David Flynn Supercloud Audio
>> From every ISV to solve the problems. You want there to be tools in place that you can use, either open source tools or whatever it is that help you build it. And slowly over time, that building will become easier and easier. So my question to you was, where do you see you playing? Do you see yourself playing to ISVs as a set of tools, which will make their life a lot easier and provide that work? >> Absolutely. >> If they don't have, so they don't have to do it. Or you're providing this for the end users? Or both? >> So it's a progression. If you go to the ISVs first, you're doomed to starved before you have time for that other option. >> Yeah. >> Right? So it's a question of phase, the phasing of it. And also if you go directly to end users, you can demonstrate the power of it and get the attention of the ISVs. I believe that the ISVs, especially those with the biggest footprints and the most, you know, coveted estates, they have already made massive investments at trying to solve decentralization of their software stack. And I believe that they have used it as a hook to try to move to a software as a service model and rope people into leasing their infrastructure. So if you look at the clouds that have been propped up by Autodesk or by Adobe, or you name the company, they are building proprietary makeshift solutions for decentralizing or hybrid clouding. Or maybe they're not even doing that at all and all they're is saying hey, if you want to get location agnosticness, then what you should just, is just move into our cloud. >> Right. >> And then they try to solve on the background how to decentralize it between different regions so they can have decent offerings in each region. But those who are more advanced have already made larger investments and will be more averse to, you know, throwing that stuff away, all of their makeshift machinery away, and using a platform that gives them high performance parallel, low level file system access, while at the same time having metadata-driven, you know, policy-based, intent-based orchestration to manage the diffusion of data across a decentralized infrastructure. They are not going to be as open because they've made such an investment and they're going to look at how do they monetize it. So what we have found with like the movie studios who are using us already, many of the app they're using, many of those software offerings, the ISVs have their own cloud that offers that software for the cloud. But what we got when I asked about this, 'cause I was dealt specifically into this question because I'm very interested to know how we're going to make that leap from end user upstream into the ISVs where I believe we need to, and they said, look, we cannot use these software ISV-specific SAS clouds for two reasons. Number one is we lose control of the data. We're giving it to them. That's security and other issues. And here you're talking about we're doing work for Disney, we're doing work for Netflix, and they're not going to let us put our data on those software clouds, on those SAS clouds. Secondly, in any reasonable pipeline, the data is shared by many different applications. We need to be agnostic as to the application. 'Cause the inputs to one application, you know, the output for one application provides the input to the next, and it's not necessarily from the same vendor. So they need to have a data platform that lets them, you know, go from one software stack, and you know, to run it on another. Because they might do the rendering with this and yet, they do the editing with that, and you know, et cetera, et cetera. So I think the further you go up the stack in the structured data and dedicated applications for specific functions in specific verticals, the further up the stack you go, the harder it is to justify a SAS offering where you're basically telling the end users you need to park all your data with us and then you can run your application in our cloud and get this. That ultimately is a dead end path versus having the data be open and available to many applications across this supercloud layer. >> Okay, so-- >> Is that making any sense? >> Yes, so if I could just ask a clarifying question. So, if I had to take Snowflake as an example, I think they're doing exactly what you're saying is a dead end, put everything into our proprietary system and then we'll figure out how to distribute it. >> Yeah. >> And and I think if you're familiar with Zhamak Dehghaniis' data mesh concept. Are you? >> A little bit, yeah. >> But in her model, Snowflake, a Snowflake warehouse is just a node on the mesh and that mesh is-- >> That's right. >> Ultimately the supercloud and you're an enabler of that is what I'm hearing. >> That's right. What they're doing up at the structured level and what they're talking about at the structured level we're doing at the underlying, unstructured level, which by the way has implications for how you implement those distributed database things. In other words, implementing a Snowflake on top of Hammerspace would have made building stuff like in the first place easier. It would allow you to easily shift and run the database engine anywhere. You still have to solve how to shard and distribute at the transaction layer above, so I'm not saying we're a substitute for what you need to do at the app layer. By the way, there is another example of that and that's Microsoft Office, right? It's one thing to share that, to have a file share where you can share all the docs. It's something else to have Word and PowerPoint, Excel know how to allow people to be simultaneously editing the same doc. That's always going to happen in the app layer. But not all applications need that level of, you know, in-app decentralization. You know, many of them, many workflows are pipelined, especially the ones that are very data intensive where you're doing drug discovery or you're doing rendering, or you're doing machine learning training. These things are human in the loop with large stages of processing across tens of thousands of cores. And I think that kind of data processing pipeline is what we're focusing on first. Not so much the Microsoft Office or the Snowflake, you know, parking a relational database because that takes a lot of application layer stuff and that's what they're good at. >> Right. >> But I think... >> Go ahead, sorry. >> Later entrance in these markets will find Hammerspace as a way to accelerate their work so they can focus more narrowly on just the stuff that's app-specific, higher level sharing in the app. >> Yes, Snowflake founders-- >> I think it might be worth mentioning also, just keep this confidential guys, but one of our customers is Blue Origin. And one of the things that we have found is kind of the point of what you're talking about with our customers. They're needing to build this and since it's not commercially available or they don't know where to look for it to be commercially available, they're all building themselves. So this layer is needed. And Blue is just one of the examples of quite a few we're now talking to. And like manufacturing, HPC, research where they're out trying to solve this problem with their own scripting tools and things like that. And I just, I don't know if there's anything you want to add, David, but you know, but there's definitely a demand here and customers are trying to figure out how to solve it beyond what Hammerspace is doing. Like the need is so great that they're just putting developers on trying to do it themselves. >> Well, and you know, Snowflake founders, they didn't have a Hammerspace to lean on. But, one of the things that's interesting about supercloud is we feel as though industry clouds will emerge, that as part of company's digital transformations, they will, you know, every company's a software company, they'll begin to build their own clouds and they will be able to use a Hammerspace to do that. >> A super pass layer. >> Yes. It's really, I don't know if David's speaking, I don't want to speak over him, but we can't hear you. May be going through a bad... >> Well, a regional, regional talks that make that possible. And so they're doing these render farms and editing farms, and it's a cloud-specific to the types of workflows in the median entertainment world. Or clouds specifically to workflows in the chip design world or in the drug and bio and life sciences exploration world. There are large organizations that are kind of a blend of end users, like the Broad, which has their own kind of cloud where they're asking collaborators to come in and work with them. So it starts to even blur who's an end user versus an ISV. >> Yes. >> Right? When you start talking about the massive data is the main gravity is to having lots of people participate. >> Yep, and that's where the value is. And that's where the value is. And this is a megatrend that we see. And so it's really important for us to get to the point of what is and what is not a supercloud and, you know, that's where we're trying to evolve. >> Let's talk about this for a second 'cause I want to, I want to challenge you on something and it's something that I got challenged on and it has led me to thinking differently than I did at first, which Molly can attest to. Okay? So, we have been looking for a way to talk about the concept of cloud of utility computing, run anything anywhere that isn't addressed in today's realization of cloud. 'Cause today's cloud is not run anything anywhere, it's quite the opposite. You park your data in AWS and that's where you run stuff. And you pretty much have to. Same with with Azure. They're using data gravity to keep you captive there, just like the old infrastructure guys did. But now it's even worse because it's coupled back with the software to some degree, as well. And you have to use their storage, networking, and compute. It's not, I mean it fell back to the mainframe era. Anyhow, so I love the concept of supercloud. By the way, I was going to suggest that a better term might be hyper cloud since hyper speaks to the multidimensionality of it and the ability to be in a, you know, be in a different dimension, a different plane of existence kind of thing like hyperspace. But super and hyper are somewhat synonyms. I mean, you have hyper cars and you have super cars and blah, blah, blah. I happen to like hyper maybe also because it ties into the whole Hammerspace notion of a hyper-dimensional, you know, reality, having your data centers connected by a wormhole that is Hammerspace. But regardless, what I got challenged on is calling it something different at all versus simply saying, this is what cloud has always meant to be. This is the true cloud, this is real cloud, this is cloud. And I think back to what happened, you'll remember, at Fusion IO we talked about IO memory and we did that because people had a conceptualization of what an SSD was. And an SSD back then was low capacity, low endurance, made to go military, aerospace where things needed to be rugged but was completely useless in the data center. And we needed people to imagine this thing as being able to displace entire SAND, with the kind of capacity density, performance density, endurance. And so we talked IO memory, we could have said enterprise SSD, and that's what the industry now refers to for that concept. What will people be saying five and 10 years from now? Will they simply say, well this is cloud as it was always meant to be where you are truly able to run anything anywhere and have not only the same APIs, but you're same data available with high performance access, all forms of access, block file and object everywhere. So yeah. And I wonder, and this is just me throwing it out there, I wonder if, well, there's trade offs, right? Giving it a new moniker, supercloud, versus simply talking about how cloud is always intended to be and what it was meant to be, you know, the real cloud or true cloud, there are trade-offs. By putting a name on it and branding it, that lets people talk about it and understand they're talking about something different. But it also is that an affront to people who thought that that's what they already had. >> What's different, what's new? Yes, and so we've given a lot of thought to this. >> Right, it's like you. >> And it's because we've been asked that why does the industry need a new term, and we've tried to address some of that. But some of the inside baseball that we haven't shared is, you remember the Web 2.0, back then? >> Yep. >> Web 2.0 was the same thing. And I remember Tim Burners Lee saying, "Why do we need Web 2.0? "This is what the Web was always supposed to be." But the truth is-- >> I know, that was another perfect-- >> But the truth is it wasn't, number one. Number two, everybody hated the Web 2.0 term. John Furrier was actually in the middle of it all. And then it created this groundswell. So one of the things we wrote about is that supercloud is an evocative term that catalyzes debate and conversation, which is what we like, of course. And maybe that's self-serving. But yeah, HyperCloud, Metacloud, super, meaning, it's funny because super came from Latin supra, above, it was never the superlative. But the superlative was a convenient byproduct that caused a lot of friction and flack, which again, in the media business is like a perfect storm brewing. >> The bad thing to have to, and I think you do need to shake people out of their, the complacency of the limitations that they're used to. And I'll tell you what, the fact that you even have the terms hybrid cloud, multi-cloud, private cloud, edge computing, those are all just referring to the different boundaries that isolate the silo that is the current limited cloud. >> Right. >> So if I heard correctly, what just, in terms of us defining what is and what isn't in supercloud, you would say traditional applications which have to run in a certain place, in a certain cloud can't run anywhere else, would be the stuff that you would not put in as being addressed by supercloud. And over time, you would want to be able to run the data where you want to and in any of those concepts. >> Or even modern apps, right? Or even modern apps that are siloed in SAS within an individual cloud, right? >> So yeah, I guess it's twofold. Number one, if you're going at the high application layers, there's lots of ways that you can give the appearance of anything running anywhere. The ISV, the SAS vendor can engineer stuff to have the ability to serve with low enough latency to different geographies, right? So if you go too high up the stack, it kind of loses its meaning because there's lots of different ways to make due and give the appearance of omni-presence of the service. Okay? As you come down more towards the platform layer, it gets harder and harder to mask the fact that supercloud is something entirely different than just a good regionally-distributed SAS service. So I don't think you, I don't think you can distinguish supercloud if you go too high up the stack because it's just SAS, it's just a good SAS service where the SAS vendor has done the hard work to give you low latency access from different geographic regions. >> Yeah, so this is one of the hardest things, David. >> Common among them. >> Yeah, this is really an important point. This is one of the things I've had the most trouble with is why is this not just SAS? >> So you dilute your message when you go up to the SAS layer. If you were to focus most of this around the super pass layer, the how can you host applications and run them anywhere and not host this, not run a service, not have a service available everywhere. So how can you take any application, even applications that are written, you know, in a traditional legacy data center fashion and be able to run them anywhere and have them have their binaries and their datasets and the runtime environment and the infrastructure to start them and stop them? You know, the jobs, the, what the Kubernetes, the job scheduler? What we're really talking about here, what I think we're really talking about here is building the operating system for a decentralized cloud. What is the operating system, the operating environment for a decentralized cloud? Where you can, and that the main two functions of an operating system or an operating environment are the process scheduler, the thing that's scheduling what is running where and when and so forth, and the file system, right? The thing that's supplying a common view and access to data. So when we talk about this, I think that the strongest argument for supercloud is made when you go down to the platform layer and talk of it, talk about it as an operating environment on which you can run all forms of applications. >> Would you exclude--? >> Not a specific application that's been engineered as a SAS. (audio distortion) >> He'll come back. >> Are you there? >> Yeah, yeah, you just cut out for a minute. >> I lost your last statement when you broke up. >> We heard you, you said that not the specific application. So would you exclude Snowflake from supercloud? >> Frankly, I would. I would. Because, well, and this is kind of hard to do because Snowflake doesn't like to, Frank doesn't like to talk about Snowflake as a SAS service. It has a negative connotation. >> But it is. >> I know, we all know it is. We all know it is and because it is, yes, I would exclude them. >> I think I actually have him on camera. >> There's nothing in common. >> I think I have him on camera or maybe Benoit as saying, "Well, we are a SAS." I think it's Slootman. I think I said to Slootman, "I know you don't like to say you're a SAS." And I think he said, "Well, we are a SAS." >> Because again, if you go to the top of the application stack, there's any number of ways you can give it location agnostic function or you know, regional, local stuff. It's like let's solve the location problem by having me be your one location. How can it be decentralized if you're centralizing on (audio distortion)? >> Well, it's more decentralized than if it's all in one cloud. So let me actually, so the spectrum. So again, in the spirit of what is and what isn't, I think it's safe to say Hammerspace is supercloud. I think there's no debate there, right? Certainly among this crowd. And I think we can all agree that Dell, Dell Storage is not supercloud. Where it gets fuzzy is this Snowflake example or even, how about a, how about a Cohesity that instantiates its stack in different cloud regions in different clouds, and synchronizes, however magic sauce it does that. Is that a supercloud? I mean, so I'm cautious about having too strict of a definition 'cause then only-- >> Fair enough, fair enough. >> But I could use your help and thoughts on that. >> So I think we're talking about two different spectrums here. One is the spectrum of platform to application-specific. As you go up the application stack and it becomes this specific thing. Or you go up to the more and more structured where it's serving a specific application function where it's more of a SAS thing. I think it's harder to call a SAS service a supercloud. And I would argue that the reason there, and what you're lacking in the definition is to talk about it as general purpose. Okay? Now, that said, a data warehouse is general purpose at the structured data level. So you could make the argument for why Snowflake is a supercloud by saying that it is a general purpose platform for doing lots of different things. It's just one at a higher level up at the structured data level. So one spectrum is the high level going from platform to, you know, unstructured data to structured data to very application-specific, right? Like a specific, you know, CAD/CAM mechanical design cloud, like an Autodesk would want to give you their cloud for running, you know, and sharing CAD/CAM designs, doing your CAD/CAM anywhere stuff. Well, the other spectrum is how well does the purported supercloud technology actually live up to allowing you to run anything anywhere with not just the same APIs but with the local presence of data with the exact same runtime environment everywhere, and to be able to correctly manage how to get that runtime environment anywhere. So a Cohesity has some means of running things in different places and some means of coordinating what's where and of serving diff, you know, things in different places. I would argue that it is a very poor approximation of what Hammerspace does in providing the exact same file system with local high performance access everywhere with metadata ability to control where the data is actually instantiated so that you don't have to wait for it to get orchestrated. But even then when you do have to wait for it, it happens automatically and so it's still only a matter of, well, how quick is it? And on the other end of the spectrum is you could look at NetApp with Flexcache and say, "Is that supercloud?" And I would argue, well kind of because it allows you to run things in different places because it's a cache. But you know, it really isn't because it presumes some central silo from which you're cacheing stuff. So, you know, is it or isn't it? Well, it's on a spectrum of exactly how fully is it decoupling a runtime environment from specific locality? And I think a cache doesn't, it stretches a specific silo and makes it have some semblance of similar access in other places. But there's still a very big difference to the central silo, right? You can't turn off that central silo, for example. >> So it comes down to how specific you make the definition. And this is where it gets kind of really interesting. It's like cloud. Does IBM have a cloud? >> Exactly. >> I would say yes. Does it have the kind of quality that you would expect from a hyper-scale cloud? No. Or see if you could say the same thing about-- >> But that's a problem with choosing a name. That's the problem with choosing a name supercloud versus talking about the concept of cloud and how true up you are to that concept. >> For sure. >> Right? Because without getting a name, you don't have to draw, yeah. >> I'd like to explore one particular or bring them together. You made a very interesting observation that from a enterprise point of view, they want to safeguard their store, their data, and they want to make sure that they can have that data running in their own workflows, as well as, as other service providers providing services to them for that data. So, and in in particular, if you go back to, you go back to Snowflake. If Snowflake could provide the ability for you to have your data where you wanted, you were in charge of that, would that make Snowflake a supercloud? >> I'll tell you, in my mind, they would be closer to my conceptualization of supercloud if you can instantiate Snowflake as software on your own infrastructure, and pump your own data to Snowflake that's instantiated on your own infrastructure. The fact that it has to be on their infrastructure or that it's on their, that it's on their account in the cloud, that you're giving them the data and they're, that fundamentally goes against it to me. If they, you know, they would be a pure, a pure plate if they were a software defined thing where you could instantiate Snowflake machinery on the infrastructure of your choice and then put your data into that machinery and get all the benefits of Snowflake. >> So did you see--? >> In other words, if they were not a SAS service, but offered all of the similar benefits of being, you know, if it were a service that you could run on your own infrastructure. >> So did you see what they announced, that--? >> I hope that's making sense. >> It does, did you see what they announced at Dell? They basically announced the ability to take non-native Snowflake data, read it in from an object store on-prem, like a Dell object store. They do the same thing with Pure, read it in, running it in the cloud, and then push it back out. And I was saying to Dell, look, that's fine. Okay, that's interesting. You're taking a materialized view or an extended table, whatever you're doing, wouldn't it be more interesting if you could actually run the query locally with your compute? That would be an extension that would actually get my attention and extend that. >> That is what I'm talking about. That's what I'm talking about. And that's why I'm saying I think Hammerspace is more progressive on that front because with our technology, anybody who can instantiate a service, can make a service. And so I, so MSPs can use Hammerspace as a way to build a super pass layer and host their clients on their infrastructure in a cloud-like fashion. And their clients can have their own private data centers and the MSP or the public clouds, and Hammerspace can be instantiated, get this, by different parties in these different pieces of infrastructure and yet linked together to make a common file system across all of it. >> But this is data mesh. If I were HPE and Dell it's exactly what I'd be doing. I'd be working with Hammerspace to create my own data. I'd work with Databricks, Snowflake, and any other-- >> Data mesh is a good way to put it. Data mesh is a good way to put it. And this is at the lowest level of, you know, the underlying file system that's mountable by the operating system, consumed as a real file system. You can't get lower level than that. That's why this is the foundation for all of the other apps and structured data systems because you need to have a data mesh that can at least mesh the binary blob. >> Okay. >> That hold the binaries and that hold the datasets that those applications are running. >> So David, in the third week of January, we're doing supercloud 2 and I'm trying to convince John Furrier to make it a data slash data mesh edition. I'm slowly getting him to the knothole. I would very much, I mean you're in the Bay Area, I'd very much like you to be one of the headlines. As Zhamak Dehghaniis going to speak, she's the creator of Data Mesh, >> Sure. >> I'd love to have you come into our studio as well, for the live session. If you can't make it, we can pre-record. But you're right there, so I'll get you the dates. >> We'd love to, yeah. No, you can count on it. No, definitely. And you know, we don't typically talk about what we do as Data Mesh. We've been, you know, using global data environment. But, you know, under the covers, that's what the thing is. And so yeah, I think we can frame the discussion like that to line up with other, you know, with the other discussions. >> Yeah, and Data Mesh, of course, is one of those evocative names, but she has come up with some very well defined principles around decentralized data, data as products, self-serve infrastructure, automated governance, and and so forth, which I think your vision plugs right into. And she's brilliant. You'll love meeting her. >> Well, you know, and I think.. Oh, go ahead. Go ahead, Peter. >> Just like to work one other interface which I think is important. How do you see yourself and the open source? You talked about having an operating system. Obviously, Linux is the operating system at one level. How are you imagining that you would interface with cost community as part of this development? >> Well, it's funny you ask 'cause my CTO is the kernel maintainer of the storage networking stack. So how the Linux operating system perceives and consumes networked data at the file system level, the network file system stack is his purview. He owns that, he wrote most of it over the last decade that he's been the maintainer, but he's the gatekeeper of what goes in. And we have leveraged his abilities to enhance Linux to be able to use this decentralized data, in particular with decoupling the control plane driven by metadata from the data access path and the many storage systems on which the data gets accessed. So this factoring, this splitting of control plane from data path, metadata from data, was absolutely necessary to create a data mesh like we're talking about. And to be able to build this supercloud concept. And the highways on which the data runs and the client which knows how to talk to it is all open source. And we have, we've driven the NFS 4.2 spec. The newest NFS spec came from my team. And it was specifically the enhancements needed to be able to build a spanning file system, a data mesh at a file system level. Now that said, our file system itself and our server, our file server, our data orchestration, our data management stuff, that's all closed source, proprietary Hammerspace tech. But the highways on which the mesh connects are actually all open source and the client that knows how to consume it. So we would, honestly, I would welcome competitors using those same highways. They would be at a major disadvantage because we kind of built them, but it would still be very validating and I think only increase the potential adoption rate by more than whatever they might take of the market. So it'd actually be good to split the market with somebody else to come in and share those now super highways for how to mesh data at the file system level, you know, in here. So yeah, hopefully that answered your question. Does that answer the question about how we embrace the open source? >> Right, and there was one other, just that my last one is how do you enable something to run in every environment? And if we take the edge, for example, as being, as an environment which is much very, very compute heavy, but having a lot less capability, how do you do a hold? >> Perfect question. Perfect question. What we do today is a software appliance. We are using a Linux RHEL 8, RHEL 8 equivalent or a CentOS 8, or it's, you know, they're all roughly equivalent. But we have bundled and a software appliance which can be instantiated on bare metal hardware on any type of VM system from VMware to all of the different hypervisors in the Linux world, to even Nutanix and such. So it can run in any virtualized environment and it can run on any cloud instance, server instance in the cloud. And we have it packaged and deployable from the marketplaces within the different clouds. So you can literally spin it up at the click of an API in the cloud on instances in the cloud. So with all of these together, you can basically instantiate a Hammerspace set of machinery that can offer up this file system mesh. like we've been using the terminology we've been using now, anywhere. So it's like being able to take and spin up Snowflake and then just be able to install and run some VMs anywhere you want and boom, now you have a Snowflake service. And by the way, it is so complete that some of our customers, I would argue many aren't even using public clouds at all, they're using this just to run their own data centers in a cloud-like fashion, you know, where they have a data service that can span it all. >> Yeah and to Molly's first point, we would consider that, you know, cloud. Let me put you on the spot. If you had to describe conceptually without a chalkboard what an architectural diagram would look like for supercloud, what would you say? >> I would say it's to have the same runtime environment within every data center and defining that runtime environment as what it takes to schedule the execution of applications, so job scheduling, runtime stuff, and here we're talking Kubernetes, Slurm, other things that do job scheduling. We're talking about having a common way to, you know, instantiate compute resources. So a global compute environment, having a common compute environment where you can instantiate things that need computing. Okay? So that's the first part. And then the second is the data platform where you can have file block and object volumes, and have them available with the same APIs in each of these distributed data centers and have the exact same data omnipresent with the ability to control where the data is from one moment to the next, local, where all the data is instantiate. So my definition would be a common runtime environment that's bifurcate-- >> Oh. (attendees chuckling) We just lost them at the money slide. >> That's part of the magic makes people listen. We keep someone on pin and needles waiting. (attendees chuckling) >> That's good. >> Are you back, David? >> I'm on the edge of my seat. Common runtime environment. It was like... >> And just wait, there's more. >> But see, I'm maybe hyper-focused on the lower level of what it takes to host and run applications. And that's the stuff to schedule what resources they need to run and to get them going and to get them connected through to their persistence, you know, and their data. And to have that data available in all forms and have it be the same data everywhere. On top of that, you could then instantiate applications of different types, including relational databases, and data warehouses and such. And then you could say, now I've got, you know, now I've got these more application-level or structured data-level things. I tend to focus less on that structured data level and the application level and am more focused on what it takes to host any of them generically on that super pass layer. And I'll admit, I'm maybe hyper-focused on the pass layer and I think it's valid to include, you know, higher levels up the stack like the structured data level. But as soon as you go all the way up to like, you know, a very specific SAS service, I don't know that you would call that supercloud. >> Well, and that's the question, is there value? And Marianna Tessel from Intuit said, you know, we looked at it, we did it, and it just, it was actually negative value for us because connecting to all these separate clouds was a real pain in the neck. Didn't bring us any additional-- >> Well that's 'cause they don't have this pass layer underneath it so they can't even shop around, which actually makes it hard to stand up your own SAS service. And ultimately they end up having to build their own infrastructure. Like, you know, I think there's been examples like Netflix moving away from the cloud to their own infrastructure. Basically, if you're going to rent it for more than a few months, it makes sense to build it yourself, if it's at any kind of scale. >> Yeah, for certain components of that cloud. But if the Goldman Sachs came to you, David, and said, "Hey, we want to collaborate and we want to build "out a cloud and essentially build our SAS system "and we want to do that with Hammerspace, "and we want to tap the physical infrastructure "of not only our data centers but all the clouds," then that essentially would be a SAS, would it not? And wouldn't that be a Super SAS or a supercloud? >> Well, you know, what they may be using to build their service is a supercloud, but their service at the end of the day is just a SAS service with global reach. Right? >> Yeah. >> You know, look at, oh shoot. What's the name of the company that does? It has a cloud for doing bookkeeping and accounting. I forget their name, net something. NetSuite. >> NetSuite. NetSuite, yeah, Oracle. >> Yeah. >> Yep. >> Oracle acquired them, right? Is NetSuite a supercloud or is it just a SAS service? You know? I think under the covers you might ask are they using supercloud under the covers so that they can run their SAS service anywhere and be able to shop the venue, get elasticity, get all the benefits of cloud in the, to the benefit of their service that they're offering? But you know, folks who consume the service, they don't care because to them they're just connecting to some endpoint somewhere and they don't have to care. So the further up the stack you go, the more location-agnostic it is inherently anyway. >> And I think it's, paths is really the critical layer. We thought about IAS Plus and we thought about SAS Minus, you know, Heroku and hence, that's why we kind of got caught up and included it. But SAS, I admit, is the hardest one to crack. And so maybe we exclude that as a deployment model. >> That's right, and maybe coming down a level to saying but you can have a structured data supercloud, so you could still include, say, Snowflake. Because what Snowflake is doing is more general purpose. So it's about how general purpose it is. Is it hosting lots of other applications or is it the end application? Right? >> Yeah. >> So I would argue general purpose nature forces you to go further towards platform down-stack. And you really need that general purpose or else there is no real distinguishing. So if you want defensible turf to say supercloud is something different, I think it's important to not try to wrap your arms around SAS in the general sense. >> Yeah, and we've kind of not really gone, leaned hard into SAS, we've just included it as a deployment model, which, given the constraints that you just described for structured data would apply if it's general purpose. So David, super helpful. >> Had it sign. Define the SAS as including the hybrid model hold SAS. >> Yep. >> Okay, so with your permission, I'm going to add you to the list of contributors to the definition. I'm going to add-- >> Absolutely. >> I'm going to add this in. I'll share with Molly. >> Absolutely. >> We'll get on the calendar for the date. >> If Molly can share some specific language that we've been putting in that kind of goes to stuff we've been talking about, so. >> Oh, great. >> I think we can, we can share some written kind of concrete recommendations around this stuff, around the general purpose, nature, the common data thing and yeah. >> Okay. >> Really look forward to it and would be glad to be part of this thing. You said it's in February? >> It's in January, I'll let Molly know. >> Oh, January. >> What the date is. >> Excellent. >> Yeah, third week of January. Third week of January on a Tuesday, whatever that is. So yeah, we would welcome you in. But like I said, if it doesn't work for your schedule, we can prerecord something. But it would be awesome to have you in studio. >> I'm sure with this much notice we'll be able to get something. Let's make sure we have the dates communicated to Molly and she'll get my admin to set it up outside so that we have it. >> I'll get those today to you, Molly. Thank you. >> By the way, I am so, so pleased with being able to work with you guys on this. I think the industry needs it very bad. They need something to break them out of the box of their own mental constraints of what the cloud is versus what it's supposed to be. And obviously, the more we get people to question their reality and what is real, what are we really capable of today that then the more business that we're going to get. So we're excited to lend the hand behind this notion of supercloud and a super pass layer in whatever way we can. >> Awesome. >> Can I ask you whether your platforms include ARM as well as X86? >> So we have not done an ARM port yet. It has been entertained and won't be much of a stretch. >> Yeah, it's just a matter of time. >> Actually, entertained doing it on behalf of NVIDIA, but it will absolutely happen because ARM in the data center I think is a foregone conclusion. Well, it's already there in some cases, but not quite at volume. So definitely will be the case. And I'll tell you where this gets really interesting, discussion for another time, is back to my old friend, the SSD, and having SSDs that have enough brains on them to be part of that fabric. Directly. >> Interesting. Interesting. >> Very interesting. >> Directly attached to ethernet and able to create a data mesh global file system, that's going to be really fascinating. Got to run now. >> All right, hey, thanks you guys. Thanks David, thanks Molly. Great to catch up. Bye-bye. >> Bye >> Talk to you soon.
