Image Title

Search Results for Future and Research:

Analyst Predictions 2023: The Future of Data Management


 

(upbeat music) >> Hello, this is Dave Valente with theCUBE, and one of the most gratifying aspects of my role as a host of "theCUBE TV" is I get to cover a wide range of topics. And quite often, we're able to bring to our program a level of expertise that allows us to more deeply explore and unpack some of the topics that we cover throughout the year. And one of our favorite topics, of course, is data. Now, in 2021, after being in isolation for the better part of two years, a group of industry analysts met up at AWS re:Invent and started a collaboration to look at the trends in data and predict what some likely outcomes will be for the coming year. And it resulted in a very popular session that we had last year focused on the future of data management. And I'm very excited and pleased to tell you that the 2023 edition of that predictions episode is back, and with me are five outstanding market analyst, Sanjeev Mohan of SanjMo, Tony Baer of dbInsight, Carl Olofson from IDC, Dave Menninger from Ventana Research, and Doug Henschen, VP and Principal Analyst at Constellation Research. Now, what is it that we're calling you, guys? A data pack like the rat pack? No, no, no, no, that's not it. It's the data crowd, the data crowd, and the crowd includes some of the best minds in the data analyst community. They'll discuss how data management is evolving and what listeners should prepare for in 2023. Guys, welcome back. Great to see you. >> Good to be here. >> Thank you. >> Thanks, Dave. (Tony and Dave faintly speaks) >> All right, before we get into 2023 predictions, we thought it'd be good to do a look back at how we did in 2022 and give a transparent assessment of those predictions. So, let's get right into it. We're going to bring these up here, the predictions from 2022, they're color-coded red, yellow, and green to signify the degree of accuracy. And I'm pleased to report there's no red. Well, maybe some of you will want to debate that grading system. But as always, we want to be open, so you can decide for yourselves. So, we're going to ask each analyst to review their 2022 prediction and explain their rating and what evidence they have that led them to their conclusion. So, Sanjeev, please kick it off. Your prediction was data governance becomes key. I know that's going to knock you guys over, but elaborate, because you had more detail when you double click on that. >> Yeah, absolutely. Thank you so much, Dave, for having us on the show today. And we self-graded ourselves. I could have very easily made my prediction from last year green, but I mentioned why I left it as yellow. I totally fully believe that data governance was in a renaissance in 2022. And why do I say that? You have to look no further than AWS launching its own data catalog called DataZone. Before that, mid-year, we saw Unity Catalog from Databricks went GA. So, overall, I saw there was tremendous movement. When you see these big players launching a new data catalog, you know that they want to be in this space. And this space is highly critical to everything that I feel we will talk about in today's call. Also, if you look at established players, I spoke at Collibra's conference, data.world, work closely with Alation, Informatica, a bunch of other companies, they all added tremendous new capabilities. So, it did become key. The reason I left it as yellow is because I had made a prediction that Collibra would go IPO, and it did not. And I don't think anyone is going IPO right now. The market is really, really down, the funding in VC IPO market. But other than that, data governance had a banner year in 2022. >> Yeah. Well, thank you for that. And of course, you saw data clean rooms being announced at AWS re:Invent, so more evidence. And I like how the fact that you included in your predictions some things that were binary, so you dinged yourself there. So, good job. Okay, Tony Baer, you're up next. Data mesh hits reality check. As you see here, you've given yourself a bright green thumbs up. (Tony laughing) Okay. Let's hear why you feel that was the case. What do you mean by reality check? >> Okay. Thanks, Dave, for having us back again. This is something I just wrote and just tried to get away from, and this just a topic just won't go away. I did speak with a number of folks, early adopters and non-adopters during the year. And I did find that basically that it pretty much validated what I was expecting, which was that there was a lot more, this has now become a front burner issue. And if I had any doubt in my mind, the evidence I would point to is what was originally intended to be a throwaway post on LinkedIn, which I just quickly scribbled down the night before leaving for re:Invent. I was packing at the time, and for some reason, I was doing Google search on data mesh. And I happened to have tripped across this ridiculous article, I will not say where, because it doesn't deserve any publicity, about the eight (Dave laughing) best data mesh software companies of 2022. (Tony laughing) One of my predictions was that you'd see data mesh washing. And I just quickly just hopped on that maybe three sentences and wrote it at about a couple minutes saying this is hogwash, essentially. (laughs) And that just reun... And then, I left for re:Invent. And the next night, when I got into my Vegas hotel room, I clicked on my computer. I saw a 15,000 hits on that post, which was the most hits of any single post I put all year. And the responses were wildly pro and con. So, it pretty much validates my expectation in that data mesh really did hit a lot more scrutiny over this past year. >> Yeah, thank you for that. I remember that article. I remember rolling my eyes when I saw it, and then I recently, (Tony laughing) I talked to Walmart and they actually invoked Martin Fowler and they said that they're working through their data mesh. So, it takes a really lot of thought, and it really, as we've talked about, is really as much an organizational construct. You're not buying data mesh >> Bingo. >> to your point. Okay. Thank you, Tony. Carl Olofson, here we go. You've graded yourself a yellow in the prediction of graph databases. Take off. Please elaborate. >> Yeah, sure. So, I realized in looking at the prediction that it seemed to imply that graph databases could be a major factor in the data world in 2022, which obviously didn't become the case. It was an error on my part in that I should have said it in the right context. It's really a three to five-year time period that graph databases will really become significant, because they still need accepted methodologies that can be applied in a business context as well as proper tools in order for people to be able to use them seriously. But I stand by the idea that it is taking off, because for one thing, Neo4j, which is the leading independent graph database provider, had a very good year. And also, we're seeing interesting developments in terms of things like AWS with Neptune and with Oracle providing graph support in Oracle database this past year. Those things are, as I said, growing gradually. There are other companies like TigerGraph and so forth, that deserve watching as well. But as far as becoming mainstream, it's going to be a few years before we get all the elements together to make that happen. Like any new technology, you have to create an environment in which ordinary people without a whole ton of technical training can actually apply the technology to solve business problems. >> Yeah, thank you for that. These specialized databases, graph databases, time series databases, you see them embedded into mainstream data platforms, but there's a place for these specialized databases, I would suspect we're going to see new types of databases emerge with all this cloud sprawl that we have and maybe to the edge. >> Well, part of it is that it's not as specialized as you might think it. You can apply graphs to great many workloads and use cases. It's just that people have yet to fully explore and discover what those are. >> Yeah. >> And so, it's going to be a process. (laughs) >> All right, Dave Menninger, streaming data permeates the landscape. You gave yourself a yellow. Why? >> Well, I couldn't think of a appropriate combination of yellow and green. Maybe I should have used chartreuse, (Dave laughing) but I was probably a little hard on myself making it yellow. This is another type of specialized data processing like Carl was talking about graph databases is a stream processing, and nearly every data platform offers streaming capabilities now. Often, it's based on Kafka. If you look at Confluent, their revenues have grown at more than 50%, continue to grow at more than 50% a year. They're expected to do more than half a billion dollars in revenue this year. But the thing that hasn't happened yet, and to be honest, they didn't necessarily expect it to happen in one year, is that streaming hasn't become the default way in which we deal with data. It's still a sidecar to data at rest. And I do expect that we'll continue to see streaming become more and more mainstream. I do expect perhaps in the five-year timeframe that we will first deal with data as streaming and then at rest, but the worlds are starting to merge. And we even see some vendors bringing products to market, such as K2View, Hazelcast, and RisingWave Labs. So, in addition to all those core data platform vendors adding these capabilities, there are new vendors approaching this market as well. >> I like the tough grading system, and it's not trivial. And when you talk to practitioners doing this stuff, there's still some complications in the data pipeline. And so, but I think, you're right, it probably was a yellow plus. Doug Henschen, data lakehouses will emerge as dominant. When you talk to people about lakehouses, practitioners, they all use that term. They certainly use the term data lake, but now, they're using lakehouse more and more. What's your thoughts on here? Why the green? What's your evidence there? >> Well, I think, I was accurate. I spoke about it specifically as something that vendors would be pursuing. And we saw yet more lakehouse advocacy in 2022. Google introduced its BigLake service alongside BigQuery. Salesforce introduced Genie, which is really a lakehouse architecture. And it was a safe prediction to say vendors are going to be pursuing this in that AWS, Cloudera, Databricks, Microsoft, Oracle, SAP, Salesforce now, IBM, all advocate this idea of a single platform for all of your data. Now, the trend was also supported in 2023, in that we saw a big embrace of Apache Iceberg in 2022. That's a structured table format. It's used with these lakehouse platforms. It's open, so it ensures portability and it also ensures performance. And that's a structured table that helps with the warehouse side performance. But among those announcements, Snowflake, Google, Cloud Era, SAP, Salesforce, IBM, all embraced Iceberg. But keep in mind, again, I'm talking about this as something that vendors are pursuing as their approach. So, they're advocating end users. It's very cutting edge. I'd say the top, leading edge, 5% of of companies have really embraced the lakehouse. I think, we're now seeing the fast followers, the next 20 to 25% of firms embracing this idea and embracing a lakehouse architecture. I recall Christian Kleinerman at the big Snowflake event last summer, making the announcement about Iceberg, and he asked for a show of hands for any of you in the audience at the keynote, have you heard of Iceberg? And just a smattering of hands went up. So, the vendors are ahead of the curve. They're pushing this trend, and we're now seeing a little bit more mainstream uptake. >> Good. Doug, I was there. It was you, me, and I think, two other hands were up. That was just humorous. (Doug laughing) All right, well, so I liked the fact that we had some yellow and some green. When you think about these things, there's the prediction itself. Did it come true or not? There are the sub predictions that you guys make, and of course, the degree of difficulty. So, thank you for that open assessment. All right, let's get into the 2023 predictions. Let's bring up the predictions. Sanjeev, you're going first. You've got a prediction around unified metadata. What's the prediction, please? >> So, my prediction is that metadata space is currently a mess. It needs to get unified. There are too many use cases of metadata, which are being addressed by disparate systems. For example, data quality has become really big in the last couple of years, data observability, the whole catalog space is actually, people don't like to use the word data catalog anymore, because data catalog sounds like it's a catalog, a museum, if you may, of metadata that you go and admire. So, what I'm saying is that in 2023, we will see that metadata will become the driving force behind things like data ops, things like orchestration of tasks using metadata, not rules. Not saying that if this fails, then do this, if this succeeds, go do that. But it's like getting to the metadata level, and then making a decision as to what to orchestrate, what to automate, how to do data quality check, data observability. So, this space is starting to gel, and I see there'll be more maturation in the metadata space. Even security privacy, some of these topics, which are handled separately. And I'm just talking about data security and data privacy. I'm not talking about infrastructure security. These also need to merge into a unified metadata management piece with some knowledge graph, semantic layer on top, so you can do analytics on it. So, it's no longer something that sits on the side, it's limited in its scope. It is actually the very engine, the very glue that is going to connect data producers and consumers. >> Great. Thank you for that. Doug. Doug Henschen, any thoughts on what Sanjeev just said? Do you agree? Do you disagree? >> Well, I agree with many aspects of what he says. I think, there's a huge opportunity for consolidation and streamlining of these as aspects of governance. Last year, Sanjeev, you said something like, we'll see more people using catalogs than BI. And I have to disagree. I don't think this is a category that's headed for mainstream adoption. It's a behind the scenes activity for the wonky few, or better yet, companies want machine learning and automation to take care of these messy details. We've seen these waves of management technologies, some of the latest data observability, customer data platform, but they failed to sweep away all the earlier investments in data quality and master data management. So, yes, I hope the latest tech offers, glimmers that there's going to be a better, cleaner way of addressing these things. But to my mind, the business leaders, including the CIO, only want to spend as much time and effort and money and resources on these sorts of things to avoid getting breached, ending up in headlines, getting fired or going to jail. So, vendors bring on the ML and AI smarts and the automation of these sorts of activities. >> So, if I may say something, the reason why we have this dichotomy between data catalog and the BI vendors is because data catalogs are very soon, not going to be standalone products, in my opinion. They're going to get embedded. So, when you use a BI tool, you'll actually use the catalog to find out what is it that you want to do, whether you are looking for data or you're looking for an existing dashboard. So, the catalog becomes embedded into the BI tool. >> Hey, Dave Menninger, sometimes you have some data in your back pocket. Do you have any stats (chuckles) on this topic? >> No, I'm glad you asked, because I'm going to... Now, data catalogs are something that's interesting. Sanjeev made a statement that data catalogs are falling out of favor. I don't care what you call them. They're valuable to organizations. Our research shows that organizations that have adequate data catalog technologies are three times more likely to express satisfaction with their analytics for just the reasons that Sanjeev was talking about. You can find what you want, you know you're getting the right information, you know whether or not it's trusted. So, those are good things. So, we expect to see the capabilities, whether it's embedded or separate. We expect to see those capabilities continue to permeate the market. >> And a lot of those catalogs are driven now by machine learning and things. So, they're learning from those patterns of usage by people when people use the data. (airy laughs) >> All right. Okay. Thank you, guys. All right. Let's move on to the next one. Tony Bear, let's bring up the predictions. You got something in here about the modern data stack. We need to rethink it. Is the modern data stack getting long at the tooth? Is it not so modern anymore? >> I think, in a way, it's got almost too modern. It's gotten too, I don't know if it's being long in the tooth, but it is getting long. The modern data stack, it's traditionally been defined as basically you have the data platform, which would be the operational database and the data warehouse. And in between, you have all the tools that are necessary to essentially get that data from the operational realm or the streaming realm for that matter into basically the data warehouse, or as we might be seeing more and more, the data lakehouse. And I think, what's important here is that, or I think, we have seen a lot of progress, and this would be in the cloud, is with the SaaS services. And especially you see that in the modern data stack, which is like all these players, not just the MongoDBs or the Oracles or the Amazons have their database platforms. You see they have the Informatica's, and all the other players there in Fivetrans have their own SaaS services. And within those SaaS services, you get a certain degree of simplicity, which is it takes all the housekeeping off the shoulders of the customers. That's a good thing. The problem is that what we're getting to unfortunately is what I would call lots of islands of simplicity, which means that it leads it (Dave laughing) to the customer to have to integrate or put all that stuff together. It's a complex tool chain. And so, what we really need to think about here, we have too many pieces. And going back to the discussion of catalogs, it's like we have so many catalogs out there, which one do we use? 'Cause chances are of most organizations do not rely on a single catalog at this point. What I'm calling on all the data providers or all the SaaS service providers, is to literally get it together and essentially make this modern data stack less of a stack, make it more of a blending of an end-to-end solution. And that can come in a number of different ways. Part of it is that we're data platform providers have been adding services that are adjacent. And there's some very good examples of this. We've seen progress over the past year or so. For instance, MongoDB integrating search. It's a very common, I guess, sort of tool that basically, that the applications that are developed on MongoDB use, so MongoDB then built it into the database rather than requiring an extra elastic search or open search stack. Amazon just... AWS just did the zero-ETL, which is a first step towards simplifying the process from going from Aurora to Redshift. You've seen same thing with Google, BigQuery integrating basically streaming pipelines. And you're seeing also a lot of movement in database machine learning. So, there's some good moves in this direction. I expect to see more than this year. Part of it's from basically the SaaS platform is adding some functionality. But I also see more importantly, because you're never going to get... This is like asking your data team and your developers, herding cats to standardizing the same tool. In most organizations, that is not going to happen. So, take a look at the most popular combinations of tools and start to come up with some pre-built integrations and pre-built orchestrations, and offer some promotional pricing, maybe not quite two for, but in other words, get two products for the price of two services or for the price of one and a half. I see a lot of potential for this. And it's to me, if the class was to simplify things, this is the next logical step and I expect to see more of this here. >> Yeah, and you see in Oracle, MySQL heat wave, yet another example of eliminating that ETL. Carl Olofson, today, if you think about the data stack and the application stack, they're largely separate. Do you have any thoughts on how that's going to play out? Does that play into this prediction? What do you think? >> Well, I think, that the... I really like Tony's phrase, islands of simplification. It really says (Tony chuckles) what's going on here, which is that all these different vendors you ask about, about how these stacks work. All these different vendors have their own stack vision. And you can... One application group is going to use one, and another application group is going to use another. And some people will say, let's go to, like you go to a Informatica conference and they say, we should be the center of your universe, but you can't connect everything in your universe to Informatica, so you need to use other things. So, the challenge is how do we make those things work together? As Tony has said, and I totally agree, we're never going to get to the point where people standardize on one organizing system. So, the alternative is to have metadata that can be shared amongst those systems and protocols that allow those systems to coordinate their operations. This is standard stuff. It's not easy. But the motive for the vendors is that they can become more active critical players in the enterprise. And of course, the motive for the customer is that things will run better and more completely. So, I've been looking at this in terms of two kinds of metadata. One is the meaning metadata, which says what data can be put together. The other is the operational metadata, which says basically where did it come from? Who created it? What's its current state? What's the security level? Et cetera, et cetera, et cetera. The good news is the operational stuff can actually be done automatically, whereas the meaning stuff requires some human intervention. And as we've already heard from, was it Doug, I think, people are disinclined to put a lot of definition into meaning metadata. So, that may be the harder one, but coordination is key. This problem has been with us forever, but with the addition of new data sources, with streaming data with data in different formats, the whole thing has, it's been like what a customer of mine used to say, "I understand your product can make my system run faster, but right now I just feel I'm putting my problems on roller skates. (chuckles) I don't need that to accelerate what's already not working." >> Excellent. Okay, Carl, let's stay with you. I remember in the early days of the big data movement, Hadoop movement, NoSQL was the big thing. And I remember Amr Awadallah said to us in theCUBE that SQL is the killer app for big data. So, your prediction here, if we bring that up is SQL is back. Please elaborate. >> Yeah. So, of course, some people would say, well, it never left. Actually, that's probably closer to true, but in the perception of the marketplace, there's been all this noise about alternative ways of storing, retrieving data, whether it's in key value stores or document databases and so forth. We're getting a lot of messaging that for a while had persuaded people that, oh, we're not going to do analytics in SQL anymore. We're going to use Spark for everything, except that only a handful of people know how to use Spark. Oh, well, that's a problem. Well, how about, and for ordinary conventional business analytics, Spark is like an over-engineered solution to the problem. SQL works just great. What's happened in the past couple years, and what's going to continue to happen is that SQL is insinuating itself into everything we're seeing. We're seeing all the major data lake providers offering SQL support, whether it's Databricks or... And of course, Snowflake is loving this, because that is what they do, and their success is certainly points to the success of SQL, even MongoDB. And we were all, I think, at the MongoDB conference where on one day, we hear SQL is dead. They're not teaching SQL in schools anymore, and this kind of thing. And then, a couple days later at the same conference, they announced we're adding a new analytic capability-based on SQL. But didn't you just say SQL is dead? So, the reality is that SQL is better understood than most other methods of certainly of retrieving and finding data in a data collection, no matter whether it happens to be relational or non-relational. And even in systems that are very non-relational, such as graph and document databases, their query languages are being built or extended to resemble SQL, because SQL is something people understand. >> Now, you remember when we were in high school and you had had to take the... Your debating in the class and you were forced to take one side and defend it. So, I was was at a Vertica conference one time up on stage with Curt Monash, and I had to take the NoSQL, the world is changing paradigm shift. And so just to be controversial, I said to him, Curt Monash, I said, who really needs acid compliance anyway? Tony Baer. And so, (chuckles) of course, his head exploded, but what are your thoughts (guests laughing) on all this? >> Well, my first thought is congratulations, Dave, for surviving being up on stage with Curt Monash. >> Amen. (group laughing) >> I definitely would concur with Carl. We actually are definitely seeing a SQL renaissance and if there's any proof of the pudding here, I see lakehouse is being icing on the cake. As Doug had predicted last year, now, (clears throat) for the record, I think, Doug was about a year ahead of time in his predictions that this year is really the year that I see (clears throat) the lakehouse ecosystems really firming up. You saw the first shots last year. But anyway, on this, data lakes will not go away. I've actually, I'm on the home stretch of doing a market, a landscape on the lakehouse. And lakehouse will not replace data lakes in terms of that. There is the need for those, data scientists who do know Python, who knows Spark, to go in there and basically do their thing without all the restrictions or the constraints of a pre-built, pre-designed table structure. I get that. Same thing for developing models. But on the other hand, there is huge need. Basically, (clears throat) maybe MongoDB was saying that we're not teaching SQL anymore. Well, maybe we have an oversupply of SQL developers. Well, I'm being facetious there, but there is a huge skills based in SQL. Analytics have been built on SQL. They came with lakehouse and why this really helps to fuel a SQL revival is that the core need in the data lake, what brought on the lakehouse was not so much SQL, it was a need for acid. And what was the best way to do it? It was through a relational table structure. So, the whole idea of acid in the lakehouse was not to turn it into a transaction database, but to make the data trusted, secure, and more granularly governed, where you could govern down to column and row level, which you really could not do in a data lake or a file system. So, while lakehouse can be queried in a manner, you can go in there with Python or whatever, it's built on a relational table structure. And so, for that end, for those types of data lakes, it becomes the end state. You cannot bypass that table structure as I learned the hard way during my research. So, the bottom line I'd say here is that lakehouse is proof that we're starting to see the revenge of the SQL nerds. (Dave chuckles) >> Excellent. Okay, let's bring up back up the predictions. Dave Menninger, this one's really thought-provoking and interesting. We're hearing things like data as code, new data applications, machines actually generating plans with no human involvement. And your prediction is the definition of data is expanding. What do you mean by that? >> So, I think, for too long, we've thought about data as the, I would say facts that we collect the readings off of devices and things like that, but data on its own is really insufficient. Organizations need to manipulate that data and examine derivatives of the data to really understand what's happening in their organization, why has it happened, and to project what might happen in the future. And my comment is that these data derivatives need to be supported and managed just like the data needs to be managed. We can't treat this as entirely separate. Think about all the governance discussions we've had. Think about the metadata discussions we've had. If you separate these things, now you've got more moving parts. We're talking about simplicity and simplifying the stack. So, if these things are treated separately, it creates much more complexity. I also think it creates a little bit of a myopic view on the part of the IT organizations that are acquiring these technologies. They need to think more broadly. So, for instance, metrics. Metric stores are becoming much more common part of the tooling that's part of a data platform. Similarly, feature stores are gaining traction. So, those are designed to promote the reuse and consistency across the AI and ML initiatives. The elements that are used in developing an AI or ML model. And let me go back to metrics and just clarify what I mean by that. So, any type of formula involving the data points. I'm distinguishing metrics from features that are used in AI and ML models. And the data platforms themselves are increasingly managing the models as an element of data. So, just like figuring out how to calculate a metric. Well, if you're going to have the features associated with an AI and ML model, you probably need to be managing the model that's associated with those features. The other element where I see expansion is around external data. Organizations for decades have been focused on the data that they generate within their own organization. We see more and more of these platforms acquiring and publishing data to external third-party sources, whether they're within some sort of a partner ecosystem or whether it's a commercial distribution of that information. And our research shows that when organizations use external data, they derive even more benefits from the various analyses that they're conducting. And the last great frontier in my opinion on this expanding world of data is the world of driver-based planning. Very few of the major data platform providers provide these capabilities today. These are the types of things you would do in a spreadsheet. And we all know the issues associated with spreadsheets. They're hard to govern, they're error-prone. And so, if we can take that type of analysis, collecting the occupancy of a rental property, the projected rise in rental rates, the fluctuations perhaps in occupancy, the interest rates associated with financing that property, we can project forward. And that's a very common thing to do. What the income might look like from that property income, the expenses, we can plan and purchase things appropriately. So, I think, we need this broader purview and I'm beginning to see some of those things happen. And the evidence today I would say, is more focused around the metric stores and the feature stores starting to see vendors offer those capabilities. And we're starting to see the ML ops elements of managing the AI and ML models find their way closer to the data platforms as well. >> Very interesting. When I hear metrics, I think of KPIs, I think of data apps, orchestrate people and places and things to optimize around a set of KPIs. It sounds like a metadata challenge more... Somebody once predicted they'll have more metadata than data. Carl, what are your thoughts on this prediction? >> Yeah, I think that what Dave is describing as data derivatives is in a way, another word for what I was calling operational metadata, which not about the data itself, but how it's used, where it came from, what the rules are governing it, and that kind of thing. If you have a rich enough set of those things, then not only can you do a model of how well your vacation property rental may do in terms of income, but also how well your application that's measuring that is doing for you. In other words, how many times have I used it, how much data have I used and what is the relationship between the data that I've used and the benefits that I've derived from using it? Well, we don't have ways of doing that. What's interesting to me is that folks in the content world are way ahead of us here, because they have always tracked their content using these kinds of attributes. Where did it come from? When was it created, when was it modified? Who modified it? And so on and so forth. We need to do more of that with the structure data that we have, so that we can track what it's used. And also, it tells us how well we're doing with it. Is it really benefiting us? Are we being efficient? Are there improvements in processes that we need to consider? Because maybe data gets created and then it isn't used or it gets used, but it gets altered in some way that actually misleads people. (laughs) So, we need the mechanisms to be able to do that. So, I would say that that's... And I'd say that it's true that we need that stuff. I think, that starting to expand is probably the right way to put it. It's going to be expanding for some time. I think, we're still a distance from having all that stuff really working together. >> Maybe we should say it's gestating. (Dave and Carl laughing) >> Sorry, if I may- >> Sanjeev, yeah, I was going to say this... Sanjeev, please comment. This sounds to me like it supports Zhamak Dehghani's principles, but please. >> Absolutely. So, whether we call it data mesh or not, I'm not getting into that conversation, (Dave chuckles) but data (audio breaking) (Tony laughing) everything that I'm hearing what Dave is saying, Carl, this is the year when data products will start to take off. I'm not saying they'll become mainstream. They may take a couple of years to become so, but this is data products, all this thing about vacation rentals and how is it doing, that data is coming from different sources. I'm packaging it into our data product. And to Carl's point, there's a whole operational metadata associated with it. The idea is for organizations to see things like developer productivity, how many releases am I doing of this? What data products are most popular? I'm actually in right now in the process of formulating this concept that just like we had data catalogs, we are very soon going to be requiring data products catalog. So, I can discover these data products. I'm not just creating data products left, right, and center. I need to know, do they already exist? What is the usage? If no one is using a data product, maybe I want to retire and save cost. But this is a data product. Now, there's a associated thing that is also getting debated quite a bit called data contracts. And a data contract to me is literally just formalization of all these aspects of a product. How do you use it? What is the SLA on it, what is the quality that I am prescribing? So, data product, in my opinion, shifts the conversation to the consumers or to the business people. Up to this point when, Dave, you're talking about data and all of data discovery curation is a very data producer-centric. So, I think, we'll see a shift more into the consumer space. >> Yeah. Dave, can I just jump in there just very quickly there, which is that what Sanjeev has been saying there, this is really central to what Zhamak has been talking about. It's basically about making, one, data products are about the lifecycle management of data. Metadata is just elemental to that. And essentially, one of the things that she calls for is making data products discoverable. That's exactly what Sanjeev was talking about. >> By the way, did everyone just no notice how Sanjeev just snuck in another prediction there? So, we've got- >> Yeah. (group laughing) >> But you- >> Can we also say that he snuck in, I think, the term that we'll remember today, which is metadata museums. >> Yeah, but- >> Yeah. >> And also comment to, Tony, to your last year's prediction, you're really talking about it's not something that you're going to buy from a vendor. >> No. >> It's very specific >> Mm-hmm. >> to an organization, their own data product. So, touche on that one. Okay, last prediction. Let's bring them up. Doug Henschen, BI analytics is headed to embedding. What does that mean? >> Well, we all know that conventional BI dashboarding reporting is really commoditized from a vendor perspective. It never enjoyed truly mainstream adoption. Always that 25% of employees are really using these things. I'm seeing rising interest in embedding concise analytics at the point of decision or better still, using analytics as triggers for automation and workflows, and not even necessitating human interaction with visualizations, for example, if we have confidence in the analytics. So, leading companies are pushing for next generation applications, part of this low-code, no-code movement we've seen. And they want to build that decision support right into the app. So, the analytic is right there. Leading enterprise apps vendors, Salesforce, SAP, Microsoft, Oracle, they're all building smart apps with the analytics predictions, even recommendations built into these applications. And I think, the progressive BI analytics vendors are supporting this idea of driving insight to action, not necessarily necessitating humans interacting with it if there's confidence. So, we want prediction, we want embedding, we want automation. This low-code, no-code development movement is very important to bringing the analytics to where people are doing their work. We got to move beyond the, what I call swivel chair integration, between where people do their work and going off to separate reports and dashboards, and having to interpret and analyze before you can go back and do take action. >> And Dave Menninger, today, if you want, analytics or you want to absorb what's happening in the business, you typically got to go ask an expert, and then wait. So, what are your thoughts on Doug's prediction? >> I'm in total agreement with Doug. I'm going to say that collectively... So, how did we get here? I'm going to say collectively as an industry, we made a mistake. We made BI and analytics separate from the operational systems. Now, okay, it wasn't really a mistake. We were limited by the technology available at the time. Decades ago, we had to separate these two systems, so that the analytics didn't impact the operations. You don't want the operations preventing you from being able to do a transaction. But we've gone beyond that now. We can bring these two systems and worlds together and organizations recognize that need to change. As Doug said, the majority of the workforce and the majority of organizations doesn't have access to analytics. That's wrong. (chuckles) We've got to change that. And one of the ways that's going to change is with embedded analytics. 2/3 of organizations recognize that embedded analytics are important and it even ranks higher in importance than AI and ML in those organizations. So, it's interesting. This is a really important topic to the organizations that are consuming these technologies. The good news is it works. Organizations that have embraced embedded analytics are more comfortable with self-service than those that have not, as opposed to turning somebody loose, in the wild with the data. They're given a guided path to the data. And the research shows that 65% of organizations that have adopted embedded analytics are comfortable with self-service compared with just 40% of organizations that are turning people loose in an ad hoc way with the data. So, totally behind Doug's predictions. >> Can I just break in with something here, a comment on what Dave said about what Doug said, which (laughs) is that I totally agree with what you said about embedded analytics. And at IDC, we made a prediction in our future intelligence, future of intelligence service three years ago that this was going to happen. And the thing that we're waiting for is for developers to build... You have to write the applications to work that way. It just doesn't happen automagically. Developers have to write applications that reference analytic data and apply it while they're running. And that could involve simple things like complex queries against the live data, which is through something that I've been calling analytic transaction processing. Or it could be through something more sophisticated that involves AI operations as Doug has been suggesting, where the result is enacted pretty much automatically unless the scores are too low and you need to have a human being look at it. So, I think that that is definitely something we've been watching for. I'm not sure how soon it will come, because it seems to take a long time for people to change their thinking. But I think, as Dave was saying, once they do and they apply these principles in their application development, the rewards are great. >> Yeah, this is very much, I would say, very consistent with what we were talking about, I was talking about before, about basically rethinking the modern data stack and going into more of an end-to-end solution solution. I think, that what we're talking about clearly here is operational analytics. There'll still be a need for your data scientists to go offline just in their data lakes to do all that very exploratory and that deep modeling. But clearly, it just makes sense to bring operational analytics into where people work into their workspace and further flatten that modern data stack. >> But with all this metadata and all this intelligence, we're talking about injecting AI into applications, it does seem like we're entering a new era of not only data, but new era of apps. Today, most applications are about filling forms out or codifying processes and require a human input. And it seems like there's enough data now and enough intelligence in the system that the system can actually pull data from, whether it's the transaction system, e-commerce, the supply chain, ERP, and actually do something with that data without human involvement, present it to humans. Do you guys see this as a new frontier? >> I think, that's certainly- >> Very much so, but it's going to take a while, as Carl said. You have to design it, you have to get the prediction into the system, you have to get the analytics at the point of decision has to be relevant to that decision point. >> And I also recall basically a lot of the ERP vendors back like 10 years ago, we're promising that. And the fact that we're still looking at the promises shows just how difficult, how much of a challenge it is to get to what Doug's saying. >> One element that could be applied in this case is (indistinct) architecture. If applications are developed that are event-driven rather than following the script or sequence that some programmer or designer had preconceived, then you'll have much more flexible applications. You can inject decisions at various points using this technology much more easily. It's a completely different way of writing applications. And it actually involves a lot more data, which is why we should all like it. (laughs) But in the end (Tony laughing) it's more stable, it's easier to manage, easier to maintain, and it's actually more efficient, which is the result of an MIT study from about 10 years ago, and still, we are not seeing this come to fruition in most business applications. >> And do you think it's going to require a new type of data platform database? Today, data's all far-flung. We see that's all over the clouds and at the edge. Today, you cache- >> We need a super cloud. >> You cache that data, you're throwing into memory. I mentioned, MySQL heat wave. There are other examples where it's a brute force approach, but maybe we need new ways of laying data out on disk and new database architectures, and just when we thought we had it all figured out. >> Well, without referring to disk, which to my mind, is almost like talking about cave painting. I think, that (Dave laughing) all the things that have been mentioned by all of us today are elements of what I'm talking about. In other words, the whole improvement of the data mesh, the improvement of metadata across the board and improvement of the ability to track data and judge its freshness the way we judge the freshness of a melon or something like that, to determine whether we can still use it. Is it still good? That kind of thing. Bringing together data from multiple sources dynamically and real-time requires all the things we've been talking about. All the predictions that we've talked about today add up to elements that can make this happen. >> Well, guys, it's always tremendous to get these wonderful minds together and get your insights, and I love how it shapes the outcome here of the predictions, and let's see how we did. We're going to leave it there. I want to thank Sanjeev, Tony, Carl, David, and Doug. Really appreciate the collaboration and thought that you guys put into these sessions. Really, thank you. >> Thank you. >> Thanks, Dave. >> Thank you for having us. >> Thanks. >> Thank you. >> All right, this is Dave Valente for theCUBE, signing off for now. Follow these guys on social media. Look for coverage on siliconangle.com, theCUBE.net. Thank you for watching. (upbeat music)

