Image Title

Search Results for kristin martin:

Breaking Analysis: Databricks faces critical strategic decisions…here’s why


 

>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Spark became a top level Apache project in 2014, and then shortly thereafter, burst onto the big data scene. Spark, along with the cloud, transformed and in many ways, disrupted the big data market. Databricks optimized its tech stack for Spark and took advantage of the cloud to really cleverly deliver a managed service that has become a leading AI and data platform among data scientists and data engineers. However, emerging customer data requirements are shifting into a direction that will cause modern data platform players generally and Databricks, specifically, we think, to make some key directional decisions and perhaps even reinvent themselves. Hello and welcome to this week's wikibon theCUBE Insights, powered by ETR. In this Breaking Analysis, we're going to do a deep dive into Databricks. We'll explore its current impressive market momentum. We're going to use some ETR survey data to show that, and then we'll lay out how customer data requirements are changing and what the ideal data platform will look like in the midterm future. We'll then evaluate core elements of the Databricks portfolio against that vision, and then we'll close with some strategic decisions that we think the company faces. And to do so, we welcome in our good friend, George Gilbert, former equities analyst, market analyst, and current Principal at TechAlpha Partners. George, good to see you. Thanks for coming on. >> Good to see you, Dave. >> All right, let me set this up. We're going to start by taking a look at where Databricks sits in the market in terms of how customers perceive the company and what it's momentum looks like. And this chart that we're showing here is data from ETS, the emerging technology survey of private companies. The N is 1,421. What we did is we cut the data on three sectors, analytics, database-data warehouse, and AI/ML. The vertical axis is a measure of customer sentiment, which evaluates an IT decision maker's awareness of the firm and the likelihood of engaging and/or purchase intent. The horizontal axis shows mindshare in the dataset, and we've highlighted Databricks, which has been a consistent high performer in this survey over the last several quarters. And as we, by the way, just as aside as we previously reported, OpenAI, which burst onto the scene this past quarter, leads all names, but Databricks is still prominent. You can see that the ETR shows some open source tools for reference, but as far as firms go, Databricks is very impressively positioned. Now, let's see how they stack up to some mainstream cohorts in the data space, against some bigger companies and sometimes public companies. This chart shows net score on the vertical axis, which is a measure of spending momentum and pervasiveness in the data set is on the horizontal axis. You can see that chart insert in the upper right, that informs how the dots are plotted, and net score against shared N. And that red dotted line at 40% indicates a highly elevated net score, anything above that we think is really, really impressive. And here we're just comparing Databricks with Snowflake, Cloudera, and Oracle. And that squiggly line leading to Databricks shows their path since 2021 by quarter. And you can see it's performing extremely well, maintaining an elevated net score and net range. Now it's comparable in the vertical axis to Snowflake, and it consistently is moving to the right and gaining share. Now, why did we choose to show Cloudera and Oracle? The reason is that Cloudera got the whole big data era started and was disrupted by Spark. And of course the cloud, Spark and Databricks and Oracle in many ways, was the target of early big data players like Cloudera. Take a listen to Cloudera CEO at the time, Mike Olson. This is back in 2010, first year of theCUBE, play the clip. >> Look, back in the day, if you had a data problem, if you needed to run business analytics, you wrote the biggest check you could to Sun Microsystems, and you bought a great big, single box, central server, and any money that was left over, you handed to Oracle for a database licenses and you installed that database on that box, and that was where you went for data. That was your temple of information. >> Okay? So Mike Olson implied that monolithic model was too expensive and inflexible, and Cloudera set out to fix that. But the best laid plans, as they say, George, what do you make of the data that we just shared? >> So where Databricks has really come up out of sort of Cloudera's tailpipe was they took big data processing, made it coherent, made it a managed service so it could run in the cloud. So it relieved customers of the operational burden. Where they're really strong and where their traditional meat and potatoes or bread and butter is the predictive and prescriptive analytics that building and training and serving machine learning models. They've tried to move into traditional business intelligence, the more traditional descriptive and diagnostic analytics, but they're less mature there. So what that means is, the reason you see Databricks and Snowflake kind of side by side is there are many, many accounts that have both Snowflake for business intelligence, Databricks for AI machine learning, where Snowflake, I'm sorry, where Databricks also did really well was in core data engineering, refining the data, the old ETL process, which kind of turned into ELT, where you loaded into the analytic repository in raw form and refine it. And so people have really used both, and each is trying to get into the other. >> Yeah, absolutely. We've reported on this quite a bit. Snowflake, kind of moving into the domain of Databricks and vice versa. And the last bit of ETR evidence that we want to share in terms of the company's momentum comes from ETR's Round Tables. They're run by Erik Bradley, and now former Gartner analyst and George, your colleague back at Gartner, Daren Brabham. And what we're going to show here is some direct quotes of IT pros in those Round Tables. There's a data science head and a CIO as well. Just make a few call outs here, we won't spend too much time on it, but starting at the top, like all of us, we can't talk about Databricks without mentioning Snowflake. Those two get us excited. Second comment zeros in on the flexibility and the robustness of Databricks from a data warehouse perspective. And then the last point is, despite competition from cloud players, Databricks has reinvented itself a couple of times over the year. And George, we're going to lay out today a scenario that perhaps calls for Databricks to do that once again. >> Their big opportunity and their big challenge for every tech company, it's managing a technology transition. The transition that we're talking about is something that's been bubbling up, but it's really epical. First time in 60 years, we're moving from an application-centric view of the world to a data-centric view, because decisions are becoming more important than automating processes. So let me let you sort of develop. >> Yeah, so let's talk about that here. We going to put up some bullets on precisely that point and the changing sort of customer environment. So you got IT stacks are shifting is George just said, from application centric silos to data centric stacks where the priority is shifting from automating processes to automating decision. You know how look at RPA and there's still a lot of automation going on, but from the focus of that application centricity and the data locked into those apps, that's changing. Data has historically been on the outskirts in silos, but organizations, you think of Amazon, think Uber, Airbnb, they're putting data at the core, and logic is increasingly being embedded in the data instead of the reverse. In other words, today, the data's locked inside the app, which is why you need to extract that data is sticking it to a data warehouse. The point, George, is we're putting forth this new vision for how data is going to be used. And you've used this Uber example to underscore the future state. Please explain? >> Okay, so this is hopefully an example everyone can relate to. The idea is first, you're automating things that are happening in the real world and decisions that make those things happen autonomously without humans in the loop all the time. So to use the Uber example on your phone, you call a car, you call a driver. Automatically, the Uber app then looks at what drivers are in the vicinity, what drivers are free, matches one, calculates an ETA to you, calculates a price, calculates an ETA to your destination, and then directs the driver once they're there. The point of this is that that cannot happen in an application-centric world very easily because all these little apps, the drivers, the riders, the routes, the fares, those call on data locked up in many different apps, but they have to sit on a layer that makes it all coherent. >> But George, so if Uber's doing this, doesn't this tech already exist? Isn't there a tech platform that does this already? >> Yes, and the mission of the entire tech industry is to build services that make it possible to compose and operate similar platforms and tools, but with the skills of mainstream developers in mainstream corporations, not the rocket scientists at Uber and Amazon. >> Okay, so we're talking about horizontally scaling across the industry, and actually giving a lot more organizations access to this technology. So by way of review, let's summarize the trend that's going on today in terms of the modern data stack that is propelling the likes of Databricks and Snowflake, which we just showed you in the ETR data and is really is a tailwind form. So the trend is toward this common repository for analytic data, that could be multiple virtual data warehouses inside of Snowflake, but you're in that Snowflake environment or Lakehouses from Databricks or multiple data lakes. And we've talked about what JP Morgan Chase is doing with the data mesh and gluing data lakes together, you've got various public clouds playing in this game, and then the data is annotated to have a common meaning. In other words, there's a semantic layer that enables applications to talk to the data elements and know that they have common and coherent meaning. So George, the good news is this approach is more effective than the legacy monolithic models that Mike Olson was talking about, so what's the problem with this in your view? >> So today's data platforms added immense value 'cause they connected the data that was previously locked up in these monolithic apps or on all these different microservices, and that supported traditional BI and AI/ML use cases. But now if we want to build apps like Uber or Amazon.com, where they've got essentially an autonomously running supply chain and e-commerce app where humans only care and feed it. But the thing is figuring out what to buy, when to buy, where to deploy it, when to ship it. We needed a semantic layer on top of the data. So that, as you were saying, the data that's coming from all those apps, the different apps that's integrated, not just connected, but it means the same. And the issue is whenever you add a new layer to a stack to support new applications, there are implications for the already existing layers, like can they support the new layer and its use cases? So for instance, if you add a semantic layer that embeds app logic with the data rather than vice versa, which we been talking about and that's been the case for 60 years, then the new data layer faces challenges that the way you manage that data, the way you analyze that data, is not supported by today's tools. >> Okay, so actually Alex, bring me up that last slide if you would, I mean, you're basically saying at the bottom here, today's repositories don't really do joins at scale. The future is you're talking about hundreds or thousands or millions of data connections, and today's systems, we're talking about, I don't know, 6, 8, 10 joins and that is the fundamental problem you're saying, is a new data error coming and existing systems won't be able to handle it? >> Yeah, one way of thinking about it is that even though we call them relational databases, when we actually want to do lots of joins or when we want to analyze data from lots of different tables, we created a whole new industry for analytic databases where you sort of mung the data together into fewer tables. So you didn't have to do as many joins because the joins are difficult and slow. And when you're going to arbitrarily join thousands, hundreds of thousands or across millions of elements, you need a new type of database. We have them, they're called graph databases, but to query them, you go back to the prerelational era in terms of their usability. >> Okay, so we're going to come back to that and talk about how you get around that problem. But let's first lay out what the ideal data platform of the future we think looks like. And again, we're going to come back to use this Uber example. In this graphic that George put together, awesome. We got three layers. The application layer is where the data products reside. The example here is drivers, rides, maps, routes, ETA, et cetera. The digital version of what we were talking about in the previous slide, people, places and things. The next layer is the data layer, that breaks down the silos and connects the data elements through semantics and everything is coherent. And then the bottom layers, the legacy operational systems feed that data layer. George, explain what's different here, the graph database element, you talk about the relational query capabilities, and why can't I just throw memory at solving this problem? >> Some of the graph databases do throw memory at the problem and maybe without naming names, some of them live entirely in memory. And what you're dealing with is a prerelational in-memory database system where you navigate between elements, and the issue with that is we've had SQL for 50 years, so we don't have to navigate, we can say what we want without how to get it. That's the core of the problem. >> Okay. So if I may, I just want to drill into this a little bit. So you're talking about the expressiveness of a graph. Alex, if you'd bring that back out, the fourth bullet, expressiveness of a graph database with the relational ease of query. Can you explain what you mean by that? >> Yeah, so graphs are great because when you can describe anything with a graph, that's why they're becoming so popular. Expressive means you can represent anything easily. They're conducive to, you might say, in a world where we now want like the metaverse, like with a 3D world, and I don't mean the Facebook metaverse, I mean like the business metaverse when we want to capture data about everything, but we want it in context, we want to build a set of digital twins that represent everything going on in the world. And Uber is a tiny example of that. Uber built a graph to represent all the drivers and riders and maps and routes. But what you need out of a database isn't just a way to store stuff and update stuff. You need to be able to ask questions of it, you need to be able to query it. And if you go back to prerelational days, you had to know how to find your way to the data. It's sort of like when you give directions to someone and they didn't have a GPS system and a mapping system, you had to give them turn by turn directions. Whereas when you have a GPS and a mapping system, which is like the relational thing, you just say where you want to go, and it spits out the turn by turn directions, which let's say, the car might follow or whoever you're directing would follow. But the point is, it's much easier in a relational database to say, "I just want to get these results. You figure out how to get it." The graph database, they have not taken over the world because in some ways, it's taking a 50 year leap backwards. >> Alright, got it. Okay. Let's take a look at how the current Databricks offerings map to that ideal state that we just laid out. So to do that, we put together this chart that looks at the key elements of the Databricks portfolio, the core capability, the weakness, and the threat that may loom. Start with the Delta Lake, that's the storage layer, which is great for files and tables. It's got true separation of compute and storage, I want you to double click on that George, as independent elements, but it's weaker for the type of low latency ingest that we see coming in the future. And some of the threats highlighted here. AWS could add transactional tables to S3, Iceberg adoption is picking up and could accelerate, that could disrupt Databricks. George, add some color here please? >> Okay, so this is the sort of a classic competitive forces where you want to look at, so what are customers demanding? What's competitive pressure? What are substitutes? Even what your suppliers might be pushing. Here, Delta Lake is at its core, a set of transactional tables that sit on an object store. So think of it in a database system, this is the storage engine. So since S3 has been getting stronger for 15 years, you could see a scenario where they add transactional tables. We have an open source alternative in Iceberg, which Snowflake and others support. But at the same time, Databricks has built an ecosystem out of tools, their own and others, that read and write to Delta tables, that's what makes the Delta Lake and ecosystem. So they have a catalog, the whole machine learning tool chain talks directly to the data here. That was their great advantage because in the past with Snowflake, you had to pull all the data out of the database before the machine learning tools could work with it, that was a major shortcoming. They fixed that. But the point here is that even before we get to the semantic layer, the core foundation is under threat. >> Yep. Got it. Okay. We got a lot of ground to cover. So we're going to take a look at the Spark Execution Engine next. Think of that as the refinery that runs really efficient batch processing. That's kind of what disrupted the DOOp in a large way, but it's not Python friendly and that's an issue because the data science and the data engineering crowd are moving in that direction, and/or they're using DBT. George, we had Tristan Handy on at Supercloud, really interesting discussion that you and I did. Explain why this is an issue for Databricks? >> So once the data lake was in place, what people did was they refined their data batch, and Spark has always had streaming support and it's gotten better. The underlying storage as we've talked about is an issue. But basically they took raw data, then they refined it into tables that were like customers and products and partners. And then they refined that again into what was like gold artifacts, which might be business intelligence metrics or dashboards, which were collections of metrics. But they were running it on the Spark Execution Engine, which it's a Java-based engine or it's running on a Java-based virtual machine, which means all the data scientists and the data engineers who want to work with Python are really working in sort of oil and water. Like if you get an error in Python, you can't tell whether the problems in Python or where it's in Spark. There's just an impedance mismatch between the two. And then at the same time, the whole world is now gravitating towards DBT because it's a very nice and simple way to compose these data processing pipelines, and people are using either SQL in DBT or Python in DBT, and that kind of is a substitute for doing it all in Spark. So it's under threat even before we get to that semantic layer, it so happens that DBT itself is becoming the authoring environment for the semantic layer with business intelligent metrics. But that's again, this is the second element that's under direct substitution and competitive threat. >> Okay, let's now move down to the third element, which is the Photon. Photon is Databricks' BI Lakehouse, which has integration with the Databricks tooling, which is very rich, it's newer. And it's also not well suited for high concurrency and low latency use cases, which we think are going to increasingly become the norm over time. George, the call out threat here is customers want to connect everything to a semantic layer. Explain your thinking here and why this is a potential threat to Databricks? >> Okay, so two issues here. What you were touching on, which is the high concurrency, low latency, when people are running like thousands of dashboards and data is streaming in, that's a problem because SQL data warehouse, the query engine, something like that matures over five to 10 years. It's one of these things, the joke that Andy Jassy makes just in general, he's really talking about Azure, but there's no compression algorithm for experience. The Snowflake guy started more than five years earlier, and for a bunch of reasons, that lead is not something that Databricks can shrink. They'll always be behind. So that's why Snowflake has transactional tables now and we can get into that in another show. But the key point is, so near term, it's struggling to keep up with the use cases that are core to business intelligence, which is highly concurrent, lots of users doing interactive query. But then when you get to a semantic layer, that's when you need to be able to query data that might have thousands or tens of thousands or hundreds of thousands of joins. And that's a SQL query engine, traditional SQL query engine is just not built for that. That's the core problem of traditional relational databases. >> Now this is a quick aside. We always talk about Snowflake and Databricks in sort of the same context. We're not necessarily saying that Snowflake is in a position to tackle all these problems. We'll deal with that separately. So we don't mean to imply that, but we're just sort of laying out some of the things that Snowflake or rather Databricks customers we think, need to be thinking about and having conversations with Databricks about and we hope to have them as well. We'll come back to that in terms of sort of strategic options. But finally, when come back to the table, we have Databricks' AI/ML Tool Chain, which has been an awesome capability for the data science crowd. It's comprehensive, it's a one-stop shop solution, but the kicker here is that it's optimized for supervised model building. And the concern is that foundational models like GPT could cannibalize the current Databricks tooling, but George, can't Databricks, like other software companies, integrate foundation model capabilities into its platform? >> Okay, so the sound bite answer to that is sure, IBM 3270 terminals could call out to a graphical user interface when they're running on the XT terminal, but they're not exactly good citizens in that world. The core issue is Databricks has this wonderful end-to-end tool chain for training, deploying, monitoring, running inference on supervised models. But the paradigm there is the customer builds and trains and deploys each model for each feature or application. In a world of foundation models which are pre-trained and unsupervised, the entire tool chain is different. So it's not like Databricks can junk everything they've done and start over with all their engineers. They have to keep maintaining what they've done in the old world, but they have to build something new that's optimized for the new world. It's a classic technology transition and their mentality appears to be, "Oh, we'll support the new stuff from our old stuff." Which is suboptimal, and as we'll talk about, their biggest patron and the company that put them on the map, Microsoft, really stopped working on their old stuff three years ago so that they could build a new tool chain optimized for this new world. >> Yeah, and so let's sort of close with what we think the options are and decisions that Databricks has for its future architecture. They're smart people. I mean we've had Ali Ghodsi on many times, super impressive. I think they've got to be keenly aware of the limitations, what's going on with foundation models. But at any rate, here in this chart, we lay out sort of three scenarios. One is re-architect the platform by incrementally adopting new technologies. And example might be to layer a graph query engine on top of its stack. They could license key technologies like graph database, they could get aggressive on M&A and buy-in, relational knowledge graphs, semantic technologies, vector database technologies. George, as David Floyer always says, "A lot of ways to skin a cat." We've seen companies like, even think about EMC maintained its relevance through M&A for many, many years. George, give us your thought on each of these strategic options? >> Okay, I find this question the most challenging 'cause remember, I used to be an equity research analyst. I worked for Frank Quattrone, we were one of the top tech shops in the banking industry, although this is 20 years ago. But the M&A team was the top team in the industry and everyone wanted them on their side. And I remember going to meetings with these CEOs, where Frank and the bankers would say, "You want us for your M&A work because we can do better." And they really could do better. But in software, it's not like with EMC in hardware because with hardware, it's easier to connect different boxes. With software, the whole point of a software company is to integrate and architect the components so they fit together and reinforce each other, and that makes M&A harder. You can do it, but it takes a long time to fit the pieces together. Let me give you examples. If they put a graph query engine, let's say something like TinkerPop, on top of, I don't even know if it's possible, but let's say they put it on top of Delta Lake, then you have this graph query engine talking to their storage layer, Delta Lake. But if you want to do analysis, you got to put the data in Photon, which is not really ideal for highly connected data. If you license a graph database, then most of your data is in the Delta Lake and how do you sync it with the graph database? If you do sync it, you've got data in two places, which kind of defeats the purpose of having a unified repository. I find this semantic layer option in number three actually more promising, because that's something that you can layer on top of the storage layer that you have already. You just have to figure out then how to have your query engines talk to that. What I'm trying to highlight is, it's easy as an analyst to say, "You can buy this company or license that technology." But the really hard work is making it all work together and that is where the challenge is. >> Yeah, and well look, I thank you for laying that out. We've seen it, certainly Microsoft and Oracle. I guess you might argue that well, Microsoft had a monopoly in its desktop software and was able to throw off cash for a decade plus while it's stock was going sideways. Oracle had won the database wars and had amazing margins and cash flow to be able to do that. Databricks isn't even gone public yet, but I want to close with some of the players to watch. Alex, if you'd bring that back up, number four here. AWS, we talked about some of their options with S3 and it's not just AWS, it's blob storage, object storage. Microsoft, as you sort of alluded to, was an early go-to market channel for Databricks. We didn't address that really. So maybe in the closing comments we can. Google obviously, Snowflake of course, we're going to dissect their options in future Breaking Analysis. Dbt labs, where do they fit? Bob Muglia's company, Relational.ai, why are these players to watch George, in your opinion? >> So everyone is trying to assemble and integrate the pieces that would make building data applications, data products easy. And the critical part isn't just assembling a bunch of pieces, which is traditionally what AWS did. It's a Unix ethos, which is we give you the tools, you put 'em together, 'cause you then have the maximum choice and maximum power. So what the hyperscalers are doing is they're taking their key value stores, in the case of ASW it's DynamoDB, in the case of Azure it's Cosmos DB, and each are putting a graph query engine on top of those. So they have a unified storage and graph database engine, like all the data would be collected in the key value store. Then you have a graph database, that's how they're going to be presenting a foundation for building these data apps. Dbt labs is putting a semantic layer on top of data lakes and data warehouses and as we'll talk about, I'm sure in the future, that makes it easier to swap out the underlying data platform or swap in new ones for specialized use cases. Snowflake, what they're doing, they're so strong in data management and with their transactional tables, what they're trying to do is take in the operational data that used to be in the province of many state stores like MongoDB and say, "If you manage that data with us, it'll be connected to your analytic data without having to send it through a pipeline." And that's hugely valuable. Relational.ai is the wildcard, 'cause what they're trying to do, it's almost like a holy grail where you're trying to take the expressiveness of connecting all your data in a graph but making it as easy to query as you've always had it in a SQL database or I should say, in a relational database. And if they do that, it's sort of like, it'll be as easy to program these data apps as a spreadsheet was compared to procedural languages, like BASIC or Pascal. That's the implications of Relational.ai. >> Yeah, and again, we talked before, why can't you just throw this all in memory? We're talking in that example of really getting down to differences in how you lay the data out on disk in really, new database architecture, correct? >> Yes. And that's why it's not clear that you could take a data lake or even a Snowflake and why you can't put a relational knowledge graph on those. You could potentially put a graph database, but it'll be compromised because to really do what Relational.ai has done, which is the ease of Relational on top of the power of graph, you actually need to change how you're storing your data on disk or even in memory. So you can't, in other words, it's not like, oh we can add graph support to Snowflake, 'cause if you did that, you'd have to change, or in your data lake, you'd have to change how the data is physically laid out. And then that would break all the tools that talk to that currently. >> What in your estimation, is the timeframe where this becomes critical for a Databricks and potentially Snowflake and others? I mentioned earlier midterm, are we talking three to five years here? Are we talking end of decade? What's your radar say? >> I think something surprising is going on that's going to sort of come up the tailpipe and take everyone by storm. All the hype around business intelligence metrics, which is what we used to put in our dashboards where bookings, billings, revenue, customer, those things, those were the key artifacts that used to live in definitions in your BI tools, and DBT has basically created a standard for defining those so they live in your data pipeline or they're defined in their data pipeline and executed in the data warehouse or data lake in a shared way, so that all tools can use them. This sounds like a digression, it's not. All this stuff about data mesh, data fabric, all that's going on is we need a semantic layer and the business intelligence metrics are defining common semantics for your data. And I think we're going to find by the end of this year, that metrics are how we annotate all our analytic data to start adding common semantics to it. And we're going to find this semantic layer, it's not three to five years off, it's going to be staring us in the face by the end of this year. >> Interesting. And of course SVB today was shut down. We're seeing serious tech headwinds, and oftentimes in these sort of downturns or flat turns, which feels like this could be going on for a while, we emerge with a lot of new players and a lot of new technology. George, we got to leave it there. Thank you to George Gilbert for excellent insights and input for today's episode. I want to thank Alex Myerson who's on production and manages the podcast, of course Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our EIC over at Siliconangle.com, he does some great editing. Remember all these episodes, they're available as podcasts. Wherever you listen, all you got to do is search Breaking Analysis Podcast, we publish each week on wikibon.com and siliconangle.com, or you can email me at David.Vellante@siliconangle.com, or DM me @DVellante. Comment on our LinkedIn post, and please do check out ETR.ai, great survey data, enterprise tech focus, phenomenal. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis.

Published Date : Mar 10 2023

SUMMARY :

bringing you data-driven core elements of the Databricks portfolio and pervasiveness in the data and that was where you went for data. and Cloudera set out to fix that. the reason you see and the robustness of Databricks and their big challenge and the data locked into in the real world and decisions Yes, and the mission of that is propelling the likes that the way you manage that data, is the fundamental problem because the joins are difficult and slow. and connects the data and the issue with that is the fourth bullet, expressiveness and it spits out the and the threat that may loom. because in the past with Snowflake, Think of that as the refinery So once the data lake was in place, George, the call out threat here But the key point is, in sort of the same context. and the company that put One is re-architect the platform and architect the components some of the players to watch. in the case of ASW it's DynamoDB, and why you can't put a relational and executed in the data and manages the podcast, of

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

David FloyerPERSON

0.99+

Mike OlsonPERSON

0.99+

2014DATE

0.99+

George GilbertPERSON

0.99+

Dave VellantePERSON

0.99+

GeorgePERSON

0.99+

Cheryl KnightPERSON

0.99+

Ken SchiffmanPERSON

0.99+

Andy JassyPERSON

0.99+

OracleORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Erik BradleyPERSON

0.99+

DavePERSON

0.99+

UberORGANIZATION

0.99+

thousandsQUANTITY

0.99+

Sun MicrosystemsORGANIZATION

0.99+

50 yearsQUANTITY

0.99+

AWSORGANIZATION

0.99+

Bob MugliaPERSON

0.99+

GartnerORGANIZATION

0.99+

AirbnbORGANIZATION

0.99+

60 yearsQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

Ali GhodsiPERSON

0.99+

2010DATE

0.99+

DatabricksORGANIZATION

0.99+

Kristin MartinPERSON

0.99+

Rob HofPERSON

0.99+

threeQUANTITY

0.99+

15 yearsQUANTITY

0.99+

Databricks'ORGANIZATION

0.99+

two placesQUANTITY

0.99+

BostonLOCATION

0.99+

Tristan HandyPERSON

0.99+

M&AORGANIZATION

0.99+

Frank QuattronePERSON

0.99+

second elementQUANTITY

0.99+

Daren BrabhamPERSON

0.99+

TechAlpha PartnersORGANIZATION

0.99+

third elementQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

50 yearQUANTITY

0.99+

40%QUANTITY

0.99+

ClouderaORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

five yearsQUANTITY

0.99+

Breaking Analysis: MWC 2023 highlights telco transformation & the future of business


 

>> From the Cube Studios in Palo Alto in Boston, bringing you data-driven insights from The Cube and ETR. This is "Breaking Analysis" with Dave Vellante. >> The world's leading telcos are trying to shed the stigma of being monopolies lacking innovation. Telcos have been great at operational efficiency and connectivity and living off of transmission, and the costs and expenses or revenue associated with that transmission. But in a world beyond telephone poles and basic wireless and mobile services, how will telcos modernize and become more agile and monetize new opportunities brought about by 5G and private wireless and a spate of new innovations and infrastructure, cloud data and apps? Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this breaking analysis and ahead of Mobile World Congress or now, MWC23, we explore the evolution of the telco business and how the industry is in many ways, mimicking transformations that took place decades ago in enterprise IT. We'll model some of the traditional enterprise vendors using ETR data and investigate how they're faring in the telecommunications sector, and we'll pose some of the key issues facing the industry this decade. First, let's take a look at what the GSMA has in store for MWC23. GSMA is the host of what used to be called Mobile World Congress. They've set the theme for this year's event as "Velocity" and they've rebranded MWC to reflect the fact that mobile technology is only one part of the story. MWC has become one of the world's premier events highlighting innovations not only in Telco, mobile and 5G, but the collision between cloud, infrastructure, apps, private networks, smart industries, machine intelligence, and AI, and more. MWC comprises an enormous ecosystem of service providers, technology companies, and firms from virtually every industry including sports and entertainment. And as well, GSMA, along with its venue partner at the Fira Barcelona, have placed a major emphasis on sustainability and public and private partnerships. Virtually every industry will be represented at the event because every industry is impacted by the trends and opportunities in this space. GSMA has said it expects 80,000 attendees at MWC this year, not quite back to 2019 levels, but trending in that direction. Of course, attendance from Chinese participants has historically been very high at the show, and obviously the continued travel issues from that region are affecting the overall attendance, but still very strong. And despite these concerns, Huawei, the giant Chinese technology company. has the largest physical presence of any exhibitor at the show. And finally, GSMA estimates that more than $300 million in economic benefit will result from the event which takes place at the end of February and early March. And The Cube will be back at MWC this year with a major presence thanks to our anchor sponsor, Dell Technologies and other supporters of our content program, including Enterprise Web, ArcaOS, VMware, Snowflake, Cisco, AWS, and others. And one of the areas we're interested in exploring is the evolution of the telco stack. It's a topic that's often talked about and one that we've observed taking place in the 1990s when the vertically integrated IBM mainframe monopoly gave way to a disintegrated and horizontal industry structure. And in many ways, the same thing is happening today in telecommunications, which is shown on the left-hand side of this diagram. Historically, telcos have relied on a hardened, integrated, and incredibly reliable, and secure set of hardware and software services that have been fully vetted and tested, and certified, and relied upon for decades. And at the top of that stack on the left are the crown jewels of the telco stack, the operational support systems and the business support systems. For the OSS, we're talking about things like network management, network operations, service delivery, quality of service, fulfillment assurance, and things like that. For the BSS systems, these refer to customer-facing elements of the stack, like revenue, order management, what products they sell, billing, and customer service. And what we're seeing is telcos have been really good at operational efficiency and making money off of transport and connectivity, but they've lacked the innovation in services and applications. They own the pipes and that works well, but others, be the over-the-top content companies, or private network providers and increasingly, cloud providers have been able to bypass the telcos, reach around them, if you will, and drive innovation. And so, the right-most diagram speaks to the need to disaggregate pieces of the stack. And while the similarities to the 1990s in enterprise IT are greater than the differences, there are things that are different. For example, the granularity of hardware infrastructure will not likely be as high where competition occurred back in the 90s at every layer of the value chain with very little infrastructure integration. That of course changed in the 2010s with converged infrastructure and hyper-converged and also software defined. So, that's one difference. And the advent of cloud, containers, microservices, and AI, none of that was really a major factor in the disintegration of legacy IT. And that probably means that disruptors can move even faster than did the likes of Intel and Microsoft, Oracle, Cisco, and the Seagates of the 1990s. As well, while many of the products and services will come from traditional enterprise IT names like Dell, HPE, Cisco, Red Hat, VMware, AWS, Microsoft, Google, et cetera, many of the names are going to be different and come from traditional network equipment providers. These are names like Ericsson and Huawei, and Nokia, and other names, like Wind River, and Rakuten, and Dish Networks. And there are enormous opportunities in data to help telecom companies and their competitors go beyond telemetry data into more advanced analytics and data monetization. There's also going to be an entirely new set of apps based on the workloads and use cases ranging from hospitals, sports arenas, race tracks, shipping ports, you name it. Virtually every vertical will participate in this transformation as the industry evolves its focus toward innovation, agility, and open ecosystems. Now remember, this is not a binary state. There are going to be greenfield companies disrupting the apple cart, but the incumbent telcos are going to have to continue to ensure newer systems work with their legacy infrastructure, in their OSS and BSS existing systems. And as we know, this is not going to be an overnight task. Integration is a difficult thing, transformations, migrations. So that's what makes this all so interesting because others can come in with Greenfield and potentially disrupt. There'll be interesting partnerships and ecosystems will form and coalitions will also form. Now, we mentioned that several traditional enterprise companies are or will be playing in this space. Now, ETR doesn't have a ton of data on specific telecom equipment and software providers, but it does have some interesting data that we cut for this breaking analysis. What we're showing here in this graphic is some of the names that we've followed over the years and how they're faring. Specifically, we did the cut within the telco sector. So the Y-axis here shows net score or spending velocity. And the horizontal axis, that shows the presence or pervasiveness in the data set. And that table insert in the upper left, that informs as to how the dots are plotted. You know, the two columns there, net score and the ends. And that red-dotted line, that horizontal line at 40%, that is an indicator of a highly elevated level. Anything above that, we consider quite outstanding. And what we'll do now is we'll comment on some of the cohorts and share with you how they're doing in telecommunications, and that sector, that vertical relative to their position overall in the data set. Let's start with the public cloud players. They're prominent in every industry. Telcos, telecommunications is no exception and it's quite an interesting cohort here. On the one hand, they can help telecommunication firms modernize and become more agile by eliminating the heavy lifting and you know, all the cloud, you know, value prop, data center costs, and the cloud benefits. At the same time, public cloud players are bringing their services to the edge, building out their own global networks and are a disruptive force to traditional telcos. All right, let's talk about Azure first. Their net score is basically identical to telco relative to its overall average. AWS's net score is higher in telco by just a few percentage points. Google Cloud platform is eight percentage points higher in telco with a 53% net score. So all three hyperscalers have an equal or stronger presence in telco than their average overall. Okay, let's look at the traditional enterprise hardware and software infrastructure cohort. Dell, Cisco, HPE, Red Hat, VMware, and Oracle. We've highlighted in this chart just as sort of indicators or proxies. Dell's net score's 10 percentage points higher in telco than its overall average. Interesting. Cisco's is a bit higher. HPE's is actually lower by about nine percentage points in the ETR survey, and VMware's is lower by about four percentage points. Now, Red Hat is really interesting. OpenStack, as we've previously reported is popular with telcos who want to build out their own private cloud. And the data shows that Red Hat OpenStack's net score is 15 percentage points higher in the telco sector than its overall average. OpenShift, on the other hand, has a net score that's four percentage points lower in telco than its overall average. So this to us talks to the pace of adoption of microservices and containers. You know, it's going to happen, but it's going to happen more slowly. Finally, Oracle's spending momentum is somewhat lower in the sector than its average, despite the firm having a decent telco business. IBM and Accenture, heavy services companies are both lower in this sector than their average. And real quickly, snowflake's net score is much lower by about 12 percentage points relative to its very high average net score of 62%. But we look for them to be a player in this space as telcos need to modernize their analytics stack and share data in a governed manner. Databricks' net score is also much lower than its average by about 13 points. And same, I would expect them to be a player as open architectures and cloud gains steam in telco. All right, let's close out now on what we're going to be talking about at MWC23 and some of the key issues that we'll be unpacking. We've talked about stack disaggregation in this breaking analysis, but the key here will be the pace at which it will reach the operational efficiency and reliability of closed stacks. Telcos, you know, in a large part, they're engineering heavy firms and much of their work takes place, kind of in the basement, in the dark. It's not really a big public hype machine, and they tend to move slowly and cautiously. While they understand the importance of agility, they're going to be careful because, you know, it's in their DNA. And so at the same time, if they don't move fast enough, they're going to get hurt and disrupted by competitors. So that's going to be a topic of conversation, and we'll be looking for proof points. And the other comment I'll make is around integration. Telcos because of their conservatism will benefit from better testing and those firms that can innovate on the testing front and have labs and certifications and innovate at that level, with an ecosystem are going to be in a better position. Because open sometimes means wild west. So the more players like Dell, HPE, Cisco, Red Hat, et cetera, that do that and align with their ecosystems and provide those resources, the faster adoption is going to go. So we'll be looking for, you know, who's actually doing that, Open RAN or Radio Access Networks. That fits in this discussion because O-RAN is an emerging network architecture. It essentially enables the use of open technologies from an ecosystem and over time, look at O-RAN is going to be open, but the questions, you know, a lot of questions remain as to when it will be able to deliver the operational efficiency of traditional RAN. Got some interesting dynamics going on. Rakuten is a company that's working hard on this problem, really focusing on operational efficiency. Then you got Dish Networks. They're also embracing O-RAN. They're coming at it more from service innovation. So that's something that we'll be monitoring and unpacking. We're going to look at cloud as a disruptor. On the one hand, cloud can help drive agility, as we said earlier and optionality, and innovation for incumbent telcos. But the flip side is going to also do the same for startups trying to disrupt and cloud attracts startups. While some of the telcos are actually embracing the cloud, many are being cautious. So that's going to be an interesting topic of discussion. And there's private wireless networks and 5G, and hyperlocal private networks, they're being deployed, you know, at the edge. This idea of open edge is also a really hot topic and this trend is going to accelerate. You know, the importance here is that the use cases are going to be widely varied. The needs of a hospital are going to be different than those of a sports venue are different from a remote drilling location, and energy or a concert venue. Things like real-time AI inference and data flows are going to bring new services and monetization opportunities. And many firms are going to be bypassing traditional telecommunications networks to build these out. Satellites as well, we're going to see, you know, in this decade, you're going to have, you're going to look down at Google Earth and you're going to see real-time. You know, today you see snapshots and so, lots of innovations going in that space. So how is this going to disrupt industries and traditional industry structures? Now, as always, we'll be looking at data angles, right? 'Cause it's in The Cube's DNA to follow the data and what opportunities and risks data brings. The Cube is going to be on location at MWC23 at the end of the month. We got a great set. We're in the walkway between halls four and five, right in Congress Square, it's booths CS60. So we'll have a full, they're called Stan CS60. We have a full schedule. I'm going to be there with Lisa Martin, Dave Nicholson and the entire Cube crew, so don't forget to stop by. All right, that's a wrap. I want to thank Alex Myerson, who's on production and manages the podcast, Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at Silicon Angle, does some great stuff for us. Thank you all. Remember, all these episodes are available as podcasts. Wherever you listen, just search "Breaking Analysis" podcasts I publish each week on wikibon.com and silicon angle.com. And all the video content is available on demand at thecube.net. You can email me directly at david.vellante@silicon angle.com. You can DM me at dvellante or comment on my LinkedIn post. Please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for The Cube Insights powered by ETR. Thanks for watching and we'll see you at Mobile World Congress, and/or at next time on "Breaking Analysis." (bright music) (bright music fades)

Published Date : Feb 18 2023

SUMMARY :

