Shir Meir Lador, Intuit | WiDS 2023
(gentle upbeat music) >> Hey, friends of theCUBE. It's Lisa Martin live at Stanford University covering the Eighth Annual Women In Data Science. But you've been a Cube fan for a long time. So you know that we've been here since the beginning of WiDS, which is 2015. We always loved to come and cover this event. We learned great things about data science, about women leaders, underrepresented minorities. And this year we have a special component. We've got two grad students from Stanford's Master's program and Data Journalism joining. One of my them is here with me, Hannah Freitag, my co-host. Great to have you. And we are pleased to welcome from Intuit for the first time, Shir Meir Lador Group Manager at Data Science. Shir, it's great to have you. Thank you for joining us. >> Thank you for having me. >> And I was just secrets girl talking with my boss of theCUBE who informed me that you're in great company. Intuit's Chief Technology Officer, Marianna Tessel is an alumni of theCUBE. She was on at our Supercloud event in January. So welcome back into it. >> Thank you very much. We're happy to be with you. >> Tell us a little bit about what you're doing. You're a data science group manager as I mentioned, but also you've had you've done some cool things I want to share with the audience. You're the co-founder of the PyData Tel Aviv Meetups the co-host of the unsupervised podcast about data science in Israel. You give talks, about machine learning, about data science. Tell us a little bit about your background. Were you always interested in STEM studies from the time you were small? >> So I was always interested in mathematics when I was small, I went to this special program for youth going to university. So I did my test in mathematics earlier and studied in university some courses. And that's when I understood I want to do something in that field. And then when I got to go to university, I went to electrical engineering when I found out about algorithms and how interested it is to be able to find solutions to problems, to difficult problems with math. And this is how I found my way into machine learning. >> Very cool. There's so much, we love talking about machine learning and AI on theCUBE. There's so much potential. Of course, we have to have data. One of the things that I love about WiDS and Hannah and I and our co-host Tracy, have been talking about this all day is the impact of data in everyone's life. If you break it down, I was at Mobile World Congress last week, all about connectivity telecom, and of course we have these expectation that we're going to be connected 24/7 from wherever we are in the world and we can do whatever we want. I can do an Uber transaction, I can watch Netflix, I can do a bank transaction. It all is powered by data. And data science is, some of the great applications of it is what it's being applied to. Things like climate change or police violence or health inequities. Talk about some of the data science projects that you're working on at Intuit. I'm an intuit user myself, but talk to me about some of those things. Give the audience really a feel for what you're doing. >> So if you are a Intuit product user, you probably use TurboTax. >> I do >> In the past. So for those who are not familiar, TurboTax help customers submit their taxes. Basically my group is in charge of getting all the information automatically from your documents, the documents that you upload to TurboTax. We extract that information to accelerate your tax submission to make it less work for our customers. So- >> Thank you. >> Yeah, and this is why I'm so proud to be working at this team because our focus is really to help our customers to simplify all the you know, financial heavy lifting with taxes and also with small businesses. We also do a lot of work in extracting information from small business documents like bill, receipts, different bank statements. Yeah, so this is really exciting for me, the opportunity to work to apply data science and machine learning to solution that actually help people. Yeah >> Yeah, in the past years there have been more and more digital products emerging that needs some sort of data security. And how did your team, or has your team developed in the past years with more and more products or companies offering digital services? >> Yeah, so can you clarify the question again? Sorry. >> Yeah, have you seen that you have more customers? Like has your team expanded in the past years with more digital companies starting that need kind of data security? >> Well, definitely. I think, you know, since I joined Intuit, I joined like five and a half years ago back when I was in Tel Aviv. I recently moved to the Bay Area. So when I joined, there were like a dozens of data scientists and machine learning engineers on Intuit. And now there are a few hundreds. So we've definitely grown with the year and there are so many new places we can apply machine learning to help our customers. So this is amazing, so much we can do with machine learning to get more money in the pocket of our customers and make them do less work. >> I like both of those. More money in my pocket and less work. That's awesome. >> Exactly. >> So keep going Intuit. But one of the things that is so cool is just the the abstraction of the complexity that Intuit's doing. I upload documents or it scans my receipts. I was just in Barcelona last week all these receipts and conversion euros to dollars and it takes that complexity away from the end user who doesn't know all that's going on in the background, but you're making people's lives simpler. Unfortunately, we all have to pay taxes, most of us should. And of course we're in tax season right now. And so it's really cool what you're doing with ML and data science to make fundamental processes to people's lives easier and just a little bit less complicated. >> Definitely. And I think that's what's also really amazing about Intuit it, is how it combines human in the loop as well as AI. Because in some of the tax situation it's very