Published Date : Jan 11 2023

SUMMARY :

and pleased to tell you (Tony and Dave faintly speaks) that led them to their conclusion. down, the funding in VC IPO market. And I like how the fact And I happened to have tripped across I talked to Walmart in the prediction of graph databases. But I stand by the idea and maybe to the edge. You can apply graphs to great And so, it's going to streaming data permeates the landscape. and to be honest, I like the tough grading the next 20 to 25% of and of course, the degree of difficulty. that sits on the side, Thank you for that. And I have to disagree. So, the catalog becomes Do you have any stats for just the reasons that And a lot of those catalogs about the modern data stack. and more, the data lakehouse. and the application stack, So, the alternative is to have metadata that SQL is the killer app for big data. but in the perception of the marketplace, and I had to take the NoSQL, being up on stage with Curt Monash. (group laughing) is that the core need in the data lake, And your prediction is the and examine derivatives of the data to optimize around a set of KPIs. that folks in the content world (Dave and Carl laughing) going to say this... shifts the conversation to the consumers And essentially, one of the things (group laughing) the term that we'll remember today, to your last year's prediction, is headed to embedding. and going off to separate happening in the business, so that the analytics didn't And the thing that we're waiting for and that deep modeling. that the system can of decision has to be relevant And the fact that we're But in the end We see that's all over the You cache that data, and improvement of the and I love how it shapes the outcome here Thank you for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

Doug HenschenPERSON

0.99+

Dave MenningerPERSON

0.99+

DougPERSON

0.99+

CarlPERSON

0.99+

Carl OlofsonPERSON

0.99+

Dave MenningerPERSON

0.99+

Tony BaerPERSON

0.99+

TonyPERSON

0.99+

Dave ValentePERSON

0.99+

CollibraORGANIZATION

0.99+

Curt MonashPERSON

0.99+

Sanjeev MohanPERSON

0.99+

Christian KleinermanPERSON

0.99+

Dave ValentePERSON

0.99+

WalmartORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

AWSORGANIZATION

0.99+

SanjeevPERSON

0.99+

Constellation ResearchORGANIZATION

0.99+

IBMORGANIZATION

0.99+

Ventana ResearchORGANIZATION

0.99+

2022DATE

0.99+

HazelcastORGANIZATION

0.99+

OracleORGANIZATION

0.99+

Tony BearPERSON

0.99+

25%QUANTITY

0.99+

2021DATE

0.99+

last yearDATE

0.99+

65%QUANTITY

0.99+

GoogleORGANIZATION

0.99+

todayDATE

0.99+

five-yearQUANTITY

0.99+

TigerGraphORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

two servicesQUANTITY

0.99+

AmazonORGANIZATION

0.99+

DavidPERSON

0.99+

RisingWave LabsORGANIZATION

0.99+

Daniel Newman, Futurum Research | AnsibleFest 2022


 