From the Cube Studios and some of the key issues

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Lisa MartinPERSON

0.99+

Dave NicholsonPERSON

0.99+

IBMORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

EricssonORGANIZATION

0.99+

Dave VellantePERSON

0.99+

DellORGANIZATION

0.99+

HuaweiORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

Kristin MartinPERSON

0.99+

Cheryl KnightPERSON

0.99+

AWSORGANIZATION

0.99+

NokiaORGANIZATION

0.99+

RakutenORGANIZATION

0.99+

Rob HofPERSON

0.99+

OracleORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

GSMAORGANIZATION

0.99+

AccentureORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

2019DATE

0.99+

53%QUANTITY

0.99+

Palo AltoLOCATION

0.99+

Wind RiverORGANIZATION

0.99+

HPEORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

more than $300 millionQUANTITY

0.99+

40%QUANTITY

0.99+

TelcosORGANIZATION

0.99+

Congress SquareLOCATION

0.99+

FirstQUANTITY

0.99+

VMwareORGANIZATION

0.99+

TelcoORGANIZATION

0.99+

Dish NetworksORGANIZATION

0.99+

telcoORGANIZATION

0.99+

2010sDATE

0.99+

IntelORGANIZATION

0.99+

david.vellante@silicon angle.comOTHER

0.99+

MWC23EVENT

0.99+

1990sDATE

0.99+

62%QUANTITY

0.99+

Mobile World CongressEVENT

0.99+

two columnsQUANTITY

0.99+

each weekQUANTITY

0.99+

SeagatesORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

todayDATE

0.99+

early MarchDATE

0.99+

bothQUANTITY

0.99+

thecube.netOTHER

0.99+

MWCEVENT

0.99+

ETRORGANIZATION

0.98+

this yearDATE

0.98+

Cube StudiosORGANIZATION

0.98+

one partQUANTITY

0.98+

ChineseOTHER

0.98+

BostonLOCATION

0.98+

decades agoDATE

0.97+

threeQUANTITY

0.97+

90sDATE

0.97+

about 13 pointsQUANTITY

0.97+

Breaking Analysis: Google's Point of View on Confidential Computing


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Confidential computing is a technology that aims to enhance data privacy and security by providing encrypted computation on sensitive data and isolating data from apps in a fenced off enclave during processing. The concept of confidential computing is gaining popularity, especially in the cloud computing space where sensitive data is often stored and of course processed. However, there are some who view confidential computing as an unnecessary technology in a marketing ploy by cloud providers aimed at calming customers who are cloud phobic. Hello and welcome to this week's Wikibon CUBE Insights powered by ETR. In this Breaking Analysis, we revisit the notion of confidential computing, and to do so, we'll invite two Google experts to the show, but before we get there, let's summarize briefly. There's not a ton of ETR data on the topic of confidential computing. I mean, it's a technology that's deeply embedded into silicon and computing architectures. But at the highest level, security remains the number one priority being addressed by IT decision makers in the coming year as shown here. And this data is pretty much across the board by industry, by region, by size of company. I mean we dug into it and the only slight deviation from the mean is in financial services. The second and third most cited priorities, cloud migration and analytics, are noticeably closer to cybersecurity in financial services than in other sectors, likely because financial services has always been hyper security conscious, but security is still a clear number one priority in that sector. The idea behind confidential computing is to better address threat models for data in execution. Protecting data at rest and data and transit have long been a focus of security approaches, but more recently, silicon manufacturers have introduced architectures that separate data and applications from the host system. Arm, Intel, AMD, Nvidia and other suppliers are all on board, as are the big cloud players. Now the argument against confidential computing is that it narrowly focuses on memory encryption and it doesn't solve the biggest problems in security. Multiple system images updates different services and the entire code flow aren't directly addressed by memory encryption, rather to truly attack these problems, many believe that OSs need to be re-engineered with the attacker and hacker in mind. There are so many variables and at the end of the day, critics say the emphasis on confidential computing made by cloud providers is overstated and largely hype. This tweet from security researcher Rodrigo Branco sums up the sentiment of many skeptics. He says, "Confidential computing is mostly a marketing campaign for memory encryption. It's not driving the industry towards the hard open problems. It is selling an illusion." Okay. Nonetheless, encrypting data in use and fencing off key components of the system isn't a bad thing, especially if it comes with the package essentially for free. There has been a lack of standardization and interoperability between different confidential computing approaches. But the confidential computing consortium was established in 2019 ostensibly to accelerate the market and influence standards. Notably, AWS is not part of the consortium, likely because the politics of the consortium were probably a conundrum for AWS because the base technology defined by the the consortium is seen as limiting by AWS. This is my guess, not AWS's words, and but I think joining the consortium would validate a definition which AWS isn't aligned with. And two, it's got a lead with this Annapurna acquisition. This was way ahead with Arm integration and so it probably doesn't feel the need to validate its competitors. Anyway, one of the premier members of the confidential computing consortium is Google, along with many high profile names including Arm, Intel, Meta, Red Hat, Microsoft, and others. And we're pleased to welcome two experts on confidential computing from Google to unpack the topic, Nelly Porter is head of product for GCP confidential computing and encryption, and Dr. Patricia Florissi is the technical director for the office of the CTO at Google Cloud. Welcome Nelly and Patricia, great to have you. >> Great to be here. >> Thank you so much for having us. >> You're very welcome. Nelly, why don't you start and then Patricia, you can weigh in. Just tell the audience a little bit about each of your roles at Google Cloud. >> So I'll start, I'm owning a lot of interesting activities in Google and again security or infrastructure securities that I usually own. And we are talking about encryption and when encryption and confidential computing is a part of portfolio in additional areas that I contribute together with my team to Google and our customers is secure software supply chain. Because you need to trust your software. Is it operate in your confidential environment to have end-to-end story about if you believe that your software and your environment doing what you expect, it's my role. >> Got it. Okay. Patricia? >> Well, I am a technical director in the office of the CTO, OCTO for short, in Google Cloud. And we are a global team. We include former CTOs like myself and senior technologists from large corporations, institutions and a lot of success, we're startups as well. And we have two main goals. First, we walk side by side with some of our largest, more strategic or most strategical customers and we help them solve complex engineering technical problems. And second, we are devise Google and Google Cloud engineering and product management and tech on there, on emerging trends and technologies to guide the trajectory of our business. We are unique group, I think, because we have created this collaborative culture with our customers. And within OCTO, I spend a lot of time collaborating with customers and the industry at large on technologies that can address privacy, security, and sovereignty of data in general. >> Excellent. Thank you for that both of you. Let's get into it. So Nelly, what is confidential computing? From Google's perspective, how do you define it? >> Confidential computing is a tool and it's still one of the tools in our toolbox. And confidential computing is a way how we would help our customers to complete this very interesting end-to-end lifecycle of the data. And when customers bring in the data to cloud and want to protect it as they ingest it to the cloud, they protect it at rest when they store data in the cloud. But what was missing for many, many years is ability for us to continue protecting data and workloads of our customers when they running them. And again, because data is not brought to cloud to have huge graveyard, we need to ensure that this data is actually indexed. Again, there is some insights driven and drawn from this data. You have to process this data and confidential computing here to help. Now we have end to end protection of our customer's data when they bring the workloads and data to cloud, thanks to confidential computing. >> Thank you for that. Okay, we're going to get into the architecture a bit, but before we do, Patricia, why do you think this topic of confidential computing is such an important technology? Can you explain, do you think it's transformative for customers and if so, why? >> Yeah, I would maybe like to use one thought, one way, one intuition behind why confidential commuting matters, because at the end of the day, it reduces more and more the customer's thresh boundaries and the attack surface. That's about reducing that periphery, the boundary in which the customer needs to mind about trust and safety. And in a way, is a natural progression that you're using encryption to secure and protect the data. In the same way that we are encrypting data in transit and at rest, now we are also encrypting data while in use. And among other beneficials, I would say one of the most transformative ones is that organizations will be able to collaborate with each other and retain the confidentiality of the data. And that is across industry, even though it's highly focused on, I wouldn't say highly focused, but very beneficial for highly regulated industries. It applies to all of industries. And if you look at financing for example, where bankers are trying to detect fraud, and specifically double finance where you are, a customer is actually trying to get a finance on an asset, let's say a boat or a house, and then it goes to another bank and gets another finance on that asset. Now bankers would be able to collaborate and detect fraud while preserving confidentiality and privacy of the data. >> Interesting. And I want to understand that a little bit more but I'm going to push you a little bit on this, Nelly, if I can because there's a narrative out there that says confidential computing is a marketing ploy, I talked about this upfront, by cloud providers that are just trying to placate people that are scared of the cloud. And I'm presuming you don't agree with that, but I'd like you to weigh in here. The argument is confidential computing is just memory encryption and it doesn't address many other problems. It is over hyped by cloud providers. What do you say to that line of thinking? >> I absolutely disagree, as you can imagine, with this statement, but the most importantly is we mixing multiple concepts, I guess. And exactly as Patricia said, we need to look at the end-to-end story, not again the mechanism how confidential computing trying to again, execute and protect a customer's data and why it's so critically important because what confidential computing was able to do, it's in addition to isolate our tenants in multi-tenant environments the cloud covering to offer additional stronger isolation. They called it cryptographic isolation. It's why customers will have more trust to customers and to other customers, the tenant that's running on the same host but also us because they don't need to worry about against threats and more malicious attempts to penetrate the environment. So what confidential computing is helping us to offer our customers, stronger isolation between tenants in this multi-tenant environment, but also incredibly important, stronger isolation of our customers, so tenants from us. We also writing code, we also software providers will also make mistakes or have some zero days. Sometimes again us introduced, sometimes introduced by our adversaries. But what I'm trying to say by creating this cryptographic layer of isolation between us and our tenants and amongst those tenants, we're really providing meaningful security to our customers and eliminate some of the worries that they have running on multi-tenant spaces or even collaborating to gather this very sensitive data knowing that this particular protection is available to them. >> Okay, thank you. Appreciate that. And I think malicious code is often a threat model missed in these narratives. Operator access, yeah, maybe I trust my clouds provider, but if I can fence off your access even better, I'll sleep better at night. Separating a code from the data, everybody's, Arm, Intel, AMD, Nvidia, others, they're all doing it. I wonder if, Nelly, if we could stay with you and bring up the slide on the architecture. What's architecturally different with confidential computing versus how operating systems and VMs have worked traditionally. We're showing a slide here with some VMs, maybe you could take us through that. >> Absolutely. And Dave, the whole idea for Google and now industry way of dealing with confidential computing is to ensure that three main property is actually preserved. Customers don't need to change the code. They can operate on those VMs exactly as they would with normal non-confidential VMs, but to give them this opportunity of lift and shift or no changing their apps and performing and having very, very, very low latency and scale as any cloud can, something that Google actually pioneer in confidential computing. I think we need to open and explain how this magic was actually done. And as I said, it's again the whole entire system have to change to be able to provide this magic. And I would start with we have this concept of root of trust and root of trust where we will ensure that this machine, when the whole entire post has integrity guarantee, means nobody changing my code on the most low level of system. And we introduce this in 2017 called Titan. It was our specific ASIC, specific, again, inch by inch system on every single motherboard that we have that ensures that your low level former, your actually system code, your kernel, the most powerful system is actually proper configured and not changed, not tampered. We do it for everybody, confidential computing included. But for confidential computing, what we have to change, we bring in AMD, or again, future silicon vendors and we have to trust their former, their way to deal with our confidential environments. And that's why we have obligation to validate integrity, not only our software and our former but also former and software of our vendors, silicon vendors. So we actually, when we booting this machine, as you can see, we validate that integrity of all of the system is in place. It means nobody touching, nobody changing, nobody modifying it. But then we have this concept of AMD secure processor, it's special ASICs, best specific things that generate a key for every single VM that our customers will run or every single node in Kubernetes or every single worker thread in our Hadoop or Spark capability. We offer all of that. And those keys are not available to us. It's the best keys ever in encryption space because when we are talking about encryption, the first question that I'm receiving all the time, where's the key, who will have access to the key? Because if you have access to the key then it doesn't matter if you encrypted or not. So, but the case in confidential computing provides so revolutionary technology, us cloud providers, who don't have access to the keys. They sitting in the hardware and they head to memory controller. And it means when hypervisors that also know about these wonderful things saying I need to get access to the memories that this particular VM trying to get access to, they do not decrypt the data, they don't have access to the key because those keys are random, ephemeral and per VM, but the most importantly, in hardware not exportable. And it means now you would be able to have this very interesting role that customers or cloud providers will not be able to get access to your memory. And what we do, again, as you can see our customers don't need to change their applications, their VMs are running exactly as it should run and what you're running in VM, you actually see your memory in clear, it's not encrypted, but God forbid is trying somebody to do it outside of my confidential box. No, no, no, no, no, they would not be able to do it. Now you'll see cyber and it's exactly what combination of these multiple hardware pieces and software pieces have to do. So OS is also modified. And OS is modified such way to provide integrity. It means even OS that you're running in your VM box is not modifiable and you, as customer, can verify. But the most interesting thing, I guess, how to ensure the super performance of this environment because you can imagine, Dave, that encrypting and it's additional performance, additional time, additional latency. So we were able to mitigate all of that by providing incredibly interesting capability in the OS itself. So our customers will get no changes needed, fantastic performance and scales as they would expect from cloud providers like Google. >> Okay, thank you. Excellent. Appreciate that explanation. So, again, the narrative on this as well, you've already given me guarantees as a cloud provider that you don't have access to my data, but this gives another level of assurance, key management as they say is key. Now humans aren't managing the keys, the machines are managing them. So Patricia, my question to you is, in addition to, let's go pre confidential computing days, what are the sort of new guarantees that these hardware-based technologies are going to provide to customers? >> So if I am a customer, I am saying I now have full guarantee of confidentiality and integrity of the data and of the code. So if you look at code and data confidentiality, the customer cares and they want to know whether their systems are protected from outside or unauthorized access, and that recovered with Nelly, that it is. Confidential computing actually ensures that the applications and data internals remain secret, right? The code is actually looking at the data, the only the memory is decrypting the data with a key that is ephemeral and per VM and generated on demand. Then you have the second point where you have code and data integrity, and now customers want to know whether their data was corrupted, tampered with or impacted by outside actors. And what confidential computing ensures is that application internals are not tampered with. So the application, the workload as we call it, that is processing the data, it's also, it has not been tampered and preserves integrity. I would also say that this is all verifiable. So you have attestation and these attestation actually generates a log trail and the log trail guarantees that, provides a proof that it was preserved. And I think that the offer's also a guarantee of what we call ceiling, this idea that the secrets have been preserved and not tampered with, confidentiality and integrity of code and data. >> Got it. Okay, thank you. Nelly, you mentioned, I think I heard you say that the applications, it's transparent, you don't have to change the application, it just comes for free essentially. And we showed some various parts of the stack before. I'm curious as to what's affected, but really more importantly, what is specifically Google's value add? How do partners participate in this, the ecosystem, or maybe said another way, how does Google ensure the compatibility of confidential computing with existing systems and applications? >> And a fantastic question by the way. And it's very difficult and definitely complicated world because to be able to provide these guarantees, actually a lot of work was done by community. Google is very much operate in open, so again, our operating system, we working with operating system repository OSs, OS vendors to ensure that all capabilities that we need is part of the kernels, are part of the releases and it's available for customers to understand and even explore if they have fun to explore a lot of code. We have also modified together with our silicon vendors a kernel, host kernel to support this capability and it means working this community to ensure that all of those patches are there. We also worked with every single silicon vendor as you've seen, and that's what I probably feel that Google contributed quite a bit in this whole, we moved our industry, our community, our vendors to understand the value of easy to use confidential computing or removing barriers. And now I don't know if you noticed, Intel is pulling the lead and also announcing their trusted domain extension, very similar architecture. And no surprise, it's, again, a lot of work done with our partners to, again, convince, work with them and make this capability available. The same with Arm this year, actually last year, Arm announced their future design for confidential computing. It's called Confidential Computing Architecture. And it's also influenced very heavily with similar ideas by Google and industry overall. So it's a lot of work in confidential computing consortiums that we are doing, for example, simply to mention, to ensure interop, as you mentioned, between different confidential environments of cloud providers. They want to ensure that they can attest to each other because when you're communicating with different environments, you need to trust them. And if it's running on different cloud providers, you need to ensure that you can trust your receiver when you are sharing your sensitive data workloads or secret with them. So we coming as a community and we have this attestation sig, the, again, the community based systems that we want to build and influence and work with Arm and every other cloud providers to ensure that we can interrupt and it means it doesn't matter where confidential workloads will be hosted, but they can exchange the data in secure, verifiable and controlled by customers way. And to do it, we need to continue what we are doing, working open, again, and contribute with our ideas and ideas of our partners to this role to become what we see confidential computing has to become, it has to become utility. It doesn't need to be so special, but it's what we want it to become. >> Let's talk about, thank you for that explanation. Let's talk about data sovereignty because when you think about data sharing, you think about data sharing across the ecosystem and different regions and then of course data sovereignty comes up. Typically public policy lags, the technology industry and sometimes is problematic. I know there's a lot of discussions about exceptions, but Patricia, we have a graphic on data sovereignty. I'm interested in how confidential computing ensures that data sovereignty and privacy edicts are adhered to, even if they're out of alignment maybe with the pace of technology. One of the frequent examples is when you delete data, can you actually prove that data is deleted with a hundred percent certainty? You got to prove that and a lot of other issues. So looking at this slide, maybe you could take us through your thinking on data sovereignty. >> Perfect. So for us, data sovereignty is only one of the three pillars of digital sovereignty. And I don't want to give the impression that confidential computing addresses it all. That's why we want to step back and say, hey, digital sovereignty includes data sovereignty where we are giving you full control and ownership of the location, encryption and access to your data. Operational sovereignty where the goal is to give our Google Cloud customers full visibility and control over the provider operations, right? So if there are any updates on hardware, software stack, any operations, there is full transparency, full visibility. And then the third pillar is around software sovereignty where the customer wants to ensure that they can run their workloads without dependency on the provider's software. So they have sometimes is often referred as survivability, that you can actually survive if you are untethered to the cloud and that you can use open source. Now let's take a deep dive on data sovereignty, which by the way is one of my favorite topics. And we typically focus on saying, hey, we need to care about data residency. We care where the data resides because where the data is at rest or in processing, it typically abides to the jurisdiction, the regulations of the jurisdiction where the data resides. And others say, hey, let's focus on data protection. We want to ensure the confidentiality and integrity and availability of the data, which confidential computing is at the heart of that data protection. But it is yet another element that people typically don't talk about when talking about data sovereignty, which is the element of user control. And here, Dave, is about what happens to the data when I give you access to my data. And this reminds me of security two decades ago, even a decade ago, where we started the security movement by putting firewall protections and login accesses. But once you were in, you were able to do everything you wanted with the data. An insider had access to all the infrastructure, the data and the code. And that's similar because with data sovereignty we care about whether it resides, where, who is operating on the data. But the moment that the data is being processed, I need to trust that the processing of the data will abide by user control, by the policies that I put in place of how my data is going to be used. And if you look at a lot of the regulation today and a lot of the initiatives around the International Data Space Association, IDSA, and Gaia-X, there is a movement of saying the two parties, the provider of the data and the receiver of the data are going to agree on a contract that describes what my data can be used for. The challenge is to ensure that once the data crosses boundaries, that the data will be used for the purposes that it was intended and specified in the contract. And if you actually bring together, and this is the exciting part, confidential computing together with policy enforcement, now the policy enforcement can guarantee that the data is only processed within the confines of a confidential computing environment, that the workload is cryptographically verified that there is the workload that was meant to process the data and that the data will be only used when abiding to the confidentiality and integrity safety of the confidential computing environment. And that's why we believe confidential computing is one necessary and essential technology that will allow us to ensure data sovereignty, especially when it comes to user control. >> Thank you for that. I mean it was a deep dive, I mean brief, but really detailed. So I appreciate that, especially the verification of the enforcement. Last question, I met you two because as part of my year end prediction post, you guys sent in some predictions and I wasn't able to get to them in the predictions post. So I'm thrilled that you were able to make the time to come on the program. How widespread do you think the adoption of confidential computing will be in 23 and what's the maturity curve look like, this decade in your opinion? Maybe each of you could give us a brief answer. >> So my prediction in five, seven years, as I started, it'll become utility. It'll become TLS as of, again, 10 years ago we couldn't believe that websites will have certificates and we will support encrypted traffic. Now we do and it's become ubiquity. It's exactly where confidential computing is getting and heading, I don't know we deserve yet. It'll take a few years of maturity for us, but we will be there. >> Thank you. And Patricia, what's your prediction? >> I will double that and say, hey, in the future, in the very near future, you will not be able to afford not having it. I believe as digital sovereignty becomes evermore top of mind with sovereign states and also for multi national organizations and for organizations that want to collaborate with each other, confidential computing will become the norm. It'll become the default, if I say, mode of operation. I like to compare that today is inconceivable. If we talk to the young technologists, it's inconceivable to think that at some point in history, and I happen to be alive that we had data at rest that was not encrypted, data in transit that was not encrypted, and I think that will be inconceivable at some point in the near future that to have unencrypted data while in use. >> And plus I think the beauty of the this industry is because there's so much competition, this essentially comes for free. I want to thank you both for spending some time on Breaking Analysis. There's so much more we could cover. I hope you'll come back to share the progress that you're making in this area and we can double click on some of these topics. Really appreciate your time. >> Anytime. >> Thank you so much. >> In summary, while confidential computing is being touted by the cloud players as a promising technology for enhancing data privacy and security, there are also those, as we said, who remain skeptical. The truth probably lies somewhere in between and it will depend on the specific implementation and the use case as to how effective confidential computing will be. Look, as with any new tech, it's important to carefully evaluate the potential benefits, the drawbacks, and make informed decisions based on the specific requirements in the situation and the constraints of each individual customer. But the bottom line is silicon manufacturers are working with cloud providers and other system companies to include confidential computing into their architectures. Competition, in our view, will moderate price hikes. And at the end of the day, this is under the covers technology that essentially will come for free. So we'll take it. I want to thank our guests today, Nelly and Patricia from Google, and thanks to Alex Myerson who's on production and manages the podcast. Ken Schiffman as well out of our Boston studio, Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor-in-chief over at siliconangle.com. Does some great editing for us, thank you all. Remember all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com where you can get all the news. If you want to get in touch, you can email me at david.vellante@siliconangle.com or dm me @DVellante. And you can also comment on my LinkedIn post. Definitely you want to check out etr.ai for the best survey data in the enterprise tech business. I know we didn't hit on a lot today, but there's some amazing data and it's always being updated, so check that out. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (upbeat music)

Published Date : Feb 11 2023

SUMMARY :

bringing you data-driven and at the end of the day, Just tell the audience a little and confidential computing Got it. and the industry at large for that both of you. in the data to cloud into the architecture a bit, and privacy of the data. people that are scared of the cloud. and eliminate some of the we could stay with you and they head to memory controller. So, again, the narrative on this as well, and integrity of the data and of the code. how does Google ensure the compatibility and ideas of our partners to this role One of the frequent examples and that the data will be only used of the enforcement. and we will support encrypted traffic. And Patricia, and I happen to be alive beauty of the this industry and the constraints of

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
NellyPERSON

0.99+

PatriciaPERSON

0.99+

International Data Space AssociationORGANIZATION

0.99+

Alex MyersonPERSON

0.99+

AWSORGANIZATION

0.99+

IDSAORGANIZATION

0.99+

Rodrigo BrancoPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

NvidiaORGANIZATION

0.99+

2019DATE

0.99+

2017DATE

0.99+

Kristin MartinPERSON

0.99+

Nelly PorterPERSON

0.99+

Ken SchiffmanPERSON

0.99+

Rob HofPERSON

0.99+

Cheryl KnightPERSON

0.99+

last yearDATE

0.99+

Palo AltoLOCATION

0.99+

Red HatORGANIZATION

0.99+

two partiesQUANTITY

0.99+

AMDORGANIZATION

0.99+

Patricia FlorissiPERSON

0.99+

IntelORGANIZATION

0.99+

oneQUANTITY

0.99+

fiveQUANTITY

0.99+

second pointQUANTITY

0.99+

david.vellante@siliconangle.comOTHER

0.99+

MetaORGANIZATION

0.99+

secondQUANTITY

0.99+

thirdQUANTITY

0.99+

OneQUANTITY

0.99+

twoQUANTITY

0.99+

ArmORGANIZATION

0.99+

eachQUANTITY

0.99+

two expertsQUANTITY

0.99+

FirstQUANTITY

0.99+

first questionQUANTITY

0.99+

Gaia-XORGANIZATION

0.99+

two decades agoDATE

0.99+

bothQUANTITY

0.99+

this yearDATE

0.99+

seven yearsQUANTITY

0.99+

OCTOORGANIZATION

0.99+

zero daysQUANTITY

0.98+

10 years agoDATE

0.98+

each weekQUANTITY

0.98+

todayDATE

0.97+

Breaking Analysis: Google's PoV on Confidential Computing


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Confidential computing is a technology that aims to enhance data privacy and security, by providing encrypted computation on sensitive data and isolating data, and apps that are fenced off enclave during processing. The concept of, I got to start over. I fucked that up, I'm sorry. That's not right, what I said was not right. On Dave in five, four, three. Confidential computing is a technology that aims to enhance data privacy and security by providing encrypted computation on sensitive data, isolating data from apps and a fenced off enclave during processing. The concept of confidential computing is gaining popularity, especially in the cloud computing space, where sensitive data is often stored and of course processed. However, there are some who view confidential computing as an unnecessary technology in a marketing ploy by cloud providers aimed at calming customers who are cloud phobic. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis, we revisit the notion of confidential computing, and to do so, we'll invite two Google experts to the show. But before we get there, let's summarize briefly. There's not a ton of ETR data on the topic of confidential computing, I mean, it's a technology that's deeply embedded into silicon and computing architectures. But at the highest level, security remains the number one priority being addressed by IT decision makers in the coming year as shown here. And this data is pretty much across the board by industry, by region, by size of company. I mean we dug into it and the only slight deviation from the mean is in financial services. The second and third most cited priorities, cloud migration and analytics are noticeably closer to cybersecurity in financial services than in other sectors, likely because financial services has always been hyper security conscious, but security is still a clear number one priority in that sector. The idea behind confidential computing is to better address threat models for data in execution. Protecting data at rest and data in transit have long been a focus of security approaches, but more recently, silicon manufacturers have introduced architectures that separate data and applications from the host system, ARM, Intel, AMD, Nvidia and other suppliers are all on board, as are the big cloud players. Now, the argument against confidential computing is that it narrowly focuses on memory encryption and it doesn't solve the biggest problems in security. Multiple system images, updates, different services and the entire code flow aren't directly addressed by memory encryption. Rather to truly attack these problems, many believe that OSs need to be re-engineered with the attacker and hacker in mind. There are so many variables and at the end of the day, critics say the emphasis on confidential computing made by cloud providers is overstated and largely hype. This tweet from security researcher Rodrigo Bronco, sums up the sentiment of many skeptics. He says, "Confidential computing is mostly a marketing campaign from memory encryption. It's not driving the industry towards the hard open problems. It is selling an illusion." Okay. Nonetheless, encrypting data in use and fencing off key components of the system isn't a bad thing, especially if it comes with the package essentially for free. There has been a lack of standardization and interoperability between different confidential computing approaches. But the confidential computing consortium was established in 2019 ostensibly to accelerate the market and influence standards. Notably, AWS is not part of the consortium, likely because the politics of the consortium were probably a conundrum for AWS because the base technology defined by the consortium is seen as limiting by AWS. This is my guess, not AWS' words. But I think joining the consortium would validate a definition which AWS isn't aligned with. And two, it's got to lead with this Annapurna acquisition. It was way ahead with ARM integration, and so it's probably doesn't feel the need to validate its competitors. Anyway, one of the premier members of the confidential computing consortium is Google, along with many high profile names, including Aem, Intel, Meta, Red Hat, Microsoft, and others. And we're pleased to welcome two experts on confidential computing from Google to unpack the topic. Nelly Porter is Head of Product for GCP Confidential Computing and Encryption and Dr. Patricia Florissi is the Technical Director for the Office of the CTO at Google Cloud. Welcome Nelly and Patricia, great to have you. >> Great to be here. >> Thank you so much for having us. >> You're very welcome. Nelly, why don't you start and then Patricia, you can weigh in. Just tell the audience a little bit about each of your roles at Google Cloud. >> So I'll start, I'm owning a lot of interesting activities in Google and again, security or infrastructure securities that I usually own. And we are talking about encryption, end-to-end encryption, and confidential computing is a part of portfolio. Additional areas that I contribute to get with my team to Google and our customers is secure software supply chain because you need to trust your software. Is it operate in your confidential environment to have end-to-end security, about if you believe that your software and your environment doing what you expect, it's my role. >> Got it. Okay, Patricia? >> Well, I am a Technical Director in the Office of the CTO, OCTO for short in Google Cloud. And we are a global team, we include former CTOs like myself and senior technologies from large corporations, institutions and a lot of success for startups as well. And we have two main goals, first, we walk side by side with some of our largest, more strategic or most strategical customers and we help them solve complex engineering technical problems. And second, we advice Google and Google Cloud Engineering, product management on emerging trends and technologies to guide the trajectory of our business. We are unique group, I think, because we have created this collaborative culture with our customers. And within OCTO I spend a lot of time collaborating with customers in the industry at large on technologies that can address privacy, security, and sovereignty of data in general. >> Excellent. Thank you for that both of you. Let's get into it. So Nelly, what is confidential computing from Google's perspective? How do you define it? >> Confidential computing is a tool and one of the tools in our toolbox. And confidential computing is a way how we would help our customers to complete this very interesting end-to-end lifecycle of the data. And when customers bring in the data to cloud and want to protect it as they ingest it to the cloud, they protect it at rest when they store data in the cloud. But what was missing for many, many years is ability for us to continue protecting data and workloads of our customers when they run them. And again, because data is not brought to cloud to have huge graveyard, we need to ensure that this data is actually indexed. Again, there is some insights driven and drawn from this data. You have to process this data and confidential computing here to help. Now we have end-to-end protection of our customer's data when they bring the workloads and data to cloud thanks to confidential computing. >> Thank you for that. Okay, we're going to get into the architecture a bit, but before we do Patricia, why do you think this topic of confidential computing is such an important technology? Can you explain? Do you think it's transformative for customers and if so, why? >> Yeah, I would maybe like to use one thought, one way, one intuition behind why confidential computing matters because at the end of the day, it reduces more and more the customer's thrush boundaries and the attack surface. That's about reducing that periphery, the boundary in which the customer needs to mind about trust and safety. And in a way is a natural progression that you're using encryption to secure and protect data in the same way that we are encrypting data in transit and at rest. Now, we are also encrypting data while in the use. And among other beneficials, I would say one of the most transformative ones is that organizations will be able to collaborate with each other and retain the confidentiality of the data. And that is across industry, even though it's highly focused on, I wouldn't say highly focused but very beneficial for highly regulated industries, it applies to all of industries. And if you look at financing for example, where bankers are trying to detect fraud and specifically double finance where a customer is actually trying to get a finance on an asset, let's say a boat or a house, and then it goes to another bank and gets another finance on that asset. Now bankers would be able to collaborate and detect fraud while preserving confidentiality and privacy of the data. >> Interesting and I want to understand that a little bit more but I got to push you a little bit on this, Nellie if I can, because there's a narrative out there that says confidential computing is a marketing ploy I talked about this up front, by cloud providers that are just trying to placate people that are scared of the cloud. And I'm presuming you don't agree with that, but I'd like you to weigh in here. The argument is confidential computing is just memory encryption, it doesn't address many other problems. It is over hyped by cloud providers. What do you say to that line of thinking? >> I absolutely disagree as you can imagine Dave, with this statement. But the most importantly is we mixing a multiple concepts I guess, and exactly as Patricia said, we need to look at the end-to-end story, not again, is a mechanism. How confidential computing trying to execute and protect customer's data and why it's so critically important. Because what confidential computing was able to do, it's in addition to isolate our tenants in multi-tenant environments the cloud offering to offer additional stronger isolation, they called it cryptographic isolation. It's why customers will have more trust to customers and to other customers, the tenants running on the same host but also us because they don't need to worry about against rats and more malicious attempts to penetrate the environment. So what confidential computing is helping us to offer our customers stronger isolation between tenants in this multi-tenant environment, but also incredibly important, stronger isolation of our customers to tenants from us. We also writing code, we also software providers, we also make mistakes or have some zero days. Sometimes again us introduce, sometimes introduced by our adversaries. But what I'm trying to say by creating this cryptographic layer of isolation between us and our tenants and among those tenants, we really providing meaningful security to our customers and eliminate some of the worries that they have running on multi-tenant spaces or even collaborating together with very sensitive data knowing that this particular protection is available to them. >> Okay, thank you. Appreciate that. And I think malicious code is often a threat model missed in these narratives. You know, operator access. Yeah, maybe I trust my cloud's provider, but if I can fence off your access even better, I'll sleep better at night separating a code from the data. Everybody's ARM, Intel, AMD, Nvidia and others, they're all doing it. I wonder if Nell, if we could stay with you and bring up the slide on the architecture. What's architecturally different with confidential computing versus how operating systems and VMs have worked traditionally? We're showing a slide here with some VMs, maybe you could take us through that. >> Absolutely, and Dave, the whole idea for Google and now industry way of dealing with confidential computing is to ensure that three main property is actually preserved. Customers don't need to change the code. They can operate in those VMs exactly as they would with normal non-confidential VMs. But to give them this opportunity of lift and shift though, no changing the apps and performing and having very, very, very low latency and scale as any cloud can, some things that Google actually pioneer in confidential computing. I think we need to open and explain how this magic was actually done, and as I said, it's again the whole entire system have to change to be able to provide this magic. And I would start with we have this concept of root of trust and root of trust where we will ensure that this machine within the whole entire host has integrity guarantee, means nobody changing my code on the most low level of system, and we introduce this in 2017 called Titan. So our specific ASIC, specific inch by inch system on every single motherboard that we have that ensures that your low level former, your actually system code, your kernel, the most powerful system is actually proper configured and not changed, not tempered. We do it for everybody, confidential computing included, but for confidential computing is what we have to change, we bring in AMD or future silicon vendors and we have to trust their former, their way to deal with our confidential environments. And that's why we have obligation to validate intelligent not only our software and our former but also former and software of our vendors, silicon vendors. So we actually, when we booting this machine as you can see, we validate that integrity of all of this system is in place. It means nobody touching, nobody changing, nobody modifying it. But then we have this concept of AMD Secure Processor, it's special ASIC best specific things that generate a key for every single VM that our customers will run or every single node in Kubernetes or every single worker thread in our Hadoop spark capability. We offer all of that and those keys are not available to us. It's the best case ever in encryption space because when we are talking about encryption, the first question that I'm receiving all the time, "Where's the key? Who will have access to the key?" because if you have access to the key then it doesn't matter if you encrypted or not. So, but the case in confidential computing why it's so revolutionary technology, us cloud providers who don't have access to the keys, they're sitting in the hardware and they fed to memory controller. And it means when hypervisors that also know about this wonderful things saying I need to get access to the memories, that this particular VM I'm trying to get access to. They do not decrypt the data, they don't have access to the key because those keys are random, ephemeral and per VM, but most importantly in hardware not exportable. And it means now you will be able to have this very interesting world that customers or cloud providers will not be able to get access to your memory. And what we do, again as you can see, our customers don't need to change their applications. Their VMs are running exactly as it should run. And what you've running in VM, you actually see your memory clear, it's not encrypted. But God forbid is trying somebody to do it outside of my confidential box, no, no, no, no, no, you will now be able to do it. Now, you'll see cyber test and it's exactly what combination of these multiple hardware pieces and software pieces have to do. So OS is also modified and OS is modified such way to provide integrity. It means even OS that you're running in your VM box is not modifiable and you as customer can verify. But the most interesting thing I guess how to ensure the super performance of this environment because you can imagine Dave, that's increasing and it's additional performance, additional time, additional latency. So we're able to mitigate all of that by providing incredibly interesting capability in the OS itself. So our customers will get no changes needed, fantastic performance and scales as they would expect from cloud providers like Google. >> Okay, thank you. Excellent, appreciate that explanation. So you know again, the narrative on this is, well, you've already given me guarantees as a cloud provider that you don't have access to my data, but this gives another level of assurance, key management as they say is key. Now humans aren't managing the keys, the machines are managing them. So Patricia, my question to you is in addition to, let's go pre-confidential computing days, what are the sort of new guarantees that these hardware based technologies are going to provide to customers? >> So if I am a customer, I am saying I now have full guarantee of confidentiality and integrity of the data and of the code. So if you look at code and data confidentiality, the customer cares and they want to know whether their systems are protected from outside or unauthorized access, and that we covered with Nelly that it is. Confidential computing actually ensures that the applications and data antennas remain secret. The code is actually looking at the data, only the memory is decrypting the data with a key that is ephemeral, and per VM, and generated on demand. Then you have the second point where you have code and data integrity and now customers want to know whether their data was corrupted, tempered with or impacted by outside actors. And what confidential computing ensures is that application internals are not tempered with. So the application, the workload as we call it, that is processing the data is also has not been tempered and preserves integrity. I would also say that this is all verifiable, so you have attestation and this attestation actually generates a log trail and the log trail guarantees that provides a proof that it was preserved. And I think that the offers also a guarantee of what we call sealing, this idea that the secrets have been preserved and not tempered with, confidentiality and integrity of code and data. >> Got it. Okay, thank you. Nelly, you mentioned, I think I heard you say that the applications is transparent, you don't have to change the application, it just comes for free essentially. And we showed some various parts of the stack before, I'm curious as to what's affected, but really more importantly, what is specifically Google's value add? How do partners participate in this, the ecosystem or maybe said another way, how does Google ensure the compatibility of confidential computing with existing systems and applications? >> And a fantastic question by the way, and it's very difficult and definitely complicated world because to be able to provide these guarantees, actually a lot of work was done by community. Google is very much operate and open. So again our operating system, we working this operating system repository OS is OS vendors to ensure that all capabilities that we need is part of the kernels are part of the releases and it's available for customers to understand and even explore if they have fun to explore a lot of code. We have also modified together with our silicon vendors kernel, host kernel to support this capability and it means working this community to ensure that all of those pages are there. We also worked with every single silicon vendor as you've seen, and it's what I probably feel that Google contributed quite a bit in this world. We moved our industry, our community, our vendors to understand the value of easy to use confidential computing or removing barriers. And now I don't know if you noticed Intel is following the lead and also announcing a trusted domain extension, very similar architecture and no surprise, it's a lot of work done with our partners to convince work with them and make this capability available. The same with ARM this year, actually last year, ARM announced future design for confidential computing, it's called confidential computing architecture. And it's also influenced very heavily with similar ideas by Google and industry overall. So it's a lot of work in confidential computing consortiums that we are doing, for example, simply to mention, to ensure interop as you mentioned, between different confidential environments of cloud providers. They want to ensure that they can attest to each other because when you're communicating with different environments, you need to trust them. And if it's running on different cloud providers, you need to ensure that you can trust your receiver when you sharing your sensitive data workloads or secret with them. So we coming as a community and we have this at Station Sig, the community-based systems that we want to build, and influence, and work with ARM and every other cloud providers to ensure that they can interop. And it means it doesn't matter where confidential workloads will be hosted, but they can exchange the data in secure, verifiable and controlled by customers really. And to do it, we need to continue what we are doing, working open and contribute with our ideas and ideas of our partners to this role to become what we see confidential computing has to become, it has to become utility. It doesn't need to be so special, but it's what what we've wanted to become. >> Let's talk about, thank you for that explanation. Let's talk about data sovereignty because when you think about data sharing, you think about data sharing across the ecosystem in different regions and then of course data sovereignty comes up, typically public policy, lags, the technology industry and sometimes it's problematic. I know there's a lot of discussions about exceptions but Patricia, we have a graphic on data sovereignty. I'm interested in how confidential computing ensures that data sovereignty and privacy edicts are adhered to, even if they're out of alignment maybe with the pace of technology. One of the frequent examples is when you delete data, can you actually prove the data is deleted with a hundred percent certainty, you got to prove that and a lot of other issues. So looking at this slide, maybe you could take us through your thinking on data sovereignty. >> Perfect. So for us, data sovereignty is only one of the three pillars of digital sovereignty. And I don't want to give the impression that confidential computing addresses it at all, that's why we want to step back and say, hey, digital sovereignty includes data sovereignty where we are giving you full control and ownership of the location, encryption and access to your data. Operational sovereignty where the goal is to give our Google Cloud customers full visibility and control over the provider operations, right? So if there are any updates on hardware, software stack, any operations, there is full transparency, full visibility. And then the third pillar is around software sovereignty, where the customer wants to ensure that they can run their workloads without dependency on the provider's software. So they have sometimes is often referred as survivability that you can actually survive if you are untethered to the cloud and that you can use open source. Now, let's take a deep dive on data sovereignty, which by the way is one of my favorite topics. And we typically focus on saying, hey, we need to care about data residency. We care where the data resides because where the data is at rest or in processing need to typically abides to the jurisdiction, the regulations of the jurisdiction where the data resides. And others say, hey, let's focus on data protection, we want to ensure the confidentiality, and integrity, and availability of the data, which confidential computing is at the heart of that data protection. But it is yet another element that people typically don't talk about when talking about data sovereignty, which is the element of user control. And here Dave, is about what happens to the data when I give you access to my data, and this reminds me of security two decades ago, even a decade ago, where we started the security movement by putting firewall protections and logging accesses. But once you were in, you were able to do everything you wanted with the data. An insider had access to all the infrastructure, the data, and the code. And that's similar because with data sovereignty, we care about whether it resides, who is operating on the data, but the moment that the data is being processed, I need to trust that the processing of the data we abide by user's control, by the policies that I put in place of how my data is going to be used. And if you look at a lot of the regulation today and a lot of the initiatives around the International Data Space Association, IDSA and Gaia-X, there is a movement of saying the two parties, the provider of the data and the receiver of the data going to agree on a contract that describes what my data can be used for. The challenge is to ensure that once the data crosses boundaries, that the data will be used for the purposes that it was intended and specified in the contract. And if you actually bring together, and this is the exciting part, confidential computing together with policy enforcement. Now, the policy enforcement can guarantee that the data is only processed within the confines of a confidential computing environment, that the workload is in cryptographically verified that there is the workload that was meant to process the data and that the data will be only used when abiding to the confidentiality and integrity safety of the confidential computing environment. And that's why we believe confidential computing is one necessary and essential technology that will allow us to ensure data sovereignty, especially when it comes to user's control. >> Thank you for that. I mean it was a deep dive, I mean brief, but really detailed. So I appreciate that, especially the verification of the enforcement. Last question, I met you two because as part of my year-end prediction post, you guys sent in some predictions and I wasn't able to get to them in the predictions post, so I'm thrilled that you were able to make the time to come on the program. How widespread do you think the adoption of confidential computing will be in '23 and what's the maturity curve look like this decade in your opinion? Maybe each of you could give us a brief answer. >> So my prediction in five, seven years as I started, it will become utility, it will become TLS. As of freakin' 10 years ago, we couldn't believe that websites will have certificates and we will support encrypted traffic. Now we do, and it's become ubiquity. It's exactly where our confidential computing is heeding and heading, I don't know we deserve yet. It'll take a few years of maturity for us, but we'll do that. >> Thank you. And Patricia, what's your prediction? >> I would double that and say, hey, in the very near future, you will not be able to afford not having it. I believe as digital sovereignty becomes ever more top of mind with sovereign states and also for multinational organizations, and for organizations that want to collaborate with each other, confidential computing will become the norm, it will become the default, if I say mode of operation. I like to compare that today is inconceivable if we talk to the young technologists, it's inconceivable to think that at some point in history and I happen to be alive, that we had data at rest that was non-encrypted, data in transit that was not encrypted. And I think that we'll be inconceivable at some point in the near future that to have unencrypted data while we use. >> You know, and plus I think the beauty of the this industry is because there's so much competition, this essentially comes for free. I want to thank you both for spending some time on Breaking Analysis, there's so much more we could cover. I hope you'll come back to share the progress that you're making in this area and we can double click on some of these topics. Really appreciate your time. >> Anytime. >> Thank you so much, yeah. >> In summary, while confidential computing is being touted by the cloud players as a promising technology for enhancing data privacy and security, there are also those as we said, who remain skeptical. The truth probably lies somewhere in between and it will depend on the specific implementation and the use case as to how effective confidential computing will be. Look as with any new tech, it's important to carefully evaluate the potential benefits, the drawbacks, and make informed decisions based on the specific requirements in the situation and the constraints of each individual customer. But the bottom line is silicon manufacturers are working with cloud providers and other system companies to include confidential computing into their architectures. Competition in our view will moderate price hikes and at the end of the day, this is under-the-covers technology that essentially will come for free, so we'll take it. I want to thank our guests today, Nelly and Patricia from Google. And thanks to Alex Myerson who's on production and manages the podcast. Ken Schiffman as well out of our Boston studio. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters, and Rob Hoof is our editor-in-chief over at siliconangle.com, does some great editing for us. Thank you all. Remember all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com where you can get all the news. If you want to get in touch, you can email me at david.vellante@siliconangle.com or DM me at D Vellante, and you can also comment on my LinkedIn post. Definitely you want to check out etr.ai for the best survey data in the enterprise tech business. I know we didn't hit on a lot today, but there's some amazing data and it's always being updated, so check that out. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (subtle music)