SUMMARY :
So my question to you was, they don't have to do it. to starved before you have I believe that the ISVs, especially those the end users you need to So, if I had to take And and I think Ultimately the supercloud or the Snowflake, you know, more narrowly on just the stuff of the point of what you're talking Well, and you know, Snowflake founders, I don't want to speak over So it starts to even blur who's the main gravity is to having and, you know, that's where to be in a, you know, a lot of thought to this. But some of the inside baseball But the truth is-- So one of the things we wrote the fact that you even have that you would not put in as to give you low latency access the hardest things, David. This is one of the things I've the how can you host applications Not a specific application Yeah, yeah, you just statement when you broke up. So would you exclude is kind of hard to do I know, we all know it is. I think I said to Slootman, of ways you can give it So again, in the spirit But I could use your to allowing you to run anything anywhere So it comes down to how quality that you would expect and how true up you are to that concept. you don't have to draw, yeah. the ability for you and get all the benefits of Snowflake. of being, you know, if it were a service They do the same thing and the MSP or the public clouds, to create my own data. for all of the other apps and that hold the datasets So David, in the third week of January, I'd love to have you come like that to line up with other, you know, Yeah, and Data Mesh, of course, is one Well, you know, and I think.. and the open source? and the client which knows how to talk and then just be able to we would consider that, you know, cloud. and have the exact same data We just lost them at the money slide. That's part of the I'm on the edge of my seat. And that's the stuff to schedule Well, and that's the Like, you know, I think But if the Goldman Sachs Well, you know, what they may be using What's the name of the company that does? NetSuite, yeah, Oracle. So the further up the stack you go, But SAS, I admit, is the to saying but you can have a So if you want defensible that you just described Define the SAS as including permission, I'm going to add you I'm going to add this in. We'll get on the calendar to stuff we've been talking about, so. nature, the common data thing and yeah. to it and would be glad to have you in studio. and she'll get my admin to set it up I'll get those today to you, Molly. And obviously, the more we get people So we have not done an ARM port yet. because ARM in the data center I think is Interesting. that's going to be really fascinating. All right, hey, thanks you guys.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Slootman | PERSON | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
Adobe | ORGANIZATION | 0.99+ |
Molly | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
Frank | PERSON | 0.99+ |
Disney | ORGANIZATION | 0.99+ |
Goldman Sachs | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
January | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
February | DATE | 0.99+ |
Peter | PERSON | 0.99+ |
Zhamak Dehghaniis | PERSON | 0.99+ |
Hammerspace | ORGANIZATION | 0.99+ |
Word | TITLE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
RHEL 8 | TITLE | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Benoit | PERSON | 0.99+ |
Excel | TITLE | 0.99+ |
second | QUANTITY | 0.99+ |
Autodesk | ORGANIZATION | 0.99+ |
CentOS 8 | TITLE | 0.99+ |
David Flynn | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
PowerPoint | TITLE | 0.99+ |
first point | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Tuesday | DATE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
first part | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
each region | QUANTITY | 0.98+ |
Linux | TITLE | 0.98+ |
One | QUANTITY | 0.98+ |
Intuit | ORGANIZATION | 0.98+ |
Tim Burners Lee | PERSON | 0.98+ |
Zhamak Dehghaniis' | PERSON | 0.98+ |
Blue Origin | ORGANIZATION | 0.98+ |
Bay Area | LOCATION | 0.98+ |
two reasons | QUANTITY | 0.98+ |
each | QUANTITY | 0.98+ |
one application | QUANTITY | 0.98+ |
Snowflake | TITLE | 0.98+ |
first | QUANTITY | 0.98+ |
more than a few months | QUANTITY | 0.97+ |
SAS | ORGANIZATION | 0.97+ |
ARM | ORGANIZATION | 0.97+ |
Microsoft | ORGANIZATION | 0.97+ |
David Flynn, Hammerspace | AWS re:Invent 2018
>> Live from Las Vegas. It's theCUBE. Covering AWS re:Invent 2018. Brought to you by Amazon Web Services, Intel and their ecosystem partners. >> And welcome back to our continuing coverage here on theCUBE of AWS re:Invent, we're on day three of three days of wall to wall coverage that we've brought you here from the Sands Expo along with David Vellante, I'm John Walls. Glad you're with us here, we're joined by David Flynn from Hammerspace, and David, good afternoon to you. >> Good afternoon. >> Been quite a year for you, right? >> Yeah. >> This has been something else. Set us up a little bit about where you've been, the journey you're on right now with Hammerspace and maybe for folks at home who aren't familiar, a little bit about what you do. >> So Hammerspace is all about data agility. We believe that data should be like the air you breathe, where you need it, when you need it, without having to think about it. Today, data's managed by copying it between the sundry different types of storage. And that's 'cause we're managing data through the storage system itself. What we want is for data to simply be there, when you need it. So it's all about data agility. >> I need to know more. So let's talk about some of your past endeavors. Fusion-io we watched you grow that company from just an idea. You solved the block storage problem, you solved the performance problems, amazing what you guys did with that company. My understanding is you're focused on file. >> That's right. >> Which is a much larger-- >> Unstructured data in general file and object. >> So a much larger proportion of the data that's out there. >> Yes. >> What's the problem that you guys are going after? >> Well at Fusion-io and this was pre-flash, now flash everybody takes it for granted. When we started it didn't really exist in the data center. And if you're using SAN, most likely it's for performance. And there's a better way to get performance with flash down in the server. Very successful with that. Now the problem is, people want the ease of managablility of having a global name space of file and object name space. And that's what we're tackling now because file is not native in the Cloud. It's kind of an afterthought. And all of these different forms of storage represents silos into which you copy data, from on-prem into cloud, between the different types of storage, from one site to another. This is what we're addressing with virtualizing the data, putting powerful metadata in control of how that data's realized across multiple data centers across the different types of storage, so that you see it as a single piece of data regardless of where it lives. >> Okay so file's not a first class citizen. You're making copies, moving data all over the place. You got copy creep going on. >> It's like cutting off Hydra's head. When you manage data by copying it you're just making more of it and that's because the metadata's down with the data. Every time you make a copy, it's a new piece of data that needs to be managed. >> So talk more about the metadata structure, architecture, what you guys are envisioning? >> Fundamentally, the technology is a separate metadata control plane that is powerful enough to present data as both file and object. And takes that powerful metadata, and puts it in control of where the data is realized, both in terms of what data center it's in, as well as what type of storage it's on, allowing you to tap into the full dynamic range of the performance of server-attached flash, of course Fusion-io, very near and dear to my heart, getting tens of millions of I-ops and tens of gigabytes per second, you can't do that across the network. You have to have the data be very agile, and be able to be promoted into the server. And then be able to manage it all the way to global scale between whole different data centers. So that's the magic of being able to cover the full dynamic range performance to capacity, scale and distance, and have it be that same piece of data that's simply instantiated, where you need it, when you need it, based on the power of the metadata. >> So when you talk about object, you talk about a simplified means of interacting, it's a get-put paradigm right? >> That's right. >> So that's something that you're checking up? >> That's right, ultimately you need to also have random read and write semantics and very high performance, and today, the standard model is you put your data in object storage and then you have your application rewritten to pull it down, store it on some local storage, to work with it and then put it back. And that's great for very large-scale applications, where you can invest the effort to rewrite them. But what about the world where they want the convenience of, the data is simply there, in something that you can mount as a file system or access as object, and it can be at the highest performance of random IO against local flash, all the way to cold in the Cloud where it's cheap. >> I get it so it's like great for Shutterfly 'cause they've got the resources to rewrite the application but for everybody else. >> That's right, and that's why the web scalers pioneered the notion of object storage and we helped them with the local block to get very, very high performance. So that bifurcated world, because the spectrum got stretched so wide that a single size fits all no longer works. So you have to kind of take object on the capacity, distance and scale side, and block, local on the performance side. But what I realized early on, all the way back to Fusion-io is that it is possible to have a shared namespace, both file system and object, that can span that whole spectrum. But to do that you have to provide really powerful metadata as a separate service that has the competency to actually manage the realization of the data across the infrastructure. >> You know David you talk about data agility, so that's what we're all about right? We're all about being agile. Just conceptually today, a lot more data than you've ever had to deal with before. In a lot more places. >> It's a veritable forest. >> With a lot more demands, so just fundamentally, how do you secure that agility. How can you provide that kind of reliability and agility, in that environment, like the challenge for you. >> Oh yeah. Well the challenge really goes back to the fact that the network storage protocols haven't had innovation for like 20 years because of the world of NAS being so dominant by a few players, well one. There really hasn't been a lot of innovation. Y'know NFSv3 three has been around for decades. NFSv4 didn't really happen. It was slower and worse off. At the heart of the storage networking protocols for presenting a file system, it hadn't even been enhanced to be able to communicate across hostile networks. So how are you going to use that at the kind of scale and distance of cloud, right? So what I did, after leaving Fusion-io, was I went and teamed up with the world's top experts. We're talking here about Trent Micklebus, the Linux Kernel author and maintainer of the storage networking stack. And we have spent the last five plus years fixing the fundamental plumbing that makes it possible to bring the shared file semantic into something that becomes cloud native. And that really is two things. One is about the ability to scale, both performance, capacity, in the metadata and in the data. And you couldn't do that before because NAS systems fundamentally have the metadata and data together. Splitting the two allows you to scale them both. So scale is one. Also the ability to secure it over large distances and networks, the ability to operate in an eventually consistent, to work across multiple datacenters. NAS had never made the multi-datacenter leap. Or the securing it across other networks, it just hadn't got there. But that is actually secondary compared to the fact that the world of NAS is very focused on the infrastructure guys and the storage admin. And what you have to do is elevate the discussion to be about the data user and empower them with powerful metadata to do self service. And as a service so that they can completely automate all of the concerns about the infrastructure. 'Cause if there's anything that's cloud, it's being able to delegate and hand off the infrastructure concerns, and you simply can't do that when you're focused at it from a storage administration and data janitorial kind of model. >> So I want to pause for a second and just talk to our audience and just stress how important it is to pay attention to this man. So there's no such thing as a sure thing in business. But there is one sure thing that is if David Flynn's involved you're going to disrupt something so you disrupted Scuzzy, the horrible storage stack. So when you hear things today like NVME and CAPPY and Atomic Rights and storage class memory, you got it all started. Fusion-io. >> That's right. >> And that was your vision that really got that started up. When I used to talk to people about that they would say I'm crazy, and you educated myself and Floyer and now you see it coming to fruition today. So you're taking aim at decades old infrastructure and protocols called NAS, and trying to do the same thing at Cloud scale, which is obviously something you know a lot about. >> That's right. I mean if you think about it. The spectrum of data, goes from performance on the one hand to ease of manageability, distance and scale, cost capacity versus cost performance. And that's inherent to our physical universe because it takes time to propagate information to a distance and to get ease of manageability to encode things very, very tight to get capacity efficiency, takes time, which works against performance. And as technology advances the spectrum only gets wider, and that's why we're stuck to the point of having to bifurcate it, that performance is locally attached flash. And that's what I pioneered with flash in the server in NVME. I told everybody, EMC, SAN, it sucks. If you want performance put flash in the server. Now we're saying if you want ease of use and manageability there's a better way to do that than NAS, and even object storage. It's to separate the metadata as a distinct control plane that is put in charge of managing data through very rich and powerful metadata, and that puts the data owner in control of their data. Not just across different types of storage in the performance capacity spectrum, but also across on-prem and in the Cloud, and across multi-cloud. 'Cause the Cloud after all is just another big storage silo. And given the inertia of data, they've got you by the balls when they've got all the data there. (laughing) I'm sorry, I know I'm at AWS I should be careful what I say. >> Well this is live. >> Yeah, okay so they can't censor us, right. So just like the storage vendors of yesteryear, would charge you an arm and a leg when their arrays were out of service, to get out of your service, because they knew that if you were trying to extend the service life of that, that that's because it was really hard for you to get the data off of it because you had to suffer application downtime and all of that. In the same fashion, when you have your data in the Cloud, the egress costs are so expensive. And so this is all about putting the data owner in control of the data by giving them a rich powerful metadata platform to do that. >> You always want to have strategies that give you flexibility, exit strategies if things don't work out, so that's fascinating. I know we got to wrap, but give us the low-down on the company, the funding, what can you share with us. Go-to-market, et cetera. >> So it's a tightly held company. I was very successful financially. So from that point of view we're... >> Self-funded. >> Self-funded, funded from angels. I made some friends with Fusion-io right? So from that point of view yeah, it's the highest power team you can get. I mean these are great guys, the Linux Kernel maintainer on the storage networking stack. This was a heavy lift because you have to fix the fundamental plumbing in the way storage networking works so that you can, it's like a directories service for data, and then all the management service. This has been a while in the making, but it's that foundational engineering. >> You love heavy lifts. >> I love hard problems. >> I feel like I mis-introduced you, I should have said the great disruptor is what I should have said. >> Well, we'll see. I think disrupting the performance side was a pure play and very easy. Disrupting the ease of use side of the data spectrum, that's the fun one that's actually so transformative because it touches the people that use the data. >> Well best of luck. It was really, I'm excited for ya. >> Thanks for joining us David. Appreciate the time. David Flynn joined up from Hammerspace, and back with more on theCUBE at AWS re:Invent. (upbeat music)
SUMMARY :
Brought to you by Amazon Web Services, Intel that we've brought you here from the Sands Expo the journey you're on right now with Hammerspace We believe that data should be like the air you breathe, You solved the block storage problem, from on-prem into cloud, between the different types You're making copies, moving data all over the place. of it and that's because the metadata's down with the data. So that's the magic of being able to cover the full dynamic the data is simply there, in something that you can mount they've got the resources to rewrite the application But to do that you have to provide really powerful metadata You know David you talk about data agility, in that environment, like the challenge for you. Splitting the two allows you to scale them both. So when you hear things today like NVME and CAPPY and now you see it coming to fruition today. And given the inertia of data, they've got you by the balls In the same fashion, when you have your data in the Cloud, the company, the funding, what can you share with us. So from that point of view we're... so that you can, it's like a directories service for data, the great disruptor is what I should have said. that's the fun one that's actually so transformative Well best of luck. Appreciate the time.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
David Flynn | PERSON | 0.99+ |
David Vellante | PERSON | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
John Walls | PERSON | 0.99+ |
Trent Micklebus | PERSON | 0.99+ |
20 years | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Today | DATE | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
three days | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
tens of millions | QUANTITY | 0.99+ |
Sands Expo | EVENT | 0.98+ |
both | QUANTITY | 0.98+ |
Hammerspace | ORGANIZATION | 0.98+ |
Linux Kernel | TITLE | 0.97+ |
one | QUANTITY | 0.96+ |
one site | QUANTITY | 0.96+ |
Shutterfly | ORGANIZATION | 0.95+ |
single piece | QUANTITY | 0.91+ |
day three | QUANTITY | 0.9+ |
tens of gigabytes per second | QUANTITY | 0.89+ |
single size | QUANTITY | 0.87+ |
decades | QUANTITY | 0.87+ |
last five plus years | DATE | 0.85+ |
Fusion-io | TITLE | 0.83+ |
Invent | EVENT | 0.82+ |
a second | QUANTITY | 0.8+ |
NFSv4 | TITLE | 0.79+ |
one sure thing | QUANTITY | 0.78+ |
AWS re:Invent 2018 | EVENT | 0.76+ |
Hammerspace | TITLE | 0.76+ |
I-ops | QUANTITY | 0.75+ |
NVME | TITLE | 0.74+ |
both file | QUANTITY | 0.74+ |
NFSv3 three | TITLE | 0.73+ |
first class | QUANTITY | 0.73+ |
EMC | ORGANIZATION | 0.73+ |
CAPPY | TITLE | 0.72+ |
Hydra | ORGANIZATION | 0.7+ |
Fusion-io | ORGANIZATION | 0.69+ |
re:Invent | EVENT | 0.65+ |
Scuzzy | PERSON | 0.61+ |
Fusion- | ORGANIZATION | 0.6+ |
Atomic | TITLE | 0.58+ |
io | TITLE | 0.52+ |
2018 | TITLE | 0.51+ |
Floyer | ORGANIZATION | 0.49+ |
re | EVENT | 0.4+ |
Breaking Analysis: ChatGPT Won't Give OpenAI First Mover Advantage
>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> OpenAI The company, and ChatGPT have taken the world by storm. Microsoft reportedly is investing an additional 10 billion dollars into the company. But in our view, while the hype around ChatGPT is justified, we don't believe OpenAI will lock up the market with its first mover advantage. Rather, we believe that success in this market will be directly proportional to the quality and quantity of data that a technology company has at its disposal, and the compute power that it could deploy to run its system. Hello and welcome to this week's Wikibon CUBE insights, powered by ETR. In this Breaking Analysis, we unpack the excitement around ChatGPT, and debate the premise that the company's early entry into the space may not confer winner take all advantage to OpenAI. And to do so, we welcome CUBE collaborator, alum, Sarbjeet Johal, (chuckles) and John Furrier, co-host of the Cube. Great to see you Sarbjeet, John. Really appreciate you guys coming to the program. >> Great to be on. >> Okay, so what is ChatGPT? Well, actually we asked ChatGPT, what is ChatGPT? So here's what it said. ChatGPT is a state-of-the-art language model developed by OpenAI that can generate human-like text. It could be fine tuned for a variety of language tasks, such as conversation, summarization, and language translation. So I asked it, give it to me in 50 words or less. How did it do? Anything to add? >> Yeah, think it did good. It's large language model, like previous models, but it started applying the transformers sort of mechanism to focus on what prompt you have given it to itself. And then also the what answer it gave you in the first, sort of, one sentence or two sentences, and then introspect on itself, like what I have already said to you. And so just work on that. So it it's self sort of focus if you will. It does, the transformers help the large language models to do that. >> So to your point, it's a large language model, and GPT stands for generative pre-trained transformer. >> And if you put the definition back up there again, if you put it back up on the screen, let's see it back up. Okay, it actually missed the large, word large. So one of the problems with ChatGPT, it's not always accurate. It's actually a large language model, and it says state of the art language model. And if you look at Google, Google has dominated AI for many times and they're well known as being the best at this. And apparently Google has their own large language model, LLM, in play and have been holding it back to release because of backlash on the accuracy. Like just in that example you showed is a great point. They got almost right, but they missed the key word. >> You know what's funny about that John, is I had previously asked it in my prompt to give me it in less than a hundred words, and it was too long, I said I was too long for Breaking Analysis, and there it went into the fact that it's a large language model. So it largely, it gave me a really different answer the, for both times. So, but it's still pretty amazing for those of you who haven't played with it yet. And one of the best examples that I saw was Ben Charrington from This Week In ML AI podcast. And I stumbled on this thanks to Brian Gracely, who was listening to one of his Cloudcasts. Basically what Ben did is he took, he prompted ChatGPT to interview ChatGPT, and he simply gave the system the prompts, and then he ran the questions and answers into this avatar builder and sped it up 2X so it didn't sound like a machine. And voila, it was amazing. So John is ChatGPT going to take over as a cube host? >> Well, I was thinking, we get the questions in advance sometimes from PR people. We should actually just plug it in ChatGPT, add it to our notes, and saying, "Is this good enough for you? Let's ask the real question." So I think, you know, I think there's a lot of heavy lifting that gets done. I think the ChatGPT is a phenomenal revolution. I think it highlights the use case. Like that example we showed earlier. It gets most of it right. So it's directionally correct and it feels like it's an answer, but it's not a hundred percent accurate. And I think that's where people are seeing value in it. Writing marketing, copy, brainstorming, guest list, gift list for somebody. Write me some lyrics to a song. Give me a thesis about healthcare policy in the United States. It'll do a bang up job, and then you got to go in and you can massage it. So we're going to do three quarters of the work. That's why plagiarism and schools are kind of freaking out. And that's why Microsoft put 10 billion in, because why wouldn't this be a feature of Word, or the OS to help it do stuff on behalf of the user. So linguistically it's a beautiful thing. You can input a string and get a good answer. It's not a search result. >> And we're going to get your take on on Microsoft and, but it kind of levels the playing- but ChatGPT writes better than I do, Sarbjeet, and I know you have some good examples too. You mentioned the Reed Hastings example. >> Yeah, I was listening to Reed Hastings fireside chat with ChatGPT, and the answers were coming as sort of voice, in the voice format. And it was amazing what, he was having very sort of philosophy kind of talk with the ChatGPT, the longer sentences, like he was going on, like, just like we are talking, he was talking for like almost two minutes and then ChatGPT was answering. It was not one sentence question, and then a lot of answers from ChatGPT and yeah, you're right. I, this is our ability. I've been thinking deep about this since yesterday, we talked about, like, we want to do this segment. The data is fed into the data model. It can be the current data as well, but I think that, like, models like ChatGPT, other companies will have those too. They can, they're democratizing the intelligence, but they're not creating intelligence yet, definitely yet I can say that. They will give you all the finite answers. Like, okay, how do you do this for loop in Java, versus, you know, C sharp, and as a programmer you can do that, in, but they can't tell you that, how to write a new algorithm or write a new search algorithm for you. They cannot create a secretive code for you to- >> Not yet. >> Have competitive advantage. >> Not yet, not yet. >> but you- >> Can Google do that today? >> No one really can. The reasoning side of the data is, we talked about at our Supercloud event, with Zhamak Dehghani who's was CEO of, now of Nextdata. This next wave of data intelligence is going to come from entrepreneurs that are probably cross discipline, computer science and some other discipline. But they're going to be new things, for example, data, metadata, and data. It's hard to do reasoning like a human being, so that needs more data to train itself. So I think the first gen of this training module for the large language model they have is a corpus of text. Lot of that's why blog posts are, but the facts are wrong and sometimes out of context, because that contextual reasoning takes time, it takes intelligence. So machines need to become intelligent, and so therefore they need to be trained. So you're going to start to see, I think, a lot of acceleration on training the data sets. And again, it's only as good as the data you can get. And again, proprietary data sets will be a huge winner. Anyone who's got a large corpus of content, proprietary content like theCUBE or SiliconANGLE as a publisher will benefit from this. Large FinTech companies, anyone with large proprietary data will probably be a big winner on this generative AI wave, because it just, it will eat that up, and turn that back into something better. So I think there's going to be a lot of interesting things to look at here. And certainly productivity's going to be off the charts for vanilla and the internet is going to get swarmed with vanilla content. So if you're in the content business, and you're an original content producer of any kind, you're going to be not vanilla, so you're going to be better. So I think there's so much at play Dave (indistinct). >> I think the playing field has been risen, so we- >> Risen and leveled? >> Yeah, and leveled to certain extent. So it's now like that few people as consumers, as consumers of AI, we will have a advantage and others cannot have that advantage. So it will be democratized. That's, I'm sure about that. But if you take the example of calculator, when the calculator came in, and a lot of people are, "Oh, people can't do math anymore because calculator is there." right? So it's a similar sort of moment, just like a calculator for the next level. But, again- >> I see it more like open source, Sarbjeet, because like if you think about what ChatGPT's doing, you do a query and it comes from somewhere the value of a post from ChatGPT is just a reuse of AI. The original content accent will be come from a human. So if I lay out a paragraph from ChatGPT, did some heavy lifting on some facts, I check the facts, save me about maybe- >> Yeah, it's productive. >> An hour writing, and then I write a killer two, three sentences of, like, sharp original thinking or critical analysis. I then took that body of work, open source