+

GartnerORGANIZATION

0.99+

six key questionsQUANTITY

0.99+

41%QUANTITY

0.99+

Priya VPERSON

0.99+

Priya V.PERSON

0.99+

third categoryQUANTITY

0.99+

JeffPERSON

0.99+

twoDATE

0.99+

last yearDATE

0.99+

two daysQUANTITY

0.99+

6,000 global executivesQUANTITY

0.99+

IBM Institute for Business ValueORGANIZATION

0.99+

Spring 2017DATE

0.99+

oneQUANTITY

0.99+

one segmentQUANTITY

0.99+

first phaseQUANTITY

0.99+

threeQUANTITY

0.99+

todayDATE

0.99+

twoQUANTITY

0.99+

one flavorQUANTITY

0.99+

first stepQUANTITY

0.99+

last fallDATE

0.98+

Bank ItauORGANIZATION

0.98+

170QUANTITY

0.98+

three millisecondsQUANTITY

0.98+

San FranciscoLOCATION

0.98+

four-tierQUANTITY

0.98+

bothQUANTITY

0.98+

sixQUANTITY

0.98+

three-tierQUANTITY

0.98+

CDOTITLE

0.98+

three years agoDATE

0.98+

Watson HealthORGANIZATION

0.98+

one sectionQUANTITY

0.97+

Fisherman's WharfLOCATION

0.97+

three different categoriesQUANTITY

0.97+

one single layerQUANTITY

0.97+

two different placesQUANTITY

0.96+

IBM Institute on Business ValueORGANIZATION

0.96+

IBM Chief Data Officers SummitEVENT

0.96+

IOTORGANIZATION

0.96+

firstQUANTITY

0.93+

IBM Chief Data Officer Strategy SummitEVENT

0.93+

first learningQUANTITY

0.91+

800 CDOQUANTITY

0.9+

IDCORGANIZATION

0.89+

top twoQUANTITY

0.88+

this morningDATE

0.87+

Ken Jacquier, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE


 

(orchestra music) >> Man: Live from Fisherman's Wharf in San Francisco, it's the Cube, covering IBM Chief Data Officer Strategy Summit, Spring 2017, brought to you by IBM. >> Welcome back everybody, Jeff Rick here at the Cube. We're in Fisherman's Wharf in San Francisco at the IBM Chief Data Officer Strategy Summit Spring 2017. It's a mouthful, but it's an ongoing series you know, it's not just one show. They're doing them on the east coast, west coast, and starting to take it all over the world. Really, a community of chief data officers coming together with the likes of their own, talking about common issues, best practices. And of course, IBM's got something to offer as well. So, we're excited to have our next guest, Ken Jacquier here. He's the Information Governance Practice from IBM. Welcome. >> Thank you. >> So, what have you been hearing in the hallways outside of the sessions? What's kind of the hot buzz topic? >> Well, actually everybody's pretty much talking about what came up in the sessions, it's all about the talent. How do these Chief Data Officers get the talent that they need to meet the mandate they've been given? >> It's not just automatically just like connect the data, via some APIs and the magic happens (laughs). >> Sometimes the people part is the hardest part. The technology's important, the machine learning is great, the algorithms are amazing, but it does come down to people. And there's some new skill sets that these chief data >> officers need in their people, so that's what they're talking about. >> So when you think about the talent, what kinds of jobs are talking about? We know the CDO job. >> Ken: Yeah. >> What kind of jobs are now underneath the CDO that are going to help the CDO get their job done? >> Yeah, absolutely. You've got the classic data scientist role that we are all talking about, we're all excited about because that can monetize the data. That's what gets the board's attention. So there's a lot of focus there. But a term that came up in the last session that I was in that I really liked was the data translator. And the point there was data scientists can be schooled in certain things, understand their algorithms, understand machine learning, but this really important skill set they're looking for is the data translator. >> So the business is looking to drive outcomes. The chief marking officer may have an objective. >> The vice president of sales has an objective. Supply chain needs to optimize. Who is the data translator that can get from this deep, difficult, often dirty data and translate it into what the business is trying to accomplish? It's a really cool role. >> Yeah, we've actually heard about this role pretty frequently, this concept very frequently when you come right down to it. And a lot of it pertains to who is in a position to understand data quality, how data transformation works, so that the outcome in fact is what's expected as opposed to just a consequence data wrong. >> Exactly. Two examples of that that I've heard today in the initial keynote session, it came up, that in this renaissance of data, we're going to look for people to bring the left side of their brain together and the right side of their brain together. In the last session, of the ladies at a large international bank, the chief data officer there, she said, "for me, honestly, even though this is difficult, "it's not about IQ, it's about EQ." I've got to have the people that can collaborate. I've got to have the people that can communicate both with the business and with the IT side. I mean, we all know that story, right. Such a challenge to pull IT and business together, >> but data is really forcing individually talented people to actually do that wherever they reside in the org chart. >> If you're the embed, you're the embed person from the CEO office working with that business unit, you've got to listen, you've got to convince them that you can help them, so it is really a softer skill. You know, the Da Vinci word has come up a couple of times. And what made Da Vinci so amazing is he had the science, but he also had the art, and the two are very, very connected. >> Exactly what we were talking about, exactly. And the listening skill is incredibly important as well. I mean a lot of times, there's so much emphasis in communication on getting your perspective out there. A lot of times in these situations, you're trying to express your view. Way underestimated skill, listening, how important that is for this stuff to work. >> So, your formal title is Information Governance Practice? >> Ken: Yes. >> Now, governance means a lot of things to a lot of people, and I don't want to put words in your mouth, but from my >> perspective, it means how are you going to ensure, put in place rules and mechanisms and methods to ensure that works get done around a particular set of issues. So, when we talk about talent, we talk about creativity, we also can talk about governance so that we in fact get the right set of practices put in place, so not that it >> runs by itself, but it runs at a high quality. >> So one of the things that you're doing with clients, to try to take talent and rules and turn it into an actual function that does (mumbles) business values. >> Yeah, it's a great question. So again, and if anybody's listening to this and they're talking about careers, or they're thinking about work coming up, or you're coming out of college, and you're like what would I want to do, think about this conversation we're having and the opportunity here. So, you just described I've got to drive business agility, and I've got to mitigate risk. Those sound like conflicting objectives. They can't be anymore. The talent has to come in. And what we're trying to help companies with is how do you build both a culture, but then also how do you bring in talent that can be excited, and creative, and innovative to drive that business agility, but respects the fact that if we don't take care of this data, important people can get in trouble. If we don't take care of this data, our clients can be in trouble, and our credibility can be damaged. But that has to be handled in tandem. It can't be two separate functions. In the past, a lot of times, we did have maybe an EIM organization that does the institutional, keep the data quality clean, and then there were innovation teams over here playing around building the new business model acquiring companies. In this new world, all this data's coming together, and you've got to be able to develop. So the word we like to use nowadays with our clients is the appropriate governments. With your financial data, you're still going to have that locked down. You're still going to have all those policies, all those business rules. That's got to be in place. But then, there's certain data that we can maybe not manage quite as tightly. We can create a landing zone where we brought in external data or third party data, and we can let marketing have a little more freedom with that. And we can be a little more creative and innovative and I don't think they have to be opposite perspectives. If they have the right architecture and the right processes, and the right governance, you can do both. >> Is it easy for someone who's had the lockdown governance for so long to start to open up their mind and think about ways that they can open it? Or does it have to come from an external point of view that looks at it from a different lens and isn't kind of locked down by the old paradigm? >> Yeah, that's a great question. And there were three R's that came up in the meeting today in terms of talent. It was recruit. So to your point, to some degree, we're going to have to recruit new folks with new paradigms. A lot of conversation in there about what an incredible opportunity for the millennials and the newer folks in the workforce if they don't have those paradigms. On the other hand, we have to still >> retain deep institutional knowledge of our data. So that might mean retraining existing skill sets, people that really know our databases, that really know where the most important data lives, but retrain them a little bit for this new environment. And then the third R was retain. So as we build these hybrid skill sets, people that are good on the business side, good on the IT side, we make that investment. How does an organization, how does a company retrain them? And for the HR professionals out there, for the senior VPs of HR, that's where you come in. You need to help these companies write job descriptions, build career paths, show people that they can work in these environments and still grow, both financially, professional, and career wise. Does that make sense? >> That makes a ton of sense, interesting challenge. I just interviewed a millennial speaker at the Professional Businesswoman's Conference, and he just flat out said, the new paradigm from his point of view as a 26 year old, is most people aren't staying on the job for more than six years. It's almost kind of built in life sabbatical every couple three or four years. So, the retention challenge is very difficult and for that generation, so much it's kind of the purposefulness. And if you can get the purposefulness in, big motivator behavior. >> Purposefulness, being a part of something bigger. >> So that's where this balance can come in. If I'm working to appropriately govern my financial data, but I'm also given an opportunity to work with the acquisitions team that's bringing an international flavor into my company, that can give that younger person a little bit of both, and help with that retention. >> One of the challenges though when we think about governance is to ensure as you said, that the rules were appropriate. >> Ken: Yes. >> One of the other things we've heard here and we certainly know about is data as an asset is different than other assets, in that it's not following the economic scarcity because it's so easy to copy, share, combine, recombine, everything else. >> Ken: Very good point. >> As you think about combining those two things, that appropriateness of data governance for financial data is different from the appropriateness of data governance for marketing data, when you combine them, which appropriateness wins? >> (laughing) >> That's a good question. So, ultimately-- >> Do we have an answer? Is that something we're discovering, is that one of the things that we need to better understand over time? What do you think? >> Yeah I do. And you used the keyword, understand. >> So, a very old terminology in our space is data profiling, of truly understanding your data and understanding where everything lives. That's never been more important than it is today. The right amount of tagging in your data links. So to do what you just described. The answer lies within truly understanding and inventorying what you have, and then you have at least an opportunity to strike that balance. But a lot of folks are skipping that step. So just moving data, they're replicating data, >> they're populating their data links in the Hadoop systems. You've got to have governance even that environment. >> Oh absolutely. And we're seeing that being one of the greatest challenges as people try to put together these analytic pipelines. Is to ensure that there's appropriate governance at each stage in the pipeline to ensure that the outcomes are both what they expected. They can be surprised, but at least it's relevant. And that they themselves are not breaking any laws or rules, or ethical or otherwise, associated with how the data gets used. >> I'd like your economic analogy, because I think that's what customers need to do, and that's what I try to help them with. >> Depending on what their business model is, they're going to understand some concept of a supply chain. But likely they don't understand what you just said, the concept of an information supply chain. So rather than try to explain it in geek speak, with IBM tooling, or all the things we typically do, I encourage customers to think about their perception of a supply chain. How does something move from a raw material to a sold product in their industry, whether it's finance, or whether they're building airplanes or whatever >> they're doing? And then, the customer can start to relate. Okay, my data's doing the same thing isn't it? And oh, I need to start thinking, I get that, my engineering brain and my process, and I have roles in the company. I have (mumbles) that their job is to work on my supply chain out in the factory, you're saying apply those types of approaches to a supply chain for data, what you just described. And once that light bulb starts to go off, there's an opportunity to do what you just said. >> Absolutely, in fact, we specifically talk to our clients about the notion first of, the role of data, first of all, data as an asset. In other words, something that has a consequential impact on a set of activities so you can put it into with other things in supply chain. But we also talk about the value chain. The role the data plays in the value chain. Whatever metaphor, both of those concepts are not broadly understood. Because data is so sharable, is so easily copied, too frequently, people say uh, it's really not an asset. Until they start making the wrong decision widely and repeatedly. So they have to think about it as an asset, they have to think about it as a value chain, and that's where the governance becomes so crucial. It's because if you're not putting in place good governance for your value chains, then you're not creating any value pretty quickly. >> And it's interesting if we think about it. So, data's an asset. Marketing people, software companies have been using that term for a long time. But now that we're at this stage and we have chief data officers, at the C-level folks reporting into the board that have this responsibility. So now the concept's a little better understood. So now the next step is what does that mean? What do I do with my typical assets? What do I do with my human resources assets? If I manage a fleet, what do I do with that fleet? So if something's truly an asset, what do I do? What do I do with it on the general ledger? What do I do from a staffing perspective? Where does it fit into to my overall operating model? And that's kind of what we're seeing unfold here. At an event like this, that's the level of conversation that's starting to happen. Not that it's a marketing buzzword anymore, but if it's true, organizationally, what have I done with other assets? Does that apply to my data as well if I'm using that statement? >> Alright, Ken, we're going to have to leave it there. I know you've got to run off to a session, but thanks for taking a few minutes out of your day. >> Thanks gentlemen. >> Alright, he's Ken. Peter, Jeff, you're watching the Cube at the IBM Chief Data Officer Strategy Summit 2017. Thanks for watching. (easy listening music) (percussive music)

Published Date : Mar 29 2017

SUMMARY :

brought to you by IBM. And of course, IBM's got something to offer as well. that they need to meet the mandate they've been given? It's not just automatically just like connect the data, the algorithms are amazing, but it does come down to people. officers need in their people, so that's what they're We know the CDO job. You've got the classic data scientist role that we are So the business is looking to drive outcomes. Who is the data translator that can get from this And a lot of it pertains to who is in a position to In the last session, of the ladies at a large to actually do that wherever they reside in the org chart. but he also had the art, and the two are And the listening skill is incredibly important as well. get the right set of practices put in place, so not that it So one of the things that you're doing with clients, and the right governance, you can do both. On the other hand, we have to still people that are good on the business side, of the purposefulness. but I'm also given an opportunity to work with One of the challenges though when we think about the economic scarcity because it's so easy to copy, That's a good question. And you used the keyword, understand. So to do what you just described. in the Hadoop systems. at each stage in the pipeline to ensure that the outcomes what customers need to do, and that's what I But likely they don't understand what you just said, there's an opportunity to do what you just said. So they have to think about it as an asset, So now the next step is what does that mean? I know you've got to run off to a session, Peter, Jeff, you're watching the Cube at the IBM

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Ken JacquierPERSON

0.99+

KenPERSON

0.99+

IBMORGANIZATION

0.99+

Jeff RickPERSON

0.99+

PeterPERSON

0.99+

twoQUANTITY

0.99+

OneQUANTITY

0.99+

Two examplesQUANTITY

0.99+

four yearsQUANTITY

0.99+

more than six yearsQUANTITY

0.99+

bothQUANTITY

0.99+

threeQUANTITY

0.99+

two thingsQUANTITY

0.99+

todayDATE

0.98+

Da VinciPERSON

0.98+

JeffPERSON

0.98+

oneQUANTITY

0.98+

San FranciscoLOCATION

0.98+

thirdQUANTITY

0.98+

Fisherman's WharfLOCATION

0.98+

each stageQUANTITY

0.97+

26 year oldQUANTITY

0.97+

Spring 2017DATE

0.95+

one showQUANTITY

0.94+

Chief Data OfficerEVENT

0.91+

two separate functionsQUANTITY

0.9+

Professional Businesswoman's ConferenceEVENT

0.9+

Strategy Summit 2017EVENT

0.88+

Man: Live from Fisherman's WharfTITLE

0.88+

OfficerEVENT

0.85+

Information Governance PracticeTITLE

0.8+

Strategy SummitEVENT

0.79+

Strategy SummitEVENT

0.74+

CDO Strategy SummitEVENT

0.68+

#IBMCDOORGANIZATION

0.51+

ChiefEVENT

0.49+

CubeTITLE

0.4+

DataPERSON

0.38+

coupleQUANTITY

0.37+

CubeLOCATION

0.35+

Vijay Vijayasanker & Cortnie Abercrombie, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE


 

(lively music) >> To the world. Over 31 million people have viewed theCUBE and that is the result of great content, great conversations and I'm so proud to be part of theCUBE, of a great team. Hi, I'm John Furrier. Thanks for watching theCUBE. For more information, click here. >> Narrator: Live from Fisherman's Wharf in San Francisco, it's theCUBE. Covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. >> Hey, welcome back everybody. Jeff Frick here at theCUBE. It is lunchtime at the IBM CDO Summit. Packed house, you can see them back there getting their nutrition. But we're going to give you some mental nutrition. We're excited to be joined by a repeat performance of Cortnie Abercrombie. Coming on back with Vijay Vijayasankar. He's the GM Cognitive, IOT, and Analytics for IBM, welcome. >> Thanks for having me. >> So first off, did you eat before you came on? >> I did thank you. >> I want to make sure you don't pass out or anything. (group laughing) Cortnie and I both managed to grab a quick bite. >> Excellent. So let's jump into it. Cognitive, lot of buzz, IoT, lot of buzz. How do they fit? Where do they mesh? Why is it, why are they so important to one another? >> Excellent question. >> IoT has been around for a long time even though we never called it IoT. My favorite example is smart meters that utility companies use. So these things have been here for more than a decade. And if you think about IoT, there are two aspects to it. There's the instrumentation by putting the sensors in and getting the data. And the insides aspect where there's making sense of what the sensor is trying to tell us. Combining these two, is where the value is for the client. Just by putting outwardly sensors, it doesn't make much sense. So, look at the world around us now, right? The traditional utility, I will stick with the utilities to complete the story. Utilities all get dissected from both sides. On one hand you have your electric vehicles plugging into the grid to draw power. On the other hand, you have supply coming from solar roofs and so on. So optimizing this is where the cognitive and analytics kicks in. So that's the beauty of this world. All these things come together, that convergence is where the big value is. >> Right because the third element that you didn't have in your original one was what's going on, what should we do, and then actually doing something. >> Vijay: Exactly. >> You got to have the action to pull it all together. >> Yes, and learning as we go. The one thing that is available today with cognitive systems that we did not have in the past was this ability to learn as you go. So you don't need human intervention to keep changing the optimization algorithms. These things can learn by itself and improve over time which is huge. >> But do you still need a person to help kind of figure out what you're optimizing for? That's where, can you have a pure, machine-driven algorithm without knowing exactly what are you optimizing for? >> We are no where close to that today. Generally, where the system is super smart by itself is a far away concept. But there are lots of aspects of specific AI optimizing a given process that can still go into this unsupervised learning aspects. But it needs boundaries. The system can get smart within boundaries, the system cannot just replace human thought. Just augmenting our intelligence. >> Jeff: Cortnie, you're shaking you head over there. >> I'm completely in agreement. We are no where near, and my husband's actually looking forward to the robotic apocalypse by the way, so. (group laughing) >> He must be an Arnold Schwarzenegger fan. >> He's the opposite of me. I love people, he's like looking forward to that. He's like, the less people, the better. >> Jeff: He must have his Zoomba, or whatever those little vacuum cleaner things are called. >> Yeah, no. (group laughing) >> Peter: Tell him it's the fewer the people, the better. >> The fewer the people the better for him. He's a finance guy, he'd rather just sit with the money all day. What does that say about me? Anyway, (laughing) no, less with the gross. Yeah no, I think we're never going to really get to that point. Because we always as people always have to be training these systems to think like us. So we're never going to have systems that are just autonomically out there without having an intervention here and there to learn the next steps. That's just how it works. >> I always thought the autonomous vehicle, just example, cause it's just so clean. You know, if somebody jumps in front of the car, does the car hit the person, or run into the ditch? >> Where today a person can't make that judgment very fast. They're just going to react. But in computer time, that's like forever. So you can actually make rules. And then people go bananas, well what if it's a grandma on one side and kids on the other? Which do you go? Or what if it's a criminal that just robbed a bank? Do you take him out on purpose? >> Trade off. >> So, you get into a lot of, interesting parameters that have nothing to do necessarily with the mechanics of making that decision. >> And this changes the fundamentals of computing big time too, right? Because a car cannot wait to ping the Cloud to find out, you know, should I break, or should I just run over this person in front of me. So it needs to make that determination right away. And hopefully the right decision which is to break. But on the other hand, all the cars that have this algorithm, together have collective learning, which needs some kind of Cloud computing. So this whole idea of Edge computing will come and replace a lot of what exists today. So see this disruption even behind the scenes on how we architect these systems, it's a fascinating time. >> And then how much of the compute, the store is at the Edge? How much of the computed to store in the Cloud and then depending on the decision, how do you say it, can you do it locally or do you have to send it upstream or break it in pieces. >> I mean if you look at a car of the future, forget car of the future, car of the present like Tesla, that has more compute power than a small data center, at multiple CPU's, lots of RAM, a lot of hard disk. It's a little Cloud that runs on wheels. >> Well it's a little data center that runs on wheels. But, let me ask you a question. And here's the question, we talk about systems that learn, cognitive systems that are constantly learning, and we're training them. How do we ensure that Watson, for example is constantly operating in the interest of the customer, and not the interest of IBM? Now there's a reason I'm asking this question, because at some point in time, I can perceive some other company offering up a similar set of services. I can see those services competing for attention. As we move forward with increasingly complex decisions, with increasingly complex sources of information, what does that say about how these systems are going to interact with each other? >> He always with the loaded questions today. (group laughing) >> It's an excellent question, it's something that I worry about all the time as well. >> Something we worry about with our clients too. >> So, couple of approaches by which this will exist. And to begin with, while we have the big lead in cognitive computing now, there is no hesitation on my part to admit that the ecosystem around us is also fast developing and there will be hefty competition going forward, which is a good thing. 'Cause if you look at how this world is developing, it is developing as API. APIs will fight on their own merits. So it's a very pluggable architecture. If my API is not very good, then it will get replaced by somebody else's API. So that's one aspect. The second aspect is, there is a difference between the provider and the client in terms of who owns the data. We strongly believe from IBM that client owns the data. So we will not go in and do anything crazy with it. We won't even touch it. So we will provide a framework and a cartridge that is very industry specific. Like for example, if Watson has to act as a call center agent for a Telco, we will provide a set of instructions that are applicable to Telco. But, all the learning that Watson does is on top of that clients data. We are not going to take it from one Telco and put it in another Telco. That will stay very local to that Telco. And hopefully that is the way the rest of the industry develops too. That they don't take information from one and provide to another. Even on an anonymous basis, it's a really bad idea to take a clients data and then feed it elsewhere. It has all kinds of ethical and moral consequences, even if it's legal. >> Absolutely. >> And we would encourage clients to take a look at some of the others out there and make sure that that's the arrangement that they have. >> Absolutely, what a great job for an analyst firm, right? But I want to build upon this point, because I heard something very interesting in the keynote, the CDO of IBM, in the keynote this morning. >> He used a term that I've thought about, but never heard before, trust as a service. Are you guys familiar with his use of that term? >> Vijay: Yep. >> Okay, what does trust as a service mean, and how does it play out so that as a consumer of IMB cognitive services, I have a measurable difference in how I trust IBM's cognitive services versus somebody else? >> Some would call that Blockchain. In fact Blockchain has often been called trust as a service. >> Okay, and Blockchain is probably the most physical form of it that we can find at the moment, right? At the (mumbles) where it's open to everybody but then no one brand section can be tabbed by somebody else. But if we extend that concept philosophically, it also includes a lot of the concept about identity. Identity. I as a user today don't have an easy way to identify myself across systems. Like, if I'm behind the firewall I have one identity, if I am outside the firewall I have another identity. But, if you look at the world tomorrow where I have to deal with a zillion APIs, this concept of a consistent identity needs to pass through all of them. It's a very complicated a difficult concept to implement. So that trust as a service, essentially, the light blocking that needs to be an identity service that follows me around that is not restrictive to an IBM system, or a Nautical system or something. >> But at the end of the day, Blockchain's a mechanism. >> Yes. >> Trust in the service sounds like a-- >> It's a transparency is what it is, the more transparency, the more trust. >> It's a way of doing business. >> Yes. >> Sure. >> So is IBM going to be a leader in defining what that means? >> Well look, in all cases, IBM has, we have always strove, what's the right word? Striven, strove, whatever it. >> Strove. >> Strove (laughing)? >> I'll take that anyway. >> Strove, thank you. To be a leader in how we approach everything ethically. I mean, this is truly in our blood, I mean, we are here for our clients. And we aren't trying to just get them to give us all of their data and then go off and use it anywhere. You have to pay attention sometimes, that what you're paying for is exactly what you're getting, because people will try to do those things, and you just need to have a partner that you trust in this. And, I know it's self-serving to say, but we think about data ethics, we think about these things when we talk to our clients, and that's one of the things that we try to bring to the table is that moral, ethical, should you. Just because you can, and we have, just so you know walked away from deals that were very lucrative before, because we didn't feel it was the right thing to do. And we will always, I mean, I know it sounds self-serving, I don't know how to, you won't know until you deal with us, but pay attention, buyer beware. >> You're just Cortnie from IBM, we know what side you're on. (group laughing) It's not a mystery. >> Believe me, if I'm associated with it, it's yeah. >> But you know, it's a great point, because the other kind of ethical thing that comes up a lot with data, is do you have the ethical conversation before you collect that data, and how you're going to be using it. >> Exactly. >> But that's just today. You don't necessarily know what's going to, what and how that might be used tomorrow. >> Well, in other countries. >> That's what gets really tricky. >> Future-proofing is a very interesting concept. For example, vast majority of our analytics conversation today is around structure and security, those kinds of terms. But, where is the vast majority of data sitting today? It is in video and sound files, which okay. >> Cortnie: That's even more scary. >> It is significantly scary because the technology to get insights out of this is still developing. So all these things like cluster and identity and security and so on, and quantum computing for that matter. All these things need to think about the future. But some arbitrary form of data can come hit you and all these principles of ethics and legality and all should apply. It's a very non-trivial challenge. >> But I do see that some countries are starting to develop their own protections like the General Data Protection Regulation is going to be a huge driver of forced ethics. >> And some countries are not. >> And some countries are not. I mean, it's just like, cognitive is just like anything else. When the car was developed, I'm sure people said, hey everybody's going to go out killing people with their cars now, you know? But it's the same thing, you can use it as a mode of transportation, or you can do something evil with it. It really is going to be governed by the societal norms that you live in, as to how much you're going to get away with. And transparency is our friend, so the more transparent we can be, things like Blockchain, other enablers like that that allow you to see what's going on, and have multiple copies, the better. >> All right, well Cortnie, Vijay, great topics. And that's why gatherings like this are so important to be with your peer group, you know, to talk about these much deeper issues that are really kind of tangental to technology but really to the bigger picture. So, keep getting out on the fringe to help us figure this stuff out. >> I appreciate it, thanks for having us. >> Thanks. >> Pleasure. All right, I'm Jeff Frick with Peter Burris. We're at the Fisherman's Wharf in San Francisco at the IBM Chief Data Officer Strategy Summit 2017. Thanks for watching. (upbeat music) (dramatic music)