Published Date : Feb 10 2023

SUMMARY :

bringing you data-driven and at the end of the day, and then Patricia, you can weigh in. contribute to get with my team Okay, Patricia? Director in the Office of the CTO, for that both of you. in the data to cloud into the architecture a bit, and privacy of the data. that are scared of the cloud. and eliminate some of the we could stay with you and they fed to memory controller. to you is in addition to, and integrity of the data and of the code. that the applications is transparent, and ideas of our partners to this role One of the frequent examples and a lot of the initiatives of the enforcement. and we will support encrypted traffic. And Patricia, and I happen to be alive, the beauty of the this industry and at the end of the day,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
NellyPERSON

0.99+

PatriciaPERSON

0.99+

Alex MyersonPERSON

0.99+

AWSORGANIZATION

0.99+

International Data Space AssociationORGANIZATION

0.99+

DavePERSON

0.99+

AWS'ORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Rob HoofPERSON

0.99+

Cheryl KnightPERSON

0.99+

Nelly PorterPERSON

0.99+

GoogleORGANIZATION

0.99+

NvidiaORGANIZATION

0.99+

IDSAORGANIZATION

0.99+

Rodrigo BroncoPERSON

0.99+

2019DATE

0.99+

Ken SchiffmanPERSON

0.99+

IntelORGANIZATION

0.99+

AMDORGANIZATION

0.99+

2017DATE

0.99+

ARMORGANIZATION

0.99+

AemORGANIZATION

0.99+

NelliePERSON

0.99+

Kristin MartinPERSON

0.99+

Red HatORGANIZATION

0.99+

two partiesQUANTITY

0.99+

Palo AltoLOCATION

0.99+

last yearDATE

0.99+

Patricia FlorissiPERSON

0.99+

oneQUANTITY

0.99+

MetaORGANIZATION

0.99+

twoQUANTITY

0.99+

thirdQUANTITY

0.99+

Gaia-XORGANIZATION

0.99+

second pointQUANTITY

0.99+

two expertsQUANTITY

0.99+

david.vellante@siliconangle.comOTHER

0.99+

secondQUANTITY

0.99+

bothQUANTITY

0.99+

first questionQUANTITY

0.99+

fiveQUANTITY

0.99+

OneQUANTITY

0.99+

theCUBE StudiosORGANIZATION

0.99+

two decades agoDATE

0.99+

'23DATE

0.99+

eachQUANTITY

0.99+

a decade agoDATE

0.99+

threeQUANTITY

0.99+

zero daysQUANTITY

0.98+

fourQUANTITY

0.98+

OCTOORGANIZATION

0.98+

todayDATE

0.98+

Breaking Analysis: Cyber Firms Revert to the Mean


 

(upbeat music) >> From theCube Studios in Palo Alto in Boston, bringing you data driven insights from theCube and ETR. This is Breaking Analysis with Dave Vellante. >> While by no means a safe haven, the cybersecurity sector has outpaced the broader tech market by a meaningful margin, that is up until very recently. Cybersecurity remains the number one technology priority for the C-suite, but as we've previously reported the CISO's budget has constraints just like other technology investments. Recent trends show that economic headwinds have elongated sales cycles, pushed deals into future quarters, and just like other tech initiatives, are pacing cybersecurity investments and breaking them into smaller chunks. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis we explain how cybersecurity trends are reverting to the mean and tracking more closely with other technology investments. We'll make a couple of valuation comparisons to show the magnitude of the challenge and which cyber firms are feeling the heat, which aren't. There are some exceptions. We'll then show the latest survey data from ETR to quantify the contraction in spending momentum and close with a glimpse of the landscape of emerging cybersecurity companies, the private companies that could be ripe for acquisition, consolidation, or disruptive to the broader market. First, let's take a look at the recent patterns for cyber stocks relative to the broader tech market as a benchmark, as an indicator. Here's a year to date comparison of the bug ETF, which comprises a basket of cyber security names, and we compare that with the tech heavy NASDAQ composite. Notice that on April 13th of this year the cyber ETF was actually in positive territory while the NAS was down nearly 14%. Now by August 16th, the green turned red for cyber stocks but they still meaningfully outpaced the broader tech market by more than 950 basis points as of December 2nd that Delta had contracted. As you can see, the cyber ETF is now down nearly 25%, year to date, while the NASDAQ is down 27% and change. Now take a look at just how far a few of the high profile cybersecurity names have fallen. Here are six security firms that we've been tracking closely since before the pandemic. We've been, you know, tracking dozens but let's just take a look at this data and the subset. We show for comparison the S&P 500 and the NASDAQ, again, just for reference, they're both up since right before the pandemic. They're up relative to right before the pandemic, and then during the pandemic the S&P shot up more than 40%, relative to its pre pandemic level, around February is what we're using for the pre pandemic level, and the NASDAQ peaked at around 65% higher than that February level. They're now down 85% and 71% of their previous. So they're at 85% and 71% respectively from their pandemic highs. You compare that to these six companies, Splunk, which was and still is working through a transition is well below its pre pandemic market value and 44, it's 44% of its pre pandemic high as of last Friday. Palo Alto Networks is the most interesting here, in that it had been facing challenges prior to the pandemic related to a pivot to the Cloud which we reported on at the time. But as we said at that time we believe the company would sort out its Cloud transition, and its go to market challenges, and sales compensation issues, which it did as you can see. And its valuation jumped from 24 billion prior to Covid to 56 billion, and it's holding 93% of its peak value. Its revenue run rate is now over 6 billion with a healthy growth rate of 24% expected for the next quarter. Similarly, Fortinet has done relatively well holding 71% of its peak Covid value, with a healthy 34% revenue guide for the coming quarter. Now, Okta has been the biggest disappointment, a darling of the pandemic Okta's communication snafu, with what was actually a pretty benign hack combined with difficulty absorbing its 7 billion off zero acquisition, knocked the company off track. Its valuation has dropped by 35 billion since its peak during the pandemic, and that's after a nice beat and bounce back quarter just announced by Okta. Now, in our view Okta remains a viable long-term leader in identity. However, its recent fiscal 24 revenue guide was exceedingly conservative at around 16% growth. So either the company is sandbagging, or has such poor visibility that it wants to be like super cautious or maybe it's actually seeing a dramatic slowdown in its business momentum. After all, this is a company that not long ago was putting up 50% plus revenue growth rates. So it's one that bears close watching. CrowdStrike is another big name that we've been talking about on Breaking Analysis for quite some time. It like Okta has led the industry in a key ETR performance indicator that measures customer spending momentum. Just last week, CrowdStrike announced revenue increased more than 50% but new ARR was soft and the company guided conservatively. Not surprisingly, the stock got absolutely crushed as CrowdStrike blamed tepid demand from smaller and midsize firms. Many analysts believe that competition from Microsoft was one factor along with cautious spending amongst those midsize and smaller customers. Notably, large customers remain active. So we'll see if this is a longer term trend or an anomaly. Zscaler is another company in the space that we've reported having great customer spending momentum from the ETR data. But even though the company beat expectations for its recent quarter, like other companies its Outlook was conservative. So other than Palo Alto, and to a lesser extent Fortinet, these companies and others that we're not showing here are feeling the economic pinch and it shows in the compression of value. CrowdStrike, for example, had a 70 billion valuation at one point during the pandemic Zscaler top 50 billion, Okta 45 billion. Now, having said that Palo Alto Networks, Fortinet, CrowdStrike, and Zscaler are all still trading well above their pre pandemic levels that we tracked back in February of 2020. All right, let's go now back to ETR'S January survey and take a look at how much things have changed since the beginning of the year. Remember, this is obviously pre Ukraine, and pre all the concerns about the economic headwinds but here's an X Y graph that shows a net score, or spending momentum on the y-axis, and market presence on the x-axis. The red dotted line at 40% on the vertical indicates a highly elevated net score. Anything above that we think is, you know, super elevated. Now, we filtered the data here to show only those companies with more than 50 responses in the ETR survey. Still really crowded. Note that there were around 20 companies above that red 40% mark, which is a very, you know, high number. It's a, it's a crowded market, but lots of companies with, you know, positive momentum. Now let's jump ahead to the most recent October survey and take a look at what, what's happening. Same graphic plotting, spending momentum, and market presence, and look at the number of companies above that red line and how it's been squashed. It's really compressing, it's still a crowded market, it's still, you know, plenty of green, but the number of companies above 40% that, that key mark has gone from around 20 firms down to about five or six. And it speaks to that compression and IT spending, and of course the elongated sales cycles pushing deals out, taking them in smaller chunks. I can't tell you how many conversations with customers I had, at last week at Reinvent underscoring this exact same trend. The buyers are getting pressure from their CFOs to slow things down, do more with less and, and, and prioritize projects to those that absolutely are critical to driving revenue or cutting costs. And that's rippling through all sectors, including cyber. Now, let's do a bit more playing around with the ETR data and take a look at those companies with more than a hundred citations in the survey this quarter. So N, greater than or equal to a hundred. Now remember the followers of Breaking Analysis know that each quarter we take a look at those, what we call four star security firms. That is, those are the, that are in, that hit the top 10 for both spending momentum, net score, and the N, the mentions in the survey, the presence, the pervasiveness in the survey, and that's what we show here. The left most chart is sorted by spending momentum or net score, and the right hand chart by shared N, or the number of mentions in the survey, that pervasiveness metric. that solid red line denotes the cutoff point at the top 10. And you'll note we've actually cut it off at 11 to account for Auth 0, which is now part of Okta, and is going through a go to market transition, you know, with the company, they're kind of restructuring sales so they can take advantage of that. So starting on the left with spending momentum, again, net score, Microsoft leads all vendors, typical Microsoft, very prominent, although it hadn't always done so, it, for a while, CrowdStrike and Okta were, were taking the top spot, now it's Microsoft. CrowdStrike, still always near the top, but note that CyberArk and Cloudflare have cracked the top five in Okta, which as I just said was consistently at the top, has dropped well off its previous highs. You'll notice that Palo Alto Network Palo Alto Networks with a 38% net score, just below that magic 40% number, is healthy, especially as you look over to the right hand chart. Take a look at Palo Alto with an N of 395. It is the largest of the independent pure play security firms, and has a very healthy net score, although one caution is that net score has dropped considerably since the beginning of the year, which is the case for most of the top 10 names. The only exception is Fortinet, they're the only ones that saw an increase since January in spending momentum as ETR measures it. Now this brings us to the four star security firms, that is those that hit the top 10 in both net score on the left hand side and market presence on the right hand side. So it's Microsoft, Palo Alto, CrowdStrike, Okta, still there even not accounting for a Auth 0, just Okta on its own. If you put in Auth 0, it's, it's even stronger. Adding then in Fortinet and Zscaler. So Microsoft, Palo Alto, CrowdStrike, Okta, Fortinet, and Zscaler. And as we've mentioned since January, only Fortinet has shown an increase in net score since, since that time, again, since the January survey. Now again, this talks to the compression in spending. Now one of the big themes we hear constantly in cybersecurity is the market is overcrowded. Everybody talks about that, me included. The implication there, is there's a lot of room for consolidation and that consolidation can come in the form of M&A, or it can come in the form of people consolidating onto a single platform, and retiring some other vendors, and getting rid of duplicate vendors. We're hearing that as a big theme as well. Now, as we saw in the previous, previous chart, this is a very crowded market and we've seen lots of consolidation in 2022, in the form of M&A. Literally hundreds of M&A deals, with some of the largest companies going private. SailPoint, KnowBe4, Barracuda, Mandiant, Fedora, these are multi billion dollar acquisitions, or at least billion dollars and up, and many of them multi-billion, for these companies, and hundreds more acquisitions in the cyberspace, now less you think the pond is overfished, here's a chart from ETR of emerging tech companies in the cyber security industry. This data comes from ETR's Emerging Technologies Survey, ETS, which is this diamond in a rough that I found a couple quarters ago, and it's ripe with companies that are candidates for M&A. Many would've liked, many of these companies would've liked to, gotten to the public markets during the pandemic, but they, you know, couldn't get there. They weren't ready. So the graph, you know, similar to the previous one, but different, it shows net sentiment on the vertical axis and that's a measurement of, of, of intent to adopt against a mind share on the X axis, which measures, measures the awareness of the vendor in the community. So this is specifically a survey that ETR goes out and, and, and fields only to track those emerging tech companies that are private companies. Now, some of the standouts in Mindshare, are OneTrust, BeyondTrust, Tanium and Endpoint, Net Scope, which we've talked about in previous Breaking Analysis. 1Password, which has been acquisitive on its own. In identity, the managed security service provider, Arctic Wolf Network, a company we've also covered, we've had their CEO on. We've talked about MSSPs as a real trend, particularly in small and medium sized business, we'll come back to that, Sneek, you know, kind of high flyer in both app security and containers, and you can just see the number of companies in the space this huge and it just keeps growing. Now, just to make it a bit easier on the eyes we filtered the data on these companies with with those, and isolated on those with more than a hundred responses only within the survey. And that's what we show here. Some of the names that we just mentioned are a bit easier to see, but these are the ones that really stand out in ERT, ETS, survey of private companies, OneTrust, BeyondTrust, Taniam, Netscope, which is in Cloud, 1Password, Arctic Wolf, Sneek, BitSight, SecurityScorecard, HackerOne, Code42, and Exabeam, and Sim. All of these hit the ETS survey with more than a hundred responses by, by the IT practitioners. Okay, so these firms, you know, maybe they do some M&A on their own. We've seen that with Sneek, as I said, with 1Password has been inquisitive, as have others. Now these companies with the larger footprint, these private companies, will likely be candidate for both buying companies and eventually going public when the markets settle down a bit. So again, no shortage of players to affect consolidation, both buyers and sellers. Okay, so let's finish with some key questions that we're watching. CrowdStrike in particular on its earnings calls cited softness from smaller buyers. Is that because these smaller buyers have stopped adopting? If so, are they more at risk, or are they tactically moving toward the easy button, aka, Microsoft's good enough approach. What does that mean for the market if smaller company cohorts continue to soften? How about MSSPs? Will companies continue to outsource, or pause on on that, as well as try to free up, to try to free up some budget? Adam Celiski at Reinvent last week said, "If you want to save money the Cloud's the best place to do it." Is the cloud the best place to save money in cyber? Well, it would seem that way from the standpoint of controlling budgets with lots of, lots of optionality. You could dial up and dial down services, you know, or does the Cloud add another layer of complexity that has to be understood and managed by Devs, for example? Now, consolidation should favor the likes of Palo Alto and CrowdStrike, cause they're platform players, and some of the larger players as well, like Cisco, how about IBM and of course Microsoft. Will that happen? And how will economic uncertainty impact the risk equation, a particular concern is increase of tax on vulnerable sectors of the population, like the elderly. How will companies and governments protect them from scams? And finally, how many cybersecurity companies can actually remain independent in the slingshot economy? In so many ways the market is still strong, it's just that expectations got ahead of themselves, and now as earnings forecast come, come, come down and come down to earth, it's going to basically come down to who can execute, generate cash, and keep enough runway to get through the knothole. And the one certainty is nobody really knows how tight that knothole really is. All right, let's call it a wrap. Next week we dive deeper into Palo Alto Networks, and take a look at how and why that company has held up so well and what to expect at Ignite, Palo Alto's big user conference coming up later this month in Las Vegas. We'll be there with theCube. Okay, many thanks to Alex Myerson on production and manages the podcast, Ken Schiffman as well, as our newest edition to our Boston studio. Great to have you Ken. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our EIC over at Silicon Angle. He does some great editing for us. Thank you to all. Remember these episodes are all available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibond.com and siliconangle.com, or you can email me directly David.vellante@siliconangle.com or DM me @DVellante, or comment on our LinkedIn posts. Please do checkout etr.ai, they got the best survey data in the enterprise tech business. This is Dave Vellante for theCube Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis. (upbeat music)

Published Date : Dec 5 2022

SUMMARY :

with Dave Vellante. and of course the elongated

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Dave VellantePERSON

0.99+

December 2ndDATE

0.99+

OktaORGANIZATION

0.99+

DeltaORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

ZscalerORGANIZATION

0.99+

FortinetORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

Adam CeliskiPERSON

0.99+

CrowdStrikeORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

August 16thDATE

0.99+

April 13thDATE

0.99+

Rob HofPERSON

0.99+

NASDAQORGANIZATION

0.99+

IBMORGANIZATION

0.99+

93%QUANTITY

0.99+

Kristin MartinPERSON

0.99+

Palo AltoLOCATION

0.99+

Arctic Wolf NetworkORGANIZATION

0.99+

38%QUANTITY

0.99+

40%QUANTITY

0.99+

71%QUANTITY

0.99+

JanuaryDATE

0.99+

Palo AltoORGANIZATION

0.99+

Palo Alto NetworksORGANIZATION

0.99+

50%QUANTITY

0.99+

February of 2020DATE

0.99+

Las VegasLOCATION

0.99+

7 billionQUANTITY

0.99+

six companiesQUANTITY

0.99+

SplunkORGANIZATION

0.99+

2022DATE

0.99+

BarracudaORGANIZATION

0.99+

34%QUANTITY

0.99+

24%QUANTITY

0.99+

FebruaryDATE

0.99+

last weekDATE

0.99+

last FridayDATE

0.99+

SailPointORGANIZATION

0.99+

FirstQUANTITY

0.99+

more than 50%QUANTITY

0.99+

85%QUANTITY

0.99+

each weekQUANTITY

0.99+

44%QUANTITY

0.99+

35 billionQUANTITY

0.99+

70 billionQUANTITY

0.99+

KenPERSON

0.99+

KnowBe4ORGANIZATION

0.99+

27%QUANTITY

0.99+

56 billionQUANTITY

0.99+

NetscopeORGANIZATION

0.99+

OctoberDATE

0.99+

Next weekDATE

0.99+

one factorQUANTITY

0.99+

bothQUANTITY

0.99+

hundredsQUANTITY

0.99+

44QUANTITY

0.99+

dozensQUANTITY

0.99+

BeyondTrustORGANIZATION

0.99+

David.vellante@siliconangle.comOTHER

0.99+

24 billionQUANTITY

0.99+

Breaking Analysis: Snowflake caught in the storm clouds


 

>> From the CUBE Studios in Palo Alto in Boston, bringing you data driven insights from the Cube and ETR. This is Breaking Analysis with Dave Vellante. >> A better than expected earnings report in late August got people excited about Snowflake again, but the negative sentiment in the market is weighed heavily on virtually all growth tech stocks and Snowflake is no exception. As we've stressed many times the company's management is on a long term mission to dramatically simplify the way organizations use data. Snowflake is tapping into a multi hundred billion dollar total available market and continues to grow at a rapid pace. In our view, Snowflake is embarking on its third major wave of innovation data apps, while its first and second waves are still bearing significant fruit. Now for short term traders focused on the next 90 or 180 days, that probably doesn't matter. But those taking a longer view are asking, "Should we still be optimistic about the future of this high flyer or is it just another over hyped tech play?" Hello and welcome to this week's Wiki Bond Cube Insights powered by ETR. Snowflake's Quarter just ended. And in this breaking analysis we take a look at the most recent survey data from ETR to see what clues and nuggets we can extract to predict the near term future in the long term outlook for Snowflake which is going to announce its earnings at the end of this month. Okay, so you know the story. If you've been investor in Snowflake this year, it's been painful. We said at IPO, "If you really want to own this stock on day one, just hold your nose and buy it." But like most IPOs we said there will be likely a better entry point in the future, and not surprisingly that's been the case. Snowflake IPOed a price of 120, which you couldn't touch on day one unless you got into a friends and family Delio. And if you did, you're still up 5% or so. So congratulations. But at one point last year you were up well over 200%. That's been the nature of this volatile stock, and I certainly can't help you with the timing of the market. But longer term Snowflake is targeting 10 billion in revenue for fiscal year 2028. A big number. Is it achievable? Is it big enough? Tell you what, let's come back to that. Now shorter term, our expert trader and breaking analysis contributor Chip Simonton said he got out of the stock a while ago after having taken a shot at what turned out to be a bear market rally. He pointed out that the stock had been bouncing around the 150 level for the last few months and broke that to the downside last Friday. So he'd expect 150 is where the stock is going to find resistance on the way back up, but there's no sign of support right now. He said maybe at 120, which was the July low and of course the IPO price that we just talked about. Now, perhaps earnings will be a catalyst, when Snowflake announces on November 30th, but until the mentality toward growth tech changes, nothing's likely to change dramatically according to Simonton. So now that we have that out of the way, let's take a look at the spending data for Snowflake in the ETR survey. Here's a chart that shows the time series breakdown of snowflake's net score going back to the October, 2021 survey. Now at that time, Snowflake's net score stood at a robust 77%. And remember, net score is a measure of spending velocity. It's a proprietary network, and ETR derives it from a quarterly survey of IT buyers and asks the respondents, "Are you adopting the platform new? Are you spending 6% or more? Is you're spending flat? Is you're spending down 6% or worse? Or are you leaving the platform decommissioning?" You subtract the percent of customers that are spending less or churning from those that are spending more and adopting or adopting and you get a net score. And that's expressed as a percentage of customers responding. In this chart we show Snowflake's in out of the total survey which ranges... The total survey ranges between 1,200 and 1,400 each quarter. And the very last column... Oh sorry, very last row, we show the number of Snowflake respondents that are coming in the survey from the Fortune 500 and the Global 2000. Those are two very important Snowflake constituencies. Now what this data tells us is that Snowflake exited 2021 with very strong momentum in a net score of 82%, which is off the charts and it was actually accelerating from the previous survey. Now by April that sentiment had flipped and Snowflake came down to earth with a 68% net score. Still highly elevated relative to its peers, but meaningfully down. Why was that? Because we saw a drop in new ads and an increase in flat spend. Then into the July and most recent October surveys, you saw a significant drop in the percentage of customers that were spending more. Now, notably, the percentage of customers who are contemplating adding the platform is actually staying pretty strong, but it is off a bit this past survey. And combined with a slight uptick in planned churn, net score is now down to 60%. That uptick from 0% and 1% and then 3%, it's still small, but that net score at 60% is still 20 percentage points higher than our highly elevated benchmark of 40% as you recall from listening to earlier breaking analysis. That 40% range is we consider a milestone. Anything above that is actually quite strong. But again, Snowflake is down and coming back to churn, while 3% churn is very low, in previous quarters we've seen Snowflake 0% or 1% decommissions. Now the last thing to note in this chart is the meaningful uptick in survey respondents that are citing, they're using the Snowflake platform. That's up to 212 in the survey. So look, it's hard to imagine that Snowflake doesn't feel the softening in the market like everyone else. Snowflake is guiding for around 60% growth in product revenue against the tough compare from a year ago with a 2% operating margin. So like every company, the reaction of the street is going to come down to how accurate or conservative the guide is from their CFO. Now, earlier this year, Snowflake acquired a company called Streamlit for around $800 million. Streamlit is an open source Python library and it makes it easier to build data apps with machine learning, obviously a huge trend. And like Snowflake, generally its focus is on simplifying the complex, in this case making data science easier to integrate into data apps that business people can use. So we were excited this summer in the July ETR survey to see that they added some nice data and pick on Streamlit, which we're showing here in comparison to Snowflake's core business on the left hand side. That's the data warehousing, the Streamlit pieces on the right hand side. And we show again net score over time from the previous survey for Snowflake's core database and data warehouse offering again on the left as compared to a Streamlit on the right. Snowflake's core product had 194 responses in the October, 22 survey, Streamlit had an end of 73, which is up from 52 in the July survey. So significant uptick of people responding that they're doing business in adopting Streamlit. That was pretty impressive to us. And it's hard to see, but the net scores stayed pretty constant for Streamlit at 51%. It was 52% I think in the previous quarter, well over that magic 40% mark. But when you blend it with Snowflake, it does sort of bring things down a little bit. Now there are two key points here. One is that the acquisition seems to have gained exposure right out of the gate as evidenced by the large number of responses. And two, the spending momentum. Again while it's lower than Snowflake overall, and when you blend it with Snowflake it does pull it down, it's very healthy and steady. Now let's do a little pure comparison with some of our favorite names in this space. This chart shows net score or spending velocity in the Y-axis, an overlap or presence, pervasiveness if you will, in the data set on the X-axis. That red dotted line again is that 40% highly elevated net score that we like to talk about. And that table inserted informs us as to how the companies are plotted, where the dots set up, the net score, the ins. And we're comparing a number of database players, although just a caution, Oracle includes all of Oracle including its apps. But we just put it in there for reference because it is the leader in database. Right off the bat, Snowflake jumps out with a net score of 64%. The 60% from the earlier chart, again included Streamlit. So you can see its core database, data warehouse business actually is higher than the total company average that we showed you before 'cause the Streamlit is blended in. So when you separate it out, Streamlit is right on top of data bricks. Isn't that ironic? Only Snowflake and Databricks in this selection of names are above the 40% level. You see Mongo and Couchbase, they know they're solid and Teradata cloud actually showing pretty well compared to some of the earlier survey results. Now let's isolate on the database data platform sector and see how that shapes up. And for this analysis, same XY dimensions, we've added the big giants, AWS and Microsoft and Google. And notice that those three plus Snowflake are just at or above the 40% line. Snowflake continues to lead by a significant margin in spending momentum and it keeps creeping to the right. That's that end that we talked about earlier. Now here's an interesting tidbit. Snowflake is often asked, and I've asked them myself many times, "How are you faring relative to AWS, Microsoft and Google, these big whales with Redshift and Synapse and Big Query?" And Snowflake has been telling folks that 80% of its business comes from AWS. And when Microsoft heard that, they said, "Whoa, wait a minute, Snowflake, let's partner up." 'Cause Microsoft is smart, and they understand that the market is enormous. And if they could do better with Snowflake, one, they may steal some business from AWS. And two, even if Snowflake is winning against some of the Microsoft database products, if it wins on Azure, Microsoft is going to sell more compute and more storage, more AI tools, more other stuff to these customers. Now AWS is really aggressive from a partnering standpoint with Snowflake. They're openly negotiating, not openly, but they're negotiating better prices. They're realizing that when it comes to data, the cheaper that you make the offering, the more people are going to consume. At scale economies and operating leverage are really powerful things at volume that kick in. Now Microsoft, they're coming along, they obviously get it, but Google is seemingly resistant to that type of go to market partnership. Rather than lean into Snowflake as a great partner Google's field force is kind of fighting fashion. Google itself at Cloud next heavily messaged what they call the open data cloud, which is a direct rip off of Snowflake. So what can we say about Google? They continue to be kind of behind the curve when it comes to go to market. Now just a brief aside on the competitive posture. I've seen Slootman, Frank Slootman, CEO of Snowflake in action with his prior companies and how he depositioned the competition. At Data Domain, he eviscerated a company called Avamar with their, what he called their expensive and slow post process architecture. I think he actually called it garbage, if I recall at one conference I heard him speak at. And that sort of destroyed BMC when he was at ServiceNow, kind of positioning them as the equivalent of the department of motor vehicles. And so it's interesting to hear how Snowflake openly talks about the data platforms of AWS, Microsoft, Google, and data bricks. I'll give you this sort of short bumper sticker. Redshift is just an on-prem database that AWS morphed to the cloud, which by the way is kind of true. They actually did a brilliant job of it, but it's basically a fact. Microsoft Excel, a collection of legacy databases, which also kind of morphed to run in the cloud. And even Big Query, which is considered cloud native by many if not most, is being positioned by Snowflake as originally an on-prem database to support Google's ad business, maybe. And data bricks is for those people smart enough to get it to Berkeley that love complexity. And now Snowflake doesn't, they don't mention Berkeley as far as I know. That's my addition. But you get the point. And the interesting thing about Databricks and Snowflake is a while ago in the cube I said that there was a new workload type emerging around data where you have AWS cloud, Snowflake obviously for the cloud database and Databricks data for the data science and EML, you bring those things together and there's this new workload emerging that's going to be very powerful in the future. And it's interesting to see now the aspirations of all three of these platforms are colliding. That's quite a dynamic, especially when you see both Snowflake and Databricks putting venture money and getting their hooks into the loyalties of the same companies like DBT labs and Calibra. Anyway, Snowflake's posture is that we are the pioneer in cloud native data warehouse, data sharing and now data apps. And our platform is designed for business people that want simplicity. The other guys, yes, they're formidable, but we Snowflake have an architectural lead and of course we run in multiple clouds. So it's pretty strong positioning or depositioning, you have to admit. Now I'm not sure I agree with the big query knockoffs completely. I think that's a bit of a stretch, but snowflake, as we see in the ETR survey data is winning. So in thinking about the longer term future, let's talk about what's different with Snowflake, where it's headed and what the opportunities are for the company. Snowflake put itself on the map by focusing on simplifying data analytics. What's interesting about that is the company's founders are as you probably know from Oracle. And rather than focusing on transactional data, which is Oracle's sweet spot, the stuff they worked on when they were at Oracle, the founder said, "We're going to go somewhere else. We're going to attack the data warehousing problem and the data analytics problem." And they completely re-imagined the database and how it could be applied to solve those challenges and reimagine what was possible if you had virtually unlimited compute and storage capacity. And of course Snowflake became famous for separating the compute from storage and being able to completely shut down compute so you didn't have to pay for it when you're not using it. And the ability to have multiple clusters hit the same data without making endless copies and a consumption/cloud pricing model. And then of course everyone on the planet realized, "Wow, that's a pretty good idea." Every venture capitalist in Silicon Valley has been funding companies to copy that move. And that today has pretty much become mainstream in table stakes. But I would argue that Snowflake not only had the lead, but when you look at how others are approaching this problem, it's not necessarily as clean and as elegant. Some of the startups, the early startups I think get it and maybe had an advantage of starting later, which can be a disadvantage too. But AWS is a good example of what I'm saying here. Is its version of separating compute from storage was an afterthought and it's good, it's... Given what they had it was actually quite clever and customers like it, but it's more of a, "Okay, we're going to tier to storage to lower cost, we're going to sort of dial down the compute not completely, we're not going to shut it off, we're going to minimize the compute required." It's really not true as separation is like for instance Snowflake has. But having said that, we're talking about competitors with lots of resources and cohort offerings. And so I don't want to make this necessarily all about the product, but all things being equal architecture matters, okay? So that's the cloud S-curve, the first one we're showing. Snowflake's still on that S-curve, and in and of itself it's got legs, but it's not what's going to power the company to 10 billion. The next S-curve we denote is the multi-cloud in the middle. And now while 80% of Snowflake's revenue is AWS, Microsoft is ramping up and Google, well, we'll see. But the interesting part of that curve is data sharing, and this idea of data clean rooms. I mean it really should be called the data sharing curve, but I have my reasons for calling it multi-cloud. And this is all about network effects and data gravity, and you're seeing this play out today, especially in industries like financial services and healthcare and government that are highly regulated verticals where folks are super paranoid about compliance. There not going to share data if they're going to get sued for it, if they're going to be in the front page of the Wall Street Journal for some kind of privacy breach. And what Snowflake has done is said, "Put all the data in our cloud." Now, of course now that triggers a lot of people because it's a walled garden, okay? It is. That's the trade off. It's not the Wild West, it's not Windows, it's Mac, it's more controlled. But the idea is that as different parts of the organization or even partners begin to share data that they need, it's got to be governed, it's got to be secure, it's got to be compliant, it's got to be trusted. So Snowflake introduced the idea of, they call these things stable edges. I think that's the term that they use. And they track a metric around stable edges. And so a stable edge, or think of it as a persistent edge is an ongoing relationship between two parties that last for some period of time, more than a month. It's not just a one shot deal, one a done type of, "Oh guys shared it for a day, done." It sent you an FTP, it's done. No, it's got to have trajectory over time. Four weeks or six weeks or some period of time that's meaningful. And that metric is growing. Now I think sort of a different metric that they track. I think around 20% of Snowflake customers are actively sharing data today and then they track the number of those edge relationships that exist. So that's something that's unique. Because again, most data sharing is all about making copies of data. That's great for storage companies, it's bad for auditors, and it's bad for compliance officers. And that trend is just starting out, that middle S-curve, it's going to kind of hit the base of that steep part of the S-curve and it's going to have legs through this decade we think. And then finally the third wave that we show here is what we call super cloud. That's why I called it multi-cloud before, so it could invoke super cloud. The idea that you've built a PAS layer that is purpose built for a specific objective, and in this case it's building data apps that are cloud native, shareable and governed. And is a long-term trend that's going to take some time to develop. I mean, application development platforms can take five to 10 years to mature and gain significant adoption, but this one's unique. This is a critical play for Snowflake. If it's going to compete with the big cloud players, it has to have an app development framework like Snowpark. It has to accommodate new data types like transactional data. That's why it announced this thing called UniStore last June, Snowflake a summit. And the pattern that's forming here is Snowflake is building layer upon layer with its architecture at the core. It's not currently anyway, it's not going out and saying, "All right, we're going to buy a company that's got to another billion dollars in revenue and that's how we're going to get to 10 billion." So it's not buying its way into new markets through revenue. It's actually buying smaller companies that can complement Snowflake and that it can turn into revenue for growth that fit in to the data cloud. Now as to the 10 billion by fiscal year 28, is that achievable? That's the question. Yeah, I think so. Would the momentum resources go to market product and management prowess that Snowflake has? Yes, it's definitely achievable. And one could argue to $10 billion is too conservative. Indeed, Snowflake CFO, Mike Scarpelli will fully admit his forecaster built on existing offerings. He's not including revenue as I understand it from all the new stuff that's in the pipeline because he doesn't know what it's going to look like. He doesn't know what the adoption is going to look like. He doesn't have data on that adoption, not just yet anyway. And now of course things can change quite dramatically. It's possible that is forecast for existing businesses don't materialize or competition picks them off or a company like Databricks actually is able in the longer term replicate the functionality of Snowflake with open source technologies, which would be a very competitive source of innovation. But in our view, there's plenty of room for growth, the market is enormous and the real key is, can and will Snowflake deliver on the promises of simplifying data? Of course we've heard this before from data warehouse, the data mars and data legs and master data management and ETLs and data movers and data copiers and Hadoop and a raft of technologies that have not lived up to expectations. And we've also, by the way, seen some tremendous successes in the software business with the likes of ServiceNow and Salesforce. So will Snowflake be the next great software name and hit that 10 billion magic mark? I think so. Let's reconnect in 2028 and see. Okay, we'll leave it there today. I want to thank Chip Simonton for his input to today's episode. Thanks to Alex Myerson who's on production and manages the podcast. Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hove is our Editor in Chief over at Silicon Angle. He does some great editing for us. Check it out for all the news. Remember all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me to get in touch David.vallante@siliconangle.com. DM me @dvellante or comment on our LinkedIn post. And please do check out etr.ai, they've got the best survey data in the enterprise tech business. This is Dave Vellante for the CUBE Insights, powered by ETR. Thanks for watching, thanks for listening and we'll see you next time on breaking analysis. (upbeat music)