content, and then laid something on top of it. >> And Sarbjeet's example is a good one, because like if the calculator kids don't do math as well anymore, the slide rule, remember we had slide rules as kids, remember we first started using Waze, you know, we were this minority and you had an advantage over other drivers. Now Waze is like, you know, social traffic, you know, navigation, everybody had, you know- >> All the back roads are crowded. >> They're car crowded. (group laughs) Exactly. All right, let's, let's move on. What about this notion that futurist Ray Amara put forth and really Amara's Law that we're showing here, it's, the law is we, you know, "We tend to overestimate the effect of technology in the short run and underestimate it in the long run." Is that the case, do you think, with ChatGPT? What do you think Sarbjeet? >> I think that's true actually. There's a lot of, >> We don't debate this. >> There's a lot of awe, like when people see the results from ChatGPT, they say what, what the heck? Like, it can do this? But then if you use it more and more and more, and I ask the set of similar question, not the same question, and it gives you like same answer. It's like reading from the same bucket of text in, the interior read (indistinct) where the ChatGPT, you will see that in some couple of segments. It's very, it sounds so boring that the ChatGPT is coming out the same two sentences every time. So it is kind of good, but it's not as good as people think it is right now. But we will have, go through this, you know, hype sort of cycle and get realistic with it. And then in the long term, I think it's a great thing in the short term, it's not something which will (indistinct) >> What's your counter point? You're saying it's not. >> I, no I think the question was, it's hyped up in the short term and not it's underestimated long term. That's what I think what he said, quote. >> Yes, yeah. That's what he said. >> Okay, I think that's wrong with this, because this is a unique, ChatGPT is a unique kind of impact and it's very generational. People have been comparing it, I have been comparing to the internet, like the web, web browser Mosaic and Netscape, right, Navigator. I mean, I clearly still remember the days seeing Navigator for the first time, wow. And there weren't not many sites you could go to, everyone typed in, you know, cars.com, you know. >> That (indistinct) wasn't that overestimated, the overhyped at the beginning and underestimated. >> No, it was, it was underestimated long run, people thought. >> But that Amara's law. >> That's what is. >> No, they said overestimated? >> Overestimated near term underestimated- overhyped near term, underestimated long term. I got, right I mean? >> Well, I, yeah okay, so I would then agree, okay then- >> We were off the charts about the internet in the early days, and it actually exceeded our expectations. >> Well there were people who were, like, poo-pooing it early on. So when the browser came out, people were like, "Oh, the web's a toy for kids." I mean, in 1995 the web was a joke, right? So '96, you had online populations growing, so you had structural changes going on around the browser, internet population. And then that replaced other things, direct mail, other business activities that were once analog then went to the web, kind of read only as you, as we always talk about. So I think that's a moment where the hype long term, the smart money, and the smart industry experts all get the long term. And in this case, there's more poo-pooing in the short term. "Ah, it's not a big deal, it's just AI." I've heard many people poo-pooing ChatGPT, and a lot of smart people saying, "No this is next gen, this is different and it's only going to get better." So I think people are estimating a big long game on this one. >> So you're saying it's bifurcated. There's those who say- >> Yes. >> Okay, all right, let's get to the heart of the premise, and possibly the debate for today's episode. Will OpenAI's early entry into the market confer sustainable competitive advantage for the company. And if you look at the history of tech, the technology industry, it's kind of littered with first mover failures. Altair, IBM, Tandy, Commodore, they and Apple even, they were really early in the PC game. They took a backseat to Dell who came in the scene years later with a better business model. Netscape, you were just talking about, was all the rage in Silicon Valley, with the first browser, drove up all the housing prices out here. AltaVista was the first search engine to really, you know, index full text. >> Owned by Dell, I mean DEC. >> Owned by Digital. >> Yeah, Digital Equipment >> Compaq bought it. And of course as an aside, Digital, they wanted to showcase their hardware, right? Their super computer stuff. And then so Friendster and MySpace, they came before Facebook. The iPhone certainly wasn't the first mobile device. So lots of failed examples, but there are some recent successes like AWS and cloud. >> You could say smartphone. So I mean. >> Well I know, and you can, we can parse this so we'll debate it. Now Twitter, you could argue, had first mover advantage. You kind of gave me that one John. Bitcoin and crypto clearly had first mover advantage, and sustaining that. Guys, will OpenAI make it to the list on the right with ChatGPT, what do you think? >> I think categorically as a company, it probably won't, but as a category, I think what they're doing will, so OpenAI as a company, they get funding, there's power dynamics involved. Microsoft put a billion dollars in early on, then they just pony it up. Now they're reporting 10 billion more. So, like, if the browsers, Microsoft had competitive advantage over Netscape, and used monopoly power, and convicted by the Department of Justice for killing Netscape with their monopoly, Netscape should have had won that battle, but Microsoft killed it. In this case, Microsoft's not killing it, they're buying into it. So I think the embrace extend Microsoft power here makes OpenAI vulnerable for that one vendor solution. So the AI as a company might not make the list, but the category of what this is, large language model AI, is probably will be on the right hand side. >> Okay, we're going to come back to the government intervention and maybe do some comparisons, but what are your thoughts on this premise here? That, it will basically set- put forth the premise that it, that ChatGPT, its early entry into the market will not confer competitive advantage to >> For OpenAI. >> To Open- Yeah, do you agree with that? >> I agree with that actually. It, because Google has been at it, and they have been holding back, as John said because of the scrutiny from the Fed, right, so- >> And privacy too. >> And the privacy and the accuracy as well. But I think Sam Altman and the company on those guys, right? They have put this in a hasty way out there, you know, because it makes mistakes, and there are a lot of questions around the, sort of, where the content is coming from. You saw that as your example, it just stole the content, and without your permission, you know? >> Yeah. So as quick this aside- >> And it codes on people's behalf and the, those codes are wrong. So there's a lot of, sort of, false information it's putting out there. So it's a very vulnerable thing to do what Sam Altman- >> So even though it'll get better, others will compete. >> So look, just side note, a term which Reid Hoffman used a little bit. Like he said, it's experimental launch, like, you know, it's- >> It's pretty damn good. >> It is clever because according to Sam- >> It's more than clever. It's good. >> It's awesome, if you haven't used it. I mean you write- you read what it writes and you go, "This thing writes so well, it writes so much better than you." >> The human emotion drives that too. I think that's a big thing. But- >> I Want to add one more- >> Make your last point. >> Last one. Okay. So, but he's still holding back. He's conducting quite a few interviews. If you want to get the gist of it, there's an interview with StrictlyVC interview from yesterday with Sam Altman. Listen to that one it's an eye opening what they want- where they want to take it. But my last one I want to make it on this point is that Satya Nadella yesterday did an interview with Wall Street Journal. I think he was doing- >> You were not impressed. >> I was not impressed because he was pushing it too much. So Sam Altman's holding back so there's less backlash. >> Got 10 billion reasons to push. >> I think he's almost- >> Microsoft just laid off 10000 people. Hey ChatGPT, find me a job. You know like. (group laughs) >> He's overselling it to an extent that I think it will backfire on Microsoft. And he's over promising a lot of stuff right now, I think. I don't know why he's very jittery about all these things. And he did the same thing during Ignite as well. So he said, "Oh, this AI will write code for you and this and that." Like you called him out- >> The hyperbole- >> During your- >> from Satya Nadella, he's got a lot of hyperbole. (group talks over each other) >> All right, Let's, go ahead. >> Well, can I weigh in on the whole- >> Yeah, sure. >> Microsoft thing on whether OpenAI, here's the take on this. I think it's more like the browser moment to me, because I could relate to that experience with ChatG, personally, emotionally, when I saw that, and I remember vividly- >> You mean that aha moment (indistinct). >> Like this is obviously the future. Anything else in the old world is dead, website's going to be everywhere. It was just instant dot connection for me. And a lot of other smart people who saw this. Lot of people by the way, didn't see it. Someone said the web's a toy. At the company I was worked for at the time, Hewlett Packard, they like, they could have been in, they had invented HTML, and so like all this stuff was, like, they just passed, the web was just being passed over. But at that time, the browser got better, more websites came on board. So the structural advantage there was online web usage was growing, online user population. So that was growing exponentially with the rise of the Netscape browser. So OpenAI could stay on the right side of your list as durable, if they leverage the category that they're creating, can get the scale. And if they can get the scale, just like Twitter, that failed so many times that they still hung around. So it was a product that was always successful, right? So I mean, it should have- >> You're right, it was terrible, we kept coming back. >> The fail whale, but it still grew. So OpenAI has that moment. They could do it if Microsoft doesn't meddle too much with too much power as a vendor. They could be the Netscape Navigator, without the anti-competitive behavior of somebody else. So to me, they have the pole position. So they have an opportunity. So if not, if they don't execute, then there's opportunity. There's not a lot of barriers to entry, vis-a-vis say the CapEx of say a cloud company like AWS. You can't replicate that, Many have tried, but I think you can replicate OpenAI. >> And we're going to talk about that. Okay, so real quick, I want to bring in some ETR data. This isn't an ETR heavy segment, only because this so new, you know, they haven't coverage yet, but they do cover AI. So basically what we're seeing here is a slide on the vertical axis's net score, which is a measure of spending momentum, and in the horizontal axis's is presence in the dataset. Think of it as, like, market presence. And in the insert right there, you can see how the dots are plotted, the two columns. And so, but the key point here that we want to make, there's a bunch of companies on the left, is he like, you know, DataRobot and C3 AI and some others, but the big whales, Google, AWS, Microsoft, are really dominant in this market. So that's really the key takeaway that, can we- >> I notice IBM is way low. >> Yeah, IBM's low, and actually bring that back up and you, but then you see Oracle who actually is injecting. So I guess that's the other point is, you're not necessarily going to go buy AI, and you know, build your own AI, you're going to, it's going to be there and, it, Salesforce is going to embed it into its platform, the SaaS companies, and you're going to purchase AI. You're not necessarily going to build it. But some companies obviously are. >> I mean to quote IBM's general manager Rob Thomas, "You can't have AI with IA." information architecture and David Flynn- >> You can't Have AI without IA >> without, you can't have AI without IA. You can't have, if you have an Information Architecture, you then can power AI. Yesterday David Flynn, with Hammersmith, was on our Supercloud. He was pointing out that the relationship of storage, where you store things, also impacts the data and stressablity, and Zhamak from Nextdata, she was pointing out that same thing. So the data problem factors into all this too, Dave. >> So you got the big cloud and internet giants, they're all poised to go after this opportunity. Microsoft is investing up to 10 billion. Google's code red, which was, you know, the headline in the New York Times. Of course Apple is there and several alternatives in the market today. Guys like Chinchilla, Bloom, and there's a company Jasper and several others, and then Lena Khan looms large and the government's around the world, EU, US, China, all taking notice before the market really is coalesced around a single player. You know, John, you mentioned Netscape, they kind of really, the US government was way late to that game. It was kind of game over. And Netscape, I remember Barksdale was like, "Eh, we're going to be selling software in the enterprise anyway." and then, pshew, the company just dissipated. So, but it looks like the US government, especially with Lena Khan, they're changing the definition of antitrust and what the cause is to go after people, and they're really much more aggressive. It's only what, two years ago that (indistinct). >> Yeah, the problem I have with the federal oversight is this, they're always like late to the game, and they're slow to catch up. So in other words, they're working on stuff that should have been solved a year and a half, two years ago around some of the social networks hiding behind some of the rules around open web back in the days, and I think- >> But they're like 15 years late to that. >> Yeah, and now they got this new thing on top of it. So like, I just worry about them getting their fingers. >> But there's only two years, you know, OpenAI. >> No, but the thing (indistinct). >> No, they're still fighting other battles. But the problem with government is that they're going to label Big Tech as like a evil thing like Pharma, it's like smoke- >> You know Lena Khan wants to kill Big Tech, there's no question. >> So I think Big Tech is getting a very seriously bad rap. And I think anything that the government does that shades darkness on tech, is politically motivated in most cases. You can almost look at everything, and my 80 20 rule is in play here. 80% of the government activity around tech is bullshit, it's politically motivated, and the 20% is probably relevant, but off the mark and not organized. >> Well market forces have always been the determining factor of success. The governments, you know, have been pretty much failed. I mean you look at IBM's antitrust, that, what did that do? The market ultimately beat them. You look at Microsoft back in the day, right? Windows 95 was peaking, the government came in. But you know, like you said, they missed the web, right, and >> so they were hanging on- >> There's nobody in government >> to Windows. >> that actually knows- >> And so, you, I think you're right. It's market forces that are going to determine this. But Sarbjeet, what do you make of Microsoft's big bet here, you weren't impressed with with Nadella. How do you think, where are they going to apply it? Is this going to be a Hail Mary for Bing, or is it going to be applied elsewhere? What do you think. >> They are saying that they will, sort of, weave this into their products, office products, productivity and also to write code as well, developer productivity as well. That's a big play for them. But coming back to your antitrust sort of comments, right? I believe the, your comment was like, oh, fed was late 10 years or 15 years earlier, but now they're two years. But things are moving very fast now as compared to they used to move. >> So two years is like 10 Years. >> Yeah, two years is like 10 years. Just want to make that point. (Dave laughs) This thing is going like wildfire. Any new tech which comes in that I think they're going against distribution channels. Lina Khan has commented time and again that the marketplace model is that she wants to have some grip on. Cloud marketplaces are a kind of monopolistic kind of way. >> I don't, I don't see this, I don't see a Chat AI. >> You told me it's not Bing, you had an interesting comment. >> No, no. First of all, this is great from Microsoft. If you're Microsoft- >> Why? >> Because Microsoft doesn't have the AI chops that Google has, right? Google is got so much core competency on how they run their search, how they run their backends, their cloud, even though they don't get a lot of cloud market share in the enterprise, they got a kick ass cloud cause they needed one. >> Totally. >> They've invented SRE. I mean Google's development and engineering chops are off the scales, right? Amazon's got some good chops, but Google's got like 10 times more chops than AWS in my opinion. Cloud's a whole different story. Microsoft gets AI, they get a playbook, they get a product they can render into, the not only Bing, productivity software, helping people write papers, PowerPoint, also don't forget the cloud AI can super help. We had this conversation on our Supercloud event, where AI's going to do a lot of the heavy lifting around understanding observability and managing service meshes, to managing microservices, to turning on and off applications, and or maybe writing code in real time. So there's a plethora of use cases for Microsoft to deploy this. combined with their R and D budgets, they can then turbocharge more research, build on it. So I think this gives them a car in the game, Google may have pole position with AI, but this puts Microsoft right in the game, and they already have a lot of stuff going on. But this just, I mean everything gets lifted up. Security, cloud, productivity suite, everything. >> What's under the hood at Google, and why aren't they talking about it? I mean they got to be freaked out about this. No? Or do they have kind of a magic bullet? >> I think they have the, they have the chops definitely. Magic bullet, I don't know where they are, as compared to the ChatGPT 3 or 4 models. Like they, but if you look at the online sort of activity and the videos put out there from Google folks, Google technology folks, that's account you should look at if you are looking there, they have put all these distinctions what ChatGPT 3 has used, they have been talking about for a while as well. So it's not like it's a secret thing that you cannot replicate. As you said earlier, like in the beginning of this segment, that anybody who has more data and the capacity to process that data, which Google has both, I think they will win this. >> Obviously living in Palo Alto where the Google founders are, and Google's headquarters next town over we have- >> We're so close to them. We have inside information on some of the thinking and that hasn't been reported by any outlet yet. And that is, is that, from what I'm hearing from my sources, is Google has it, they don't want to release it for many reasons. One is it might screw up their search monopoly, one, two, they're worried about the accuracy, 'cause Google will get sued. 'Cause a lot of people are jamming on this ChatGPT as, "Oh it does everything for me." when it's clearly not a hundred percent accurate all the time. >> So Lina Kahn is looming, and so Google's like be careful. >> Yeah so Google's just like, this is the third, could be a third rail. >> But the first thing you said is a concern. >> Well no. >> The disruptive (indistinct) >> What they will do is do a Waymo kind of thing, where they spin out a separate company. >> They're doing that. >> The discussions happening, they're going to spin out the separate company and put it over there, and saying, "This is AI, got search over there, don't touch that search, 'cause that's where all the revenue is." (chuckles) >> So, okay, so that's how they deal with the Clay Christensen dilemma. What's the business model here? I mean it's not advertising, right? Is it to charge you for a query? What, how do you make money at this? >> It's a good question, I mean my thinking is, first of all, it's cool to type stuff in and see a paper get written, or write a blog post, or gimme a marketing slogan for this or that or write some code. I think the API side of the business will be critical. And I think Howie Xu, I know you're going to reference some of his comments yesterday on Supercloud, I think this brings a whole 'nother user interface into technology consumption. I think the business model, not yet clear, but it will probably be some sort of either API and developer environment or just a straight up free consumer product, with some sort of freemium backend thing for business. >> And he was saying too, it's natural language is the way in which you're going to interact with these systems. >> I think it's APIs, it's APIs, APIs, APIs, because these people who are cooking up these models, and it takes a lot of compute power to train these and to, for inference as well. Somebody did the analysis on the how many cents a Google search costs to Google, and how many cents the ChatGPT query costs. It's, you know, 100x or something on that. You can take a look at that. >> A 100x on which side? >> You're saying two orders of magnitude more expensive for ChatGPT >> Much more, yeah. >> Than for Google. >> It's very expensive. >> So Google's got the data, they got the infrastructure and they got, you're saying they got the cost (indistinct) >> No actually it's a simple query as well, but they are trying to put together the answers, and they're going through a lot more data versus index data already, you know. >> Let me clarify, you're saying that Google's version of ChatGPT is more efficient? >> No, I'm, I'm saying Google search results. >> Ah, search results. >> What are used to today, but cheaper. >> But that, does that, is that going to confer advantage to Google's large language (indistinct)? >> It will, because there were deep science (indistinct). >> Google, I don't think Google search is doing a large language model on their search, it's keyword search. You know, what's the weather in Santa Cruz? Or how, what's the weather going to be? Or you know, how do I find this? Now they have done a smart job of doing some things with those queries, auto complete, re direct navigation. But it's, it's not entity. It's not like, "Hey, what's Dave Vellante thinking this week in Breaking Analysis?" ChatGPT might get that, because it'll get your Breaking Analysis, it'll synthesize it. There'll be some, maybe some clips. It'll be like, you know, I mean. >> Well I got to tell you, I asked ChatGPT to, like, I said, I'm going to enter a transcript of a discussion I had with Nir Zuk, the CTO of Palo Alto Networks, And I want you to write a 750 word blog. I never input the transcript. It wrote a 750 word blog. It attributed quotes to him, and it just pulled a bunch of stuff that, and said, okay, here it is. It talked about Supercloud, it defined Supercloud. >> It's made, it makes you- >> Wow, But it was a big lie. It was fraudulent, but still, blew me away. >> Again, vanilla content and non accurate content. So we are going to see a surge of misinformation on steroids, but I call it the vanilla content. Wow, that's just so boring, (indistinct). >> There's so many dangers. >> Make your point, cause we got to, almost out of time. >> Okay, so the consumption, like how do you consume this thing. As humans, we are consuming it and we are, like, getting a nicely, like, surprisingly shocked, you know, wow, that's cool. It's going to increase productivity and all that stuff, right? And on the danger side as well, the bad actors can take hold of it and create fake content and we have the fake sort of intelligence, if you go out there. So that's one thing. The second thing is, we are as humans are consuming this as language. Like we read that, we listen to it, whatever format we consume that is, but the ultimate usage of that will be when the machines can take that output from likes of ChatGPT, and do actions based on that. The robots can work, the robot can paint your house, we were talking about, right? Right now we can't do that. >> Data apps. >> So the data has to be ingested by the machines. It has to be digestible by the machines. And the machines cannot digest unorganized data right now, we will get better on the ingestion side as well. So we are getting better. >> Data, reasoning, insights, and action. >> I like that mall, paint my house. >> So, okay- >> By the way, that means drones that'll come in. Spray painting your house. >> Hey, it wasn't too long ago that robots couldn't climb stairs, as I like to point out. Okay, and of course it's no surprise the venture capitalists are lining up to eat at the trough, as I'd like to say. Let's hear, you'd referenced this earlier, John, let's hear what AI expert Howie Xu said at the Supercloud event, about what it takes to clone ChatGPT. Please, play the clip. >> So one of the VCs actually asked me the other day, right? "Hey, how much money do I need to spend, invest to get a, you know, another shot to the openAI sort of the level." You know, I did a (indistinct) >> Line up. >> A hundred million dollar is the order of magnitude that I came up with, right? You know, not a billion, not 10 million, right? So a hundred- >> Guys a hundred million dollars, that's an astoundingly low figure. What do you make of it? >> I was in an interview with, I was interviewing, I think he said hundred million or so, but in the hundreds of millions, not a billion right? >> You were trying to get him up, you were like "Hundreds of millions." >> Well I think, I- >> He's like, eh, not 10, not a billion. >> Well first of all, Howie Xu's an expert machine learning. He's at Zscaler, he's a machine learning AI guy. But he comes from VMware, he's got his technology pedigrees really off the chart. Great friend of theCUBE and kind of like a CUBE analyst for us. And he's smart. He's right. I think the barriers to entry from a dollar standpoint are lower than say the CapEx required to compete with AWS. Clearly, the CapEx spending to build all the tech for the run a cloud. >> And you don't need a huge sales force. >> And in some case apps too, it's the same thing. But I think it's not that hard. >> But am I right about that? You don't need a huge sales force either. It's, what, you know >> If the product's good, it will sell, this is a new era. The better mouse trap will win. This is the new economics in software, right? So- >> Because you look at the amount of money Lacework, and Snyk, Snowflake, Databrooks. Look at the amount of money they've raised. I mean it's like a billion dollars before they get to IPO or more. 