>>Hey guys. Welcome back to the Cubes coverage of Ansible Fast 2022. This is day two of our wall to wall coverage. Lisa Martin here with John Ferer. John, we're seeing this world where companies are saying if we can't automate it, we need to, The automation market is transforming. There's been a lot of buzz about that. A lot of technical chops here at Ansible Fest. >>Yeah, I mean, we've got a great guest here coming on Cuba alumni, Dean Newman, future room. He travels every event he's got. He's got his nose to the grindstone ear to the ground. Great analysis. I mean, we're gonna get into why it's important. How does Ansible fit into the big picture? It's really gonna be a great segment. The >>Board do it well, John just did my job for me about, I'll introduce him again. Daniel Newman, one of our alumni is Back Principal Analyst at Future and Research. Great to have you back on the cube. >>Yeah, it's good to join you. Excited to be back in Chicago. I don't know if you guys knew this, but for 40 years, this was my hometown. Now I don't necessarily brag about that anymore. I'm, I live in Austin now. I'm a proud Texan, but I did grow up here actually out in the west suburbs. I got off the plane, I felt the cold air, and I almost turned around and said, Does this thing go back? Yeah. Cause I'm, I've, I've grown thin skin. It did not take me long. I, I like the warm, Come on, >>I'm the saying, I'm from California and I got off the plane Monday. I went, Whoa, I need a coat. And I was in Miami a week ago and it was 85. >>Oh goodness. >>Crazy. So you just flew in. Talk about what's going on, your take on, on Ansible. We've talked a lot with the community, with partners, with customers, a lot of momentum. The flywheel of the community is going around and round and round. What are some of your perspectives that you see? >>Yeah, absolutely. Well, let's you know, I'm gonna take a quick step back. We're entering an era where companies are gonna have to figure out how to do more with less. Okay? We've got exponential data growth, we've got more architectural complexity than ever before. Companies are trying to discern how to deal with many different environments. And just at a macro level, Red Hat is one of the companies that is almost certainly gonna be part of this multi-cloud hybrid cloud era. So that should initially give a lot of confidence to the buying group that are looking at how to automate their environments. You're automating workflows, but really with, with Ansible, we're focused on automating it, automating the network. So as companies are kind of dig out, we're entering this recessionary period, Okay, we're gonna call it what it is. The first thing that they're gonna look at is how do we tech our way out of it? >>I had a wonderful one-on-one conversation with ServiceNow ceo, Bill McDermott, and we saw ServiceNow was in focus this morning in the initial opening session. This is the integration, right? Ansible integrating with ServiceNow. What we need to see is infrastructure automation, layers and applications working in concert to basically enable enterprises to be up and running all the time. Let's first fix the problems that are most common. Let's, let's automate 'em, let's script them. And then at some point, let's have them self resolving, which we saw at the end with Project Wisdom. So as I see it, automation is that layer that enterprises, boards, technologists, all can agree upon are basically here's something that can make our business more efficient, more profitable, and it's gonna deal with this short term downturn in a way that tech is actually gonna be the answer. Just like Bill and I said, let's tech our way out of it. >>If you look at the Red Hat being bought by ibm, you see Project Wisdom Project, not a product, it's a project. Project Wisdom is the confluence of research and practitioners kind of coming together with ai. So bringing AI power to the Ansible is interesting. Red Hat, Linux, Rel OpenShift, I mean, Red Hat's kind of position, isn't it? Kind of be in that right spot where a puck might be coming maybe. I mean, what do you think? >>Yeah, as analysts, we're really good at predicting the, the recent past. It's a joke I always like to make, but Red Hat's been building toward the future. I think for some time. Project Wisdom, first of all, I was very encouraged with it. One of the things that many people in the market probably have commented on is how close is IBM in Red Hat? Now, again, it's a $34 billion acquisition that was made, but boy, the cultures of these two companies couldn't be more different. And of course, Red Hat kind of carries this, this sort of middle ground layer where they provide a lot of value in services to companies that maybe don't use IBM at, at, for the public cloud especially. This was a great indication of how you can take the power of IBM's research, which of course has some of the world's most prolific data scientists, engineers, building things for the future. >>You know, you see things like yesterday they launched a, you know, an AI solution. You know, they're building chips, semiconductors, and technologies that are gonna power the future. They're building quantum. Long story short, they have these really brilliant technologists here that could be adding value to Red Hat. And I don't know that the, the world has fully been able to appreciate that. So when, when they got on stage and they kind of say, Here's how IBM is gonna help power the next generation, I was immediately very encouraged by the fact that the two companies are starting to show signs of how they can collaborate to offer value to their customers. Because of course, as John kind of started off with, his question is, they've kind of been where the puck is going. Open source, Linux hybrid cloud, This is the future. In the future. Every company's multi-cloud. And I said in a one-on-one meeting this morning, every company is going to probably have workloads on every cloud, especially large enterprises. >>Yeah. And I think that the secret's gonna be how do you make that evolve? And one of the things that's coming out of the industry over the years, and looking back as historians, we would say, gotta have standards. Well, with cloud, now people standards might slow things down. So you're gonna start to figure out how does the community and the developers are thinking it'll be the canary in the coal mine. And I'd love to get your reaction on that, because we got Cuban next week. You're seeing people kind of align and try to win the developers, which, you know, I always laugh cuz like, you don't wanna win, you want, you want them on your team, but you don't wanna win them. It's like a, it's like, so developers will decide, >>Well, I, I think what's happening is there are multiple forces that are driving product adoption. And John, getting the developers to support the utilization and adoption of any sort of stack goes a long way. We've seen how sticky it can be, how sticky it is with many of the public cloud pro providers, how sticky it is with certain applications. And it's gonna be sticky here in these interim layers like open source automation. And Red Hat does have a very compelling developer ecosystem. I mean, if you sat in the keynote this morning, I said, you know, if you're not a developer, some of this stuff would've been fairly difficult to understand. But as a developer you saw them laughing at jokes because, you know, what was it the whole part about, you know, it didn't actually, the ping wasn't a success, right? And everybody started laughing and you know, I, I was sitting next to someone who wasn't technical and, and you know, she kinda goes, What, what was so funny? >>I'm like, well, he said it worked. Do you see that? It said zero data trans or whatever that was. So, but if I may just really quickly, one, one other thing I did wanna say about Project Wisdom, John, that the low code and no code to the full stack developer is a continuum that every technology company is gonna have to think deeply about as we go to the future. Because the people that tend to know the process that needs to be automated tend to not be able to code it. And so we've seen every automation company on the planet sort of figuring out and how to address this low code, no code environment. I think the power of this partnership between IBM Research and Red Hat is that they have an incredibly deep bench of capabilities to do things like, like self-training. Okay, you've got so much data, such significant size models and accuracy is a problem, but we need systems that can self teach. They need to be able self-teach, self learn, self-heal so that we can actually get to the crux of what automation is supposed to do for us. And that's supposed to take the mundane out and enable those humans that know how to code to work on the really difficult and hard stuff because the automation's not gonna replace any of that stuff anytime soon. >>So where do you think looking at, at the partnership and the evolution of it between IBM research and Red Hat, and you're saying, you know, they're, they're, they're finally getting this synergy together. How is it gonna affect the future of automation and how is it poised to give them a competitive advantage in the market? >>Yeah, I think the future or the, the competitive space is that, that is, is ecosystems and integration. So yesterday you heard, you know, Red Hat Ansible focusing on a partnership with aws. You know, this week I was at Oracle Cloud world and they're talking about running their database in aws. And, and so I'm kind of going around to get to the answer to your question, but I think collaboration is sort of the future of growth and innovation. You need multiple companies working towards the same goal to put gobs of resources, that's the technical term, gobs of resources towards doing really hard things. And so Ansible has been very successful in automating and securing and focusing on very certain specific workloads that need to be automated, but we need more and there's gonna be more data created. The proliferation, especially the edge. So you saw all this stuff about Rockwell, How do you really automate the edge at scale? You need large models that are able to look and consume a ton of data that are gonna be continuously learning, and then eventually they're gonna be able to deliver value to these companies at scale. IBM plus Red Hat have really great resources to drive this kind of automation. Having said that, I see those partnerships with aws, with Microsoft, with ibm, with ServiceNow. It's not one player coming to the table. It's a lot of players. They >>Gotta be Switzerland. I mean they have the Switzerland. I mean, but the thing about the Amazon deal is like that marketplace integration essentially puts Ansible once a client's in on, on marketplace and you get the central on the same bill. I mean, that's gonna be a money maker for Ansible. I >>Couldn't agree more, John. I think being part of these public cloud marketplaces is gonna be so critical and having Ansible land and of course AWS largest public cloud by volume, largest marketplace today. And my opinion is that partnership will be extensible to the other public clouds over time. That just makes sense. And so you start, you know, I think we've learned this, John, you've done enough of these interviews that, you know, you start with the biggest, with the highest distribution and probability rates, which in this case right now is aws, but it'll land on in Azure, it'll land in Google and it'll continue to, to grow. And that kind of adoption, streamlining make it consumption more consumable. That's >>Always, I think, Red Hat and Ansible, you nailed it on that whole point about multicloud, because what happens then is why would I want to alienate a marketplace audience to use my product when it could span multiple environments, right? So you saw, you heard that Stephanie yesterday talk about they, they didn't say multiple clouds, multiple environments. And I think that is where I think I see this layer coming in because some companies just have to work on all clouds. That's the way it has to be. Why wouldn't you? >>Yeah. Well every, every company will probably end up with some workloads in every cloud. I just think that is the fate. Whether it's how we consume our SaaS, which a lot of people don't think about, but it always tends to be running on another hyperscale public cloud. Most companies tend to be consuming some workloads from every cloud. It's not always direct. So they might have a single control plane that they tend to lead the way with, but that is only gonna continue to change. And every public cloud company seems to be working on figuring out what their niche is. What is the one thing that sort of drives whether, you know, it is, you know, traditional, we know the commoditization of traditional storage network compute. So now you're seeing things like ai, things like automation, things like the edge collaboration tools, software being put into the, to the forefront because it's a different consumption model, it's a different margin and economic model. And then of course it gives competitive advantages. And we've seen that, you know, I came back from Google Cloud next and at Google Cloud next, you know, you can see they're leaning into the data AI cloud. I mean, that is their focus, like data ai. This is how we get people to come in and start using Google, who in most cases, they're probably using AWS or Microsoft today. >>It's a great specialty cloud right there. That's a big use case. I can run data on Google and run something on aws. >>And then of course you've got all kinds of, and this is a little off topic, but you got sovereignty, compliance, regulatory that tends to drive different clouds over, you know, global clouds like Tencent and Alibaba. You know, if your workloads are in China, >>Well, this comes back down at least to the whole complexity issue. I mean, it has to get complex before it gets easier. And I think that's what we're seeing companies opportunities like Ansible to be like, Okay, tame, tame the complexity. >>Yeah. Yeah, I totally agree with you. I mean, look, when I was watching the demonstrations today, my take is there's so many kind of simple, repeatable and mundane tasks in everyday life that enterprises need to, to automate. Do that first, you know? Then the second thing is working on how do you create self-healing, self-teaching, self-learning, You know, and, and I realize I'm a little broken of a broken record at this, but these are those first things to fix. You know, I know we want to jump to the future where we automate every task and we have multi-term conversational AI that is booking our calendars and driving our cars for us. But in the first place, we just need to say, Hey, the network's down. Like, let's make sure that we can quickly get access back to that network again. Let's make sure that we're able to reach our different zones and locations. Let's make sure that robotic arm is continually doing the thing it's supposed to be doing on the schedule that it's been committed to. That's first. And then we can get to some of these really intensive deep metaverse state of automation that we talk about. Self-learning, data replication, synthetic data. I'm just gonna throw terms around. So I sound super smart. >>In your customer conversations though, from an looking at the automation journey, are you finding most of them, or some percentage is, is wanting to go directly into those really complex projects rather than starting with the basics? >>I don't know that you're, you're finding that the customers want to do that? I think it's the architecture that often ends up being a problem is we as, as the vendor side, will tend to talk about the most complex problems that they're able to solve before companies have really started solving the, the immediate problems that are before them. You know, it's, we talk about, you know, the metaphor of the cloud is a great one, but we talk about the cloud, like it's ubiquitous. Yeah. But less than 30% of our workloads are in the public cloud. Automation is still in very early days and in many industries it's fairly nascent. And doing things like self-healing networks is still something that hasn't even been able to be deployed on an enterprise-wide basis, let alone at the industrial layer. Maybe at the company's on manufacturing PLAs or in oil fields. Like these are places that have difficult to reach infrastructure that needs to be running all the time. We need to build systems and leverage the power of automation to keep that stuff up and running. That's, that's just business value, which by the way is what makes the world go running. Yeah. Awesome. >>A lot of customers and users are struggling to find what's the value in automating certain process, What's the ROI in it? How do you help them get there so that they understand how to start, but truly to make it a journey that is a success. >>ROI tends to be a little bit nebulous. It's one of those things I think a lot of analysts do. Things like TCO analysis Yeah. Is an ROI analysis. I think the businesses actually tend to know what the ROI is gonna be because they can basically look at something like, you know, when you have an msa, here's the downtime, right? Business can typically tell you, you know, I guarantee you Amazon could say, Look for every second of downtime, this is how much commerce it costs us. Yeah. A company can generally say, if it was, you know, we had the energy, the windmills company, like they could say every minute that windmill isn't running, we're creating, you know, X amount less energy. So there's a, there's a time value proposition that companies can determine. Now the question is, is about the deployment. You know, we, I've seen it more nascent, like cybersecurity can tend to be nascent. >>Like what does a breach cost us? Well there's, you know, specific costs of actually getting the breach cured or paying for the cybersecurity services. And then there's the actual, you know, ephemeral costs of brand damage and of risks and customer, you know, negative customer sentiment that potentially comes out of it. With automation, I think it's actually pretty well understood. They can look at, hey, if we can do this many more cycles, if we can keep our uptime at this rate, if we can reduce specific workforce, and I'm always very careful about this because I don't believe automation is about replacement or displacement, but I do think it is about up-leveling and it is about helping people work on things that are complex problems that machines can't solve. I mean, said that if you don't need to put as many bodies on something that can be immediately returned to the organization's bottom line, or those resources can be used for something more innovative. So all those things are pretty well understood. Getting the automation to full deployment at scale, though, I think what often, it's not that roi, it's the timeline that gets misunderstood. Like all it projects, they tend to take longer. And even when things are made really easy, like with what Project Wisdom is trying to do, semantically enable through low code, no code and the ability to get more accuracy, it just never tends to happen quite as fast. So, but that's not an automation problem, That's just the crux of it. >>Okay. What are some of the, the next things on your plate? You're quite a, a busy guy. We, you, you were at Google, you were at Oracle, you're here today. What are some of the next things that we can expect from Daniel Newman? >>Oh boy, I moved Really, I do move really quickly and thank you for that. Well, I'm very excited. I'm taking a couple of work personal days. I don't know if you're a fan, but F1 is this weekend. I'm the US Grand Prix. Oh, you're gonna Austin. So I will be, I live in Austin. Oh. So I will be in Austin. I will be at the Grand Prix. It is work because it, you know, I'm going with a number of our clients that have, have sponsorships there. So I'll be spending time figuring out how the data that comes off of these really fun cars is meaningfully gonna change the world. I'll actually be talking to Splunk CEO at the, at the race on Saturday morning. But yeah, I got a lot of great things. I got a, a conversation coming up with the CEO of Twilio next week. We got a huge week of earnings ahead and so I do a lot of work on that. So I'll be on Bloomberg next week with Emily Chang talking about Microsoft and Google. Love talking to Emily, but just as much love being here on, on the queue with you >>Guys. Well we like to hear that. Who you're rooting for F one's your favorite driver. I, >>I, I like Lando. Do you? I'm Norris. I know it's not necessarily a fan favorite, but I'm a bit of a McLaren guy. I mean obviously I have clients with Oracle and Red Bull with Ball Common Ferrari. I've got Cly Splunk and so I have clients in all. So I'm cheering for all of 'em. And on Sunday I'm actually gonna be in the Williams Paddock. So I don't, I don't know if that's gonna gimme me a chance to really root for anything, but I'm always, always a big fan of the underdog. So maybe Latifi. >>There you go. And the data that comes off the how many central unbeliev, the car, it's crazy's. Such a scientific sport. Believable. >>We could have Christian, I was with Christian Horner yesterday, the team principal from Reside. Oh yeah, yeah. He was at the Oracle event and we did a q and a with him and with the CMO of, it's so much fun. F1 has been unbelievable to watch the momentum and what a great, you know, transitional conversation to to, to CX and automation of experiences for fans as the fan has grown by hundreds of percent. But just to circle back full way, I was very encouraged with what I saw today. Red Hat, Ansible, IBM Strong partnership. I like what they're doing in their expanded ecosystem. And automation, by the way, is gonna be one of the most robust investment areas over the next few years, even as other parts of tech continue to struggle that in cyber security. >>You heard it here. First guys, investment in automation and cyber security straight from two analysts. I got to sit between. For our guests and John Furrier, I'm Lisa Martin, you're watching The Cube Live from Chicago, Ansible Fest 22. John and I will be back after a short break. SO'S stick around.