Published Date : Nov 10 2022

SUMMARY :

insights from the Cube and ETR. And the ability to have multiple

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Mike ScarpelliPERSON

0.99+

Dave VellantePERSON

0.99+

OracleORGANIZATION

0.99+

AWSORGANIZATION

0.99+

November 30thDATE

0.99+

Ken SchiffmanPERSON

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Chip SimontonPERSON

0.99+

October, 2021DATE

0.99+

Rob HovePERSON

0.99+

Cheryl KnightPERSON

0.99+

Frank SlootmanPERSON

0.99+

Four weeksQUANTITY

0.99+

JulyDATE

0.99+

six weeksQUANTITY

0.99+

10 billionQUANTITY

0.99+

fiveQUANTITY

0.99+

Palo AltoLOCATION

0.99+

SlootmanPERSON

0.99+

BMCORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

6%QUANTITY

0.99+

80%QUANTITY

0.99+

last yearDATE

0.99+

OctoberDATE

0.99+

Silicon ValleyLOCATION

0.99+

40%QUANTITY

0.99+

1,400QUANTITY

0.99+

$10 billionQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

AprilDATE

0.99+

3%QUANTITY

0.99+

77%QUANTITY

0.99+

64%QUANTITY

0.99+

60%QUANTITY

0.99+

194 responsesQUANTITY

0.99+

Kristin MartinPERSON

0.99+

two partiesQUANTITY

0.99+

51%QUANTITY

0.99+

2%QUANTITY

0.99+

Silicon AngleORGANIZATION

0.99+

fiscal year 28DATE

0.99+

billion dollarsQUANTITY

0.99+

0%QUANTITY

0.99+

AvamarORGANIZATION

0.99+

52%QUANTITY

0.99+

BerkeleyLOCATION

0.99+

2028DATE

0.99+

MongoORGANIZATION

0.99+

Data DomainORGANIZATION

0.99+

1%QUANTITY

0.99+

late AugustDATE

0.99+

twoQUANTITY

0.99+

threeQUANTITY

0.99+

fiscal year 2028DATE

0.99+

Breaking Analysis: Even the Cloud Is Not Immune to the Seesaw Economy


 

>>From the Cube Studios in Palo Alto in Boston, bringing you data driven insights from the cube and etr. This is breaking analysis with Dave Ante. >>Have you ever been driving on the highway and traffic suddenly slows way down and then after a little while it picks up again and you're cruising along and you're thinking, Okay, hey, that was weird. But it's clear sailing now. Off we go, only to find out in a bit that the traffic is building up ahead again, forcing you to pump the brakes as the traffic pattern ebbs and flows well. Welcome to the Seesaw economy. The fed induced fire that prompted an unprecedented rally in tech is being purposefully extinguished now by that same fed. And virtually every sector of the tech industry is having to reset its expectations, including the cloud segment. Hello and welcome to this week's Wikibon Cube Insights powered by etr. In this breaking analysis will review the implications of the earnings announcements from the big three cloud players, Amazon, Microsoft, and Google who announced this week. >>And we'll update you on our quarterly IAS forecast and share the latest from ETR with a focus on cloud computing. Now, before we get into the new data, we wanna review something we shared with you on October 14th, just a couple weeks back, this is sort of a, we told you it was coming slide. It's an XY graph that shows ET R'S proprietary net score methodology on the vertical axis. That's a measure of spending momentum, spending velocity, and an overlap or presence in the dataset that's on the X axis. That's really a measure of pervasiveness. In the survey, the table, you see that table insert there that shows Wiki Bond's Q2 estimates of IAS revenue for the big four hyperscalers with their year on year growth rates. Now we told you at the time, this is data from the July TW 22 ETR survey and the ETR hadn't released its October survey results at that time. >>This was just a couple weeks ago. And while we couldn't share the specific data from the October survey, we were able to get a glimpse and we depicted the slowdown that we saw in the October data with those dotted arrows kind of down into the right, we said at the time that we were seeing and across the board slowdown even for the big three cloud vendors. Now, fast forward to this past week and we saw earnings releases from Alphabet, Microsoft, and just last night Amazon. Now you may be thinking, okay, big deal. The ETR survey data didn't really tell us anything we didn't already know. But judging from the negative reaction in the stock market to these earnings announcements, the degree of softness surprised a lot of investors. Now, at the time we didn't update our forecast, it doesn't make sense for us to do that when we're that close to earning season. >>And now that all the big three ha with all the big four with the exception of Alibaba have announced we've, we've updated. And so here's that data. This chart lays out our view of the IS and PAs worldwide revenue. Basically it's cloud infrastructure with an attempt to exclude any SaaS revenue so we can make an apples to apples comparison across all the clouds. Now the reason that actual is in quotes is because Microsoft and Google don't report IAS revenue, but they do give us clues and kind of directional commentary, which we then triangulate with other data that we have from the channel and ETR surveys and just our own intelligence. Now the second column there after the vendor name shows our previous estimates for q3, and then next to that we show our actuals. Same with the growth rates. And then we round out the chart with that lighter blue color highlights, the full year estimates for revenue and growth. >>So the key takeaways are that we shaved about $4 billion in revenue and roughly 300 basis points of growth off of our full year estimates. AWS had a strong July but exited Q3 in the mid 20% growth rate year over year. So we're using that guidance, you know, for our Q4 estimates. Azure came in below our earlier estimates, but Google actually exceeded our expectations. Now the compression in the numbers is in our view of function of the macro demand climate, we've made every attempt to adjust for constant currency. So FX should not be a factor in this data, but it's sure you know that that ma the the, the currency effects are weighing on those companies income statements. And so look, this is the fundamental dynamic of a cloud model where you can dial down consumption when you need to and dial it up when you need to. >>Now you may be thinking that many big cloud customers have a committed level of spending in order to get better discounts. And that's true. But what's happening we think is they'll reallocate that spend toward, let's say for example, lower cost storage tiers or they may take advantage of better price performance processors like Graviton for example. That is a clear trend that we're seeing and smaller companies that were perhaps paying by the drink just on demand, they're moving to reserve instance models to lower their monthly bill. So instead of taking the easy way out and just spending more companies are reallocating their reserve capacity toward lower cost. So those sort of lower cost services, so they're spending time and effort optimizing to get more for, for less whereas, or get more for the same is really how we should, should, should phrase it. Whereas during the pandemic, many companies were, you know, they perhaps were not as focused on doing that because business was booming and they had a response. >>So they just, you know, spend more dial it up. So in general, as they say, customers are are doing more with, with the same. Now let's look at the growth dynamic and spend some time on that. I think this is important. This data shows worldwide quarterly revenue growth rates back to Q1 2019 for the big four. So a couple of interesting things. The data tells us during the pandemic, you saw both AWS and Azure, but the law of large numbers and actually accelerate growth. AWS especially saw progressively increasing growth rates throughout 2021 for each quarter. Now that trend, as you can see is reversed in 2022 for aws. Now we saw Azure come down a bit, but it's still in the low forties in terms of percentage growth. While Google actually saw an uptick in growth this last quarter for GCP by our estimates as GCP is becoming an increasingly large portion of Google's overall cloud business. >>Now, unfortunately Google Cloud continues to lose north of 850 million per quarter, whereas AWS and Azure are profitable cloud businesses even though Alibaba is suffering its woes from China. And we'll see how they come in when they report in mid-November. The overall hyperscale market grew at 32% in Q3 in terms of worldwide revenue. So the slowdown isn't due to the repatriation or competition from on-prem vendors in our view, it's a macro related trend. And cloud will continue to significantly outperform other sectors despite its massive size. You know, on the repatriation point, it just still doesn't show up in the data. The A 16 Z article from Sarah Wong and Martin Martin Kasa claiming that repatriation was inevitable as a means to lower cost of good sold for SaaS companies. You know, while that was thought provoking, it hasn't shown up in the numbers. And if you read the financial statements of both AWS and its partners like Snowflake and you dig into the, to the, to the quarterly reports, you'll see little notes and comments with their ongoing negotiations to lower cloud costs for customers. >>AWS and no doubt execs at Azure and GCP understand that the lifetime value of a customer is worth much more than near term gross margin. And you can expect the cloud vendors to strike a balance between profitability, near term profitability anyway and customer attention. Now, even though Google Cloud platform saw accelerated growth, we need to put that in context for you. So GCP, by our estimate, has now crossed over the $3 billion for quarter market actually did so last quarter, but its growth rate accelerated to 42% this quarter. And so that's a good sign in our view. But let's do a quick little comparison with when AWS and Azure crossed the $3 billion mark and compare their growth rates at the time. So if you go back to to Q2 2016, as we're showing in this chart, that's around the time that AWS hit 3 billion per quarter and at the same time was growing at 58%. >>Azure by our estimates crossed that mark in Q4 2018 and at that time was growing at 67%. Again, compare that to Google's 42%. So one would expect Google's growth rate would be higher than its competitors at this point in the MO in the maturity of its cloud, which it's, you know, it's really not when you compared to to Azure. I mean they're kind of con, you know, comparable now but today, but, but you'll go back, you know, to that $3 billion mark. But more so looking at history, you'd like to see its growth rate at this point of a maturity model at least over 50%, which we don't believe it is. And one other point on this topic, you know, my business friend Matt Baker from Dell often says it's not a zero sum game, meaning there's plenty of opportunity exists to build value on top of hyperscalers. >>And I would totally agree it's not a dollar for dollar swap if you can continue to innovate. But history will show that the first company in makes the most money. Number two can do really well and number three tends to break even. Now maybe cloud is different because you have Microsoft software estate and the power behind that and that's driving its IAS business and Google ads are funding technology buildouts for, for for Google and gcp. So you know, we'll see how that plays out. But right now by this one measurement, Google is four years behind Microsoft in six years behind aws. Now to the point that cloud will continue to outpace other markets, let's, let's break this down a bit in spending terms and see why this claim holds water. This is data from ET r's latest October survey that shows the granularity of its net score or spending velocity metric. >>The lime green is new adoptions, so they're adding the platform, the forest green is spending more 6% or more. The gray bars spending is flat plus or minus, you know, 5%. The pinkish colors represent spending less down 6% or worse. And the bright red shows defections or churn of the platform. You subtract the reds from the greens and you get what's called net score, which is that blue dot that you can see on each of the bars. So what you see in the table insert is that all three have net scores above 40%, which is a highly elevated measure. Microsoft's net scores above 60% AWS well into the fifties and GCP in the mid forties. So all good. Now what's happening with all three is more customers are keep keeping their spending flat. So a higher percentage of customers are saying, our spending is now flat than it was in previous quarters and that's what's accounting for the compression. >>But the churn of all three, even gcp, which we reported, you know, last quarter from last quarter survey was was five x. The other two is actually very low in the single digits. So that might have been an anomaly. So that's a very good sign in our view. You know, again, customers aren't repatriating in droves, it's just not a trend that we would bet on, maybe makes for a FUD or you know, good marketing head, but it's just not a big deal. And you can't help but be impressed with both Microsoft and AWS's performance in the survey. And as we mentioned before, these companies aren't going to give up customers to try and preserve a little bit of gross margin. They'll do what it takes to keep people on their platforms cuz they'll make up for it over time with added services and improved offerings. >>Now, once these companies acquire a customer, they'll be very aggressive about keeping them. So customers take note, you have negotiating leverage, so use it. Okay, let's look at another cut at the cloud market from the ETR data set. Here's the two dimensional view, again, it's back, it's one of our favorites. Net score or spending momentum plotted against presence. And the data set, that's the x axis net score on the, on the vertical axis, this is a view of et r's cloud computing sector sector. You can see we put that magic 40% dotted red line in the table showing and, and then that the table inserts shows how the data are plotted with net score against presence. I e n in the survey, notably only the big three are above the 40% line of the names that we're showing here. The oth there, there are others. >>I mean if you put Snowflake on there, it'd be higher than any of these names, but we'll dig into that name in a later breaking analysis episode. Now this is just another way of quantifying the dominance of AWS and Azure, not only relative to Google, but the other cloud platforms out there. So we've, we've taken the opportunity here to plot IBM and Oracle, which both own a public cloud. Their performance is largely a reflection of them migrating their install bases to their respective public clouds and or hybrid clouds. And you know, that's fine, they're in the game. That's a point that we've made, you know, a number of times they're able to make it through the cloud, not whole and they at least have one, but they simply don't have the business momentum of AWS and Azure, which is actually quite impressive because AWS and Azure are now as large or larger than IBM and Oracle. >>And to show this type of continued growth that that that Azure and AWS show at their size is quite remarkable and customers are starting to recognize the viability of on-prem hi, you know, hybrid clouds like HPE GreenLake and Dell's apex. You know, you may say, well that's not cloud, but if the customer thinks it is and it was reporting in the survey that it is, we're gonna continue to report this view. You know, I don't know what's happening with H P E, They had a big down tick this quarter and I, and I don't read too much into that because their end is still pretty small at 53. So big fluctuations are not uncommon with those types of smaller ends, but it's over 50. So, you know, we did notice a a a negative within a giant public and private sector, which is often a, a bellwether giant public private is big public companies and large private companies like, like a Mars for example. >>So it, you know, it looks like for HPE it could be an outlier. We saw within the Fortune 1000 HPE E'S cloud looked actually really good and it had good spending momentum in that sector. When you di dig into the industry data within ETR dataset, obviously we're not showing that here, but we'll continue to monitor that. Okay, so where's this Leave us. Well look, this is really a tactical story of currency and macro headwinds as you can see. You know, we've laid out some of the points on this slide. The action in the stock market today, which is Friday after some of the soft earnings reports is really robust. You know, we'll see how it ends up in the day. So maybe this is a sign that the worst is over, but we don't think so. The visibility from tech companies is murky right now as most are guiding down, which indicates that their conservative outlook last quarter was still too optimistic. >>But as it relates to cloud, that platform is not going anywhere anytime soon. Sure, there are potential disruptors on the horizon, especially at the edge, but we're still a long ways off from, from the possibility that a new economic model emerges from the edge to disrupt the cloud and the opportunities in the cloud remain strong. I mean, what other path is there? Really private cloud. It was kind of a bandaid until the on-prem guys could get their a as a service models rolled out, which is just now happening. The hybrid thing is real, but it's, you know, defensive for the incumbents until they can get their super cloud investments going. Super cloud implying, capturing value above the hyperscaler CapEx, you know, call it what you want multi what multi-cloud should have been, the metacloud, the Uber cloud, whatever you like. But there are opportunities to play offense and that's clearly happening in the cloud ecosystem with the likes of Snowflake, Mongo, Hashi Corp. >>Hammer Spaces is a startup in this area. Aviatrix, CrowdStrike, Zeke Scaler, Okta, many, many more. And even the projects we see coming out of enterprise players like Dell, like with Project Alpine and what Pure Storage is doing along with a number of other of the backup vendors. So Q4 should be really interesting, but the real story is the investments that that companies are making now to leverage the cloud for digital transformations will be paying off down the road. This is not 1999. We had, you know, May might have had some good ideas and admittedly at a lot of bad ones too, but you didn't have the infrastructure to service customers at a low enough cost like you do today. The cloud is that infrastructure and so far it's been transformative, but it's likely the best is yet to come. Okay, let's call this a rap. >>Many thanks to Alex Morrison who does production and manages the podcast. Also Can Schiffman is our newest edition to the Boston Studio. Kristin Martin and Cheryl Knight helped get the word out on social media and in our newsletters. And Rob Ho is our editor in chief over@siliconangle.com, who does some wonderful editing for us. Thank you. Remember, all these episodes are available as podcasts. Wherever you listen, just search breaking analysis podcast. I publish each week on wiki bond.com at silicon angle.com. And you can email me at David dot valante@siliconangle.com or DM me at Dante or comment on my LinkedIn posts. And please do checkout etr.ai. They got the best survey data in the enterprise tech business. This is Dave Valante for the Cube Insights powered by etr. Thanks for watching and we'll see you next time on breaking analysis.

Published Date : Oct 29 2022

SUMMARY :

From the Cube Studios in Palo Alto in Boston, bringing you data driven insights from Have you ever been driving on the highway and traffic suddenly slows way down and then after In the survey, the table, you see that table insert there that Now, at the time we didn't update our forecast, it doesn't make sense for us And now that all the big three ha with all the big four with the exception of Alibaba have announced So we're using that guidance, you know, for our Q4 estimates. Whereas during the pandemic, many companies were, you know, they perhaps were not as focused So they just, you know, spend more dial it up. So the slowdown isn't due to the repatriation or And you can expect the cloud And one other point on this topic, you know, my business friend Matt Baker from Dell often says it's not a And I would totally agree it's not a dollar for dollar swap if you can continue to So what you see in the table insert is that all three have net scores But the churn of all three, even gcp, which we reported, you know, And the data set, that's the x axis net score on the, That's a point that we've made, you know, a number of times they're able to make it through the cloud, the viability of on-prem hi, you know, hybrid clouds like HPE GreenLake and Dell's So it, you know, it looks like for HPE it could be an outlier. off from, from the possibility that a new economic model emerges from the edge to And even the projects we see coming out of enterprise And you can email me at David dot valante@siliconangle.com or DM me at Dante

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MorrisonPERSON

0.99+

MicrosoftORGANIZATION

0.99+

AWSORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

AlibabaORGANIZATION

0.99+

IBMORGANIZATION

0.99+

AlphabetORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Rob HoPERSON

0.99+

Cheryl KnightPERSON

0.99+

Matt BakerPERSON

0.99+

October 14thDATE

0.99+

DellORGANIZATION

0.99+

OracleORGANIZATION

0.99+

Dave ValantePERSON

0.99+

OctoberDATE

0.99+

$3 billionQUANTITY

0.99+

Sarah WongPERSON

0.99+

Palo AltoLOCATION

0.99+

42%QUANTITY

0.99+

32%QUANTITY

0.99+

FridayDATE

0.99+

1999DATE

0.99+

40%QUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

5%QUANTITY

0.99+

six yearsQUANTITY

0.99+

3 billionQUANTITY

0.99+

2022DATE

0.99+

MongoORGANIZATION

0.99+

last quarterDATE

0.99+

67%QUANTITY

0.99+

Martin Martin KasaPERSON

0.99+

Kristin MartinPERSON

0.99+

AviatrixORGANIZATION

0.99+

JulyDATE

0.99+

CrowdStrikeORGANIZATION

0.99+

58%QUANTITY

0.99+

four yearsQUANTITY

0.99+

OktaORGANIZATION

0.99+

second columnQUANTITY

0.99+

Zeke ScalerORGANIZATION

0.99+

2021DATE

0.99+

last quarterDATE

0.99+

each weekQUANTITY

0.99+

over@siliconangle.comOTHER

0.99+

Dave AntePERSON

0.99+

Project AlpineORGANIZATION

0.99+

Wiki BondORGANIZATION

0.99+

mid fortiesDATE

0.99+

Hashi Corp.ORGANIZATION

0.99+

oneQUANTITY

0.99+

mid-NovemberDATE

0.99+

todayDATE

0.99+

eachQUANTITY

0.99+

AzureORGANIZATION

0.99+

about $4 billionQUANTITY

0.98+

Breaking Analysis: Survey Says! Takeaways from the latest CIO spending data


 

>> From theCUBE Studios in Palo Alto and Boston, bringing you data driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante. >> The technology spending outlook is not pretty and very much unpredictable right now. The negative sentiment is of course being driven by the macroeconomic factors in earnings forecasts that have been coming down all year in an environment of rising interest rates. And what's worse, is many people think earnings estimates are still too high. But it's understandable why there's so much uncertainty. I mean, technology is still booming, digital transformations are happening in earnest, leading companies have momentum and they got cash runways. And moreover, the CEOs of these leading companies are still really optimistic. But strong guidance in an environment of uncertainty is somewhat risky. Hello and welcome to this week's Wikibon CUBE Insights Powered by ETR. In this breaking analysis, we share takeaways from ETR'S latest spending survey, which was released to their private clients on October 21st. Today, we're going to review the macro spending data. We're going to share where CIOs think their cloud spend is headed. We're going to look at the actions that organizations are taking to manage uncertainty and then review some of the technology companies that have the most positive and negative outlooks in the ETR data set. Let's first look at the sample makeup from the latest ETR survey. ETR captured more than 1300 respondents in this latest survey. Its highest figure for the year and the quality and seniority of respondents just keeps going up each time we dig into the data. We've got large contributions as you can see here from sea level executives in a broad industry focus. Now the survey is still North America centric with 20% of the respondents coming from overseas and there is a bias toward larger organizations. And nonetheless, we're still talking well over 400 respondents coming from SMBs. Now ETR for those of you who don't know, conducts a quarterly spending intention survey and they also do periodic drilldowns. So just by the way of review, let's take a look at the expectations in the latest drilldown survey for IT spending. Before we look at the broader technology spending intentions survey data, followers of this program know that we reported on this a couple of weeks ago, spending expectations that peaked last December at 8.3% are now down to 5.5% with a slight uptick expected for next year as shown here. Now one CIO in the ETR community said these figures could be understated because of inflation. Now that's an interesting comment. Real GDP in the US is forecast to be around 1.5% in 2022. So these figures are significantly ahead of that. Nominal GDP is forecast to be significantly higher than what is shown in that slide. It was over 9% in June for example. And one would interpret that survey respondents are talking about real dollars which reflects inflationary factors in IT spend. So you might say, well if nominal GDP is in the high single digits this means that IT spending is below GDP which is usually not the case. But the flip side of that is technology tends to be deflationary because prices come down over time on a per unit basis, so this would be a normal and even positive trend. But it's mixed right now with prices on hard to find hardware, they're holding more firms. Software, you know, software tends to be driven by lock in and competition and switching costs. So you have those countervailing factors. Services can be inflationary, especially now as wages rise but certain sectors like laptops and semis and NAND are seeing less demand and maybe even some oversupply. So the way to look at this data is on a relative basis. In other words, IT buyers are reporting 280 basis point drop in spending sentiment from the end of last year. Now, something that we haven't shared from the latest drilldown survey which we will now is how IT bar buyers are thinking about cloud adoption. This chart shows responses from 419 IT execs from that drilldown and depicts the percentage of workloads their organizations have in the cloud today and what the expectation is through years from now. And you can see it's 27% today and it's nearly 50% in three years. Now the nuance is if you look at the question, that ETRS, it's they asked about IaaS and PaaS, which to some could include on-prem. Now, let me come back to that. In particular, financial services, IT, telco and retail and services industry cited expectations for the future for three years out that we're well above the average of the mean adoption levels. Regardless of how you interpret this data there's most certainly plenty of public cloud in the numbers. And whether you believe cloud is an operating environment or a place out there in the cloud, there's plenty of room for workloads to move into a cloud model well beyond mid this decade. So you know, as ho hum as we've been toward recent as-a-service models announced from the likes of HPE with GreenLake and Dell with APEX, the timing of those offerings may be pretty good actually. Now let's expand on some of the data that we showed a couple weeks ago. This chart shows responses from 282 execs on actions their organizations are taking over the next three months. And the Deltas are quite traumatic from the early part of this charter than the left hand side. The brown line is hiring freezes, the black line is freezing IT projects, and the green line is hiring increases and that red line is layoffs. And we put a box around the sort of general area of the isolation economy timeframe. And you can see the wild swings on this chart. By mid last summer, people were kickstarting things and more hiring was going on and the black line shows IT project freezes, you know, came way down. And now, or on the way back up as our hiring freezes. So we're seeing these wild swings in organizational actions and strategies which underscores the lack of predictability. As with supply chains around the world, this is likely due to the fact that organizations, pre pandemic they were optimized for efficiency, not a lot of waste rather than business resilience. Meaning, you know, there's again not a lot of fluff in the system or if there was it got flushed out during the pandemic. And so the need for productivity and automation is becoming increasingly important, especially as actions that solely rely on headcount changes are very, very difficult to manage. Now, let's dig into some of the vendor commentary and take a look at some of the names that have momentum and some of the others possibly facing headwinds. Here's a list of companies that stand out in the ETR survey. Snowflake, once again leads the pack with a positive spending outlook. HashiCorp, CrowdStrike, Databricks, Freshworks and ServiceNow, they round out the top six. Microsoft, they seem to always be in the mix, as do a number of other security and related companies including CyberArk, Zscaler, CloudFlare, Elastic, Datadog, Fortinet, Tenable and to a certain extent Akamai, you can kind of put them sort of in that group. You know, CDN, they got to worry about security. Everybody worries about security, but especially the CDNs. Now the other software names that are highlighted here include Workday and Salesforce. On the negative side, you can see Dynatrace saw some negatives in the latest survey especially around its analytics business. Security is generally holding up better than other sectors but it's still seeing greater levels of pressure than it had previously. So lower spend. And defections relative to its observability peers, that's really for Dynatrace. Now the other one that was somewhat surprising is IBM. You see the IBM was sort of in that negative realm here but IBM reported an outstanding quarter this past week with double digit revenue growth, strong momentum in software, consulting, mainframes and other infrastructure like storage. It's benefiting from the Kyndryl restructuring and it's on track IBM to deliver 10 billion in free cash flow this year. Red Hat is performing exceedingly well and growing in the very high teens. And so look, IBM is in the midst of a major transformation and it seems like a company that is really focused now with hybrid cloud being powered by Red Hat and consulting and a decade plus of AI investments finally paying off. Now the other big thing we'll add is, IBM was once an outstanding acquire of companies and it seems to be really getting its act together on the M&A front. Yes, Red Hat was a big pill to swallow but IBM has done a number of smaller acquisitions, I think seven this year. Like for example, Turbonomic, which is starting to pay off. Arvind Krishna has the company focused once again. And he and Jim J. Kavanaugh, IBM CFO, seem to be very confident on the guidance that they're giving in their business. So that's a real positive in our view for the industry. Okay, the last thing we'd like to do is take 12 of the companies from the previous chart and plot them in context. Now these companies don't necessarily compete with each other, some do. But they are standouts in the ETR survey and in the market. What we're showing here is a view that we like to often show, it's net score or spending velocity on the vertical axis. And it's a measure, that's a measure of the net percentage of customers that are spending more on a particular platform. So ETR asks, are you spending more or less? They subtract less from the mores. I mean I'm simplifying, but that's what net score is. Now in the horizontal axis, that is a measure of overlap which is which measures presence or pervasiveness in the dataset. So bigger the better. We've inserted a table that informs how the dots in the companies are positioned. These companies are all in the green in terms of net score. And that right most column in the table insert is indicative of their presence in the dataset, the end. So higher, again, is better for both columns. Two other notes, the red dotted line there you see at 40%. Anything over that indicates an highly elevated spending momentum for a given platform. And we purposefully took Microsoft out of the mix in this chart because it skews the data due to its large size. Everybody else would cluster on the left and Microsoft would be all alone in the right. So we take them out. Now as we noted earlier, Snowflake once again leads with a net score of 64%, well above the 40% line. Having said that, while adoption rates for Snowflake remains strong the company's spending velocity in the survey has come down to Earth. And many more customers are shifting from where they were last year and the year before in growth mode i.e. spending more year to year with Snowflake to now shifting more toward flat spending. So a plus or minus 5%. So that puts pressure on Snowflake's net score, just based on the math as to how ETR calculates, its proprietary net score methodology. So Snowflake is by no means insulated completely to the macro factors. And this was seen especially in the data in the Fortune 500 cut of the survey for Snowflake. We didn't show that here, just giving you anecdotal commentary from the survey which is backed up by data. So, it showed steeper declines in the Fortune 500 momentum. But overall, Snowflake, very impressive. Now what's more, note the position of Streamlit relative to Databricks. Streamlit is an open source python framework for developing data driven, data science oriented apps. And it's ironic that it's net score and shared in is almost identical to those of data bricks, as the aspirations of Snowflake and Databricks are beginning to collide. Now, however, the Databricks net score has held up very well over the past year and is in the 92nd percentile of its machine learning and AI peers. And while it's seeing some softness, like Snowflake in the Fortune 500, Databricks has steadily moved to the right on the X axis over the last several surveys even though it was unable to get to the public markets and do an IPO during the lockdown tech bubble. Let's come back to the chart. ServiceNow is impressive because it's well above the 40% mark and it has 437 shared in on this cut, the largest of any company that we chose to plot here. The only real negative on ServiceNow is, more large customers are keeping spending levels flat. That's putting a little bit pressure on its net score, but that's just conservatives. It's kind of like Snowflakes, you know, same thing but in a larger scale. But it's defections, the ServiceNow as in Snowflake as well. It's defections remain very, very low, really low churn below 2% for ServiceNow, in fact, within the dataset. Now it's interesting to also see Freshworks hit the list. You can see them as one of the few ITSM vendors that has momentum and can potentially take on ServiceNow. Workday, on this chart, it's the other big app player that's above the 40% line and we're only showing Workday HCM, FYI, in this graphic. It's Workday Financials, that offering, is below the 40% line just for reference. Now let's talk about CrowdStrike. We attended Falcon last month, CrowdStrike's user conference and we're very impressed with the product visio, the company's execution, it's growing partnerships. And you can see in this graphic, the ETR survey data confirms the company's stellar performance with a net score at 50%, well above the 40% mark. And importantly, more than 300 mentions. That's second only to ServiceNow, amongst the 12 companies that we've chosen to highlight here. Only Microsoft, which is not shown here, has a higher net score in the security space than CrowdStrike. And when it comes to presence, CrowdStrike now has caught up to Splunk in terms of pervasion in the survey. Now CyberArk and Zscaler are the other two security firms that are right at that 40% red dotted line. CyberArk for names with over a hundred citations in the security sector, is only behind Microsoft and CrowdStrike. Zscaler for its part in the survey is seeing strong momentum in the Fortune 500, unlike what we said for Snowflake. And its pervasion on the X-axis has been steadily increasing. Again, not that Snowflake and CrowdStrike compete with each other but they're too prominent names and it's just interesting to compare peers and business models. Cloudflare, Elastic and Datadog are slightly below the 40% mark but they made the sort of top 12 that we showed to highlight here and they continue to have positive sentiment in the survey. So, what are the big takeaways from this latest survey, this really quick snapshot that we've taken. As you know, over the next several weeks we're going to dig into it more and more. As we've previously reported, the tide is going out and it's taking virtually all the tech ships with it. But in many ways the current market is a story of heightened expectations coming down to Earth, miscalculations about the economic patterns and the swings and imperfect visibility. Leading Barclays analyst, Ramo Limchao ask the question to guide or not to guide in a recent research note he wrote. His point being, should companies guide or should they be more cautious? Many companies, if not most companies, are actually giving guidance. Indeed, when companies like Oracle and IBM are emphatic about their near term outlook and their visibility, it gives one confidence. On the other hand, reasonable people are asking, will the red hot valuations that we saw over the last two years from the likes of Snowflake, CrowdStrike, MongoDB, Okta, Zscaler, and others. Will they return? Or are we in for a long, drawn out, sideways exercise before we see sustained momentum? And to that uncertainty, we add elections and public policy. It's very hard to predict right now. I'm sorry to be like a two-handed lawyer, you know. On the one hand, on the other hand. But that's just the way it is. Let's just say for our part, we think that once it's clear that interest rates are on their way back down and we'll stabilize it under 4% and we have clarity on the direction of inflation, wages, unemployment and geopolitics, the wild swings and sentiment will subside. But when that happens is anyone's guess. If I had to peg, I'd say 18 months, which puts us at least into the spring of 2024. What's your prediction? You know, it's almost that time of year. Let's hear it. Please keep in touch and let us know what you think. Okay, that's it for now. Many thanks to Alex Myerson. He is on production and he manages the podcast for us. Ken Schiffman as well is our newest addition to the Boston Studio. Kristin Martin and Cheryl Knight, they help get the word out on social media and in our newsletters. And Rob Hoff is our EIC, editor-in-chief over at SiliconANGLE. He does some wonderful editing for us. Thank you all. Remember all these episodes, they are available as podcasts. Wherever you listen, just search breaking analysis podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me at david.vellante@siliconangle.com or DM me @dvellante. Or feel free to comment on our LinkedIn posts. And please do check out etr.ai. They've got the best survey data in the enterprise tech business. If you haven't checked that out, you should. It'll give you an advantage. This is Dave Vellante for theCUBE Insights Powered by ETR. Thanks for watching. Be well and we'll see you next time on Breaking Analysis. (soft upbeat music)

Published Date : Oct 23 2022

SUMMARY :

in Palo Alto and Boston, and growing in the very high teens.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

IBMORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Jim J. KavanaughPERSON

0.99+

OracleORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

October 21stDATE

0.99+

Cheryl KnightPERSON

0.99+

Ramo LimchaoPERSON

0.99+

JuneDATE

0.99+

MicrosoftORGANIZATION

0.99+

Arvind KrishnaPERSON

0.99+

EarthLOCATION

0.99+

Rob HoffPERSON

0.99+

10 billionQUANTITY

0.99+

282 execsQUANTITY

0.99+

12 companiesQUANTITY

0.99+

DellORGANIZATION

0.99+

50%QUANTITY

0.99+

DatabricksORGANIZATION

0.99+

40%QUANTITY

0.99+

USLOCATION

0.99+

27%QUANTITY

0.99+

last yearDATE

0.99+

Kristin MartinPERSON

0.99+

BostonLOCATION

0.99+

2022DATE

0.99+

ZscalerORGANIZATION

0.99+

GreenLakeORGANIZATION

0.99+

APEXORGANIZATION

0.99+

8.3%QUANTITY

0.99+

FortinetORGANIZATION

0.99+

TodayDATE

0.99+

Palo AltoLOCATION

0.99+

david.vellante@siliconangle.comOTHER

0.99+

FreshworksORGANIZATION

0.99+

DatadogORGANIZATION

0.99+

18 monthsQUANTITY

0.99+

TenableORGANIZATION

0.99+

419 IT execsQUANTITY

0.99+

64%QUANTITY

0.99+

three yearsQUANTITY

0.99+

last monthDATE

0.99+

5.5%QUANTITY

0.99+

OktaORGANIZATION

0.99+

next yearDATE

0.99+

92nd percentileQUANTITY

0.99+

spring of 2024DATE

0.99+

CrowdStrikeORGANIZATION

0.99+

more than 300 mentionsQUANTITY

0.99+

ETRORGANIZATION

0.99+

secondQUANTITY

0.99+

each weekQUANTITY

0.99+

ServiceNowORGANIZATION

0.99+

MongoDBORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

CyberArkORGANIZATION

0.99+

North AmericaLOCATION

0.99+

HPEORGANIZATION

0.99+

HashiCorpORGANIZATION

0.99+

theCUBE StudiosORGANIZATION

0.99+

SiliconANGLEORGANIZATION

0.99+

more than 1300 respondentsQUANTITY

0.99+

theCUBEORGANIZATION

0.99+

mid last summerDATE

0.99+

437QUANTITY

0.98+

ETRSORGANIZATION

0.98+

this yearDATE

0.98+

both columnsQUANTITY

0.98+

minus 5%QUANTITY

0.98+

last DecemberDATE

0.98+

StreamlitTITLE

0.98+

Breaking Analysis: Latest CIO Survey Shows Steady Deceleration in IT Spend


 

>> From the Cube Studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> Is the glass half full or half empty? Well, it depends on how you want to look at it. CIOs are tapping the breaks on spending, that's clear. The latest macro survey data from ETR quantifies what we already know to be true, that IT spend is decelerating. CIOs and IT buyers forecast that their tech spend will grow by 5.5% this year. That's a meaningful deceleration from near year end 2021 expectations. But these levels are still well above historical norms. So while the feel good factor may be in some jeopardy, overall things are pretty good, at least for now. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis, we update you in the latest macro tech spending data from Enterprise Technology Research, including strategies that organizations are employing to cut costs, and which project categories continue to see the most traction. Now, CIOs were much more optimistic at the end of last year than they are today. Back then they thought their aggregates spend would increase by more than 8%. Of course, at that time the expectation was that the economy was ready to make a semi ordered return to normal, and that didn't happen as you well know. And you can see here the expectation for spending this year is down to 5.5% growth, as we said, and this is based on the most recent ETR CIO and IT buyer survey, which includes more than 1100 responses. So we started the year above 8% then made a meaningful decline into the mid sixes and nine months into the year, we're now in the mid fives, but this is still two to 300 basis points above historical norms for IT spending. And looking ahead to next year, CIOs are expecting accelerated growth edging back up toward that 6% level. Now as noted here, the visibility on this is probably less clear than pre COVID years of course, but the bottom line is digital transformations are continuing to push it spending above historical levels. Now the problem as we know, is earning estimates are coming down and forecasts are being lowered every day. I mean, as the saying goes the first disappointment is rarely the last. Even the semiconductor industry is seeing softness. Just this past week we saw AMD lower its quarterly revenue forecast by more than a billion dollars, as PC demand in the second half has significantly softened. But again, that's relative to some pretty amazing PC growth in the past couple of years thanks to the isolation economy. So we do see CIOs tapping the brakes, and these data points here tell an interesting story. ETR asked respondents about various actions that they're taking and these two stood out. The top line is, "We're accelerating new IT projects," and the bottom line is, "We're freezing IT projects," and you can see the convergence of those two lines, which of course signals the down. But again, these are not alarming data points. If you think about history. If you go back to Q1 2020, for example, just before the pandemic, that top line that was at 12% versus where it is today at 25%. And if you look at project freezes, they were at 22% in Q1 of 2020, which is significantly higher than today. So relatively speaking the spending dynamic is still strong. It just doesn't feel that way because we're coming out of an historic anomaly. Now, ETR asked a follow up question to respondents that indicated that spending would be down this quarter relative to the same quarter last year. So they wanted to better understand the most common actions that organizations would take to save money, and that's what this chart shows. The most common approach is still to consolidate redundant vendors across the lines of business. That was over 30%, as you can see here in the first set of bars. So presumably CIOs now have the latitude to go after so-called shadow projects, shadow IT, and implement standards across the organization via vendor consolidation. As well, there's a big jump in the survey from 14% to 20% of respondents saying that they were going after the Cloud bill, and that relates to the fourth set of bars which is scrutinizing consumption based services. So combined, 45% of respondents are looking at reducing their on demand spend. Now, some of that may be SaaS related, but most of the SaaS spend is committed, so pre-committed, but we do see organizations doing more audits and trying to eliminate or reduce orphaned licenses. Now the last data point that we want to focus on is the technology sectors that are of the highest priority. You can see here on the set of bars on the left while cybersecurity remains the top technology area, even this sector is showing a little bit of softness. What's really notable is the uptick in data related areas, that second set of bars, this category is now the second most cited, taking over from Cloud, which as you can see, remain strong, and of course Cloud continues to be a key component of digital transformations. As we've previously reported, machine learning, AI, and RPA are somewhat more strategic and more discretionary, and they've dropped below the 40% mark in terms of net score in the overall survey. We're not showing that data here, but we covered this in our last Breaking Analysis ahead of our UI path event. Now you have to remember these are the top seven sectors, and there are dozens in the ETR taxonomy, so making this list is goodness from a spending perspective. So even though there's some softness in most of these categories, these are the ones CIOs are most focused on addressing. So the big takeaways of this data are spending targets are coming down to the mid 5% range, but this is meaningfully higher than historical norms. And while CIOs, they are pumping the brakes on projects, they're still moving forward at rates faster than pre COVID levels and they're freezing fewer projects. Remember, this as well, this could be a skill shortage in play, but the slowdown is more likely related to the economic uncertainty. You know, we're seeing the two-sided coin of pay by the drink consumption models, right? You can dial it up as as you need to but you can also dial it down, and that's one of the alluring features of on demand. And we're seeing firms give more scrutiny to the Cloud bill, why wouldn't they? And there's a bit of unsurprising backlash to the flaws in today's SaaS pricing model that locks you in for specified terms. So people, when their term comes up are really going to scrutinize whether or not they have orphan licenses and try to reduce those. And it appears that the real savings can come from eliminating redundant vendors. That seems to be the biggest, you know, number one strategy, and that could favor some of the larger firms, think Oracle, Dell, Salesforce ServiceNow, IBM, HPE, Cisco, and others, you know, they may benefit from having more of larger footprint across the organization. You know, having that one throat to choke, you know one back to pat, as some like to say, but they could benefit those larger companies in least in the near term. Now having said that, we do see an uptick in data related areas as a priority for CIOs, and that could mean companies like Snowflake are in a strong position and can continue to thrive. You know, even though as we reported a couple of weeks ago, virtually all companies and sectors in the ETR data set are showing some softness related to spending a momentum from previous quarters. ETR will have its... will release its results next week and then we'll dig into the specific vendor action relative to previous quarters. So look, it feels like a meaningful slowdown but the sky is by no means falling. There are these kind of out of our control factors like interest rates, and Ukraine, and oil supply, and wages, et cetera, that are creating this uncertainty and causing firms to be more cautious. But generally we remain optimistic as leading tech companies are pretty well managed and have a lot of runway on the balance sheets, and can adjust costs to reflect the uncertain environment and remain flexible in their business models in doing so. Okay, that's it for today. Thanks to Alex Myerson who's on production and he also manages the podcast for Breaking Analysis. Ken Schiffman is also out of our Boston studio as well. Kristin Martin and Cheryl Knight, they help get the word out on social media and in our newsletters, and Rob Hof is our editor in chief over at Silicon Angle who posts our Breaking Analysis and does some great editing. So thank you to all. Remember all these episodes are available as podcasts. Wherever you listen all you got to do is search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com, and you can email me at david.vellante@siliconangle.com or DM me @dvellante, or feel free to comment on our LinkedIn posts. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave for the theCUBE Insights powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (relaxing music)