'Cause they need promotion, they need go to market. You don't need (indistinct) >> OpenAI's been working on this for multiple five years plus it's, hasn't, wasn't born yesterday. Took a lot of years to get going. And Sam is depositioning all the success, because he's trying to manage expectations, To your point Sarbjeet, earlier. It's like, yeah, he's trying to "Whoa, whoa, settle down everybody, (Dave laughs) it's not that great." because he doesn't want to fall into that, you know, hero and then get taken down, so. >> It may take a 100 million or 150 or 200 million to train the model. But to, for the inference to, yeah to for the inference machine, It will take a lot more, I believe. >> Give it, so imagine, >> Because- >> Go ahead, sorry. >> Go ahead. But because it consumes a lot more compute cycles and it's certain level of storage and everything, right, which they already have. So I think to compute is different. To frame the model is a different cost. But to run the business is different, because I think 100 million can go into just fighting the Fed. >> Well there's a flywheel too. >> Oh that's (indistinct) >> (indistinct) >> We are running the business, right? >> It's an interesting number, but it's also kind of, like, context to it. So here, a hundred million spend it, you get there, but you got to factor in the fact that the ways companies win these days is critical mass scale, hitting a flywheel. If they can keep that flywheel of the value that they got going on and get better, you can almost imagine a marketplace where, hey, we have proprietary data, we're SiliconANGLE in theCUBE. We have proprietary content, CUBE videos, transcripts. Well wouldn't it be great if someone in a marketplace could sell a module for us, right? We buy that, Amazon's thing and things like that. So if they can get a marketplace going where you can apply to data sets that may be proprietary, you can start to see this become bigger. And so I think the key barriers to entry is going to be success. I'll give you an example, Reddit. Reddit is successful and it's hard to copy, not because of the software. >> They built the moat. >> Because you can, buy Reddit open source software and try To compete. >> They built the moat with their community. >> Their community, their scale, their user expectation. Twitter, we referenced earlier, that thing should have gone under the first two years, but there was such a great emotional product. People would tolerate the fail whale. And then, you know, well that was a whole 'nother thing. >> Then a plane landed in (John laughs) the Hudson and it was over. >> I think verticals, a lot of verticals will build applications using these models like for lawyers, for doctors, for scientists, for content creators, for- >> So you'll have many hundreds of millions of dollars investments that are going to be seeping out. If, all right, we got to wrap, if you had to put odds on it that that OpenAI is going to be the leader, maybe not a winner take all leader, but like you look at like Amazon and cloud, they're not winner take all, these aren't necessarily winner take all markets. It's not necessarily a zero sum game, but let's call it winner take most. What odds would you give that open AI 10 years from now will be in that position. >> If I'm 0 to 10 kind of thing? >> Yeah, it's like horse race, 3 to 1, 2 to 1, even money, 10 to 1, 50 to 1. >> Maybe 2 to 1, >> 2 to 1, that's pretty low odds. That's basically saying they're the favorite, they're the front runner. Would you agree with that? >> I'd say 4 to 1. >> Yeah, I was going to say I'm like a 5 to 1, 7 to 1 type of person, 'cause I'm a skeptic with, you know, there's so much competition, but- >> I think they're definitely the leader. I mean you got to say, I mean. >> Oh there's no question. There's no question about it. >> The question is can they execute? >> They're not Friendster, is what you're saying. >> They're not Friendster and they're more like Twitter and Reddit where they have momentum. If they can execute on the product side, and if they don't stumble on that, they will continue to have the lead. >> If they say stay neutral, as Sam is, has been saying, that, hey, Microsoft is one of our partners, if you look at their company model, how they have structured the company, then they're going to pay back to the investors, like Microsoft is the biggest one, up to certain, like by certain number of years, they're going to pay back from all the money they make, and after that, they're going to give the money back to the public, to the, I don't know who they give it to, like non-profit or something. (indistinct) >> Okay, the odds are dropping. (group talks over each other) That's a good point though >> Actually they might have done that to fend off the criticism of this. But it's really interesting to see the model they have adopted. >> The wildcard in all this, My last word on this is that, if there's a developer shift in how developers and data can come together again, we have conferences around the future of data, Supercloud and meshs versus, you know, how the data world, coding with data, how that evolves will also dictate, 'cause a wild card could be a shift in the landscape around how developers are using either machine learning or AI like techniques to code into their apps, so. >> That's fantastic insight. I can't thank you enough for your time, on the heels of Supercloud 2, really appreciate it. All right, thanks to John and Sarbjeet for the outstanding conversation today. Special thanks to the Palo Alto studio team. My goodness, Anderson, this great backdrop. You guys got it all out here, I'm jealous. And Noah, really appreciate it, Chuck, Andrew Frick and Cameron, Andrew Frick switching, Cameron on the video lake, great job. And Alex Myerson, he's on production, manages the podcast for us, Ken Schiffman as well. Kristen Martin and Cheryl Knight help get the word out on social media and our newsletters. Rob Hof is our editor-in-chief over at SiliconANGLE, does some great editing, thanks to all. Remember, all these episodes are available as podcasts. All you got to do is search Breaking Analysis podcast, wherever you listen. Publish each week on wikibon.com and siliconangle.com. Want to get in touch, email me directly, david.vellante@siliconangle.com or DM me at dvellante, or comment on our LinkedIn post. And by all means, check out etr.ai. They got really great survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, We'll see you next time on Breaking Analysis. (electronic music)
SUMMARY :
bringing you data-driven and ChatGPT have taken the world by storm. So I asked it, give it to the large language models to do that. So to your point, it's So one of the problems with ChatGPT, and he simply gave the system the prompts, or the OS to help it do but it kind of levels the playing- and the answers were coming as the data you can get. Yeah, and leveled to certain extent. I check the facts, save me about maybe- and then I write a killer because like if the it's, the law is we, you know, I think that's true and I ask the set of similar question, What's your counter point? and not it's underestimated long term. That's what he said. for the first time, wow. the overhyped at the No, it was, it was I got, right I mean? the internet in the early days, and it's only going to get better." So you're saying it's bifurcated. and possibly the debate the first mobile device. So I mean. on the right with ChatGPT, and convicted by the Department of Justice the scrutiny from the Fed, right, so- And the privacy and thing to do what Sam Altman- So even though it'll get like, you know, it's- It's more than clever. I mean you write- I think that's a big thing. I think he was doing- I was not impressed because You know like. And he did the same thing he's got a lot of hyperbole. the browser moment to me, So OpenAI could stay on the right side You're right, it was terrible, They could be the Netscape Navigator, and in the horizontal axis's So I guess that's the other point is, I mean to quote IBM's So the data problem factors and the government's around the world, and they're slow to catch up. Yeah, and now they got years, you know, OpenAI. But the problem with government to kill Big Tech, and the 20% is probably relevant, back in the day, right? are they going to apply it? and also to write code as well, that the marketplace I don't, I don't see you had an interesting comment. No, no. First of all, the AI chops that Google has, right? are off the scales, right? I mean they got to be and the capacity to process that data, on some of the thinking So Lina Kahn is looming, and this is the third, could be a third rail. But the first thing What they will do out the separate company Is it to charge you for a query? it's cool to type stuff in natural language is the way and how many cents the and they're going through Google search results. It will, because there were It'll be like, you know, I mean. I never input the transcript. Wow, But it was a big lie. but I call it the vanilla content. Make your point, cause we And on the danger side as well, So the data By the way, that means at the Supercloud event, So one of the VCs actually What do you make of it? you were like "Hundreds of millions." not 10, not a billion. Clearly, the CapEx spending to build all But I think it's not that hard. It's, what, you know This is the new economics Look at the amount of And Sam is depositioning all the success, or 150 or 200 million to train the model. So I think to compute is different. not because of the software. Because you can, buy They built the moat And then, you know, well that the Hudson and it was over. that are going to be seeping out. Yeah, it's like horse race, 3 to 1, 2 to 1, that's pretty low odds. I mean you got to say, I mean. Oh there's no question. is what you're saying. and if they don't stumble on that, the money back to the public, to the, Okay, the odds are dropping. the model they have adopted. Supercloud and meshs versus, you know, on the heels of Supercloud
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Sarbjeet | PERSON | 0.99+ |
Brian Gracely | PERSON | 0.99+ |
Lina Khan | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Reid Hoffman | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Lena Khan | PERSON | 0.99+ |
Sam Altman | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Rob Thomas | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
David Flynn | PERSON | 0.99+ |
Sam | PERSON | 0.99+ |
Noah | PERSON | 0.99+ |
Ray Amara | PERSON | 0.99+ |
10 billion | QUANTITY | 0.99+ |
150 | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Chuck | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Howie Xu | PERSON | 0.99+ |
Anderson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Hewlett Packard | ORGANIZATION | 0.99+ |
Santa Cruz | LOCATION | 0.99+ |
1995 | DATE | 0.99+ |
Lina Kahn | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
50 words | QUANTITY | 0.99+ |
Hundreds of millions | QUANTITY | 0.99+ |
Compaq | ORGANIZATION | 0.99+ |
10 | QUANTITY | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
two sentences | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
hundreds of millions | QUANTITY | 0.99+ |
Satya Nadella | PERSON | 0.99+ |
Cameron | PERSON | 0.99+ |
100 million | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
one sentence | QUANTITY | 0.99+ |
10 million | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Clay Christensen | PERSON | 0.99+ |
Sarbjeet Johal | PERSON | 0.99+ |
Netscape | ORGANIZATION | 0.99+ |
Is Supercloud an Architecture or a Platform | Supercloud2
(electronic music) >> Hi everybody, welcome back to Supercloud 2. I'm Dave Vellante with my co-host John Furrier. We're here at our tricked out Palo Alto studio. We're going live wall to wall all day. We're inserting a number of pre-recorded interviews, folks like Walmart. We just heard from Nir Zuk of Palo Alto Networks, and I'm really pleased to welcome in David Flynn. David Flynn, you may know as one of the people behind Fusion-io, completely changed the way in which people think about storing data, accessing data. David Flynn now the founder and CEO of a company called Hammerspace. David, good to see you, thanks for coming on. >> David: Good to see you too. >> And Dr. Nelu Mihai is the CEO and founder of Cloud of Clouds. He's actually built a Supercloud. We're going to get into that. Nelu, thanks for coming on. >> Thank you, Happy New Year. >> Yeah, Happy New Year. So I'm going to start right off with a little debate that's going on in the community if you guys would bring out this slide. So Bob Muglia early today, he gave a definition of Supercloud. He felt like we had to tighten ours up a little bit. He said a Supercloud is a platform, underscoring platform, that provides programmatically consistent services hosted on heterogeneous cloud providers. Now, Nelu, we have this shared doc, and you've been in there. You responded, you said, well, hold on. Supercloud really needs to be an architecture, or else we're going to have this stove pipe of stove pipes, really. And then you went on with more detail, what's the information model? What's the execution model? How are users going to interact with Supercloud? So I start with you, why architecture? The inference is that a platform, the platform provider's responsible for the architecture? Why does that not work in your view? >> No, the, it's a very interesting question. So whenever I think about platform, what's the connotation, you think about monolithic system? Yeah, I mean, I don't know whether it's true or or not, but there is this connotation of of monolithic. On the other hand, if you look at what's a problem right now with HyperClouds, from the customer perspective, they're very complex. There is a heterogeneous world where actually every single one of this HyperClouds has their own architecture. You need rocket scientists to build a cloud applications. Always there is this contradiction between cost and performance. They fight each other. And I'm quoting here a former friend of mine from Bell Labs who work at AWS who used to say "Cloud is cheap as long as you don't use it too much." (group chuckles) So clearly we need something that kind of plays from the principle point of view the role of an operating system, that seats on top of this heterogeneous HyperCloud, and there's nothing wrong by having these proprietary HyperClouds, think about processors, think about operating system and so on, so forth. But in order to build a system that is simple enough, I think we need to go deeper and understand. >> So the argument, the counterargument to that, David, is you'll never get there. You need a proprietary system to get to market sooner, to solve today's problem. Now I don't know where you stand on this platform versus architecture. I haven't asked you, but. >> I think there are aspects of both for sure. I mean it needs to be an architecture in the sense that it's broad based and open and so forth. But you know, platform, you could say as long as people can instantiate it themselves, on their own infrastructure, as long as it's something that can be deployed as, you know, software defined, you don't want the concept of platform being the monolith, you know, combined hardware and software. So it really depends on what you're focused on when you're saying platform, you know, I'd say as long as they software defined thing, to where it can literally run anywhere. I mean, because I really think what we're talking about here is the original concept of cloud computing. The ability to run anything anywhere, without having to care about the physical infrastructure. And what we have today is not that, the cloud today is a big mainframe in the sky, that just happens to be large enough that once you select which region, generally you have enough resources. But, you know, nowadays you don't even necessarily have enough resources in one region. and then you're kind of stuck. So we haven't really gotten to that utility model of computing. And you're also asked to rewrite your application, you know, to abandon the conveniences of high performance file access. You got to rewrite it to use object storage stuff. We have to get away from that. >> Okay, I want to just drill on that, 'cause I think I like that point about, there's not enough availability, but on the developer cloud, the original AWS premise was targeting developers, 'cause at that time, you have to provision a Sun box get a Cisco DSU/CSU, now you get on the cloud. But I think you're giving up the scale question, 'cause I think right now, scale is huge, enterprise grade versus cloud for developers. >> That's Right. >> Because I mean look at, Amazon, Azure, they got compute, they got storage, they got queuing, and some stuff. If you're doing a startup, you throw your app up there, localhost to cloud, no big deal. It's the scale thing that gets me- >> And you can tell by the fact that, in regions that are under high demand, right, like in London or LA, at least with the clients we work with in the median entertainment space, it costs twice as much for the exact same cloud instances that do the exact same amount of work, as somewhere out in rural Canada. So why is it you have such a cost differential, it has to do with that supply and demand, and the fact that the clouds aren't really the ability to run anything anywhere. Even within the same cloud vendor, you're stuck in a specific region. >> And that was never the original promise, right? I mean it was, we turned it into that. But the original promise was get rid of the heavy lifting of IT. >> Not have to run your own, yeah, exactly. >> And then it became, wow, okay I can run anywhere. And then you know, it's like web 2.0. You know people say why Supercloud, you and I talked about this, why do you need a name for Supercloud? It's like web 2.0. >> It's what Cloud was supposed to be. >> It's what cloud was supposed to be, (group laughing and talking) exactly, right. >> Cloud was supposed to be run anything anywhere, or at least that's what we took it as. But you're right, originally it was just, oh don't have to run your own infrastructure, and you can choose somebody else's infrastructure. >> And you did that >> But you're still bound to that. >> Dave: And People said I want more, right? >> But how do we go from here? >> That's, that's actually, that's a very good point, because indeed when the first HyperClouds were designed, were designed really focus on customers. I think Supercloud is an opportunity to design in the right way. Also having in mind the computer science rigor. And we should take advantage of that, because in fact actually, if cloud would've been designed properly from the beginning, probably wouldn't have needed Supercloud. >> David: You wouldn't have to have been asked to rewrite your application. >> That's correct. (group laughs) >> To use REST interfaces to your storage. >> Revisist history is always a good one. But look, cloud is great. I mean your point is cloud is a good thing. Don't hold it back. >> It is a very good thing. >> Let it continue. >> Let it go as as it is. >> Yeah, let that thing continue to grow. Don't impose restrictions on the cloud. Just refactor what you need to for scale or enterprise grade or availability. >> And you would agree with that, is that true or is it problem you're solving? >> Well yeah, I mean it, what the cloud is doing is absolutely necessary. What the public cloud vendors are doing is absolutely necessary. But what's been missing is how to provide a consistent interface, especially to persistent data. And have it be available across different regions, and across different clouds. 'cause data is a highly localized thing in current architecture. It only exists as rendered by the storage system that you put it in. Whether that's a legacy thing like a NetApp or an Isilon or even a cloud data service. It's localized to a specific region of the cloud in which you put that. We have to delocalize data, and provide a consistent interface to it across all sites. That's high performance, local access, but to global data. >> And so Walmart earlier today described their, what we call Supercloud, they call it the Walmart cloud native platform. And they use this triplet model. They have AWS and Azure, no, oh sorry, no AWS. They have Azure and GCP and then on-prem, where all the VMs live. When you, you know, probe, it turns out that it's only stateless in the cloud. (John laughs) So, the state stuff- >> Well let's just admit it, there is no such thing as stateless, because even the application binaries and libraries are state. >> Well I'm happy that I'm hearing that. >> Yeah, okay. >> Because actually I have a lot of debate (indistinct). If you think about no software running on a (indistinct) machine is stateless. >> David: Exactly. >> This is something that was- >> David: And that's data that needs to be distributed and provided consistently >> (indistinct) >> Across all the clouds, >> And actually, it's a nonsense, but- >> Dave: So it's an illusion, okay. (group talks over each other) >> (indistinct) you guys talk about stateless. >> Well, see, people make the confusion between state and persistent state, okay. Persistent state it's a different thing. State is a different thing. So, but anyway, I want to go back to your point, because there's a lot of debate here. People are talking about data, some people are talking about logic, some people are talking about networking. In my opinion is this triplet, which is data logic and connectivity, that has equal importance. And actually depending on the application, can have the center of gravity moving towards data, moving towards what I call execution units or workloads. And connectivity is actually the most important part of it. >> David: (indistinct). >> Some people are saying move the logic towards the data, some other people, and you are saying actually, that no, you have to build a distributed data mesh. What I'm saying is actually, you have to consider all these three variables, all these vector in order to decide, based on application, what's the most important. Because sometimes- >> John: So the application chooses >> That's correct. >> Well it it's what operating systems were in the past, was principally the thing that runs and manages the jobs, the job scheduler, and the thing that provides your persistent data (indistinct). >> Okay. So we finally got operating system into the equation, thank you. (group laughs) >> Nelu: I actually have a PhD in operating system. >> Cause what we're talking about is an operating system. So forget platform or architecture, it's an operating environment. Let's use it as a general term. >> All right. I think that's about it for me. >> All right, let's take (indistinct). Nelu, I want ask you quick, 'cause I want to give a, 'cause I believe it's an operating system. I think it's going to be a reset, refactored. You wrote to me, "The model of Supercloud has to be open theoretical, has to satisfy the rigors of computer science, and customer requirements." So unique to today, if the OS is going to be refactored, it's not going to be, may or may not be Red Hat or somebody else. This new OS, obviously requirements are for customers too but is what's the computer science that is needed? Where are we, what's the missing? Where's the science in this shift? It's not your standard OS it's not like an- (group talks over each other) >> I would beg to differ. >> (indistinct) truly an operation environment. But the, if you think about, and make analogies, what you need when you design a distributed system, well you need an information model, yeah. You need to figure out how the data is located and distributed. You need a model for the execution units, and you need a way to describe the interactions between all these objects. And it is my opinion that we need to go deeper and formalize these operations in order to make a step forward. And when we design Supercloud, and design something that is better than the current HyperClouds. And actually that is when we design something better, you make a system more efficient and it's going to be better from the cost point of view, from the performance point of view. But we need to add some math into all this customer focus centering and I really admire AWS and their executive team focusing on the customer. But now it's time to go back and see, if we apply some computer science, if you try to formalize to build a theoretical model of cloud, can we build a system that is better than existing ones? >> So David, how do you- >> this is what I'm saying. >> That's a good question >> How do You see the operating system of a, or operating environment of a decentralized cloud? >> Well I think it's layered. I mean we have operating systems that can run systems quite efficiently. Linux has sort of one in the data center, but we're talking about a layer on top of that. And I think we're seeing the emergence of that. For example, on the job scheduling side of things, Kubernetes makes a really good example. You know, you break the workload into the most granular units of compute, the containerized microservice, and then you use a declarative model to state what is needed and give the system the degrees of freedom that it can choose how to instantiate it. Because the thing about these distributed systems, is that the complexity explodes, right? Running a piece of hardware, running a single server is not a problem, even with all the many cores and everything like that. It's when you start adding in the networking, and making it so that you have many of them. And then when it's going across whole different data centers, you know, so, at that level the way you solve this is not manually (group laughs) and not procedurally. You have to change the language so it's intent based, it's a declarative model, and what you're stating is what is intended, and you're leaving it to more advanced techniques, like machine learning to decide how to instantiate that service across the cluster, which is what Kubernetes does, or how to instantiate the data across the diverse storage infrastructure. And that's what we do. >> So that's a very good point because actually what has been neglected with HyperClouds is really optimization and automation. But in order to be able to do both of these things, you need, I'm going back and I'm stubborn, you need to have a mathematical model, a theoretical model because what does automation mean? It means that we have to put machines to do the work instead of us, and machines work with what? Formula, with algorithms, they don't work with services. So I think Supercloud is an opportunity to underscore the importance of optimization and automation- >> Totally agree. >> In HyperCloud, and actually by doing that, we can also have an interesting connotation. We are also contributing to save our planet, because if you think right now. we're consuming a lot of energy on this HyperClouds and also all this AI applications, and I think we can do better and build the same kind of application using less energy. >> So yeah, great point, love that call out, the- you know, Dave and I always joke about the old, 'cause we're old, we talk about, you know, (Nelu Laughs) old history, OS/2 versus DOS, okay, OS's, OS/2 is silly better, first threaded OS, DOS never went away. So how does legacy play into this conversation? Because I buy the theoretical, I love the conversation. Okay, I think it's an OS, totally see it that way myself. What's the blocker? Is there a legacy that drags it back? Is the anchor dragging from legacy? Is there a DOS OS/2 moment? Is there an opportunity to flip the script? This is- >> I think that's a perfect example of why we need to support the existing interfaces, Operating Systems, real operating systems like Linux, understands how to present data, it's called a file system, block devices, things that that plumb in there. And by, you know, going to a REST interface and S3 and telling people they have to rewrite their applications, you can't even consume your application binaries that way, the OS doesn't know how to pull that sort of thing. So we, to get to cloud, to get to the ability to host massive numbers of tenants within a centralized infrastructure, you know, we abandoned these lower level interfaces to the OS and we have to go back to that. It's the reason why DOS ultimately won, is it had the momentum of the install base. We're seeing the same thing here. Whatever it is, it has to be a real file system and not a come down file system >> Nelu, what's your reaction, 'cause you're in the theoretical bandwagon. Let's get your reaction. >> No, I think it's a good, I'll give, you made a good analogy between OS/2 and DOS, but I'll go even farther saying, if you think about the evolution operating system didn't stop the evolution of underlying microprocessors, hardware, and so on and so forth. On the contrary, it was a catalyst for that. So because everybody could develop their own hardware, without worrying that the applications on top of operating system are going to modify. The same thing is going to happen with Supercloud. You're going to have the AWSs, you're going to have the Azure and the the GCP continue to evolve in their own way proprietary. But if we create on top of it the right interface >> The open, this is why open is important. >> That's correct, because actually you're going to see sometime ago, everybody was saying, remember venture capitals were saying, "AWS killed the world, nobody's going to come." Now you see what Oracle is doing, and then you're going to see other players. >> It's funny, Amazon's trying to be more like Microsoft. Microsoft's trying to be more like Amazon and Google- Oracle's just trying to say they have cloud. >> That's, that's correct, (group laughs) so, my point is, you're going to see a multiplication of this HyperClouds and cloud technology. So, the system has to be open in order to accommodate what it is and what is going to come. Okay, so it's open. >> So the the legacy- so legacy is an opportunity, not a blocker in your mind. And you see- >> That's correct, I think we should allow them to continue to to to be their own actually. But maybe you're going to find a way to connect with it. >> Amazon's the processor, and they're on the 80 80 80 right? >> That's correct. >> You're saying you love people trying to get put to work. >> That's a good analogy. >> But, performance levels you say good luck, right? >> Well yeah, we have to be able to take traditional applications, high performance applications, those that consume file system and persistent data. Those things have to be able to run anywhere. You need to be able to put, put them onto, you know, more elastic infrastructure. So, we have to actually get cloud to where it lives up to its billing. >> And that's what you're solving for, with Hammerspace, >> That's what we're solving for, making it possible- >> Give me the bumper sticker. >> Solving for how do you have massive quantities of unstructured file data? At the end of the day, all data ultimately is unstructured data. Have that persistent data available, across any data center, within any cloud, within any region on-prem, at the edge. And have not just the same APIs, but have the exact same