Published Date : Oct 19 2022

SUMMARY :

Welcome back to the Cubes coverage of Ansible Fast 2022. He's got his nose to the grindstone ear to the ground. Great to have you back on the cube. I got off the plane, I felt the cold air, and I almost turned around and said, Does this thing go back? And I was in Miami a week ago and it was 85. The flywheel of the community is going around and round So that should initially give a lot of confidence to the buying group that in concert to basically enable enterprises to be up and running all the time. I mean, what do you think? One of the things that many people in the market And I don't know that the, the world has fully been able to appreciate that. And I'd love to get your reaction on that, because we got Cuban next week. And John, getting the developers to support the utilization Because the people that tend to know the process that needs to be the future of automation and how is it poised to give them a competitive advantage in the market? You need large models that are able to look and consume a ton of data that are gonna be continuously I mean, but the thing about the Amazon deal is like that marketplace integration And so you start, And I think that is where I think I see this What is the one thing that sort of drives whether, you know, it is, you know, I can run data on Google regulatory that tends to drive different clouds over, you know, global clouds like Tencent and Alibaba. I mean, it has to get complex before is continually doing the thing it's supposed to be doing on the schedule that it's been committed to. leverage the power of automation to keep that stuff up and running. how to start, but truly to make it a journey that is a success. to know what the ROI is gonna be because they can basically look at something like, you know, I mean, said that if you don't need to put as many bodies on something that What are some of the next things that we can Love talking to Emily, but just as much love being here on, on the queue with you Who you're rooting for F one's your favorite driver. And on Sunday I'm actually gonna be in the Williams Paddock. And the data that comes off the how many central unbeliev, the car, And automation, by the way, is gonna be one of the most robust investment areas over the next few years, I got to sit between.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

Daniel NewmanPERSON

0.99+

MicrosoftORGANIZATION

0.99+

CaliforniaLOCATION

0.99+

JohnPERSON

0.99+

AlibabaORGANIZATION

0.99+

ChicagoLOCATION

0.99+

Dean NewmanPERSON

0.99+

Emily ChangPERSON

0.99+

John FurrierPERSON

0.99+

AustinLOCATION

0.99+

AmazonORGANIZATION

0.99+

John FererPERSON

0.99+

IBMORGANIZATION

0.99+

EmilyPERSON

0.99+

MiamiLOCATION

0.99+

TencentORGANIZATION

0.99+

ChinaLOCATION

0.99+

OracleORGANIZATION

0.99+

MondayDATE

0.99+

GoogleORGANIZATION

0.99+

AWSORGANIZATION

0.99+

AnsibleORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

40 yearsQUANTITY

0.99+

TwilioORGANIZATION

0.99+

next weekDATE

0.99+

firstQUANTITY

0.99+

yesterdayDATE

0.99+

SundayDATE

0.99+

Saturday morningDATE

0.99+

Futurum ResearchORGANIZATION

0.99+

two companiesQUANTITY

0.99+

BillPERSON

0.99+

Red BullORGANIZATION

0.99+

StephaniePERSON

0.99+

less than 30%QUANTITY

0.99+

85QUANTITY

0.99+

ibmORGANIZATION

0.99+

todayDATE

0.99+

The Cube LiveTITLE

0.99+

two analystsQUANTITY

0.99+

IBM ResearchORGANIZATION

0.99+

McLarenORGANIZATION

0.99+

Bill McDermottPERSON

0.99+

oneQUANTITY

0.99+

Christian HornerPERSON

0.98+

this weekDATE

0.98+

one playerQUANTITY

0.98+

Williams PaddockLOCATION

0.98+

RockwellORGANIZATION

0.98+

Grand PrixEVENT

0.98+

Andy Thurai, Constellation Research & Daniel Newman, Futurum Research | UiPath Forward5 2022


 

The Cube Presents UI Path Forward five. Brought to you by UI Path. >>I Ready, Dave Ante with David Nicholson. We're back at UI Path forward. Five. We're getting ready for the big guns to come in, the two co CEOs, but we have a really special analyst panel now. We're excited to have Daniel Newman here. He's the Principal analyst at Future and Research. And Andy Dai, who's the Vice president and Principal Analyst at Constellation Research. Guys, good to see you. Thanks for making some time to come on the queue. >>Glad to be here. Always >>Good. So, >>Andy, you're deep into ai. You and I have been talking about having you come to our maor office. I'm, I'm really excited that we're able to meet here. What have you seen at the show so far? What are your big takeaways? You know, day one and a half? >>Yeah, well, so first of all, I'm d AI because my last name has AI and I >>Already talk about, >>So, but, but all jokes aside, there are a lot of good things I heard from the conference, right? I mean, one is the last two years because of the pandemic, the growth has been phenomenal for, for a lot of those robotic automation intelligent automation companies, right? So because the low hanging through position making processes have been already taken care of where they going to find the next growth spot, right? That was the question I was looking answers to. And they have some inverse, one good acquisition. They had intelligent document processing, but more importantly they're trying to move from detrimental rules based RPA automation into AI based, more probabilistic subjective decision making areas. That's a huge market, tons of money involved in it, but it's going to be a harder problem to solve. Love to see the execut. >>Well, it's also a big pivot for the, for the company. It started out as sort of a a point product and now is moving to, to platform. But to end of the macro is not in UI pass favor. It's not really in any, you know, tech company's favor, but especially, you know, a company that's going into a transition transitioning to go to market cetera. What are you seeing, what's your take on the macro? I mean, I know you follow the financial markets very closely. There's a lot of negative sentiment right now. Are you as negative as the sentiment? >>Well, the, the broad sentiment comes with some pretty good historical data, right? We've had probably one of the worst market years in multiple decades. And of course we're coming into a situation where all the, the factors are really not in our favor. You've got in interest rates climbing, you've got wildly high inflation, you've had a, you know, helicopters dumping money on the economy for a period of time. And we're, we're gonna get into this great reset is what I keep talking about. But, you know, I had the opportunity to talk to Bill McDermott recently on one of my shows and Bill's CEO of ServiceNow, in case anybody there doesn't know, but >>Former, >>Yeah, really well spoken guy. But you know, him and I kind of went back and forth and we came up with this kind of concept that we were gonna have to tech our way out of what's about to come. You can almost be certain recession is gonna come. But for companies like UiPath, I actually think there's a tremendous opportunity because the bottom line is companies are gonna be looking at their bottom line. A year ago it was all about growth a deal, like the Adobe Figma deal would've been, been lauded, people would've been excited. Now everybody's looking at going, how are they paying that price? Everybody's discounting the future growth. They're looking at the situation, say, what's gonna happen next? Well, bottom line is now they're looking at that. How profitable are we? Are you making money? Are you growing that bottom line? Are you creating earnings? We're >>Gonna come in >>Era, we're gonna come into an era where companies are gonna say, you know what? People are expensive. The inflationary cost of hiring is expensive. You know, what's less expensive? Investing in the cloud, investing in ai, investing in workflow and automation and things that actually enable businesses to expand, keep costs somewhat contained fixed costs, and scale their businesses and get themselves in a good position for when the economy turns to return to >>Grow. So since prior to the pandemic cloud containers, m l and RPA slash automation have been the big four that from a spending data standpoint have been above the line above all kind of the rest in terms of spending momentum up until last quarter, AI and RPA slash automation declined. So my question is, are those two areas discretionary or more discretionary than other technology investments you heard? >>Well, I, I think we're in a, a period where companies are, I won't say they've stopped spending, but you listened to Mark Benioff, you talked about the elongated sales cycle, right? I think companies right now are being very reflective and they're doing a lot of introspection. They're looking at their business and saying, We hired a lot of people. We hired really fast. Do we need to cut? Do we need to freeze? We've made investments in technology, are we getting a return on 'em? We all know that the analytics, whether it's you know, digital adoption platforms or just analytics in the business, say, What is all this money we've been spending doing for us and how productive are we? But I will tell you universally, the companies are looking at workflow automations that enable things. Whether that's onboarding customers, whether that's delivering experiences, whether that's, you know, full, you know, price to quote technologies, automate, automate, automate. By doing that, they're gonna bring down the cost, they're gonna control themselves as best as possible in a tough macro. And then when they come out of it, these processes are gonna be beneficiary in a, in a growth environment even more so, >>Andy UiPath rocketed to a leadership position, largely due to the, the product and the simplicity of the product relative to the competition. And then as you well know, they expanded into, you know, platform. So how do you see the competitive environment? A UI path is again focusing on that platform play Automation Anywhere couldn't get to public market. They had turnover at the go to market level. Chris Riley joined a lot of, lot of hope left Microsoft joined into the fray, obviously is having an impact that you're certainly seeing spending momentum around Microsoft. Then SAP service Now Salesforce, every software company the planet thinks they should get every dollar spent on software. You know, they, they see UI pass momentum and they say, Hey, we can, we can take some of that off the table. How do you see the competitive environment right now? >>So first of all, in in my mind, UI path is slightly better because of a couple of reasons. One, as you said, it's ease of use. >>They're able to customize it variable to what they want. So that's a real easy development advantage. And then the, when you develop the bots and equal, it takes on an average anywhere between two to maybe six weeks, generally speaking, in some industries regulated government might take more so that it's faster, quicker, easier than others in a sense. So people love using that. The second advantage of what they have in my mind is that not only they are available as a managed SA solution on, on cloud, on Azure Cloud, but also they have this version that you can install, maintain, manage any way you want, whether it's a public cloud or, or your own data center and so on so forth. That's not available with almost, not all of them have it, Few have it, but not all of the competitors have it. So they have an advantage there as well. Where it could become useful would be one of the areas that they haven't even expanded is the government. >>Government is the what, >>Sorry? The government. Yeah, related solutions, right? Defense, government, all of those areas when you go, which haven't even started for various reasons. For example, they're worried about laying off people, worried about cost, worried about automating things. There's a lot of hurdles to overcome. But once you overcome that, if you want to go there, nobody's going to use, or most of them will be very of using something on the cloud. So they have a solution for version variation of that. So they are set up to come to that next level. I mean, I don't know if you guys were at the keynote, the CEO talked about how their plans to go from 1 billion to 5 billion in ar. So they're set up to capture the market. But again, as you said, every big software company saw their momentum, they want to get into it, they want to compete with them. So >>Well, to get to 5 billion, they've gotta accelerate growth. I mean, if you do 20% cer over the next, you know, through the end of the decade, they don't quite get there. So they're gonna have to, you know, they lowered their forecast out of the high 20 or mid twenties to 18%. They're gonna have to accelerate that. And we've seen that before. We see it in cloud where cloud, you know, accelerates growth even though you got the lower large numbers. Go ahead Dave. >>Yeah, so Daniel, then how do we, how do we think of this market? How do we measure the TAM for total addressable market for automation? I mean, you know, what's that? What's that metric that shows how unautomated are we, how inefficient are we? Is there a, is there a 5% efficiency that can be gained? Is there a 40% efficiency that can be gained? Because if you're talking about, you know, how much much of the market can UI path capture, first of all, how big is the market? And then is UI path poised to take advantage of that compared to the actual purveyors of the software that people are interacting with? I'm interacting with an E R p, an ER P system that has built into it the ability to automate processes. Then why do I need 'EM UI path? So first, how do you evaluate TAM? Second, how do you evaluate whether UI Path is gonna have a chance in this market where RPAs built into the applications that we actually use? Yeah, >>I think that TAM is evolving, and I don't have it in front of me right now, but what I'll tell you about the TAM is there's sort of the legacy RPA tam and then there's what I would sort of evolve to call the IPA and workflow automation tam that is being addressed by many of these software companies that you asked in the competitive equation. In the, in the, in the question, what we're seeing is a world where companies are gonna say, if we can automate it, we will automate it. That's, it's actually non-negotiable. Now, the process in the ability to a arrive at automation at scale has long been a battle front within the nor every organization. We've been able to automate things for a long time. Why has it more been done? It's the same thing with analytics. There's been numerous studies in analytics that have basically shown companies that have been able to embrace, adopt, and implement analytics, have significantly better performances, better performances on revenue growth, better performances and operational cost management, better performances with customer experience. >>Guess what? Not everybody, every company can get to this. Now there's a couple of things behind this and I'm gonna, I'm gonna try to close my answer out cause I'm getting a little long winded here. But the first thing is automation is a cultural challenge in most organizations. We've done endless research on companies digitally transforming and automating their business. And what we've found is largely the technology are somewhat comparable. Meaning, you know, I, I've heard what he is saying about some of the advantages of partnership with Microsoft, very compelling. But you know what, all these companies that have automation offerings, whether it's you know, through a Salesforce, Microsoft, whether it's a specialized rpa like an Automation Anywhere or a UI path, their solutions can be deployed and successful. The company's ability to take the investment, implement it successfully and get buy in across the organization tends to always be the hurdle. An old CIO stat, 50% of IT projects fail. That stat is still almost accurate today. It's not 50% of technology is bad, but those failures are because the culture doesn't get behind it. And automation's a tricky one because there's a lot of people that feel on the outside rather than the inside of an automation transformation. >>So, Andy, so how do you think about the, to Dave's question, the SAPs the service nows trying to, you know, at least take some red crumbs off the table. They, they're gonna, they're gonna create these automation stove pipes, but in Automation Anywhere or, or UI path is a horizontal play, are they not? And so how do you think about that progression? Well, so >>First of all, all of this other companies, when they, they, whether it's a build, acquire, what have you, these guys already have what, five, seven years on them. So it's gonna be difficult for them to catch up with the Center of Excellence knowledge on the use cases, what they got to catch up with them. That's gonna be a lot of catch up. Just to give you an idea, Microsoft Power Automate has been there for a while, right? They're supposedly doing well as well, but they still choose to partner with the UiPath as well to get them to the next level. So there's going to be competition coming from all areas, but it's, it's about, you know, highlights. >>So, so who is the competition? Is it Microsoft chipping away an individual productivity? Is it a service now? Who's got a platform play? Is it themselves just being able to execute >>All plus also, but I think the, the most, I wouldn't say competition, but it's more people are not aware of what areas need to be automated, right? For example, one of the things I was talking about with a couple of customers is, so they have a automation hub where you can put the, the process and and task that need to be automated and then you prioritize and start working on it. And, and almost all of them that I speak to, they keep saying that most of the process and task identification that they need to do for automation, it's manual right now. So, which means it's limited, you have to go and execute it. When people find out and tell you that's what need to be fixed, you try to go and fix that. But imagine if there is a way, I mean the have solutions they're showcasing now if it becomes popular, if you're able to identify tasks that are very inefficient or or process that's very inefficient, automatically score them up saying that, you know what, this is what is going to be ROI and you execute on it. That's going to be huge. So >>I think ts right, there's no shortage of, of a market. I would, I would agree with you Rob Sland this morning talked about the progression. He sort of compared it to e R P of the early days. I sort of have a love hate with E R P cuz of the complexity of the implementation and the, and the cost. However, first of all, a couple points and I love to get your thoughts for you. If you went back, I know 25 years, you, you wouldn't have been able to pick SAP out of a lineup and say that's gonna be the leader in E R P and they ended up, you know, doing really, really well. But the more interesting angle is if you could have figured out the customers that were implementing e r p in, in a really high quality fashion, those are the companies that really did well. You buy their stocks, they really took off cuz they were killing their other industry competitors. So, fast forward to automation. Will automation live up to its hype and your opinion, will it be as transformative and will the, the practitioners of automation see the same type of uplift in their markets, in their market caps, in their competitiveness as did sort of the early adopters and the excellent adopters of brp? What are your thoughts? Well, >>I think it's an interesting comparison. Maybe answer it slightly different way. I think the future is that automation is a non-negotiable in every enterprise organization. I think if you're a large organization, we have absolutely filled our, our organizations with waste too much overhead, too much expense, too much technical debt and automation is an answer. This is the way we want to interact, right? We want a chat bot that actually gives us good answers that can answer on a Tuesday at 11:00 PM at night when we want to know if the right dog food, you know, and I'm saying that, you know, that's what we want. That's the outcome we want. And businesses have to be driven by the outcome. Here's what I'm not sure about, Dave, is we have an era where over the last three to five years, a lot of products have become companies and a lot of 'EM products became companies ended up in public markets. >>And so the RPA space is one of those areas that got this explosive amount of growth. And you look at it and there's two ways. Is this horizontally a business rpa or is this going to be something that's gonna be a target of those Microsofts and those SAPs and say, Look, we need hyper automation to be deeply integrated at the E R P crm, hcm SCM level. We're gonna build by this or we're gonna build this. And you're already hearing it in the partnerships, but this is how I think the story ends. I I think either the companies like UiPath get much bigger, they get much more rounded in their, in their offerings. Or you're gonna have a large company like a Microsoft come in and say, you know what? Buy it rather >>Than build can they can, they can, can this company, maybe not so much here, but can a company like Automation Anywhere stay acquisition? Well, >>I use the, I use the Service now as an, as a parallel because they're a company that I thought would always end up inside of a bigger company and now you're like, I think they're too big. I think they've they've dropped >>That, that chart. Yeah, they're acquisition proof. I would agree. But these guys aren't yet Nora's automation. They work for >>A while and it's not necessarily a bad thing. Sometimes getting bit bought is good, but what I mean is it's gonna be core and these big companies know it cuz they're all talking >>About, but as independent analysts, we want to see independent companies. >>I wanna see the right thing. >>It just makes it fun. >>The right thing >>Customers. Yeah, but you know, okay, Oracle buy more customers, more >>Customers. >>I'm kidding. Yeah, I guess it's the right thing. It just makes it more fun when you have really good independent competitors that >>We >>Absolutely so, and, and spend way more on r and d than these big companies who spend a lot more on stock buyback. But I know you gotta go. Thanks so much for spending some time, making time for Cube Andy. Great to see you. Good to see as well. All right, we are wrapping up day one, Dave Blan and Dave Nicholson live. You can hear the action behind us, forward in five on the Cube, right back.