Published Date : Oct 7 2022

SUMMARY :

From the Cube Studios in Palo Alto and that relates to the fourth set of bars

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Rob HofPERSON

0.99+

IBMORGANIZATION

0.99+

DellORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

OracleORGANIZATION

0.99+

twoQUANTITY

0.99+

Dave VellantePERSON

0.99+

Ken SchiffmanPERSON

0.99+

HPEORGANIZATION

0.99+

40%QUANTITY

0.99+

Palo AltoLOCATION

0.99+

14%QUANTITY

0.99+

Kristin MartinPERSON

0.99+

45%QUANTITY

0.99+

two linesQUANTITY

0.99+

5.5%QUANTITY

0.99+

6%QUANTITY

0.99+

ETRORGANIZATION

0.99+

second halfQUANTITY

0.99+

next weekDATE

0.99+

25%QUANTITY

0.99+

more than 1100 responsesQUANTITY

0.99+

david.vellante@siliconangle.comOTHER

0.99+

22%QUANTITY

0.99+

BostonLOCATION

0.99+

todayDATE

0.99+

Silicon AngleORGANIZATION

0.99+

more than a billion dollarsQUANTITY

0.99+

fourth setQUANTITY

0.99+

DavePERSON

0.99+

Cube StudiosORGANIZATION

0.99+

more than 8%QUANTITY

0.99+

next yearDATE

0.99+

12%QUANTITY

0.99+

first setQUANTITY

0.99+

nine monthsQUANTITY

0.99+

each weekQUANTITY

0.99+

this yearDATE

0.99+

AMDORGANIZATION

0.99+

20%QUANTITY

0.99+

Q1DATE

0.99+

Salesforce ServiceNowORGANIZATION

0.98+

two-sidedQUANTITY

0.98+

dozensQUANTITY

0.98+

secondQUANTITY

0.98+

pandemicEVENT

0.98+

first disappointmentQUANTITY

0.97+

Q1 2020DATE

0.97+

over 30%QUANTITY

0.96+

Breaking AnalysisTITLE

0.96+

last yearDATE

0.96+

this weekDATE

0.95+

Enterprise Technology ResearchORGANIZATION

0.94+

LinkedInORGANIZATION

0.92+

second setQUANTITY

0.9+

UkraineLOCATION

0.9+

past couple of yearsDATE

0.88+

mid fivesQUANTITY

0.88+

sevenQUANTITY

0.88+

couple of weeks agoDATE

0.85+

above 8%QUANTITY

0.85+

quarterDATE

0.85+

this quarterDATE

0.82+

end of last yearDATE

0.82+

mid 5%QUANTITY

0.81+

300 basis pointsQUANTITY

0.8+

theCUBEORGANIZATION

0.79+

@dvellantePERSON

0.75+

SnowflakeORGANIZATION

0.72+

past weekDATE

0.71+

COVIDOTHER

0.7+

wikibon.comORGANIZATION

0.69+

year end 2021DATE

0.67+

Wikibon CubeORGANIZATION

0.63+

oneQUANTITY

0.58+

siliconangle.comORGANIZATION

0.57+

BreakingTITLE

0.57+

2020DATE

0.54+

halfQUANTITY

0.52+

Breaking Analysis: VMware Explore 2022 will mark the start of a Supercloud journey


 

>> From the Cube studios in Palo Alto and Boston, bringing you data driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> While the precise direction of VMware's future is unknown, given the plan Broadcom acquisition, one thing is clear. The topic of what Broadcom plans will not be the main focus of the agenda at the upcoming VMware Explore event next week in San Francisco. We believe that despite any uncertainty, VMware will lay out for its customers what it sees as its future. And that future is multi-cloud or cross-cloud services, what we call Supercloud. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis, we drill into the latest survey data on VMware from ETR. And we'll share with you the next iteration of the Supercloud definition based on feedback from dozens of contributors. And we'll give you our take on what to expect next week at VMware Explorer 2022. Well, VMware is maturing. You can see it in the numbers. VMware had a solid quarter just this week, which was announced beating earnings and growing the top line by 6%. But it's clear from its financials and the ETR data that we're showing here that VMware's Halcion glory days are behind it. This chart shows the spending profile from ETR's July survey of nearly 1500 IT buyers and CIOs. The survey included 722 VMware customers with the green bars showing elevated spending momentum, ie: growth, either new or growing at more than 6%. And the red bars show lower spending, either down 6% or worse or defections. The gray bars, that's the flat spending crowd, and it really tells a story. Look, nobody's throwing away their VMware platforms. They're just not investing as rapidly as in previous years. The blue line shows net score or spending momentum and subtracts the reds from the greens. The yellow line shows market penetration or pervasiveness in the survey. So the data is pretty clear. It's steady, but it's not remarkable. Now, the timing of the acquisition, quite rightly, is quite good, I would say. Now, this next chart shows the net score and pervasiveness juxtaposed on an XY graph and breaks down the VMware portfolio in those dimensions, the product portfolio. And you can see the dominance of respondents citing VMware as the platform. They might not know exactly which services they use, but they just respond VMware. That's on the X axis. You can see it way to the right. And the spending momentum or the net score is on the Y axis. That red dotted line at 4%, that indicates elevated levels and only VMware cloud on AWS is above that line. Notably, Tanzu has jumped up significantly from previous quarters, with the rest of the portfolio showing steady, as you would expect from a maturing platform. Only carbon black is hovering in the red zone, kind of ironic given the name. We believe that VMware is going to be a major player in cross cloud services, what we refer to as Supercloud. For months, we've been refining the concept and the definition. At Supercloud '22, we had discussions with more than 30 technology and business experts, and we've gathered input from many more. Based on that feedback, here's the definition we've landed on. It's somewhat refined from our earlier definition that we published a couple weeks ago. Supercloud is an emerging computing architecture that comprises a set of services abstracted from the underlying primitives of hyperscale clouds, e.g. compute, storage, networking, security, and other native resources, to create a global system spanning more than one cloud. Supercloud is three essential properties, three deployment models, and three service models. So what are those essential elements, those properties? We've simplified the picture from our last report. We show them here. I'll review them briefly. We're not going to go super in depth here because we've covered this topic a lot. But supercloud, it runs on more than one cloud. It creates that common or identical experience across clouds. It contains a necessary capability that we call a superPaaS that acts as a cloud interpreter, and it has metadata intelligence to optimize for a specific purpose. We'll publish this definition in detail. So again, we're not going to spend a ton of time here today. Now, we've identified three deployment models for Supercloud. The first is a single instantiation, where a control plane runs on one cloud but supports interactions with multiple other clouds. An example we use is Kubernetes cluster management service that runs on one cloud but can deploy and manage clusters on other clouds. The second model is a multi-cloud, multi-region instantiation where a full stack of services is instantiated on multiple clouds and multiple cloud regions with a common interface across them. We've used cohesity as one example of this. And then a single global instance that spans multiple cloud providers. That's our snowflake example. Again, we'll publish this in detail. So we're not going to spend a ton of time here today. Finally, the service models. The feedback we've had is IaaS, PaaS, and SaaS work fine to describe the service models for Supercloud. NetApp's Cloud Volume is a good example in IaaS. VMware cloud foundation and what we expect at VMware Explore is a good PaaS example. And SAP HANA Cloud is a good example of SaaS running as a Supercloud service. That's the SAP HANA multi-cloud. So what is it that we expect from VMware Explore 2022? Well, along with what will be an exciting and speculation filled gathering of the VMware community at the Moscone Center, we believe VMware will lay out its future architectural direction. And we expect it will fit the Supercloud definition that we just described. We think VMware will show its hand on a set of cross-cloud services and will promise a common experience for users and developers alike. As we talked about at Supercloud '22, VMware kind of wants to have its cake, eat it too, and lose weight. And by that, we mean that it will not only abstract the underlying primitives of each of the individual clouds, but if developers want access to them, they will allow that and actually facilitate that. Now, we don't expect VMware to use the term Supercloud, but it will be a cross-cloud multi-cloud services model that they put forth, we think, at VMworld Explore. With IaaS comprising compute, storage, and networking, a very strong emphasis, we believe, on security, of course, a governance and a comprehensive set of data protection services. Now, very importantly, we believe Tanzu will play a leading role in any announcements this coming week, as a purpose-built PaaS layer, specifically designed to create a common experience for cross clouds for data and application services. This, we believe, will be VMware's most significant offering to date in cross-cloud services. And it will position VMware to be a leader in what we call Supercloud. Now, while it remains to be seen what Broadcom exactly intends to do with VMware, we've speculated, others have speculated. We think this Supercloud is a substantial market opportunity generally and for VMware specifically. Look, if you don't own a public cloud, and very few companies do, in the tech business, we believe you better be supporting the build out of superclouds or building a supercloud yourself on top of hyperscale infrastructure. And we believe that as cloud matures, hyperscalers will increasingly I cross cloud services as an opportunity. We asked David Floyer to take a stab at a market model for super cloud. He's really good at these types of things. What he did is he took the known players in cloud and estimated their IaaS and PaaS cloud services, their total revenue, and then took a percentage. So this is super set of just the public cloud and the hyperscalers. And then what he did is he took a percentage to fit the Supercloud definition, as we just shared above. He then added another 20% on top to cover the long tail of Other. Other over time is most likely going to grow to let's say 30%. That's kind of how these markets work. Okay, so this is obviously an estimate, but it's an informed estimate by an individual who has done this many, many times and is pretty well respected in these types of forecasts, these long term forecasts. Now, by the definition we just shared, Supercloud revenue was estimated at about $3 billion in 2022 worldwide, growing to nearly $80 billion by 2030. Now remember, there's not one Supercloud market. It comprises a bunch of purpose-built superclouds that solve a specific problem. But the common attribute is it's built on top of hyperscale infrastructure. So overall, cloud services, including Supercloud, peak by the end of the decade. But Supercloud continues to grow and will take a higher percentage of the cloud market. The reasoning here is that the market will change and compute, will increasingly become distributed and embedded into edge devices, such as automobiles and robots and factory equipment, et cetera, and not necessarily be a discreet... I mean, it still will be, of course, but it's not going to be as much of a discrete component that is consumed via services like EZ2, that will mature. And this will be a key shift to watch in spending dynamics and really importantly, computing economics, the things we've talked about around arm and edge and AI inferencing and new low cost computing architectures at the edge. We're talking not the near edge, like, Lowes and Home Depot, we're talking far edge and embedded devices. Now, whether this becomes a seamless part of Supercloud remains to be seen. Look, if that's how we see it, the current and the future state of Supercloud, and we're committed to keeping the discussion going with an inclusive model that gathers input from all parts of the industry. Okay, that's it for today. Thanks to Alex Morrison, who's on production, and he also manages the podcast. Ken Schiffman, as well, is on production in our Boston office. Kristin Martin and Cheryl Knight, they help us get the word out on social media and in our newsletters. And Rob Hoffe is our editor in chief over at Silicon Angle and does some helpful editing. Thank you, all. Remember these episodes, they're all available as podcasts, wherever you listen. All you got to do is search Breaking Analysis Podcast. I publish each week on wikibon.com and siliconangle.com. You can email me directly at david.vellante@siliconangle.com or DM me @Dvellante or comment on our LinkedIn posts. Please do check out etr.ai. They've got some great enterprise survey research. So please go there and poke around, And if you need any assistance, let them know. This is Dave Vellante for the Cube Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis. (lively music)

Published Date : Aug 27 2022

SUMMARY :

From the Cube studios and subtracts the reds from the greens.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MorrisonPERSON

0.99+

Cheryl KnightPERSON

0.99+

Dave VellantePERSON

0.99+

Rob HoffePERSON

0.99+

VMwareORGANIZATION

0.99+

Ken SchiffmanPERSON

0.99+

David FloyerPERSON

0.99+

Kristin MartinPERSON

0.99+

30%QUANTITY

0.99+

BostonLOCATION

0.99+

2022DATE

0.99+

LowesORGANIZATION

0.99+

20%QUANTITY

0.99+

Palo AltoLOCATION

0.99+

722QUANTITY

0.99+

4%QUANTITY

0.99+

San FranciscoLOCATION

0.99+

david.vellante@siliconangle.comOTHER

0.99+

2030DATE

0.99+

Silicon AngleORGANIZATION

0.99+

JulyDATE

0.99+

BroadcomORGANIZATION

0.99+

Home DepotORGANIZATION

0.99+

6%QUANTITY

0.99+

next weekDATE

0.99+

AWSORGANIZATION

0.99+

second modelQUANTITY

0.99+

more than 6%QUANTITY

0.99+

ETRORGANIZATION

0.99+

more than one cloudQUANTITY

0.99+

siliconangle.comOTHER

0.99+

nearly $80 billionQUANTITY

0.99+

about $3 billionQUANTITY

0.99+

more than 30 technologyQUANTITY

0.99+

firstQUANTITY

0.99+

this weekDATE

0.98+

SupercloudORGANIZATION

0.98+

each weekQUANTITY

0.98+

one exampleQUANTITY

0.98+

three service modelsQUANTITY

0.98+

VMware ExploreEVENT

0.98+

dozens of contributorsQUANTITY

0.97+

todayDATE

0.97+

NetAppTITLE

0.97+

this weekDATE

0.97+

SupercloudTITLE

0.97+

SAP HANATITLE

0.97+

VMworld ExploreORGANIZATION

0.97+

three essential propertiesQUANTITY

0.97+

three deployment modelsQUANTITY

0.97+

one cloudQUANTITY

0.96+

TanzuORGANIZATION

0.96+

eachQUANTITY

0.96+

Moscone CenterLOCATION

0.96+

wikibon.comOTHER

0.95+

SAP HANA CloudTITLE

0.95+

Cube InsightsORGANIZATION

0.92+

single instantiationQUANTITY

0.9+

Breaking Analysis Further defining Supercloud W/ tech leaders VMware, Snowflake, Databricks & others


 

from the cube studios in palo alto in boston bringing you data driven insights from the cube and etr this is breaking analysis with dave vellante at our inaugural super cloud 22 event we further refined the concept of a super cloud iterating on the definition the salient attributes and some examples of what is and what is not a super cloud welcome to this week's wikibon cube insights powered by etr you know snowflake has always been what we feel is one of the strongest examples of a super cloud and in this breaking analysis from our studios in palo alto we unpack our interview with benoit de javille co-founder and president of products at snowflake and we test our super cloud definition on the company's data cloud platform and we're really looking forward to your feedback first let's examine how we defl find super cloudant very importantly one of the goals of super cloud 22 was to get the community's input on the definition and iterate on previous work super cloud is an emerging computing architecture that comprises a set of services which are abstracted from the underlying primitives of hyperscale clouds we're talking about services such as compute storage networking security and other native tooling like machine learning and developer tools to create a global system that spans more than one cloud super cloud as shown on this slide has five essential properties x number of deployment models and y number of service models we're looking for community input on x and y and on the first point as well so please weigh in and contribute now we've identified these five essential elements of a super cloud let's talk about these first the super cloud has to run its services on more than one cloud leveraging the cloud native tools offered by each of the cloud providers the builder of the super cloud platform is responsible for optimizing the underlying primitives of each cloud and optimizing for the specific needs be it cost or performance or latency or governance data sharing security etc but those primitives must be abstracted such that a common experience is delivered across the clouds for both users and developers the super cloud has a metadata intelligence layer that can maximize efficiency for the specific purpose of the super cloud i.e the purpose that the super cloud is intended for and it does so in a federated model and it includes what we call a super pass this is a prerequisite that is a purpose-built component and enables ecosystem partners to customize and monetize incremental services while at the same time ensuring that the common experiences exist across clouds now in terms of deployment models we'd really like to get more feedback on this piece but here's where we are so far based on the feedback we got at super cloud 22. we see three deployment models the first is one where a control plane may run on one cloud but supports data plane interactions with more than one other cloud the second model instantiates the super cloud services on each individual cloud and within regions and can support interactions across more than one cloud with a unified interface connecting those instantiations those instances to create a common experience and the third model superimposes its services as a layer or in the case of snowflake they call it a mesh on top of the cloud on top of the cloud providers region or regions with a single global instantiation a single global instantiation of those services which spans multiple cloud providers this is our understanding from a comfort the conversation with benoit dejaville as to how snowflake approaches its solutions and for now we're going to park the service models we need to more time to flesh that out and we'll propose something shortly for you to comment on now we peppered benoit dejaville at super cloud 22 to test how the snowflake data cloud aligns to our concepts and our definition let me also say that snowflake doesn't use the term data cloud they really want to respect and they want to denigrate the importance of their hyperscale partners nor do we but we do think the hyperscalers today anyway are building or not building what we call super clouds but they are but but people who bar are building super clouds are building on top of hyperscale clouds that is a prerequisite so here are the questions that we tested with snowflake first question how does snowflake architect its data cloud and what is its deployment model listen to deja ville talk about how snowflake has architected a single system play the clip there are several ways to do this you know uh super cloud as as you name them the way we we we picked is is to create you know one single system and that's very important right the the the um [Music] there are several ways right you can instantiate you know your solution uh in every region of a cloud and and you know potentially that region could be a ws that region could be gcp so you are indeed a multi-cloud solution but snowflake we did it differently we are really creating cloud regions which are superposed on top of the cloud provider you know region infrastructure region so we are building our regions but but where where it's very different is that each region of snowflake is not one in instantiation of our service our service is global by nature we can move data from one region to the other when you land in snowflake you land into one region but but you can grow from there and you can you know exist in multiple clouds at the same time and that's very important right it's not one single i mean different instantiation of a system is one single instantiation which covers many cloud regions and many cloud providers snowflake chose the most advanced level of our three deployment models dodgeville talked about too presumably so it could maintain maximum control and ensure that common experience like the iphone model next we probed about the technical enablers of the data cloud listen to deja ville talk about snow grid he uses the term mesh and then this can get confusing with the jamaicani's data mesh concept but listen to benoit's explanation well as i said you know first we start by building you know snowflake regions we have today furry region that spawn you know the world so it's a worldwide worldwide system with many regions but all these regions are connected together they are you know meshed together with our technology we name it snow grid and that makes it hard because you know regions you know azure region can talk to a ws region or gcp regions and and as a as a user of our cloud you you don't see really these regional differences that you know regions are in different you know potentially clown when you use snowflake you can exist your your presence as an organization can be in several regions several clouds if you want geographic and and and both geographic and cloud provider so i can share data irrespective of the the cloud and i'm in the snowflake data cloud is that correct i can do that today exactly and and that's very critical right what we wanted is to remove data silos and and when you instantiate a system in one single region and that system is locked in that region you cannot communicate with other parts of the world you are locking the data in one region right and we didn't want to do that we wanted you know data to be distributed the way customer wants it to be distributed across the world and potentially sharing data at world scale now maybe there are many ways to skin the other cat meaning perhaps if a platform does instantiate in multiple places there are ways to share data but this is how snowflake chose to approach the problem next question how do you deal with latency in this big global system this is really important to us because while snowflake has some really smart people working as engineers and and the like we don't think they've solved for the speed of light problem the best people working on it as we often joke listen to benoit deja ville's comments on this topic so yes and no the the way we do it it's very expensive to do that because generally if you want to join you know data which is in which are in different regions and different cloud it's going to be very expensive because you need to move you know data every time you join it so the way we do it is that you replicate the subset of data that you want to access from one region from other regions so you can create this data mesh but data is replicated to make it very cheap and very performant too and is the snow grid does that have the metadata intelligence yes to actually can you describe that a little bit yeah snow grid is both uh a way to to exchange you know metadata about so each region of snowflake knows about all the other regions of snowflake every time we create a new region diary you know the metadata is distributed over our data cloud not only you know region knows all the regions but knows you know every organization that exists in our clouds where this organization is where data can be replicated by this organization and then of course it's it's also used as a way to uh uh exchange data right so you can exchange you know beta by scale of data size and we just had i was just receiving an email from one of our customers who moved more than four petabytes of data cross-region cross you know cloud providers in you know few days and you know it's a lot of data so it takes you know some time to move but they were able to do that online completely online and and switch over you know to the diff to the other region which is failover is very important also so yes and no probably means typically no he says yes and no probably means no so it sounds like snowflake is selectively pulling small amounts of data and replicating it where necessary but you also heard him talk about the metadata layer which is one of the essential aspects of super cloud okay next we dug into security it's one of the most important issues and we think one of the hardest parts related to deploying super cloud so we've talked about how the cloud has become the first line of defense for the cso but now with multi-cloud you have multiple first lines of defense and that means multiple shared responsibility models and multiple tool sets from different cloud providers and an expanded threat surface so listen to benoit's explanation here please play the clip this is a great question uh security has always been the most important aspect of snowflake since day one right this is the question that every customer of ours has you know how you can you guarantee the security of my data and so we secure data really tightly in region we have several layers of security it starts by by encrypting it every data at rest and that's very important a lot of customers are not doing that right you hear these attacks for example on on cloud you know where someone left you know their buckets uh uh open and then you know you can access the data because it's a non-encrypted uh so we are encrypting everything at rest we are encrypting everything in transit so a region is very secure now you know you never from one region you never access data from another region in snowflake that's why also we replicate data now the replication of that data across region or the metadata for that matter is is really highly secure so snow grits ensure that everything is encrypted everything is you know we have multiple you know encryption keys and it's you know stored in hardware you know secure modules so we we we built you know snow grids such that it's secure and it allows very secure movement of data so when we heard this explanation we immediately went to the lowest common denominator question meaning when you think about how aws for instance deals with data in motion or data and rest it might be different from how another cloud provider deals with it so how does aws uh uh uh differences for example in the aws maturity model for various you know cloud capabilities you know let's say they've got a faster nitro or graviton does it do do you have to how does snowflake deal with that do they have to slow everything else down like imagine a caravan cruising you know across the desert so you know every truck can keep up let's listen it's a great question i mean of course our software is abstracting you know all the cloud providers you know infrastructure so that when you run in one region let's say aws or azure it doesn't make any difference as far as the applications are concerned and and this abstraction of course is a lot of work i mean really really a lot of work because it needs to be secure it needs to be performance and you know every cloud and it has you know to expose apis which are uniform and and you know cloud providers even though they have potentially the same concept let's say blob storage apis are completely different the way you know these systems are secure it's completely different the errors that you can get and and the retry you know mechanism is very different from one cloud to the other performance is also different we discovered that when we were starting to port our software and and and you know we had to completely rethink how to leverage blob storage in that cloud versus that cloud because just of performance too so we had you know for example to you know stripe data so all this work is work that's you know you don't need as an application because our vision really is that applications which are running in our data cloud can you know be abstracted of all this difference and and we provide all the services all the workload that this application need whether it's transactional access to data analytical access to data you know managing you know logs managing you know metrics all of these is abstracted too such that they are not you know tied to one you know particular service of one cloud and and distributing this application across you know many regions many cloud is very seamless so from that answer we know that snowflake takes care of everything but we really don't understand the performance implications in you know in that specific case but we feel pretty certain that the promises that snowflake makes around governance and security within their data sharing construct construct will be kept now another criterion that we've proposed for super cloud is a super pass layer to create a common developer experience and an enabler for ecosystem partners to monetize please play the clip let's listen we build it you know a custom build because because as you said you know what exists in one cloud might not exist in another cloud provider right so so we have to build you know on this all these this components that modern application mode and that application need and and and and that you know goes to machine learning as i say transactional uh analytical system and the entire thing so such that they can run in isolation basically and the objective is the developer experience will be identical across those clouds yes right the developers doesn't need to worry about cloud provider and actually our system we have we didn't talk about it but the marketplace that we have which allows actually to deliver we're getting there yeah okay now we're not going to go deep into ecosystem today we've talked about snowflakes strengths in this regard but snowflake they pretty much ticked all the boxes on our super cloud attributes and definition we asked benoit dejaville to confirm that this is all shipping and available today and he also gave us a glimpse of the future play the clip and we are still developing it you know the transactional you know unistore as we call it was announced in last summit so so they are still you know working properly but but but that's the vision right and and and that's important because we talk about the infrastructure right you mentioned a lot about storage and compute but it's not only that right when you think about application they need to use the transactional database they need to use an analytical system they need to use you know machine learning so you need to provide also all these services which are consistent across all the cloud providers so you can hear deja ville talking about expanding beyond taking advantage of the core infrastructure storage and networking et cetera and bringing intelligence to the data through machine learning and ai so of course there's more to come and there better be at this company's valuation despite the recent sharp pullback in a tightening fed environment okay so i know it's cliche but everyone's comparing snowflakes and data bricks databricks has been pretty vocal about its open source posture compared to snowflakes and it just so happens that we had aligotsy on at super cloud 22 as well he wasn't in studio he had to do remote because i guess he's presenting at an investor conference this week so we had to bring him in remotely now i didn't get to do this interview john furrier did but i listened to it and captured this clip about how data bricks sees super cloud and the importance of open source take a listen to goatzee yeah i mean let me start by saying we just we're big fans of open source we think that open source is a force in software that's going to continue for you know decades hundreds of years and it's going to slowly replace all proprietary code in its way we saw that you know it could do that with the most advanced technology windows you know proprietary operating system very complicated got replaced with linux so open source can pretty much do anything and what we're seeing with the data lake house is that slowly the open source community is building a replacement for the proprietary data warehouse you know data lake machine learning real-time stack in open source and we're excited to be part of it for us delta lake is a very important project that really helps you standardize how you lay out your data in the cloud and with it comes a really important protocol called delta sharing that enables you in an open way actually for the first time ever share large data sets between organizations but it uses an open protocol so the great thing about that is you don't need to be a database customer you don't even like databricks you just need to use this open source project and you can now securely share data sets between organizations across clouds and it actually does so really efficiently just one copy of the data so you don't have to copy it if you're within the same cloud so the implication of ellie gotzi's comments is that databricks with delta sharing as john implied is playing a long game now i don't know if enough about the databricks architecture to comment in detail i got to do more research there so i reached out to my two analyst friends tony bear and sanji mohan to see what they thought because they cover these companies pretty closely here's what tony bear said quote i've viewed the divergent lake house strategies of data bricks and snowflake in the context of their roots prior to delta lake databrick's prime focus was the compute not the storage layer and more specifically they were a compute engine not a database snowflake approached from the opposite end of the pool as they originally fit the mold of the classic database company rather than a specific compute engine per se the lake house pushes both companies outside of their original comfort zones data bricks to storage snowflake to compute engine so it makes perfect sense for databricks to embrace the open source narrative at the storage layer and for snowflake to continue its walled garden approach but in the long run their strategies are already overlapping databricks is not a 100 open source company its practitioner experience has always been proprietary and now so is its sql query engine likewise snowflake has had to open up with the support of iceberg for open data lake format the question really becomes how serious snowflake will be in making iceberg a first-class citizen in its environment that is not necessarily officially branding a lake house but effectively is and likewise can databricks deliver the service levels associated with walled gardens through a more brute force approach that relies heavily on the query engine at the end of the day those are the key requirements that will matter to data bricks and snowflake customers end quote that was some deep thought by by tony thank you for that sanjay mohan added the following quote open source is a slippery slope people buy mobile phones based on open source android but it's not fully open similarly databricks delta lake was not originally fully open source and even today its photon execution engine is not we are always going to live in a hybrid world snowflake and databricks will support whatever model works best for them and their customers the big question is do customers care as deeply about which vendor has a higher degree of openness as we technology people do i believe customers evaluation criteria is far more nuanced than just to decipher each vendor's open source claims end quote okay so i had to ask dodgeville about their so-called wall garden approach and what their strategy is with apache iceberg here's what he said iceberg is is very important so just to to give some context iceberg is an open you know table format right which was you know first you know developed by netflix and netflix you know put it open source in the apache community so we embrace that's that open source standard because because it's widely used by by many um many you know companies and also many companies have you know really invested a lot of effort in building you know big data hadoop solution or data like solution and they want to use snowflake and they couldn't really use snowflake because all their data were in open you know formats so we are embracing icebergs to help these companies move through the cloud but why we have been relentless with direct access to data direct access to data is a little bit of a problem for us and and the reason is when you direct access to data now you have direct access to storage now you have to understand for example the specificity of one cloud versus the other so as soon as you start to have direct access to data you lose your you know your cloud diagnostic layer you don't access data with api when you have direct access to data it's very hard to secure data because you need to grant access direct access to tools which are not you know protected and you see a lot of you know hacking of of data you know because of that so so that was not you know direct access to data is not serving well our customers and that's why we have been relented to do that because it's it's cr it's it's not cloud diagnostic it's it's you you have to code that you have to you you you need a lot of intelligence while apis access so we want open apis that's that's i guess the way we embrace you know openness is is by open api versus you know you access directly data here's my take snowflake is hedging its bets because enough people care about open source that they have to have some open data format options and it's good optics and you heard benoit deja ville talk about the risks of directly accessing the data and the complexities it brings now is that maybe a little fud against databricks maybe but same can be said for ollie's comments maybe flooding the proprietaryness of snowflake but as both analysts pointed out open is a spectrum hey i remember unix used to equal open systems okay let's end with some etr spending data and why not compare snowflake and data bricks spending profiles this is an xy graph with net score or spending momentum on the y-axis and pervasiveness or overlap in the data set on the x-axis this is data from the january survey when snowflake was holding above 80 percent net score off the charts databricks was also very strong in the upper 60s now let's fast forward to this next chart and show you the july etr survey data and you can see snowflake has come back down to earth now remember anything above 40 net score is highly elevated so both companies are doing well but snowflake is well off its highs and data bricks has come down somewhat as well databricks is inching to the right snowflake rocketed to the right post its ipo and as we know databricks wasn't able to get to ipo during the covet bubble ali gotzi is at the morgan stanley ceo conference this week they got plenty of cash to withstand a long-term recession i'm told and they've started the message that they're a billion dollars in annualized revenue i'm not sure exactly what that means i've seen some numbers on their gross margins i'm not sure what that means i've seen some numbers on their net retention revenue or net revenue retention again i'll reserve judgment until we see an s1 but it's clear both of these companies have momentum and they're out competing in the market well as always be the ultimate arbiter different philosophies perhaps is it like democrats and republicans well it could be but they're both going after a solving data problem both companies are trying to help customers get more value out of their data and both companies are highly valued so they have to perform for their investors to paraphrase ralph nader the similarities may be greater than the differences okay that's it for today thanks to the team from palo alto for this awesome super cloud studio build alex myerson and ken shiffman are on production in the palo alto studios today kristin martin and sheryl knight get the word out to our community rob hoff is our editor-in-chief over at siliconangle thanks to all please check out etr.ai for all the survey data remember these episodes are all available as podcasts wherever you listen just search breaking analysis podcasts i publish each week on wikibon.com and siliconangle.com and you can email me at david.vellante at siliconangle.com or dm me at devellante or comment on my linkedin posts and please as i say etr has got some of the best survey data in the business we track it every quarter and really excited to be partners with them this is dave vellante for the cube insights powered by etr thanks for watching and we'll see you next time on breaking analysis [Music] you

Published Date : Aug 14 2022

SUMMARY :

and and the retry you know mechanism is

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
netflixORGANIZATION

0.99+

john furrierPERSON

0.99+

palo altoORGANIZATION

0.99+

tony bearPERSON

0.99+

bostonLOCATION

0.99+

sanji mohanPERSON

0.99+

ken shiffmanPERSON

0.99+

bothQUANTITY

0.99+

todayDATE

0.99+

ellie gotziPERSON

0.99+

VMwareORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

siliconangle.comOTHER

0.99+

more than four petabytesQUANTITY

0.99+

first pointQUANTITY

0.99+

kristin martinPERSON

0.99+

both companiesQUANTITY

0.99+

first questionQUANTITY

0.99+

rob hoffPERSON

0.99+

more than oneQUANTITY

0.99+

second modelQUANTITY

0.98+

alex myersonPERSON

0.98+

third modelQUANTITY

0.98+

one regionQUANTITY

0.98+

one copyQUANTITY

0.98+

one regionQUANTITY

0.98+

five essential elementsQUANTITY

0.98+

androidTITLE

0.98+

100QUANTITY

0.98+

first lineQUANTITY

0.98+

DatabricksORGANIZATION

0.98+

sherylPERSON

0.98+

more than one cloudQUANTITY

0.98+

firstQUANTITY

0.98+

iphoneCOMMERCIAL_ITEM

0.98+

super cloud 22EVENT

0.98+

each cloudQUANTITY

0.98+

eachQUANTITY

0.97+

sanjay mohanPERSON

0.97+

johnPERSON

0.97+

republicansORGANIZATION

0.97+

this weekDATE

0.97+

hundreds of yearsQUANTITY

0.97+

siliconangleORGANIZATION

0.97+

each weekQUANTITY

0.97+

data lake houseORGANIZATION

0.97+

one single regionQUANTITY

0.97+

januaryDATE

0.97+

dave vellantePERSON

0.96+

each regionQUANTITY

0.96+

oneQUANTITY

0.96+

dave vellantePERSON

0.96+

tonyPERSON

0.96+

above 80 percentQUANTITY

0.95+

more than one cloudQUANTITY

0.95+

more than one cloudQUANTITY

0.95+

data lakeORGANIZATION

0.95+

five essential propertiesQUANTITY

0.95+

democratsORGANIZATION

0.95+

first timeQUANTITY

0.95+

julyDATE

0.94+

linuxTITLE

0.94+

etrORGANIZATION

0.94+

devellanteORGANIZATION

0.93+

dodgevilleORGANIZATION

0.93+

each vendorQUANTITY

0.93+

super cloud 22ORGANIZATION

0.93+

delta lakeORGANIZATION

0.92+

three deployment modelsQUANTITY

0.92+

first linesQUANTITY

0.92+

dejavilleLOCATION

0.92+

day oneQUANTITY

0.92+

Breaking Analysis: AWS re:Inforce marks a summer checkpoint on cybersecurity


 