data sets, and not sucked over a straw remote, but at extreme high performance, local access. So how do you have local access to globally shared distributed data? And that's what we're doing. We are orchestrating data globally across all different forms of storage infrastructure, so you have a consistent access at the highest performance levels, at the lowest level innate built into the OS, how to consume it as (indistinct) >> So are you going into the- all the clouds and natively building in there, or are you off cloud? >> So This is software that can run on cloud instances and provide high performance file within the cloud. It can take file data that's on-prem. Again, it's software, it can run in virtual or on physical servers. And it abstracts the data from the existing storage infrastructure, and makes the data visible and consumable and orchestratable across any of it. >> And what's the elevator pitch for Cloud of Cloud, give that too. >> Well, Cloud of Clouds creates a theoretical model of cloud, and it describes every single object in the cloud. Where is data, execution units, and connectivity, with one single class of very simple object. And I can, I can give you (indistinct) >> And the problem that solves is what? >> The problem that solves is, it creates this mathematical model that is necessary in order to do other interesting things, such as optimization, using sata engines, using automation, applying ML for instance. Or deep learning to automate all this clouds, if you think about in the industrial field, we know how to manage and automate huge plants. Why wouldn't it do the same thing in cloud? It's the same thing you- >> That's what you mean by theoretical model. >> Nelu: That's correct. >> Lay out the architecture, almost the bones of skeleton or something, or, and then- >> That's correct, and then on top of it you can actually build a platform, You can create your services, >> when you say math, you mean you put numbers to it, you kind of index it. >> You quantify this thing and you apply mathematical- It's really about, I can disclose this thing. It's really about describing the cloud as a knowledge graph for every single object in the graph for node, an edge is a vector. And then once you have this model, then you can apply the field theory, and linear algebra to do operation with these vectors. And it's, this creates a very interesting opportunity to let the math do this thing for us. >> Okay, so what happens with hyperscale, or it's like AWS in your model. >> So in, in my model actually, >> Are they happy with this, or they >> I'm very happy with that. >> Will they be happy with you? >> We create an interface to every single HyperCloud. We actually, we don't need to interface with the thousands of APIs, but you know, if we have the 80 20 rule, and we map these APIs into this graph, and then every single operation that is done in this graph is done from the beginning, in an optimized manner and also automation ready. >> That's going to be great. David, I want us to go back to you before we close real quick. You've had a lot of experience, multiple ventures on the front end. You talked to a lot of customers who've been innovating. Where are the classic (indistinct)? Cause you, you used to sell and invent product around the old school enterprises with storage, you know that that trajectory storage is still critical to store the data. Where's the classic enterprise grade mindset right now? Those customers that were buying, that are buying storage, they're in the cloud, they're lifting and shifting. They not yet put the throttle on DevOps. When they look at this Supercloud thing, Are they like a deer in the headlights, or are they like getting it? What's the, what's the classic enterprise look like? >> You're seeing people at different stages of adoption. Some folks are trying to get to the cloud, some folks are trying to repatriate from the cloud, because they've realized it's better to own than to rent when you use a lot of it. And so people are at very different stages of the journey. But the one thing that's constant is that there's always change. And the change here has to do with being able to change the location where you're doing your computing. So being able to support traditional workloads in the cloud, being able to run things at the edge, and being able to rationalize where the data ought to exist, and with a declarative model, intent-based, business objective-based, be able to swipe a mouse and have the data get redistributed and positioned across different vendors, across different clouds, that, we're seeing that as really top of mind right now, because everybody's at some point on this journey, trying to go somewhere, and it involves taking their data with them. (John laughs) >> Guys, great conversation. Thanks so much for coming on, for John, Dave. Stay tuned, we got a great analyst power panel coming right up. More from Palo Alto, Supercloud 2. Be right back. (bouncy music)
SUMMARY :
and I'm really pleased to And Dr. Nelu Mihai is the CEO So I'm going to start right off On the other hand, if you look at what's So the argument, the of platform being the monolith, you know, but on the developer cloud, It's the scale thing that gets me- the ability to run anything anywhere. of the heavy lifting of IT. Not have to run your And then you know, it's like web 2.0. It's what Cloud It's what cloud was supposed to be, and you can choose somebody bound to that. Also having in mind the to rewrite your application. That's correct. I mean your point is Yeah, let that thing continue to grow. of the cloud in which you put that. So, the state stuff- because even the application binaries If you think about no software running on Dave: So it's an illusion, okay. (indistinct) you guys talk And actually depending on the application, that no, you have to build the job scheduler, and the thing the equation, thank you. a PhD in operating system. about is an operating system. I think I think it's going to and it's going to be better at that level the way you But in order to be able to and build the same kind of Because I buy the theoretical, the OS doesn't know how to Nelu, what's your reaction, of it the right interface The open, this is "AWS killed the world, to be more like Microsoft. So, the system has to be open So the the legacy- to continue to to to put to work. You need to be able to put, And have not just the same APIs, and makes the data visible and consumable for Cloud of Cloud, give that too. And I can, I can give you (indistinct) It's the same thing you- That's what you mean when you say math, and linear algebra to do Okay, so what happens with hyperscale, the thousands of APIs, but you know, the old school enterprises with storage, and being able to rationalize Stay tuned, we got a
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Nelu | PERSON | 0.99+ |
David Flynn | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
AWS | ORGANIZATION | 0.99+ |
London | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
LA | LOCATION | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
OS/2 | TITLE | 0.99+ |
Nir Zuk | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Hammerspace | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Bell Labs | ORGANIZATION | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
DOS | TITLE | 0.99+ |
AWSs | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
twice | QUANTITY | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Canada | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
Nelu Laughs | PERSON | 0.98+ |
thousands | QUANTITY | 0.98+ |
first | QUANTITY | 0.97+ |
Linux | TITLE | 0.97+ |
HyperCloud | TITLE | 0.97+ |
Cloud of Cloud | TITLE | 0.97+ |
one | QUANTITY | 0.96+ |
Cloud of Clouds | ORGANIZATION | 0.95+ |
GCP | TITLE | 0.95+ |
Azure | TITLE | 0.94+ |
three variables | QUANTITY | 0.94+ |
one single class | QUANTITY | 0.94+ |
single server | QUANTITY | 0.94+ |
triplet | QUANTITY | 0.94+ |
one region | QUANTITY | 0.92+ |
NetApp | TITLE | 0.92+ |
DOS OS/2 | TITLE | 0.92+ |
Azure | ORGANIZATION | 0.92+ |
earlier today | DATE | 0.92+ |
Cloud of Clouds | TITLE | 0.91+ |
Breaking Analysis: Supercloud2 Explores Cloud Practitioner Realities & the Future of Data Apps
>> Narrator: From theCUBE Studios in Palo Alto and Boston bringing you data-driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante >> Enterprise tech practitioners, like most of us they want to make their lives easier so they can focus on delivering more value to their businesses. And to do so, they want to tap best of breed services in the public cloud, but at the same time connect their on-prem intellectual property to emerging applications which drive top line revenue and bottom line profits. But creating a consistent experience across clouds and on-prem estates has been an elusive capability for most organizations, forcing trade-offs and injecting friction into the system. The need to create seamless experiences is clear and the technology industry is starting to respond with platforms, architectures, and visions of what we've called the Supercloud. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis we give you a preview of Supercloud 2, the second event of its kind that we've had on the topic. Yes, folks that's right Supercloud 2 is here. As of this recording, it's just about four days away 33 guests, 21 sessions, combining live discussions and fireside chats from theCUBE's Palo Alto Studio with prerecorded conversations on the future of cloud and data. You can register for free at supercloud.world. And we are super excited about the Supercloud 2 lineup of guests whereas Supercloud 22 in August, was all about refining the definition of Supercloud testing its technical feasibility and understanding various deployment models. Supercloud 2 features practitioners, technologists and analysts discussing what customers need with real-world examples of Supercloud and will expose thinking around a new breed of cross-cloud apps, data apps, if you will that change the way machines and humans interact with each other. Now the example we'd use if you think about applications today, say a CRM system, sales reps, what are they doing? They're entering data into opportunities they're choosing products they're importing contacts, et cetera. And sure the machine can then take all that data and spit out a forecast by rep, by region, by product, et cetera. But today's applications are largely about filling in forms and or codifying processes. In the future, the Supercloud community sees a new breed of applications emerging where data resides on different clouds, in different data storages, databases, Lakehouse, et cetera. And the machine uses AI to inspect the e-commerce system the inventory data, supply chain information and other systems, and puts together a plan without any human intervention whatsoever. Think about a system that orchestrates people, places and things like an Uber for business. So at Supercloud 2, you'll hear about this vision along with some of today's challenges facing practitioners. Zhamak Dehghani, the founder of Data Mesh is a headliner. Kit Colbert also is headlining. He laid out at the first Supercloud an initial architecture for what that's going to look like. That was last August. And he's going to present his most current thinking on the topic. Veronika Durgin of Sachs will be featured and talk about data sharing across clouds and you know what she needs in the future. One of the main highlights of Supercloud 2 is a dive into Walmart's Supercloud. Other featured practitioners include Western Union Ionis Pharmaceuticals, Warner Media. We've got deep, deep technology dives with folks like Bob Muglia, David Flynn Tristan Handy of DBT Labs, Nir Zuk, the founder of Palo Alto Networks focused on security. Thomas Hazel, who's going to talk about a new type of database for Supercloud. It's several analysts including Keith Townsend Maribel Lopez, George Gilbert, Sanjeev Mohan and so many more guests, we don't have time to list them all. They're all up on supercloud.world with a full agenda, so you can check that out. Now let's take a look at some of the things that we're exploring in more detail starting with the Walmart Cloud native platform, they call it WCNP. We definitely see this as a Supercloud and we dig into it with Jack Greenfield. He's the head of architecture at Walmart. Here's a quote from Jack. "WCNP is an implementation of Kubernetes for the Walmart ecosystem. We've taken Kubernetes off the shelf as open source." By the way, they do the same thing with OpenStack. "And we have integrated it with a number of foundational services that provide other aspects of our computational environment. Kubernetes off the shelf doesn't do everything." And so what Walmart chose to do, they took a do-it-yourself approach to build a Supercloud for a variety of reasons that Jack will explain, along with Walmart's so-called triplet architecture connecting on-prem, Azure and GCP. No surprise, there's no Amazon at Walmart for obvious reasons. And what they do is they create a common experience for devs across clouds. Jack is going to talk about how Walmart is evolving its Supercloud in the future. You don't want to miss that. Now, next, let's take a look at how Veronica Durgin of SAKS thinks about data sharing across clouds. Data sharing we think is a potential killer use case for Supercloud. In fact, let's hear it in Veronica's own words. Please play the clip. >> How do we talk to each other? And more importantly, how do we data share? You know, I work with data, you know this is what I do. So if you know I want to get data from a company that's using, say Google, how do we share it in a smooth way where it doesn't have to be this crazy I don't know, SFTP file moving? So that's where I think Supercloud comes to me in my mind, is like practical applications. How do we create that mesh, that network that we can easily share data with each other? >> Now data mesh is a possible architectural approach that will enable more facile data sharing and the monetization of data products. You'll hear Zhamak Dehghani live in studio talking about what standards are missing to make this vision a reality across the Supercloud. Now one of the other things that we're really excited about is digging deeper into the right approach for Supercloud adoption. And we're going to share a preview of a debate that's going on right now in the community. Bob Muglia, former CEO of Snowflake and Microsoft Exec was kind enough to spend some time looking at the community's supercloud definition and he felt that it needed to be simplified. So in near real time he came up with the following definition that we're showing here. I'll read it. "A Supercloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers." So not only did Bob simplify the initial definition he's stressed that the Supercloud is a platform versus an architecture implying that the platform provider eg Snowflake, VMware, Databricks, Cohesity, et cetera is responsible for determining the architecture. Now interestingly in the shared Google doc that the working group uses to collaborate on the supercloud de definition, Dr. Nelu Mihai who is actually building a Supercloud responded as follows to Bob's assertion "We need to avoid creating many Supercloud platforms with their own architectures. If we do that, then we create other proprietary clouds on top of existing ones. We need to define an architecture of how Supercloud interfaces with all other clouds. What is the information model? What is the execution model and how users will interact with Supercloud?" What does this seemingly nuanced point tell us and why does it matter? Well, history suggests that de facto standards will emerge more quickly to resolve real world practitioner problems and catch on more quickly than consensus-based architectures and standards-based architectures. But in the long run, the ladder may serve customers better. So we'll be exploring this topic in more detail in Supercloud 2, and of course we'd love to hear what you think platform, architecture, both? Now one of the real technical gurus that we'll have in studio at Supercloud two is David Flynn. He's one of the people behind the the movement that enabled enterprise flash adoption, that craze. And he did that with Fusion IO and he is now working on a system to enable read write data access to any user in any application in any data center or on any cloud anywhere. So think of this company as a Supercloud enabler. Allow me to share an excerpt from a conversation David Flore and I had with David Flynn last year. He as well gave a lot of thought to the Supercloud definition and was really helpful with an opinionated point of view. He said something to us that was, we thought relevant. "What is the operating system for a decentralized cloud? The main two functions of an operating system or an operating environment are one the process scheduler and two, the file system. The strongest argument for supercloud is made when you go down to the platform layer and talk about it as an operating environment on which you can run all forms of applications." So a couple of implications here that will be exploring with David Flynn in studio. First we're inferring from his comment that he's in the platform camp where the platform owner is responsible for the architecture and there are obviously trade-offs there and benefits but we'll have to clarify that with him. And second, he's basically saying, you kill the concept the further you move up the stack. So the weak, the further you move the stack the weaker the supercloud argument becomes because it's just becoming SaaS. Now this is something we're going to explore to better understand is thinking on this, but also whether the existing notion of SaaS is changing and whether or not a new breed of Supercloud apps will emerge. Which brings us to this really interesting fellow that George Gilbert and I RIFed with ahead of Supercloud two. Tristan Handy, he's the founder and CEO of DBT Labs and he has a highly opinionated and technical mind. Here's what he said, "One of the things that we still don't know how to API-ify is concepts that live inside of your data warehouse inside of your data lake. These are core concepts that the business should be able to create applications around very easily. In fact, that's not the case because it involves a lot of data engineering pipeline and other work to make these available. So if you really want to make it easy to create these data experiences for users you need to have an ability to describe these metrics and then to turn them into APIs to make them accessible to application developers who have literally no idea how they're calculated behind the scenes and they don't need to." A lot of implications to this statement that will explore at Supercloud two versus Jamma Dani's data mesh comes into play here with her critique of hyper specialized data pipeline experts with little or no domain knowledge. Also the need for simplified self-service infrastructure which Kit Colbert is likely going to touch upon. Veronica Durgin of SAKS and her ideal state for data shearing along with Harveer Singh of Western Union. They got to deal with 200 locations around the world in data privacy issues, data sovereignty how do you share data safely? Same with Nick Taylor of Ionis Pharmaceutical. And not to blow your mind but Thomas Hazel and Bob Muglia deposit that to make data apps a reality across the Supercloud you have to rethink everything. You can't just let in memory databases and caching architectures take care of everything in a brute force manner. Rather you have to get down to really detailed levels even things like how data is laid out on disk, ie flash and think about rewriting applications for the Supercloud and the MLAI era. All of this and more at Supercloud two which wouldn't be complete without some data. So we pinged our friends from ETR Eric Bradley and Darren Bramberm to see if they had any data on Supercloud that we could tap. And so we're going to be analyzing a number of the players as well at Supercloud two. Now, many of you are familiar with this graphic here we show some of the players involved in delivering or enabling Supercloud-like capabilities. On the Y axis is spending momentum and on the horizontal accesses market presence or pervasiveness in the data. So netscore versus what they call overlap or end in the data. And the table insert shows how the dots are plotted now not to steal ETR's thunder but the first point is you really can't have supercloud without the hyperscale cloud platforms which is shown on this graphic. But the exciting aspect of Supercloud is the opportunity to build value on top of that hyperscale infrastructure. Snowflake here continues to show strong spending velocity as those Databricks, Hashi, Rubrik. VMware Tanzu, which we all put under the magnifying glass after the Broadcom announcements, is also showing momentum. Unfortunately due to a scheduling conflict we weren't able to get Red Hat on the program but they're clearly a player here. And we've put Cohesity and Veeam on the chart as well because backup is a likely use case across clouds and on-premises. And now one other call out that we drill down on at Supercloud two is CloudFlare, which actually uses the term supercloud maybe in a different way. They look at Supercloud really as you know, serverless on steroids. And so the data brains at ETR will have more to say on this topic at Supercloud two along with many others. Okay, so why should you attend Supercloud two? What's in it for me kind of thing? So first of all, if you're a practitioner and you want to understand what the possibilities are for doing cross-cloud services for monetizing data how your peers are doing data sharing, how some of your peers are actually building out a Supercloud you're going to get real world input from practitioners. If you're a technologist, you're trying to figure out various ways to solve problems around data, data sharing, cross-cloud service deployment there's going to be a number of deep technology experts that are going to share how they're doing it. We're also going to drill down with Walmart into a practical example of Supercloud with some other examples of how practitioners are dealing with cross-cloud complexity. Some of them, by the way, are kind of thrown up their hands and saying, Hey, we're going mono cloud. And we'll talk about the potential implications and dangers and risks of doing that. And also some of the benefits. You know, there's a question, right? Is Supercloud the same wine new bottle or is it truly something different that can drive substantive business value? So look, go to Supercloud.world it's January 17th at 9:00 AM Pacific. You can register for free and participate directly in the program. Okay, that's a wrap. I want to give a shout out to the Supercloud supporters. VMware has been a great partner as our anchor sponsor Chaos Search Proximo, and Alura as well. For contributing to the effort I want to thank Alex Myerson who's on production and manages the podcast. Ken Schiffman is his supporting cast as well. Kristen Martin and Cheryl Knight to help get the word out on social media and at our newsletters. And Rob Ho is our editor-in-chief over at Silicon Angle. Thank you all. Remember, these episodes are all available as podcast. Wherever you listen we really appreciate the support that you've given. We just saw some stats from from Buzz Sprout, we hit the top 25% we're almost at 400,000 downloads last year. So really appreciate your participation. All you got to do is search Breaking Analysis podcast and you'll find those I publish each week on wikibon.com and siliconangle.com. Or if you want to get ahold of me you can email me directly at David.Vellante@siliconangle.com or dm me DVellante or comment on our LinkedIn post. I want you to check out etr.ai. They've got the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. We'll see you next week at Supercloud two or next time on breaking analysis. (light music)
SUMMARY :
with Dave Vellante of the things that we're So if you know I want to get data and on the horizontal
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Bob Muglia | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
David Flynn | PERSON | 0.99+ |
Veronica | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
Nick Taylor | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Veronica Durgin | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Rob Ho | PERSON | 0.99+ |
Warner Media | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Veronika Durgin | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Ionis Pharmaceutical | ORGANIZATION | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
David Flore | PERSON | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Bob | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
21 sessions | QUANTITY | 0.99+ |
Darren Bramberm | PERSON | 0.99+ |
33 guests | QUANTITY | 0.99+ |
Nir Zuk | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Harveer Singh | PERSON | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Sanjeev Mohan | PERSON | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
Cohesity | ORGANIZATION | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
200 locations | QUANTITY | 0.99+ |
August | DATE | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
Data Mesh | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
David.Vellante@siliconangle.com | OTHER | 0.99+ |
next week | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first point | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.98+ |
Silicon Angle | ORGANIZATION | 0.98+ |
ETR | ORGANIZATION | 0.98+ |
Eric Bradley | PERSON | 0.98+ |
two | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Sachs | ORGANIZATION | 0.98+ |
SAKS | ORGANIZATION | 0.98+ |
Supercloud | EVENT | 0.98+ |
last August | DATE | 0.98+ |
each week | QUANTITY | 0.98+ |
Breaking Analysis: A Digital Skills Gap Signals Rebound in IT Services Spend