Published Date : Mar 29 2017

SUMMARY :

and that is the result of great content, Brought to you by IBM. It is lunchtime at the IBM CDO Summit. Cortnie and I both managed to grab a quick bite. So let's jump into it. On the other hand, you have supply Right because the third element that you didn't have in the past was this ability to learn as you go. the system cannot just replace human thought. forward to the robotic apocalypse by the way, so. He's like, the less people, the better. Jeff: He must have his Zoomba, or whatever those The fewer the people the better for him. does the car hit the person, or run into the ditch? a grandma on one side and kids on the other? interesting parameters that have nothing to do to find out, you know, should I break, How much of the computed to store in the Cloud forget car of the future, car of the present like Tesla, of the customer, and not the interest of IBM? He always with the loaded questions today. that I worry about all the time as well. And hopefully that is the way that that's the arrangement that they have. the CDO of IBM, in the keynote this morning. Are you guys familiar with his use of that term? In fact Blockchain has often been called trust as a service. Okay, and Blockchain is probably the most physical form the more transparency, the more trust. we have always strove, what's the right word? And, I know it's self-serving to say, but we think about You're just Cortnie from IBM, we know what side you're on. is do you have the ethical conversation before you what and how that might be used tomorrow. It is in video and sound files, which okay. It is significantly scary because the technology But I do see that some countries are starting But it's the same thing, you can use it as a mode that are really kind of tangental to technology We're at the Fisherman's Wharf in San Francisco

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TelcoORGANIZATION

0.99+

Jeff FrickPERSON

0.99+

Peter BurrisPERSON

0.99+

IBMORGANIZATION

0.99+

JeffPERSON

0.99+

Vijay VijayasankarPERSON

0.99+

John FurrierPERSON

0.99+

General Data Protection RegulationTITLE

0.99+

CortniePERSON

0.99+

second aspectQUANTITY

0.99+

VijayPERSON

0.99+

PeterPERSON

0.99+

TeslaORGANIZATION

0.99+

Cortnie AbercrombiePERSON

0.99+

tomorrowDATE

0.99+

Vijay VijayasankerPERSON

0.99+

both sidesQUANTITY

0.99+

todayDATE

0.99+

two aspectsQUANTITY

0.99+

third elementQUANTITY

0.99+

one aspectQUANTITY

0.98+

Spring 2017DATE

0.98+

San FranciscoLOCATION

0.98+

twoQUANTITY

0.98+

bothQUANTITY

0.98+

Arnold SchwarzeneggerPERSON

0.97+

oneQUANTITY

0.97+

firstQUANTITY

0.97+

Over 31 million peopleQUANTITY

0.96+

more than a decadeQUANTITY

0.95+

IBM Chief Data OfficerEVENT

0.95+

this morningDATE

0.94+

WatsonORGANIZATION

0.91+

one thingQUANTITY

0.9+

Strategy Summit 2017EVENT

0.9+

IBM CDO SummitEVENT

0.89+

Fisherman's WharfLOCATION

0.88+

IOTORGANIZATION

0.88+

Fisherman's WharfTITLE

0.88+

#IBMCDOORGANIZATION

0.87+

coupleQUANTITY

0.86+

theCUBETITLE

0.83+

one handQUANTITY

0.82+

Chief Data OfficerEVENT

0.8+

IBM CDO Strategy SummitEVENT

0.8+

theCUBEORGANIZATION

0.77+

Strategy SummitEVENT

0.74+

one sideQUANTITY

0.73+

CognitiveORGANIZATION

0.7+

zillion APIsQUANTITY

0.65+

ZoombaORGANIZATION

0.61+

IMBORGANIZATION

0.6+

GM CognitiveORGANIZATION

0.6+

AnalyticsORGANIZATION

0.54+

#theCUBEORGANIZATION

0.46+

Cortnie Abercrombie & Caitlin Halferty Lepech, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE


 

>> Announcer: Live from Fisherman's Wharf in San Francisco, it's theCUBE, covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. >> Hey, welcome back, everybody. Jeff Frick here with theCUBE. We're at Fisherman's Wharf in San Francisco at the IBM Chief Data Officer Strategy Summit Spring 2017. It's a mouthful, it's 170 people here, all high-level CXOs learning about data, and it's part of an ongoing series that IBM is doing around chief data officers and data, part of a big initiative with Cognitive and Watson, I'm sure you've heard all about it, Watson TV if nothing else, if not going to the shows, and we're really excited to have the drivers behind this activity with us today, also Peter Burris from Wikibon, chief strategy officer, but we've got Caitlin Lepech who's really driving this whole show. She is the Communications and Client Engagement Executive, IBM Global Chief Data Office. That's a mouthful, she's got a really big card. And Cortnie Abercrombie, who I'm thrilled to see you, seen her many, many times, I'm sure, at the MIT CDOIQ, so she's been playing in this space for a long time. She is a Cognitive and Analytics Offerings leader, IBM Global Business. So first off, welcome. >> Thank you, great to be here. >> Thanks, always a pleasure on theCUBE. It's so comfortable, I forget you guys aren't just buddies hanging out. >> Before we jump into it, let's talk about kind of what is this series? Because it's not World of Watson, it's not InterConnect, it's a much smaller, more intimate event, but you're having a series of them, and in the keynote is a lot of talk about what's coming next and what's coming in October, so I don't know. >> Let me let you start, because this was originally Cortnie's program. >> This was a long time ago. >> 2014. >> Yeah, 2014, the role was just starting, and I was tasked with can we identify and start to build relationships with this new line of business role that's cropping up everywhere. And at that time there were only 50 chief data officers worldwide. And so I-- >> Jeff: 50? In 2014. >> 50, and I can tell you that earnestly because I knew every single of them. >> More than that here today. >> I made it a point of my career over the last three years to get to know every single chief data officer as they took their jobs. I would literally, well, hopefully I'm not a chief data officer stalker, but I basically was calling them once I'd see them on LinkedIn, or if I saw a press announcement, I would call them up and say, "You've got a tough job. "Let me help connect you with each other "and share best practices." And before we knew, it became a whole summit. It became, there were so many always asking to be connected to each other, and how do we share best practices, and what do you guys know as IBM because you're always working with different clients on this stuff? >> And Cortnie and I first started working in 2014, we wrote IBM's first paper on chief data officers, and at the time, there was a lot of skepticism within our organization, why spend the time with data officers? There's other C-suite roles you may want to focus on instead. But we were saying just the rise of data, external data, unstructured data, lot of opportunity to rise in the role, and so, I think we're seeing it reflected in the numbers. Again, first summit three years ago, 30 participants. We have 170 data executives, clients joining us today and tomorrow. >> And six papers later, and we're goin' strong still. >> And six papers later. >> Exactly, exactly. >> Before we jump into the details, some of the really top-level stuff that, again, you talked about with John and David, MIT CDOIQ, in terms of reporting structure. Where do CDOs report? What exactly are they responsible for? You covered some of that earlier in the keynote, I wonder if you can review some of those findings. >> Yeah, that was amazing >> Sure, I can share that, and then, have Cortnie add. So, we find about a third report directly to the CEO, a third report through the CIO's office, sort of the traditional relationship with CIOs, and then, a third, and what we see growing quite a bit, are CXOs, so functional or business line function. Originally, traditionally it was really a spin-off of CIO, a lot of technical folks coming up, and we're seeing more and more the shift to business expertise, and the focus on making sure we're demonstrating the business impact these data programs are driving for our organization. >> Yeah, it kind of started more as a data governance type of role, and so, it was born out of IT to some degree because, but IT was having problems with getting the line of business leaders to come to the table, and we knew that there had to be a shift over to the business leaders to get them to come and share their domain expertise because as every chief data officer will tell you, you can't have lineage or know anything about all of this great data unless you have the experts who have been sitting there creating all of that data through their processes. And so, that's kind of how we came to have this line of business type of function. >> And Inderpal really talked about, in terms of the strategy, if you don't start from the business strategy-- >> Inderpal? >> Yeah, on the keynote. >> Peter: Yeah, yeah, yeah, yeah. >> You are really in big risk of the boiling the ocean problem. I mean, you can't just come at it from the data first. You really have to come at it from the business problem first. >> It was interesting, so Inderpal was one of our clients as a CEO three times prior to rejoining IBM a year ago, and so, Cortnie and I have known him-- >> Express Scripts, Cambia. >> Exactly, we've interviewed him, featured him in our research prior, too, so when he joined IBM in December a year ago, his first task was data strategy. And where we see a lot of our clients struggle is they make data strategy an 18-month, 24-month process, getting the strategy mapped out and implemented. And we say, "You don't have the time for it." You don't have 18 months to come to data, to come to a data strategy and get by and get it implemented. >> Nail something right away. >> Exactly. >> Get it in the door, start showing some results right away. You cannot wait, or your line of business people will just, you know. >> What is a data strategy? >> Sure, so I can say what we've done internally, and then, I know you've worked with a lot of clients on what they're building. For us internally, it started with the value proposition of the data office, and so, we got very clear on what that was, and it was the ability to take internal, external data, structured, unstructured, and pull that together. If I can summarize it, it's drive to cognitive business, and it's infusing cognition across all of our business processes internally. And then, we identified all of these use cases that'll help accelerate, and the catalyst that will get us there faster. And so, Client 360, product catalog, et cetera. We took data strategy, got buy-in at the highest levels at our organization, senior vice president level, and then, once we had that support and mandate from the top, went to the implementation piece. It was moving very quickly to specify, for us, it's about transforming to cognitive business. That then guides what's critical data and critical use cases for us. >> Before you answer, before you get into it, so is a data strategy a means to cognitive, or is it an end in itself? >> I would say it, to be most effective, it's a succinct, one-page description of how you're going to get to that end. And so, we always say-- >> Peter: Of cognitive? >> Exactly, for us, it's cognitive. So, we always ask very simple question, how is your company going to make money? Not today, what's its monetization strategy for the future? For us, it's coming to cognitive business. I have a lot of clients that say, "We're product-centric. "We want to become customer, client-centric. "That's our key piece there." So, it's that key at the highest level for us becoming a cognitive business. >> Well, and data strategies are as big or as small as you want them to be, quite frankly. They're better when they have a larger vision, but let's just face it, some companies have a crisis going on, and they need to know, what's my data strategy to get myself through this crisis and into the next step so that I don't become the person whose cheese moved overnight. Am I giving myself away? Do you all know the cheese, you know, Who Moved My Cheese? >> Every time the new iOS comes up, my wife's like-- >> I don't know if the younger people don't know that term, I don't think. >> Ah, but who cares about them? >> Who cares about the millenials? I do, I love the millenials. But yes, cheese, you don't want your cheese to move overnight. >> But the reason I ask the question, and the reason why I think it's important is because strategy is many things to many people, but anybody who has a view on strategy ultimately concludes that the strategic process is what's important. It's the process of creating consensus amongst planners, executives, financial people about what we're going to do. And so, the concept of a data strategy has to be, I presume, as crucial to getting the organization to build a consensus about the role the data's going to play in business. >> Absolutely. >> And that is the hardest. That is the hardest job. Everybody thinks of a data officer as being a technical, highly technical person, when in fact, the best thing you can be as a chief data officer is political, very, very adept at politics and understanding what drives the business forward and how to bring results that the CEO will get behind and that the C-suite table will get behind. >> And by politics here you mean influencing others to get on board and participate in this process? >> Even just understanding, sometimes leaders of business don't articulate very well in terms of data and analytics, what is it that they actually need to accomplish to get to their end goal, and you find them kind of stammering when it comes to, "Well, I don't really know "how you as Inderpal Bhandari can help me, "but here's what I've got to do." And it's a crisis usually. "I've got to get this done, "and I've got to make these numbers by this date. "How can you help me do that?" And that's when the chief data officer kicks into gear and is very creative and actually brings a whole new mindset to the person to understand their business and really dive in and understand, "Okay, this is how "we're going to help you meet that sales number," or, "This is how we're going to help you "get the new revenue growth." >> In certain respects, there's a business strategy, and then, you have to resource the business strategy. And the data strategy then is how are we going to use data as a resource to achieve our business strategy? >> Cortnie: Yes. >> So, let me test something. The way that we at SiliconANGLE, Wikibon have defined digital business is that a business, a digital business uses data as an asset to differentially create and keep customers. >> Caitlin: Right. >> Does that work for you guys? >> Cortnie: Yeah, sure. >> It's focused on, and therefore, you can look at a business and say is it more or less digital based on how, whether it's more or less focused on data as an asset and as a resource that's going to differentiate how it's business behaves and what it does for customers. >> Cortnie: And it goes from the front office all the way to the back. >> Yes, because it's not just, but that's what, create and keep, I'm borrowing from Peter Drucker, right. Peter Drucker said the goal of business is to create and keep customers. >> Yeah, that's right. Absolutely, at the end of the day-- >> He included front end and back end. >> You got to make money and you got to have customers. >> Exactly. >> You got to have customers to make the money. >> So data becomes a de-differentiating asset in the digital business, and increasingly, digital is becoming the differentiating approach in all business. >> I would argue it's not the data, because everybody's drowning in data, it's how you use the data and how creative you can be to come up with the methods that you're going to employ. And I'll give you an example. Here's just an example that I've been using with retailers lately. I can look at all kinds of digital exhaust, that's what we call it these days. Let's say you have a personal digital shopping experience that you're creating for these new millenials, we'll go with that example, because shoppers, 'cause retailers really do need to get more millenials in the door. They're used to their Amazon.coms and their online shopping, so they're trying to get more of them in the door. When you start to combine all of that data that's underlying all of these cool things that you're doing, so personal shopping, thumbs up, thumb down, you like this dress, you like that cut, you like these heels? Yeah, yes, yes or no, yes or no. I'm getting all this rich data that I'm building with my app, 'cause you got to be opted in, no violating privacy here, but you're opting in all the way along, and we're building and building, and so, we even have, for us, we have this Metro Pulse retail asset that we use that actually has hyperlocal information. So, you could, knowing that millenials like, for example, food trucks, we all like food trucks, let's just face it, but millenials really love food trucks. You could even, if you are a retailer, you could even provide a fashion truck directly to their location outside their office equipped with things that you know they like because you've mined that digital exhaust that's coming off the personal digital shopping experience, and you've understood how they like to pair up what they've got, so you're doing a next best action type of thing where you're cross-selling, up-selling. And now, you bring it into the actual real world for them, and you take it straight to them. That's a new experience, that's a new millennial experience for retail. But it's how creative you are with all that data, 'cause you could have just sat there before and done nothing about that. You could have just looked at it and said, "Well, let's run some reports, "let's look at a dashboard." But unless you actually have someone creative enough, and usually it's a pairing of data scientist, chief data officers, digital officers all working together who come up with these great ideas, and it's all based, if you go back to what my example was, that example is how do I create a new experience that will get millenials through my doors, or at least get them buying from me in a different way. If you think about that was the goal, but how I combined it was data, a digital process, and then, I put it together in a brand new way to take action on it. That's how you get somewhere. >> Let me see if I can summarize very quickly. And again, just as an also test, 'cause this is the way we're looking at it as well, that there's human beings operate and businesses operate in an analog world, so the first test is to take analog data and turn it into digital data. IOT does that. >> Cortnie: Otherwise, there's not digital exhaust. >> Otherwise, there's no digital anything. >> Cortnie: That's right. >> And we call it IOT and P, Internet of Things and People, because of the people element is so crucial in this process. Then we have analytics, big data, that's taking those data streams and turning them into models that have suggestions and predictions about what might be the right way to go about doing things, and then there's these systems of action, or what we've been calling systems of enactment, but we're going to lose that battle, it's probably going to be called systems of action that then take and transduce the output of the model back into the real world, and that's going to be a combination of digital and physical. >> And robotic process automation. We won't even introduce that yet. >> Which is all great. >> But that's fun. >> That's going to be in October. >> But I really like the example that you gave of the fashion truck because people don't look at a truck and say, "Oh, that's digital business." >> Cortnie: Right, but it manifested in that. >> But it absolutely is digital business because the data allows you to bring a more personal experience >> Understand it, that's right. >> right there at that moment, and it's virtually impossible to even conceive of how you can make money doing that unless you're able to intercept that person with that ensemble in a way that makes both parties happy. >> And wouldn't that be cheaper than having big, huge retail stores? Someone's going to take me up on that. Retailers are going to take me up on this, I'm telling you. >> But I think the other part is-- >> Right next to the taco truck. >> There could be other trucks in that, a much cleaner truck, and this and that. But one thing, Cortnie, you talk about and you got to still have a hypothesis, I think of the early false promises of big data and Hadoop, just that you throw all this stuff in, and the answer just comes out. That just isn't the way. You've got to be creative, and you have to have a hypothesis to test, and I'm just curious from your experience, how ready are people to take in the external data sources and the unstructured data sources and start to incorporate that in with the proprietary data, 'cause that's a really important piece of the puzzle? It's very different now. >> I think they're ready to do it, it depends on who in the business you are working with. Digital offices, marketing offices, merchandising offices, medical offices, they're very interested in how can we do this, but they don't know what they need. They need guidance from a data officer or a data science head, or something like this, because it's all about the creativity of what can I bring together to actually reach that patient diagnostic, that whatever the case may be, the right fashion truck mix, or whatever. Taco Tuesday. >> So, does somebody from the chief data office, if you will, you know, get assigned to, you're assigned to marketing and you're assigned to finance, and you're assigned to sales. >> I have somebody assigned to us. >> To put this in-- >> Caitlin: Exactly, exactly. >> To put this in kind of a common or more modern parlance, there's a design element. You have to have use case design, and what are we going, how are we going to get better at designing use cases so we can go off and explore the role that data is going to play, how we're going to combine it with other things, and to your point, and it's a great point, how that turns into a new business activity. >> And if I can connect two points there, the single biggest question I get from clients is how do you prioritize your use cases. >> Oh, gosh, yeah. >> How can you help me select where I'm going to have the biggest impact? And it goes, I think my thing's falling again. (laughing) >> Jeff: It's nice and quiet in here. >> Okay, good. It goes back to what you were saying about data strategy. We say what's your data strategy? What's your overarching mission of the organization? For us, it's becoming cognitive business, so for us, it's selecting projects where we can infuse cognition the quickest way, so Client 360, for example. We'll often say what's your strategy, and that guides your prioritization. That's the question we get the most, what use case do I select? Where am I going to have the most impact for the business, and that's where you have to work with close partnership with the business. >> But is it the most impact, which just sounds scary, and you could get in analysis paralysis, or where can I show some impact the easiest or the fastest? >> You're going to delineate both, right? >> Exactly. >> Inderpal's got his shortlist, and he's got his long list. Here's the long term that we need to be focused on to make sure that we are becoming holistically a cognitive company so that we can be flexible and agile in this marketplace and respond to all kinds of different situations, whether they're HR and we need more skills and talent, 'cause let's face it, we're a technology company who's rapidly evolving to fit with the marketplace, or whether it's just good old-fashioned we need more consultants. Whatever the case may be. >> Always, always. >> Yes! >> I worked my business in. >> More consultants! >> Alright, we could go, we could go and go and go, but we're running out of time, we had a full slate. >> Caitlin: We just started. >> I know. >> I agree, we're just starting this convers, I started a whole other conversation to him. We haven't even hit the robotics yet. >> We need to keep going, guys. >> Get control. >> Cortnie: Less coffee for us. >> What do people think about when they think about this series? What should they look forward to, what's the next one for the people that didn't make it here today, where should they go on the calendar and book in their calendars? >> So, I'll speak to the summits first. It's great, we do Spring in San Francisco. We'll come back, reconvene in Boston in fall, so that'll be September, October frame. I'm seeing two other trends, which I'm quite excited about, we're also looking at more industry-specific CDO summits. So, for those of our friends that are in government sectors, we'll be in June 6th and 7th at a government CDO summit in D.C., so we're starting to see more of the industry-specific, as well as global, so we just ran our first in Rio, Brazil for that area. We're working on a South Africa summit. >> Cortnie: I know, right. >> We actually have a CDO here with us that traveled from South Africa from a bank to see our summit here and hoping to take some of that back. >> We have several from Peru and Mexico and Chile, so yeah. >> We'll continue to do our two flagship North America-based summits, but I'm seeing a lot of growth out in our geographies, which is fantastic. >> And it was interesting, too, in your keynote talking about people's request for more networking time. You know, it is really a sharing of best practices amongst peers, and that cannot be overstated. >> Well, it's community. A community is building. >> It really is. >> It's a family, it really is. >> We joke, this is a reunion. >> We all come in and hug, I don't know if you noticed, but we're all hugging each other. >> Everybody likes to hug their own team. It's a CUBE thing, too. >> It's like therapy. It's like data therapy, that's what it is. >> Alright, well, Caitlin, Cortnie, again, thanks for having us, congratulations on a great event, and I'm sure it's going to be a super productive day. >> Thank you so much. Pleasure. >> Thanks. >> Jeff Frick with Peter Burris, you're watchin' theCUBE from the IBM Chief Data Officer Summit Spring 2017 San Francisco, thanks for watching. (electronic keyboard music)