>> From theCUBE Studios in Palo Alto and Boston bringing you data driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> After a two year hiatus, AWS re:Inforce is back on as an in-person event in Boston next week. Like the All-Star break in baseball, re:Inforce gives us an opportunity to evaluate the cyber security market overall, the state of cloud security and cross cloud security and more specifically what AWS is up to in the sector. Welcome to this week's Wikibon cube insights powered by ETR. In this Breaking Analysis we'll share our view of what's changed since our last cyber update in May. We'll look at the macro environment, how it's impacting cyber security plays in the market, what the ETR data tells us and what to expect at next week's AWS re:Inforce. We start this week with a checkpoint from Breaking Analysis contributor and stock trader Chip Simonton. We asked for his assessment of the market generally in cyber stocks specifically. So we'll summarize right here. We've kind of moved on from a narrative of the sky is falling to one where the glass is half empty you know, and before today's big selloff it was looking more and more like glass half full. The SNAP miss has dragged down many of the big names that comprise the major indices. You know, earning season as always brings heightened interest and this time we're seeing many cross currents. It starts as usual with the banks and the money centers. With the exception of JP Morgan the numbers were pretty good according to Simonton. Investment banks were not so great with Morgan and Goldman missing estimates but in general, pretty positive outlooks. But the market also shrugged off IBM's growth. And of course, social media because of SNAP is getting hammered today. The question is no longer recession or not but rather how deep the recession will be. And today's PMI data was the weakest since the start of the pandemic. Bond yields continue to weaken and there's a growing consensus that Fed tightening may be over after September as commodity prices weaken. Now gas prices of course are still high but they've come down. Tesla, Nokia and AT&T all indicated that supply issues were getting better which is also going to help with inflation. So it's no shock that the NASDAQ has done pretty well as beaten down as tech stocks started to look oversold you know, despite today's sell off. But AT&T and Verizon, they blamed their misses in part on people not paying their bills on time. SNAP's huge miss even after guiding lower and then refusing to offer future guidance took that stock down nearly 40% today and other social media stocks are off on sympathy. Meta and Google were off, you know, over 7% at midday. I think at one point hit 14% down and Google, Meta and Twitter have all said they're freezing new hires. So we're starting to see according to Simonton for the first time in a long time, the lower income, younger generation really feeling the pinch of inflation. Along of course with struggling families that have to choose food and shelter over discretionary spend. Now back to the NASDAQ for a moment. As we've been reporting back in mid-June and NASDAQ was off nearly 33% year to date and has since rallied. It's now down about 25% year to date as of midday today. But as I say, it had been, you know much deeper back in early June. But it's broken that downward trend that we talked about where the highs are actually lower and the lows are lower. That's started to change for now anyway. We'll see if it holds. But chip stocks, software stocks, and of course the cyber names have broken those down trends and have been trading above their 50 day moving averages for the first time in around four months. And again, according to Simonton, we'll see if that holds. If it does, that's a positive sign. Now remember on June 24th, we recorded a Breaking Analysis and talked about Qualcomm trading at a 12 X multiple with an implied 15% growth rate. On that day the stock was 124 and it surpassed 155 earlier this month. That was a really good call by Simonton. So looking at some of the cyber players here SailPoint is of course the anomaly with the Thoma Bravo 7 billion acquisition of the company holding that stock up. But the Bug ETF of basket of cyber stocks has definitely improved. When we last reported on cyber in May, CrowdStrike was off 23% year to date. It's now off 4%. Palo Alto has held steadily. Okta is still underperforming its peers as it works through the fallout from the breach and the ingestion of its Auth0 acquisition. Meanwhile, Zscaler and SentinelOne, those high flyers are still well off year to date, with Ping Identity and CyberArk not getting hit as hard as their valuations hadn't run up as much. But virtually all these tech stocks generally in cyber issues specifically, they've been breaking their down trend. So it will now come down to earnings guidance in the coming months. But the SNAP reaction is quite stunning. I mean, the environment is slowing, we know that. Ad spending gets cut in that type of market, we know that too. So it shouldn't be a huge surprise to anyone but as Chip Simonton says, this shows that sellers are still in control here. So it's going to take a little while to work through that despite the positive signs that we're seeing. Okay. We also turned to our friend Eric Bradley from ETR who follows these markets quite closely. He frequently interviews CISOs on his program, on his round tables. So we asked to get his take and here's what ETR is saying. Again, as we've reported while CIOs and IT buyers have tempered spending expectations since December and early January when they called for an 8% plus spending growth, they're still expecting a six to seven percent uptick in spend this year. So that's pretty good. Security remains the number one priority and also is the highest ranked sector in the ETR data set when you measure in terms of pervasiveness in the study. Within security endpoint detection and extended detection and response along with identity and privileged account management are the sub-sectors with the most spending velocity. And when you exclude Microsoft which is just dominant across the board in so many sectors, CrowdStrike has taken over the number one spot in terms of spending momentum in ETR surveys with CyberArk and Tanium showing very strong as well. Okta has seen a big dropoff in net score from 54% last survey to 45% in July as customers maybe put a pause on new Okta adoptions. That clearly shows in the survey. We'll talk about that in a moment. Look Okta still elevated in terms of spending momentum, but it doesn't have the dominant leadership position it once held in spend velocity. Year on year, according to ETR, Tenable and Elastic are seeing the biggest jumps in spending momentum, with SailPoint, Tanium, Veronis, CrowdStrike and Zscaler seeing the biggest jump in new adoptions since the last survey. Now on the downside, SonicWall, Symantec, Trellic which is McAfee, Barracuda and TrendMicro are seeing the highest percentage of defections and replacements. Let's take a deeper look at what the ETR data tells us about the cybersecurity space. This is a popular view that we like to share with net score or spending momentum on the Y axis and overlap or pervasiveness in the data on the X axis. It's a measure of presence in the data set we used to call it market share. With the data, the dot positions, you see that little inserted table, that's how the dots are plotted. And it's important to note that this data is filtered for firms with at least 100 Ns in the survey. That's why some of the other ones that we mentioned might have dropped off. The red dotted line at 40% that indicates highly elevated spending momentum and there are several firms above that mark including of course, Microsoft, which is literally off the charts in both dimensions in the upper right. It's quite incredible actually. But for the rest of the pack, CrowdStrike has now taken back its number one net score position in the ETR survey. And CyberArk and Okta and Zscaler, CloudFlare and Auth0 now Okta through the acquisition, are all above the 40% mark. You can stare at the data at your leisure but I'll just point out, make three quick points. First Palo Alto continues to impress and as steady as she goes. Two, it's a very crowded market still and it's complicated space. And three there's lots of spending in different pockets. This market has too many tools and will continue to consolidate. Now I'd like to drill into a couple of firms net scores and pick out some of the pure plays that are leading the way. This series of charts shows the net score or spending velocity or granularity for Okta, CrowdStrike, Zscaler and CyberArk. Four of the top pure plays in the ETR survey that also have over a hundred responses. Now the colors represent the following. Bright red is defections. We're leaving the platform. The pink is we're spending less, meaning we're spending 6% or worse. The gray is flat spend plus or minus 5%. The forest green is spending more, i.e, 6% or more and the lime green is we're adding the platform new. That red dotted line at the 40% net score mark is the same elevated level that we like to talk about. All four are above that target. Now that blue line you see there is net score. The yellow line is pervasiveness in the data. The data shown in each bar goes back 10 surveys all the way back to January 2020. First I want to call out that all four again are seeing down trends in spending momentum with the whole market. That's that blue line. They're seeing that this quarter, again, the market is off overall. Everybody is kind of seeing that down trend for the most part. Very few exceptions. Okta is being hurt by fewer new additions which is why we highlighted in red, that red dotted area, that square that we put there in the upper right of that Okta bar. That lime green, new ads are off as well. And the gray for Okta, flat spending is noticeably up. So it feels like people are pausing a bit and taking a breather for Okta. And as we said earlier, perhaps with the breach earlier this year and the ingestion of Auth0 acquisition the company is seeing some friction in its business. Now, having said that, you can see Okta's yellow line or presence in the data set, continues to grow. So it's a good proxy from market presence. So Okta remains a leader in identity. So again, I'll let you stare at the data if you want at your leisure, but despite some concerns on declining momentum, notice this very little red at these companies when it comes to the ETR survey data. Now one more data slide which brings us to our four star cyber firms. We started a tradition a few years ago where we sorted the ETR data by net score. That's the left hand side of this graphic. And we sorted by shared end or presence in the data set. That's the right hand side. And again, we filtered by companies with at least 100 N and oh, by the way we've excluded Microsoft just to level the playing field. The red dotted line signifies the top 10. If a company cracks the top 10 in both spending momentum and presence, we give them four stars. So Palo Alto, CrowdStrike, Okta, Fortinet and Zscaler all made the cut this time. Now, as we pointed out in May if you combined Auth0 with Okta, they jumped to the number two on the right hand chart in terms of presence. And they would lead the pure plays there although it would bring down Okta's net score somewhat, as you can see, Auth0's net score is lower than Okta's. So when you combine them it would drag that down a little bit but it would give them bigger presence in the data set. Now, the other point we'll make is that Proofpoint and Splunk both dropped off the four star list this time as they both saw marked declines in net score or spending velocity. They both got four stars last quarter. Okay. We're going to close on what to expect at re:Inforce this coming week. Re:Inforce, if you don't know, is AWS's security event. They first held it in Boston back in 2019. It's dedicated to cloud security. The past two years has been virtual and they announced that reinvent that it would take place in Houston in June, which everybody said, that's crazy. Who wants to go to Houston in June and turns out nobody did so they postponed the event, thankfully. And so now they're back in Boston, starting on Monday. Not that it's going to be much cooler in Boston. Anyway, Steven Schmidt had been the face of AWS security at all these previous events as the Chief Information Security Officer. Now he's dropped the I from his title and is now the Chief Security Officer at Amazon. So he went with Jesse to the mothership. Presumably he dropped the I because he deals with physical security now too, like at the warehouses. Not that he didn't have to worry about physical security at the AWS data centers. I don't know. Anyway, he and CJ Moses who is now the new CISO at AWS will be keynoting along with some others including MongoDB's Chief Information Security Officer. So that should be interesting. Now, if you've been following AWS you'll know they like to break things down into, you know, a couple of security categories. Identity, detection and response, data protection slash privacy slash GRC which is governance, risk and compliance, and we would expect a lot more talk this year on container security. So you're going to hear also product updates and they like to talk about how they're adding value to services and try to help, they try to help customers understand how to apply services. Things like GuardDuty, which is their threat detection that has machine learning in it. They'll talk about Security Hub, which centralizes views and alerts and automates security checks. They have a service called Detective which does root cause analysis, and they have tools to mitigate denial of service attacks. And they'll talk about security in Nitro which isolates a lot of the hardware resources. This whole idea of, you know, confidential computing which is, you know, AWS will point out it's kind of become a buzzword. They take it really seriously. I think others do as well, like Arm. We've talked about that on previous Breaking Analysis. And again, you're going to hear something on container security because it's the hottest thing going right now and because AWS really still serves developers and really that's what they're trying to do. They're trying to enable developers to design security in but you're also going to hear a lot of best practice advice from AWS i.e, they'll share the AWS dogfooding playbooks with you for their own security practices. AWS like all good security practitioners, understand that the keys to a successful security strategy and implementation don't start with the technology, rather they're about the methods and practices that you apply to solve security threats and a top to bottom cultural approach to security awareness, designing security into systems, that's really where the developers come in, and training for continuous improvements. So you're going to get heavy doses of really strong best practices and guidance and you know, some good preaching. You're also going to hear and see a lot of partners. They'll be very visible at re:Inforce. AWS is all about ecosystem enablement and AWS is going to host close to a hundred security partners at the event. This is key because AWS doesn't do it all. Interestingly, they don't even show up in the ETR security taxonomy, right? They just sort of imply that it's built in there even though they have a lot of security tooling. So they have to apply the shared responsibility model not only with customers but partners as well. They need an ecosystem to fill gaps and provide deeper problem solving with more mature and deeper security tooling. And you're going to hear a lot of positivity around how great cloud security is and how it can be done well. But the truth is this stuff is still incredibly complicated and challenging for CISOs and practitioners who are understaffed when it comes to top talent. Now, finally, theCUBE will be at re:Inforce in force. John Furry and I will be hosting two days of broadcast so please do stop by if you're in Boston and say hello. We'll have a little chat, we'll share some data and we'll share our overall impressions of the event, the market, what we're seeing, what we're learning, what we're worried about in this dynamic space. Okay. That's it for today. Thanks for watching. Thanks to Alex Myerson, who is on production and manages the podcast. Kristin Martin and Cheryl Knight, they helped get the word out on social and in our newsletters and Rob Hoff is our Editor in Chief over at siliconangle.com. You did some great editing. Thank you all. Remember all these episodes they're available, this podcast. Wherever you listen, all you do is search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. You can get in touch with me by emailing avid.vellante@siliconangle.com or DM me @dvellante, or comment on my LinkedIn post and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching and we'll see you in Boston next week if you're there or next time on Breaking Analysis (soft music)

Published Date : Jul 22 2022

SUMMARY :

in Palo Alto and Boston and of course the cyber names

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Eric BradleyPERSON

0.99+

Steven SchmidtPERSON

0.99+

Cheryl KnightPERSON

0.99+

VerizonORGANIZATION

0.99+

Dave VellantePERSON

0.99+

AWSORGANIZATION

0.99+

Chip SimontonPERSON

0.99+

Rob HoffPERSON

0.99+

AT&TORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

January 2020DATE

0.99+

BostonLOCATION

0.99+

IBMORGANIZATION

0.99+

June 24thDATE

0.99+

HoustonLOCATION

0.99+

GoogleORGANIZATION

0.99+

OktaORGANIZATION

0.99+

Kristin MartinPERSON

0.99+

JulyDATE

0.99+

SNAPORGANIZATION

0.99+

SymantecORGANIZATION

0.99+

CJ MosesPERSON

0.99+

John FurryPERSON

0.99+

NokiaORGANIZATION

0.99+

6%QUANTITY

0.99+

TeslaORGANIZATION

0.99+

JessePERSON

0.99+

40%QUANTITY

0.99+

CrowdStrikeORGANIZATION

0.99+

FourQUANTITY

0.99+

54%QUANTITY

0.99+

MayDATE

0.99+

Palo AltoORGANIZATION

0.99+

QualcommORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

SimontonPERSON

0.99+

JP MorganORGANIZATION

0.99+

8%QUANTITY

0.99+

14%QUANTITY

0.99+

Palo AltoLOCATION

0.99+

SailPointORGANIZATION

0.99+

TrendMicroORGANIZATION

0.99+

MondayDATE

0.99+

15%QUANTITY

0.99+

McAfeeORGANIZATION

0.99+

ZscalerORGANIZATION

0.99+

2019DATE

0.99+

FortinetORGANIZATION

0.99+

two daysQUANTITY

0.99+

JuneDATE

0.99+

45%QUANTITY

0.99+

10 surveysQUANTITY

0.99+

sixQUANTITY

0.99+

CyberArkORGANIZATION

0.99+

Thoma BravoORGANIZATION

0.99+

TenableORGANIZATION

0.99+

avid.vellante@siliconangle.comOTHER

0.99+

next weekDATE

0.99+

SentinelOneORGANIZATION

0.99+

early JuneDATE

0.99+

MetaORGANIZATION

0.99+

Breaking Analysis: Amping it up with Frank Slootman


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data-driven insights from the cube and ETR, this is Breaking Analysis with Dave Vellante. >> Organizations have considerable room to improve their performance without making expensive changes to their talent, their structure, or their fundamental business model. You don't need a slew of consultants to tell you what to do. You already know. What you need is to immediately ratchet up expectations, energy, urgency, and intensity. You have to fight mediocrity every step of the way. Amp it up and the results will follow. This is the fundamental premise of a hard-hitting new book written by Frank Slootman, CEO of Snowflake, and published earlier this year. It's called "Amp It Up, Leading for Hypergrowth "by Raising Expectations, Increasing Urgency, "and Elevating Intensity." Hello and welcome to this week's Wikibon CUBE Insights, powered by ETR. At Snowflake Summit last month, I was asked to interview Frank on stage about his new book. I've read it several times. And if you haven't read it, you should. Even if you have read it, in this Breaking Analysis, we'll dig deeper into the book and share some clarifying insights and nuances directly from Slootman himself from my one-on-one conversation with him. My first question to Slootman was why do you write this book? Okay, it's kind of a common throwaway question. And how the heck did you find time to do it? It's fairly well-known that a few years ago, Slootman put up a post on LinkedIn with the title Amp It Up. It generated so much buzz and so many requests for Frank's time that he decided that the best way to efficiently scale and share his thoughts on how to create high-performing companies and organizations was to publish a book. Now, he wrote the book during the pandemic. And I joked that they must not have Netflix in Montana where he resides. In a pretty funny moment, he said that writing the book was easier than promoting it. Take a listen. >> Denise, our CMO, you know, she just made sure that this process wasn't going to. It was more work for me to promote this book with all these damn podcasts and other crap, than actually writing the book, you know. And after a while, I was like I'm not doing another podcast. >> Now, the book gives a lot of interesting background information on Slootman's career and what he learned at various companies that he led and participated in. Now, I'm not going to go into most of that today, which is why you should read the book yourself. But Slootman, he's become somewhat of a business hero to many people, myself included. Leaders like Frank, Scott McNealy, Jayshree Ullal, and my old boss, Pat McGovern at IDG, have inspired me over the years. And each has applied his or her own approach to building cultures and companies. Now, when Slootman first took over the reins at Snowflake, I published a Breaking Analysis talking about Snowflake and what we could expect from the company now that Slootman and CFO Mike Scarpelli were back together. In that post, buried toward the end, I referenced the playbook that Frank used at Data Domain and ServiceNow, two companies that I followed quite closely as an analyst, and how it would be applied at Snowflake, that playbook if you will. Frank reached out to me afterwards and said something to the effect of, "I don't use playbooks. "I am a situational leader. "Playbooks, you know, they work in football games. "But in the military, they teach you "situational leadership." Pretty interesting learning moment for me. So I asked Frank on the stage about this. Here's what he said. >> The older you get, the more experience that you have, the more you become a prisoner of your own background because you sort of think in terms of what you know as opposed to, you know, getting outside of what you know and trying to sort of look at things like a five-year-old that has never seen this before. And then how would you, you know, deal with it? And I really try to force myself into I've never seen this before and how do I think about it? Because at least they're very different, you know, interpretations. And be open-minded, just really avoid that rinse and repeat mentality. And you know, I've brought people in from who have worked with me before. Some of them come with me from company to company. And they were falling prey to, you know, rinse and repeat. I would just literally go like that's not what we want. >> So think about that for a moment. I mean, imagine coming in to lead a new company and forcing yourself and your people to forget what they know that works and has worked in the past, put that aside and assess the current situation with an open mind, essentially start over. Now, that doesn't mean you don't apply what has worked in the past. Slootman talked to me about bringing back Scarpelli and the synergistic relationship that they have and how they build cultures and the no BS and hard truth mentality they bring to companies. But he bristles when people ask him, "What type of CEO are you?" He says, "Do we have to put a label on it? "It really depends on the situation." Now, one of the other really hard-hitting parts of the book was the way Frank deals with who to keep and who to let go. He uses the Volkswagen tagline of drivers wanted. He says in his book, in companies there are passengers and there are drivers, and we want drivers. He said, "You have to figure out really quickly "who the drivers are and basically throw the wrong people "off the bus, keep the right people, bring in new people "that fit the culture and put them "in the right seats on the bus." Now, these are not easy decisions to make. But as it pertains to getting rid of people, I'm reminded of the movie "Moneyball." Art Howe, the manager of the Oakland As, he refused to play Scott Hatteberg at first base. So the GM, Billy Bean played by Brad Pitt says to Peter Brand who was played by Jonah Hill, "You have to fire Carlos Pena." Don't learn how to fire people. Billy Bean says, "Just keep it quick. "Tell him he's been traded and that's it." So I asked Frank, "Okay, I get it. "Like the movie, when you have the wrong person "on the bus, you just have to make the decision, "be straightforward, and do it." But I asked him, "What if you're on the fence? "What if you're not completely sure if this person "is a driver or a passenger, if he or she "should be on the bus or not on the bus? "How do you handle that?" Listen to what he said. >> I have a very simple way to break ties. And when there's doubt, there's no doubt, okay? >> When there's doubt, there's no doubt. Slootman's philosophy is you have to be emphatic and have high conviction. You know, back to the baseball analogy, if you're thinking about taking the pitcher out of the game, take 'em out. Confrontation is the single hardest thing in business according to Slootman but you have to be intellectually honest and do what's best for the organization, period. Okay, so wow, that may sound harsh but that's how Slootman approaches it, very Belichickian if you will. But how can you amp it up on a daily basis? What's the approach that Slootman takes? We got into this conversation with a discussion about MBOs, management by objective. Slootman in his book says he's killed MBOs at every company he's led. And I asked him to explain why. His rationale was that individual MBOs invariably end up in a discussion about relief of the MBO if the person is not hitting his or her targets. And that detracts from the organizational alignment. He said at Snowflake everyone gets paid the same way, from the execs on down. It's a key way he creates focus and energy in an organization, by creating alignment, urgency, and putting more resources into the most important things. This is especially hard, Slootman says, as the organization gets bigger. But if you do approach it this way, everything gets easier. The cadence changes, the tempo accelerates, and it works. Now, and to emphasize that point, he said the following. Play the clip. >> Every meeting that you have, every email, every encounter in the hallway, whatever it is, is an opportunity to amp things up. That's why I use that title. But do you take that opportunity? >> And according to Slootman, if you don't take that opportunity, if you're not in the moment, amping it up, then you're thinking about your golf game or the tennis match that's going on this weekend or being out on your boat. And to the point, this approach is not for everyone. You're either built for it or you're not. But if you can bring people into the organization that can handle this type of dynamic, it creates energy. It becomes fun. Everything moves faster. The conversations are exciting. They're inspiring. And it becomes addictive. Now let's talk about priorities. I said to Frank that for me anyway, his book was an uncomfortable read. And he was somewhat surprised by that. "Really," he said. I said, "Yeah. "I mean, it was an easy read but uncomfortable "because over my career, I've managed thousands of people, "not tens of thousands but thousands, "enough to have to take this stuff very seriously." And I found myself throughout the book, oh, you know, on the one hand saying to myself, "Oh, I got that right, good job, Dave." And then other times, I was thinking to myself, "Oh wow, I probably need to rethink that. "I need to amp it up on that front." And the point is to Frank's leadership philosophy, there's no one correct way to approach all situations. You have to figure it out for yourself. But the one thing in the book that I found the hardest was Slootman challenged the reader. If you had to drop everything and focus on one thing, just one thing, for the rest of the year, what would that one thing be? Think about that for a moment. Were you able to come up with that one thing? What would happen to all the other things on your priority list? Are they all necessary? If so, how would you delegate those? Do you have someone in your organization who can take those off your plate? What would happen if you only focused on that one thing? These are hard questions. But Slootman really forces you to think about them and do that mental exercise. Look at Frank's body language in this screenshot. Imagine going into a management meeting with Frank and being prepared to share all the things you're working on that you're so proud of and all the priorities you have for the coming year. Listen to Frank in this clip and tell me it doesn't really make you think. >> I've been in, you know, on other boards and stuff. And I got a PowerPoint back from the CEO and there's like 15 things. They're our priorities for the year. I'm like you got 15, you got none, right? It's like you just can't decide, you know, what's important. So I'll tell you everything because I just can't figure out. And the thing is it's very hard to just say one thing. But it's really the mental exercise that matters. >> Going through that mental exercise is really important according to Slootman. Let's have a conversation about what really matters at this point in time. Why does it need to happen? And does it take priority over other things? Slootman says you have to pull apart the hairball and drive extraordinary clarity. You could be wrong, he says. And he admits he's been wrong on many things before. He, like everyone, is fearful of being wrong. But if you don't have the conversation according to Slootman, you're already defeated. And one of the most important things Slootman emphasizes in the book is execution. He said that's one of the reasons he wrote "Amp It Up." In our discussion, he referenced Pat Gelsinger, his former boss, who bought Data Domain when he was working for Joe Tucci at EMC. Listen to Frank describe the interaction with Gelsinger. >> Well, one of my prior bosses, you know, Pat Gelsinger, when they acquired Data Domain through EMC, Pat was CEO of Intel. And he quoted Andy Grove as saying, 'cause he was Intel for a long time when he was younger man. And he said no strategy is better than its execution, which if I find one of the most brilliant things. >> Now, before you go changing your strategy, says Slootman, you have to eliminate execution as a potential point of failure. All too often, he says, Silicon Valley wants to change strategy without really understanding whether the execution is right. All too often companies don't consider that maybe the product isn't that great. They will frequently, for example, make a change to sales leadership without questioning whether or not there's a product fit. According to Slootman, you have to drive hardcore intellectual honesty. And as uncomfortable as that may be, it's incredibly important and powerful. Okay, one of the other contrarian points in the book was whether or not to have a customer success department. Slootman says this became really fashionable in Silicon Valley with the SaaS craze. Everyone was following and pattern matching the lead of salesforce.com. He says he's eliminated the customer service department at every company he's led which had a customer success department. Listen to Frank Slootman in his own words talk about the customer success department. >> I view the whole company as a customer success function. Okay, I'm customer success, you know. I said it in my presentation yesterday. We're a customer-first organization. I don't need a department. >> Now, he went on to say that sales owns the commercial relationship with the customer. Engineering owns the technical relationship. And oh, by the way, he always puts support inside of the engineering department because engineering has to back up support. And rather than having a separate department for customer success, he focuses on making sure that the existing departments are functioning properly. Slootman also has always been big on net promoter score, NPS. And Snowflake's is very high at 72. And according to Slootman, it's not just the product. It's the people that drive that type of loyalty. Now, Slootman stresses amping up the big things and even the little things too. He told a story about someone who came into his office to ask his opinion about a tee shirt. And he turned it around on her and said, "Well, what do you think?" And she said, "Well, it's okay." So Frank made the point by flipping the situation. Why are you coming to me with something that's just okay? If we're going to do something, let's do it. Let's do it all out. Let's do it right and get excited about it, not just check the box and get something off your desk. Amp it up, all aspects of our business. Listen to Slootman talk about Steve Jobs and the relevance of demanding excellence and shunning mediocrity. >> He was incredibly intolerant of anything that he didn't think of as great. You know, he was immediately done with it and with the person. You know, I'm not that aggressive, you know, in that way. I'm a little bit nicer, you know, about it. But I still, you know, I don't want to give into expediency and mediocrity. I just don't, I'm just going to fight it, you know, every step of the way. >> Now, that story was about a little thing like some swag. But Slootman talked about some big things too. And one of the major ways Snowflake was making big, sweeping changes to amp up its business was reorganizing its go-to-market around industries like financial services, media, and healthcare. Here's some ETR data that shows Snowflake's net score or spending momentum for key industry segments over time. The red dotted line at 40% is an indicator of highly elevated spending momentum. And you can see for the key areas shown, Snowflake is well above that level. And we cut this data where responses were greater, the response numbers were greater than 15. So not huge ends but large enough to have meaning. Most were in the 20s. Now, it's relatively uncommon to see a company that's having the success of Snowflake make this kind of non-trivial change in the middle of steep S-curve growth. Why did they make this move? Well, I think it's because Snowflake realizes that its data cloud is going to increasingly have industry diversity and unique value by industry, that ecosystems and data marketplaces are forming around industries. So the more industry affinity Snowflake can create, the stronger its moat will be. It also aligns with how the largest and most prominent global system integrators, global SIs, go to market. This is important because as companies are transforming, they are radically changing their data architecture, how they think about data, how they approach data as a competitive advantage, and they're looking at data as specifically a monetization opportunity. So having industry expertise and knowledge and aligning with those customer objectives is going to serve Snowflake and its ecosystems well in my view. Slootman even said he joined the board of Instacart not because he needed another board seat but because he wanted to get out of his comfort zone and expose himself to other industries as a way to learn. So look, we're just barely scratching the surface of Slootman's book and I've pulled some highlights from our conversation. There's so much more that I can share just even from our conversation. And I will as the opportunity arises. But for now, I'll just give you the kind of bumper sticker of "Amp It Up." Raise your standards by taking every opportunity, every interaction, to increase your intensity. Get your people aligned and moving in the same direction. If it's the wrong direction, figure it out and course correct quickly. Prioritize and sharpen your focus on things that will really make a difference. If you do these things and increase the urgency in your organization, you'll naturally pick up the pace and accelerate your company. Do these things and you'll be able to transform, better identify adjacent opportunities and go attack them, and create a lasting and meaningful experience for your employees, customers, and partners. Okay, that's it for today. Thanks for watching. And thank you to Alex Myerson who's on production and he manages the podcast for Breaking Analysis. Kristin Martin and Cheryl Knight help get the word out on social and in our newsletters. And Rob Hove is our EIC over at Silicon Angle who does some wonderful and tremendous editing. Thank you all. Remember, all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. And you can email me at david.vellante@siliconangle.com or DM me @dvellante or comment on my LinkedIn posts. And please do check out etr.ai for the best survey data in enterprise tech. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. Be well. And we'll see you next time on Breaking Analysis. (upbeat music)

Published Date : Jul 17 2022

SUMMARY :

insights from the cube and ETR, And how the heck did than actually writing the book, you know. "But in the military, they teach you And you know, I've brought people in "on the bus, you just And when there's doubt, And that detracts from the Every meeting that you have, And the point is to Frank's And I got a PowerPoint back from the CEO And one of the most important things the most brilliant things. According to Slootman, you have to drive Okay, I'm customer success, you know. and even the little things too. going to fight it, you know, and he manages the podcast

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SlootmanPERSON

0.99+

FrankPERSON

0.99+

Alex MyersonPERSON

0.99+

Frank SlootmanPERSON

0.99+

EMCORGANIZATION

0.99+

Pat McGovernPERSON

0.99+

Pat GelsingerPERSON

0.99+

Dave VellantePERSON

0.99+

PatPERSON

0.99+

DenisePERSON

0.99+

MontanaLOCATION

0.99+

Cheryl KnightPERSON

0.99+

Peter BrandPERSON

0.99+

Joe TucciPERSON

0.99+

Art HowePERSON

0.99+

GelsingerPERSON

0.99+

Kristin MartinPERSON

0.99+

Brad PittPERSON

0.99+

Jonah HillPERSON

0.99+

VolkswagenORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

Andy GrovePERSON

0.99+

Mike ScarpelliPERSON

0.99+

IntelORGANIZATION

0.99+

MoneyballTITLE

0.99+

Carlos PenaPERSON

0.99+

DavePERSON

0.99+

Scott McNealyPERSON

0.99+

Jayshree UllalPERSON

0.99+

Billy BeanPERSON

0.99+

yesterdayDATE

0.99+

SnowflakeORGANIZATION

0.99+

Rob HovePERSON

0.99+

Scott HattebergPERSON

0.99+

thousandsQUANTITY

0.99+

david.vellante@siliconangle.comOTHER

0.99+

Data DomainORGANIZATION

0.99+

two companiesQUANTITY

0.99+

Silicon ValleyLOCATION

0.99+

Silicon AngleORGANIZATION

0.99+

ServiceNowORGANIZATION

0.99+

first questionQUANTITY

0.99+

Steve JobsPERSON

0.99+

last monthDATE

0.99+

IDGORGANIZATION

0.99+

ScarpelliPERSON

0.99+

15QUANTITY

0.99+

40%QUANTITY

0.99+

siliconangle.comOTHER

0.99+

72QUANTITY

0.99+

Breaking Analysis: H1 of ‘22 was ugly…H2 could be worse Here’s why we’re still optimistic


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> After a two-year epic run in tech, 2022 has been an epically bad year. Through yesterday, The NASDAQ composite is down 30%. The S$P 500 is off 21%. And the Dow Jones Industrial average 16% down. And the poor holders at Bitcoin have had to endure a nearly 60% decline year to date. But judging by the attendance and enthusiasm, in major in-person tech events this spring. You'd never know that tech was in the tank. Moreover, walking around the streets of Las Vegas, where most tech conferences are held these days. One can't help but notice that the good folks of Main Street, don't seem the least bit concerned that the economy is headed for a recession. Hello, and welcome to this weeks Wiki Bond Cube Insights powered by ETR. In this Breaking Analysis we'll share our main takeaways from the first half of 2022. And talk about the outlook for tech going forward, and why despite some pretty concerning headwinds we remain sanguine about tech generally, but especially enterprise tech. Look, here's the bumper sticker on why many folks are really bearish at the moment. Of course, inflation is high, other than last year, the previous inflation high this century was in July of 2008, it was 5.6%. Inflation has proven to be very, very hard to tame. You got gas at $7 dollars a gallon. Energy prices they're not going to suddenly drop. Interest rates are climbing, which will eventually damage housing. Going to have that ripple effect, no doubt. We're seeing layoffs at companies like Tesla and the crypto names are also trimming staff. Workers, however are still in short supply. So wages are going up. Companies in retail are really struggling with the right inventory, and they can't even accurately guide on their earnings. We've seen a version of this movie before. Now, as it pertains to tech, Crawford Del Prete, who's the CEO of IDC explained this on theCUBE this very week. And I thought he did a really good job. He said the following, >> Matt, you have a great statistic that 80% of companies used COVID as their point to pivot into digital transformation. And to invest in a different way. And so what we saw now is that tech is now where I think companies need to focus. They need to invest in tech. They need to make people more productive with tech and it played out in the numbers. Now so this year what's fascinating is we're looking at two vastly different markets. We got gasoline at $7 a gallon. We've got that affecting food prices. Interesting fun fact recently it now costs over $1,000 to fill an 18 wheeler. All right, based on, I mean, this just kind of can't continue. So you think about it. >> Don't put the boat in the water. >> Yeah, yeah, yeah. Good luck if ya, yeah exactly. So a family has kind of this bag of money, and that bag of money goes up by maybe three, 4% every year, depending upon earnings. So that is sort of sloshing around. So if food and fuel and rent is taking up more, gadgets and consumer tech are not, you're going to use that iPhone a little longer. You're going to use that Android phone a little longer. You're going to use that TV a little longer. So consumer tech is getting crushed, really it's very, very, and you saw it immediately in ad spending. You've seen it in Meta, you've seen it in Facebook. Consumer tech is doing very, very, it is tough. Enterprise tech, we haven't been in the office for two and a half years. We haven't upgraded whether that be campus wifi, whether that be servers, whether that be commercial PCs as much as we would have. So enterprise tech, we're seeing double digit order rates. We're seeing strong, strong demand. We have combined that with a component shortage, and you're seeing some enterprise companies with a quarter of backlog, I mean that's really unheard of. >> And higher prices, which also profit. >> And therefore that drives up the prices. >> And this is a theme that we've heard this year at major tech events, they've really come roaring back. Last year, theCUBE had a huge presence at AWS Reinvent. The first Reinvent since 2019, it was really well attended. Now this was before the effects of the omicron variant, before they were really well understood. And in the first quarter of 2022, things were pretty quiet as far as tech events go But theCUBE'a been really busy this spring and early into the summer. We did 12 physical events as we're showing here in the slide. Coupa, did Women in Data Science at Stanford, Coupa Inspire was in Las Vegas. Now these are both smaller events, but they were well attended and beat expectations. San Francisco Summit, the AWS San Francisco Summit was a bit off, frankly 'cause of the COVID concerns. They were on the rise, then we hit Dell Tech World which was packed, it had probably around 7,000 attendees. Now Dockercon was virtual, but we decided to include it here because it was a huge global event with watch parties and many, many tens of thousands of people attending. Now the Red Hat Summit was really interesting. The choice that Red Hat made this year. It was purposefully scaled down and turned into a smaller VIP event in Boston at the Western, a couple thousand people only. It was very intimate with a much larger virtual presence. VeeamON was very well attended, not as large as previous VeeamON events, but again beat expectations. KubeCon and Cloud Native Con was really successful in Spain, Valencia, Spain. PagerDuty Summit was again a smaller intimate event in San Francisco. And then MongoDB World was at the new Javits Center and really well attended over the three day period. There were lots of developers there, lots of business people, lots of ecosystem partners. And then the Snowflake summit in Las Vegas, it was the most vibrant from the standpoint of the ecosystem with nearly 10,000 attendees. And I'll come back to that in a moment. Amazon re:Mars is the Amazon AI robotic event, it's smaller but very, very cool, a lot of innovation. And just last week we were at HPE Discover. They had around 8,000 people attending which was really good. Now I've been to over a dozen HPE or HPE Discover events, within Europe and the United States over the past decade. And this was by far the most vibrant, lot of action. HPE had a little spring in its step because the company's much more focused now but people was really well attended and people were excited to be there, not only to be back at physical events, but also to hear about some of the new innovations that are coming and HPE has a long way to go in terms of building out that ecosystem, but it's starting to form. So we saw that last week. So tech events are back, but they are smaller. And of course now a virtual overlay, they're hybrid. And just to give you some context, theCUBE did, as I said 12 physical events in the first half of 2022. Just to compare that in 2019, through June of that year we had done 35 physical events. Yeah, 35. And what's perhaps more interesting is we had our largest first half ever in our 12 year history because we're doing so much hybrid and virtual to compliment the physical. So that's the new format is CUBE plus digital or sometimes just digital but that's really what's happening in our business. So I think it's a reflection of what's happening in the broader tech community. So everyone's still trying to figure that out but it's clear that events are back and there's no replacing face to face. Or as I like to say, belly to belly, because deals are done at physical events. All these events we've been to, the sales people are so excited. They're saying we're closing business. Pipelines coming out of these events are much stronger, than they are out of the virtual events but the post virtual event continues to deliver that long tail effect. So that's not going to go away. The bottom line is hybrid is the new model. Okay let's look at some of the big themes that we've taken away from the first half of 2022. Now of course, this is all happening under the umbrella of digital transformation. I'm not going to talk about that too much, you've had plenty of DX Kool-Aid injected into your veins over the last 27 months. But one of the first observations I'll share is that the so-called big data ecosystem that was forming during the hoop and around, the hadoop infrastructure days and years. then remember it dispersed, right when the cloud came in and kind of you know, not wiped out but definitely dampened the hadoop enthusiasm for on-prem, the ecosystem dispersed, but now it's reforming. There are large pockets that are obviously seen in the various clouds. And we definitely see a ecosystem forming around MongoDB and the open source community gathering in the data bricks ecosystem. But the most notable momentum is within the Snowflake ecosystem. Snowflake is moving fast to win the day in the data ecosystem. They're providing a single platform that's bringing different data types together. Live data from systems of record, systems of engagement together with so-called systems of insight. These are converging and while others notably, Oracle are architecting for this new reality, Snowflake is leading with the ecosystem momentum and a new stack is emerging that comprises cloud infrastructure at the bottom layer. Data PaaS layer for app dev and is enabling an ecosystem of partners to build data products and data services that can be monetized. That's the key, that's the top of the stack. So let's dig into that further in a moment but you're seeing machine intelligence and data being driven into applications and the data and application stacks they're coming together to support the acceleration of physical into digital. It's happening right before our eyes in every industry. We're also seeing the evolution of cloud. It started with the SaaS-ification of the enterprise where organizations realized that they didn't have to run their own software on-prem and it made sense to move to SaaS for CRM or HR, certainly email and collaboration and certain parts of ERP and early IS was really about getting out of the data center infrastructure management business called that cloud 1.0, and then 2.0 was really about changing the operating model. And now we're seeing that operating model spill into on-prem workloads finally. We're talking about here about initiatives like HPE's Green Lake, which we heard a lot about last week at Discover and Dell's Apex, which we heard about in May, in Las Vegas. John Furrier had a really interesting observation that basically this is HPE's and Dell's version of outposts. And I found that interesting because outpost was kind of a wake up call in 2018 and a shot across the bow at the legacy enterprise infrastructure players. And they initially responded with these flexible financial schemes, but finally we're seeing real platforms emerge. Again, we saw this at Discover and at Dell Tech World, early implementations of the cloud operating model on-prem. I mean, honestly, you're seeing things like consoles and billing, similar to AWS circa 2014, but players like Dell and HPE they have a distinct advantage with respect to their customer bases, their service organizations, their very large portfolios, especially in the case of Dell and the fact that they have more mature stacks and knowhow to run mission critical enterprise applications on-prem. So John's comment was quite interesting that these firms are basically building their own version of outposts. Outposts obviously came into their wheelhouse and now they've finally responded. And this is setting up cloud 3.0 or Supercloud, as we like to call it, an abstraction layer, that sits above the clouds that serves as a unifying experience across a continuum of on-prem across clouds, whether it's AWS, Azure, or Google. And out to both the near and far edge, near edge being a Lowes or a Home Depot, but far edge could be space. And that edge again is fragmented. You've got the examples like the retail stores at the near edge. Outer space maybe is the far edge and IOT devices is perhaps the tiny edge. No one really knows how the tiny edge is going to play out but it's pretty clear that it's not going to comprise traditional X86 systems with a cool name tossed out to the edge. Rather, it's likely going to require a new low cost, low power, high performance architecture, most likely RM based that will enable things like realtime AI inferencing at that edge. Now we've talked about this a lot on Breaking Analysis, so I'm not going to double click on it. But suffice to say that it's very possible that new innovations are going to emerge from the tiny edge that could really disrupt the enterprise in terms of price performance. Okay, two other quick observations. One is that data protection is becoming a much closer cohort to the security stack where data immutability and air gaps and fast recovery are increasingly becoming a fundamental component of the security strategy to combat ransomware and recover from other potential hacks or disasters. And I got to say from our observation, Veeam is leading the pack here. It's now claiming the number one revenue spot in a statistical dead heat with the Dell's data protection business. That's according to Veeam, according to IDC. And so that space continues to be of interest. And finally, Broadcom's acquisition of Dell. It's going to have ripple effects throughout the enterprise technology business. And there of course, there are a lot of questions that remain, but the one other thing that John Furrier and I were discussing last night John looked at me and said, "Dave imagine if VMware runs better on Broadcom components and OEMs that use Broadcom run VMware better, maybe Broadcom doesn't even have to raise prices on on VMware licenses. Maybe they'll just raise prices on the OEMs and let them raise prices to the end customer." Interesting thought, I think because Broadcom is so P&L focused that it's probably not going to be the prevailing model but we'll see what happens to some of the strategic projects rather like Monterey and Capitola and Thunder. We've talked a lot about project Monterey, the others we'll see if they can make the cut. That's one of the big concerns because it's how OEMs like the ones that are building their versions of outposts are going to compete with the cloud vendors, namely AWS in the future. I want to come back to the comment on the data stack for a moment that we were talking about earlier, we talked about how the big data ecosystem that was once coalescing around hadoop dispersed. Well, the data value chain is reforming and we think it looks something like this picture, where cloud infrastructure lives at the bottom. We've said many times the cloud is expanding and evolving. And if companies like Dell and HPE can truly build a super cloud infrastructure experience then they will be in a position to capture more of the data value. If not, then it's going to go to the cloud players. And there's a live data layer that is increasingly being converged into platforms that not only simplify the movement in ELTing of data but also allow organizations to compress the time to value. Now there's a layer above that, we sometimes call it the super PaaS layer if you will, that must comprise open source tooling, partners are going to write applications and leverage platform APIs and build data products and services that can be monetized at the top of the stack. So when you observe the battle for the data future it's unlikely that any one company is going to be able to do this all on their own, which is why I often joke that the 2020s version of a sweaty Steve Bomber running around the stage, screaming, developers, developers developers, and getting the whole audience into it is now about ecosystem ecosystem ecosystem. Because when you need to fill gaps and accelerate features and provide optionality a list of capabilities on the left hand side of this chart, that's going to come from a variety of different companies and places, we're talking about catalogs and AI tools and data science capabilities, data quality, governance tools and it should be of no surprise to followers of Breaking Analysis that on the right hand side of this chart we're including the four principles of data mesh, which of course were popularized by Zhamak Dehghani. So decentralized data ownership, data as products, self-serve platform and automated or computational governance. Now whether this vision becomes a reality via a proprietary platform like Snowflake or somehow is replicated by an open source remains to be seen but history generally shows that a defacto standard for more complex problems like this is often going to emerge prior to an open source alternative. And that would be where I would place my bets. Although even that proprietary platform has to include open source optionality. But it's not a winner take all market. It's plenty of room for multiple players and ecosystem innovators, but winner will definitely take more in my opinion. Okay, let's close with some ETR data that looks at some of those major platform plays who talk a lot about digital transformation and world changing impactful missions. And they have the resources really to compete. This is an XY graphic. It's a view that we often show, it's got net score on the vertical access. That's a measure of spending momentum, and overlap or presence in the ETR survey. That red, that's the horizontal access. The red dotted line at 40% indicates that the platform is among the highest in terms of spending velocity. Which is why I always point out how impressive that makes AWS and Azure because not only are they large on the horizontal axis, the spending momentum on those two platforms rivals even that of Snowflake which continues to lead all on the vertical access. Now, while Google has momentum, given its goals and resources, it's well behind the two leaders. We've added Service Now and Salesforce, two platform names that have become the next great software companies. Joining likes of Oracle, which we show here and SAP not shown along with IBM, you can see them on this chart. We've also plotted MongoDB, which we think has real momentum as a company generally but also with Atlas, it's managed cloud database as a service specifically and Red Hat with trying to become the standard for app dev in Kubernetes environments, which is the hottest trend right now in application development and application modernization. Everybody's doing something with Kubernetes and of course, Red Hat with OpenShift wants to make that a better experience than do it yourself. The DYI brings a lot more complexity. And finally, we've got HPE and Dell both of which we've talked about pretty extensively here and VMware and Cisco. Now Cisco is executing on its portfolio strategy. It's got a lot of diverse components to its company. And it's coming at the cloud of course from a networking and security perspective. And that's their position of strength. And VMware is a staple of the enterprise. Yes, there's some uncertainty with regards to the Broadcom acquisition, but one thing is clear vSphere isn't going anywhere. It's entrenched and will continue to run lots of IT for years to come because it's the best platform on the planet. Now, of course, these are just some of the players in the mix. We expect that numerous non-traditional technology companies this is important to emerge as new cloud players. We've put a lot of emphasis on the data ecosystem because to us that's really going to be the main spring of digital, i.e., a digital company is a data company and that means an ecosystem of data partners that can advance outcomes like better healthcare, faster drug discovery, less fraud, cleaner energy, autonomous vehicles that are safer, smarter, more efficient grids and factories, better government and virtually endless litany of societal improvements that can be addressed. And these companies will be building innovations on top of cloud platforms creating their own super clouds, if you will. And they'll come from non-traditional places, industries, finance that take their data, their software, their tooling bring them to their customers and run them on various clouds. Okay, that's it for today. Thanks to Alex Myerson, who is on production and does the podcast for Breaking Analysis, Kristin Martin and Cheryl Knight, they help get the word out. And Rob Hoofe is our editor and chief over at Silicon Angle who helps edit our posts. Remember all these episodes are available as podcasts wherever you listen. All you got to do is search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. You can email me directly at david.vellante@siliconangle.com or DM me at dvellante, or comment on my LinkedIn posts. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE's Insights powered by ETR. Thanks for watching be well. And we'll see you next time on Breaking Analysis. (upbeat music)