from the cube studios in palo alto in boston bringing you data driven insights from the cube and etr this is breaking analysis with dave vellante recent survey data from etr shows that enterprise tech spending is tracking with projected u.s gdp growth at six to seven percent this year many markers continue to point the way to a strong recovery including hiring trends and the loosening of frozen it project budgets however skills shortages are blocking progress at some companies which bodes well for an increased reliance on external i.t services moreover while there's much to talk about well there's much talk about the rotation out of work from home plays and stocks such as video conferencing vdi and other remote worker tech we see organizations still trying to figure out the ideal balance between funding headquarter investments that have been neglected and getting hybrid work right in particular the talent gap combined with a digital mandate means companies face some tough decisions as to how to fund the future while serving existing customers and transforming culturally hello everyone and welcome to this week's wikibon cube insights powered by etr in this breaking analysis we welcome back eric porter bradley of etr who will share fresh data perspectives and insights from the latest survey data eric great to see you welcome thank you very much dave always good to see you and happy to be on the show again okay we're going to share some macro data and then we're going to dig into some highlights from etr's most recent march covid survey and also the latest april data so eric the first chart that we want to show it shows cio and it buyer responses to expected i.t spend for each quarter of 2021 versus 2020. and you can see here a steady quarterly improvement eric what are the key takeaways from your perspective sure well first of all for everyone out there this particular survey had a record-setting number of uh participation we had uh 1 500 i.t decision makers participate and we had over half of the fortune 500 and over a fifth of the global 1000. so it was a really good survey this is the seventh iteration of the covet impact survey specifically and this is going to transition to an over large macro survey going forward so we could continue it and you're 100 right what we've been tracking here since uh march of last year was how is spending being impacted because of covid where is it shifting and what we're seeing now finally is that there is a real re-acceleration in spend i know we've been a little bit more cautious than some of the other peers out there that just early on slapped an eight or a nine percent number but what we're seeing is right now it's at a midpoint of over six uh about six point seven percent and that is accelerating so uh we are still hopeful that that will continue uh really that spending is going to be in the second half of the year as you can see on the left part of this chart that we're looking at uh it was about 1.7 versus 3 for q1 spending year over year so that is starting to accelerate through the back half you know i think it's prudent to be be cautious relative because normally you'd say okay tech is going to grow a couple of points higher than gdp but it's it's really so hard to predict this year okay the next chart is here that we want to show you is we ask respondents to indicate what strategies they're employing in the short term as a result of coronavirus and you can see a few things that i'll call out and then i'll ask eric to chime in first there's been no meaningful change of course no surprise in tactics like remote work and halting travel however we're seeing very positive trends in other areas trending downward like hiring freezes and freezing i.t deployments downward trend in layoffs and we also see an increase in the acceleration of new i.t deployments and in hiring eric what are your key takeaways well first of all i think it's important to point out here that uh we're also capturing that people believe remote work productivity is still increasing now the trajectory might be coming down a little bit but that is really key i think to the backdrop of what's happening here so people have a perception that productivity of remote work is better than hybrid work and that's from the i.t decision makers themselves um but what we're seeing here is that uh most importantly these organizations are citing plans to increase hiring and that's something that i think is really important to point out it's showing a real thawing and to your point in right in the beginning of the intro uh we are seeing deployments stabilize versus prior survey levels which means early on they had no plans to launch new tech deployments then they said nope we're going to start and now that's stalling and i think it's exactly right what you said is there's an i.t skills shortage so people want to continue to do i.t deployments because they have to support work from home and a hybrid back return to the office but they just don't have the skills to do so and i think that's really probably the most important takeaway from this chart um is that stalling and to really ask why it's stalling yeah so we're going to get into that for sure and and i think that's a really key point is that that that accelerating it deployments is some it looks like it's hit a wall in the survey and so but before before we get deep into the skills let's let's take a look at this next chart and we're asking people here how a return to the new normal if you will and back to offices is going to change spending with on-prem architectures and applications and so the first two bars they're cloud-friendly if you add them up at 63 percent of the respondents say that either they'll stay in the cloud for the most part or they're going to lower the on-prem spend when they go back to the office the next three bars are on-prem friendly if you add those up as 29 percent of the respondents say their on-prem spend is going to bounce back to pre-covert levels or actually increase and of course 12 percent of that number by the way say they they've never altered their on-prem spend so eric no surprise but this bodes well for cloud but but it it isn't it also a positive for on-prem this we've had this dual funding premise meaning cloud continues to grow but neglected data center spend also gets a boost what's your thoughts you know really it's interesting it's people are spending on all fronts you and i were talking in a prep it's like you know we're we're in battle and i've got naval i've got you know air i've got land uh i've got to spend on cloud and digital transformation but i also have to spend for on-prem uh the hybrid work is here and it needs to be supported so this spending is going to increase you know when you look at this chart you're going to see though that roughly 36 percent of all respondents say that their spending is going to remain mostly on cloud so this you know that is still the clear direction uh digital transformation is still happening covid accelerated it greatly um you know you and i as journalists and researchers already know this is where the puck is going uh but spend has always lagged a little bit behind because it just takes some time to get there you know inversely 27 said that their on-prem spending will decrease so when you look at those two i still think that the trend is the friend for cloud spending uh even though yes they do have to continue spending on hybrid some of it's been neglected there are refresh cycles coming up so overall it just points to more and more spending right now it really does seem to be a very strong backdrop for it growth so i want to talk a little bit about the etr taxonomy before we bring up the next chart we get a lot of questions about this and of course when you do a massive survey like you're doing you have to have consistency for time series so you have to really think through what that what the buckets look like if you will so this next chart takes a look at the etr taxonomy and it breaks it down into simple to understand terms so the green is the portion of spending on a vendor's tech within a category that is accelerating and the red is the portion that is decelerating so eric what are the key messages in this data well first of all dave thank you so much for pointing that out we used to do uh just what we call a next a net score it's a proprietary formula that we use to determine the overall velocity of spending some people found it confusing um our data scientists decided to break this sector breakdown into what you said which is really more of a mode analysis in that sector how many of the vendors are increasing versus decreasing so again i just appreciate you bringing that up and allowing us to explain the the the reasoning behind our analysis there but what we're seeing here uh goes back to something you and i did last year when we did our predictions and that was that it services and consulting was going to have a true rebound in 2021 and that's what this is showing right here so in this chart you're going to see that consulting and services are really continuing their recovery uh 2020 had a lot of declines and they have the biggest sector over year-over-year acceleration sector-wise the other thing to point out in this which we'll get to again later is that the inverse analysis is true for video conferencing uh we will get to that so i'm going to leave a little bit of ammunition behind for that one but what we're seeing here is it consulting services being the real favorable and video conferencing uh having a little bit more trouble great okay and then let's let's take a look at that services piece and this next chart really is a drill down into that space and emphasizes eric what you were just talking about and we saw this in ibm's earnings where still more than 60 percent of ibm's business comes from services and the company beat earnings you know in part due to services outperforming expectations i think it had a somewhat easier compare and some of this pen-up demand that we've been talking about bodes well for ibm and in other services companies it's not just ibm right eric no it's not but again i'm going to point out that you and i did point out ibm in our in our predictions one we did in late december so it is nice to see one of the reasons we don't have a more favorable rating on ibm at the moment is because they are in the the process of spinning out uh this large unit and so there's a little bit of you know corporate action there that keeps us off on the sideline but i would also want to point out here uh tata infosys and cognizant because they're seeing year-over-year acceleration in both it consulting and outsourced i t services so we break those down separately and those are the three names that are seeing acceleration in both of those so again a tata emphasis and cognizant are all looking pretty well positioned as well so we've been talking a little bit about this skill shortage and this is what's i think so hard for for forecasters um is that you know on the one hand there's a lot of pent up demand you know it's like scott gottlieb said it's like woodstock coming out of the covid uh but on the other hand if you have a talent gap you've got to rely on external services so there's a learning curve there's a ramp up it's an external company and so it takes time to put those together so so this data that we're going to show you next uh is is really important in my view and ties what we're saying we're saying at the top it asks respondents to comment on their staffing plans the light blue is we're increasing staff the gray is no change in the magenta or whatever whatever color that is that sort of purplish color anyway that color is is decreasing and the picture is very positive across the board full-time staff offshoring contract employees outsourced professional services all up trending upwards and this eric is more evidence of the services bounce back yeah it certainly is david and what happened is when we caught this trend we decided to go one level deeper and say all right we're seeing this but we need to know why and that's what we always try to do here data will tell you what's happening it doesn't always tell you why and that's one of the things that etr really tries to dig in with through the insights interviews panels and also going direct with these more custom survey questions uh so in this instance i think the real takeaway is that 30 of the respondents said that their outsourced and managed services are going to increase over the next three months that's really powerful that's a large portion of organizations in a very short time period so we're capturing that this acceleration is happening right now and it will be happening in real time and i don't see it slowing down you and i are speaking about we have to you know increase cloud spend we have to increase hybrid spend there are refresh cycles coming up and there's just a real skill shortage so this is a long-term setup that bodes very well for it services and consulting you know eric when i came out of college i somebody told me read read read read as much as you can and and so i would and they said read the wall street journal every day and i so i did it and i would read the tech magazines and back then it was all paper and what happens is you begin to connect the dots and so the reason i bring that up is because i've now been had taken a bath in the etr data for the better part of two years and i'm beginning to be able to connect the dots you know the data is not always predictive but many many times it is and so this next data gets into the fun stuff where we name names a lot of times people don't like it because the marketing people and organizations say well the data's wrong of course that's the first thing they do is attack the data but you and i know we've made some really great calls work from home for sure you're talking about the services bounce back uh we certainly saw the rise of crowdstrike octa zscaler well before people were talking about that same thing with video conferencing and so so anyway this is the fun stuff and it looks at positive versus negative sentiment on on companies so first how does etr derive this data and how should we interpret it and what are some of your takeaways [Music] sure first of all how we derive the data or systematic um survey responses that we do on a quarterly basis and we standardize those responses to allow for time series analysis so we can do trend analysis as well we do find that our data because it's talking about forward-looking spending intentions is really more predictive because we're talking about things that might be happening six months three months in the future not things that a lot of other competitors and research peers are looking at things that already happened uh they're looking in the past etr really likes to look into the future and our surveys are set up to do so so thank you for that question it's an enjoyable lead-in but to get to the fun stuff like you said uh what we do here is we put ratings on the data sets i do want to put the caveat out there that our spending intentions really only captures top-line revenue it is not indicative of profit margin or any other line items so this is only going to be viewed as what we are rating the data set itself not the company um you know that's not what we're in the game of doing so i think that's very important for the marketing and the vendors out there themselves when they when they take a look at this we're just talking about what we can control which is our data we're going to talk about a few of the names here on this highlighted vendors list one we're going to go back to that you and i spoke about i guess about six months ago or maybe even earlier which was the observability space um you and i were noticing that it was getting very crowded a lot of new entrants um there was a lot of acquisition from more of the legacy or standard entrance players in the space and that is continuing so i think in a minute we're going to move into that observability space but what we're seeing there is that it's becoming incredibly crowded and we're possibly seeing signs of them cannibalizing each other uh we're also going to move on a little bit into video conferencing where we're capturing some spend deceleration and then ultimately we're going to get into a little bit of a storage refresh cycle and talk about that but yeah these are the highlighted vendors for april um we usually do this once a quarter and they do change based on the data but they're not usually whipsawed around the data doesn't move that quickly yeah so you can see the some of the big names on the left-hand side some of the sas companies that have momentum obviously servicenow has been doing very very well we've talked a lot about snowflake octa crowdstrike z scalar in all very positive as well as you know several others i i guess i'd add some some things i mean i think if thinking about the next decade it's it's cloud which is not going to be like the same cloud as last decade a lot of machine learning and deep learning and ai and the cloud is extending to the edge in the data center data obviously very important data is decentralized and distributed so data architectures are changing a lot of opportunities to connect across clouds and actually create abstraction layers and then something that we've been covering a lot is processor performance is actually accelerating relative to moore's law it's probably instead of doubling every two years it's quadrupling every two years and so that is a huge factor especially as it relates to powering ai and ai inferencing at the edge this is a whole new territory custom silicon is is really becoming in vogue uh and so we're something that we're watching very very closely yeah i completely completely agree on that and i do think that the the next version of cloud will be very different another thing to point out on that too is you can't do anything that you're talking about without collecting the data and and organizations are extremely serious about that now it seems it doesn't matter what industry they're in every company is a data company and that also bodes well for the storage call we do believe that there is going to just be a huge increase in the need for storage um and yes hopefully that'll become portable across multi-cloud and hybrid as well now as eric said the the etr data's it's it's really focused on that top line spend so if you look at the uh on on the right side of that chart you saw you know netapp was kind of negative was very negative right but there's a company that's in in transformation now they've lowered expectations and they've recently beat expectations that's why the stock has been doing better but but at the macro from a spending standpoint it's still challenged so you have big footprint companies like netapp and oracle is another one oracle's stock is at an all-time high but the spending relative to sort of previous cycles or relative to you know like for instance snowflake much much smaller not as high growth but they're managing expectations they're managing their transition they're managing profitability zoom is another one zoom looking looking negative but you know zoom's got to use its market cap now to to transform and increase its tam uh and then splunk is another one we're going to talk about splunk is in transition it acquired signal fx it just brought on this week teresa carlson who was the head of aws public sector she's the president and head of sales so they've got a go to market challenge and they brought in teresa carlson to really solve that but but splunk has been trending downward we called that you know several quarters ago eric and so i want to bring up the data on splunk and this is splunk eric in analytics and it's not trending in the right direction the green is accelerating span the red is and the bars is decelerating spend the top blue line is spending velocity or net score and the yellow line is market share or pervasiveness in the data set your thoughts yeah first i want to go back is a great point dave about our data versus a disconnect from an equity analysis perspective i used to be an equity analyst that is not what we do here and you you may the main word you said is expectations right stocks will trade on how they do compared to the expectations that are set uh whether that's buy side expectations sell side expectations or management's guidance themselves we have no business in tracking any of that what we are talking about is top line acceleration or deceleration so uh that was a great point to make and i do think it's an important one for all of our listeners out there now uh to move to splunk yes i've been capturing a lot of negative commentary on splunk even before the data turned so this has been about a year-long uh you know our analysis and review on this name and i'm dating myself here but i know you and i are both rock and roll fans so i'm gonna point out a led zeppelin song and movie and say that the song remains the same for splunk we are just seeing uh you know recent spending intentions are taking yet another step down both from prior survey levels from year ago levels uh this we're looking at in the analytics sector and spending intentions are decelerating across every single customer group if we went to one of our other slide analysis um on the etr plus platform and you do by customer sub sample in analytics it's dropping in every single vertical it doesn't matter which one uh it's really not looking good unfortunately and you had mentioned this as an analytics and i do believe the next slide is an information security yeah let's bring that up and it's unfortunately it's not doing much better so this is specifically fortune 500 accounts and information security uh you know there's deep pockets in the fortune 500 but from what we're hearing in all the insights and interviews and panels that i personally moderate for etr people are upset they didn't like the the strong tactics that splunk has used on them in the past they didn't like the ingestion model pricing the inflexibility and when alternatives came along people are willing to look at the alternatives and that's what we're seeing in both analytics and big data and also for their sim in security yeah so i think again i i point to teresa carlson she's got a big job but she's very capable she's gonna she's gonna meet with a lot of customers she's a go to market pro she's gonna have to listen hard and i think you're gonna you're gonna see some changes there um okay so there's more sorry there's more bad news on splunk so bring this up is is is net score for splunk in elastic accounts uh this is for analytics so there's 106 elastic accounts that uh in the data set that also have splunk and it's trending downward for splunk that's why it's green for elastic and eric the important call out from etr here is how splunk's performance in elastic accounts compares with its performance overall the elk stack which obviously elastic is a big part of that is causing pain for splunk as is data dog and you mentioned the pricing issue uh is it is it just well is it pricing in your assessment or is it more fundamental you know it's multi-level based on the commentary we get from our itdms that take the survey so yes you did a great job with this analysis what we're looking at is uh the spending within shared accounts so if i have splunk already how am i spending i'm sorry if i have elastic already how is my spending on splunk and what you're seeing here is it's down to about a 12 net score whereas splunk overall has a 32 net score among all of its customers so what you're seeing there is there is definitely a drain that's happening where elastic is draining spend from splunk and usage from them uh the reason we used elastic here is because all observabilities the whole sector seems to be decelerating splunk is decelerating the most but elastic is the only one that's actually showing resiliency so that's why we decided to choose these two but you pointed out yes it's also datadog datadog is cloud native uh they're more devops oriented they tend to be viewed as having technological lead as compared to splunk so that's a really good point a dynatrace also is expanding their abilities and splunk has been making a lot of acquisitions to push their cloud services they are also changing their pricing model right they're they're trying to make things a little bit more flexible moving off ingestion um and moving towards uh you know consumption so they are trying and the new hires you know i'm not gonna bet against them because the one thing that splunk has going for them is their market share in our survey they're still very well entrenched so they do have a lot of accounts they have their foothold so if they can find a way to make these changes then they you know will be able to change themselves but the one thing i got to say across the whole sector is competition is increasing and it does appear based on commentary and data that they're starting to cannibalize themselves it really seems pretty hard to get away from that and you know there are startups in the observability space too that are going to be you know even more disruptive i think i think i want to key on the pricing for a moment and i've been pretty vocal about this i think the the old sas pricing model where essentially you essentially lock in for a year or two years or three years pay up front or maybe pay quarterly if you're lucky that's a one-way street and i think it's it's a flawed model i like what snowflake's doing i like what datadog's doing look at what stripe is doing look what twilio is doing these are cons you mentioned it because it's consumption based pricing and if you've got a great product put it out there and you know damn the torpedoes and i think that is a game changer i i look at for instance hpe with green lake i look at dell with apex they're trying to mimic that model you know they're there and apply it to to infrastructure it's much harder with infrastructure because you got to deploy physical infrastructure but but that is a model that i think is going to change and i think all of the traditional sas pricing is going to is going to come under disruption over the next you know better part of the decades but anyway uh let's move on we've we've been covering the the apm space uh pretty extensively application performance management and this chart lines up some of the big players here comparing net score or spending momentum from the april 20th survey the gray is is um is sorry the the the gray is the april 20th survey the blue is jan 21 and the yellow is april 21. and not only are elastic and data dog doing well relative to splunk eric but everything is down from last year so this space as you point out is undergoing a transformation yeah the pressures are real and it's you know it's sort of that perfect storm where it's not only the data that's telling us that but also the direct feedback we get from the community uh pretty much all the interviews i do i've done a few panels specifically on this topic for anyone who wants to you know dive a little bit deeper we've had some experts talk about this space and there really is no denying that there is a deceleration in spend and it's happening because that spend is getting spread out among different vendors people are using you know a data dog for certain aspects they're using elastic where they can because it's cheaper they're using splunk because they have to but because it's so expensive they're cutting some of the things that they're putting into splunk which is dangerous particularly on the security side if i have to decide what to put in and whatnot that's not really the right way to have security hygiene um so you know this space is just getting crowded there's disruptive vendors coming from the emerging space as well and what you're seeing here is the only bit of positivity is elastic on a survey over survey basis with a slight slight uptick everywhere else year over year and survey over survey it's showing declines it's just hard to ignore and then you've got dynatrace who based on the the interviews you do in the venn you're you know one on one or one on five you know the private interviews that i've been invited to dynatrace gets very high scores uh for their road map you've got new relic which has been struggling you know financially but they've got a purpose built they've got a really good product and a purpose-built database just for this apm space and then of course you've got cisco with appd which is a strong business for them and then as you mentioned you've got startups coming in you've got chaos search which ed walsh is now running you know leave the data in place in aws and really interesting model honeycomb it's going to be really disruptive jeremy burton's company observed so this space is it's becoming jump ball yeah there's a great line that came out of one of them and that was that the lines are blurring it used to be that you knew exactly that app dynamics what they were doing it was apm only or it was logging and monitoring only and a lot of what i'm hearing from the itdm experts is that the lines are blurring amongst all of these names they all have functionality that kind of crosses over each other and the other interesting thing is it used to be application versus infrastructure monitoring but as you know infrastructure is becoming code more and more and more and as infrastructure becomes code there's really no difference between application and infrastructure monitoring so we're seeing a convergence and a blurring of the lines in this space which really doesn't bode well and a great point about new relic their tech gets good remarks uh i just don't know if their enterprise level service and sales is up to snuff right now um as one of my experts said a cto of a very large public online hospitality company essentially said that he would be shocked that within 18 months if all of these players are still uh standalone that there needs to be some m a or convergence in this space okay now we're going to call out some of the data that that really has jumped out to etr in the latest survey and some of the names that are getting the most queries from etr clients which are many of which are investor clients so let's start by having a look at one of the most important and prominent work from home names zoom uh let's let's look at this eric is the ride over for zoom oh i've been saying it for a little bit of a time now actually i do believe it is um i will get into it but again pointing out great dave uh the reason we're presenting today splunk elastic and zoom are they are the most viewed on the etr plus platform uh trailing behind that only slightly is f5 i decided not to bring f5 to the table today because we don't have a rating on the data set um so then i went one deep one below that and it's pure so the reason we're presenting these to you today is that these are the ones that our clients and our community are most interested in which is hopefully going to gain interest to your viewers as well so to get to zoom um yeah i call zoom the pandec pandemic bull market baby uh this was really just one that had a meteoric ride you look back january in 2020 the stock was at 60 and 10 months later it was like like 580. that's in 10 months um that's cooled down a little bit uh into the mid 300s and i believe that cooling down should continue and the reason why is because we are seeing a huge deceleration in our spending intentions uh they're hitting all-time lows it's really just a very ugly data set um more importantly than the spending intentions for the first time we're seeing customer growth in our survey flattened in the past we could we knew that the the deceleration and spend was happening but meanwhile their new customer growth was accelerating so it was kind of hard to really make any call based on that this is the first time we're seeing flattening customer growth trajectory and that uh in tandem with just dominance from microsoft in every sector they're involved in i don't care if it's ip telephony productivity apps or the core video conferencing microsoft is just dominating so there's really just no way to ignore this anymore the data and the commentary state that zoom is facing some headwinds well plus you've pointed out to me that a lot of your private conversations with buyers says that hey we're we're using the freebie version of zoom you know we're not paying them and so in that combined with teams i mean it's it's uh it's i think you know look zoom has to figure it out