Published Date : Mar 29 2017

SUMMARY :

Brought to you by IBM. and we're really excited to have the drivers It's so comfortable, I forget you guys and in the keynote is a lot of talk about what's coming next Let me let you start, because this was and start to build relationships with this new Jeff: 50? 50, and I can tell you that and what do you guys know as IBM and at the time, there was a lot of skepticism and we're goin' strong still. You covered some of that earlier in the keynote, and the focus on making sure the line of business leaders to come to the table, I mean, you can't just come at it from the data first. You don't have 18 months to come to data, Get it in the door, start showing some results right away. and then, once we had that support and mandate And so, we always say-- So, it's that key at the highest level so that I don't become the person the younger people don't know that term, I don't think. I do, I love the millenials. about the role the data's going to play in business. and that the C-suite table will get behind. "we're going to help you meet that sales number," and then, you have to resource the business strategy. as an asset to differentially create and keep customers. and what it does for customers. Cortnie: And it goes from the front office is to create and keep customers. Absolutely, at the end of the day-- digital is becoming the differentiating approach and how creative you can be to come up with so the first test is to take analog data and that's going to be a combination of digital and physical. And robotic process automation. But I really like the example that you gave how you can make money doing that Retailers are going to take me up on this, I'm telling you. You've got to be creative, and you have to have because it's all about the creativity of from the chief data office, if you will, assigned to us. and to your point, and it's a great point, is how do you prioritize your use cases. How can you help me and that's where you have to work with and respond to all kinds of different situations, Alright, we could go, We haven't even hit the robotics yet. So, I'll speak to the summits first. to see our summit here and hoping to take some of that back. We'll continue to do our two flagship And it was interesting, too, in your keynote Well, it's community. We all come in and hug, I don't know if you noticed, Everybody likes to hug their own team. It's like data therapy, that's what it is. and I'm sure it's going to be a super productive day. Thank you so much. Jeff Frick with Peter Burris,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Caitlin LepechPERSON

0.99+

Cortnie AbercrombiePERSON

0.99+

Peter BurrisPERSON

0.99+

PeruLOCATION

0.99+

2014DATE

0.99+

IBMORGANIZATION

0.99+

CortniePERSON

0.99+

JeffPERSON

0.99+

Jeff FrickPERSON

0.99+

BostonLOCATION

0.99+

South AfricaLOCATION

0.99+

CaitlinPERSON

0.99+

JohnPERSON

0.99+

PeterPERSON

0.99+

D.C.LOCATION

0.99+

two pointsQUANTITY

0.99+

ChileLOCATION

0.99+

OctoberDATE

0.99+

18 monthsQUANTITY

0.99+

oneQUANTITY

0.99+

MexicoLOCATION

0.99+

18-monthQUANTITY

0.99+

Peter DruckerPERSON

0.99+

CognitiveORGANIZATION

0.99+

Inderpal BhandariPERSON

0.99+

30 participantsQUANTITY

0.99+

Amazon.comsORGANIZATION

0.99+

San FranciscoLOCATION

0.99+

50QUANTITY

0.99+

tomorrowDATE

0.99+

24-monthQUANTITY

0.99+

first testQUANTITY

0.99+

three years agoDATE

0.99+

170 peopleQUANTITY

0.99+

third reportQUANTITY

0.99+

June 6thDATE

0.99+

todayDATE

0.99+

bothQUANTITY

0.99+

IBM GlobalORGANIZATION

0.99+

Rio, BrazilLOCATION

0.99+

DavidPERSON

0.99+

first paperQUANTITY

0.98+

both partiesQUANTITY

0.98+

a year agoDATE

0.98+

one-pageQUANTITY

0.98+

LinkedInORGANIZATION

0.98+

7thDATE

0.98+

iOSTITLE

0.98+

first taskQUANTITY

0.98+

December a year agoDATE

0.98+

firstQUANTITY

0.98+

IBM Global BusinessORGANIZATION

0.97+

WikibonORGANIZATION

0.97+

North AmericaLOCATION

0.97+

Spring 2017DATE

0.97+

thirdQUANTITY

0.97+

170 data executivesQUANTITY

0.96+

50 chief data officersQUANTITY

0.96+

Seth Dobrin, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE


 

>> (lively music) (lively music) >> [Narrator] Live, from Fisherman's Wharf in San Francisco, it's theCUBE. Covering IBM Chief Data Officers Strategy Summit Spring 2017. Brought to you by IBM. >> Hey, welcome back everybody. >> Jeff Flick here with theCUBE alongside Peter Burris, our chief research officer from Wikibon. We're at the IBM Chief Data Officers Strategy Summit Sprint 2017. It's a mouthful but it's an important event. There's 170 plus CDO's here sharing information, really binding their community, sharing best practices and of course, IBM is sharing their journey which is pretty interesting cause they're taking their own transformational journey, writing up a blue print and going to deliver it in October. Drinking their own champagne as they like to say. We're really excited to have CUBE alumni, many time visitor Seth Dobrin. He is the chief data officer of IBM Analytics. Seth welcome. >> Yeah, thanks for having me again. >> Absolutely, so again, these events are interesting. There's a series of them. They're in multiple cities. They're, now, going to go to multiple countries. And it's really intended, I believe, or tell me, it's a learning experience in this great, little, tight community for this, very specific, role. >> Yeah, so these events are, actually, really good. I've been participating in these since the second one. >> So, since the first one in Boston about 2 1/2 years ago. They're really great events because it's an opportunity for CDO's or de facto CDO's in organizations to have in depth conversations with their peers about struggles, challenges, successes. >> It really helps to, kind of, one piece says you can benchmark yourself, how are we doing as an organization and how am I doing as a CDO and where do I fit within the bigger community or within your industry? >> How have you seen it evolve? Not just the role, per say, but some of the specific challenges or implementation issues that these people have had in trying to deliver a value inside their company. >> Yeah, so when they started, three years ago, there, really, were not a whole lot of tools that CDO's could use to solve your data science problems, to solve your cloud problems, to solve your governance problem. We're starting to get to a place in the world where there are actual tools out there that help you do these things. So you don't struggle to figure out how do I find talent that can build the tools internally and deploy em. It's now getting the talent to, actually, start implementing things that already exist. >> Is the CDO job well enough defined at this point in time? Do you think that you can, actually, start thinking about tools as opposed to the challenges of the business? In other words, is every CDO different or are the practices, now, becoming a little bit more and the conventions becoming a little bit better understood and stable so you >> can outdo a better job of practicing the CDO role? >> Yeah, I think today, the CDO role is still very ill defined. It's, really, industry by industry and company by company even, CDO's play different roles within each of those. I've only been with IBM for the last four months. I've been spending a lot of that time talking to our clients. Financial services, manufacturing, all over the board and really, the CDO's in those people are all industry specific, they're in different places and even company by company, they're in different places. It really depends on where the company's are on their data and digital journey what role the CDO has. Is it really a defensive play to make sure we're not going to violate any regulations or is it an offensive play and how do we disrupt our industry instead of being disrupted because, really, every industry is in a place where you're either going to be the disruptor or you're going to be the distruptee. And so, that's the scope, the breadth of, I think, the role the CDO plays. >> Do you see it all eventually converging to a common point? Cause, obviously, the CFO and the CMO, those are pretty good at standardized functions over time that wasn't always that way. >> Well, I sure hope it does. I think CDO's are becoming pretty pervasive. I think you're starting to see, when this started, the first one I went to, there were, literally, 35 people >> and only 1/2 of then were called CDO's. We've progressed now where we've got 100 people over 170 some odd people that are here that are CDO's. Most of them have the CDO title even. >> The fact that that title is much more pervasive says that we're heading that way. I think industry by industry you'll start seeing similar responsibilities for CDO's but I don't think you'll start seeing it across the board like a CFO where a CFO does the same thing regardless of the industry. I don't think you'll see that in a CDO for quite some time. >> Well one of the things, certainly, we find interesting is that the role the data's playing in business involvement. And it, partly, the CDO's job is to explain to his or her peers, at that chief level, how using data is going to change the way that they do things from the way that they're function works. And that's part of the reason, I think, why you're suggesting that on a vertical basis that the CDO's job is different. Cause different industries are being impacted themselves by data differently. So as you think about the job that you're performing and the job the CDO's are performing, what part is technical? What part is organizational? What part is political? Et cetera. >> I think a lot of the role of a CDO is political. Most of the CDO's that I know have built their careers on stomping on people's toes. How do I drive change by infringing on other people's turf effectively? >> Peter: In a nice way. >> Well, it depends. In the appropriate way, right? >> Peter: In a productive way. >> In the appropriate way. It could be nice, it could not be nice >> depending on the politics and the culture of the organization. I think a lot of the role of a CDO, it's, almost, like chief disruption officer as much as it is data officer. I think it's a lot about using data >> but, I think, more importantly, it's about using analytics. >> So how do you use analytics to, actually, drive insights and next best action from the data? I think just looking at data and still using gut based on data is not good enough. For chief data officers to really have an impact and really be successful, it's how do you use analytics on that data whether it's machine learning, deep learning, operations research, to really change how the business operates? Because as chief data officers, you need to justify your existence a lot. The way you do that is you tie real value to decisions that your company is making. The data and the analytics that are needed for those decisions. That's, really, the role of a CDO in my mind is, how do I tie value of data based on decisions and how do I use analytics to make those decisions more effective? >> Were the early days more defensive and now, shifting to offensive? It sounds like it. That's a typical case where you use technology, initially, often to save money before you start to use it to create new value, new revenue streams. Is that consistent here? By answering that, you say they have to defend themselves sometimes when you would think it'd be patently obvious >> that if you're not getting on a data software defined train, you're going to be left behind. >> I think there's two types. There's CDO's that are there to protect freedom to operate and that's what I call, think of, as defensive. And then, there's offensive CDO's and that's really bringing more value out of existing processes. In my mind, every company is on this digital transformation journey and there's two steps to it. >> One is this data science transformation which is where you use data and analytics to accelerate your businesses current goals. How do I use data analytics to accelerate my businesses march towards it's current goals? Then there's the second stage which is the true digital transformation which is how do I use data and analytics to, fundamentally, change how my industry and my company operates? So, actually, changing the goals of the industry. For example, moving from selling physical products to selling outcomes. You can't do that until you've done this data transformation till you've started operating on data, till you've started operating on analytics. You can't sell outcomes until you've done that. It's this two step journey. >> You said this a couple of times and I want to test an idea on you and see what you think. Industry classifications are tied back to assets. So, you look at industries and they have common organization of assets, right? >> Seth: Yep. Data, as an asset, has very, very, different attributes because it can be shared. It's not scarce, it's something that can be shared. As we become more digital and as this notion of data science or analytics, the world of data places in asset and analytics plays as assets becomes more pervasive, does that start to change the notion of industry because, now, by using data differently, you can use other assets and deploy other assets differently? >> Yeah, I think it, fundamentally, changes how business operates and even how businesses are measured because you hit on this point pretty well which is data is reusable. And so as I build these data or digital assets, the quality of a company's margins should change. For every dollar of revenue I generate. Maybe today I generate 15% profit. As you start moving to a digital being a more digital company built on data and analytics, that percent of profit based on revenue should go up. Because these assets that you're building to reuse them is extremely cheap. I don't have to build another factory to scale up, I buy a little bit more compute time. Or I develop a new machine learning model. And so it's very scalable unlike building physical products. I think you will see a fundamental shift in how businesses are measured. What standards that investors hold businesses to. I think, another good point is, a mind set shift that needs to happen for companies is that companies need to stop thinking of data as a digital dropping of applications and start thinking of it as an asset. Cause data has value. It's no longer just something that's dropped on the table from applications that I built. It's we are building to, fundamentally, create data to drive analytics, to generate value, to build new revenue for a company that didn't exist today. >> Well the thing that changes the least, ultimately, is the customer. And so it suggests that companies that have customers can use data to get in a new product, or new service domains faster than companies who don't think about data as an asset and are locked into how can I take my core set up, my organization, >> my plant, my machinery and keep stamping out something that's common to it or similar to it. So this notion of customer becomes the driver, increasingly, of what industry you're in or what activities you perform. Does that make sense? >> I think everything needs to be driven from the prospective of the customer. As you become a data driven or a digital company, everything needs to be shifted in that organization from the perspective of the customer. Even companies that are B to B. B to B companies need to start thinking about what is the ultimate end user. How are they going to use what I'm building, for my business partner, my B to B partner, >> what is their, actual, human being that's sitting down using it, how are they going to use it? How are they going to interact with it? It really, fundamentally, changes how businesses approach B to B relationships. It, fundamentally, changes the type of information that, if I'm a B to B company, how do I get more information about the end users and how do I connect? Even if I don't come in direct contact with them, how do I understand how they're using my product better. That's a fundamental just like you need to stop thinking of data as a digital dropping. Every question needs to come from how is the end user, ultimately, going to use this? How do I better deploy that? >> So the utility that the customer gets capturing data about the use of that, the generation of that utility and drive it all the way back. Does the CDO have to take a more explicit role in getting people to see that? >> Yes, absolutely. I think that's part of the cultural shift that needs to happen. >> Peter: So how does the CDO do that? >> I think every question needs to start with what impact does this have on the end user? >> What is the customer perspective on this? Really starting to think about. >> I'm sorry for interrupting. I'd turn that around. I would say it's what impact does the customer have on us? Because you don't know unless you capture data. That notion of the customer impact measurement >> which we heard last time, the measureability and then drive that all the way back. That seems like it's going to become an increasingly, a central design point. >> Yeah, it's a loop and you got to start using these new methodologies that are out there. These design thinking methodologies. It's not just about building an Uber app. It's not just about building an app. It's about how do I, fundamentally, shift my business to this design thinking methodology to start thinking cause that's what design thinking is all about. It's all about how is this going to be used? And every aspect of your business you need to approach that way. >> Seth, I'm afraid they're going to put us in the chaffing dish here if we don't get off soon. >> Seth: I think so too, yeah. >> So we're going to leave it there. It's great to see you again and we look forward to seeing you at the next one of these things. >> Yeah, thanks so much. >> He's Seth, he's Peter, I'm Jeff. You're watching theCUBE from the IBM Chief Data Officers Strategy Summit Spring 2017, I got it all in in a mouthful. We'll be back after lunch which they're >> setting up right now. (laughs) (lively music) (drum beats)

Published Date : Mar 29 2017

SUMMARY :

Brought to you by IBM. Drinking their own champagne as they like to say. They're, now, going to go to multiple countries. Yeah, so these events are, actually, really good. to have in depth conversations with their peers but some of the specific challenges data science problems, to solve your cloud problems, And so, that's the scope, the breadth of, Cause, obviously, the CFO and the CMO, I think you're starting to see, that are here that are CDO's. seeing it across the board like a CFO And it, partly, the CDO's job is to explain Most of the CDO's that I know have built In the appropriate way, right? In the appropriate way. and the culture of the organization. it's about using analytics. For chief data officers to really have an impact and now, shifting to offensive? that if you're not getting on There's CDO's that are there to protect freedom to operate So, actually, changing the goals of the industry. and see what you think. does that start to change the notion of industry is that companies need to stop thinking Well the thing that changes the least, something that's common to it or similar to it. in that organization from the perspective of the customer. how are they going to use it? Does the CDO have to take a more that needs to happen. What is the customer perspective on this? That notion of the customer impact measurement That seems like it's going to become It's all about how is this going to be used? Seth, I'm afraid they're going to It's great to see you again the IBM Chief Data Officers Strategy Summit (lively music)