Published Date : Jul 2 2022

SUMMARY :

This is Breaking Analysis that the good folks of Main Street, and it played out in the numbers. haven't been in the office And higher prices, And therefore that is that the so-called big data ecosystem

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

TeslaORGANIZATION

0.99+

Rob HoofePERSON

0.99+

CiscoORGANIZATION

0.99+

Cheryl KnightPERSON

0.99+

Dave VellantePERSON

0.99+

JohnPERSON

0.99+

DellORGANIZATION

0.99+

Kristin MartinPERSON

0.99+

July of 2008DATE

0.99+

EuropeLOCATION

0.99+

5.6%QUANTITY

0.99+

MattPERSON

0.99+

SpainLOCATION

0.99+

GoogleORGANIZATION

0.99+

BostonLOCATION

0.99+

San FranciscoLOCATION

0.99+

MontereyORGANIZATION

0.99+

IBMORGANIZATION

0.99+

12 yearQUANTITY

0.99+

2018DATE

0.99+

DiscoverORGANIZATION

0.99+

Zhamak DehghaniPERSON

0.99+

Las VegasLOCATION

0.99+

Palo AltoLOCATION

0.99+

2019DATE

0.99+

MayDATE

0.99+

JuneDATE

0.99+

AWSORGANIZATION

0.99+

IDCORGANIZATION

0.99+

Last yearDATE

0.99+

OracleORGANIZATION

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

BroadcomORGANIZATION

0.99+

Silicon AngleORGANIZATION

0.99+

Crawford Del PretePERSON

0.99+

30%QUANTITY

0.99+

80%QUANTITY

0.99+

HPEORGANIZATION

0.99+

12 physical eventsQUANTITY

0.99+

DavePERSON

0.99+

KubeConEVENT

0.99+

last weekDATE

0.99+

United StatesLOCATION

0.99+

AndroidTITLE

0.99+

DockerconEVENT

0.99+

40%QUANTITY

0.99+

two and a half yearsQUANTITY

0.99+

35 physical eventsQUANTITY

0.99+

Steve BomberPERSON

0.99+

CapitolaORGANIZATION

0.99+

Cloud Native ConEVENT

0.99+

Red Hat SummitEVENT

0.99+

two leadersQUANTITY

0.99+

San Francisco SummitEVENT

0.99+

last yearDATE

0.99+

21%QUANTITY

0.99+

david.vellante@siliconangle.comOTHER

0.99+

VeeamORGANIZATION

0.99+

yesterdayDATE

0.99+

OneQUANTITY

0.99+

John FurrierPERSON

0.99+

VeeamONEVENT

0.99+

this yearDATE

0.99+

16%QUANTITY

0.99+

$7 a gallonQUANTITY

0.98+

each weekQUANTITY

0.98+

over $1,000QUANTITY

0.98+

35QUANTITY

0.98+

PagerDuty SummitEVENT

0.98+

Breaking Analysis: Tech Spending Intentions are Holding Despite Macro Concerns


 

>> From theCUBE studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante. >> Despite fears of inflation, supply chain issues skyrocketing energy and home prices and global instability caused by the Ukraine crisis CIOs and IT buyers continue to expect overall spending to increase more than 6% in 2022. Now, while this is lower than our 8% prediction that we made earlier this year in January, it remains in line with last year's roughly six to 7% growth and is holding firm with the expectations reported by tech executives on the ETR surveys last quarter. Hello and welcome to this week's wiki bond cube insights powered by ETR in this breaking analysis, we'll update you on our latest look at tech spending with a preliminary take from ETR's latest macro drill down survey. We'll share some insights to which vendors have shown the biggest change in spending trajectory. And we'll tap our technical analysts to get a read on what they think it means for technology stocks going forward. The IT spending sentiment among IT buyers remains pretty solid. >> In the past two months, we've had conversations with dozens of CIOs, chief digital officers data executives, IT managers, and application developers, and across the board, they've indicated that for now at least their spending levels remain largely unchanged. The latest ETR drill down data which will share shortly, confirms these anecdotal checks. However, the interpretation of this data it's somewhat nuanced. Part of the reason for the spending levels being you know reasonably strong and holding up is inflation. Stuff costs more so spending levels are higher forcing IT managers to prioritize. Now security remains the number one priority and is less susceptible to cuts, cloud migration, productivity initiatives and other data projects remain top priorities. >> So where are CIO's robbing from Peter to pay Paul to focus on these priorities? Well, we've seen a slight uptick in certain speculative. IT projects being put on hold or frozen for a period of time. And according to ETR survey data we've seen some hiring freezes reported and this is especially notable in the healthcare sector. ETR also surveyed its buyer base to find out where they were adjusting their budgets and the strategies and tactics they were using to do so. Consolidating IT vendors was by far the most cited tactic. Now this makes sense as companies in an effort to negotiate better deals will often forego investments in newer so-called best of breed products and services, and negotiate bundles from larger suppliers. You know, even though they might not be as functional, the buyers >> can get a better deal if they bundle together from one of their larger suppliers. Think Microsoft or a Dell or other, you know, large companies. ETR survey respondents also cited cutting the cloud bill where discretionary spending was in play was another strategy or tactic that they were using. We certainly saw this with some of the largest snowflake customers this past quarter. Where even though they were still growing consumption rapidly certain snowflake customers dialed down their consumption and pushed spending off to future quarters. Now remember in the case of snowflake, anyway, customers negotiate consumption rates and their pricing based on a total commitment over a period of time. So while they may consume less in one quarter, over the lifetime of the contract, snowflake, as do many other cloud companies, have good visibility on the lifetime value of a deal. Now this next chart shows the latest ETR spending expectations among more than 900 respondents. The bars represent spending growth expectations from the periods of December, 2021 that's the gray bars, March of 2022 survey in the blue, and the most recent June data, That's the yellow bar. So you can see spending expectations for the quarter is down slightly in the mid 5% range. But overall for the year expectations remain in the mid 6% range. Now it's down from 8%, 8.3% in December where it looked like 2022 was going to really be a breakout year and have more momentum than even last year. Now, remember this was before Russia invaded Ukraine which occurred in mid-February of this year. So expectations were a little higher. So look, generally speaking CIOs have told us that their CFOs and CEOs have lowered their earnings outlooks and communicated that to Wall Street. They've told us that unless and until these revised forecasts appear at risk, they continue to expect their budget levels to remain pretty constant. Now there's still plenty of momentum and spending velocity on specific vendor platforms. Let's take a look at that. >> This chart shows the companies with the greatest spending momentum as measured by ETRs proprietary net score methodology. Net score essentially measures the net percent of customers spending more on a particular platform. That measurement is shown on the Y axis. The red line there that's inserted that red dotted line at 40%, we consider to be a highly elevated mark. And the green dots are companies in the ETR survey that are near or above that line. The X axis measures the presence in the data set, how much, you know sort of pervasiveness, if you will, is in the data. It's kind of a proxy for market presence. Now, of course we all know Kubernetes is not a company, but it remains an area where organizations are spending lots of resources and time particularly to modernize and mobilize applications. Snowflake remains the company which leads all firms in spending velocity, but as you'll see momentarily, despite its highest position relative to everybody else in the survey, it's still down from its previous levels in the high seventies and low 80% range. AWS is incredibly impressive because it has an elevated level but also a big presence in the data set in the survey. Same with Microsoft, same with ServiceNow which also stands out. And you can see the other smaller vendors like HashiCorp which is increasingly being seen as a strategic cross cloud enabler. They're showing, spending momentum. The RPA vendors you see in there automation anywhere and UI path are in the mix with numerous security companies, CrowdStrike, CyberArk, Netskope, Cloudflare, Tenable Okta, Zscaler Palo Alto networks, Sale Point Fortunate. A big number of cybersecurity firms hovering at or above that 40% mark you can see pure storage remains elevated as do PagerDuty and Coupa. So plenty of good news here, despite the recent tech crash. So that was the good, here's the not so good. So >> there is no 40% line on this chart because all these companies are well below that line. Now this doesn't mean these companies are bad companies. They just don't have the spending velocity of the ones we showed earlier. A good example here is Oracle. Look how they stand out on the X axis with a huge market presence. And Oracle remains an incredibly successful company selling to high end customers and really owning that mission critical data and application space. And remember ETR measures spending activity, but not actual spending dollars. So Oracle is skewed as a result because Oracle customers spend big bucks. But the fact is that Oracle has a large legacy install base that pulls down their growth rates. And that does show up in the ETR survey data. Broadcom is another example. They're one of the most successful companies in the industry, and they're not going after growth at all costs at all. They're going after EBITDA and of course ETR doesn't measure EBIT. So just keep that in mind, as you look at this data. Now another way to look at the data and the survey, is exploring the net score movement over the last period amongst companies. So how are they moving? What's happening to the net score over time. And this chart shows the year over year >> net score change for vendors that participate in at least three sectors within the ETR taxonomy. Remember ETR taxonomy has 12, 15 different segments. So the names above or below the gray dotted line are those companies where the net score has increased or decreased meaningfully. So to the earlier chart, it's all relative, right? Look at Oracle. While having lower net scores has also shown a more meaningful improvement in net score than some of the others, as have SAP and Teradata. Now what's impressive to me here is how AWS, Microsoft, and Google are actually holding that dotted line that gray line pretty well despite their size and the other ironically interesting two data points here are Broadcom and Nutanix. Now Broadcom, of course, as we've reported and dug into, is buying VMware and, and of, of course most customers are concerned about getting hit with higher prices. Once Broadcom takes over. Well Nutanix despite its change in net scores, in a good position potentially to capture some of that VMware business. Just yesterday, I talked to a customer who told me he migrated his entire portfolio off VMware using Nutanix AHV, the Acropolis hypervisor. And that was in an effort to avoid the VTEX specifically. Now this was a smaller customer granted and it's not representative of what I feel is Broadcom's ICP the ideal customer profile, but look, Nutanix should benefit from the Broadcom acquisition. If it can position itself to pick up the business that Broadcom really doesn't want. That kind of bottom of the pyramid. One person's trash is another's treasure as they say, okay. And here's that same chart for companies >> that participate in less than three segments. So, two or one of the segments in the ETR taxonomy. Only three names are seeing positive movement year over year in net score. SUSE under the leadership of amazing CEO, Melissa Di Donato. She's making moves. The company went public last year and acquired rancher labs in 2020. Look, we know that red hat is the big dog in Kubernetes but since the IBM acquisition people have looked to SUSE as a possible alternative and it's showing up in the numbers. It's a nice business. It's going to do more than 600 million this year in revenue, SUSE that is. It's got solid double digit growth in kind of the low teens. It's profitability is under pressure but they're definitely a player that is found a niche and is worth watching. The SolarWinds, What can I say there? I mean, maybe it's a dead cat bounce coming off the major breach that we saw a couple years ago. Some of its customers maybe just can't move off the platform. Constant contact we really don't follow and don't really, you know, focus on them. So, not much to say there. Now look at all the high priced earning stocks or infinite PE stocks that have no E and divide by zero or a negative number and boom, you have infinite PE and look at how their net scores have dropped. We've reported extensively on snowflake. They're still number one as we showed you earlier, net score, but big moves off their highs. Okta, Datadog, Zscaler, SentinelOne Dynatrace, big downward moves, and you can see the rest. So this chart really speaks to the change in expectations from the COVID bubble. Despite the fact that many of these companies CFOs would tell you that the pandemic wasn't necessarily a tailwind for them, but it certainly seemed to be the case when you look back in some of the ETR data. But a big question in the community is what's going to happen to these tech stocks, these tech companies in the market? We reached out to both Eric Bradley of ETR who used to be a technical analyst on Wall Street, and the long time trader and breaking analysis contributor, Chip Symington to get a read on what they thought. First, you know the market >> first point of the market has been off 11 out of the past 12 weeks. And bare market rallies like what we're seeing today and yesterday, they happen from time to time and it was kind of expected. Chair Powell's testimony was broadly viewed as a positive by the street because higher interest rates appear to be pushing commodity prices down. And a weaker consumer sentiment may point to a less onerous inflation outlook. That's good for the market. Chip Symington pointed out to breaking analysis a while ago that the NASDAQ has been on a trend line for the past six months where its highs are lower and the lows are lower and that's a bad sign. And we're bumping up against that trend line here. Meaning if it breaks through that trend it could be a buying signal. As he feels that tech stocks are oversold. He pointed to a recent bounce in semiconductors and cited the Qualcomm example. Here's a company trading at 12 times forward earnings with a sustained 14% growth rate over the next couple of years. And their cash flow is able to support their 2.4, 2% annual dividend. So overall Symington feels this rally was absolutely expected. He's cautious because we're still in a bear market but he's beginning to, to turn bullish. And Eric Bradley added that He feels the market is building a base here and he doesn't expect a 1970s or early 1980s year long sideways move because of all the money that's still in the system. You know, but it could bounce around for several months And remember with higher interest rates there are going to be more options other than equities which for many years has not been the case. Obviously inflation and recession. They are like two looming towers that we're all watching closely and will ultimately determine if, when, and how this market turns around. Okay, that's it for today. Thanks to my colleagues, Stephanie Chan, who helps research breaking analysis topics sometimes, and Alex Myerson who is on production in the podcast. Kristin Martin and Cheryl Knight they help get the word out and do all of our newsletters. And Rob Hof is our Editor in Chief over at siliconangle.com and does some wonderful editing for breaking analysis. Thank you. Remember, all these episodes are available as podcasts wherever you listen. All you got to do is search breaking analysis podcasts. I publish each week on wikibon.com and Siliconangle.com. And of course you can reach me by email at david.vellante@siliconangle.com or DM me at DVellante comment on my LinkedIn post and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for the CUBE insights powered by ETR. Stay safe, be well. And we'll see you next time. (soft music)

Published Date : Jun 25 2022

SUMMARY :

bringing you data driven by tech executives on the and across the board, they've and the strategies and tactics and the most recent June in the data set, how much, you know and the survey, is exploring That kind of bottom of the pyramid. in kind of the low teens. and the lows are lower

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Stephanie ChanPERSON

0.99+

Alex MyersonPERSON

0.99+

Cheryl KnightPERSON

0.99+

Eric BradleyPERSON

0.99+

BroadcomORGANIZATION

0.99+

Kristin MartinPERSON

0.99+

MicrosoftORGANIZATION

0.99+

NutanixORGANIZATION

0.99+

AWSORGANIZATION

0.99+

Melissa Di DonatoPERSON

0.99+

2020DATE

0.99+

GoogleORGANIZATION

0.99+

Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

DecemberDATE

0.99+

DatadogORGANIZATION

0.99+

OracleORGANIZATION

0.99+

ZscalerORGANIZATION

0.99+

2.4, 2%QUANTITY

0.99+

yesterdayDATE

0.99+

12 timesQUANTITY

0.99+

December, 2021DATE

0.99+

PaulPERSON

0.99+

14%QUANTITY

0.99+

Chip SymingtonPERSON

0.99+

DellORGANIZATION

0.99+

twoQUANTITY

0.99+

Palo AltoLOCATION

0.99+

Rob HofPERSON

0.99+

NASDAQORGANIZATION

0.99+

PagerDutyORGANIZATION

0.99+

QualcommORGANIZATION

0.99+

2022DATE

0.99+

oneQUANTITY

0.99+

40%QUANTITY

0.99+

last yearDATE

0.99+

OktaORGANIZATION

0.99+

1970sDATE

0.99+

PeterPERSON

0.99+

11QUANTITY

0.99+

more than 600 millionQUANTITY

0.99+

last quarterDATE

0.99+

FirstQUANTITY

0.99+

8%QUANTITY

0.99+

ETRORGANIZATION

0.99+

david.vellante@siliconangle.comOTHER

0.99+

more than 900 respondentsQUANTITY

0.99+

two looming towersQUANTITY

0.99+

more than 6%QUANTITY

0.99+

JuneDATE

0.99+

NetskopeORGANIZATION

0.99+

dozensQUANTITY

0.99+

todayDATE

0.99+

CoupaORGANIZATION

0.99+

VTEXORGANIZATION

0.98+

bothQUANTITY

0.98+

zeroQUANTITY

0.98+

each weekQUANTITY

0.98+

AcropolisORGANIZATION

0.98+

less than three segmentsQUANTITY

0.98+

this yearDATE

0.98+

early 1980sDATE

0.98+

three namesQUANTITY

0.97+

siliconangle.comOTHER

0.97+

this weekDATE

0.97+

theCUBEORGANIZATION

0.97+

TeradataORGANIZATION

0.97+

Nutanix AHVORGANIZATION

0.97+

CyberArkORGANIZATION

0.97+

8.3%QUANTITY

0.96+

Breaking Analysis: Snowflake Summit 2022...All About Apps & Monetization


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Snowflake Summit 2022 underscored that the ecosystem excitement which was once forming around Hadoop is being reborn, escalated and coalescing around Snowflake's data cloud. What was once seen as a simpler cloud data warehouse and good marketing with the data cloud is evolving rapidly with new workloads of vertical industry focus, data applications, monetization, and more. The question is, will the promise of data be fulfilled this time around, or is it same wine, new bottle? Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this "Breaking Analysis," we'll talk about the event, the announcements that Snowflake made that are of greatest interest, the major themes of the show, what was hype and what was real, the competition, and some concerns that remain in many parts of the ecosystem and pockets of customers. First let's look at the overall event. It was held at Caesars Forum. Not my favorite venue, but I'll tell you it was packed. Fire Marshall Full, as we sometimes say. Nearly 10,000 people attended the event. Here's Snowflake's CMO Denise Persson on theCUBE describing how this event has evolved. >> Yeah, two, three years ago, we were about 1800 people at a Hilton in San Francisco. We had about 40 partners attending. This week we're close to 10,000 attendees here. Almost 10,000 people online as well, and over over 200 partners here on the show floor. >> Now, those numbers from 2019 remind me of the early days of Hadoop World, which was put on by Cloudera but then Cloudera handed off the event to O'Reilly as this article that we've inserted, if you bring back that slide would say. The headline it almost got it right. Hadoop World was a failure, but it didn't have to be. Snowflake has filled the void created by O'Reilly when it first killed Hadoop World, and killed the name and then killed Strata. Now, ironically, the momentum and excitement from Hadoop's early days, it probably could have stayed with Cloudera but the beginning of the end was when they gave the conference over to O'Reilly. We can't imagine Frank Slootman handing the keys to the kingdom to a third party. Serious business was done at this event. I'm talking substantive deals. Salespeople from a host sponsor and the ecosystems that support these events, they love physical. They really don't like virtual because physical belly to belly means relationship building, pipeline, and deals. And that was blatantly obvious at this show. And in fairness, all theCUBE events that we've done year but this one was more vibrant because of its attendance and the action in the ecosystem. Ecosystem is a hallmark of a cloud company, and that's what Snowflake is. We asked Frank Slootman on theCUBE, was this ecosystem evolution by design or did Snowflake just kind of stumble into it? Here's what he said. >> Well, when you are a data clouding, you have data, people want to do things with that data. They don't want just run data operations, populate dashboards, run reports. Pretty soon they want to build applications and after they build applications, they want build businesses on it. So it goes on and on and on. So it drives your development to enable more and more functionality on that data cloud. Didn't start out that way, you know, we were very, very much focused on data operations. Then it becomes application development and then it becomes, hey, we're developing whole businesses on this platform. So similar to what happened to Facebook in many ways. >> So it sounds like it was maybe a little bit of both. The Facebook analogy is interesting because Facebook is a walled garden, as is Snowflake, but when you come into that garden, you have assurances that things are going to work in a very specific way because a set of standards and protocols is being enforced by a steward, i.e. Snowflake. This means things run better inside of Snowflake than if you try to do all the integration yourself. Now, maybe over time, an open source version of that will come out but if you wait for that, you're going to be left behind. That said, Snowflake has made moves to make its platform more accommodating to open source tooling in many of its announcements this week. Now, I'm not going to do a deep dive on the announcements. Matt Sulkins from Monte Carlo wrote a decent summary of the keynotes and a number of analysts like Sanjeev Mohan, Tony Bear and others are posting some deeper analysis on these innovations, and so we'll point to those. I'll say a few things though. Unistore extends the type of data that can live in the Snowflake data cloud. It's enabled by a new feature called hybrid tables, a new table type in Snowflake. One of the big knocks against Snowflake was it couldn't handle and transaction data. Several database companies are creating this notion of a hybrid where both analytic and transactional workloads can live in the same data store. Oracle's doing this for example, with MySQL HeatWave and there are many others. We saw Mongo earlier this month add an analytics capability to its transaction system. Mongo also added sequel, which was kind of interesting. Here's what Constellation Research analyst Doug Henschen said about Snowflake's moves into transaction data. Play the clip. >> Well with Unistore, they're reaching out and trying to bring transactional data in. Hey, don't limit this to analytical information and there's other ways to do that like CDC and streaming but they're very closely tying that again to that marketplace, with the idea of bring your data over here and you can monetize it. Don't just leave it in that transactional database. So another reach to a broader play across a big community that they're building. >> And you're also seeing Snowflake expand its workload types in its unique way and through Snowpark and its stream lit acquisition, enabling Python so that native apps can be built in the data cloud and benefit from all that structure and the features that Snowflake is built in. Hence that Facebook analogy, or maybe the App Store, the Apple App Store as I propose as well. Python support also widens the aperture for machine intelligence workloads. We asked Snowflake senior VP of product, Christian Kleinerman which announcements he thought were the most impactful. And despite the who's your favorite child nature of the question, he did answer. Here's what he said. >> I think the native applications is the one that looks like, eh, I don't know about it on the surface but he has the biggest potential to change everything. That's create an entire ecosystem of solutions for within a company or across companies that I don't know that we know what's possible. >> Snowflake also announced support for Apache Iceberg, which is a new open table format standard that's emerging. So you're seeing Snowflake respond to these concerns about its lack of openness, and they're building optionality into their cloud. They also showed some cost op optimization tools both from Snowflake itself and from the ecosystem, notably Capital One which launched a software business on top of Snowflake focused on optimizing cost and eventually the rollout data management capabilities, and all kinds of features that Snowflake announced that the show around governance, cross cloud, what we call super cloud, a new security workload, and they reemphasize their ability to read non-native on-prem data into Snowflake through partnerships with Dell and Pure and a lot more. Let's hear from some of the analysts that came on theCUBE this week at Snowflake Summit to see what they said about the announcements and their takeaways from the event. This is Dave Menninger, Sanjeev Mohan, and Tony Bear, roll the clip. >> Our research shows that the majority of organizations, the majority of people do not have access to analytics. And so a couple of the things they've announced I think address those or help to address those issues very directly. So Snowpark and support for Python and other languages is a way for organizations to embed analytics into different business processes. And so I think that'll be really beneficial to try and get analytics into more people's hands. And I also think that the native applications as part of the marketplace is another way to get applications into people's hands rather than just analytical tools. Because most people in the organization are not analysts. They're doing some line of business function. They're HR managers, they're marketing people, they're sales people, they're finance people, right? They're not sitting there mucking around in the data, they're doing a job and they need analytics in that job. >> Primarily, I think it is to contract this whole notion that once you move data into Snowflake, it's a proprietary format. So I think that's how it started but it's usually beneficial to the customers, to the users because now if you have large amount of data in paket files you can leave it on S3, but then you using the Apache Iceberg table format in Snowflake, you get all the benefits of Snowflake's optimizer. So for example, you get the micro partitioning, you get the metadata. And in a single query, you can join, you can do select from a Snowflake table union and select from an iceberg table and you can do store procedure, user defined function. So I think what they've done is extremely interesting. Iceberg by itself still does not have multi-table transactional capabilities. So if I'm running a workload, I might be touching 10 different tables. So if I use Apache Iceberg in a raw format, they don't have it, but Snowflake does. So the way I see it is Snowflake is adding more and more capabilities right into the database. So for example, they've gone ahead and added security and privacy. So you can now create policies and do even cell level masking, dynamic masking, but most organizations have more than Snowflake. So what we are starting to see all around here is that there's a whole series of data catalog companies, a bunch of companies that are doing dynamic data masking, security and governance, data observability which is not a space Snowflake has gone into. So there's a whole ecosystem of companies that is mushrooming. Although, you know, so they're using the native capabilities of Snowflake but they are at a level higher. So if you have a data lake and a cloud data warehouse and you have other like relational databases, you can run these cross platform capabilities in that layer. So that way, you know, Snowflake's done a great job of enabling that ecosystem. >> I think it's like the last mile, essentially. In other words, it's like, okay, you have folks that are basically that are very comfortable with Tableau but you do have developers who don't want to have to shell out to a separate tool. And so this is where Snowflake is essentially working to address that constituency. To Sanjeev's point, and I think part of it, this kind of plays into it is what makes this different from the Hadoop era is the fact that all these capabilities, you know, a lot of vendors are taking it very seriously to put this native. Now, obviously Snowflake acquired Streamlit. So we can expect that the Streamlit capabilities are going to be native. >> I want to share a little bit about the higher level thinking at Snowflake, here's a chart from Frank Slootman's keynote. It's his version of the modern data stack, if you will. Now, Snowflake of course, was built on the public cloud. If there were no AWS, there would be no Snowflake. Now, they're all about bringing data and live data and expanding the types of data, including structured, we just heard about that, unstructured, geospatial, and the list is going to continue on and on. Eventually I think it's going to bleed into the edge if we can figure out what to do with that edge data. Executing on new workloads is a big deal. They started with data sharing and they recently added security and they've essentially created a PaaS layer. We call it a SuperPaaS layer, if you will, to attract application developers. Snowflake has a developer-focused event coming up in November and they've extended the marketplace with 1300 native apps listings. And at the top, that's the holy grail, monetization. We always talk about building data products and we saw a lot of that at this event, very, very impressive and unique. Now here's the thing. There's a lot of talk in the press, in the Wall Street and the broader community about consumption-based pricing and concerns over Snowflake's visibility and its forecast and how analytics may be discretionary. But if you're a company building apps in Snowflake and monetizing like Capital One intends to do, and you're now selling in the marketplace, that is not discretionary, unless of course your costs are greater than your revenue for that service, in which case is going to fail anyway. But the point is we're entering a new error where data apps and data products are beginning to be built and Snowflake is attempting to make the data cloud the defacto place as to where you're going to build them. In our view they're well ahead in that journey. Okay, let's talk about some of the bigger themes that we heard at the event. Bringing apps to the data instead of moving the data to the apps, this was a constant refrain and one that certainly makes sense from a physics point of view. But having a single source of data that is discoverable, sharable and governed with increasingly robust ecosystem options, it doesn't have to be moved. Sometimes it may have to be moved if you're going across regions, but that's unique and a differentiator for Snowflake in our view. I mean, I'm yet to see a data ecosystem that is as rich and growing as fast as the Snowflake ecosystem. Monetization, we talked about that, industry clouds, financial services, healthcare, retail, and media, all front and center at the event. My understanding is that Frank Slootman was a major force behind this shift, this development and go to market focus on verticals. It's really an attempt, and he talked about this in his keynote to align with the customer mission ultimately align with their objectives which not surprisingly, are increasingly monetizing with data as a differentiating ingredient. We heard a ton about data mesh, there were numerous presentations about the topic. And I'll say this, if you map the seven pillars Snowflake talks about, Benoit Dageville talked about this in his keynote, but if you map those into Zhamak Dehghani's data mesh framework and the four principles, they align better than most of the data mesh washing that I've seen. The seven pillars, all data, all workloads, global architecture, self-managed, programmable, marketplace and governance. Those are the seven pillars that he talked about in his keynote. All data, well, maybe with hybrid tables that becomes more of a reality. Global architecture means the data is globally distributed. It's not necessarily physically in one place. Self-managed is key. Self-service infrastructure is one of Zhamak's four principles. And then inherent governance. Zhamak talks about computational, what I'll call automated governance, built in. And with all the talk about monetization, that aligns with the second principle which is data as product. So while it's not a pure hit and to its credit, by the way, Snowflake doesn't use data mesh in its messaging anymore. But by the way, its customers do, several customers talked about it. Geico, JPMC, and a number of other customers and partners are using the term and using it pretty closely to the concepts put forth by Zhamak Dehghani. But back to the point, they essentially, Snowflake that is, is building a proprietary system that substantially addresses some, if not many of the goals of data mesh. Okay, back to the list, supercloud, that's our term. We saw lots of examples of clouds on top of clouds that are architected to spin multiple clouds, not just run on individual clouds as separate services. And this includes Snowflake's data cloud itself but a number of ecosystem partners that are headed in a very similar direction. Snowflake still talks about data sharing but now it uses the term collaboration in its high level messaging, which is I think smart. Data sharing is kind of a geeky term. And also this is an attempt by Snowflake to differentiate from everyone else that's saying, hey, we do data sharing too. And finally Snowflake doesn't say data marketplace anymore. It's now marketplace, accounting for its application market. Okay, let's take a quick look at the competitive landscape via this ETR X-Y graph. Vertical access remembers net score or spending momentum and the x-axis is penetration, pervasiveness in the data center. That's what ETR calls overlap. Snowflake continues to lead on the vertical axis. They guide it conservatively last quarter, remember, so I wouldn't be surprised if that lofty height, even though it's well down from its earlier levels but I wouldn't be surprised if it ticks down again a bit in the July survey, which will be in the field shortly. Databricks is a key competitor obviously at a strong spending momentum, as you can see. We didn't draw it here but we usually draw that 40% line or red line at 40%, anything above that is considered elevated. So you can see Databricks is quite elevated. But it doesn't have the market presence of Snowflake. It didn't get to IPO during the bubble and it doesn't have nearly as deep and capable go-to market machinery. Now, they're getting better and they're getting some attention in the market, nonetheless. But as a private company, you just naturally, more people are aware of Snowflake. Some analysts, Tony Bear in particular, believe Mongo and Snowflake are on a bit of a collision course long term. I actually can see his point. You know, I mean, they're both platforms, they're both about data. It's long ways off, but you can see them sort of in a similar path. They talk about kind of similar aspirations and visions even though they're quite in different markets today but they're definitely participating in similar tam. The cloud players are probably the biggest or definitely the biggest partners and probably the biggest competitors to Snowflake. And then there's always Oracle. Doesn't have the spending velocity of the others but it's got strong market presence. It owns a cloud and it knows a thing about data and it definitely is a go-to market machine. Okay, we're going to end on some of the things that we heard in the ecosystem. 'Cause look, we've heard before how particular technology, enterprise data warehouse, data hubs, MDM, data lakes, Hadoop, et cetera. We're going to solve all of our data problems and of course they didn't. And in fact, sometimes they create more problems that allow vendors to push more incremental technology to solve the problems that they created. Like tools and platforms to clean up the no schema on right nature of data lakes or data swamps. But here are some of the things that I heard firsthand from some customers and partners. First thing is, they said to me that they're having a hard time keeping up sometimes with the pace of Snowflake. It reminds me of AWS in 2014, 2015 timeframe. You remember that fire hose of announcements which causes increased complexity for customers and partners. I talked to several customers that said, well, yeah this is all well and good but I still need skilled people to understand all these tools that I'm integrated in the ecosystem, the catalogs, the machine learning observability. A number of customers said, I just can't use one governance tool, I need multiple governance tools and a lot of other technologies as well, and they're concerned that that's going to drive up their cost and their complexity. I heard other concerns from the ecosystem that it used to be sort of clear as to where they could add value you know, when Snowflake was just a better data warehouse. But to point number one, they're either concerned that they'll be left behind or they're concerned that they'll be subsumed. Look, I mean, just like we tell AWS customers and partners, you got to move fast, you got to keep innovating. If you don't, you're going to be left. Either if your customer you're going to be left behind your competitor, or if you're a partner, somebody else is going to get there or AWS is going to solve the problem for you. Okay, and there were a number of skeptical practitioners, really thoughtful and experienced data pros that suggested that they've seen this movie before. That's hence the same wine, new bottle. Well, this time around I certainly hope not given all the energy and investment that is going into this ecosystem. And the fact is Snowflake is unquestionably making it easier to put data to work. They built on AWS so you didn't have to worry about provisioning, compute and storage and networking and scaling. Snowflake is optimizing its platform to take advantage of things like Graviton so you don't have to, and they're doing some of their own optimization tools. The ecosystem is building optimization tools so that's all good. And firm belief is the less expensive it is, the more data will get brought into the data cloud. And they're building a data platform on which their ecosystem can build and run data applications, aka data products without having to worry about all the hard work that needs to get done to make data discoverable, shareable, and governed. And unlike the last 10 years, you don't have to be a keeper and integrate all the animals in the Hadoop zoo. Okay, that's it for today, thanks for watching. Thanks to my colleague, Stephanie Chan who helps research "Breaking Analysis" topics. Sometimes Alex Myerson is on production and manages the podcasts. Kristin Martin and Cheryl Knight help get the word out on social and in our newsletters, and Rob Hof is our editor in chief over at Silicon, and Hailey does some wonderful editing, thanks to all. Remember, all these episodes are available as podcasts wherever you listen. All you got to do is search Breaking Analysis Podcasts. I publish each week on wikibon.com and siliconangle.com and you can email me at David.Vellante@siliconangle.com or DM me @DVellante. If you got something interesting, I'll respond. If you don't, I'm sorry I won't. Or comment on my LinkedIn post. Please check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time. (upbeat music)

Published Date : Jun 18 2022

SUMMARY :

bringing you data driven that the ecosystem excitement here on the show floor. and the action in the ecosystem. Didn't start out that way, you know, One of the big knocks against Snowflake the idea of bring your data of the question, he did answer. is the one that looks like, and from the ecosystem, And so a couple of the So that way, you know, from the Hadoop era is the fact the defacto place as to where

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Frank SlootmanPERSON

0.99+

Frank SlootmanPERSON

0.99+

Doug HenschenPERSON

0.99+

Stephanie ChanPERSON

0.99+

Christian KleinermanPERSON

0.99+

AWSORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Rob HofPERSON

0.99+

Benoit DagevillePERSON

0.99+

2014DATE

0.99+

Matt SulkinsPERSON

0.99+

JPMCORGANIZATION

0.99+

2019DATE

0.99+

Cheryl KnightPERSON

0.99+

Palo AltoLOCATION

0.99+

Denise PerssonPERSON

0.99+

Alex MyersonPERSON

0.99+

Tony BearPERSON

0.99+

Dave MenningerPERSON

0.99+

DellORGANIZATION

0.99+

JulyDATE

0.99+

GeicoORGANIZATION

0.99+

NovemberDATE

0.99+

SnowflakeTITLE

0.99+

40%QUANTITY

0.99+

OracleORGANIZATION

0.99+

App StoreTITLE

0.99+

Capital OneORGANIZATION

0.99+

second principleQUANTITY

0.99+

Sanjeev MohanPERSON

0.99+

SnowflakeORGANIZATION

0.99+

1300 native appsQUANTITY

0.99+

Tony BearPERSON

0.99+

David.Vellante@siliconangle.comOTHER

0.99+

Kristin MartinPERSON

0.99+

MongoORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

Snowflake Summit 2022EVENT

0.99+

FirstQUANTITY

0.99+

twoDATE

0.99+

PythonTITLE

0.99+

10 different tablesQUANTITY

0.99+

FacebookORGANIZATION

0.99+

ETRORGANIZATION

0.99+

bothQUANTITY

0.99+

SnowflakeEVENT

0.98+

one placeQUANTITY

0.98+

each weekQUANTITY

0.98+

O'ReillyORGANIZATION

0.98+

This weekDATE

0.98+

Hadoop WorldEVENT

0.98+

this weekDATE

0.98+

PureORGANIZATION

0.98+

about 40 partnersQUANTITY

0.98+

theCUBEORGANIZATION

0.98+

last quarterDATE

0.98+

OneQUANTITY

0.98+

S3TITLE

0.97+

HadoopLOCATION

0.97+

singleQUANTITY

0.97+

Caesars ForumLOCATION

0.97+

IcebergTITLE

0.97+

single sourceQUANTITY

0.97+

SiliconORGANIZATION

0.97+

Nearly 10,000 peopleQUANTITY

0.97+

Apache IcebergORGANIZATION

0.97+

Breaking Analysis: How Snowflake Plans to Make Data Cloud a De Facto Standard


 