they they've got to they've got to figure out how to use their elevated market cap to transform and expand their tan um but let's let's move on here's the data on pure storage and we've highlighted a number of times this company is showing elevated spending intentions um pure announces earnings in in may ibm uh just announced storage what uh it was way down actually so sort of still pure more positive but i'll comment on a moment but what does this data tell you eric yeah you know right now we started seeing this data last survey in january and that was the first time we really went positive on the data set itself and it's just really uh continuing so we're seeing the strongest year-over-year acceleration in the entire survey um which is a really good spot to be pure is also a leading position in among its sector peers and the other thing that was pretty interesting from the data set is among all storage players pure has the highest positive public cloud correlation so what we can do is we can see which respondents are accelerating their public cloud spend and then cross-reference that with their storage spend and pure is best positioned so as you and i both know uh you know digital transformation cloud spending is increasing you need to be aligned with that and among all storage uh sector peers uh pure is best positioned in all of those in spending intentions and uh adoptions and also public cloud correlation so yet again just another really strong data set and i have an anecdote about why this might be happening because when i saw the date i started asking in my interviews what's going on here and there was one particular person he was a director of cloud operations for a very large public tech company now they have hybrid um but their data center is in colo so they don't own and build their own physical building he pointed out that doran kovid his company wanted to increase storage but he couldn't get into his colo center due to covert restrictions they weren't allowed you had so 250 000 square feet right but you're only allowed to have six people in there so it's pretty hard to get to your rack and get work done he said he would buy storage but then the cola would say hey you got to get it out of here it's not even allowed to sit here we don't want it in our facility so he has all this pent up demand in tandem with pent up demand we have a refresh cycle the ssd you know depreciation uh you know cycle is ending uh you know ssds are moving on and we're starting to see uh new technology in that space nvme sorry for technology increasing in that space so we have pent up demand and we have new technology and that's really leading to a refresh cycle and this particular itdm that i spoke to and many of his peers think this has a long tailwind that uh storage could be a good sector for some time to come that's really interesting thank you for that that extra metadata and i want to do a little deeper dive on on storage so here's a look at storage in the the industry in context and some of the competitive i mean it's been a tough market for the reasons that we've highlighted cloud has been eating away that flash headroom it used to be you'd buy storage to get you know more spindles and more performance and you were sort of forced to buy more flash gave more headroom but it's interesting what you're saying about the depreciation cycle so that's good news so etr combines just for people's benefit here combines primary and secondary storage into a single category so you have companies like pure and netapp which are really pure play you know primary storage companies largely in the sector along with veeam cohesity and rubric which are kind of secondary data or data protection so my my quick thoughts here are that pure is elevated and remains what i call the one-eyed man in the land of the blind but that's positive tailwinds there so that's good news rubric is very elevated but down it's a big it's big competitor cohesity is way off its highs and i have to say to me veeam is like the steady eddy consistent player here they just really continue to do well in the data protection business and and the highs are steady the lows are steady dell is also notable they've been struggling in storage their isg business which comprises service and storage it's been soft during covid and and during even you know this new product rollout so it's notable with this new mid-range they have in particular the uptick in dell this survey because dell so large a small uptick can be very good for dell hpe has a big announcement next month in storage so that might improve based on a product cycle of course the nimble brand continues to do well ibm as i said just announced a very soft quarter you know down double digits again uh and there in a product cycle shift and netapp is that looks bad in the etr data from a spending momentum standpoint but their management team is transforming the company into a cloud play which eric is why it was interesting that pure has the greatest momentum in in cloud accounts so that is sort of striking to me i would have thought it would be netapp so that's something that we want to pay attention to but i do like a lot of what netapp is doing uh and other than pure they're the only big kind of pure play in primary storage so long winded uh uh intro there eric but anything you'd add no actually i appreciate it was long winded i i'm going to be honest with you storage is not my uh my best sector as far as a researcher and analyst goes uh but i actually think a lot of what you said is spot on um you know we do capture a lot of large organizations spend uh we don't capture much mid and small so i think when you're talking about these large large players like netapp and um you know not looking so good all i would state is that we are capturing really big organizations spending attention so these are names that should be doing better to be quite honest uh in those accounts and you know at least according to our data we're not seeing it and it's long-term depression as you can see uh you know netapp now has a negative spending velocity in this analysis so you know i can go dig around a little bit more but right now the names that i'm hearing are pure cohesity uh um i'm hearing a little bit about hitachi trying to reinvent themselves in the space but you know i'll take a wait-and-see approach on that one but uh pure and cohesity are the ones i'm hearing a lot from our community so storage is transforming to cloud as a service you're seeing things like apex and in green lake from dell and hpe and container storage little so not really a lot of people paying attention to it but pure about a company called portworx which really specializes in container storage and there's many startups there they're trying to really change the way david flynn has a startup in that space he's the guy who started fusion i o so a lot a lot of transformations happening here okay i know it's been a long segment we have to summarize and then let me go through a summary and then i'll give you the last word eric so tech spending appears to be tracking us gdp at six to seven percent this talent shortage could be a blocker to accelerating i.t deployments and that's kind of good news actually for for services companies digital transformation you know it's it remains a priority and that bodes well not only for services but automation uipath went public this week we we profiled that you know extensively that went public last wednesday um organizations they've i said at the top face some tough decisions on how to allocate resources you know running the business growing the business transforming the business and we're seeing a bifurcation of spending and some residual effects on vendors and that remains a theme that we're watching eric your final thoughts yeah i'm going to go back quickly to just the overall macro spending because there's one thing i think is interesting to point out and we're seeing a real acceleration among mid and small so it seems like early on in the covid recovery or kovitz spending it was the deep pockets that moved first right fortune 500 knew they had to support remote work they started spending first round that in the fortune 500 we're only seeing about five percent spent but when you get into mid and small organizations that's creeping up to eight nine so i just think it's important to point out that they're playing catch-up right now uh also would point out that this is heavily skewed to north america spending we're seeing laggards in emea they just don't seem to be spending as much they're in a very different place in their recovery and uh you know i do think that it's important to point that out um lastly i also want to mention i know you do such a great job on following a lot of the disruptive vendors that you just pointed out pure doing container storage we also have another bi-annual survey that we do called emerging technology and that's for the private names that's going to be launching in may for everyone out there who's interested in not only the disruptive vendors but also private equity players uh keep an eye out for that we do that twice a year and that's growing in its respondents as well and then lastly one comment because you mentioned the uipath ipo it was really hard for us to sit on the sidelines and not put some sort of rating on their data set but ultimately um the data was muted unfortunately and when you're seeing this kind of hype into an ipo like we saw with snowflake the data was resoundingly strong we had no choice but to listen to what the data said for snowflake despite the hype um we didn't see that for uipath and we wanted to and i'm not making a large call there but i do think it's interesting to juxtapose the two that when snowflake was heading to its ipo the data was resoundingly positive and for uipath we just didn't see that thank you for that and eric thanks for coming on today it's really a pleasure to have you and uh so really appreciate the the uh collaboration and look forward to doing more of these we enjoy the partnership greatly dave we're very very happy to have you in the etr family and looking forward to doing a lot lot more with you in the future ditto okay that's it for today remember these episodes are all available as podcasts wherever you listen all you got to do is search breaking analysis podcast and please subscribe to the series check out etr's website it's etr dot plus we also publish a full report every week on wikibon.com at siliconangle.com you can email me david.velante at siliconangle.com you can dm me on twitter at dvalante or comment on our linkedin post i could see you in clubhouse this is dave vellante for eric porter bradley for the cube insights powered by etr have a great week stay safe be well and we'll see you next time
SUMMARY :
itself not the company um you know
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
12 percent | QUANTITY | 0.99+ |
six | QUANTITY | 0.99+ |
2021 | DATE | 0.99+ |
april 20th | DATE | 0.99+ |
microsoft | ORGANIZATION | 0.99+ |
april 21 | DATE | 0.99+ |
david flynn | PERSON | 0.99+ |
april 20th | DATE | 0.99+ |
63 percent | QUANTITY | 0.99+ |
dave vellante | PERSON | 0.99+ |
january | DATE | 0.99+ |
29 percent | QUANTITY | 0.99+ |
2020 | DATE | 0.99+ |
teresa carlson | PERSON | 0.99+ |
two years | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
jan 21 | DATE | 0.99+ |
portworx | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
six people | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
boston | LOCATION | 0.99+ |
a year | QUANTITY | 0.99+ |
splunk | ORGANIZATION | 0.99+ |
ibm | ORGANIZATION | 0.99+ |
late december | DATE | 0.99+ |
jeremy burton | PERSON | 0.99+ |
first time | QUANTITY | 0.99+ |
april | DATE | 0.99+ |
100 | QUANTITY | 0.99+ |
250 000 square feet | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
nimble | ORGANIZATION | 0.99+ |
next month | DATE | 0.99+ |
eight | QUANTITY | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
first round | QUANTITY | 0.99+ |
every two years | QUANTITY | 0.99+ |
dell | ORGANIZATION | 0.99+ |
more than 60 percent | QUANTITY | 0.99+ |
dynatrace | ORGANIZATION | 0.98+ |
hitachi | ORGANIZATION | 0.98+ |
seven percent | QUANTITY | 0.98+ |
this week | DATE | 0.98+ |
three names | QUANTITY | 0.98+ |
six months | QUANTITY | 0.98+ |
two | QUANTITY | 0.98+ |
several quarters ago | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
bi-annual | QUANTITY | 0.98+ |
fortune 500 | ORGANIZATION | 0.98+ |
first chart | QUANTITY | 0.98+ |
seventh iteration | QUANTITY | 0.97+ |
netapp | ORGANIZATION | 0.97+ |
etr | ORGANIZATION | 0.97+ |
twice a year | QUANTITY | 0.97+ |
last wednesday | DATE | 0.97+ |
10 months | QUANTITY | 0.97+ |
ORGANIZATION | 0.97+ | |
uipath | ORGANIZATION | 0.97+ |
over a fifth | QUANTITY | 0.97+ |
palo alto | ORGANIZATION | 0.97+ |
eric | PERSON | 0.97+ |
one thing | QUANTITY | 0.97+ |
18 months | QUANTITY | 0.97+ |
hpe | ORGANIZATION | 0.97+ |
oracle | ORGANIZATION | 0.97+ |
3 | QUANTITY | 0.97+ |
march | DATE | 0.97+ |
30 of the respondents | QUANTITY | 0.96+ |
27 | QUANTITY | 0.96+ |
apex | ORGANIZATION | 0.96+ |
Breaking Analysis: Tech Spend Momentum but Mixed Rotation to the ‘Norm’
>> From theCUBE studios in Palo Alto and Boston, Bringing you data-driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Recent survey data from ETR shows that enterprise tech spending is tracking with projected US GDP growth at six to 7% this year. Many markers continue to point the way to a strong recovery, including hiring trends and the loosening of frozen IT Project budgets. However skills shortages are blocking progress at some companies which bodes well for an increased reliance on external IT services. Moreover, while there's much talk about the rotation out of work from home plays and stocks such as video conferencing, VDI, and other remote worker tech, we see organizations still trying to figure out the ideal balance between funding headquarter investments that have been neglected and getting hybrid work right. In particular, the talent gap combined with a digital mandate, means companies face some tough decisions as to how to fund the future while serving existing customers and transforming culturally. Hello everyone, and welcome to this week's Wikibon CUBE's Insights powered by ETR. In this "Breaking Analysis", we welcome back Erik Porter Bradley of ETR who will share fresh data, perspectives and insights from the latest survey data. Erik, great to see you. Welcome. >> Thank you very much, Dave. Always good to see you and happy to be on the show again. >> Okay, we're going to share some macro data and then we're going to dig into some highlights from ETR's most recent March COVID survey and also the latest April data. So Erik, the first chart that we want to show, it shows CIO and IT buyer responses to expected IT spend for each quarter of 2021 versus 2020, and you can see here a steady quarterly improvement. Erik, what are the key takeaways, from your perspective? >> Sure, well, first of all, for everyone out there, this particular survey had a record-setting number of participation. We had a 1,500 IT decision makers participate and we had over half of the Fortune 500 and over a fifth of the Global 1000. So it was a really good survey. This is seventh iteration of the COVID Impact Survey specifically, and this is going to transition to an overlarge macro survey going forward so we can continue it. And you're 100% right, what we've been tracking here since March of last year was, how is spending being impacted because of COVID? Where is it shifting? And what we're seeing now finally is that there is a real re-acceleration in spend. I know we've been a little bit more cautious than some of the other peers out there that just early on slapped an eight or a 9% number, but what we're seeing is right now, it's at a midpoint of over six, about 6.7% and that is accelerating. So, we are still hopeful that that will continue, and really, that spending is going to be in the second half of the year. As you can see on the left part of this chart that we're looking at, it was about 1.7% versus 3% for Q1 spending year-over-year. So that is starting to accelerate through the back half. >> I think it's prudent to be cautious (indistinct) 'cause normally you'd say, okay, tech is going to grow a couple of points higher than GDP, but it's really so hard to predict this year. Okay, the next chart here that we want to show you is we asked respondents to indicate what strategies they're employing in the short term as a result of coronavirus and you can see a few things that I'll call out and then I'll ask Erik to chime in. First, there's been no meaningful change of course, no surprise in tactics like remote work and holding travel, however, we're seeing very positive trends in other areas trending downward, like hiring freezes and freezing IT deployments, a downward trend in layoffs, and we also see an increase in the acceleration of new IT deployments and in hiring. Erik, what are your key takeaways? >> Well, first of all, I think it's important to point out here that we're also capturing that people believe remote work productivity is still increasing. Now, the trajectory might be coming down a little bit, but that is really key, I think, to the backdrop of what's happening here. So people have a perception that productivity of remote work is better than hybrid work and that's from the IT decision makers themselves, but what we're seeing here is that, most importantly, these organizations are citing plans to increase hiring, and that's something that I think is really important to point out. It's showing a real following, and to your point right in the beginning of the intro, we are seeing deployments stabilize versus prior survey levels, which means early on, they had no plans to launch new tech deployments, then they said, "Nope, we're going to start." and now that stalling, and I think it's exactly right, what you said, is there's an IT skills shortage. So people want to continue to do IT deployments 'cause they have to support work from home and a hybrid back return to the office, but they just don't have the skills to do so, and I think that's really probably the most important takeaway from this chart, is that stalling and to really ask why it's stalling. >> Yeah, so we're going to get into that for sure, and I think that's a really key point, is that accelerating IT deployments, it looks like it's hit a wall in the survey, but before we get deep into the skills, let's take a look at this next chart, and we're asking people here how our return to the new normal, if you will, and back to offices is going to change spending with on-prem architectures and applications. And so the first two bars, they're Cloud-friendly, if you add them up, it's 63% of the respondents, say that either they'll stay in the Cloud for the most part, or they're going to lower their on-prem spend when they go back to the office. The next three bars are on-prem friendly. If you add those up it's 29% of the respondents say their on-prem spend is going to bounce back to pre-COVID levels or actually increase, and of course, 12% of that number, by the way, say they've never altered their on-prem spend. So Erik, no surprise, but this bodes well for Cloud, but isn't it also a positive for on-prem? We've had this dual funding premise, meaning Cloud continues to grow, but neglected data center spend also gets a boost. What's your thoughts? >> Really, it's interesting. It's people are spending on all fronts. You and I were talking in the prep, it's like we're in battle and I've got naval, I've got air, I've got land, I've got to spend on Cloud and digital transformation, but I also have to spend for on-prem. The hybrid work is here and it needs to be supported. So this is spending is going to increase. When you look at this chart, you're going to see though, that roughly 36% of all respondents say that their spending is going to remain mostly on Cloud. So that is still the clear direction, digital transformation is still happening, COVID accelerated it greatly, you and I, as journalists and researchers already know this is where the puck is going, but spend has always lagged a little bit behind 'cause it just takes some time to get there. Inversely, 27% said that their on-prem spending will decrease. So when you look at those two, I still think that the trend is the friend for Cloud spending, even though, yes, they do have to continue spending on hybrid, some of it's been neglected, there are refresh cycles coming up, so, overall it just points to more and more spending right now. It really does seem to be a very strong backdrop for IT growth. >> So I want to talk a little bit about the ETR taxonomy before we bring up the next chart. We get a lot of questions about this, and of course, when you do a massive survey like you're doing, you have to have consistency for time series, so you have to really think through what the buckets look like, if you will. So this next chart takes a look at the ETR taxonomy and it breaks it down into simple-to-understand terms. So the green is the portion of spending on a vendor's tech within a category that is accelerating, and the red is the portion that is decelerating. So Erik, what are the key messages in this data? >> Well, first of all, Dave, thank you so much for pointing that out. We used to do, just what we call a Net score. It's a proprietary formula that we use to determine the overall velocity of spending. Some people found it confusing. Our data scientists decided to break this sector, break down into what you said, which is really more of a mode analysis. In that sector, how many of the vendors are increasing versus decreasing? So again, I just appreciate you bringing that up and allowing us to explain the reasoning behind our analysis there. But what we're seeing here goes back to something you and I did last year when we did our predictions, and that was that IT services and consulting was going to have a true rebound in 2021, and that's what this is showing right here. So in this chart, you're going to see that consulting and services are really continuing their recovery, 2020 had a lot of the clients and they have the biggest sector year-over-year acceleration sector wise. The other thing to point out on this, which we'll get to again later, is that the inverse analysis is true for video conferencing. We will get to that, so I'm going to leave a little bit of ammunition behind for that one, but what we're seeing here is IT consulting services being the real favorable and video conferencing having a little bit more trouble. >> Great, okay, and then let's take a look at that services piece, and this next chart really is a drill down into that space and emphasizes, Erik, what you were just talking about. And we saw this in IBM's earnings, where still more than 60% of IBM's business comes from services and the company beat earnings, in part, due to services outperforming expectations, I think it had a somewhat easier compare and some of this pent-up demand that we've been talking about bodes well for IBM and other services companies, it's not just IBM, right, Erik? >> No, it's not, but again, I'm going to point out that you and I did point out IBM in our predictions when we did in late December, so, it is nice to see. One of the reasons we don't have a more favorable rating on IBM at the moment is because they are in the process of spinning out this large unit, and so there's a little bit of a corporate action there that keeps us off on the sideline. But I would also want to point out here, Tata, Infosys and Cognizant 'cause they're seeing year-over-year acceleration in both IT consulting and outsourced IT services. So we break those down separately and those are the three names that are seeing acceleration in both of those. So again, at the Tata, Infosys and Cognizant are all looking pretty well positioned as well. >> So we've been talking a little bit about this skills shortage, and this is what's, I think, so hard for forecasters, is that in the one hand, There's a lot of pent up demand, Scott Gottlieb said it's like Woodstock coming out of the COVID, but on the other hand, if you have a talent gap, you've got to rely on external services. So there's a learning curve, there's a ramp up, it's an external company, and so it takes time to put those together. So this data that we're going to show you next, is really important in my view and ties what we were saying at the top. It asks respondents to comment on their staffing plans. The light blue is "We're increasing staff", the gray is "No change" and the magenta or whatever, whatever color that is that sort of purplish color, anyway, that color is decreasing, and the picture is very positive across the board. Full-time staff, offshoring, contract employees, outsourced professional services, all up trending upwards, and this Erik is more evidence of the services bounce back. >> Yeah, it's certainly, yes, David, and what happened is when we caught this trend, we decided to go one level deeper and say, all right, we're seeing this, but we need to know why, and that's what we always try to do here. Data will tell you what's happening, it doesn't always tell you why, and that's one of the things that ETR really tries to dig in with through the insights, interviews panels, and also going direct with these more custom survey questions. So in this instance, I think the real takeaway is that 30% of the respondents said that their outsourced and managed services are going to increase over the next three months. That's really powerful, that's a large portion of organizations in a very short time period. So we're capturing that this acceleration is happening right now and it will be happening in real time, and I don't see it slowing down. You and I are speaking about we have to increase Cloud spend, we have to increase hybrid spend, there are refresh cycles coming up, and there's just a real skills shortage. So this is a long-term setup that bodes very well for IT services and consulting. >> You know, Erik, when I came out of college, somebody told me, "Read, read, read, read as much as you can." And then they said, "Read the Wall Street Journal every day." and so I did it, and I would read the tech magazines and back then it was all paper, and what happens is you begin to connect the dots. And so the reason I bring that up is because I've now taken a bath in the ETR data for the better part of two years and I'm beginning to be able to connect the dots. The data is not always predictive, but many, many times it is. And so this next data gets into the fun stuff where we name names. A lot of times people don't like it because they're either marketing people at organizations, say, "Well, data's wrong." because that's the first thing they do, is attack the data. But you and I know, we've made some really great calls, work from home, for sure, you're talking about the services bounce back. We certainly saw the rise of CrowdStrike, Okta, Zscaler, well before people were talking about that, same thing with video conferencing. And so, anyway, this is the fun stuff and it looks at positive versus negative sentiment on companies. So first, how does ETR derive this data and how should we interpret it, and what are some of your takeaways? >> Sure, first of all, how we derive the data, are systematic survey responses that we do on a quarterly basis, and we standardize those responses to allow for time series analysis so we can do trend analysis as well. We do find that our data, because it's talking about forward-looking spending intentions, is really more predictive because we're talking about things that might be happening six months, three months in the future, not things that a lot of other competitors and research peers are looking at things that already happened, they're looking in the past, ETR really likes to look into the future and our surveys are set up to do so. So thank you for that question, It's a enjoyable lead in, but to get to the fun stuff, like you said, what we do here is we put ratings on the datasets. I do want to put the caveat out there that our spending intentions really only captures top-line revenue. It is not indicative of profit margin or any other line items, so this is only to be viewed as what we are rating the data set itself, not the company, that's not what we're in the game of doing. So I think that's very important for the marketing and the vendors out there themselves when they take a look at this. We're just talking about what we can control, which is our data. We're going to talk about a few of the names here on this highlighted vendors list. One, we're going to go back to that you and I spoke about, I guess, about six months ago, or maybe even earlier, which was the observability space. You and I were noticing that it was getting very crowded, a lot of new entrants, there was a lot of acquisition from more of the legacy or standard players in the space, and that is continuing. So I think in a minute, we're going to move into that observability space, but what we're seeing there is that it's becoming incredibly crowded and we're possibly seeing signs of them cannibalizing each other. We're also going to move on a little bit into video conferencing, where we're capturing