Published Date : Sep 29 2022

SUMMARY :

Brought to you by UI guns to come in, the two co CEOs, but we have a really special analyst panel now. Glad to be here. You and I have been talking about having you come to our I mean, one is the last two years because of It's not really in any, you know, tech company's favor, but especially, you know, you know, I had the opportunity to talk to Bill McDermott recently on one of my shows and But you know, him and I kind of went back and forth and we came up with this Era, we're gonna come into an era where companies are gonna say, you know what? or more discretionary than other technology investments you heard? But I will tell you universally, And then as you well know, they expanded into, you know, platform. One, as you said, it's ease of use. And then the, when you develop the bots and equal, it takes on an average anywhere between Defense, government, all of those areas when you go, So they're gonna have to, you know, they lowered their forecast out I mean, you know, I think that TAM is evolving, and I don't have it in front of me right now, but what I'll tell you about the TAM is there's investment, implement it successfully and get buy in across the organization tends to always be the hurdle. trying to, you know, at least take some red crumbs off the table. Just to give you an idea, Microsoft Power Automate has of the process and task identification that they need to do for automation, it's manual right now. a lineup and say that's gonna be the leader in E R P and they ended up, you know, doing really, you know, and I'm saying that, you know, that's what we want. And you look at it and there's two ways. I think they've they've dropped I would agree. Sometimes getting bit bought is good, but what I mean is it's gonna be core and Yeah, but you know, okay, Oracle buy more customers, more It just makes it more fun when you have really good independent But I know you gotta go.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

Mark BenioffPERSON

0.99+

DanielPERSON

0.99+

Daniel NewmanPERSON

0.99+

David NicholsonPERSON

0.99+

AndyPERSON

0.99+

Dave NicholsonPERSON

0.99+

Andy ThuraiPERSON

0.99+

Dave BlanPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Chris RileyPERSON

0.99+

OracleORGANIZATION

0.99+

5 billionQUANTITY

0.99+

1 billionQUANTITY

0.99+

5%QUANTITY

0.99+

Constellation ResearchORGANIZATION

0.99+

50%QUANTITY

0.99+

MicrosoftsORGANIZATION

0.99+

fiveQUANTITY

0.99+

40%QUANTITY

0.99+

Rob SlandPERSON

0.99+

Andy DaiPERSON

0.99+

20%QUANTITY

0.99+

Andy UiPathPERSON

0.99+

BillPERSON

0.99+

25 yearsQUANTITY

0.99+

six weeksQUANTITY

0.99+

Futurum ResearchORGANIZATION

0.99+

UiPathORGANIZATION

0.99+

seven yearsQUANTITY

0.99+

SecondQUANTITY

0.99+

18%QUANTITY

0.99+

last quarterDATE

0.99+

Bill McDermottPERSON

0.99+

A year agoDATE

0.99+

two waysQUANTITY

0.99+

firstQUANTITY

0.99+

oneQUANTITY

0.99+

second advantageQUANTITY

0.98+

Dave AntePERSON

0.98+

Azure CloudTITLE

0.98+

ServiceNowORGANIZATION

0.98+

OneQUANTITY

0.98+

twoQUANTITY

0.98+

two areasQUANTITY

0.96+

SalesforceORGANIZATION

0.95+

mid twentiesDATE

0.95+

FiveQUANTITY

0.93+

Future and ResearchORGANIZATION

0.92+

day oneQUANTITY

0.92+

pandemicEVENT

0.91+

FirstQUANTITY

0.89+

end of theDATE

0.89+

five yearsQUANTITY

0.88+

todayDATE

0.87+

AutomationORGANIZATION

0.87+

last two yearsDATE

0.87+

2022DATE

0.85+

two co CEOsQUANTITY

0.83+

this morningDATE

0.82+

UI PathORGANIZATION

0.81+

coupleQUANTITY

0.81+

fourQUANTITY

0.8+

Tuesday at 11:00 PM at nightDATE

0.8+

threeQUANTITY

0.79+

day one and a halfQUANTITY

0.77+

TAMTITLE

0.76+

pathTITLE

0.74+

first thingQUANTITY

0.73+

couple pointsQUANTITY

0.73+

SAPORGANIZATION

0.69+

CubeCOMMERCIAL_ITEM

0.66+

SalesforceTITLE

0.65+

Keynote Analysis | Commvault FutureReady


 

>> Announcer: From around the globe it's theCUBE with digital coverage of Commvault Future Ready 2020 brought to you by Commvault. >> Hi and welcome to theCUBE's coverage of Commvault Future Ready. I'm Stu Miniman and I'm joined by David Vellante here. Of course, we just had the keynote for Commvault Future Ready, Sanjay Mirchandani, CEO. Dave, he's been there a little bit over a year. We've been watching the transformation of Commvault as they are trying to go much deeper in the cloud. Of course, the space, data protection overall, backup and recovery, been a super hot one. Especially, if you talk about everybody accelerating what they're doing with the cloud, Dave, from an end user standpoint, as well as for Commvault. So why don't we start with the company first, as I said, the move to subscription, the move to cloud, a lot of change needed, and that's one of the reasons they brought Sanjay into the company. Of course, he'd been at Puppet before that, he was the CIO of EMC before that. So Dave, tell us your thoughts lately on Commvault. >> Okay, so Commvault, obviously Stu, has been around for a long, long time, and it's kind of a diversified player in the data protection space. I've always felt like they've had a more diversified sort of vision and portfolio. Sanjay took over, what was it February last year, right? So he kind of came in and inherited a company in transition. And transitioning from what has largely been a legacy sort of on-prem, perpetual software licensed business to now one that's transferring into a subscription based model, obviously a large maintenance base. I think about 60% of their revenues comes from services, and most of that is maintenance, okay? So he's inherited that, and then they're going into a subscription model. So that's going to hit the income statement, and then boom COVID hits. So Sanjay is getting it all from all sides, but Commvault is a 670, roughly, million dollar company on a trailing 12 month basis. And the market cap's in the 1.7, 1.8 range, so they trade at about 2.7 times revenue. So that's much better than a hardware company, but it should be better than that as a software company. So the challenge that he has is, okay, how do we get the company growing again? How do we transition to that subscription based model? The good news on Commvault is their balance sheet is tremendous. I mean, they have no debt, no debt. I mean, several hundred million dollars in cash, over 300 million and zero debt, which kind of interesting to me, Stu. Because many companies during this COVID pandemic have tapped the credit markets, Commvault has chosen not to. Maybe they should right now with such low interest rates, and maybe that can help get the growth engine going. But I think they're very conservative in that standpoint and obviously very proud of their balance sheet, but with the likes of Cohesity and Rubrik, and I know we're going to talk about that pouring money into the market, trying to attack them, and we'll talk more about their position relative to those guys, you might like to see 'em raise a little bit of money or take on some debt and really go after some of those opportunities that you referred to upfront, it is a hot market. >> Yeah, well, Dave, you talk about some of the newer entrants raised just insane amounts of money when you talk about that space. Not only Cohesity and Rubrik, but also talked about Veem. Of course, we've watched Veem go from a change in ownership and how much money they have. And from a revenue standpoint, Veem actually might be bigger than Commvault at this point, I believe, right? >> Yeah, I think so. I mean, they're billion dollar bookings, they say. I mean, I believe it, but they're a privately held company. Commvault, we can tell actually what their numbers are. Guaranteed Cohesity and Rubrik are losing money. So their cost of acquiring a customer is huge. Commvault is, let's face it, it's servicing its install base, and it's mining that. And that's why it's, it's cashflow positive. I mean, it's a very healthy company financially. The challenge that, again, Sanjay has is how do you get growth? They're a company, as I said earlier, in transition. Let me share with you, if I may, some data from our friends at ETR. What we're showing here is the fundamental methodology of ETR, which is that net score, Stu. We talk about that all the time, ETR is, as I say, our data partner, Enterprise Technology Research. Every quarter, they go out and they say, "Based for each company and their various segments, "are you adopting new?" That's the lime green, that's the 2%. "Are you increasing spending?" That's the 30%, and this is from the July survey so this is relative to the first half. "Are you flat?" You can see that fat middle 56%, and then you can see decrease is 7% and that's in the pink, and then 5% replacing. So good news here is more people are spending more, more customers spending more, than are spending less. Net score's the red subtracted from the green, so it comes out at roughly 20%, which is that's certainly not terrible. It's a legacy company that's been around a long time. So you would see a company that's a newbie, that's hot. We'd always talked about UI path automation anywhere, Snowflake, they're in the 70% range, but they're much, much smaller companies but they're growing very, very rapidly. So this is respectable and very common for a company that has been around as long as Commvault. >> Yeah, thanks so much for sharing that data, Dave. Of course, as you said, huge customer base, they've been around for awhile. I remember when we first did Commvault GO two years ago, very excited, very engaged user base. There was a good strategy discussion and an understanding for what Commvault needed to do to get to the cloud, but there was an understanding that they couldn't keep doing with the same team what had brought them to the place before. You always say, Dave, what got you to where you were isn't going to get you to where you need to go. Talk a little bit about the keynote. Last year at Commvault there were a couple of big pieces. Number one, is they really had their first SaaS offering with Metallic. And what the momentum has been on Metallic is, first of all, they made a big partnership announcement with Microsoft ahead of this event. Multi-year, Metallic has a few different solutions. One of them, of course, is to work on Office 365, so when we go to SaaS and we go to the cloud, we understand that data protection isn't something that just comes inherently. Some people thought, "Oh hey, I did it "in my own data center, but once I go to the cloud, well, "I'm sure it just takes care of things "like data protection and security." The answer is I still need to think about it, and the ecosystem has helped filling that gap. So Metallic was the first step and what we saw, Dave, really looks like a holistic refresh of the product line. Commvault back in recovery, Commvault disaster recovery, Commvault complete data protection, all aligning themselves to be more to what you were talking about, going to that full ratable model, and the other piece was Hedvig. So Hedvig software company, helping them to be in more cloud-native environments. And they launched a Hedvig X, so it's the full integration of that solution. Less than a year from the acquisition to fully integrating it and making it an offering that's ready for what they're doing. >> Is that they're cloud play? Actually Hedvig is sort of in that space, right? As with cloud you think subscription, but also Commvault is basically putting its stack in the cloud, right? And taking advantage of cloud services, right? >> Yeah, absolutely, Dave. Metallic, specifically is built for the cloud. >> So let's talk a little bit about cloud, I have some other data here. And the cloud, if you pull up that next slide, the cloud has been eating away at on-prem vendors. We know it's been growing at 2000, 3000 basis points higher than the on-prem business. But what this slide shows is that same net score methodology that we talked about before, but it's filtering, you can see in the left hand side here, it's filtering on AWS, Google and Microsoft. So there's 585, AWS, Google and Microsoft customers in the ETR dataset. There's like about 1200 in the overall survey this quarter. And this shows the over time the net score of Commvault in those accounts, so you can see, as I was saying, go back to 2018, you can see prior to Sanjay taking over this thing was dipping and dipping, losing momentum coming into kind of the April survey and then July survey of 2019, and it's kind of bouncing off the bottom now. So it seems like they're making some progress there, and what we want to see is that momentum continue to grow. Again, net score is a measure of spending velocity. So what you want to see is as that transition occurs more sort of a net score increases over each quarter. >> Yeah, well, Dave as you mentioned earlier, there absolutely are some headwinds potentially there, but it looks like Sanjay, at least, has stopped some of the bleeding on this and, stated goal of course, to return to growth. And so we would want to see that go from just up one or 2% to be able to track with the cloud. Probably a good time for us to talk a little bit about the competition, Dave, because if you talk just in cloud markets, are you tracking along with the cloud? So the hyperscales themselves, of course, growing at very huge percent. A company that's been around as long as Veritas isn't necessarily going to be doing 35 to 70% growth as you would see from AWS or Azure. But what do you see out there for some of the competition in general, who were some of the key players that we need to look at? >> Yeah, so I mean, think about the backup guys. I mean, the traditional space, you've mentioned Veritas. Veritas, by the way, in the ETR survey data is not playing well, they're in the red. They've been losing share, the share donors, as they say, you've got some big players, Dell EMC, obviously, kind of living off the data domain base. Remember Dell EMC fell behind, prior to the Dell acquisition, they weren't investing heavily in the data protection business. They were kind of living milking off that data domain base. Back when you were there, they had the networker and they had Avamar, and so there was a bifurcated thing. Frank Slootman came and he tried to clean some of that up, but then he was onto his next big thing, of course, it was ServiceNow. And so, you know, Dell is a big footprint, obviously, but they're very hardware centric, as you know, so they have a big hardware agenda. IBM with Spectrum Protect, Veem was hurting them. They did the deal with Catalogic to kind of stop the bleeding, he kind of did. Again, big install base, and then you got the sort of newcomers. Veem is not really a newcomer anymore. I think they've been around for 15 years, big acquisition. Decent momentum in the market, especially started the Microsoft base, and they're kind of everywhere, so you see them. And of course you see Cohesity and Rubrik spend a lot of money, as you said. And it's interesting, let me pull up this next data point. In the ETR data set this past quarter you saw Cohesity actually overtake Rubrik. Rubrik was very, very strong earlier on. They're kind of neck and neck in this chart, what this chart shows is not net score, it's now market share. Now market shares, not real market shares, Stu. I have to be cautious here because it's not like IDC tracks market share. What it is is pervasiveness in the dataset. So in other words, within this segment, the number of mentions of the vendor divided by the total mentions in the segment, okay? So it's really pervasiveness or presence in the data set. And what this shows is you can see we've got 65 Commvault customers in the survey, and it shows the impact of Veem, Rubrik and Cohesity in the Commvault base. And you can see up through, let's see, that's the recent surveys is you see the increases up to the increasing red line is Veem, and then you got the Rubrik line and then the Cohesity line, but they're all recently, since the October 19th survey, down, trending down. So that says to me that Commvault is holding serve within its own base and actually doing better as these guys are declining in this base. You can see the comment that ETR made, "Rubrik, Cohesity and Veeam are all seeing "market share declines in shared accounts with Commvault," so that's good news. I think this is very important, Stu, and here's why. Is Commvault has got to hunker down and maintain those customers. It does not want to be a share donor much in the same way that Veritas has been. So that's a quick scan of the competitive marketplace. And again, from my standpoint, I'd like to see Sanjay maybe get a little bit more aggressive. I liked the acquisitions. Hedvig, it's great, deal with actually some more subscription, but I'd like to see them go hard after a cloud native. I have to dig into that, maybe you can comment, but really cloud native and multicloud across clouds being able to have that same experience on-prem as I do in the clouds at very high performance, very low latency. >> Yeah. Well, Dave, first of all, one thing, talk about the competitive win rate. That's something you always look at is how are you doing against the competitors? Not only did Sanjay come in, but you saw changes along how the channel chief, I believe, and the salespeople. So definitely reinvigorating that piece of it, as well as, Dave we saw, in the keynote. So the portfolio is updated, an aggressive engineering investment, some through acquisition, some through changing the code and moving in these environments, leveraging partnerships, great to see the Microsoft one, love to see something along the lines of Google. We understand Amazon, you play in that ecosystem, it is challenging to necessarily partner deeply with AWS, unless you're one of a few strong players in the marketplace, but working closer in cloud. And Dave, one thing I'd point out, last year, one of the things that really impressed me at Commvault GO is they did have some good developer actions. So when you talk about cloud native, of course, enabling developers is one of the key things. Like many companies out there, inside the company you've got developers, so how are you unleashing that? So Hedvig, a good acquisition along those lines, but you know, in the middle of the show floor, they had people that you set up with whiteboards and just go at it. So, you know, reminds me of days past when you used to have these engineering-driven shows where you could go in and really understand that. So helping to developers, enable them, backup and recovery just needs to tie into all my DevOps and IT Ops and all my other environments to make things just more automated because also you talk cloud native, Dave, automation has to be a big piece of it. And to your point, we actually have really good guests coming on the program. Not only will we have Sanjay, relatively fresh off the keynote, I've got a panel with the product people to really dig in and understand that. We'll poke and prod at some of the cloud native pieces and understand where that's going, got their head of strategy also on the program. >> Yes, I think you're making a great point about automation. Just speaking about M&A for a moment, I like M&A, I like growth through M&A, I'm comfortable with that as long as it fits into the portfolio. Your point about automation, I see opportunities there for M&A, things like visibility, observability, obviously hot analytics, automated operations, IT Ops, anything that sort of removes labor and complexity and gives me visibility across clouds. That I think is something that could be interesting, again, as long as it fits into the portfolio. I'll say this, I mean, Sanjay was at EMC and knows M&A because I've no doubt they were bringing all their M&A candidates to Sanjay and saying, "Okay, what do you think of this tech, do you use it?" Probably kick the tires a little bit, so he, I'm sure, was a part of those. I'm sure he saw the good, the bad, and the ugly. You were there, EMC was pretty good at acquisitions, but then it got a little out of control. >> And Dave, talk automation, Sanjay came from Puppet. Puppet was one of the early companies along helping people move along from those manual tasks to how can we automate those? So, absolutely, Sanjay now a little over a year in there, starting to see from the product standpoint, and expect to see some of the trailing results as to how that moves forward. >> And then again, blending that, if it's a tuck in or whatever, maybe there's some big chess move out there. I would just suspect given Commvault's conservative nature you wouldn't see that. Although, they could do it. I mean, at their revenue level, their balance sheet would allow them to raise some debt, if they wanted to do that now would be the time to do it. But it's interesting, everybody's doing it and they're not. So I kind of liked the contrarian play. Given the opportunity in the market, given the TAM expansion through, beyond backup into data management, and it's a cloud and multicloud, I do think there's maybe an opportunity for them to be a little bit more aggressive. >> All right, well, Dave, thanks so much for helping us dig in and kick off our coverage. >> You're welcome, Stu. >> All right, stay with us. We have a bunch of interviews here for Commvault Future Ready. I'm Stu Miniman, and thank you for watching theCUBE. (gentle music)

Published Date : Jul 21 2020

SUMMARY :

brought to you by Commvault. as I said, the move to So the challenge that he has is, okay, the newer entrants raised and that's in the pink, and the other piece was Hedvig. is built for the cloud. And the cloud, if you So the hyperscales themselves, of course, that's the recent surveys is you see So the portfolio is updated, as long as it fits into the portfolio. of the trailing results So I kind of liked the contrarian play. for helping us dig in and you for watching theCUBE.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

David VellantePERSON

0.99+

Sanjay MirchandaniPERSON

0.99+

Frank SlootmanPERSON

0.99+

VeritasORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

CommvaultORGANIZATION

0.99+

AWSORGANIZATION

0.99+

35QUANTITY

0.99+

IBMORGANIZATION

0.99+

EMCORGANIZATION

0.99+

2019DATE

0.99+

AmazonORGANIZATION

0.99+

DellORGANIZATION

0.99+

JulyDATE

0.99+

October 19thDATE

0.99+

GoogleORGANIZATION

0.99+

12 monthQUANTITY

0.99+

SanjayPERSON

0.99+

Stu MinimanPERSON

0.99+

2018DATE

0.99+

AprilDATE

0.99+

Last yearDATE

0.99+

70%QUANTITY

0.99+

7%QUANTITY

0.99+

CohesityORGANIZATION

0.99+

30%QUANTITY

0.99+

15 yearsQUANTITY

0.99+

5%QUANTITY

0.99+

MetallicORGANIZATION

0.99+

ETRORGANIZATION

0.99+

Office 365TITLE

0.99+

last yearDATE

0.99+

56%QUANTITY

0.99+

over 300 millionQUANTITY

0.99+

VeemORGANIZATION

0.99+

first halfQUANTITY

0.99+

2%QUANTITY

0.99+

Dell EMCORGANIZATION

0.99+

65 CommvaultQUANTITY

0.99+

M&AORGANIZATION

0.99+

RubrikORGANIZATION

0.99+

two years agoDATE

0.99+

StuPERSON

0.99+

OneQUANTITY

0.99+

VeeamORGANIZATION

0.99+

Glenn Rifkin | CUBEConversation, March 2019


 