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Peter BurrisPERSON

0.99+

Jeff FlickPERSON

0.99+

Seth DobrinPERSON

0.99+

IBMORGANIZATION

0.99+

JeffPERSON

0.99+

SethPERSON

0.99+

PeterPERSON

0.99+

BostonLOCATION

0.99+

OctoberDATE

0.99+

two typesQUANTITY

0.99+

second stageQUANTITY

0.99+

two stepQUANTITY

0.99+

IBM AnalyticsORGANIZATION

0.99+

35 peopleQUANTITY

0.99+

100 peopleQUANTITY

0.99+

two stepsQUANTITY

0.99+

second oneQUANTITY

0.99+

UberORGANIZATION

0.99+

first oneQUANTITY

0.99+

San FranciscoLOCATION

0.99+

todayDATE

0.99+

three years agoDATE

0.98+

OneQUANTITY

0.98+

one pieceQUANTITY

0.98+

oneQUANTITY

0.97+

eachQUANTITY

0.94+

WikibonORGANIZATION

0.92+

last four monthsDATE

0.9+

IBM Chief Data Officers Strategy Summit Sprint 2017EVENT

0.9+

about 2 1/2 years agoDATE

0.89+

Chief Data Officers Strategy SummitEVENT

0.88+

Spring 2017DATE

0.85+

over 170QUANTITY

0.85+

IBM Chief Data Officers Strategy Summit Spring 2017EVENT

0.84+

15% profitQUANTITY

0.83+

CDOTITLE

0.82+

170 plus CDOQUANTITY

0.79+

CDO Strategy SummitEVENT

0.77+

Fisherman's WharfLOCATION

0.76+

1/2QUANTITY

0.75+

CUBEORGANIZATION

0.73+

#IBMCDOORGANIZATION

0.69+

theCUBEORGANIZATION

0.52+

IBMEVENT

0.51+

Allen Crane, USAA & Glenn Finch | IBM CDO Strategy Summit 2017


 

(orchestral music) (energetic music) >> Narrator: Live from Fisherman's Wharf in San Francisco. It's the Cube! Covering IBM Chief Data Officer Strategy Summit, Spring 2017. Brought to you by IBM. >> Hey, welcome back everybody! Jeff Frick here with the Cube. I am joined by Peter Burris, the Chief Research Officer at Wikibon. We are in downtown San Francisco at the IBM Chief Data Officer Strategy Summit 2017. It's a lot of practitioners. It's almost 200 CDOs here sharing best practices, learning from the IBM team and we're excited to be here and cover it. It's an ongoing series and this is just one of many of these summits. So, if you are a CDO get involved. But, the most important thing is to not just talk to the IBM folks but to talk to the practitioners. And, we are really excited for our next segment to be joined by Allen Crane. He is the assistant VP from USAA. Welcome! >> Thank you. >> Jeff: And also Glenn Finch. He is the Global Managing Partner Cognitive and Analytics at IBM. Welcome! >> Thank you, thank you both. >> It's kind of like the Serengeti of CDOs here, isn't it? >> It is. It's unbelievable! >> So, the overview Allen to just kind of, you know, this opportunity to come together with a bunch of your peers. What's kind of the vibe? What are you taking away? I know it's still pretty early on but it's a cool little event. It's not a big giant event in Vegas. You know, it's a smaller of an affair. >> That's right. I've been coming to this event for the last three years since they had it and started it when Glenn started this event. And, truly it's probably the best conference I come to every year because it's practitioners. You don't have a lot of different tracks to get lost in. This is really about understanding from your own peers what they are going through. Everything from how are you organizing the organization? What are you focused on? Where are you going? And all the way through talent discussions and where do you source these jobs? >> What is always a big discussion is organizational structure which on one hand side is kind of, you know, who really cares? But is vitally important as to how it is executed, how the strategy gets implemented in the business groups. I wonder if you can tell us a little bit about how it works at USAA, your role specifically and how does a Chief Data Officer eat it, work his way into the business bugs trying to make better decisions. >> Absolutely, we are a 27 billion dollar 95 year old company that focuses on the military and their members and their families. And our members, we offer a full range of financial services. So, you can imagine we've got lots of data offices for all of our different lines of business. Because of that, we have elected to go with what we call a hub and spoke model where we centralize certain functions around governance, standards, core data assets, and we subscribe to those things from a standard standpoint so that we're in the spokes like I am. I run all of the data analytics for all of our channels and how our members interact with USAA. So, we can actually have standards that we can apply in our own area as does the bank, as does the insurance company, as does the investments company. And so, it enables the flexibility of business close to the business data and analytics while you also sort of maintain the governance layer on top of that. >> Well, USAA has been at the vanguard of customer experience for many years now. >> Yes >> And the channel world is now starting to apply some of the lessons learned elsewhere. Are you finding that USAA is teaching channels how to think about customer experience? And if so, what is your job as an individual who's, I presume, expected to get data about customer experience out to channel companies. How is that working? >> Well, it's almost like when you borrow a page back from history and in 1922 when we were founded the organization said service is the foundation of our industry. And, it's the foundation of what we do and how we message to our membership. So, take that forward 95 years and we are finding that with the explosion in digital, in mobile, and how does that interact with the phone call. And, when you get a document in the mail is it clear? Or do you have to call us, because of that? We find that there's a lot of interplay between our channels, that our channels had tended to be owned by different silo leaders that weren't really thinking laterally or horizontally across the experience that the member was facing. Now, the member is already multichannel. We all know this. We are all customers in our own right, getting things in the mail. It's not clear. Or getting things in an e-mail. >> Absolutely. >> Or a mobile notice or SMS text message. And, this is confusing. I need to talk to somebody about this. That type of thing. So, we're here to really make sure that we're providing as direct interaction and direct answers and direct access with our membership to make those as compelling experiences as we possibly can. >> So, how is data making that easier? >> We're bringing the data altogether is the first thing. We've got to be able to make sure that our phone data is in the same place as our digital data, is in the same place as our document data, is in the same place as our mobile data because when you are not able to see that path of how the member got here, you're kind of at a loss of what to fix. And so, what we're finding is the more data that we're stitching together, these are really just an extension of a conversation with the membership. If someone is calling you after being online within just a few minutes you kind of know that that's an extension of the same intent that they had before. >> Right. >> So, what was it upfront and upstream that caused them to call. What couldn't you answer for the member upstream that now required a phone call and possibly a couple of transfers to be able to answer that phone interaction. So, that's how we start with bringing all the data together. >> So, how are you working with other functions within USAA to ensure that the data that the channel organizations to ensure those conversations can persist over time with products and underwriters and others that are actually responsible for putting forward the commitments that are being made. >> Yeah. >> How is that coming together? >> I think, simply put it, it's a pull versus push. So, showing the value that we are providing back to our lines of business. So, for example, the bank line of business president looks to us to help them reduce the number of calls which affects their bottom line. And so, when we can do that and show that we are being more efficient with our member, getting them the right place to the right MSR the first time, that is a very material impact in their bottom line. So, connecting into the things that they care about is the pull factor that we often called, that gets us that seat at the table that says we need this channel analyst to come to me and be my advisor as I'm making these decisions. >> You know what, I was just going to say what Allen is describing is probably what I think is the most complicated piece of data analytics, cognitive, all that stuff. That last mile of getting someone whether it's a push or pull. >> Right. >> Fundamentally, you want somebody to do something different whether it's an end consumer, whether it's a research analyst, whether it's a COO or a CFO, you need to do something that causes them to make a different decision. You know, ten years ago as we were just at the dawn of a lot of this new analytical techniques, everybody was focused on amassing data and new machine learning and all that stuff. Now, quite honestly, a lot of that stuff is present and it's about how do we get someone who adapts something that feels completely wrong. That's probably the hardest. I mean, and I joke with people, but you know that thing when your spouse finds something in you and says something immediately about it. >> No, no. >> That's right. (laughs) That's the first thing and you guys are probably better men than I am. The first I want to do is say "prove them wrong". Right? That's the same thing when an artificial intelligence asset tries to tell a knowledge worker what to do. >> Right, right. >> Right? That's what I think the hardest thing is right now. >> So, is it an accumulative kind of knock down or eventually they kind of get it. Alright, I'll stop resisting. Or, is it a AHA moment where people come at 'cause usually for changing behavior, usually there's a carrot or a stick. Either you got to do it. >> Push or pull. >> And the analogy, right. Or save money versus now really trying to transform and reorganize things in new, innovative ways that A. Change the customer experience, but B. Add new revenue streams and unveil a new business opportunity. >> I think it's finding what's important to that business user and sometimes it's an insight that saves them money. In other cases, it's no one can explain to me what's happening. So, in the case of Call Centers for example, we do a lot of forecasting and routing work, getting the call to the right place at the right time. But often, a business leader may say " I want to change the routing rules". But, the contact center, think of it as a closed environment, and something that changes over here, actually ultimately has an effect over here. And, they may not understand the interplay between if I move more calls this way, well those calls that were going there have to go some place else now, right? So, they may not understand the interplay of these things. So, sometimes the analyst comes in in a time of crisis and sometimes it's that crisis, that sort of shared enemy if you will, the enemy of the situation, that is, not your customer. But, the enemy of the shared situation that sort of bonds people together and you sort of have that brothers in arms kind of moment and you build trust that way. It comes down to trust and it comes down to " you have my best interest in mind". And, sometimes it's repeating the message over and over again. Sometimes, it's story telling. Sometimes, it's having that seat at the table during those times of crisis, but we use all of those tools to help us earn that seat at the table with our business customer. >> So, let me build on something that you said (mumbles) 'Cause it's the trying to get many people in the service experience to change. Not just one. So, the end goal is to have the customer to have a great experience. >> Exactly. >> But, the business executive has to be part of that change. >> Exactly. >> The call center individual has to be part of that change. And, ultimately it's the data that ensures that that process of change or those changes are in fact equally manifest. >> Right. >> You need to be across the entire community that's responsible for making something happen. >> Right. >> Is that kind of where your job comes in. That you are making sure that that experience that's impacted by multiple things, that everybody gets a single version of the truth of the data necessary to act as a unit? >> Yeah, I think data, bringing it all together is the first thing so that people can understand where it's all coming from. We brought together dozens of systems that are the systems of record into a new system of record that we can all share and use as a collective resource. That is a great place to start when everyone is operating of the same fact base, if you will. Other disciplines like process disciplines, things that we call designed for measurability so that we're not just building things and seeing how it works when we roll it out as a release on mobile or a release on .com but truly making sure that we are instrumenting these new processes along the way. So, that we can develop these correlations and causal models for what's helping, what's working and what's not working. >> That's an interesting concept. So, you design the measurability in at the beginning. >> I have to. >> As opposed to kind of after the fact. Obviously, you need to measure-- >> Are you participating in that process? >> Absolutely. We have and my role is mainly more from and educational standpoint of knowing why it's important to do this. But, certainly everyone of our analysts is deeply engaged in project work, more upstream than ever. And now, we're doing more work with our design teams so that data is part of the design process. >> You know, this measurability concept, incredibly important in the consultancy as well. You know, for the longest time all the procurement officers said the best thing you can do to hold consults accountable is a fixed priced, milestone based thing, that program number 32 was it red or green? And if it's green, you'll get paid. If not, I am not paying you. You know, we in the cognitive analytics business have tried to move away from that because if we, if our work is not instrumented the same way as Allen's, if I am not looking at that same KPI, first of all I might have project 32 greener than grass, but that KPI isn't moving, right? Secondly, if I don't know that KPI then I am not going to be able to work across multiple levels in an organization, starting often times at the sea suite to make sure that there is a right sponsorship because often times somebody want to change routing and it seems like a great idea two or three levels below. But, when it gets out of whack when it feels uncomfortable and the sea suite needs to step in, that's when everybody's staring at the same set of KPIs and the same metrics. So, you say "No, no. We are going to go after this". We are willing to take these trade offs to go after this because everybody looks at the KPI and says " Wow. I want that KPI". Everybody always forgets that "Oh wait. To get this I got to give these two things up". And, nobody wants to give anything up to get it, right? It is probably the hardest thing that I work on in big transformational things. >> As a consultant? >> Yeah, as a consultant it's to get everybody aligned around. This is what needle we want to move, not what program we want to deliver. Very hard to get the line of business to define it. It's a great challenge. >> It's interesting because in the keynote they laid out exactly what is cognitive. And the 4 E's, I thought they were interesting. Expert. Expression. It's got to be a white box. It's got to be known. Education and Evolution. Those are not kind of traditional consulting benchmarks. You don't want them to evolve, right? >> Right. >> You want to deliver on what you wrote down in the SOW. >> Exactly. >> It doesn't necessarily have a white box element to it because sometimes a little hocus pocus, so just by its very definition, in cognitive and its evolutionary nature and its learning nature, it's this ongoing evolution of it or the processes. It's not a lock it down. You know, this is what I said I'd deliver. This is what we delivered 'cause you might find new things along the path. >> I think this concept of evolution and one of the things we try to be very careful with when you have a brand and a reputation, like USAA, right? It's impeccable, it's flawless, right? You want to make sure that a cognitive asset is trained appropriately and then allowed to learn appropriate things so it doesn't erode the brand. And, that can happen so quickly. So, if you train a cognitive asset with euphemisms, right? Often times the way we speak. And then, you let it surf the internet to get better at using euphemisms, pretty soon you've got a cognitive asset that's going to start to use slang, use racial slurs, all of those things (laughs) because-- No, I am serious. >> Hell you are. >> That's not good. >> Right, that's not bad so, you know, that's one of the things that Ginni has been really, really careful with us about is to make sure that we have a cognitive manifesto that says we'll start here, we'll stop here. We are not going to go in the Ex Machina territory where full cognition and humans are gone, right? That's not what we're going to do because we need to make sure that IBM is protecting the brand reputation of USAA. >> Human discretion still matters. >> Absolutely. >> It has to. >> Alright. Well, we are out of time. Allen, I wanted to give you the last word kind of what you look forward to 2017. We're already, I can't believe we're all the way through. What are some of your top priorities that you are working on? Some new exciting things that you can share. >> I think one of the things that we are very proud of is our work in the text analytics space and what I mean by that is we're ingesting about two years of speech data from our call center every day. And, we are mining that data for emergent trends. Sometimes you don't know what you don't know and it's those unknown unknowns that gets you. They are the things that creep up in your data and you don't really realize it until they are a big enough issue. And so, this really is helping us understand emerging trends, the emerging trend of millennials, the emerging trend of things like Apple Pay, and it also gives us insight as to how our own MSRs are interacting with our members in a very personal level. So, beyond words and language we're also getting into things like recognizing things like babies crying in the background, to be able to detect things like life events because a lot of your financial needs center around life events. >> Right, right. >> You know, getting a new home, having another child, getting a new car, those types of things. And so, that's really where we're trying to bring the computer more as an assistant to the human, as opposed to trying to replace the human. >> Right. >> But, it is a very exciting space for us and areas that we are actually able to scale about 100 times faster than we were fast before. >> Wow. That's awesome. We look forward to hearing more about that and thanks for taking a few minutes to stop by. Appreciated. >> Peter: Thanks, guys. >> Allen: Thank you. >> Alright. Thank you both. With Peter Burris, I'm Jeff Frick. You're watching the Cube from the IBM Chief Data Officer Strategy Summit, Spring 2017. Thanks for watching. We'll be back after the short break. (upbeat music)

Published Date : Mar 29 2017

SUMMARY :

Brought to you by IBM. He is the assistant VP from USAA. He is the Global Managing Partner Cognitive and Analytics It's unbelievable! to just kind of, you know, And all the way through talent discussions in the business groups. that focuses on the military Well, USAA has been at the vanguard of customer experience And the channel world is now starting that the member was facing. I need to talk to somebody about this. is in the same place as our digital data, that caused them to call. that the channel organizations So, showing the value that we are providing is the most complicated piece of data analytics, that causes them to make a different decision. That's the first thing and you guys are probably better men That's what I think the hardest thing is right now. So, is it an accumulative kind of knock down that A. Change the customer experience, and it comes down to " you have my best interest in mind". So, the end goal is to have the customer But, the business executive has to be part The call center individual has to be part of that change. You need to be across the entire community of the data necessary to act as a unit? that are the systems of record at the beginning. As opposed to kind of after the fact. so that data is part of the design process. and the sea suite needs to step in, Very hard to get the line of business to define it. It's interesting because in the keynote they laid out 'cause you might find new things along the path. and one of the things we try to be very careful with We are not going to go in the Ex Machina territory that you are working on? They are the things that creep up in your data the computer more as an assistant to the human, and areas that we are actually able to scale and thanks for taking a few minutes to stop by. from the IBM Chief Data Officer Strategy Summit,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
USAAORGANIZATION

0.99+

GlennPERSON

0.99+

Peter BurrisPERSON

0.99+

Glenn FinchPERSON

0.99+

IBMORGANIZATION

0.99+

Jeff FrickPERSON

0.99+

PeterPERSON

0.99+

AllenPERSON

0.99+

VegasLOCATION

0.99+

firstQUANTITY

0.99+

twoQUANTITY

0.99+

JeffPERSON

0.99+

2017DATE

0.99+

Allen CranePERSON

0.99+

1922DATE

0.99+

95 yearsQUANTITY

0.99+

GinniPERSON

0.99+

San FranciscoLOCATION

0.99+

bothQUANTITY

0.99+

Spring 2017DATE

0.99+

95 yearQUANTITY

0.98+

ten years agoDATE

0.98+

oneQUANTITY

0.97+

SecondlyQUANTITY

0.97+

27 billion dollarQUANTITY

0.97+

first thingQUANTITY

0.96+

almost 200 CDOsQUANTITY

0.95+

three levelsQUANTITY

0.95+

first timeQUANTITY

0.95+

about two yearsQUANTITY

0.94+

WikibonORGANIZATION

0.92+

two thingsQUANTITY

0.92+

about 100 timesQUANTITY

0.91+

Chief Research OfficerPERSON

0.9+

IBM Chief Data Officer Strategy Summit 2017EVENT

0.89+

dozens of systemsQUANTITY

0.89+

project 32OTHER

0.87+

single versionQUANTITY

0.87+

Global Managing Partner Cognitive and AnalyticsORGANIZATION

0.86+

IBM Chief Data Officer Strategy SummitEVENT

0.85+

last three yearsDATE

0.85+

Strategy SummitEVENT

0.78+

CDO Strategy Summit 2017EVENT

0.74+

Ex MachinaLOCATION

0.71+

AllenORGANIZATION

0.69+

IBMEVENT

0.69+

Chief Data OfficerEVENT

0.67+

Fisherman's WharfTITLE

0.64+

Narrator: LiveTITLE

0.61+

minutesQUANTITY

0.59+

program number 32OTHER

0.58+

AppleORGANIZATION

0.54+

PayTITLE

0.53+

CDOsORGANIZATION

0.42+

CubeTITLE

0.42+

Inderpal Bhandari & Jesus Mantas | IBM CDO Strategy Summit 2017


 