some spend deceleration, and then ultimately, we're going to get into a little bit of a storage refresh cycle and talk about that. But yeah, these are the highlighted vendors for April, we usually do this once a quarter and they do change based on the data, but they're not usually whipsawed around, the data doesn't move that quickly. >> Yeah, so you can see some of the big names in the left-hand side, some of the SAS companies that have momentum. Obviously, ServiceNow has been doing very, very well. We've talked a lot about Snowflake, Okta, CrowdStrike, Zscaler, all very positive, as well as several others. I guess I'd add some things. I mean, I think if thinking about the next decade, it's Cloud, which is not going to be like the same Cloud as the last decade, a lot of machine learning and deep learning and AI and the Cloud is extending to the edge and the data center. Data, obviously, very important, data is decentralized and distributed, so data architectures are changing. A lot of opportunities to connect across Clouds and actually create abstraction layers, and then something that we've been covering a lot is processor performance is actually accelerating relative to Moore's law. It's probably instead of doubling every two years, it's quadrupling every two years, and so that is a huge factor, especially as it relates to powering AI and AI inferencing at the edge. This is a whole new territory, custom Silicon is really becoming in vogue and so something that we're watching very, very closely. >> Yeah, I completely, agree on that and I do think that the next version of Cloud will be very different. Another thing to point out on that too, is you can't do anything that you're talking about without collecting the data and organizations are extremely serious about that now. It seems it doesn't matter what industry they're in, every company is a data company, and that also bodes well for the storage goal. We do believe that there is going to just be a huge increase in the need for storage, and yes, hopefully that'll become portable across multi-Cloud and hybrid as well. >> Now, as Erik said, the ETR data, it's really focused on that top-line spend. So if you look on the right side of that chart, you saw NetApp was kind of negative, was very negative, right? But it is a company that's in transformation now, they've lowered expectations and they've recently beat expectations, that's why the stock has been doing better, but at the macro, from a spending standpoint, it's still stout challenged. So you have big footprint companies like NetApp and Oracle is another one. Oracle's stock is at an all time high, but the spending relative to sort of previous cycles are relative to, like for instance, Snowflake, much, much smaller, not as high growth, but they're managing expectations, they're managing their transition, they're managing profitability. Zoom is another one, Zoom looking negative, but Zoom's got to use its market cap now to transform and increase its TAM. And then Splunk is another one we're going to talk about. Splunk is in transition, it acquired SignalFX, It just brought on this week, Teresa Carlson, who was the head of AWS Public Sector. She's the president and head of sales, so they've got a go-to-market challenge and they brought in Teresa Carlson to really solve that, but Splunk has been trending downward, we called that several quarters ago, Erik, and so I want to bring up the data on Splunk, and this is Splunk, Erik, in analytics, and it's not trending in the right direction. The green is accelerating spend, the red is in the bars is decelerating spend, the top blue line is spending velocity or Net score, and the yellow line is market share or pervasiveness in the dataset. Your thoughts. >> Yeah, first I want to go back. There's a great point, Dave, about our data versus a disconnect from an equity analysis perspective. I used to be an equity analyst, that is not what we do here. And the main word you said is expectations, right? Stocks will trade on how they do compare to the expectations that are set, whether that's buy-side expectations, sell-side expectations or management's guidance themselves. We have no business in tracking any of that, what we are talking about is the top-line acceleration or deceleration. So, that was a great point to make, and I do think it's an important one for all of our listeners out there. Now, to move to Splunk, yes, I've been capturing a lot of negative commentary on Splunk even before the data turns. So this has been a about a year-long, our analysis and review on this name and I'm dating myself here, but I know you and I are both rock and roll fans, so I'm going to point out a Led Zeppelin song and movie, and say that the song remains the same for Splunk. We are just seeing recent spending attentions are taking yet another step down, both from prior survey levels, from year ago levels. This, we're looking at in the analytics sector and spending intentions are decelerating across every single group, and we went to one of our other slide analysis on the ETR+ platform, and you do by customer sub-sample, in analytics, it's dropping in every single vertical. It doesn't matter which one. it's really not looking good, unfortunately, and you had mentioned this is an analytics and I do believe the next slide is an information security. >> Yeah, let's bring that up. >> And unfortunately it's not doing much better. So this is specifically Fortune 500 accounts and information security. There's deep pockets in the Fortune 500, but from what we're hearing in all the insights and interviews and panels that I personally moderate for ETR, people are upset, that they didn't like the strong tactics that Splunk has used on them in the past, they didn't like the ingestion model pricing, the inflexibility, and when alternatives came along, people are willing to look at the alternatives, and that's what we're seeing in both analytics and big data and also for their SIM and security. >> Yeah, so I think again, I pointed Teresa Carlson. She's got a big job, but she's very capable. She's going to meet with a lot of customers, she's a go-to-market pro, she's going to to have to listen hard, and I think you're going to see some changes there. Okay, so sorry, there's more bad news on Splunk. So (indistinct) bring this up is Net score for Splunk and Elastic accounts. This is for analytics, so there's 106 Elastic accounts in the dataset that also have Splunk and it's trending downward for Splunk, that's why it's green for Elastic. And Erik, the important call out from ETR here is how Splunk's performance in Elastic accounts compares with its performance overall. The ELK stack, which obviously Elastic is a big part of that, is causing pain for Splunk, as is Datadog, and you mentioned the pricing issue, well, is it pricing in your assessment or is it more fundamental? >> It's multi-level based on the commentary we get from our ITDMs teams that take the survey. So yes, you did a great job with this analysis. What we're looking at is the spending within shared accounts. So if I have Splunk already, how am I spending? I'm sorry if I have Elastic already, how am I spending on Splunk? And what you're seeing here is it's down to about a 12% Net score, whereas Splunk overall, has a 32% Net score among all of its customers. So what you're seeing there is there is definitely a drain that's happening where Elastic is draining spend from Splunk and usage from them. The reason we used Elastic here is because all observabilities, the whole sector seems to be decelerating. Splunk is decelerating the most, but Elastic is the only one that's actually showing resiliency, so that's why we decided to choose these two, but you pointed out, yes, it's also Datadog. Datadog is Cloud native. They're more dev ops-oriented. They tend to be viewed as having technological lead as compared to Splunk. So a really good point. Dynatrace also is expanding their abilities and Splunk has been making a lot of acquisitions to push their Cloud services, they are also changing their pricing model, right? They're trying to make things a little bit more flexible, moving off ingestion and moving towards consumption. So they are trying, and the new hires, I'm not going to bet against them because the one thing that Splunk has going for them is their market share in our survey, they're still very well entrenched. So they do have a lot of accounts, they have their foothold. So if they can find a way to make these changes, then they will be able to change themselves, but the one thing I got to say across the whole sector is competition is increasing, and it does appear based on commentary and data that they're starting to cannibalize themselves. It really seems pretty hard to get away from that, and you know there are startups in the observability space too that are going to be even more disruptive. >> I think I want to key on the pricing for a moment, and I've been pretty vocal about this. I think the old SAS pricing model where you essentially lock in for a year or two years or three years, pay up front, or maybe pay quarterly if you're lucky, that's a one-way street and I think it's a flawed model. I like what Snowflake's doing, I like what Datadog's doing, look at what Stripe is doing, look at what Twilio is doing, you mentioned it, it's consumption-based pricing, and if you've got a great product, put it out there and damn, the torpedoes, and I think that is a game changer. I look at, for instance, HPE with GreenLake, I look at Dell with Apex, they're trying to mimic that model and apply it to infrastructure, it's much harder with infrastructure 'cause you've got to deploy physical infrastructure, but that is a model that I think is going to change, and I think all of the traditional SAS pricing is going to come under disruption over the next better part of the decades, but anyway, let's move on. We've been covering the APM space pretty extensively, application performance management, and this chart lines up some of the big players here. Comparing Net score or spending momentum from the April 20th survey, the gray is, sorry, the gray is the April 20th survey, the blue is Jan 21 and the yellow is April 21, and not only are Elastic and Datadog doing well relative to Splunk, Erik, but everything is down from last year. So this space, as you point out, is undergoing a transformation. >> Yeah, the pressures are real and it's sort of that perfect storm where it's not only the data that's telling us that, but also the direct feedback we get from the community. Pretty much all the interviews I do, I've done a few panels specifically on this topic, for anyone who wants to dive a little bit deeper. We've had some experts talk about this space and there really is no denying that there is a deceleration in spend and it's happening because that spend is getting spread out among different vendors. People are using a Datadog for certain aspects, they are using Elastic where they can 'cause it's cheaper. They're using Splunk because they have to, but because it's so expensive, they're cutting some of the things that they're putting into Splunk, which is dangerous, particularly on the security side. If I have to decide what to put in and whatnot, that's not really the right way to have security hygiene. So this space is just getting crowded, there's disruptive vendors coming from the emerging space as well, and what you're seeing here is the only bit of positivity is Elastic on a survey-over-survey basis with a slight, slight uptick. Everywhere else, year-over-year and survey-over-survey, it's showing declines, it's just hard to ignore. >> And then you've got Dynatrace who, based on the interviews you do in the (indistinct), one-on-one, or one-on-five, the private interviews that I've been invited to, Dynatrace gets very high scores for their roadmap. You've got New Relic, which has been struggling financially, but they've got a really good product and a purpose-built database just for this APM space, and then of course, you've got Cisco with AppD, which is a strong business for them, and then as you mentioned, you've got startups coming in, you got ChaosSearch, which Ed Walsh is now running, leave the data in place in AWS and really interesting model, Honeycomb is getting really disruptive, Jeremy Burton's company, Observed. So this space is it's becoming jumped ball. >> Yeah, there's a great line that came out of one of them, and that was that the lines are blurring. It used to be that you knew exactly that AppDynamics, what they were doing, it was APM only, or it was logging and monitoring only, and a lot of what I'm hearing from the ITDM experts is that the lines are blurring amongst all of these names. They all have functionality that kind of crosses over each other. And the other interesting thing is it used to be application versus infrastructure monitoring, but as you know, infrastructure is becoming code more and more and more, and as infrastructure becomes code, there's really no difference between application and infrastructure monitoring. So we're seeing a convergence and a blurring of the lines in this space, which really doesn't bode well, and a great point about New Relic, their tech gets good remarks. I just don't know if their enterprise level service and sales is up to snuff right now. As one of my experts said, a CTO of a very large public online hospitality company essentially said that he would be shocked that within 18 months if all of these players are still standalone, that there needs to be some M and A or convergence in this space. >> Okay, now we're going to call out some of the data that really has jumped out to ETR in the latest survey, and some of the names that are getting the most queries from ETR clients, many of which are investor clients. So let's start by having a look at one of the most important and prominent work from home names, Zoom. Let's look at this. Erik is the ride over for Zoom? >> Ah, I've been saying it for a little bit of a time now actually. I do believe it is, and we'll get into it, but again, pointing out, great, Dave, the reason we're presenting today Splunk, Elastic and Zoom, they are the most viewed on the ETR+ platform. Trailing behind that only slightly is F5, I decided not to bring F5 to the table today 'cause we don't have a rating on the data set. So then I went one deep, one below that and it's pure. So the reason we're presenting these to you today is that these are the ones that our clients and our community are most interested in, which is hopefully going to gain interest to your viewers as well. So to get to Zoom, yeah, I call Zoom the pandemic bull market baby. This was really just one that had a meteoric ride. You look back, January in 2020, the stock was at $60 and 10 months later, it was like 580, that's in 10 months. That's cooled down a little bit into the mid-300s, and I believe that cooling down should continue, and the reason why is because we are seeing huge deceleration in our spending intentions. They're hitting all-time lows, it's really just a very ugly dataset. More importantly than the spending intentions, for the first time, we're seeing customer growth in our survey flatten. In the past, we knew that the deceleration of spend was happening, but meanwhile, their new customer growth was accelerating, so it was kind of hard to really make any call based on that. This is the first time we're seeing flattening customer growth trajectory, and that in tandem with just dominance from Microsoft in every sector they're involved in, I don't care if it's IP telephony, productivity apps or the core video conferencing, Microsoft is just dominating. So there's really just no way to ignore this anymore. The data and the commentary state that Zoom is facing some headwinds. >> Well, plus you've pointed out to me that a lot of your private conversations with buyers says that, "Hey, we're, we're using the freebie version of Zoom, and we're not paying them." And that combined with Teams, I mean, it's... I think, look, Zoom, they've got to figure out how to use their elevated market cap to transform and expand their TAM, but let's move on. Here's the data on Pure Storage and we've highlighted a number of times this company is showing elevated spending intentions. Pure announced it's earnings in May, IBM just announced storage, it was way down actually. So still, Pure, more positive, but I'll on that comment in a moment, but what does this data tell you, Erik? >> Yeah, right now we started seeing this data last survey in January, and that was the first time we really went positive on the data set itself, and it's just really continuing. So we're seeing the strongest year-over-year acceleration in the entire survey, which is a really good spot to be. Pure is also a leading position among its sector peers, and the other thing that was pretty interesting from the data set is among all storage players, Pure has the highest positive public Cloud correlation. So what we can do is we can see which respondents are accelerating their public Cloud spend and then cross-reference that with their storage spend and Pure is best positioned. So as you and I both know, digital transformation Cloud spending is increasing, you need to be aligned with that. And among all storage sector peers, Pure is best positioned in all of those, in spending intentions and adoptions and also public Cloud correlation. So yet again, to start another really strong dataset, and I have an anecdote about why this might be happening, because when I saw the data, I started asking in my interviews, what's going on here? And there was one particular person, he was a director of Cloud operations for a very large public tech company. Now, they have hybrid, but their data center is in colo, So they don't own and build their own physical building. He pointed out that during COVID, his company wanted to increase storage, but he couldn't get into his colo center due to COVID restrictions. They weren't allowed. You had 250,000 square feet, right, but you're only allowed to have six people in there. So it's pretty hard to get to your rack and get work done. He said he would buy storage, but then the colo would say, "Hey, you got to get it out of here. It's not even allowed to sit here. We don't want it in our facility." So he has all this pent up demand. In tandem with pent up demand, we have a refresh cycle. The SSD depreciation cycle is ending. SSDs are moving on and we're starting to see a new technology in that space, NVMe sorry, technology increasing in that space. So we have pent up demand and we have new technology and that's really leading to a refresh cycle, and this particular ITDM that I spoke to and many of his peers think this has a long tailwind that storage could be a good sector for some time to come. >> That's really interesting, thank you for that extra metadata. And I want to do a little deeper dive on storage. So here's a look at storage in the industry in context and some of the competitive. I mean, it's been a tough market for the reasons that we've highlighted, Cloud has been eating away that flash headroom. It used to be you'd buy storage to get more spindles and more performance and we're sort of forced to buy more, flash, gave more headroom, but it's interesting what you're saying about the depreciation cycle. So that's good news. So ETR combines, just for people's benefit here, combines primary and secondary storage into a single category. So you have companies like Pure and NetApp, which are really pure play primary storage companies, largely in the sector, along with Veeam, Cohesity and Rubrik, which are kind of secondary data or data protection. So my quick thoughts here that Pure is elevated and remains what I call the one-eyed man in the land of the blind, but that's positive tailwinds there, so that's good news. Rubrik is very elevated but down, it's big competitor, Cohesity is way off its highs, and I have to say to me, Veeam is like the Steady Eddy consistent player here. They just really continue to do well in the data protection business, and the highs are steady, the lows are steady. Dell is also notable, they've been struggling in storage. Their ISG business, which comprises servers and storage, it's been softer in COVID, and during even this new product rollout, so it's notable with this new mid range they have in particular, the uptick in Dell, this survey, because Dell is so large, a small uptick can be very good for Dell. HPE has a big announcement next month in storage, so that might improve based on a product cycle. Of course, the Nimble brand continues to do well, IBM, as I said, just announced a very soft quarter, down double digits again, and they're in a product cycle shift. And NetApp, it looks bad in the ETR data from a spending momentum standpoint, but their management team is transforming the company into a Cloud play, which Erik is why it was interesting that Pure has the greatest momentum in Cloud accounts, so that is sort of striking to me. I would have thought it would be NetApp, so that's something that we want to pay attention to, but I do like a lot of what NetApp is doing, and other than Pure, they're the only big kind of pure play in primary storage. So long-winded, intro there, Erik, but anything you'd add? >> No, actually I appreciate it as long-winded. I'm going to be honest with you, storage is not my best sector as far as a researcher and analyst goes, but I actually think that a lot of what you said is spot on. We do capture a lot of large organizations spend, we don't capture much mid and small, so I think when you're talking about these large, large players like NetApp not looking so good, all I would state is that we are capturing really big organization spending attention, so these are names that should be doing better to be quite honest, in those accounts, and at least according to our data, we're not seeing it in. It's longterm depression, as you can see, NetApp now has a negative spending velocity in this analysis. So, I can go dig around a little bit more, but right now the names that I'm hearing are Pure, Cohesity. I'm hearing a little bit about Hitachi trying to reinvent themselves in the space, but I'll take a wait-and-see approach on that one, but pure Cohesity are the ones I'm hearing a lot from our community. >> So storage is transforming to Cloud as a service. You've seen things like Apex in GreenLake from Dell and HPE and container storage. A little, so not really a lot of people paying attention to it, but Pure bought a company called Portworx which really specializes in container storage, and there's many startups there, they're trying to really change the way. David Flynn, has a startup in that space, he's the guy who started Fusion-io. So a lot of transformations happening here. Okay, I know it's been a long segment, we have to summarize, and let me go through a summary and then I'll give you the last word, Erik. So tech spending appears to be tracking US GDP at 6 to 7%. This talent shortage could be a blocker to accelerating IT deployments, so that's kind of good news actually for services companies. Digital transformation, it remains a priority, and that bodes, well, not only for services, but automation. UiPath went public this week, we profiled that extensively, that went public last Wednesday. Organizations that sit at the top face some tough decisions on how to allocate resources. They're running the business, growing the business, transforming the business, and we're seeing a bifurcation of spending and some residual effects on vendors, and that remains a theme that we're watching. Erik, your final thoughts. >> Yeah, I'm going to go back quickly to just the overall macro spending, 'cause there's one thing I think is interesting to point out and we're seeing a real acceleration among mid and small. So it seems like early on in the COVID recovery or COVID spending, it was the deep pockets that moved first, right? Fortune 500 knew they had to support remote work, they started spending first. Around that in the Fortune 500, we're only seeing about 5% spend, but when you get into mid and small organizations, that's creeping up to eight, nine. So I just think it's important to point out that they're playing catch up right now. I also would point out that this is heavily skewed to North America spending. We're seeing laggards in EMEA, they just don't seem to be spending as much. They're in a very different place in their recovery, and I do think that it's important to point that out. Lastly, I also want to mention, I know you do such a great job on following a lot of the disruptive vendors that you just pointed out, with Pure doing container storage, we also have another bi-annual survey that we do called Emerging Technology, and that's for the private names. That's going to be launching in May, for everyone out there who's interested in not only the disruptive vendors, but also private equity players. Keep an eye out for that. We do that twice a year and that's growing in its respondents as well. And then lastly, one comment, because you mentioned the UiPath IPO, it was really hard for us to sit on the sidelines and not put some sort of rating on their dataset, but ultimately, the data was muted, unfortunately, and when you're seeing this kind of hype into an IPO like we saw with Snowflake, the data was resoundingly strong. We had no choice, but to listen to what the data said for Snowflake, despite the hype. We didn't see that for UiPath and we wanted to, and I'm not making a large call there, but I do think it's interesting to juxtapose the two, that when snowflake was heading to its IPO, the data was resoundingly positive, and for UiPath, we just didn't see that. >> Thank you for that, and Erik, thanks for coming on today. It's really a pleasure to have you, and so really appreciate the collaboration and look forward to doing more of these. >> Yeah, we enjoy the partnership greatly, Dave. We're very happy to have you on the ETR family and looking forward to doing a lot, lot more with you in the future. >> Ditto. Okay, that's it for today. Remember, these episodes are all available as podcasts wherever you listen. All you have to do is search "Breaking Analysis" podcast, and please subscribe to the series. Check out ETR website it's etr.plus. We also publish a full report every week on wikibon.com and siliconangle.com. You can email me, david.vellante@siliconangle.com, you can DM me on Twitter @dvellante or comment on our LinkedIn posts. I could see you in Clubhouse. This is Dave Vellante for Erik Porter Bradley for the CUBE Insights powered by ETR. Have a great week, stay safe, be well and we'll see you next time. (bright music)
SUMMARY :
This is "Breaking Analysis" out the ideal balance Always good to see you and and also the latest April data. and really, that spending is going to be that we want to show you and that's from the IT that number, by the way, So that is still the clear direction, and the red is the portion is that the inverse analysis and the company beat earnings, One of the reasons we don't is that in the one hand, is that 30% of the respondents said a bath in the ETR data and the vendors out there themselves and the Cloud is extending and that also bodes well and the yellow line is and say that the song hearing in all the insights in the dataset that also have Splunk but the one thing I got to and the yellow is April 21, and it's sort of that perfect storm and then as you mentioned, and a blurring of the lines and some of the names that and the reason why is Here's the data on Pure and the other thing that and some of the competitive. is that we are capturing Organizations that sit at the and that's for the private names. and so really appreciate the collaboration and looking forward to doing and please subscribe to the series.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Erik | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
David Flynn | PERSON | 0.99+ |
Teresa Carlson | PERSON | 0.99+ |
April 20th | DATE | 0.99+ |
David | PERSON | 0.99+ |
April | DATE | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Erik Porter Bradley | PERSON | 0.99+ |
Apex | ORGANIZATION | 0.99+ |
May | DATE | 0.99+ |
April 21 | DATE | 0.99+ |
Scott Gottlieb | PERSON | 0.99+ |
Jan 21 | DATE | 0.99+ |
three years | QUANTITY | 0.99+ |
2021 | DATE | 0.99+ |
six | QUANTITY | 0.99+ |
12% | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
January | DATE | 0.99+ |
29% | QUANTITY | 0.99+ |
Splunk | ORGANIZATION | 0.99+ |
Jeremy Burton | PERSON | 0.99+ |
Teresa Carlson | PERSON | 0.99+ |
NetApp | ORGANIZATION | 0.99+ |
63% | QUANTITY | 0.99+ |
Twilio | ORGANIZATION | 0.99+ |
30% | QUANTITY | 0.99+ |
two years | QUANTITY | 0.99+ |
Portworx | ORGANIZATION | 0.99+ |
Boston | LOCATION | 0.99+ |
9% | QUANTITY | 0.99+ |
UiPath | ORGANIZATION | 0.99+ |
Hitachi | ORGANIZATION | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
250,000 square feet | QUANTITY | 0.99+ |
eight | QUANTITY | 0.99+ |
six people | QUANTITY | 0.99+ |
a year | QUANTITY | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
2020 | DATE | 0.99+ |
3% | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |
Datadog | ORGANIZATION | 0.99+ |
Stripe | ORGANIZATION | 0.99+ |
First | QUANTITY | 0.99+ |
Pure | ORGANIZATION | 0.99+ |
New Relic | ORGANIZATION | 0.99+ |