>> From the SiliconANGLE Media office in Boston, Massachusetts, it's theCube! (funky electronic music) Now, here's your host, Dave Vellante! >> Welcome, everybody, to this Cube conversation here in our Marlborough offices. I am very excited today, I spent a number of years at IDC, which, of course, is owned by IDG. And there's a new book out, relatively new, called Future Forward: Leadership Lessons from Patrick McGovern, the Visionary Who Circled the Globe and Built a Technology Media Empire. And it's a great book, lotta stories that I didn't know, many that I did know, and the author of that book, Glenn Rifkin, is here to talk about not only Pat McGovern but also some of the lessons that he put forth to help us as entrepreneurs and leaders apply to create better businesses and change the world. Glenn, thanks so much for comin' on theCube. >> Thank you, Dave, great to see ya. >> So let me start with, why did you write this book? >> Well, a couple reasons. The main reason was Patrick McGovern III, Pat's son, came to me at the end of 2016 and said, "My father had died in 2014 and I feel like his legacy deserves a book, and many people told me you were the guy to do it." So the background on that I, myself, worked at IDG back in the 1980s, I was an editor at Computerworld, got to know Pat during that time, did some work for him after I left Computerworld, on a one-on-one basis. Then I would see him over the years, interview him for the New York Times or other magazines, and every time I'd see Pat, I'd end our conversation by saying, "Pat, when are we gonna do your book?" And he would laugh, and he would say, "I'm not ready to do that yet, there's just still too much to do." And so it became sort of an inside joke for us, but I always really did wanna write this book about him because I felt he deserved a book. He was just one of these game-changing pioneers in the tech industry. >> He really was, of course, the book was even more meaningful for me, we, you and I started right in the same time, 1983-- >> Yeah. >> And by that time, IDG was almost 20 years old and it was quite a powerhouse then, but boy, we saw, really the ascendancy of IDG as a brand and, you know, the book reviews on, you know, the back covers are tech elite: Benioff wrote the forward, Mark Benioff, you had Bill Gates in there, Walter Isaacson was in there, Guy Kawasaki, Bob Metcalfe, George Colony-- >> Right. >> Who actually worked for a little stint at IDC for a while. John Markoff of The New York Times, so, you know, the elite of tech really sort of blessed this book and it was really a lot to do with Pat McGovern, right? >> Oh, absolutely, I think that the people on the inside understood how important he was to the history of the tech industry. He was not, you know, a household name, first of all, you didn't think of Steve Jobs, Bill Gates, and then Pat McGovern, however, those who are in the know realize that he was as important in his own way as they were. Because somebody had to chronicle this story, somebody had to share the story of the evolution of this amazing information technology and how it changed the world. And Pat was never a front-of-the-TV-camera guy-- >> Right. >> He was a guy who put his people forward, he put his products forward, for sure, which is why IDG, as a corporate name, you know, most people don't know what that means, but people did know Macworld, people did know PCWorld, they knew IDC, they knew Computerworld for sure. So that was Pat's view of the world, he didn't care whether he had the spotlight on him or not. >> When you listen to leaders like Reed Hoffman or Eric Schmidt talk about, you know, great companies and how to build great companies, they always come back to culture. >> Yup. >> The book opens with a scene of, and we all, that I usually remember this, well, we're just hangin' around, waitin' for Pat to come in and hand out what was then called the Christmas bonus-- >> Right. >> Back when that wasn't politically incorrect to say. Now, of course, it's the holiday bonus. But it was, it was the Christmas bonus time and Pat was coming around and he was gonna personally hand a bonus, which was a substantial bonus, to every single employee at the company. I mean, and he did that, really, literally, forever. >> Forever, yeah. >> Throughout his career. >> Yeah, it was unheard of, CEOs just didn't do that and still don't do that, you were lucky, you got a message on the, you know, in the lunchroom from the CEO, "Good work, troops! Keep up the good work!" Pat just had a really different view of the culture of this company, as you know from having been there, and I know. It was very familial, there was a sense that we were all in this together, and it really was important for him to let every employee know that. The idea that he went to every desk in every office for IDG around the United States, when we were there in the '80s there were probably 5,000 employees in the US, he had to devote substantial amount-- >> Weeks and weeks! >> Weeks at a time to come to every building and do this, but year after year he insisted on doing it, his assistant at the time, Mary Dolaher told me she wanted to sign the cards, the Christmas cards, and he insisted that he ensign every one of them personally. This was the kind of view he had of how you keep employees happy, if your employees are happy, the customers are gonna be happy, and you're gonna make a lot of money. And that's what he did. >> And it wasn't just that. He had this awesome holiday party that you described, which was epic, and during the party, they would actually take pictures of every single person at the party and then they would load the carousel, you remember the 35-mm. carousel, and then, you know, toward the end of the evening, they would play that and everybody was transfixed 'cause they wanted to see their, the picture of themselves! >> Yeah, yeah. (laughs) >> I mean, it was ge-- and to actually pull that off in the 1980s was not trivial! Today, it would be a piece of cake. And then there was the IDG update, you know, the Good News memos, there was the 10-year lunch, the 20-year trips around the world, there were a lot of really rich benefits that, you know, in and of themselves maybe not a huge deal, but that was the culture that he set. >> Yeah, there was no question that if you talked to anybody who worked in this company over, say, the last 50 years, you were gonna get the same kind of stories. I've been kind of amazed, I'm going around, you know, marketing the book, talking about the book at various events, and the deep affection for this guy that still holds five years after he died, it's just remarkable. You don't really see that with the CEO class, there's a couple, you know, Steve Jobs left a great legacy of creativity, he was not a wonderful guy to his employees, but Pat McGovern, people loved this guy, and they st-- I would be signing books and somebody'd say, "Oh, I've been at IDG for 27 years and I remember all of this," and "I've been there 33 years," and there's a real longevity to this impact that he had on people. >> Now, the book was just, it was not just sort of a biography on McGovern, it was really about lessons from a leader and an entrepreneur and a media mogul who grew this great company in this culture that we can apply, you know, as business people and business leaders. Just to give you a sense of what Pat McGovern did, he really didn't take any outside capital, he did a little bit of, you know, public offering with IDG Books, but, really, you know, no outside capital, it was completely self-funded. He built a $3.8 billion empire, 300 publications, 280 million readers, and I think it was almost 100 or maybe even more, 100 countries. And so, that's an-- like you were, used the word remarkable, that is a remarkable achievement for a self-funded company. >> Yeah, Pat had a very clear vision of how, first of all, Pat had a photographic memory and if you were a manager in the company, you got a chance to sit in meetings with Pat and if you didn't know the numbers better than he did, which was a tough challenge, you were in trouble! 'Cause he knew everything, and so, he was really a numbers-focused guy and he understood that, you know, his best way to make profit was to not be looking for outside funding, not to have to share the wealth with investors, that you could do this yourself if you ran it tightly, you know, I called it in the book a 'loose-tight organization,' loose meaning he was a deep believer in decentralization, that every market needed its own leadership because they knew the market, you know, in Austria or in Russia or wherever, better than you would know it from a headquarters in Boston, but you also needed that tightness, a firm grip on the finances, you needed to know what was going on with each of the budgets or you were gonna end up in big trouble, which a lot of companies find themselves in. >> Well, and, you know, having worked there, I mean, essentially, if you made your numbers and did so ethically, and if you just kind of followed some of the corporate rules, which we'll talk about, he kind of left you alone. You know, you could, you could pretty much do whatever you wanted, you could stay in any hotel, you really couldn't fly first class, and we'll maybe talk about that-- >> Right. >> But he was a complex man, I mean, he was obviously wealthy, he was a billionaire, he was very generous, but at the same time he was frugal, you know, he drove, you know, a little, a car that was, you know, unremarkable, and we had buy him a car. He flew coach, and I remember one time, I was at a United flight, and I was, I had upgraded, you know, using my miles, and I sat down and right there was Lore McGovern, and we both looked at each other and said right at the same time, "I upgraded!" (laughs) Because Pat never flew up front, but he would always fly with a stack of newspapers in the seat next to him. >> Yeah, well, woe to, you were lucky he wasn't on the plane and spotted you as he was walking past you into coach, because he was not real forgiving when he saw people, people would hide and, you know, try to avoid him at all cost. And, I mean, he was a big man, Pat was 6'3", you know, 250 lbs. at least, built like a linebacker, so he didn't fit into coach that well, and he wasn't flying, you know, the shuttle to New York, he was flyin' to Beijing, he was flyin' to Moscow, he was going all over the world, squeezing himself into these seats. Now, you know, full disclosure, as he got older and had, like, probably 10 million air miles at his disposal, he would upgrade too, occasionally, for those long-haul flights, just 'cause he wanted to be fresh when he would get off the plane. But, yeah, these are legends about Pat that his frugality was just pure legend in the company, he owned this, you know, several versions of that dark blue suit, and that's what you would see him in. He would never deviate from that. And, but, he had his patterns, but he understood the impact those patterns had on his employees and on his customers. >> I wanna get into some of the lessons, because, really, this is what the book is all about, the heart of it. And you mentioned, you know, one, and we're gonna tell from others, but you really gotta stay close to the customer, that was one of the 10 corporate values, and you remember, he used to go to the meetings and he'd sometimes randomly ask people to recite, "What's number eight?" (laughs) And you'd be like, oh, you'd have your cheat sheet there. And so, so, just to give you a sense, this man was an entrepreneur, he started the company in 1964 with a database that he kind of pre-sold, he was kind of the sell, design, build type of mentality, he would pre-sold this thing, and then he started Computerworld in 1967, so it was really only a few years after he launched the company that he started the Computerworld, and other than Data Nation, there was nothing there, huge pent-up demand for that type of publication, and he caught lightning in a bottle, and that's really how he funded, you know, the growth. >> Yeah, oh, no question. Computerworld became, you know, the bible of the industry, it became a cash cow for IDG, you know, but at the time, it's so easy to look in hindsight and say, oh, well, obviously. But when Pat was doing this, one little-known fact is he was an editor at a publication called Computers and Automation that was based in Newton, Massachusetts and he kept that job even after he started IDC, which was the original company in 1964. It was gonna be a research company, and it was doing great, he was seeing the build-up, but it wasn't 'til '67 when he started Computerworld, that he said, "Okay, now this is gonna be a full-time gig for me," and he left the other publication for good. But, you know, he was sorta hedging his bets there for a little while. >> And that's where he really gained respect for what we'll call the 'Chinese Wallet,' the, you know, editorial versus advertising. We're gonna talk about that some more. So I mentioned, 1967, Computerworld. So he launched in 1964, by 1971, he was goin' to Japan, we're gonna talk about the China Stories as well, so, he named the company International Data Corp, where he was at a little spot in Newton, Mass.-- >> Right, right. >> So, he had a vision. You said in your book, you mention, how did this gentleman get it so right for so long? And that really leads to some of the leadership lessons, and one of them in the book was, sort of, have a mission, have a vision, and really, Pat was always talking about information, about information technology, in fact, when Wine for Dummies came out, it kind of created a little friction, that was really off the center. >> Or Wine for Dummies, or Sex for Dummies! >> Yeah, Sex for Dummies, boy, yeah! >> With, that's right, Ruth Westheimer-- >> Dr. Ruth Westheimer. >> But generally speaking, Glenn, he was on that mark, he really didn't deviate from that vision. >> Yeah, no, it was very crucial to the development of the company that he got people to, you know, buy into that mission, because the mission was everything. And he understood, you know, he had the numbers, but he also saw what was happening out there, from the 1960s, when IBM mainframes filled a room, and, you know, only the high priests of data centers could touch them. He had a vision for, you know, what was coming next and he started to understand that there would be many facets to this information about information technology, it wasn't gonna be boring, if anything, it was gonna be the story of our age and he was gonna stick to it and sell it. >> And, you know, timing is everything, but so is, you know, Pat was a workaholic and had an amazing mind, but one of the things I learned from the book, and you said this, Pat Kenealy mentioned it, all American industrial and social revolutions have had a media company linked to them, Crane and automobiles, Penton and energy, McGraw-Hill and aerospace, Annenberg, of course, and TV, and in technology, it was IDG. >> Yeah, he, like I said earlier, he really was a key figure in the development of this industry and it was, you know, one of the key things about that, a lot publications that came and went made the mistake of being platform or, you know, vertical market specific. And if that market changed, and it was inevitably gonna change in high tech, you were done. He never, you know, he never married himself to some specific technology cycle. His idea was the audience was not gonna change, the audience was gonna have to roll with this, so, the company, IDG, would produce publications that got that, you know, Computerworld was actually a little bit late to the PC game, but eventually got into it and we tracked the different cycles, you know, things in tech move in sine waves, they come and go. And Pat never was, you know, flustered by that, he could handle any kind of changes from the mainframes down to the smartphone when it came. And so, that kind of flexibility, and ability to adjust to markets, really was unprecedented in that particular part of the market. >> One of the other lessons in the book, I call it 'nation-building,' and Pat shared with you that, look, that you shared, actually, with your readers, if you wanna do it right, you've gotta be on the ground, you've gotta be there. And the China story is one that I didn't know about how Pat kind of talked his way into China, tell us, give us a little summary of that story. >> Sure, I love that story because it's so Pat. It was 1978, Pat was in Tokyo on a business trip, one of his many business trips, and he was gonna be flying to Moscow for a trade show. And he got a flight that was gonna make a stopover in Beijing, which in those days was called Peking, and was not open to Americans. There were no US and China diplomatic relations then. But Pat had it in mind that he was going to get off that plane in Beijing and see what he could see. So that meant that he had to leave the flight when it landed in Beijing and talk his way through the customs as they were in China at the time with folks in the, wherever, the Quonset hut that served for the airport, speaking no English, and him speaking no Chinese, he somehow convinced these folks to give him a day pass, 'cause he kept saying to them, "I'm only in transit, it's okay!" (laughs) Like, he wasn't coming, you know, to spy on them on them or anything. So here's this massive American businessman in his dark suit, and he somehow gets into downtown Beijing, which at the time was mostly bicycles, very few cars, there were camels walking down the street, they'd come with traders from Mongolia. The people were still wearing the drab outfits from the Mao era, and Pat just spent the whole day wandering around the city, just soaking it in. He was that kind of a world traveler. He loved different cultures, mostly eastern cultures, and he would pop his head into bookstores. And what he saw were people just clamoring to get their hands on anything, a newspaper, a magazine, and it just, it didn't take long for the light bulb to go on and said, this is a market we need to play in. >> He was fascinated with China, I, you know, as an employee and a business P&L manager, I never understood it, I said, you know, the per capita spending on IT in China was like a dollar, you know? >> Right. >> And I remember my lunch with him, my 10-year lunch, he said, "Yeah, but, you know, there's gonna be a huge opportunity there, and yeah, I don't know how we're gonna get the money out, maybe we'll buy a bunch of tea and ship it over, but I'm not worried about that." And, of course, he meets Hugo Shong, which is a huge player in the book, and the home run out of China was, of course, the venture capital, which he started before there was even a stock market, really, to exit in China. >> Right, yeah. No, he was really a visionary, I mean, that word gets tossed around maybe more than it should, but Pat was a bonafide visionary and he saw things in China that were developing that others didn't see, including, for example, his own board, who told him he was crazy because in 1980, he went back to China without telling them and within days he had a meeting with the ministry of technology and set up a joint venture, cost IDG $250,000, and six months later, the first issue of China Computerworld was being published and within a couple of years it was the biggest publication in China. He said, told me at some point that $250,0000 investment turned into $85 million and when he got home, that first trip, the board was furious, they said, "How can you do business with the commies? You're gonna ruin our brand!" And Pat said, "Just, you know, stick with me on this one, you're gonna see." And the venture capital story was just an offshoot, he saw the opportunity in the early '90s, that venture in China could in fact be a huge market, why not help build it? And that's what he did. >> What's your take on, so, IDG sold to, basically, Chinese investors. >> Yeah. >> It's kind of bittersweet, but in the same time, it's symbolic given Pat's love for China and the Chinese people. There's been a little bit of criticism about that, I know that the US government required IDC to spin out its supercomputer division because of concerns there. I'm always teasing Michael Dow that at the next IDG board meeting, those Lenovo numbers, they're gonna look kinda law. (laughs) But what are your, what's your, what are your thoughts on that, in terms of, you know, people criticize China in terms of IP protections, etc. What would Pat have said to that, do you think? >> You know, Pat made 130 trips to China in his life, that's, we calculated at some point that just the air time in planes would have been something like three and a half to four years of his life on planes going to China and back. I think Pat would, today, acknowledge, as he did then, that China has issues, there's not, you can't be that naive. He got that. But he also understood that these were people, at the end of the day, who were thirsty and hungry for information and that they were gonna be a player in the world economy at some point, and that it was crucial for IDG to be at the forefront of that, not just play later, but let's get in early, let's lead the parade. And I think that, you know, some part of him would have been okay with the sale of the company to this conglomerate there, called China Oceanwide. Clearly controversial, I mean, but once Pat died, everyone knew that the company was never gonna be the same with the leader who had been at the helm for 50 years, it was gonna be a tough transition for whoever took over. And I think, you know, it's hard to say, certainly there's criticism of things going on with China. China's gonna be the hot topic page one of the New York Times almost every single day for a long time to come. I think Pat would have said, this was appropriate given my love of China, the kind of return on investment he got from China, I think he would have been okay with it. >> Yeah, and to invoke the Ben Franklin maxim, "Trading partners seldom wage war," and so, you know, I think Pat would have probably looked at it that way, but, huge home run, I mean, I think he was early on into Baidu and Alibaba and Tencent and amazing story. I wanna talk about decentralization because that was always something that was just on our minds as employees of IDG, it was keep the corporate staff lean, have a flat organization, if you had eight, 10, 12 direct reports, that was okay, Pat really meant it when he said, "You're the CEO of your own business!" Whether that business was, you know, IDC, big company, or a manager at IDC, where you might have, you know, done tens of millions of dollars, but you felt like a CEO, you were encouraged to try new things, you were encouraged to fail, and fail fast. Their arch nemesis of IDG was Ziff Davis, they were a command and control, sort of Bill Ziff, CMP to a certain extent was kind of the same way out of Manhasset, totally different philosophies and I think Pat never, ever even came close to wavering from that decentralization philosophy, did he? >> No, no, I mean, I think that the story that he told me that I found fascinating was, he didn't have an epiphany that decentralization would be the mechanism for success, it was more that he had started traveling, and when he'd come back to his office, the memos and requests and papers to sign were stacked up two feet high. And he realized that he was holding up the company because he wasn't there to do this and that at some point, he couldn't do it all, it was gonna be too big for that, and that's when the light came on and said this decentralization concept really makes sense for us, if we're gonna be an international company, which clearly was his mission from the beginning, we have to say the people on the ground in those markets are the people who are gonna make the decisions because we can't make 'em from Boston. And I talked to many people who, were, you know, did a trip to Europe, met the folks in London, met the folks in Munich, and they said to a person, you know, it was so ahead of its time, today it just seems obvious, but in the 1960s, early '70s, it was really not a, you know, a regular leadership tenet in most companies. The command and control that you talked about was the way that you did business. >> And, you know, they both worked, but, you know, from a cultural standpoint, clearly IDG and IDC have had staying power, and he had the three-quarter rule, you talked about it in your book, if you missed your numbers three quarters in a row, you were in trouble. >> Right. >> You know, one quarter, hey, let's talk, two quarters, we maybe make some changes, three quarters, you're gone. >> Right. >> And so, as I said, if you were makin' your numbers, you had wide latitude. One of the things you didn't have latitude on was I'll call it 'pay to play,' you know, crossing that line between editorial and advertising. And Pat would, I remember I was at a meeting one time, I'm sorry to tell these stories, but-- >> That's okay. (laughs) >> But we were at an offsite meeting at a woods meeting and, you know, they give you a exercise, go off and tell us what the customer wants. Bill Laberis, who's the editor-in-chief at Computerworld at the time, said, "Who's the customer?" And Pat said, "That's a great question! To the publisher, it's the advertiser. To you, Bill, and the editorial staff, it's the reader. And both are equally important." And Pat would never allow the editorial to be compromised by the advertiser. >> Yeah, no, he, there was a clear barrier between church and state in that company and he, you know, consistently backed editorial on that issue because, you know, keep in mind when we started then, and I was, you know, a journalist hoping to, you know, change the world, the trade press then was considered, like, a little below the mainstream business press. The trade press had a reputation for being a little too cozy with the advertisers, so, and Pat said early on, "We can't do that, because everything we have, our product is built, the brand is built on integrity. And if the reader doesn't believe that what we're reporting is actually true and factual and unbiased, we're gonna lose to the advertisers in the long run anyway." So he was clear that that had to be the case and time and again, there would be conflict that would come up, it was just, as you just described it, the publishers, the sales guys, they wanted to bring in money, and if it, you know, occasionally, hey, we could nudge the editor of this particular publication, "Take it a little bit easier on this vendor because they're gonna advertise big with us," Pat just would always back the editor and say, "That's not gonna happen." And it caused, you know, friction for sure, but he was unwavering in his support. >> Well, it's interesting because, you know, Macworld, I think, is an interesting case study because there were sort of some backroom dealings and Pat maneuvered to be able to get the Macworld, you know, brand, the license for that. >> Right. >> But it caused friction between Steve Jobs and the writers of Macworld, they would write something that Steve Jobs, who was a control freak, couldn't control! >> Yeah. (laughs) >> And he regretted giving IDG the license. >> Yeah, yeah, he once said that was the worst decision he ever made was to give the license to Pat to, you know, Macworlld was published on the day that Mac was introduced in 1984, that was the deal that they had and it was, what Jobs forgot was how important it was to the development of that product to have a whole magazine devoted to it on day one, and a really good magazine that, you know, a lot of people still lament the glory days of Macworld. But yeah, he was, he and Steve Jobs did not get along, and I think that almost says a lot more about Jobs because Pat pretty much got along with everybody. >> That church and state dynamic seems to be changing, across the industry, I mean, in tech journalism, there aren't any more tech journalists in the United States, I mean, I'm overstating that, but there are far fewer than there were when we were at IDG. You're seeing all kinds of publications and media companies struggling, you know, Kara Swisher, who's the greatest journalist, and Walt Mossberg, in the tech industry, try to make it, you know, on their own, and they couldn't. So, those lines are somewhat blurring, not that Kara Swisher is blurring those lines, she's, you know, I think, very, very solid in that regard, but it seems like the business model is changing. As an observer of the markets, what do you think's happening in the publishing world? >> Well, I, you know, as a journalist, I'm sort of aghast at what's goin' on these days, a lot of my, I've been around a long time, and seeing former colleagues who are no longer in journalism because the jobs just started drying up is, it's a scary prospect, you know, unlike being the enemy of the people, the first amendment is pretty important to the future of the democracy, so to see these, you know, cutbacks and newspapers going out of business is difficult. At the same time, the internet was inevitable and it was going to change that dynamic dramatically, so how does that play out? Well, the problem is, anybody can post anything they want on social media and call it news, and the challenge is to maintain some level of integrity in the kind of reporting that you do, and it's more important now than ever, so I think that, you know, somebody like Pat would be an important figure if he was still around, in trying to keep that going. >> Well, Facebook and Google have cut the heart out of, you know, a lot of the business models of many media companies, and you're seeing sort of a pendulum swing back to nonprofits, which, I understand, speaking of folks back in the mid to early 1900s, nonprofits were the way in which, you know, journalism got funded, you know, maybe it's billionaires buying things like the Washington Post that help fund it, but clearly the model's shifting and it's somewhat unclear, you know, what's happening there. I wanted to talk about another lesson, which, Pat was the head cheerleader. So, I remember, it was kind of just after we started, the Computerworld's 20th anniversary, and they hired the marching band and they walked Pat and Mary Dolaher walked from 5 Speen Street, you know, IDG headquarters, they walked to Computerworld, which was up Old, I guess Old Connecticut Path, or maybe it was-- >> It was actually on Route 30-- >> Route 30 at the time, yeah. And Pat was dressed up as the drum major and Mary as well, (laughs) and he would do crazy things like that, he'd jump out of a plane with IDG is number one again, he'd post a, you know, a flag in Antarctica, IDG is number one again! It was just a, it was an amazing dynamic that he had, always cheering people on. >> Yeah, he was, he was, when he called himself the CEO, the Chief Encouragement Officer, you mentioned earlier the Good News notes. Everyone who worked there, at some point received this 8x10" piece of paper with a rainbow logo on it and it said, "Good News!" And there was a personal note from Pat McGovern, out of the blue, totally unexpected, to thank you and congratulate you on some bit of work, whatever it was, if you were a reporter, some article you wrote, if you were a sales guy, a sale that you made, and people all over the world would get these from him and put them up in their cubicles because it was like a badge of honor to have them, and people, I still have 'em, (laughs) you know, in a folder somewhere. And he was just unrelenting in supporting the people who worked there, and it was, the impact of that is something you can't put a price tag on, it's just, it stays with people for all their lives, people who have left there and gone on to four or five different jobs always think fondly back to the days at IDG and having, knowing that the CEO had your back in that manner. >> The legend of, and the legacy of Patrick J. McGovern is not just in IDG and IDC, which you were interested in in your book, I mean, you weren't at IDC, I was, and I was started when I saw the sort of downturn and then now it's very, very successful company, you know, whatever, $3-400 million, throwin' off a lot of profits, just to decide, I worked for every single CEO at IDC with the exception of Pat McGovern, and now, Kirk Campbell, the current CEO, is moving on Crawford del Prete's moving into the role of president, it's just a matter of time before he gets CEO, so I will, and I hired Crawford-- >> Oh, you did? (laughs) >> So, I've worked for and/or hired every CEO of IDC except for Pat McGovern, so, but, the legacy goes beyond IDG and IDC, great brands. The McGovern Brain Institute, 350 million, is that right? >> That's right. >> He dedicated to studying, you know, the human brain, he and Lore, very much involved. >> Yup. >> Typical of Pat, he wasn't just, "Hey, here's the check," and disappear. He was goin' in, "Hey, I have some ideas"-- >> Oh yeah. >> Talk about that a little. >> Yeah, well, this was a guy who spent his whole life fascinated by the human brain and the impact technology would have on the human brain, so when he had enough money, he and Lore, in 2000, gave a $350 million gift to MIT to create the McGovern Institute for Brain Research. At the time, the largest academic gift ever given to any university. And, as you said, Pat wasn't a guy who was gonna write a check and leave and wave goodbye. Pat was involved from day one. He and Lore would come and sit in day-long seminars listening to researchers talk about about the most esoteric research going on, and he would take notes, and he wasn't a brain scientist, but he wanted to know more, and he would talk to researchers, he would send Good News notes to them, just like he did with IDG, and it had same impact. People said, "This guy is a serious supporter here, he's not just showin' up with a checkbook." Bob Desimone, who's the director of the Brain Institute, just marveled at this guy's energy level, that he would come in and for days, just sit there and listen and take it all in. And it just, it was an indicator of what kind of person he was, this insatiable curiosity to learn more and more about the world. And he wanted his legacy to be this intersection of technology and brain research, he felt that this institute could cure all sorts of brain-related diseases, Alzheimer's, Parkinson's, etc. And it would then just make a better future for mankind, and as corny as that might sound, that was really the motivator for Pat McGovern. >> Well, it's funny that you mention the word corny, 'cause a lot of people saw Pat as somewhat corny, but, as you got to know him, you're like, wow, he really means this, he loves his company, the company was his extended family. When Pat met his untimely demise, we held a crowd chat, crowdchat.net/thankspat, and there's a voting mechanism in there, and the number one vote was from Paul Gillen, who posted, "Leo Durocher said that nice guys finish last, Pat McGovern proved that wrong." >> Yeah. >> And I think that's very true and, again, awesome legacy. What number book is this for you? You've written a lot of books. >> This is number 13. >> 13, well, congratulations, lucky 13. >> Thank you. >> The book is Fast Forward-- >> Future Forward. >> I'm sorry, Future Forward! (laughs) Future Forward by Glenn Rifkin. Check out, there's a link in the YouTube down below, check that out and there's some additional information there. Glenn, congratulations on getting the book done, and thanks so much for-- >> Thank you for having me, this is great, really enjoyed it. It's always good to chat with another former IDGer who gets it. (laughs) >> Brought back a lot of memories, so, again, thanks for writing the book. All right, thanks for watching, everybody, we'll see you next time. This is Dave Vellante. You're watchin' theCube. (electronic music)