(inspiring piano and string music) >> Announcer: Live from Fisherman's Wharf in San Francisco, it's theCUBE, covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. >> Hey, welcome back, everybody. Jeff Frick here with theCUBE. We're in downtown San Francisco at the IBM Chief Data Officer Strategy Summit Spring 2017. That's a mouthful, but it's important because there's a series of these strategy summits that are happening not only in the United States, but they're expanding it all over the world, and it's really a chance for practitioners to come together, the chief data officers, to share best practices, really learn from the best, and as we love to do on theCUBE, we get the smartest people we can find, and we have them here. So first off, let me introduce Peter Burris, Chief Research Officer from Wikibon, but from IBM coming right off the keynote-- >> The smart people. >> The smart people, Inderpal Bhandari, he is the IBM Global Chief Data Officer, which is a short title and a big job, and Jesus Mantas, he's the General Manager, Cognitive Transformation, IBM Global Business Services. First off, gentlemen, welcome. >> Thank you. >> Thank you. >> It's really interesting how this chief data officer space has evolved. We've been watching it for years, back to some of the MIT CDOIQ, I think like three or four years ago nobody knew who they were, who were they going to report to, what are they going to do, what's the scope of the job. That's changed dramatically, and it really says something to IBM's credit that they just went out and got one to help really to refine and define for your customers where this is going. So first off, welcome, and let's get into it. How is the role starting to solidify as to what do chief data officers do? >> So, I'll take that. In terms of chief data officers, if you think in terms of the advent of the position, when it started out, I was one of the earliest in 2006, and I've done the job four times, and it has been continuously evolving ever since. When the job was first, in my very first job, I actually had to create the job because there was a company very interested in recruiting me, and they said they sensed that data was critical. It was a company in pharmaceutical insurance, so really very data based, right, everything is driven through data. And so, they had a sense that data was going to be extremely important, extremely relevant, but they didn't really have the position, or they didn't coin the phrase. And I suggested that there were three other chief data officers at that time in the U.S., and so, I became the fourth. At that time, it had to do with, essentially aligning data with strategy, with the strategy of the company, which means how is the company actually planning to monetize itself? Not its data, but itself. And then, essentially make sure that the data is now fit for purpose, to help them with that monetization. And so, that's all about aligning with the corporate strategy, and you have to have an officer who's capable of doing that and has that focus and is able to push that because then, once you start with that strategy, and then, there are plenty of different branches that shoot off, like governance, centralization of data, analytics, data science, and so on and so forth, and then, you have to manage that process. >> And data used to be kind of a liability, hard to think today looking back, 'cause you had to buy servers and storage, and it was expensive, and what do you do with it all? You can't analyze it. Boy, how the world has flipped. Now, data is probably one of your most important assets, but then, the big question, right, what do you do with it to really make it an asset? >> It is, it is, and it's actually fascinating to see here in the summit how even the role that was created in a few years, chief data officer, is coupled with this change in the nature of the value of that role has changed. To your point, I remember meeting some CIO friends 10 years ago that they were telling me how they were deleting data because it was too costly to have it. Now, those same CIOs would give whatever they could have to get that data back and have that history and be able to monetize the data. Because of the evolution of computing, and because now, not only the portion of the physical world that we've been able to represent with data for the last 50 years with information technology, but we're adding to that space all of this 80% of the data that even if digitized we were unable to use in processes, in decision making, in manufacturing. Now we have cognitive technology that can actually use that data, the role of the chief data officer is actually expanding significantly from what used to be the element of data science, of data governance, of data sovereignty, of data security, to now this idea of value creation with basically five times more categories of data, and it actually is a dialogue that we're having here at the summit that is the fascinating from the people who are doing this job every day. >> If you think about the challenges associated with the chief data officer, it's a job that's evolving, but partly one of the reasons why the chief data officer job is evolving is the very concept of the role that data plays in business is evolving, and that's forcing every job in business to evolve. So, the CMO's job's evolving, the CEO's job's evolving, and the CIO's job is evolving. How are you navigating this interesting combination of forces on the role of the CDO as you stake out, this is the value I'm going to bring to the business, even as other jobs start to themselves change and respond to this concept of the value of data? >> People ask me to describe my job, and there are just two words that I use to describe it. It's change agent, and that's exactly how a CDO needs to be, needs to look at their job, and also, actually act on that. Because to your point, it's not just the CDO job is evolving, it's all these other jobs are all evolving simultaneously, and there are times when I'm sitting at the table, it appears that, well, you don't really own anything because everybody else owns all the processes in the business. On the other hand, sometimes you're sitting there, and you're thinking, no, you actually own everything because the data that feeds those processes or comes out of those process is not coming back to you. I think the best way to think about the CDO job is that of a change agent. You are essentially entrusted with creating value from the data, as Jesus said, and then, enabling all the other jobs to change, to take advantage of this. >> 'Cause it's the enablement that that's where you bring the multiplier effect, it's the democratization of the data across the organization, across business roles, across departments is where you're going to get this huge multiplier. >> Yeah, and I think the role of one of the things that we're seeing and the partnership that Inderpal and I have in the way that we do this within IBM, but also, we do it for the rest of our clients is that change agency element of it is the constant infusion of design. Chief data officers were very well-known for the data science elements of it, but part of the constraint is actually no longer the computing capability or the algorithms themselves or the access to the data, which solved those constraints, is now actually preparing the business leaders to consume that and to actually create value, which changes the nature of their job as well, and that's the resistance point where embedding these technologies in the workflows, in a way that they create value in the natural flow of what these jobs actually do is extremely important. Otherwise, I mean, we were having a fascinating discussion before this, even if the data is correct, many business leaders will say, "Well, I don't believe it." And then, if you don't adopt it, you don't get the value. >> You guys are putting together this wonderful community of CDOs, chief data officers, trying to diffuse what the job is, how you go about doing the job. If you're giving advice and counsel to a CEO or board of directors who are interested in trying to apply this role in their business, what should they be looking for? What type of person, what type of background, what type of skills? >> I'll take it, and then, you can. I think it's almost what I would call a new Da Vinci. >> Peter: A new Da Vinci? >> A new Da Vinci is the Renaissance of someone that is, he's got a technology background, because you need to actually understand the mathematical and the data and the technology co-engineering aspect. >> So, if not an IT background, at least a STEM background. >> Exactly, it's a STEM background, but combined with enough knowledge of business architecture. So I call it Da Vinci because if you see the most remarkable paintings and products of Da Vinci was the fusion of mathematics and arts in a way that hadn't been done before. I think the new role of a data science is someone that can be in the boardroom elegantly describing a very sophisticated problem in a very easy to understand manner, but still having the depth of really understanding what's behind it and drawing the line versus what's possible and what's likely to happen. >> I think that's right on. I think the biggest hurdle for a chief data officer is the culture change, and to do that, you actually have to be a Da Vinci, otherwise, you really can't pull that off. >> Peter: You have to be a Da Vinci? >> You have to be a Da Vinci to pull that off. It's not just, you have to appreciate not just the technology, but also the business architecture as well as the fact that people are used to working in certain ways which are now changing on them, and then, there is an aspect of anxiety that goes with it, so you have to be able to understand that, and actually, perhaps even harness that to your advantage as you move forward as opposed to letting that become some kind of a threat or counterproductive mechanism as you move forward. >> I've done a fair amount of research over the years on the relationship between business model, business model design profitability, and this is, there's a lot of different ways of attacking this problem, I'm not going to tell you I have the right answer yet, but one of the things that I discovered when talking to businesses about this is that often it fails when the business fails to, I'm going to use the word secure, but it may not be the right word, secure the ongoing rents or value streams from the intellectual property that they create as part of the strategy. Companies with great business model design also find ways to appropriate that value from what they're doing over an extended period of time, and in digital business, increasingly that's data. That raises this interesting question, what is the relationship between data, value streams over time, ownership, intellectual property? Do you have any insight into that? It's a big question. >> Yeah, no no, I mean, I think we touched on it also in the discussion, both Jesus and I touched on that. We've staked out a very clear ground on that, and when I say we, I mean IBM, the way we are defining that is we are pretty clear that for all the reasons you just outlined, the client's data has to be their data. >> Peter: Has to be? >> Has to be their data. It has to be their insight because otherwise, you run into this notion of, well, whose intellectual property is it, whose expertise is it? Because these systems learn as they go. And so, we're architecting towards offerings that are very clear on that, that we're going to make it possible for a client that, for instance, just wants to keep their data and derive whatever insight they can from that data and not let anybody else derive that insight, and it'll be possible for them to do that. As well as clients where they're actually comfortable setting up a community, and perhaps within an industry-specific setup, they will allow insights that are then shared across that. We think that's extremely important to be really clear about that up front and to be able to architect to support that, in a way that that is going to be welcomed by the business. >> Is that part of the CDO's remit within business to work with legal and work with others to ensure that the rules and mechanisms to sustain management of intellectual property and retain rents out of intellectual property, some call it the monetization process, are in place, are enforced, are sustained? >> That's always been part of the CDO remit, right. I mean, in the sense that even before cognition that was always part of it, that if we were bringing in data or if data was leaving the company that we wanted to make sure that it was being done in the right way. And so, that partnership not just with legal but also with IT, also with the business areas, that we had to put in place, and that's the essence of governance. In the broadest sense, you could think of governance as doing that, as protecting the data asset that the company has. >> They have the derivatives now, though. You're getting stacked derivatives. >> Inderpal: It's much more complicated. >> Of data, and then insight combined, so it's not just that core baseline data anymore. >> And I like to make it an element. You've heard us say for the last five years we believe that data has become the new natural resource for the business. And when you go back to other natural resources, and you see what happened with people that were in charge of them, you can kind of predict a little bit that evolution on the chief data officer role. If you were a landowner in Texas when there was no ability to basically either extract or decline petroleum, you were not preoccupied with how would you protect land rights under the line that you can see. So, as a landowner you have a job, but you were basically focused on what's over the surface. Once actually was known that below the surface there was massive amount of value that could be obtained, suddenly that land ownership expanded in responsibility. You then have to be preoccupied, "Okay, wait a minute, who owns those land rights "to actually get that oil, and who's going to do that?" I think you can project that to the role of the chief data officer. If you don't have a business model that monetizes data, you are not preoccupied to actually figure out how to govern it or how to monetize it or how to put royalties on it, you are just preoccupied with just making sure that the data you have, it was well-maintained and it could be usable. The role's massively expanding to this whole below the line where not only the data is being used for internal purposes, but it's becoming a potential element of a strategy that is new. >> The value proposition, simply stated. >> Jesus: Value proposition, exactly. >> But you're right, so I agree with that, but data as an asset has different characteristics than oil as an asset, or people as an asset. People can effectively be applied to one thing at a time. I mean, we can multitask, but right now, you're having a conversation with us, and so, IBM is not seeing you talk to customers here at the show, for example. Data does not follow the economics of scarcity. >> Jesus: Right. >> It follows a new economics, it's easy to copy, it's easy to share. If it's done right, it's easy to integrate. You can do an enormous number of things with data that you've never been able to do with any other asset ever, and that's one of the reasons why this digital transformation is so interesting and challenging, and fraught with risk, but also potentially rewarding. So, as you think about the CDO role and being the executive in the business that is looking at taking care of an asset, but a special type of asset, how that does change the idea of taking care of the energy or the oil to now doing it a little bit differently because it can be shared, because it can be combined. >> I mean, I think in the way as technology has moved from being a mechanism to provide efficiency to the business to actually being core to defining what the business is, I think every role related to technology is following that theme, so I would say, for example, Inderpal and I, when we're working with clients or on our models, he's not just focused on the data, he's actually forming what is possible for the business to do. What should be the components of the new business architecture? It's this homogenized role, and that's why I kept saying it's like, you could have been one of those Da Vincis. I mean, you get to do it every day, but I don't know if you want to comment on that. >> I think that's exactly right. You are right in the sense that it is a different kind of asset, it has certain characteristics which are different from what you'd find in, say, land or oil or something like a natural resource, but in terms of, and you can create a lot of value at times by holding onto it, or you could create a lot of value by sharing it, and we've seen examples of both metaphors. I think as part of being the CDO, it's being cognizant that there is going to be a lot of change in this role as data is changing, not just in its nature in the sense that now you have a lot more unstructured data, many different forms of data, but also in terms of that's application within the business, and this expansion to changing processes and transforming processes, which was never the case when I first did the job in 2006. It was not about process transformation. It was about a much more classic view of an asset where it's, we create this data warehouse, that becomes the corporate asset, and now, you generate some insights from it, disseminate the insights. Now it's all about actually transforming the business by changing the processes, reimagining what they could be, because the nature of data has changed. >> I have one quick question. >> Last one. >> Very quickly, well, maybe it's not a quick question, so if you could just give me a quick answer. A couple times you both have mentioned the relationship between the CDO and business architecture. Currently, there's a relationship between the CIO and IT architecture, even the CIO and data architecture at a technical level. At IBM, do you actually have staff that does business architecture work? Is there someone, is that a formal, defined set of resources that you have, or should CDOs have access to a group of people who do business architecture? What do you think? >> We've traditionally had business architects at IBM, I think for a long time, that predates me. But again, as Jesus said, their role is also evolving. As it becomes much more about process transformation, it's different than it was before. I mean, this is much more now about a collaborative effort where you essentially sit down in a squad in an agile setting, and you're working together to redesign and reinvent the process that's there. And then, there's business value. It's less about creating large monolithic architectures that span an entire enterprise. It's all about being agile, data-driven, and reacting to the changes that are happening. >> So, turning strategy into action. >> Yes. >> And I think, again, in IBM, one of the things that we have done, our CIO, that is the organization that actually is the custodian of this cognitive enterprise architecture of which Inderpal actually is part of. So, we are actually putting it all together. It used to be an organization. Most COOs have evolved from running operations to defining shared services to now have to figure out what is the digital services version of the enterprise they need to implement, and they can't do that without a CDO in place, they just can't. >> Alright, gentlemen. Unfortunately, we'll have to leave it there. For viewers at home, tune into season two with Inderpal and Jesus. Really a great topic. Congratulations on the event, and we look to forward to the next time. >> Thank you. >> Thank you very much. >> Absolutely. With Peter Burris, I'm Jeff Frick. You're watching theCUBE from the IBM Chief Data Officer Strategy Summit Spring 2017. Be right back with more after this short break. Thanks for watching. (electronic keyboard music)

Published Date : Mar 29 2017

SUMMARY :

Brought to you by IBM. that are happening not only in the United States, and Jesus Mantas, he's the General Manager, How is the role starting to solidify the corporate strategy, and you have to have an officer and it was expensive, and what do you do with it all? and because now, not only the portion of the physical world of forces on the role of the CDO as you stake out, and then, enabling all the other jobs to change, it's the democratization of the data or the access to the data, which solved those constraints, to a CEO or board of directors I'll take it, and then, you can. and the data and the technology co-engineering aspect. is someone that can be in the boardroom is the culture change, and to do that, and actually, perhaps even harness that to your advantage of attacking this problem, I'm not going to tell you the client's data has to be their data. and to be able to architect to support that, and that's the essence of governance. They have the derivatives now, though. so it's not just that core baseline data anymore. that the data you have, Data does not follow the economics of scarcity. and being the executive in the business for the business to do. in the sense that now you have the relationship between the CDO and business architecture. and reacting to the changes So, turning strategy that is the organization that actually Congratulations on the event, Be right back with more after this short break.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Peter BurrisPERSON

0.99+

IBMORGANIZATION

0.99+

Inderpal BhandariPERSON

0.99+

TexasLOCATION

0.99+

2006DATE

0.99+

Jeff FrickPERSON

0.99+

PeterPERSON

0.99+

InderpalPERSON

0.99+

Jesus MantasPERSON

0.99+

JesusPERSON

0.99+

80%QUANTITY

0.99+

United StatesLOCATION

0.99+

two wordsQUANTITY

0.99+

fourthQUANTITY

0.99+

firstQUANTITY

0.99+

InderpalORGANIZATION

0.99+

threeDATE

0.99+

10 years agoDATE

0.99+

five timesQUANTITY

0.99+

San FranciscoLOCATION

0.99+

U.S.LOCATION

0.99+

bothQUANTITY

0.99+

first jobQUANTITY

0.98+

Da VinciPERSON

0.98+

oneQUANTITY

0.98+

Da VincisPERSON

0.98+

one thingQUANTITY

0.98+

FirstQUANTITY

0.97+

three other chief data officersQUANTITY

0.96+

one quick questionQUANTITY

0.95+

IBM Global Business ServicesORGANIZATION

0.95+

four years agoDATE

0.94+

WikibonORGANIZATION

0.94+

both metaphorsQUANTITY

0.94+

k questionQUANTITY

0.94+

four timesQUANTITY

0.93+

Chief Data OfficerEVENT

0.92+

todayDATE

0.9+

Strategy Summit Spring 2017EVENT

0.9+

couple timesQUANTITY

0.88+

Spring 2017DATE

0.87+

Strategy SummitEVENT

0.85+

last five yearsDATE

0.83+

MIT CDOIQORGANIZATION

0.83+

season twoQUANTITY

0.79+

Chief Research OfficerPERSON

0.78+

last 50 yearsDATE

0.77+

IBMEVENT

0.76+

CDO Strategy Summit 2017EVENT

0.76+

CDOTITLE

0.73+

thingsQUANTITY

0.67+

Fisherman's WharfLOCATION

0.51+

Allen Crane, USAA & Cortnie Abercrombie, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE


 