>>From the cube studios in Palo Alto, in Boston, bringing you data driven insights from the cube and ETR. This is breaking analysis with Dave ante. >>When Frank sluman took service, now public many people undervalued the company, positioning it as just a better help desk tool. You know, it turns out that the firm actually had a massive Tam expansion opportunity in it. SM customer service, HR, logistics, security marketing, and service management. Generally now stock price followed over the years, the stellar execution under Slootman and CFO, Mike scar Kelly's leadership. Now, when they took the reins at snowflake expectations were already set that they'd repeat the feet, but this time, if anything, the company was overvalued out of the gate, the thing is people didn't really better understand the market opportunity this time around, other than that, it was a bet on Salman's track record of execution and on data, pretty good bets, but folks really didn't appreciate that snowflake. Wasn't just a better data warehouse that it was building what they call a data cloud, and we've turned a data super cloud. >>Hello and welcome to this. Week's Wikibon cube insights powered by ETR in this breaking analysis, we'll do four things. First. We're gonna review the recent narrative and concerns about snowflake and its value. Second, we're gonna share survey data from ETR that will confirm precisely what the company's CFO has been telling anyone who will listen. And third, we're gonna share our view of what snowflake is building IE, trying to become the defacto standard data platform, and four convey our expectations for the upcoming snowflake summit. Next week at Caesar's palace in Las Vegas, Snowflake's most recent quarterly results they've been well covered and well documented. It basically hit its targets, which for snowflake investors was bad news wall street piled on expressing concerns about Snowflake's consumption, pricing model, slowing growth rates, lack of profitability and valuation. Given the, given the current macro market conditions, the stock dropped below its IPO offering price, which you couldn't touch on day one, by the way, as the stock opened well above that and, and certainly closed well above that price of one 20 and folks express concerns about some pretty massive insider selling throughout 2021 and early 2022, all this caused the stock price to drop quite substantially. >>And today it's down around 63% or more year to date, but the only real substantive change in the company's business is that some of its largest consumer facing companies, while still growing dialed back, their consumption this past quarter, the tone of the call was I wouldn't say contentious the earnings call, but Scarelli, I think was getting somewhat annoyed with the implication from some analyst questions that something is fundamentally wrong with Snowflake's business. So let's unpack this a bit first. I wanna talk about the consumption pricing on the earnings call. One of the analysts asked if snowflake would consider more of a subscription based model so that they could better weather such fluctuations and demand before the analyst could even finish the question, CFO Scarelli emphatically interrupted and said, no, <laugh> the analyst might as well have asked, Hey Mike, have you ever considered changing your pricing model and screwing your customers the same way most legacy SaaS companies lock their customers in? >>So you could squeeze more revenue out of them and make my forecasting life a little bit easier. <laugh> consumption pricing is one of the things that makes a company like snowflake so attractive because customers is especially large customers facing fluctuating demand can dial and their end demand can dial down usage for certain workloads that are maybe not yet revenue producing or critical. Now let's jump to insider trading. There were a lot of insider selling going on last year and into 2022 now, I mean a lot sloop and Scarelli Christine Kleinman. Mike SP several board members. They sold stock worth, you know, many, many hundreds of millions of dollars or, or more at prices in the two hundreds and three hundreds and even four hundreds. You remember the company at one point was valued at a hundred billion dollars, surpassing the value of service now, which is this stupid at this point in the company's tenure and the insider's cost basis was very often in the single digit. >>So on the one hand, I can't blame them. You know what a gift the market gave them last year. Now also famed investor, Peter Linsey famously said, insiders sell for many reasons, but they only buy for one. But I have to say there wasn't a lot of insider buying of the stock when it was in the three hundreds and above. And so yeah, this pattern is something to watch our insiders buying. Now, I'm not sure we'll keep watching snowflake. It's pretty generous with stock based compensation and insiders still own plenty of stock. So, you know, maybe not, but we'll see in future disclosures, but the bottom line is Snowflake's business. Hasn't dramatically changed with the exception of these large consumer facing companies. Now, another analyst pointed out that companies like snap, he pointed to company snap, Peloton, Netflix, and face Facebook have been cutting back. >>And Scarelli said, and what was a bit of a surprise to me? Well, I'm not gonna name the customers, but it's not the ones you mentioned. So I, I thought I would've, you know, if I were the analyst I would've follow up with, how about Walmart target visa, Amex, Expedia price line, or Uber? Any of those Mike? I, I doubt he would've answered me anything. Anyway, the one thing that Scarelli did do is update Snowflake's fiscal year 2029 outlook to emphasize the long term opportunity that the company sees. This chart shows a financial snapshot of Snowflake's current business using a combination of quarterly and full year numbers in a model of what the business will look like. According to Scarelli in Dave ante with a little bit of judgment in 2029. So this is essentially based on the company's framework. Snowflake this year will surpass 2 billion in revenues and targeting 10 billion by 2029. >>Its current growth rate is 84% and its target is 30% in the out years, which is pretty impressive. Gross margins are gonna tick up a bit, but remember Snowflake's cost a good sold they're dominated by its cloud cost. So it's got a governor. There has to pay AWS Azure and Google for its infrastructure. But high seventies is a, is a good target. It's not like the historical Microsoft, you know, 80, 90% gross margin. Not that Microsoft is there anymore, but, but snowflake, you know, was gonna be limited by how far it can, how much it can push gross margin because of that factor. It's got a tiny operating margin today and it's targeting 20% in 2029. So that would be 2 billion. And you would certainly expect it's operating leverage in the out years to enable much, much, much lower SGNA than the current 54%. I'm guessing R and D's gonna stay healthy, you know, coming in at 15% or so. >>But the real interesting number to watch is free cash flow, 16% this year for the full fiscal year growing to 25% by 2029. So 2.5 billion in free cash flow in the out years, which I believe is up from previous Scarelli forecast in that 10, you know, out year view 2029 view and expect the net revenue retention, the NRR, it's gonna moderate. It's gonna come down, but it's still gonna be well over a hundred percent. We pegged it at 130% based on some of Mike's guidance. Now today, snowflake and every other stock is well off this morning. The company had a 40 billion value would drop well below that midday, but let's stick with the 40 billion on this, this sad Friday on the stock market, we'll go to 40 billion and who knows what the stock is gonna be valued in 2029? No idea, but let's say between 40 and 200 billion and look, it could get even ugly in the market as interest rates rise. >>And if inflation stays high, you know, until we get a Paul Voker like action, which is gonna be painful from the fed share, you know, let's hope we don't have a repeat of the long drawn out 1970s stagflation, but that is a concern among investors. We're gonna try to keep it positive here and we'll do a little sensitivity analysis of snowflake based on Scarelli and Ante's 2029 projections. What we've done here is we've calculated in this chart. Today's current valuation at about 40 billion and run a CAGR through 2029 with our estimates of valuation at that time. So if it stays at 40 billion valuation, can you imagine snowflake grow into a 10 billion company with no increase in valuation by the end, by by 2029 fiscal 2029, that would be a major bummer and investors would get a, a 0% return at 50 billion, 4% Kager 60 billion, 7%. >>Kegar now 7% market return is historically not bad relative to say the S and P 500, but with that kind of revenue and profitability growth projected by snowflake combined with inflation, that would again be a, a kind of a buzzkill for investors. The picture at 75 billion valuation, isn't much brighter, but it picks up at, at a hundred billion, even with inflation that should outperform the market. And as you get to 200 billion, which would track by the way, revenue growth, you get a 30% plus return, which would be pretty good. Could snowflake beat these projections. Absolutely. Could the market perform at the optimistic end of the spectrum? Sure. It could. It could outperform these levels. Could it not perform at these levels? You bet, but hopefully this gives a little context and framework to what Scarelli was talking about and his framework, not with notwithstanding the market's unpredictability you're you're on your own. >>There. I can't help snowflake looks like it's going to continue either way in amazing run compared to other software companies historically, and whether that's reflected in the stock price. Again, I, I, I can't predict, okay. Let's look at some ETR survey data, which aligns really well with what snowflake is telling the street. This chart shows the breakdown of Snowflake's net score and net score. Remember is ETS proprietary methodology that measures the percent of customers in their survey that are adding the platform new. That's the lime green at 19% existing snowflake customers that are ex spending 6% or more on the platform relative to last year. That's the forest green that's 55%. That's a big number flat spend. That's the gray at 21% decreasing spending. That's the pinkish at 5% and churning that's the red only 1% or, or moving off the platform, tiny, tiny churn, subtract the red from the greens and you get a net score that, that, that nets out to 68%. >>That's an, a very impressive net score by ETR standards. But it's down from the highs of the seventies and mid eighties, where high seventies and mid eighties, where snowflake has been since January of 2019 note that this survey of 1500 or so organizations includes 155 snowflake customers. What was really interesting is when we cut the data by industry sector, two of Snowflake's most important verticals, our finance and healthcare, both of those sectors are holding a net score in the ETR survey at its historic range. 83%. Hasn't really moved off that, you know, 80% plus number really encouraging, but retail consumer showed a dramatic decline. This past survey from 73% in the previous quarter down to 54%, 54% in just three months time. So this data aligns almost perfectly with what CFO Scarelli has been telling the street. So I give a lot of credibility to that narrative. >>Now here's a time series chart for the net score and the provision in the data set, meaning how penetrated snowflake is in the survey. Again, net score measures, spending velocity and a specific platform and provision measures the presence in the data set. You can see the steep downward trend in net score this past quarter. Now for context note, the red dotted line on the vertical axis at 40%, that's a bit of a magic number. Anything above that is best in class in our view, snowflake still a well, well above that line, but the April survey as we reported on May 7th in quite a bit of detail shows a meaningful break in the snowflake trend as shown by ETRS call out on the bottom line. You can see a steady rise in the survey, which is a proxy for Snowflake's overall market penetration. So steadily moving up and up. >>Here's a bit of a different view on that data bringing in some of Snowflake's peers and other data platforms. This XY graph shows net score on the vertical axis and provision on the horizontal with the red dotted line. At 40%, you can see from the ETR callouts again, that snowflake while declining in net score still holds the highest net score in the survey. So of course the highest data platforms while the spending velocity on AWS and Microsoft, uh, data platforms, outperforms that have, uh, sorry, while they're spending velocity on snowflake outperforms, that of AWS and, and Microsoft data platforms, those two are still well above the 40% line with a stronger market presence in the category. That's impressive because of their size. And you can see Google cloud and Mongo DB right around the 40% line. Now we reported on Mongo last week and discussed the commentary on consumption models. >>And we referenced Ray Lenchos what we thought was, was quite thoughtful research, uh, that rewarded Mongo DB for its forecasting transparency and, and accuracy and, and less likelihood of facing consumption headwinds. And, and I'll reiterate what I said last week, that snowflake, while seeing demand fluctuations this past quarter from those large customers is, is not like a data lake where you're just gonna shove data in and figure it out later, no schema on, right. Just throw it into the pond. That's gonna be more discretionary and you can turn that stuff off. More likely. Now you, you bring data into the snowflake data cloud with the intent of driving insights, which leads to actions, which leads to value creation. And as snowflake adds capabilities and expands its platform features and innovations and its ecosystem more and more data products are gonna be developed in the snowflake data cloud and by data products. >>We mean products and services that are conceived by business users. And that can be directly monetized, not just via analytics, but through governed data sharing and direct monetization. Here's a picture of that opportunity as we see it, this is our spin on our snowflake total available market chart that we've published many, many times. The key point here goes back to our opening statements. The snowflake data cloud is evolving well beyond just being a simpler and easier to use and more elastic cloud database snowflake is building what we often refer to as a super cloud. That is an abstraction layer that companies that, that comprises rich features and leverages the underlying primitives and APIs of the cloud providers, but hides all that complexity and adds new value beyond that infrastructure that value is seen in the left example in terms of compressed cycle time, snowflake often uses the example of pharmaceutical companies compressing time to discover a drug by years. >>Great example, there are many others this, and, and then through organic development and ecosystem expansion, snowflake will accelerate feature delivery. Snowflake's data cloud vision is not about vertically integrating all the functionality into its platform. Rather it's about creating a platform and delivering secure governed and facile and powerful analytics and data sharing capabilities to its customers, partners in a broad ecosystem so they can create additional value. On top of that ecosystem is how snowflake fills the gaps in its platform by building the best cloud data platform in the world, in terms of collaboration, security, governance, developer, friendliness, machine intelligence, etcetera, snowflake believes and plans to create a defacto standard. In our view in data platforms, get your data into the data cloud and all these native capabilities will be available to you. Now, is that a walled garden? Some might say it is. It's an interesting question and <laugh>, it's a moving target. >>It's definitely proprietary in the sense that snowflake is building something that is highly differentiatable and is building a moat around it. But the more open snowflake can make its platform. The more open source it uses, the more developer friendly and the great greater likelihood people will gravitate toward snowflake. Now, my new friend Tani, she's the creator of the data mesh concept. She might bristle at this narrative in favor, a more open source version of what snowflake is trying to build, but practically speaking, I think she'd recognize that we're a long ways off from that. And I also think that the benefits of a platform that despite requiring data to be inside of the data cloud can distribute data globally, enable facile governed, and computational data sharing, and to a large degree be a self-service platform for data, product builders. So this is how we see snow, the snowflake data cloud vision evolving question is edge part of that vision on the right hand side. >>Well, again, we think that is going to be a future challenge where the ecosystem is gonna have to come to play to fill those gaps. If snowflake can tap the edge, it'll bring even more clarity as to how it can expand into what we believe is a massive 200 billion Tam. Okay, let's close on next. Week's snowflake summit in Las Vegas. The cube is very excited to be there. I'll be hosting with Lisa Martin and we'll have Frank son as well as Christian Kleinman and several other snowflake experts. Analysts are gonna be there, uh, customers. And we're gonna have a number of ecosystem partners on as well. Here's what we'll be looking for. At least some of the things, evidence that our view of Snowflake's data cloud is actually taking shape and evolving in the way that we showed on the previous chart, where we also wanna figure out where snowflake is with it. >>Streamlet acquisition. Remember streamlet is a data science play and an expansion into data, bricks, territory, data, bricks, and snowflake have been going at it for a while. Streamlet brings an open source Python library and machine learning and kind of developer friendly data science environment. We also expect to hear some discussion, hopefully a lot of discussion about developers. Snowflake has a dedicated developer conference in November. So we expect to hear more about that and how it's gonna be leveraging further leveraging snow park, which it has previously announced, including a public preview of programming for unstructured data and data monetization along the lines of what we suggested earlier that is building data products that have the bells and whistles of native snowflake and can be directly monetized by Snowflake's customers. Snowflake's already announced a new workload this past week in security, and we'll be watching for others. >>And finally, what's happening in the all important ecosystem. One of the things we noted when we covered service now, cause we use service now as, as an example because Frank Lupin and Mike Scarelli and others, you know, DNA were there and they're improving on that service. Now in his post IPO, early adult years had a very slow pace. In our view was often one of our criticism of ecosystem development, you know, ServiceNow. They had some niche SI uh, like cloud Sherpa, and eventually the big guys came in and, and, and began to really lean in. And you had some other innovators kind of circling the mothership, some smaller companies, but generally we see sluman emphasizing the ecosystem growth much, much more than with this previous company. And that is a fundamental requirement in our view of any cloud or modern cloud company now to paraphrase the crazy man, Steve bomber developers, developers, developers, cause he screamed it and ranted and ran around the stage and was sweating <laugh> ecosystem ecosystem ecosystem equals optionality for developers and that's what they want. >>And that's how we see the current and future state of snowflake. Thanks today. If you're in Vegas next week, please stop by and say hello with the cube. Thanks to my colleagues, Stephanie Chan, who sometimes helps research breaking analysis topics. Alex, my is, and OS Myerson is on production. And today Andrew Frick, Sarah hiney, Steven Conti Anderson hill Chuck all and the entire team in Palo Alto, including Christian. Sorry, didn't mean to forget you Christian writer, of course, Kristin Martin and Cheryl Knight, they helped get the word out. And Rob ho is our E IIC over at Silicon angle. Remember, all these episodes are available as podcast, wherever you listen to search breaking analysis podcast, I publish each week on wikibon.com and Silicon angle.com. You can email me directly anytime David dot Valante Silicon angle.com. If you got something interesting, I'll respond. If not, I won't or DM me@deteorcommentonmylinkedinpostsandpleasedocheckoutetr.ai for the best survey data in the enterprise tech business. This is Dave Valante for the insights powered by ETR. Thanks for watching. And we'll see you next week. I hope if not, we'll see you next time on breaking analysis.

Published Date : Jun 10 2022

SUMMARY :

From the cube studios in Palo Alto, in Boston, bringing you data driven insights from the if anything, the company was overvalued out of the gate, the thing is people didn't We're gonna review the recent narrative and concerns One of the analysts asked if snowflake You remember the company at one point was valued at a hundred billion dollars, of the stock when it was in the three hundreds and above. but it's not the ones you mentioned. It's not like the historical Microsoft, you know, But the real interesting number to watch is free cash flow, 16% this year for And if inflation stays high, you know, until we get a Paul Voker like action, the way, revenue growth, you get a 30% plus return, which would be pretty Remember is ETS proprietary methodology that measures the percent of customers in their survey that in the previous quarter down to 54%, 54% in just three months time. You can see a steady rise in the survey, which is a proxy for Snowflake's overall So of course the highest data platforms while the spending gonna be developed in the snowflake data cloud and by data products. that comprises rich features and leverages the underlying primitives and APIs fills the gaps in its platform by building the best cloud data platform in the world, friend Tani, she's the creator of the data mesh concept. and evolving in the way that we showed on the previous chart, where we also wanna figure out lines of what we suggested earlier that is building data products that have the bells and One of the things we noted when we covered service now, cause we use service now as, This is Dave Valante for the insights powered

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

Stephanie ChanPERSON

0.99+

Cheryl KnightPERSON

0.99+

Peter LinseyPERSON

0.99+

Christian KleinmanPERSON

0.99+

Kristin MartinPERSON

0.99+

Sarah hineyPERSON

0.99+

Dave ValantePERSON

0.99+

SalmanPERSON

0.99+

AlexPERSON

0.99+

Mike ScarelliPERSON

0.99+

FrankPERSON

0.99+

VegasLOCATION

0.99+

MicrosoftORGANIZATION

0.99+

AprilDATE

0.99+

ScarelliPERSON

0.99+

WalmartORGANIZATION

0.99+

May 7thDATE

0.99+

Andrew FrickPERSON

0.99+

Palo AltoLOCATION

0.99+

2029DATE

0.99+

30%QUANTITY

0.99+

40 billionQUANTITY

0.99+

84%QUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

75 billionQUANTITY

0.99+

2 billionQUANTITY

0.99+

AWSORGANIZATION

0.99+

55%QUANTITY

0.99+

10 billionQUANTITY

0.99+

NetflixORGANIZATION

0.99+

21%QUANTITY

0.99+

Las VegasLOCATION

0.99+

January of 2019DATE

0.99+

NovemberDATE

0.99+

19%QUANTITY

0.99+

40%QUANTITY

0.99+

TaniPERSON

0.99+

GoogleORGANIZATION

0.99+

MikePERSON

0.99+

68%QUANTITY

0.99+

54%QUANTITY

0.99+

last yearDATE

0.99+

200 billionQUANTITY

0.99+

FacebookORGANIZATION

0.99+

80%QUANTITY

0.99+

15%QUANTITY

0.99+

5%QUANTITY

0.99+

6%QUANTITY

0.99+

last weekDATE

0.99+

7%QUANTITY

0.99+

20%QUANTITY

0.99+

BostonLOCATION

0.99+

Frank LupinPERSON

0.99+

83%QUANTITY

0.99+

Next weekDATE

0.99+

next weekDATE

0.99+

TodayDATE

0.99+

Frank slumanPERSON

0.99+

2.5 billionQUANTITY

0.99+

SlootmanPERSON

0.99+

16%QUANTITY

0.99+

73%QUANTITY

0.99+

todayDATE

0.99+

2022DATE

0.99+

FridayDATE

0.99+

1970sDATE

0.99+

two hundredsQUANTITY

0.99+

130%QUANTITY

0.99+

Breaking Analysis: The Improbable Rise of Kubernetes


 

>> From theCUBE studios in Palo Alto, in Boston, bringing you data driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vollante. >> The rise of Kubernetes came about through a combination of forces that were, in hindsight, quite a long shot. Amazon's dominance created momentum for Cloud native application development, and the need for newer and simpler experiences, beyond just easily spinning up computer as a service. This wave crashed into innovations from a startup named Docker, and a reluctant competitor in Google, that needed a way to change the game on Amazon and the Cloud. Now, add in the effort of Red Hat, which needed a new path beyond Enterprise Linux, and oh, by the way, it was just about to commit to a path of a Kubernetes alternative for OpenShift and figure out a governance structure to hurt all the cats and the ecosystem and you get the remarkable ascendancy of Kubernetes. Hello and welcome to this week's Wikibon CUBE Insights powered by ETR. In this breaking analysis, we tapped the back stories of a new documentary that explains the improbable events that led to the creation of Kubernetes. We'll share some new survey data from ETR and commentary from the many early the innovators who came on theCUBE during the exciting period since the founding of Docker in 2013, which marked a new era in computing, because we're talking about Kubernetes and developers today, the hoodie is on. And there's a new two part documentary that I just referenced, it's out and it was produced by Honeypot on Kubernetes, part one and part two, tells a story of how Kubernetes came to prominence and many of the players that made it happen. Now, a lot of these players, including Tim Hawkin Kelsey Hightower, Craig McLuckie, Joe Beda, Brian Grant Solomon Hykes, Jerry Chen and others came on theCUBE during formative years of containers going mainstream and the rise of Kubernetes. John Furrier and Stu Miniman were at the many shows we covered back then and they unpacked what was happening at the time. We'll share the commentary from the guests that they interviewed and try to add some context. Now let's start with the concept of developer defined structure, DDI. Jerry Chen was at VMware and he could see the trends that were evolving. He left VMware to become a venture capitalist at Greylock. Docker was his first investment. And he saw the future this way. >> What happens is when you define infrastructure software you can program it. You make it portable. And that the beauty of this cloud wave what I call DDI's. Now, to your point is every piece of infrastructure from storage, networking, to compute has an API, right? And, and AWS there was an early trend where S3, EBS, EC2 had API. >> As building blocks too. >> As building blocks, exactly. >> Not monolithic. >> Monolithic building blocks every little building bone block has it own API and just like Docker really is the API for this unit of the cloud enables developers to define how they want to build their applications, how to network them know as Wills talked about, and how you want to secure them and how you want to store them. And so the beauty of this generation is now developers are determining how apps are built, not just at the, you know, end user, you know, iPhone app layer the data layer, the storage layer, the networking layer. So every single level is being disrupted by this concept of a DDI and where, how you build use and actually purchase IT has changed. And you're seeing the incumbent vendors like Oracle, VMware Microsoft try to react but you're seeing a whole new generation startup. >> Now what Jerry was explaining is that this new abstraction layer that was being built here's some ETR data that quantifies that and shows where we are today. The chart shows net score or spending momentum on the vertical axis and market share which represents the pervasiveness in the survey set. So as Jerry and the innovators who created Docker saw the cloud was becoming prominent and you can see it still has spending velocity that's elevated above that 40% red line which is kind of a magic mark of momentum. And of course, it's very prominent on the X axis as well. And you see the low level infrastructure virtualization and that even floats above servers and storage and networking right. Back in 2013 the conversation with VMware. And by the way, I remember having this conversation deeply at the time with Chad Sakac was we're going to make this low level infrastructure invisible, and we intend to make virtualization invisible, IE simplified. And so, you see above the two arrows there related to containers, container orchestration and container platforms, which are abstraction layers and services above the underlying VMs and hardware. And you can see the momentum that they have right there with the cloud and AI and RPA. So you had these forces that Jerry described that were taking shape, and this picture kind of summarizes how they came together to form Kubernetes. And the upper left, Of course you see AWS and we inserted a picture from a post we did, right after the first reinvent in 2012, it was obvious to us at the time that the cloud gorilla was AWS and had all this momentum. Now, Solomon Hykes, the founder of Docker, you see there in the upper right. He saw the need to simplify the packaging of applications for cloud developers. Here's how he described it. Back in 2014 in theCUBE with John Furrier >> Container is a unit of deployment, right? It's the format in which you package your application all the files, all the executables libraries all the dependencies in one thing that you can move to any server and deploy in a repeatable way. So it's similar to how you would run an iOS app on an iPhone, for example. >> A Docker at the time was a 30% company and it just changed its name from .cloud. And back to the diagram you have Google with a red question mark. So why would you need more than what Docker had created. Craig McLuckie, who was a product manager at Google back then explains the need for yet another abstraction. >> We created the strong separation between infrastructure operations and application operations. And so, Docker has created a portable framework to take it, basically a binary and run it anywhere which is an amazing capability, but that's not enough. You also need to be able to manage that with a framework that can run anywhere. And so, the union of Docker and Kubernetes provides this framework where you're completely abstracted from the underlying infrastructure. You could use VMware, you could use Red Hat open stack deployment. You could run on another major cloud provider like rec. >> Now Google had this huge cloud infrastructure but no commercial cloud business compete with AWS. At least not one that was taken seriously at the time. So it needed a way to change the game. And it had this thing called Google Borg, which is a container management system and scheduler and Google looked at what was happening with virtualization and said, you know, we obviously could do better Joe Beda, who was with Google at the time explains their mindset going back to the beginning. >> Craig and I started up Google compute engine VM as a service. And the odd thing to recognize is that, nobody who had been in Google for a long time thought that there was anything to this VM stuff, right? Cause Google had been on containers for so long. That was their mindset board was the way that stuff was actually deployed. So, you know, my boss at the time, who's now at Cloudera booted up a VM for the first time, and anybody in the outside world be like, Hey, that's really cool. And his response was like, well now what? Right. You're sitting at a prompt. Like that's not super interesting. How do I run my app? Right. Which is, that's what everybody's been struggling with, with cloud is not how do I get a VM up? How do I actually run my code? >> Okay. So Google never really did virtualization. They were looking at the market and said, okay what can we do to make Google relevant in cloud. Here's Eric Brewer from Google. Talking on theCUBE about Google's thought process at the time. >> One interest things about Google is it essentially makes no use of virtual machines internally. And that's because Google started in 1998 which is the same year that VMware started was kind of brought the modern virtual machine to bear. And so Google infrastructure tends to be built really on kind of classic Unix processes and communication. And so scaling that up, you get a system that works a lot with just processes and containers. So kind of when I saw containers come along with Docker, we said, well, that's a good model for us. And we can take what we know internally which was called Borg a big scheduler. And we can turn that into Kubernetes and we'll open source it. And suddenly we have kind of a cloud version of Google that works the way we would like it to work. >> Now, Eric Brewer gave us the bumper sticker version of the story there. What he reveals in the documentary that I referenced earlier is that initially Google was like, why would we open source our secret sauce to help competitors? So folks like Tim Hockin and Brian Grant who were on the original Kubernetes team, went to management and pressed hard to convince them to bless open sourcing Kubernetes. Here's Hockin's explanation. >> When Docker landed, we saw the community building and building and building. I mean, that was a snowball of its own, right? And as it caught on we realized we know what this is going to we know once you embrace the Docker mindset that you very quickly need something to manage all of your Docker nodes, once you get beyond two or three of them, and we know how to build that, right? We got a ton of experience here. Like we went to our leadership and said, you know, please this is going to happen with us or without us. And I think it, the world would be better if we helped. >> So the open source strategy became more compelling as they studied the problem because it gave Google a way to neutralize AWS's advantage because with containers you could develop on AWS for example, and then run the application anywhere like Google's cloud. So it not only gave developers a path off of AWS. If Google could develop a strong service on GCP they could monetize that play. Now, focus your attention back to the diagram which shows this smiling, Alex Polvi from Core OS which was acquired by Red Hat in 2018. And he saw the need to bring Linux into the cloud. I mean, after all Linux was powering the internet it was the OS for enterprise apps. And he saw the need to extend its path into the cloud. Now here's how he described it at an OpenStack event in 2015. >> Similar to what happened with Linux. Like yes, there is still need for Linux and Windows and other OSs out there. But by and large on production, web infrastructure it's all Linux now. And you were able to get onto one stack. And how were you able to do that? It was, it was by having a truly open consistent API and a commitment into not breaking APIs and, so on. That allowed Linux to really become ubiquitous in the data center. Yes, there are other OSs, but Linux buy in large for production infrastructure, what is being used. And I think you'll see a similar phenomenon happen for this next level up cause we're treating the whole data center as a computer instead of trading one in visual instance is just the computer. And that's the stuff that Kubernetes to me and someone is doing. And I think there will be one that shakes out over time and we believe that'll be Kubernetes. >> So Alex saw the need for a dominant container orchestration platform. And you heard him, they made the right bet. It would be Kubernetes. Now Red Hat, Red Hat is been around since 1993. So it has a lot of on-prem. So it needed a future path to the cloud. So they rang up Google and said, hey. What do you guys have going on in this space? So Google, was kind of non-committal, but it did expose that they were thinking about doing something that was you know, pre Kubernetes. It was before it was called Kubernetes. But hey, we have this thing and we're thinking about open sourcing it, but Google's internal debates, and you know, some of the arm twisting from the engine engineers, it was taking too long. So Red Hat said, well, screw it. We got to move forward with OpenShift. So we'll do what Apple and Airbnb and Heroku are doing and we'll build on an alternative. And so they were ready to go with Mesos which was very much more sophisticated than Kubernetes at the time and much more mature, but then Google the last minute said, hey, let's do this. So Clayton Coleman with Red Hat, he was an architect. And he leaned in right away. He was one of the first outside committers outside of Google. But you still led these competing forces in the market. And internally there were debates. Do we go with simplicity or do we go with system scale? And Hen Goldberg from Google explains why they focus first on simplicity in getting that right. >> We had to defend of why we are only supporting 100 nodes in the first release of Kubernetes. And they explained that they know how to build for scale. They've done that. They know how to do it, but realistically most of users don't need large clusters. So why create this complexity? >> So Goldberg explains that rather than competing right away with say Mesos or Docker swarm, which were far more baked they made the bet to keep it simple and go for adoption and ubiquity, which obviously turned out to be the right choice. But the last piece of the puzzle was governance. Now Google promised to open source Kubernetes but when it started to open up to contributors outside of Google, the code was still controlled by Google and developers had to sign Google paper that said Google could still do whatever it wanted. It could sub license, et cetera. So Google had to pass the Baton to an independent entity and that's how CNCF was started. Kubernetes was its first project. And let's listen to Chris Aniszczyk of the CNCF explain >> CNCF is all about providing a neutral home for cloud native technology. And, you know, it's been about almost two years since our first board meeting. And the idea was, you know there's a certain set of technology out there, you know that are essentially microservice based that like live in containers that are essentially orchestrated by some process, right? That's essentially what we mean when we say cloud native right. And CNCF was seated with Kubernetes as its first project. And you know, as, as we've seen over the last couple years Kubernetes has grown, you know, quite well they have a large community a diverse con you know, contributor base and have done, you know, kind of extremely well. They're one of actually the fastest, you know highest velocity, open source projects out there, maybe. >> Okay. So this is how we got to where we are today. This ETR data shows container orchestration offerings. It's the same X Y graph that we showed earlier. And you can see where Kubernetes lands not we're standing that Kubernetes not a company but respondents, you know, they doing Kubernetes. They maybe don't know, you know, whose platform and it's hard with the ETR taxon economy as a fuzzy and survey data because Kubernetes is increasingly becoming embedded into cloud platforms. And IT pros, they may not even know which one specifically. And so the reason we've linked these two platforms Kubernetes and Red Hat OpenShift is because OpenShift right now is a dominant revenue player in the space and is increasingly popular PaaS layer. Yeah. You could download Kubernetes and do what you want with it. But if you're really building enterprise apps you're going to need support. And that's where OpenShift comes in. And there's not much data on this but we did find this chart from AMDA which show was the container software market, whatever that really is. And Red Hat has got 50% of it. This is revenue. And, you know, we know the muscle of IBM is behind OpenShift. So there's really not hard to believe. Now we've got some other data points that show how Kubernetes is becoming less visible and more embedded under of the hood. If you will, as this chart shows this is data from CNCF's annual survey they had 1800 respondents here, and the data showed that 79% of respondents use certified Kubernetes hosted platforms. Amazon elastic container service for Kubernetes was the most prominent 39% followed by Azure Kubernetes service at 23% in Azure AKS engine at 17%. With Google's GKE, Google Kubernetes engine behind those three. Now. You have to ask, okay, Google. Google's management Initially they had concerns. You know, why are we open sourcing such a key technology? And the premise was, it would level the playing field. And for sure it has, but you have to ask has it driven the monetization Google was after? And I would've to say no, it probably didn't. But think about where Google would've been. If it hadn't open source Kubernetes how relevant would it be in the cloud discussion. Despite its distant third position behind AWS and Microsoft or even fourth, if you include Alibaba without Kubernetes Google probably would be much less prominent or possibly even irrelevant in cloud, enterprise cloud. Okay. Let's wrap up with some comments on the state of Kubernetes and maybe a thought or two about, you know, where we're headed. So look, no shocker Kubernetes for all its improbable beginning has gone mainstream in the past year or so. We're seeing much more maturity and support for state full workloads and big ecosystem support with respect to better security and continued simplification. But you know, it's still pretty complex. It's getting better, but it's not VMware level of maturity. For example, of course. Now adoption has always been strong for Kubernetes, for cloud native companies who start with containers on day one, but we're seeing many more. IT organizations adopting Kubernetes as it matures. It's interesting, you know, Docker set out to be the system of the cloud and Kubernetes has really kind of become that. Docker desktop is where Docker's action really is. That's where Docker is thriving. It sold off Docker swarm to Mirantis has made some tweaks. Docker has made some tweaks to its licensing model to be able to continue to evolve its its business. To hear more about that at DockerCon. And as we said, years ago we expected Kubernetes to become less visible Stu Miniman and I talked about this in one of our predictions post and really become more embedded into other platforms. And that's exactly what's happening here but it's still complicated. Remember, remember the... Go back to the early and mid cycle of VMware understanding things like application performance you needed folks in lab coats to really remediate problems and dig in and peel the onion and scale the system you know, and in some ways you're seeing that dynamic repeated with Kubernetes, security performance scale recovery, when something goes wrong all are made more difficult by the rapid pace at which the ecosystem is evolving Kubernetes. But it's definitely headed in the right direction. So what's next for Kubernetes we would expect further simplification and you're going to see more abstractions. We live in this world of almost perpetual abstractions. Now, as Kubernetes improves support from multi cluster it will be begin to treat those clusters as a unified group. So kind of abstracting multiple clusters and treating them as, as one to be managed together. And this is going to create a lot of ecosystem focus on scaling globally. Okay, once you do that, you're going to have to worry about latency and then you're going to have to keep pace with security as you expand the, the threat area. And then of course recovery what happens when something goes wrong, more complexity, the harder it is to recover and that's going to require new services to share resources across clusters. So look for that. You also should expect more automation. It's going to be driven by the host cloud providers as Kubernetes supports more state full applications and begins to extend its cluster management. Cloud providers will inject as much automation as possible into the system. Now and finally, as these capabilities mature we would expect to see better support for data intensive workloads like, AI and Machine learning and inference. Schedule with these workloads becomes harder because they're so resource intensive and performance management becomes more complex. So that's going to have to evolve. I mean, frankly, many of the things that Kubernetes team way back when, you know they back burn it early on, for example, you saw in Docker swarm or Mesos they're going to start to enter the scene now with Kubernetes as they start to sort of prioritize some of those more complex functions. Now, the last thing I'll ask you to think about is what's next beyond Kubernetes, you know this isn't it right with serverless and IOT in the edge and new data, heavy workloads there's something that's going to disrupt Kubernetes. So in that, by the way, in that CNCF survey nearly 40% of respondents were using serverless and that's going to keep growing. So how is that going to change the development model? You know, Andy Jassy once famously said that if they had to start over with Amazon retail, they'd start with serverless. So let's keep an eye on the horizon to see what's coming next. All right, that's it for now. I want to thank my colleagues, Stephanie Chan who helped research this week's topics and Alex Myerson on the production team, who also manages the breaking analysis podcast, Kristin Martin and Cheryl Knight help get the word out on socials, so thanks to all of you. Remember these episodes, they're all available as podcasts wherever you listen, just search breaking analysis podcast. Don't forget to check out ETR website @etr.ai. We'll also publish. We publish a full report every week on wikibon.com and Silicon angle.com. You can get in touch with me, email me directly david.villane@Siliconangle.com or DM me at D Vollante. You can comment on our LinkedIn post. This is Dave Vollante for theCUBE insights powered by ETR. Have a great week, everybody. Thanks for watching. Stay safe, be well. And we'll see you next time. (upbeat music)

Published Date : Feb 12 2022

SUMMARY :

bringing you data driven and many of the players And that the beauty of this And so the beauty of this He saw the need to simplify It's the format in which A Docker at the time was a 30% company And so, the union of Docker and Kubernetes and said, you know, we And the odd thing to recognize is that, at the time. And so scaling that up, you and pressed hard to convince them and said, you know, please And he saw the need to And that's the stuff that Kubernetes and you know, some of the arm twisting in the first release of Kubernetes. of Google, the code was And the idea was, you know and dig in and peel the

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Stephanie ChanPERSON

0.99+

Chris AniszczykPERSON

0.99+

HockinPERSON

0.99+

Dave VollantePERSON

0.99+

Solomon HykesPERSON

0.99+

Craig McLuckiePERSON

0.99+

Cheryl KnightPERSON

0.99+

Jerry ChenPERSON

0.99+

Alex MyersonPERSON

0.99+

Kristin MartinPERSON

0.99+

Brian GrantPERSON

0.99+

Eric BrewerPERSON

0.99+

1998DATE

0.99+

MicrosoftORGANIZATION

0.99+

AWSORGANIZATION

0.99+

Tim HockinPERSON

0.99+

Andy JassyPERSON

0.99+

2013DATE

0.99+

Alex PolviPERSON

0.99+

Palo AltoLOCATION

0.99+

AmazonORGANIZATION

0.99+

Craig McLuckiePERSON

0.99+

Clayton ColemanPERSON

0.99+

2018DATE

0.99+

2014DATE

0.99+

IBMORGANIZATION

0.99+

50%QUANTITY

0.99+

JerryPERSON

0.99+

AppleORGANIZATION

0.99+

2012DATE

0.99+

Joe BedaPERSON

0.99+

GoogleORGANIZATION

0.99+

Stu MinimanPERSON

0.99+

CNCFORGANIZATION

0.99+

17%QUANTITY

0.99+

John FurrierPERSON

0.99+

30%QUANTITY

0.99+

40%QUANTITY

0.99+

OracleORGANIZATION

0.99+

23%QUANTITY

0.99+

iOSTITLE

0.99+

1800 respondentsQUANTITY

0.99+

AlibabaORGANIZATION

0.99+

2015DATE

0.99+

39%QUANTITY

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

AirbnbORGANIZATION

0.99+

Hen GoldbergPERSON

0.99+

fourthQUANTITY

0.99+

twoQUANTITY

0.99+

Chad SakacPERSON

0.99+

threeQUANTITY

0.99+

david.villane@Siliconangle.comOTHER

0.99+

first projectQUANTITY

0.99+

CraigPERSON

0.99+

VMwareORGANIZATION

0.99+

ETRORGANIZATION

0.99+