Published Date : Mar 6 2019

SUMMARY :

many that I did know, and the author of that book, back in the 1980s, I was an editor at Computerworld, you know, the elite of tech really sort of He was not, you know, a household name, first of all, which is why IDG, as a corporate name, you know, or Eric Schmidt talk about, you know, and Pat was coming around and he was gonna and still don't do that, you were lucky, This was the kind of view he had of how you carousel, and then, you know, Yeah, yeah. And then there was the IDG update, you know, Yeah, there was no question that if you talked to he did a little bit of, you know, a firm grip on the finances, you needed to know he kind of left you alone. but at the same time he was frugal, you know, and he wasn't flying, you know, the shuttle to New York, and that's really how he funded, you know, the growth. you know, but at the time, it's so easy to look you know, editorial versus advertising. created a little friction, that was really off the center. But generally speaking, Glenn, he was on that mark, of the company that he got people to, you know, from the book, and you said this, the different cycles, you know, things in tech 'nation-building,' and Pat shared with you that, And he got a flight that was gonna make a stopover my 10-year lunch, he said, "Yeah, but, you know, And Pat said, "Just, you know, stick with me What's your take on, so, IDG sold to, basically, I know that the US government required IDC to everyone knew that the company was never gonna Whether that business was, you know, IDC, big company, early '70s, it was really not a, you know, And, you know, they both worked, but, you know, two quarters, we maybe make some changes, One of the things you didn't have latitude on was (laughs) meeting at a woods meeting and, you know, they give you a backed editorial on that issue because, you know, you know, brand, the license for that. IDG the license. was to give the license to Pat to, you know, As an observer of the markets, what do you think's to the future of the democracy, so to see these, you know, out of, you know, a lot of the business models he'd post a, you know, a flag in Antarctica, the impact of that is something you can't you know, whatever, $3-400 million, throwin' off so, but, the legacy goes beyond IDG and IDC, great brands. you know, the human brain, he and Lore, He was goin' in, "Hey, I have some ideas"-- that was really the motivator for Pat McGovern. Well, it's funny that you mention the word corny, And I think that's very true Glenn, congratulations on getting the book done, Thank you for having me, we'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
PatPERSON

0.99+

International Data CorpORGANIZATION

0.99+

Bill LaberisPERSON

0.99+

Dave VellantePERSON

0.99+

Steve JobsPERSON

0.99+

Michael DowPERSON

0.99+

Mary DolaherPERSON

0.99+

Paul GillenPERSON

0.99+

Bob MetcalfePERSON

0.99+

GlennPERSON

0.99+

MongoliaLOCATION

0.99+

1984DATE

0.99+

2014DATE

0.99+

Glenn RifkinPERSON

0.99+

LondonLOCATION

0.99+

McGovernPERSON

0.99+

ChinaLOCATION

0.99+

EuropeLOCATION

0.99+

Kara SwisherPERSON

0.99+

Pat McGovernPERSON

0.99+

Bob DesimonePERSON

0.99+

BeijingLOCATION

0.99+

AustriaLOCATION

0.99+

Ruth WestheimerPERSON

0.99+

1964DATE

0.99+

MunichLOCATION

0.99+

MaryPERSON

0.99+

John MarkoffPERSON

0.99+

George ColonyPERSON

0.99+

Mark BenioffPERSON

0.99+

1980DATE

0.99+

Guy KawasakiPERSON

0.99+

$85 millionQUANTITY

0.99+

1967DATE

0.99+

PCWorldORGANIZATION

0.99+

eightQUANTITY

0.99+

Walter IsaacsonPERSON

0.99+

2000DATE

0.99+

BostonLOCATION

0.99+

TokyoLOCATION

0.99+

$250,0000QUANTITY

0.99+

Leo DurocherPERSON

0.99+

MoscowLOCATION

0.99+

IDGORGANIZATION

0.99+

IDCORGANIZATION

0.99+

RussiaLOCATION

0.99+

BenioffPERSON

0.99+

10-yearQUANTITY

0.99+

New YorkLOCATION

0.99+

50 yearsQUANTITY

0.99+

MacworldORGANIZATION

0.99+

PekingLOCATION

0.99+

DavePERSON

0.99+

FacebookORGANIZATION

0.99+

Don DeLoach, Midwest IoT Council | PentahoWorld 2017


 