>> It's the Cube covering IBM cheap Data Officer Strategy Summit brought to you by IBM. Now, here are your hosts Day villain day and still minimum. >> Welcome back to Boston, everybody. This is the Cube, the worldwide leader in live tech coverage. We here at the Chief Data Officers Summit that IBM is hosting in Boston. I'm joined by Courtney Abercrombie. According your your title's too long. I'm just gonna call you a cognitive rockstar on >> Alec Crane is >> here from Yusa. System by President, Vice President at that firm. Welcome to the Cube. Great to see you guys. Thank you. So this event I love it. I mean, we first met at the, uh, the mighty chief data officer conference. You were all over that networking with the CEO's helping him out and just really, I think identified early on the importance of this constituency. Why? How did you sort of realize and where have you taken it? >> It's more important than it's ever been. And we're so grateful every time that we see a new chief data officer coming in because you just can't govern and do data by committee. Um, if you really hope to be transformational in your company. All these huge, different technologies that are out there, All this amazing, rich data like weather data and the ability to leverage, you know, social media information, bringing that all together and really establishing an innovation platform for your company. You can't do that by committee. You really have to have a leader in charge of it. and that’s what chief data officers are here to do. And so every time we see one, we're so grateful >> that just so >> that we just heard from Inderpal Bhandari on his recommendation for how you get started. It was pretty precise and prescriptive. But I wonder, Alan. So tell us about the chief data officer role at USAA. Hasn't been around for a while. Of course, it's a regulated business. So probably Maur, data oriented are cognizant than most businesses. But tell us about your journey. >> We started probably about 4 or 5 years ago, and it was a combination of trying to consolidate data and analytics operations and then decentralized them, and we found that there was advantages and pros and cons of doing both. You'd get the efficiencies, but once you got the efficiencies, you'd lose the business expertise, and then we'd have to tow decentralize. So we ended up landing a couple of years ago. What we call a hub and spoke system where we have centralized governance and management of key data assets, uh, data modelling data science type work. And then we still allow the, uh, various lines of business to have their own data offices. And the one I run for USAA is our distribution channels office for all of the data and analytics. And we take about 100,000,000 phone calls a year. About 2,000,000,000 webb interactions. Mobile interactions. We take about 18,000 hours. That's really roughly two years of phone conversation data in per day. Uh, we take about 50,000,000 lines of, uh, Web analytic traffic per day as well. So trying to make sense of that to nurture remember, relationships, reinforce trust and remove obstacles >> for your supporting the agent systems. Is that right? >> I support the agent systems as well as the, um, digital >> systems. Okay. And so the objective is obviously toe to grow the business, keep it running, keep the customers happy. Very operate, agent Just efficient. Okay. Um and so when you that's really interesting. This sort of hub and spoke of decentralization gets you speed and closer to the business. Centralization get you that that efficiency. Do you feel like you found that right balance? I mean, if you think so. I >> think you know, early on, we it was mme or we had more cerebral alignment, you know, meaning that it seemed logical to us. But actually, once the last couple of years, we've had some growing pains with roles, responsibilities, overlaps, some redundancy, those types of things. But I think we've landed in a good place. And that's that's what I'm pretty proud of because we've been able to balance the agility with the governance necessary toe, have good governance and put in place, but then also be able to move at the speed the businessmen. >> So Courtney, one of things we heard one of the themes this morning within IBM it's of the role of the chief Data officer's office is to really empower the lines of business with data so that you can empower your customers is what Bob Tatiana was telling us, right? With data. So how are you doing? That is you have new services. You have processes or how is that all working >> right? We dio We have a lot of things, actually, because we've been working so much with people like Allen's group who have been leaders at, quite frankly, in establishing best practices on even how to set up these husbands votes. A lot of people are, you know, want to talk, Teo, um, the CDO and they've spun off even a lot of CEOs into other organizations, in fact, but I mean, they're really a leader in this area. So one of the things that we've noticed is you know, the thing that gives everybody the biggest grief is trying to figure out how to work with unstructured data. Um, and all this volume of data, it's just insane. And just like I was saying in the panel earlier, only about 5% of your actual internal data is enough to actually create a context around your customers. You really have to be able to go with all this exogenous data to understand what were the bigger ramifications that were going on in any customer event, whether it's a call in or whether it's, uh, you know, I'm not happy today with something that you tried to sell me or something that you didn't respond too fast enough, which I'm sure Alan could, you know, equate to. But so we have this new data as a service that we've put together based on the way the weather data has, the weather company has put their platform together. We're using a lot of the same kind of like micro services that you saw Bob put on the screen. You know, everything from, I mean, open source. As much open sources we can get, get it. And it's all cloud based. So and it's it's ways to digest and mix up both that internal data with all of that big, voluminous external data. >> So I'm interested in. So you get the organizational part down. Least you've settled on approach. What are some of the other big challenges that you face in terms of analytics and cognitive projects? Your organization? How are you dealing with those? >> Well, uh, >> to take a step back, use a We're, uh, financial services company that supports the military and their families. We now have 12 million members, and we're known for our service. And most of the time, those moments of truth, if you will, where our service really shines has been when someone talks to you, us on the phone when those member service reps are giving that incredible service that they're known for on the reason being is that the MSR is the aggregator of all that data. When you call in, it's all about you. There's two screens full of your information and the MSR is not interested in anything else but just serving you, our digital experiences more transactional in orientation. And it was It's more utilitarian, and we're trying to make it more personal, trying to make it more How do we know about you? And so one of the cues that were that were taking from the MSR community through cognitive learning is we like to say the only way to get into the call is to get into the call, and that is to truly get into the speech to text, Then do the text mining on that to see what are the other topics that are coming out that could surface that we're not actually capturing. And then how do we use those topics at a member level two then help inform the digital experience to make it more personal. How do I detect life events? Our MSR's are actually trained to listen for things like words like fiance, marriage moving, maybe even a baby crying in the background. How do we take that knowledge and turn that into something that machine learning can give us insights that can feedback into our digital transact actions. So >> this's what our group. >> It's a big task. So So how are >> you doing that? I mean, it's obviously we always talk about people processing technology. Yeah, break that down for us. I mean, how are you approaching that massive opportunity? >> Part of it is is, uh, you know, I look at it. It is like a set of those, you know, Russian nesting dolls. You know, every time you solve one problem, there's another problem inside of it. The first problem is getting access to the data. You know, where and where do you store? We're taking in two years of data per day of phone call data into a system where you put all that right and then you're where you put a week's worth a month's worth a quarter's worth of data like that. Then once you solve that problem, how do you read Act all that personal information So that that private information that you really don't need that data exhaust that would actually create a liability for you in our in our world so that you can really stay focused on what of the key themes that the member needs? And then the third thing is now had. Now that you've got access to the data, it's transcribed for you. It's been redacted from its P I I type work well, now you need the horse power and of analysts on, we're exploring partnerships with IBM, both locally and in in the States as well as internationally to look at data science as a service and try to understand How can we tap into this huge volume of data that we've got to explore those types of themes that are coming up The biggest challenges in typical transaction logging systems. You have to know what your logging You have to know what you're looking for before you know what to put the date, where to put the data. And so it's almost like you kind of have to already know that it's there to know how much you're acquiring for it and what we need to do more as we pivot more towards machine learning is that we need the data to tell us what's important to look at. And that's really the vat on the value of working with these folks. >> So obviously, date is increasingly on structure we heard this morning and whatever, 80 90% is structured. So here you're no whatever. You're putting it into whatever data fake swamp, ocean, everything center everywhere, and you're using sort of machine learning toe both find signal, but also protected yourself from risk. Right. So you've got a T said you gotta redact private information. So much of that information could be and not not no schema? Absolutely. Okay, So you're where are you in terms of solving that problem in the first inning or you deeper than that, >> we're probably would say beyond the first inning, but we so we've kind of figured out what that process is to get the data and all the piece parts working together. We've made some incredible insights already. Things that people, you know, I had no idea that was there. Um, but, uh, I'd say we still have a long way to go. Is particularly terms of scaling scaling the process, scaling the thie analytics, scaling the partnerships, figuring out how do we get the most throughput? I would say it's It's one of those things. We're measuring it on, maybe having a couple of good wins this year. A couple of really good projects that have come across. We want to kind of take that tube out 10 projects next year in this space. And that's how we're kind of measuring the velocity and the success >> data divas. I walked away and >> there was one of them Was breakfast this morning. Data divas. You hold this every year. >> D'oh! It's growing. Now we got data, >> dudes. So I was one of the few data dudes way walked in >> one of the women chief date officers. I got no problem with people calling me a P. >> I No. Yeah, I just sell. Sit down. Really? Bath s o. But also, >> what's the intent of that? What learning is that you take out of those? >> I think it's >> more. It's You know, you could honestly say this isn't just a data Debo problem. This is also, you know, anybody who feels like they're not being heard. Um, it's really easy to get drowned out in a lot of voices when it comes to data and analytics. Um, everybody has an opinion. I think. Remember, Ursula is always saying, Ah, all's fair in love, war and data. Um and it feels like, you know, sometimes you go, I'll come to the table and whoever has the loudest voice and whoever bangs their test the loudest, um, kind of wins the game. But I think in this case, you know, a lot of women are taking these roles. In fact, we saw, you know, a while back from Gardner that number about 25% of chief data officers are actually women because the role is evolving out of the business lines as opposed Thio more lines. And so I mean, it makes sense that, you know, were natural collaborators. I mean, like the biggest struggle and data governance isn't setting up frameworks. It's getting people to actually cooperate and bring data to the table and talk about their business processes that support that. And that's something that women do really well. But we've got to find our voice and our strength and our resolve. And we've got to support each other in trying to bring more diverse thinking to the table, you know? So it's it's all those kinds of issues and how do you balance family? I mean, >> we're seeing >> more and more. You know, I don't know if you know this, but there's actual statistics around millennials and that males are actually starting to take on more more role of being the the caregiver in the family. So I mean as we see that it's an interesting turnabout because now all the sudden, it's no longer, you know, women having that traditional role of, you know, I gotta always be home. Now we're actually starting to see a flip of that, which is which is, >> You know, I think it's kind of welcome. My husband's definitely >> I say he's a better parent than me. >> Friday. It's >> honest he'll watch this and he >> can thank me later that it was >> a great discussion this morning. Alan, I want to get your feedback on this event and also you participate in a couple of sessions yesterday. Maybe you could share with our audience Some of the key takeaways in the event of general and specific ones that you worked on yesterday. >> Well, I've been fortunate to come to the event for a couple of years now. And when we were just what 50 or so of us that were showing up? So, you know, I see that the evolution just in a couple of years time conversations have really changed. First meeting that we had people were saying, Where do you report in the organization? Um, how many people do you have? What do you do for your job? They were very different answers to any of that everywhere. From I'm an independent contributor that's a data evangelist to I run legions of data analysts and reporting shops, you know, and so forth and everything in between. And so what I see what it's offers in first year was really kind of a coalescing of what it really means to be a data officer in the company that actually happened pretty quickly in my mind, Um, when by seeing it through through the lens of my peers here, the other thing was when you when you think about the topics the topics are getting a lot more pointed. They're getting more pointed around the monetization of data communicating data through visualization, storytelling, key insights that you, you know, using different technologies. And we talked a lot yesterday about storytelling and storytelling is not through visual days in storytelling is not just about like who has the most, you know, colors on on a slide or or ah you know, animation of your bubble charts and things like that. But sometimes the best stories are told with the most simple charts because they resonate with your customers. And so what I think is it's almost like kind of getting a back to the basics when it comes to taking data and making it meaningful. We're only going to grow our organizations and data and data scientists and analysts. If we can communicate to the rest of the organization, our value and the key to creating that value is they can see themselves in our data. >> Yeah, the visit is we like to call it sometimes is critical to that to that storytelling. Sometimes I worry and we go onto these conferences and you go into a booth and look what we can do with machine learning, and we would just be looking at just this data. So what do I do? What >> I do with all this? Yeah. >> I don't know how it would make sense of it. So So is there a special storyteller role within your organization or you all storytellers? Do you cross train on that? Or >> it's funny you'd ask that one of the gentlemen of my team. He actually came to me about six months ago, and he says I'm really good at at the analysis part, but I really have a passion for things like Photoshopped things like, uh uh, uh the various, uh, video and video editing type software. He says I want to be your storyteller. I want to be creating a team of data and analytics storytellers for the rest of the organization. So we pitched the idea to our central hub and spoke leadership group. They loved it. They loved the idea. And he is now, um, oversubscribed. You would say in terms of demand for how do you tell the data? How do you tell the data story and how it's moving the business forward? And that takes the form kind of everything from infographics tell you also about how do you make it personal when, when? Now 7,000 m s. Ours have access to their own data. You know, really telling that at a at a very personal level, almost like a vignette of animus are who's now able to manage themselves using the data that they were not able able tto have before we're in the past, only managers had access to their performance results. This video, actually, you know, pulls on the heartstrings. But it it not only does that, but it really tells the story of how doing these types of things and creating these different data assets for the rest of your organization can actually have a very meaningful benefit to how they view work and how they view autonomy and how they view their own personal growth. >> That's critical, especially in a decentralized organization. Leased a quasi decentralized organization, getting everybody on the same page and understand You know what the vision is and what the direction is. It s so often if you don't have that storytelling capability, you have thousands of stories, and a lot of times there's dissonance. I mean, I'm not saying there's not in your in your organization, but have you seen the organization because of that storytelling capability become Mohr? Yeah, Joe. At least Mohr sort of effective and efficient, moving forward to the objectives. Well, >> you know, as a as a data person, I'm always biased thatyou know data, you know, can win an argument if presented the right way. It's the The challenge is when you're trying to overcome or go into a direction. And in this case, it was. We wanted to give more autonomy. Toothy MSR community. Well, the management of that call center were 94 year old company. And so the management of that of that call center has been doing things a certain way for many, many, many, many years. And the manager's having access to the data. The reps not That was how we did things, you know. And so when you make a change like that, there's a lot of hesitation of what is this going to do to us? How is this going to change? And what we're able to show with data and with through these visualizations is you really don't have anything to worry about? You're only gonna have upside, you know, in this conversation because at the end of the day, what's going to empower people this having access and power of >> their own destiny? Yeah, access is really the key isn't because we've all been in the meetings where somebody stands up and they've got some data point in there pounding the table, >> right? Oftentimes it's a man, all right. It >> is a powerful pl leader on jamming data down your throats, and you don't necessarily know the poor sap that he's, you know, beating up. Doesn't think Target doesn't have access to the data. This concept of citizen data scientists begins to a level that playing field doesn't want you seeing that >> it does. And I want to actually >> come back to what you're saying because there's a larger thought there, which is that we don't often address, and that's this change banishment concept. I mean, we we look at all these. I mean, everybody looks at all these technologies and all this information, and how much data can you possibly get your >> hands on? But at the end of >> the day, it's all about trying to create an outcome. A some joint outcome for the business and it could be threatening. It could be threatening to the C suite people who are actually deploying the use of these data driven tools because >> it may go >> against their gut. And, you >> know, oftentimes the poor messenger of that, >> When when you have to be the one that stands up and go against that, that senior vice presidents got it, the one who's pounding and saying No, but I know better >> That could be a >> tough position to be in without having some sort of change management philosophy going on with the introduction of data and analytics and with the introduction of tools, because there's a whole reframing that, Hey, my gut instinct that got me here all the way to the top doesn't necessarily mean that it's going to continue to scale in this new world with all of all of our competitors and all these, you know, massive changes going on in the market place right now. My guts not going to get me there anymore. So it's hard, it's hard, and I think a lot of executives don't really know to invest in that change management, if you know that goes with it that you need to change philosophies and mindsets and slowly introduced visualizations and things that get people slowly onboard, as opposed to just throwing it at him and saying here, believe it. >> Think I mean, it wasn't that >> long ago. Certainly this this millennium, where you know, publications like Harvard Business Review had, uh, cover stories on why gut feel, you know, beats, you know, analysis by paralysis. >> That seems to be changing. And >> the data purists would say the data doesn't lie. It was long as you could interpret it correctly. Let the data tell us what to do, as opposed to trying to push an agenda. But they're still politics. >> There's just things out >> there that you can't even perceive of that air coming your way. I mean, like, Blockbuster Netflix, Alibaba versus standard retailers. I mean, >> there's just things out >> there that without the use of things like machine learning and being comfortable with the use, the things like mission learning a lot of people think of that kind of stuff is >> Well, don't get your >> hoodoo voodoo into my business. You know, I don't know what that algorithm stuff does. It's >> going Yeah, I mean, e. I mean to say, What the hell is this? And now, yeah, it's coming and >> you need to get ready. >> There's an >> important role, though I think instinct, you know, you don't want to dismiss a 20 year leader in a particular operations because they've they've they've getting themselves where they're at because in large part, maybe they didn't have all the data. But they learned through a lot of those things, and I think it's when you marry those things up. And if you kenbrell in a kind of humble way to that kind of leader and win them over and show how it may be validating some of their, um uh yeah, that some of their points Or maybe how it explains it in a different way. Maybe it's not exactly what they want to see, but it's helping to inform their business, and you come into him as a partner, as opposed to gotcha, you know. Then then you know you can really change the business that way. And >> what is it? Was Linda Limbic brain is it just doesn't feel right. Is that the part of the brain that informs you that? And so It's hard to sometimes put, but you're right. Uh, there there is a component of this which is gut feel instinct and probably relates to to experience. So it's It's like, uh, when, when, uh, Deep blue beat Garry Kasparov. We talk about this all the time. It turns out that the best chess player in the world isn't a machine. It's a It's a human in the machine. >> That's right. That's exactly right. It's always the training that people training these things, that's where it gets its information. So at the end of the day, you're right. It's always still instinct to some >> level. I could We gotta go. All right. Last word on the event. You know what's next? >> Don't love my team. Data officer. Miss, you guys. It is good >> to be here. We appreciate it. All right, We'll leave it there. Thank you, guys. Thank you. All right, keep right. Everybody, this is Cuba. Live from IBM Chief Data Officer, Summit in Boston Right back. My name is Dave Volante.

Published Date : Sep 23 2016

SUMMARY :

brought to you by IBM. I'm just gonna call you a cognitive rockstar on Great to see you guys. data and the ability to leverage, you know, social media information, that we just heard from Inderpal Bhandari on his recommendation for how you get started. but once you got the efficiencies, you'd lose the business expertise, and then we'd have to tow decentralize. Is that right? I mean, if you think so. alignment, you know, meaning that it seemed logical to us. it's of the role of the chief Data officer's office is to really empower the So one of the things that we've noticed is you know, the thing that gives everybody the biggest grief is trying What are some of the other big challenges that you face in terms of analytics and cognitive projects? get into the speech to text, Then do the text mining on that to see what are the other So So how are I mean, how are you approaching that massive opportunity? Part of it is is, uh, you know, I look at it. inning or you deeper than that, Things that people, you know, I had no idea that was there. I walked away and You hold this every year. Now we got data, So I was one of the few data dudes way walked in one of the women chief date officers. Bath s But I think in this case, you know, a lot of women are taking these it's no longer, you know, women having that traditional role of, you know, You know, I think it's kind of welcome. It's in the event of general and specific ones that you worked on yesterday. the other thing was when you when you think about the topics the topics are getting a lot more pointed. Sometimes I worry and we go onto these conferences and you go into a booth and look what we can do with machine learning, I do with all this? Do you cross train on that? And that takes the form kind of everything from infographics tell you also about how do you make it personal It s so often if you don't have that storytelling capability, you have thousands of stories, And what we're able to show with data and with through these visualizations is you Oftentimes it's a man, all right. data scientists begins to a level that playing field doesn't want you seeing that And I want to actually these technologies and all this information, and how much data can you possibly get your It could be threatening to the C suite people who are actually deploying the use of these data driven tools because And, you know to invest in that change management, if you know that goes with it that you need to change philosophies Certainly this this millennium, where you know, publications like Harvard Business Review That seems to be changing. It was long as you could interpret it correctly. there that you can't even perceive of that air coming your way. You know, I don't know what that algorithm stuff does. going Yeah, I mean, e. I mean to say, What the hell is this? important role, though I think instinct, you know, you don't want to dismiss a 20 year leader in Is that the part of the brain that informs you that? So at the end of the day, you're right. I could We gotta go. Miss, you guys. to be here.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IBMORGANIZATION

0.99+

Dave VolantePERSON

0.99+

BostonLOCATION

0.99+

UrsulaPERSON

0.99+

AlanPERSON

0.99+

Inderpal BhandariPERSON

0.99+

two yearsQUANTITY

0.99+

Bob TatianaPERSON

0.99+

AlibabaORGANIZATION

0.99+

Alec CranePERSON

0.99+

20 yearQUANTITY

0.99+

50QUANTITY

0.99+

Garry KasparovPERSON

0.99+

next yearDATE

0.99+

JoePERSON

0.99+

94 yearQUANTITY

0.99+

CubaLOCATION

0.99+

Linda LimbicPERSON

0.99+

10 projectsQUANTITY

0.99+

Courtney AbercrombiePERSON

0.99+

USAAORGANIZATION

0.99+

FridayDATE

0.99+

NetflixORGANIZATION

0.99+

todayDATE

0.99+

TargetORGANIZATION

0.99+

yesterdayDATE

0.99+

CourtneyPERSON

0.99+

ThioPERSON

0.99+

bothQUANTITY

0.99+

oneQUANTITY

0.99+

Cortnie AbercrombiePERSON

0.99+

a quarterQUANTITY

0.99+

BobPERSON

0.98+

two screensQUANTITY

0.98+

one problemQUANTITY

0.98+

first inningQUANTITY

0.98+

first inningQUANTITY

0.98+

this yearDATE

0.98+

about 18,000 hoursQUANTITY

0.98+

about 50,000,000 linesQUANTITY

0.98+

a monthQUANTITY

0.98+

a weekQUANTITY

0.97+

12 million membersQUANTITY

0.97+

about 25%QUANTITY

0.97+

7,000 m s.QUANTITY

0.97+

MohrPERSON

0.97+

first yearQUANTITY

0.97+

third thingQUANTITY

0.96+

about 5%QUANTITY

0.96+

this morningDATE

0.96+

firstQUANTITY

0.96+

first problemQUANTITY

0.96+

thousands of storiesQUANTITY

0.95+

First meetingQUANTITY

0.95+

5 years agoDATE

0.95+

GardnerPERSON

0.95+

Allen CranePERSON

0.95+

couple of years agoDATE

0.94+

80 90%QUANTITY

0.94+

about 100,000,000 phone calls a yearQUANTITY

0.93+

Chief Data Officers SummitEVENT

0.93+

Harvard Business ReviewTITLE

0.92+

RussianOTHER

0.88+

Data Officer Strategy SummitEVENT

0.86+

MaurPERSON

0.84+

Chief Data OfficerPERSON

0.83+

About 2,000,000,000 webb interactionsQUANTITY

0.83+

CDO Strategy SummitEVENT

0.82+

CubeORGANIZATION

0.8+

about six months agoDATE

0.8+

AllenPERSON

0.76+

Joel Horwitz, IBM | IBM CDO Summit Sping 2018


 

(techno music) >> Announcer: Live, from downtown San Francisco, it's theCUBE. Covering IBM Chief Data Officer Strategy Summit 2018. Brought to you by IBM. >> Welcome back to San Francisco everybody, this is theCUBE, the leader in live tech coverage. We're here at the Parc 55 in San Francisco covering the IBM CDO Strategy Summit. I'm here with Joel Horwitz who's the Vice President of Digital Partnerships & Offerings at IBM. Good to see you again Joel. >> Thanks, great to be here, thanks for having me. >> So I was just, you're very welcome- It was just, let's see, was it last month, at Think? >> Yeah, it's hard to keep track, right. >> And we were talking about your new role- >> It's been a busy year. >> the importance of partnerships. One of the things I want to, well let's talk about your role, but I really want to get into, it's innovation. And we talked about this at Think, because it's so critical, in my opinion anyway, that you can attract partnerships, innovation partnerships, startups, established companies, et cetera. >> Joel: Yeah. >> To really help drive that innovation, it takes a team of people, IBM can't do it on its own. >> Yeah, I mean look, IBM is the leader in innovation, as we all know. We're the market leader for patents, that we put out each year, and how you get that technology in the hands of the real innovators, the developers, the longtail ISVs, our partners out there, that's the challenging part at times, and so what we've been up to is really looking at how we make it easier for partners to partner with IBM. How we make it easier for developers to work with IBM. So we have a number of areas that we've been adding, so for example, we've added a whole IBM Code portal, so if you go to developer.ibm.com/code you can actually see hundreds of code patterns that we've created to help really any client, any partner, get started using IBM's technology, and to innovate. >> Yeah, and that's critical, I mean you're right, because to me innovation is a combination of invention, which is what you guys do really, and then it's adoption, which is what your customers are all about. You come from the data science world. We're here at the Chief Data Officer Summit, what's the intersection between data science and CDOs? What are you seeing there? >> Yeah, so when I was here last, it was about two years ago in 2015, actually, maybe three years ago, man, time flies when you're having fun. >> Dave: Yeah, the Spark Summit- >> Yeah Spark Technology Center and the Spark Summit, and we were here, I was here at the Chief Data Officer Summit. And it was great, and at that time, I think a lot of the conversation was really not that different than what I'm seeing today. Which is, how do you manage all of your data assets? I think a big part of doing good data science, which is my kind of background, is really having a good understanding of what your data governance is, what your data catalog is, so, you know we introduced the Watson Studio at Think, and actually, what's nice about that, is it brings a lot of this together. So if you look in the market, in the data market, today, you know we used to segment it by a few things, like data gravity, data movement, data science, and data governance. And those are kind of the four themes that I continue to see. And so outside of IBM, I would contend that those are relatively separate kind of tools that are disconnected, in fact Dinesh Nirmal, who's our engineer on the analytic side, Head of Development there, he wrote a great blog just recently, about how you can have some great machine learning, you have some great data, but if you can't operationalize that, then really you can't put it to use. And so it's funny to me because we've been focused on this challenge, and IBM is making the right steps, in my, I'm obviously biased, but we're making some great strides toward unifying the, this tool chain. Which is data management, to data science, to operationalizing, you know, machine learning. So that's what we're starting to see with Watson Studio. >> Well, I always push Dinesh on this and like okay, you've got a collection of tools, but are you bringing those together? And he flat-out says no, we developed this, a lot of this from scratch. Yes, we bring in the best of the knowledge that we have there, but we're not trying to just cobble together a bunch of disparate tools with a UI layer. >> Right, right. >> It's really a fundamental foundation that you're trying to build. >> Well, what's really interesting about that, that piece, is that yeah, I think a lot of folks have cobbled together a UI layer, so we formed a partnership, coming back to the partnership view, with a company called Lightbend, who's based here in San Francisco, as well as in Europe, and the reason why we did that, wasn't just because of the fact that Reactive development, if you're not familiar with Reactive, it's essentially Scala, Akka, Play, this whole framework, that basically allows developers to write once, and it kind of scales up with demand. In fact, Verizon actually used our platform with Lightbend to launch the iPhone 10. And they show dramatic improvements. Now what's exciting about Lightbend, is the fact that application developers are developing with Reactive, but if you turn around, you'll also now be able to operationalize models with Reactive as well. Because it's basically a single platform to move between these two worlds. So what we've continued to see is data science kind of separate from the application world. Really kind of, AI and cloud as different universes. The reality is that for any enterprise, or any company, to really innovate, you have to find a way to bring those two worlds together, to get the most use out of it. >> Fourier always says "Data is the new development kit". He said this I think five or six years ago, and it's barely becoming true. You guys have tried to make an attempt, and have done a pretty good job, of trying to bring those worlds together in a single platform, what do you call it? The Watson Data Platform? >> Yeah, Watson Data Platform, now Watson Studio, and I think the other, so one side of it is, us trying to, not really trying, but us actually bringing together these disparate systems. I mean we are kind of a systems company, we're IT. But not only that, but bringing our trained algorithms, and our trained models to the developers. So for example, we also did a partnership with Unity, at the end of last year, that's now just reaching some pretty good growth, in terms of bringing the Watson SDK to game developers on the Unity platform. So again, it's this idea of bringing the game developer, the application developer, in closer contact with these trained models, and these trained algorithms. And that's where you're seeing incredible things happen. So for example, Star Trek Bridge Crew, which I don't know how many Trekkies we have here at the CDO Summit. >> A few over here probably. >> Yeah, a couple? They're using our SDK in Unity, to basically allow a gamer to use voice commands through the headset, through a VR headset, to talk to other players in the virtual game. So we're going to see more, I can't really disclose too much what we're doing there, but there's some cool stuff coming out of that partnership. >> Real immersive experience driving a lot of data. Now you're part of the Digital Business Group. I like the term digital business, because we talk about it all the time. Digital business, what's the difference between a digital business and a business? What's the, how they use data. >> Joel: Yeah. >> You're a data person, what does that mean? That you're part of the Digital Business Group? Is that an internal facing thing? An external facing thing? Both? >> It's really both. So our Chief Digital Officer, Bob Lord, he has a presentation that he'll give, where he starts out, and he goes, when I tell people I'm the Chief Digital Officer they usually think I just manage the website. You know, if I tell people I'm a Chief Data Officer, it means I manage our data, in governance over here. The reality is that I think these Chief Digital Officer, Chief Data Officer, they're really responsible for business transformation. And so, if you actually look at what we're doing, I think on both sides is we're using data, we're using marketing technology, martech, like Optimizely, like Segment, like some of these great partners of ours, to really look at how we can quickly A/B test, get user feedback, to look at how we actually test different offerings and market. And so really what we're doing is we're setting up a testing platform, to bring not only our traditional offers to market, like DB2, Mainframe, et cetera, but also bring new offers to market, like blockchain, and quantum, and others, and actually figure out how we get better product-market fit. What actually, one thing, one story that comes to mind, is if you've seen the movie Hidden Figures- >> Oh yeah. >> There's this scene where Kevin Costner, I know this is going to look not great for IBM, but I'm going to say it anyways, which is Kevin Costner has like a sledgehammer, and he's like trying to break down the wall to get the mainframe in the room. That's what it feels like sometimes, 'cause we create the best technology, but we forget sometimes about the last mile. You know like, we got to break down the wall. >> Where am I going to put it? >> You know, to get it in the room! So, honestly I think that's a lot of what we're doing. We're bridging that last mile, between these different audiences. So between developers, between ISVs, between commercial buyers. Like how do we actually make this technology, not just accessible to large enterprise, which are our main clients, but also to the other ecosystems, and other audiences out there. >> Well so that's interesting Joel, because as a potential partner of IBM, they want, obviously your go-to-market, your massive company, and great distribution channel. But at the same time, you want more than that. You know you want to have a closer, IBM always focuses on partnerships that have intrinsic value. So you talked about offerings, you talked about quantum, blockchain, off-camera talking about cloud containers. >> Joel: Yeah. >> I'd say cloud and containers may be a little closer than those others, but those others are going to take a lot of market development. So what are the offerings that you guys are bringing? How do they get into the hands of your partners? >> I mean, the commonality with all of these, all the emerging offerings, if you ask me, is the distributed nature of the offering. So if you look at blockchain, it's a distributed ledger. It's a distributed transaction chain that's secure. If you look at data, really and we can hark back to say, Hadoop, right before object storage, it's distributed storage, so it's not just storing on your hard drive locally, it's storing on a distributed network of servers that are all over the world and data centers. If you look at cloud, and containers, what you're really doing is not running your application on an individual server that can go down. You're using containers because you want to distribute that application over a large network of servers, so that if one server goes down, you're not going to be hosed. And so I think the fundamental shift that you're seeing is this distributed nature, which in essence is cloud. So I think cloud is just kind of a synonym, in my opinion, for distributed nature of our business. >> That's interesting and that brings up, you're right, cloud and Big Data/Hadoop, we don't talk about Hadoop much anymore, but it kind of got it all started, with that notion of leave the data where it is. And it's the same thing with cloud. You can't just stuff your business into the public cloud. You got to bring the cloud to your data. >> Joel: That's right. >> But that brings up a whole new set of challenges, which obviously, you're in a position just to help solve. Performance, latency, physics come into play. >> Physics is a rough one. It's kind of hard to avoid that one. >> I hear your best people are working on it though. Some other partnerships that you want to sort of, elucidate. >> Yeah, no, I mean we have some really great, so I think the key kind of partnership, I would say area, that I would allude to is, one of the things, and you kind of referenced this, is a lot of our partners, big or small, want to work with our top clients. So they want to work with our top banking clients. They want, 'cause these are, if you look at for example, MaRisk and what we're doing with them around blockchain, and frankly, talk about innovation, they're innovating containers for real, not virtual containers- >> And that's a joint venture right? >> Yeah, it is, and so it's exciting because, what we're bringing to market is, I also lead our startup programs, called the Global Entrepreneurship Program, and so what I'm focused on doing, and you'll probably see more to come this quarter, is how do we actually bridge that end-to-end? How do you, if you're startup or a small business, ultimately reach that kind of global business partner level? And so kind of bridging that, that end-to-end. So we're starting to bring out a number of different incentives for partners, like co-marketing, so I'll help startups when they're early, figure out product-market fit. We'll give you free credits to use our innovative technology, and we'll also bring you into a number of clients, to basically help you not burn all of your cash on creating your own marketing channel. God knows I did that when I was at a start-up. So I think we're doing a lot to kind of bridge that end-to-end, and help any partner kind of come in, and then grow with IBM. I think that's where we're headed. >> I think that's a critical part of your job. Because I mean, obviously IBM is known for its Global 2000, big enterprise presence, but startups, again, fuel that innovation fire. So being able to attract them, which you're proving you can, providing whatever it is, access, early access to cloud services, or like you say, these other offerings that you're producing, in addition to that go-to-market, 'cause it's funny, we always talk about how efficient, capital efficient, software is, but then you have these companies raising hundreds of millions of dollars, why? Because they got to do promotion, marketing, sales, you know, go-to-market. >> Yeah, it's really expensive. I mean, you look at most startups, like their biggest ticket item is usually marketing and sales. And building channels, and so yeah, if you're, you know we're talking to a number of partners who want to work with us because of the fact that, it's not just like, the direct kind of channel, it's also, as you kind of mentioned, there's other challenges that you have to overcome when you're working with a larger company. for example, security is a big one, GDPR compliance now, is a big one, and just making sure that things don't fall over, is a big one. And so a lot of partners work with us because ultimately, a number of the decision makers in these larger enterprises are going, well, I trust IBM, and if IBM says you're good, then I believe you. And so that's where we're kind of starting to pull partners in, and pull an ecosystem towards us. Because of the fact that we can take them through that level of certification. So we have a number of free online courses. So if you go to partners, excuse me, ibm.com/partners/learn there's a number of blockchain courses that you can learn today, and will actually give you a digital certificate, that's actually certified on our own blockchain, which we're actually a first of a kind to do that, which I think is pretty slick, and it's accredited at some of the universities. So I think that's where people are looking to IBM, and other leaders in this industry, is to help them become experts in their, in this technology, and especially in this emerging technology. >> I love that blockchain actually, because it's such a growing, and interesting, and innovative field. But it needs players like IBM, that can bring credibility, enterprise-grade, whether it's security, or just, as I say, credibility. 'Cause you know, this is, so much of negative connotations associated with blockchain and crypto, but companies like IBM coming to the table, enterprise companies, and building that ecosystem out is in my view, crucial. >> Yeah, no, it takes a village. I mean, there's a lot of folks, I mean that's a big reason why I came to IBM, three, four years ago, was because when I was in start-up land, I used to work for H20, I worked for Alpine Data Labs, Datameer, back in the Hadoop days, and what I realized was that, it's an opportunity cost. So you can't really drive true global innovation, transformation, in some of these bigger companies because there's only so much that you can really kind of bite off. And so you know at IBM it's been a really rewarding experience because we have done things like for example, we partnered with Girls Who Code, Treehouse, Udacity. So there's a number of early educators that we've partnered with, to bring code to, to bring technology to, that frankly, would never have access to some of this stuff. Some of this technology, if we didn't form these alliances, and if we didn't join these partnerships. So I'm very excited about the future of IBM, and I'm very excited about the future of what our partners are doing with IBM, because, geez, you know the cloud, and everything that we're doing to make this accessible, is bar none, I mean, it's great. >> I can tell you're excited. You know, spring in your step. Always a lot of energy Joel, really appreciate you coming onto theCUBE. >> Joel: My pleasure. >> Great to see you again. >> Yeah, thanks Dave. >> You're welcome. Alright keep it right there, everybody. We'll be back. We're at the IBM CDO Strategy Summit in San Francisco. You're watching theCUBE. (techno music) (touch-tone phone beeps)

Published Date : May 2 2018

SUMMARY :

Brought to you by IBM. Good to see you again Joel. that you can attract partnerships, To really help drive that innovation, and how you get that technology Yeah, and that's critical, I mean you're right, Yeah, so when I was here last, to operationalizing, you know, machine learning. that we have there, but we're not trying that you're trying to build. to really innovate, you have to find a way in a single platform, what do you call it? So for example, we also did a partnership with Unity, to basically allow a gamer to use voice commands I like the term digital business, to look at how we actually test different I know this is going to look not great for IBM, but also to the other ecosystems, But at the same time, you want more than that. So what are the offerings that you guys are bringing? So if you look at blockchain, it's a distributed ledger. You got to bring the cloud to your data. But that brings up a whole new set of challenges, It's kind of hard to avoid that one. Some other partnerships that you want to sort of, elucidate. and you kind of referenced this, to basically help you not burn all of your cash early access to cloud services, or like you say, that you can learn today, but companies like IBM coming to the table, that you can really kind of bite off. really appreciate you coming onto theCUBE. We're at the IBM CDO Strategy Summit in San Francisco.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JoelPERSON

0.99+

Joel HorwitzPERSON

0.99+

EuropeLOCATION

0.99+

IBMORGANIZATION

0.99+

Kevin CostnerPERSON

0.99+

DavePERSON

0.99+

Dinesh NirmalPERSON

0.99+

Alpine Data LabsORGANIZATION

0.99+

LightbendORGANIZATION

0.99+

VerizonORGANIZATION

0.99+

San FranciscoLOCATION

0.99+

Hidden FiguresTITLE

0.99+

Bob LordPERSON

0.99+

BothQUANTITY

0.99+

MaRiskORGANIZATION

0.99+

bothQUANTITY

0.99+

iPhone 10COMMERCIAL_ITEM

0.99+

2015DATE

0.99+

DatameerORGANIZATION

0.99+

both sidesQUANTITY

0.99+

one storyQUANTITY

0.99+

ThinkORGANIZATION

0.99+

fiveDATE

0.99+

hundredsQUANTITY

0.99+

TreehouseORGANIZATION

0.99+

three years agoDATE

0.99+

developer.ibm.com/codeOTHER

0.99+

UnityORGANIZATION

0.98+

two worldsQUANTITY

0.98+

ReactiveORGANIZATION

0.98+

GDPRTITLE

0.98+

one sideQUANTITY

0.98+

Digital Business GroupORGANIZATION

0.98+

todayDATE

0.98+

UdacityORGANIZATION

0.98+

ibm.com/partners/learnOTHER

0.98+

last monthDATE

0.98+

Watson StudioORGANIZATION

0.98+

each yearQUANTITY

0.97+

threeDATE

0.97+

single platformQUANTITY

0.97+

Girls Who CodeORGANIZATION

0.97+

Parc 55LOCATION

0.97+

one thingQUANTITY

0.97+

four themesQUANTITY

0.97+

Spark Technology CenterORGANIZATION

0.97+

six years agoDATE

0.97+

H20ORGANIZATION

0.97+

four years agoDATE

0.97+

martechORGANIZATION

0.97+

UnityTITLE

0.96+

hundreds of millions of dollarsQUANTITY

0.94+

Watson StudioTITLE

0.94+

DineshPERSON

0.93+

one serverQUANTITY

0.93+

Caryn Woodruff, IBM & Ritesh Arora, HCL Technologies | IBM CDO Summit Spring 2018


 

>> Announcer: Live from downtown San Francisco, it's the Cube, covering IBM Chief Data Officer Strategy Summit 2018. Brought to you by IBM. >> Welcome back to San Francisco everybody. We're at the Parc 55 in Union Square and this is the Cube, the leader in live tech coverage and we're covering exclusive coverage of the IBM CDO strategy summit. IBM has these things, they book in on both coasts, one in San Francisco one in Boston, spring and fall. Great event, intimate event. 130, 150 chief data officers, learning, transferring knowledge, sharing ideas. Cayn Woodruff is here as the principle data scientist at IBM and she's joined by Ritesh Ororo, who is the director of digital analytics at HCL Technologies. Folks welcome to the Cube, thanks for coming on. >> Thank you >> Thanks for having us. >> You're welcome. So we're going to talk about data management, data engineering, we're going to talk about digital, as I said Ritesh because digital is in your title. It's a hot topic today. But Caryn let's start off with you. Principle Data Scientist, so you're the one that is in short supply. So a lot of demand, you're getting pulled in a lot of different directions. But talk about your role and how you manage all those demands on your time. >> Well, you know a lot of, a lot of our work is driven by business needs, so it's really understanding what is critical to the business, what's going to support our businesses strategy and you know, picking the projects that we work on based on those items. So it's you really do have to cultivate the things that you spend your time on and make sure you're spending your time on the things that matter and as Ritesh and I were talking about earlier, you know, a lot of that means building good relationships with the people who manage the systems and the people who manage the data so that you can get access to what you need to get the critical insights that the business needs, >> So Ritesh, data management I mean this means a lot of things to a lot of people. It's evolved over the years. Help us frame what data management is in this day and age. >> Sure, so there are two aspects of data in my opinion. One is the data management, another the data engineering, right? And over the period as the data has grown significantly. Whether it's unstructured data, whether it's structured data, or the transactional data. We need to have some kind of governance in the policies to secure data to make data as an asset for a company so the business can rely on your data. What you are delivering to them. Now, the another part comes is the data engineering. Data engineering is more about an IT function, which is data acquisition, data preparation and delivering the data to the end-user, right? It can be business, it can be third-party but it all comes under the governance, under the policies, which are designed to secure the data, how the data should be accessed to different parts of the company or the external parties. >> And how those two worlds come together? The business piece and the IT piece, is that where you come in? >> That is where data science definitely comes into the picture. So if you go online, you can find Venn diagrams that describe data science as a combination of computer science math and statistics and business acumen. And so where it comes in the middle is data science. So it's really being able to put those things together. But, you know, what's what's so critical is you know, Interpol, actually, shared at the beginning here and I think a few years ago here, talked about the five pillars to building a data strategy. And, you know, one of those things is use cases, like getting out, picking a need, solving it and then going from there and along the way you realize what systems are critical, what data you need, who the business users are. You know, what would it take to scale that? So these, like, Proof-point projects that, you know, eventually turn into these bigger things, and for them to turn into bigger things you've got to have that partnership. You've got to know where your trusted data is, you've got to know that, how it got there, who can touch it, how frequently it is updated. Just being able to really understand that and work with partners that manage the infrastructure so that you can leverage it and make it available to other people and transparent. >> I remember when I first interviewed Hilary Mason way back when and I was asking her about that Venn diagram and she threw in another one, which was data hacking. >> Caryn: Uh-huh, yeah. >> Well, talk about that. You've got to be curious about data. You need to, you know, take a bath in data. >> (laughs) Yes, yes. I mean yeah, you really.. Sometimes you have to be a detective and you have to really want to know more. And, I mean, understanding the data is like the majority of the battle. >> So Ritesh, we were talking off-camera about it's not how titles change, things evolve, data, digital. They're kind of interchangeable these days. I mean we always say the difference between a business and a digital business is how they have used data. And so digital being part of your role, everybody's trying to get digital transformation, right? As an SI, you guys are at the heart of it. Certainly, IBM as well. What kinds of questions are our clients asking you about digital? >> So I ultimately see data, whatever we drive from data, it is used by the business side. So we are trying to always solve a business problem, which is to optimize the issues the company is facing, or try to generate more revenues, right? Now, the digital as well as the data has been married together, right? Earlier there are, you can say we are trying to analyze the data to get more insights, what is happening in that company. And then we came up with a predictive modeling that based on the data that will statically collect, how can we predict different scenarios, right? Now digital, we, over the period of the last 10 20 years, as the data has grown, there are different sources of data has come in picture, we are talking about social media and so on, right? And nobody is looking for just reports out of the Excel, right? It is more about how you are presenting the data to the senior management, to the entire world and how easily they can understand it. That's where the digital from the data digitization, as well as the application digitization comes in picture. So the tools are developed over the period to have a better visualization, better understanding. How can we integrate annotation within the data? So these are all different aspects of digitization on the data and we try to integrate the digital concepts within our data and analytics, right? So I used to be more, I mean, I grew up as a data engineer, analytics engineer but now I'm looking more beyond just the data or the data preparation. It's more about presenting the data to the end-user and the business. How it is easy for them to understand it. >> Okay I got to ask you, so you guys are data wonks. I am too, kind of, but I'm not as skilled as you are, but, and I say that with all due respect. I mean you love data. >> Caryn: Yes. >> As data science becomes a more critical skill within organizations, we always talk about the amount of data, data growth, the stats are mind-boggling. But as a data scientist, do you feel like you have access to the right data and how much of a challenge is that with clients? >> So we do have access to the data but the challenge is, the company has so many systems, right? It's not just one or two applications. There are companies we have 50 or 60 or even hundreds of application built over last 20 years. And there are some applications, which are basically duplicate, which replicates the data. Now, the challenge is to integrate the data from different systems because they maintain different metadata. They have the quality of data is a concern. And sometimes with the international companies, the rules, for example, might be in US or India or China, the data acquisitions are different, right? And you are, as you become more global, you try to integrate the data beyond boundaries, which becomes a more compliance issue sometimes, also, beyond the technical issues of data integration. >> Any thoughts on that? >> Yeah, I think, you know one of the other issues too, you have, as you've heard of shadow IT, where people have, like, servers squirreled away under their desks. There's your shadow data, where people have spreadsheets and databases that, you know, they're storing on, like a small server or that they share within their department. And so you know, you were discussing, we were talking earlier about the different systems. And you might have a name in one system that's one way and a name in another system that's slightly different, and then a third system, where it's it's different and there's extra granularity to it or some extra twist. And so you really have to work with all of the people that own these processes and figure out what's the trusted source? What can we all agree on? So there's a lot of... It's funny, a lot of the data problems are people problems. So it's getting people to talk and getting people to agree on, well this is why I need it this way, and this is why I need it this way, and figuring out how you come to a common solution so you can even create those single trusted sources that then everybody can go to and everybody knows that they're working with the the right thing and the same thing that they all agree on. >> The politics of it and, I mean, politics is kind of a pejorative word but let's say dissonance, where you have maybe of a back-end syst6em, financial system and the CFO, he or she is looking at the data saying oh, this is what the data says and then... I remember I was talking to a, recently, a chef in a restaurant said that the CFO saw this but I know that's not the case, I don't have the data to prove it. So I'm going to go get the data. And so, and then as they collect that data they bring together. So I guess in some ways you guys are mediators. >> [Caryn And Ritesh] Yes, yes. Absolutely. >> 'Cause the data doesn't lie you just got to understand it. >> You have to ask the right question. Yes. And yeah. >> And sometimes when you see the data, you start, that you don't even know what questions you want to ask until you see the data. Is that is that a challenge for your clients? >> Caryn: Yes, all the time. Yeah >> So okay, what else do we want to we want to talk about? The state of collaboration, let's say, between the data scientists, the data engineer, the quality engineer, maybe even the application developers. Somebody, John Fourier often says, my co-host and business partner, data is the new development kit. Give me the data and I'll, you know, write some code and create an application. So how about collaboration amongst those roles, is that something... I know IBM's gone on about some products there but your point Caryn, it's a lot of times it's the people. >> It is. >> And the culture. What are you seeing in terms of evolution and maturity of that challenge? >> You know I have a very good friend who likes to say that data science is a team sport and so, you know, these should not be, like, solo projects where just one person is wading up to their elbows in data. This should be something where you've got engineers and scientists and business, people coming together to really work through it as a team because everybody brings really different strengths to the table and it takes a lot of smart brains to figure out some of these really complicated things. >> I completely agree. Because we see the challenges, we always are trying to solve a business problem. It's important to marry IT as well as the business side. We have the technical expert but we don't have domain experts, subject matter experts who knows the business in IT, right? So it's very very important to collaborate closely with the business, right? And data scientist a intermediate layer between the IT as well as business I will say, right? Because a data scientist as they, over the years, as they try to analyze the information, they understand business better, right? And they need to collaborate with IT to either improve the quality, right? That kind of challenges they are facing and I need you to, the data engineer has to work very hard to make sure the data delivered to the data scientist or the business is accurate as much as possible because wrong data will lead to wrong predictions, right? And ultimately we need to make sure that we integrate the data in the right way. >> What's a different cultural dynamic that was, say ten years ago, where you'd go to a statistician, she'd fire up the SPSS.. >> Caryn: We still use that. >> I'm sure you still do but run some kind of squares give me some, you know, probabilities and you know maybe run some Monte Carlo simulation. But one person kind of doing all that it's your point, Caryn. >> Well you know, it's it's interesting. There are there are some students I mentor at a local university and you know we've been talking about the projects that they get and that you know, more often than not they get a nice clean dataset to go practice learning their modeling on, you know? And they don't have to get in there and clean it all up and normalize the fields and look for some crazy skew or no values or, you know, where you've just got so much noise that needs to be reduced into something more manageable. And so it's, you know, you made the point earlier about understanding the data. It's just, it really is important to be very curious and ask those tough questions and understand what you're dealing with. Before you really start jumping in and building a bunch of models. >> Let me add another point. That the way we have changed over the last ten years, especially from the technical point of view. Ten years back nobody talks about the real-time data analysis. There was no streaming application as such. Now nobody talks about the batch analysis, right? Everybody wants data on real-time basis. But not if not real-time might be near real-time basis. That has become a challenge. And it's not just that prediction, which are happening in their ERP environment or on the cloud, they want the real-time integration with the social media for the marketing and the sales and how they can immediately do the campaign, right? So, for example, if I go to Google and I search for for any product, right, for example, a pressure cooker, right? And I go to Facebook, immediately I see the ad within two minutes. >> Yeah, they're retargeting. >> So that's a real-time analytics is happening under different application, including the third-party data, which is coming from social media. So that has become a good source of data but it has become a challenge for the data analyst and the data scientist. How quickly we can turn around is called data analysis. >> Because it used to be you would get ads for a pressure cooker for months, even after you bought the pressure cooker and now it's only a few days, right? >> Ritesh: It's a minute. You close this application, you log into Facebook... >> Oh, no doubt. >> Ritesh: An ad is there. >> Caryn: There it is. >> Ritesh: Because everything is linked either your phone number or email ID you're done. >> It's interesting. We talked about disruption a lot. I wonder if that whole model is going to get disrupted in a new way because everybody started using the same ad. >> So that's a big change of our last 10 years. >> Do you think..oh go ahead. >> oh no, I was just going to say, you know, another thing is just there's so much that is available to everybody now, you know. There's not this small little set of tools that's restricted to people that are in these very specific jobs. But with open source and with so many software-as-a-service products that are out there, anybody can go out and get an account and just start, you know, practicing or playing or joining a cackle competition or, you know, start getting their hands on.. There's data sets that are out there that you can just download to practice and learn on and use. So, you know, it's much more open, I think, than it used to be. >> Yeah, community additions of software, open data. The number of open day sources just keeps growing. Do you think that machine intelligence can, or how can machine intelligence help with this data quality challenge? >> I think that it's it's always going to require people, you know? There's always going to be a need for people to train the machines on how to interpret the data. How to classify it, how to tag it. There's actually a really good article in Popular Science this month about a woman who was training a machine on fake news and, you know, it did a really nice job of finding some of the the same claims that she did. But she found a few more. So, you know, I think it's, on one hand we have machines that we can augment with data and they can help us make better decisions or sift through large volumes of data but then when we're teaching the machines to classify the data or to help us with metadata classification, for example, or, you know, to help us clean it. I think that it's going to be a while before we get to the point where that's the inverse. >> Right, so in that example you gave, the human actually did a better job from the machine. Now, this amazing to me how.. What, what machines couldn't do that humans could, you know last year and all of a sudden, you know, they can. It wasn't long ago that robots couldn't climb stairs. >> And now they can. >> And now they can. >> It's really creepy. >> I think the difference now is, earlier you know, you knew that there is an issue in the data. But you don't know that how much data is corrupt or wrong, right? Now, there are tools available and they're very sophisticated tools. They can pinpoint and provide you the percentage of accuracy, right? On different categories of data that that you come across, right? Even forget about the structure data. Even when you talk about unstructured data, the data which comes from social media or the comments and the remarks that you log or are logged by the customer service representative, there are very sophisticated text analytics tools available, which can talk very accurately about the data as well as the personality of the person who is who's giving that information. >> Tough problems but it seems like we're making progress. All you got to do is look at fraud detection as an example. Folks, thanks very much.. >> Thank you. >> Thank you very much. >> ...for sharing your insight. You're very welcome. Alright, keep it right there everybody. We're live from the IBM CTO conference in San Francisco. Be right back, you're watching the Cube. (electronic music)