>> Announcer: Live, from Orlando, Florida, it's TheCUBE, covering PentahoWorld 2017. Brought to you by Hitachi Vantara. >> Welcome back to sunny Orlando everybody. This is TheCUBE, the leader in live tech coverage. My name is Dave Vellante and this is PentahoWorld, #PWorld17. Don DeLoach here, he's the co-chair of the midwest IoT council. Thanks so much for coming on TheCUBE. >> Good to be here. >> So you've just written a new book. I got it right in my hot off the presses in my hands. The Future of IoT, leveraging the shift to a data-centric world. Can you see that okay? Alright, great, how's that, you got that? Well congratulations on getting the book done. >> Thanks. >> It's like, the closest a male can come to having a baby, I guess. But, so, it's fantastic. Let's start with sort of the premise of the book. What, why'd you write it? >> Sure, I'll give you the short version, 'cause that in and of itself could go on forever. I'm a data guy by background. And for the last five or six years, I've really been passionate about IoT. And the two converged with a focus on data, but it was kind of ahead of where most people in IoT were, because they were mostly focused on sensor technology and communications, and to a limited extent, the workflow. So I kind of developed this thesis around where I thought the market was going to go. And I would have this conversation over and over and over, but it wasn't really sticking and so I decided maybe I should write a book to talk about it and it took me forever to write the book 'cause fundamentally I didn't know what I was doing. Fortunately, I was able to eventually bring on a couple of co-authors and collectively we were able to get the book written and we published it in May of this year. >> And give us the premise, how would you summarize? >> So the central thesis of the book is that the market is going to shift from a focus on IoT enabled products like a smart refrigerator or a low-fat fryer or a turbine in a factory or a power plant or whatever. It's going to shift from the IoT enabled products to the IoT enabled enterprise. If you look at the Harvard Business Review article that Jim Heppelmann and Michael Porter did in 2014, they talked about the progression from products to smart products to smart, connected products, to product systems, to system of systems. We've largely been focused on smart, connected products, or as I would call IoT enabled products. And most of the technology vendors have focused their efforts on helping the lighting vendor or the refrigerator vendor or whatever IoT enable their product. But when that moves to mass adoption of IoT, if you're the CIO or the CEO of SeaLand or Disney or Walmart or whatever, you're not going to want to be a company that has 100,000 IoT enabled products. You're going to want to be an IoT enabled company. And the difference is really all around data primacy and how that data is treated. So, right now, most of the data goes from the IoT enabled product to the product provider. And they tell you what data you can get. But that, if you look at the progression, it's almost mathematically impossible that that is sustainable because company, organizations are going to want to take my, like let's just say we're talking about a fast food restaurant. They're going to want to take the data from the low-fat fryer and the data from the refrigerator or the shake machine or the lighting system or whatever, and they're going to want to look at it in the context of the other data. And they're going to also want to combine it with their point-of-sale or crew scheduling, or inventory and then if they're smart, they'll start to even pull in external data, like pedestrian traffic or street traffic or microweather or whatever, and they'll create a much richer signature. And then, it comes down to governance, where I want to create this enriched data set, and then propagate it to the right constituent in the right time in the right way. So you still give the product provider back the data that they want, and there's nothing that precludes you from doing that. And you give the low-fat fryer provider the data that they want, but you give your regional and corporate offices a different view of the same data, and you give the FDA or your supply chain partner, it's still the same atomic data, but what you're doing is you're separating the creation of the data from the consumption of the data, and that's where you gain maximum leverage, and that's really the thesis of the book. >> It's data, great summary by the way, so it's data in context, and the context of the low-fat fryer is going to be different than the workflow within that retail operation. >> Yeah, that's right and again, this is where, the product providers have initially kind of pushed back because they feel like they have stickiness and loyalty that's bred out of that link. But, first of all, that's going to change. So if you're Walmart or a major concern and you say, "I'm going to do a lighting RFP," and there's 10 vendors that say, "Hey, we want to compete for this," and six of 'em will allow Walmart to control the data, and four say, "No, we have to control the data," their list just went to six. They're just not going to put up with that. >> Dave: Period, the end, absolutely. >> That's right. So if the product providers are smart, they're going to get ahead of this and say, "Look, I get where the market's going. "We're going to need to give you control of the data, "but I'm going to ask for a contract that says "I'm going to get the data I'm already getting, "'cause I need to get that, and you want me to get that. "But number two, I'm going to recognize that "they can give, Walmart can give me my data back, "but enrich it and contextualize it "so I get better data back." So everybody can win, but it's all about the right architecture. >> Well and the product guys going to have the Trojan horse strategy of getting in when nobody was really looking. >> Don: That's right. >> And okay, so they've got there. Do you envision, Don, a point at which the Walmart might say, "No, that's our data "and you don't get it." >> Um, not really- >> or is there going to be a quid pro quo? >> and here's why. The argument that the product providers have made all along is, almost in a condescending way sometimes, although not intentionally condescending, it's been, look, we're selling you this low-fat fryer for your fast food restaurant. And you say you want the data, but you know, we had a team of people who are experts in this. Leave that to us, we'll analyze the data and we'll give you back what you need. Now, there's some truth to the fact that they should know their products better than anybody, and if I'm the fast food chain, I want them to get that data so that they can continually analyze and help me do my job better. They just don't have to get that data at my expense. There are ways to cooperatively work this, but again, it comes back to just the right architecture. So what we call the first receiver is in essence, setting up an abstraction close to the point of the ingestion of all this data. Upon which it's cleansed, enriched, and then propagated again to the right constituent in the right time in the right way. And by the way, I would add, with the right security considerations, and with the right data privacy considerations, 'cause like, if you look around the market now, things like GEP are in Europe and what we've seen in the US just in the wake of the elections and everything around how data is treated, privacy concerns are going to be huge. So if you don't know how to treat the data in the context of how it needs to be leveraged, you're going to lose that leverage of the data. >> Well, plus the widget guys are going to say "Look, we have to do predictive maintenance "on those devices and you want us to do that." You know, they say follow the money. Let's follow the data. So, what's the data flow look like in your mind? You got these edge devices. >> Yep, physical or virtual. Doesn't have to be a physical edge. Although, in a lot of cases, there are good reasons why you'd want a physical edge, but there's nothing technologically that says you have to have a physical edge. >> Elaborate on that, would you? What do you mean by virtual? >> Sure, so let's say I have a server inside a retail outfit. And it's collecting all of my IoT data and consolidating it and persisting it into a data store and then propagating it to a variety of constituents. That would be creating the first receiver in the physical edge. There's nothing that says that that edge device can't grab that data, but then persist it in a distributed Amazon cloud instance, or a Rackspace instance or whatever. It doesn't actually need to be persisted physically on the edge, but there's no reason it can't either. >> Okay, now I understand that now. So the guys at Wikibon, which is a sort of sister company to TheCUBE, have envisioned this three tiered data model where you've got the devices at the edge where real-time activity's going on, real-time analytics, and then you've got this sort of aggregation point, I guess call it a gateway. And then you've got, and that's as I say, aggregation of all these edge devices. And then you've got the cloud where the heavy modeling is done. It could be your private cloud or your public cloud. So does that three tier model make sense to you? >> Yeah, so what you're describing as the first tier is actually the sensor layer. The gateway layer that you're describing, in the book would be characterized as the first receiver. It's basically an edge tier that is augmented to persist and enrich the data and then apply the proper governance to it. But what I would argue is, in reality, I mean, your reference architecture is spot-on. But if you actually take that one step further, it's actually an n-tier architecture. Because there's no reason why the data doesn't go from the ten franchise stores, to the regional headquarters, to the country headquarters, to the corporate headquarters, and every step along the way, including the edge, you're going to see certain types of analytics and computational work done. I'll put a plug for my friends at Hitachi Lumada in on this, you know, there's like 700 horizontal IoT platforms out there. There aren't going to be 700 winners. There's going to be probably eight to 10, and that's only because the different specific verticals will provide for more winners than it would be if it was just one like a search engine. But, the winners are going to have to have an extensible architecture that is, will ultimately allow enterprises to do the very things I'm talking about doing. And so there are a number out there, but one of the things, and Rob Tiffany, who's the CTO of Lumada, I think has a really good handle on his team on an architecture that is really plausible for accomplishing this as the market migrates into the future. >> And that architecture's got to be very flexible, not just elastic, but sometimes we use the word plastic, plasticity, being able to go in any direction. >> Well, sure, up to and including the use of digital twins and avatars and the logic that goes along with that and the ability to spin something up and spin something down gives you that flexibility that you as an enterprise, especially the larger the enterprise, the more important that becomes, need. >> How much of the data, Don, at that edge do you think will be persisted, two part question? It's not all going to be persisted, is it? Isn't that too expensive? Is it necessary to persist all of that data? >> Well, no. So this is where, you'll hear the notion of data exhaust. What that really means is, let's just say I'm instrumenting every room in this hotel and each room has six different sensors in it and I'm taking a reading once a second. The ratio of inconsequential to consequential data is probably going to be over 99 to one. So it doesn't really make sense to persist that data and it sure as hell doesn't make sense to take that data and push it into a cloud where I spend more to reduce the value of the payload. That's just dumb. But what will happen is that, there are two things, one, I think people will see the value in locally persisting the data that has value, the consequential data, and doing that in a way that's stored at least for some period of time so you can run the type of edge analytics that might benefit from having that persisted store. The other thing that I think will happen, and this is, I don't talk much, I talk a little bit about it in the book, but there's this whole notion where when we get to the volumes of data that we really talk about where IoT will go by like 2025, it's going to push the physical limitations of how we can accommodate that. So people will begin to use techniques like developing statistical metadata models that are a highly accurate metadata representation of the entirety of the data set, but probably in about one percent of the space that's queryable and suitable for machine learning where it's going to enable you to do what you just physically couldn't do before. So that's a little bit into the future, but there are people doing some fabulous work on that right now and that'll creep into the overall lexicon over time. >> Is that a lightweight digital twin that gives you substantially the same insight? >> It could augment the digital twin in ways that allow you to stand up digital twins where you might not be able to before. The thing that, the example that most people would know about are, like in the Apache ecosystem, there are toolsets like SnappyData that are basically doing approximation, but they're doing it via sampling. And that is a step in that direction, but what you're looking for is very high value approximation that doesn't lose the outlier. So like in IoT, one of the things you normally are looking for is where am I going to pick up on anomalous behavior? Well if I'm using a sample set, and I'm only taking 15%, I by definition am going to lose a lot of that anomalous behavior. So it has to be a holistic representation of the data, but what happens is that that data is transformed into statistics that can be queryable as if it was the atomic data set, but what you're getting is a very high value approximation in a fraction of the space and time and resources. >> Ok, but that's not sampling. >> No, it's statistical metadata. There are, there's a, my last company had developed a thing that we called approximate query, and it was based on that exact set of patents around the formation of a statistical metadata model. It just so happens it's absolutely suited for where IoT is going. It's kind of, IoT isn't really there yet. People are still trying to figure out the edge in its most basic forms, but the sheer weight of the data and the progression of the market is going to force people to be innovative in how they look at some of these things. Just like, if you look at things like privacy, right now, people think in terms of anonymization. And that's, basically, I'm going to de-link data contextually where I'm going to effectively lose the linkages to the context in order to conform with data privacy. But there are techniques, like if you look at GDCAR, their techniques, within certain safe harbors, that allow you to pseudonymize the data where you can actually relink it under certain conditions. And there are some smart people out there solving these problems. That's where the market's going to go, it's just going to get there over time. And what I would also add to this equation is, at the end of the day, right now, the concepts that are in the book about the first receiver and the create, the abstraction of the creation of the data from the consumption of the data, look, it's a pretty basic thing, but it's the type of shift that is going to be required for enterprises to truly leverage the data. The things about statistical metadata and pseudonymization, pseudonymization will come before the statistical metadata. But the market forces are going to drive more and more into those areas, but you got to walk before you run. Right now, most people still have silos, which is interesting, because when you think about the whole notion of the internet of things, it infers that it's this exploitation of understanding the state of physical assets in a very broad based environment. And yet, the funny thing is, most IoT devices are silos that emulate M2M, sort of peer to peer networks just using the internet as a communication vehicle. But that'll change. >> Right, and that's really again, back to the premise of the book. We're going from these individual products, where all the data is locked into the product silo, to this digital fabric, that is an enterprise context, not a product context. >> That's right and if you go to the toolsets that Pentaho offers, the analytic toolsets. Let's just say, now that I've got this rich data set, assuming I'm following basic architectural principles so that I can leverage the maximum amount of data, that now gives me the ability to use these type of toolsets to do far better operational analytics to know what's going on, far better forensic analysis and investigative analytics to mine through the date and do root cause analysis, far better predictive analytics and prescriptive analytics to figure out what will go on, and ultimately feed the machine learning algorithms ultimately to get to in essence, the living organism, the adaptive systems that are continuously changing and adapting to circumstances. That's kind of the Holy Grail. >> You mentioned Hitachi Vantara before. I'm curious what your thoughts are on the Hitachi, you know, two years ago, we saw the acquisition, said, okay, now what? And you know, on paper it sounded good, and now it starts to come together, it starts to make more sense. You know, storage is going to the cloud. HDS says, alright, well we got this Hitachi relationship. But what do you make of that? How do you assess it, and where do you see it going? >> First of all, I actually think the moves that they've done are good. And I would not say that if I didn't think it. I'd just find a politically correct way not to say that. But I do think it's good. So they created the Hitachi Insight Group about a year and a half ago, and now that's been folded into Hitachin Vantara, alongside HDS and Pentaho and I think that it's a fairly logical set of elements coming together. I think they're going down the right path. In full disclosure, I worked for Hitachi Data Systems from '91 til '94, so it's not like I'm a recent employee of them, it's 25 years ago, but my experience with Hitachi corporate and the way they approach things has been unlike a lot of really super large companies, who may be super large, but may not be the best engineers, or may not always get everything done so well, Hitachi's a really formidable organization. And I think what they're doing with Pentaho and HDS and the Insight Group and specifically Lumada, is well thought out and I'm optimistic about where they're going. And by the way, they won't be the only winner in the equation. There's going to be eight or nine different key players, but they'll, I would not short them whatsoever. I have high hopes for them. >> The TAM is enormous. Normally, Hitachi eventually gets to where it wants to go. It's a very thoughtful company. I've been watching them for 30 years. But to a lot of people, the Pentaho and the Insight's play make a lot of sense, and then HDS, you used to work for HDS, lot of infrastructure still, lot of hardware, but a relationship with Hitachi Limited, that is quite strong, where do you see that fit, that third piece of the stool? >> So, this is where there's a few companies that have unique advantages, with Hitachi being one of them. Because if you think about IoT, IoT is the intersection of information technology and operational technology. So it's one thing to say, "I know how to build a database." or "I can build machine learning algorithms," or whatever. It's another thing to say, "I know how to build trains "or CAT scans or smart city lighting systems." And the domain expertise married with the technology delivers a set of capabilities that you can't match without that domain expertise. And, I mean, if you even just reduce it down to artificial intelligence and machine learning, you get an expert ML or AI guy, and they're only as good as the limits of their domain expertise. So that's why, and again, that's why I go back to the comparison to search engines, where there's going to be like, there's Google and maybe Yahoo. There's probably going to be more platform winners because the vertical expertise is going to be very, very important, but there's not going to be 700 of 'em. But Hitachi has an advantage that they bring to the table, 'cause they have very deep roots in energy, in medical equipment, in transportation. All of that will manifest itself in what they're doing in a big way, I think. >> Okay, so, but a lot of the things that you described, and help me understand this, are Hitachi Limited. Now of course, Hitachi Data Systems started as, National Advance Systems was a distribution arm for Hitachi IT products. >> Don: Right, good for you, not many people remember. >> I'm old. So, like I said, I had a 30 year history with this company. Do you foresee that that, and by the way, interestingly, was often criticized back when you were working for HDS, it was like, it's still a distribution hub, but in the last decade, HDS has become much more of a contributor to the innovation and the product strategy and so forth. Having said that, it seems to me advantageous if some of those things you discussed, the trains, the medical equipment, can start flowing back through HDS. I'm not sure if that's explicitly the plan. I didn't necessarily hear that, but it sort of has to, right? >> Well, I'm not privy to those discussions, so it would be conjecture on my part. >> Let's opine, but right, doesn't that make sense? >> Don: It makes perfect sense. >> Because, I mean HDS for years was just this storage silo. And then storage became a very uninteresting business, and credit to Hitachi for pivoting. But it seems to me that they could really, and they probably have a, I had Brian Householder on earlier I wish I had explored this more with him. But it just seems, the question for them is, okay, how are you going to tap those really diverse businesses. I mean, it's a business like a GE or a Siemens. I mean, it's very broad based. >> Well, again, conjecture on my part, but one way I would do it would be to start using Lumada in the various operations, the domain-specific operations right now with Hitachi. Whether they plan to do that or not, I'm not sure of. I've heard that they probably will. >> That's a data play, obviously, right? >> Well it's a platform play. And it's enabling technology that should augment what's already going on in the various elements of Hitachi. Again, I'm, this is conjecture on my part. But you asked, let's just go with this. I would say that makes a lot of sense. I'd be surprised if they don't do that. And I think in the process of doing that, you start to crosspollinate that expertise that gives you a unique advantage. It goes back to if you have unique advantages, you can choose to exploit them or not. Very few companies have the set of unique advantages that somebody like Hitachi has in terms of their engineering and massive reach into so many, you know, Hitachi, GE, Siemens, these are companies that have big reach to the extent that they exploit them or not. One of the things about Hitachi that's different than almost anybody though is they have all this domain expertise, but they've been in the technology-specific business for a long time as well, making computers. And so, they actually already have the internal expertise to crosspollinate, but you know, whether they do it or not, time will tell. >> Well, but it's interesting to watch the big whales, the horses in the track, if you will. Certainly GE has made a lot of noise, like, okay, we're a software company. And now you're seeing, wow, that's not so easy, and then again, I'm sanguine about GE. I think eventually they'll get there. And then you see IBM's got their sort of IoT division. They're bringing in people. Another company with a lot of IT expertise. Not a lot of OT expertise. And then you see Hitachi, who's actually got both. Siemens I don't know as well, but presumably, they're more OT than IT and so you would think that if you had to evaluate the companies' positions, that Hitachi's in a unique position. Certainly have a lot of software. We'll see if they can leverage that in the data play, obviously Pentaho is a key piece of that. >> One would assume, yeah for sure. No, I mean, I again, I think, I'm very optimistic about their future. I think very highly of the people I know inside that I think are playing a role here. You know, it's not like there aren't people at GE that I think highly of, but listen, you know, San Ramon was something that was spun up recently. Hitachi's been doing this for years and years and years. You know, so different players have different capabilities, but Hitachi seems to have sort of a holistic set of capabilities that they can bring together and to date, I've been very impressed with how they've been going about it. And especially with the architecture that they're bringing to bear with Lumada. >> Okay, the book is The Future of IoT, leveraging the shift to a data-centric world. Don DeLoach, and you had a co-author here as well. >> I had two co-authors. One is Wael Elrifai from Pentaho, Hitachi Vantara and the other is Emil Berthelsen, a Gartner analyst who was with Machina Research and then Gartner acquired them and Emil has stayed on with them. Both of them great guys and we wouldn't have this book if it weren't for the three of us together. I never would have pulled this off on my own, so it's a collective work. >> Don DeLoach, great having you on TheCUBE. Thanks very much for coming on. Alright, keep it right there buddy. We'll be back. This is PentahoWorld 2017, and this is TheCUBE. Be right back.

Published Date : Oct 27 2017

SUMMARY :

Brought to you by Hitachi Vantara. of the midwest IoT council. The Future of IoT, leveraging the shift the premise of the book. and communications, and to a is that the market is going to shift and the context of the low-fat But, first of all, that's going to change. So if the product providers are smart, Well and the product guys going to the Walmart might say, and if I'm the fast food chain, Well, plus the widget Doesn't have to be a physical edge. and then propagating it to the devices at the edge where and that's only because the got to be very flexible, especially the larger the enterprise, of the entirety of the data set, in a fraction of the space the linkages to the context in order back to the premise of the book. so that I can leverage the and now it starts to come together, and the Insight Group Pentaho and the Insight's play that they bring to the table, Okay, so, but a lot of the not many people remember. and the product strategy and so forth. to those discussions, and credit to Hitachi for pivoting. in the various operations, It goes back to if you the horses in the track, if you will. that they're bringing to bear with Lumada. leveraging the shift to and the other is Emil 2017, and this is TheCUBE.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
HitachiORGANIZATION

0.99+

GEORGANIZATION

0.99+

Dave VellantePERSON

0.99+

WalmartORGANIZATION

0.99+

Emil BerthelsenPERSON

0.99+

2014DATE

0.99+

SiemensORGANIZATION

0.99+

DavePERSON

0.99+

DisneyORGANIZATION

0.99+

EuropeLOCATION

0.99+

eightQUANTITY

0.99+

IBMORGANIZATION

0.99+

Don DeLoachPERSON

0.99+

Hitachi Data SystemsORGANIZATION

0.99+

Wael ElrifaiPERSON

0.99+

15%QUANTITY

0.99+

Jim HeppelmannPERSON

0.99+

sixQUANTITY

0.99+

YahooORGANIZATION

0.99+

EmilPERSON

0.99+

30 yearQUANTITY

0.99+

HDSORGANIZATION

0.99+

SeaLandORGANIZATION

0.99+

National Advance SystemsORGANIZATION

0.99+

10 vendorsQUANTITY

0.99+

GoogleORGANIZATION

0.99+

30 yearsQUANTITY

0.99+

Insight GroupORGANIZATION

0.99+

Rob TiffanyPERSON

0.99+

700QUANTITY

0.99+

Michael PorterPERSON

0.99+

OneQUANTITY

0.99+

Hitachi LimitedORGANIZATION

0.99+

PentahoORGANIZATION

0.99+

WikibonORGANIZATION

0.99+

threeQUANTITY

0.99+

2025DATE

0.99+

GartnerORGANIZATION

0.99+

The Future of IoTTITLE

0.99+

Brian HouseholderPERSON

0.99+

Hitachi Data SystemsORGANIZATION

0.99+

Machina ResearchORGANIZATION

0.99+

Hitachi LumadaORGANIZATION

0.99+

bothQUANTITY

0.99+

two years agoDATE

0.99+

Orlando, FloridaLOCATION

0.99+

LumadaORGANIZATION

0.99+

DonPERSON

0.99+

Midwest IoT CouncilORGANIZATION

0.99+

TAMORGANIZATION

0.99+

700 winnersQUANTITY

0.99+

two thingsQUANTITY

0.99+

third pieceQUANTITY

0.99+

first tierQUANTITY

0.99+

BothQUANTITY

0.99+

Hitachi Insight GroupORGANIZATION

0.99+

25 years agoDATE

0.99+

Hitachi VantaraORGANIZATION

0.99+

twoQUANTITY

0.98+

10QUANTITY

0.98+

oneQUANTITY

0.98+

each roomQUANTITY

0.98+

USLOCATION

0.98+

TheCUBEORGANIZATION

0.98+