Published Date : May 2 2018

SUMMARY :

Brought to you by IBM. of the IBM CDO strategy summit. and how you manage all those demands on your time. and you know, picking the projects that we work on I mean this means a lot of things to a lot of people. and delivering the data to the end-user, right? so that you can leverage it and make it available about that Venn diagram and she threw in another one, You need to, you know, take a bath in data. and you have to really want to know more. As an SI, you guys are at the heart of it. the data to get more insights, I mean you love data. and how much of a challenge is that with clients? Now, the challenge is to integrate the data And so you know, you were discussing, I don't have the data to prove it. [Caryn And Ritesh] Yes, yes. You have to ask the right question. And sometimes when you see the data, Caryn: Yes, all the time. Give me the data and I'll, you know, And the culture. and so, you know, these should not be, like, and I need you to, the data engineer that was, say ten years ago, and you know maybe run some Monte Carlo simulation. and that you know, more often than not And I go to Facebook, immediately I see the ad and the data scientist. You close this application, you log into Facebook... Ritesh: Because everything is linked I wonder if that whole model is going to get disrupted that is available to everybody now, you know. Do you think that machine intelligence going to require people, you know? Right, so in that example you gave, and the remarks that you log All you got to do is look at fraud detection as an example. We're live from the IBM CTO conference

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Ritesh OroroPERSON

0.99+

CarynPERSON

0.99+

John FourierPERSON

0.99+

RiteshPERSON

0.99+

IBMORGANIZATION

0.99+

USLOCATION

0.99+

50QUANTITY

0.99+

Cayn WoodruffPERSON

0.99+

BostonLOCATION

0.99+

San FranciscoLOCATION

0.99+

ChinaLOCATION

0.99+

IndiaLOCATION

0.99+

last yearDATE

0.99+

ExcelTITLE

0.99+

oneQUANTITY

0.99+

Caryn WoodruffPERSON

0.99+

Ritesh AroraPERSON

0.99+

Hilary MasonPERSON

0.99+

60QUANTITY

0.99+

130QUANTITY

0.99+

OneQUANTITY

0.99+

Monte CarloTITLE

0.99+

HCL TechnologiesORGANIZATION

0.99+

FacebookORGANIZATION

0.99+

third systemQUANTITY

0.98+

todayDATE

0.98+

InterpolORGANIZATION

0.98+

ten years agoDATE

0.98+

two applicationsQUANTITY

0.98+

firstQUANTITY

0.98+

Parc 55LOCATION

0.98+

five pillarsQUANTITY

0.98+

one systemQUANTITY

0.98+

GoogleORGANIZATION

0.97+

two aspectsQUANTITY

0.97+

both coastsQUANTITY

0.97+

one personQUANTITY

0.96+

Ten years backDATE

0.96+

two minutesQUANTITY

0.95+

this monthDATE

0.95+

Union SquareLOCATION

0.95+

two worldsQUANTITY

0.94+

Spring 2018DATE

0.94+

Popular ScienceTITLE

0.9+

CTOEVENT

0.88+

daysQUANTITY

0.88+

one wayQUANTITY

0.87+

SPSSTITLE

0.86+

single trusted sourcesQUANTITY

0.85+

VennORGANIZATION

0.84+

few years agoDATE

0.84+

150 chief data officersQUANTITY

0.83+

last 10 20 yearsDATE

0.83+

Officer Strategy Summit 2018EVENT

0.82+

hundreds of applicationQUANTITY

0.8+

last 10 yearsDATE

0.8+

CubeCOMMERCIAL_ITEM

0.79+

IBM ChiefEVENT

0.79+

IBM CDO strategy summitEVENT

0.72+

last ten yearsDATE

0.7+

IBM CDO SummitEVENT

0.7+

fallDATE

0.68+

CubeTITLE

0.66+

springDATE

0.65+

last 20 yearsDATE

0.63+

minuteQUANTITY

0.49+

Krishna Venkatraman, IBM | IBM CDO Summit Spring 2018


 

>> Announcer: Live, from downtown San Francisco, it's theCUBE covering IBM Chief Data Officer Strategy Summit 2018, brought to you by IBM. >> We're back at the IBM CDO Strategy Summit in San Francisco, we're at the Parc 55, you're watching theCUBE, the leader in live tech coverage. My name is Dave Vellante, and I'm here with Krishna Venkatraman, who is with IBM, he's the Vice President of Data Science and Data Governance. Krishna, thanks for coming on. >> Thank you, thank you for this opportunity. >> Oh, you're very welcome. So, let's start with your role. Your passion is really creating value from data, that's something you told me off-camera. That's a good passion to have these days. So what's your role at IBM? >> So I work for Inderpal, who's GCDO. He's the CDO for the company, and I joined IBM about a year ago, and what I was intrigued by when I talked to him early on was, you know, IBM has so many assets, it's got a huge history and legacy of technology, enormous, copious amounts of data, but most importantly, it also has a lot of experience helping customers solve problems at enterprise scale. And in my career, I started at HP Labs many, many years ago, I've been in a few startups, most recently before I joined IBM, I was at On Deck. What I've always found is that it's very hard to extract information and insights from data unless you have the end-to-end pieces in place, and when I was at On Deck, we built all of it from scratch, and I thought this would be a great opportunity to come to IBM, leverage all that great history and legacy and skill to build something that would allow data to almost be taken for granted. So, in a sense, a company doesn't have to think about the pain of getting value extracted from data, they could just say, you know, I trust data just as I trust the other things in life, like when I go buy a book, I know all the backend stuff is done for me, I can trust the product I get. And I was interested in that, and that's the role that Inderpal offered to me. >> So the opposite of On Deck, really. On Deck was kind of a blank sheet of paper, right? And so now you have a complex organization, as Inderpal was describing this morning, so big challenge. Ginni Rometty at IBM Think talked about incumbent disruptors, so that's essentially what IBM is, right? >> Exactly, exactly. The fact is IBM has a history and a culture of making their customers successful, so they understand business problems really well. They have a huge legacy in innovation around technology, and I think now is the right time to put all of those pieces together, right? To string together a lifecycle for how data can work for you, so when you embark on a data project, it doesn't have to take six months, it could be done in two or three days, because you've cobbled together how to manage data at the backend, you've got the data science and the data science lifecycle worked out, and you know how to deploy it into a business process, because you understand the business process really well. And I think, you know, those are the mismatches that I've seen happen over and over again, data isn't ready for the application of machine learning, the machine learning model really isn't well-suited to the eventual environment in which it's deployed, but I think IBM has all of that expertise, and I feel like it's an opportunity for us to tie that together. >> And everybody's trying to get, I often say, get digital right, you know, your customers, your clients, everyone talks about digital transformation, but it's really all about the data, isn't it? Getting the data right. >> Getting the data right, that's where it starts. Tomorrow, I'm doing a panel on trust, you know, we can talk about the CDO and all the great things that are happening and extracting value, but unless you have trust at the beginning and you're doing good data governance, and you're able to understand your data, all of the rest will never happen. >> But you have to have both, alright? Because if you have trust without the data value, then okay. And you do see a lot of organizations just focusing, maybe over-rotating on that privacy and trust and security, for good reason, how do you balance that information as an asset versus liability equation? Because you're trying to get value out of it, and at the same time, you're trying to protect your organization. >> Yeah. I think it's a virtuous cycle, I think they build on each other. If customers trust you with their data, they're going to give you more of it, because they know you're going to use it responsibly, and I think that's a very positive thing, so I actually look at privacy and trust as enablers to create value, rather than somehow they're in competition. >> Not a zero-sum game. >> Not at all. >> Let's talk some more about that, I mean, when you think about it, because I've heard this before, GDPR comes up. Hey, we can turn GDPR into an opportunity, it's not just this onerous, even though it is, regulatory imposition, so maybe some examples or maybe talk through how organizations can take the privacy and trust part of the equation and turn it into value. >> So very simply, what does GDPR promise, right? It's restoring the fundamental rights of data subjects, in terms of their ownership of their data and the processing of their data and the ability to know how that data is used at any point in time. Now imagine if you're a data scientist and you could, for a problem that you're trying to solve, have the same kind of guarantees. You know all about the data, you know where it resides, you know exactly what it contains. They're very similar, you know? They both are asking for the same type of information. So, in a sense, if you solve the GDPR problem well, you have to really understand your data assets very well, and you have to have it governed really well, which is exactly the same need for data scientists. So, in a way, I seem them as, you know, they're twins, separated at some point, but... >> What's interesting, too, is you think about, we were sort of talking about this off-camera, but now, you're one step away from going to a user or customer and saying here, here's your data, do what you like with it. Now okay, in the one case, GDPR, you control it, sort of. But the other is if you want to monetize your own data, why pay the search company for clicking on an ad? Why not monetize your own data based on your reputation or do you see a day where consumers will actually be able to own, truly own their own data? >> I think, as a consumer, as well as a data professional, I think that the technologies are falling into place for that model to possibly become real. So if you have something that's very valuable that other people want, there should be a way for you to get some remuneration for that, right? And maybe it's something like a blockchain. You contribute your data and then when that data is used, you get some little piece of it as your reward for that. I don't know, I think it's possible, I haven't really... >> Nirvana. I wonder if we can talk about disruption, nobody talks about that, we haven't had a ton of conversations here about disruption, it seems to be more applying disciplines to create data value, but coming from the financial services industry, there's an industry that really hasn't been highly disrupted, you know, On Deck, in a way, was trying to disrupt. Healthcare is another one that hasn't been disrupted. Aerospace really hasn't been disrupted. Other industries like publishing, music, taxis, hotels have been disrupted. The premise is, it's the data that enables that disruption. Thoughts on disruption from the standpoint of your clients and how you're helping them become incumbent disruptors? >> I think sometimes disruption happens and then you look back and you say, that was disrupted after all, and you don't notice it when it happens, so even if I look at financial services and I look at small business lending, the expectations of businesses have changed on how they would access capital in that case. Even though the early providers of that service may not be the ones who win in the end, that's a different matter, so I think the idea that, you know, and I feel like this confluence of technologies, where's there's blockchain or quantum computing or even regulation that's coming in, that's sort of forcing certain types of activities around cleaning up data, they're all happening simultaneously. I think we will see certain industries and certain processes transform dramatically. >> Orange Bank was an example that came up this morning, an all-digital bank, you can't call them, right? You can't walk into their branch. You think banks will lose control of the payment systems? They've always done a pretty good job of hanging onto them, but... >> I don't know. I think, ultimately, customers are going to go to institutions they trust, so it's all going to end up with, do you trust the entity you've given your precious commodities to, right? Your data, your information, I think companies that really take that seriously and not take it as a burden are the ones who are going to find that customers are going to reach out to them. So it's more about not necessarily whether banks are going to lose control or whether... Which banks are going to win, is the way I would look at it. >> Maybe the existing banks might get trouble, but there's so many different interesting disruption scenarios, I mean, you think about Watson in healthcare, maybe we're at the point already where machines can make better diagnoses than doctors. You think about retail, and certain retail won't go away, obviously grocery and maybe high-end luxury malls won't go away, but you wonder about the future of retail as a result of this data disruption. Your thoughts? >> On retail? I do feel like, because the data is getting more, people are going to have more access to their own information, it will lead to a change in business models in certain cases. And the friction or the forces that used to keep customers with certain businesses may dissolve, so if you don't have friction, then it's going to end up with value and loyalty and service, and those are the ones I think that will thrive. >> Client comes to you, says, Krishna, I'm really struggling with my overall data strategy, my data platform, governance, skills, all the things that Inderpal talked about this morning, where do I start? >> I would start with making sure that the client has really thought about the questions they need answered. What is it that you really want to answer with data, or it doesn't even have to be with data, for the business, with its strategy, with its tactics, there have to be a set of questions framed up that are truly important to that business. And then starting from there, you can say, you know, let's slow it down and see what technologies, what types of data will help support answering those questions. So there has to be an overarching value proposition that you're trying to solve for. And I see, you know, that's why when, the way we work in our organization is, we look at use cases as a way to drive the technology adoption. What are the big business processes you are trying to transform, what's the value you expect to create, so we have a very robust discovery process where we ask people to answer those types of questions, we help them with it. We ask them to think through what they would do if they had the perfect answer, how they will implement it, how they will measure it. And then we start working on the technology. I often think technology is an easier question to answer once you know what you want to ask. >> Totally. Is that how you spend your time, mostly working with the lines of business, trying to help them sort of answer those questions? >> That is one part of my charter. So my charter involves basically four areas, the first is data governance, just making sure that we are creating all the tools and processes so that we can guarantee that when data is used, it is trusted, it is certified, and that it's always going to be reliable. The second piece is building up a real data competency and data science competency in the organization, so we know how to use data for different types of business value, and then the third is actually taking these client engagements internally and making sure that they are successful. So our model is what we call co-creation. We ask business teams to contribute their own resources. Data engineers, data scientists, business experts. We contribute specialized skills as well. And so we're jointly in the game together, right? So that's the third piece. And the last piece is, we're building out this platform that Inderpal showed this morning, that platform needs product management, so we are also working on, what are the fundamental pieces of functionality we want in the platform, and how do we make sure they're on the roadmap and they're prioritized in the right way. >> Excellent. Well, Krishna, thanks very much for coming to theCUBE, it was a pleasure meeting you. >> Thanks. >> Alright, keep it right there everybody, we'll be back with our next guest. You're watching theCUBE live from IBM CDO Summit in San Francisco. We'll be right back. (funky electronic music) (phone dialing)

Published Date : May 1 2018

SUMMARY :

brought to you by IBM. he's the Vice President of Data for this opportunity. that's something you told me off-camera. and that's the role that And so now you have a And I think, you know, those Getting the data right. and all the great things that and at the same time, you're trying to they're going to give you more of it, I mean, when you think about it, and the ability to know But the other is if you want So if you have something the standpoint of your clients and then you look back and you say, control of the payment systems? to end up with, do you trust the entity about the future of retail so if you don't have friction, And I see, you know, that's why when, you spend your time, So that's the third piece. much for coming to theCUBE, from IBM CDO Summit in San Francisco.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

KrishnaPERSON

0.99+

Ginni RomettyPERSON

0.99+

Krishna VenkatramanPERSON

0.99+

Orange BankORGANIZATION

0.99+

six monthsQUANTITY

0.99+

third pieceQUANTITY

0.99+

San FranciscoLOCATION

0.99+

second pieceQUANTITY

0.99+

thirdQUANTITY

0.99+

firstQUANTITY

0.99+

TomorrowDATE

0.99+

HP LabsORGANIZATION

0.99+

bothQUANTITY

0.99+

twoQUANTITY

0.99+

one partQUANTITY

0.99+

three daysQUANTITY

0.99+

GDPRTITLE

0.99+

InderpalORGANIZATION

0.98+

InderpalPERSON

0.98+

Parc 55LOCATION

0.98+

one caseQUANTITY

0.97+

On DeckORGANIZATION

0.97+

this morningDATE

0.97+

twinsQUANTITY

0.93+

four areasQUANTITY

0.91+

Strategy Summit 2018EVENT

0.9+

IBM CDO SummitEVENT

0.9+

Vice PresidentPERSON

0.89+

IBM ThinkORGANIZATION

0.89+

Spring 2018DATE

0.89+

years agoDATE

0.87+

a year agoDATE

0.86+

IBM CDO Strategy SummitEVENT

0.76+

one stepQUANTITY

0.76+

WatsonORGANIZATION

0.74+

On DeckTITLE

0.66+

Data Science and Data GovernanceORGANIZATION

0.65+

aboutDATE

0.65+

lastQUANTITY

0.6+

ChiefEVENT

0.56+

OfficerEVENT

0.54+

NirvanaPERSON

0.41+

theCUBETITLE

0.4+

theCUBEORGANIZATION

0.39+