complicated maybe to do it yourself. And then there's an option to work with an expert online that goes on a video with you and helps you do your taxes. And the expert's work is also accelerated by AI because we build tools for those experts to do the work more efficiently. >> And that's what it's all about is you know, using data to be more efficient, to be faster, to be smarter, but also to make complicated processes in our daily lives, in our business lives just a little bit easier. One of the things I've been geeking out about recently is ChatGPT. I was using it yesterday. I was telling everyone I was asking it what's hot in data science and I didn't know would it know what hot is and it did, it gave me trends. But one of the things that I was so, and Hannah knows I've been telling this all day, I was so excited to learn over the weekend that the the CTO of OpenAI is a female. I didn't know that. And I thought why are we not putting her on a pedestal? Because people are likening ChatGPT to like the launch of the iPhone. I mean revolutionary. And here we have what I think is exciting for all of us females, whether you're in tech or not, is another role model. Because really ultimately what WiDS is great at doing is showcasing women in technical roles. Because I always say you can't be what you can't see. We need to be able to see more role models, female role role models, underrepresented minorities of course men, because a lot of my sponsors and mentors are men, but we need more women that we can look up to and see ah, she's doing this, why can't I? Talk to me about how you stay the course in data science. What excites you about the potential, the opportunities based on what you've already accomplished what inspires you to continue and be one of those females that we say oh my God, I could be like Shir. >> I think that what inspires me the most is the endless opportunities that we have. I think we haven't even started tapping into everything that we can do with generative AI, for example. There's so much that can be done to further help you know, people make more money and do less work because there's still so much work that we do that we don't need to. You know, this is with Intuit, but also there are so many other use cases like I heard today you know, with the talk about the police. So that was really exciting how you can apply machine learning and data to actually help people, to help people that been through wrongful things. So I was really moved by that. And I'm also really excited about all the medical applications that we can have with data. >> Yeah, yeah. It's true that data science is so diverse in terms of what fields it can cover but it's equally important to have diverse teams and have like equity and inclusion in your teams. Where is Intuit at promoting women, non-binary minorities in your teams to progress data science? >> Yeah, so I have so much to say on this. >> Good. >> But in my work in Tel Aviv, I had the opportunity to start with Intuit women in data science branch in Tel Aviv. So that's why I'm super excited to be here today for that because basically this is the original conference, but as you know, there are branches all over the world and I got the opportunity to lead the Tel Aviv branch with Israel since 2018. And we've been through already this year it's going to be it's next week, it's going to be the sixth conference. And every year our number of submission to make talk in the conference doubled itself. >> Nice. >> We started with 20 submission, then 50, then 100. This year we have over 200 submissions of females to give talk at the conference. >> Ah, that's fantastic. >> And beyond the fact that there's so much traction, I also feel the great impact it has on the community in Israel because one of the reason we started WiDS was that when I was going to conferences I was seeing so little women on stage in all the technical conferences. You know, kind of the reason why I guess you know, Margaret and team started the WiDS conference. So I saw the same thing in Israel and I was always frustrated. I was organizing PyData Meetups as you mentioned and I was always having such a hard time to get female speakers to talk. I was trying to role model, but that's not enough, you know. We need more. So once we started WiDS and people saw you know, so many examples on the stage and also you know females got opportunity to talk in a place for that. Then it also started spreading and you can see more and more female speakers across other conferences, which are not women in data science. So I think just the fact that Intuits started this conference back in Israel and also in Bangalore and also the support Intuit does for WiDS in Stanford here, it shows how much WiDS values are aligned with our values. Yeah, and I think that to chauffeur that I think we have over 35% females in the data science and machine learning engineering roles, which is pretty amazing I think compared to the industry. >> Way above average. Yeah, absolutely. I was just, we've been talking about some of the AnitaB.org stats from 2022 showing that 'cause usually if we look at the industry to you point, over the last, I don't know, probably five, 10 years we're seeing the number of female technologists around like a quarter, 25% or so. 2022 data from AnitaB.org showed that that number is now 27.6%. So it's very slowly- >> It's very slowly increasing. >> Going in the right direction. >> Too slow. >> And that representation of women technologists increase at every level, except intern, which I thought was really interesting. And I wonder is there a covid relation there? >> I don't know. >> What do we need to do to start opening up the the top of the pipeline, the funnel to go downstream to find kids like you when you were younger and always interested in engineering and things like that. But the good news is that the hiring we've seen improvements, but it sounds like Intuit is way ahead of the curve there with 35% women in data science or technical roles. And what's always nice and refreshing that we've talked, Hannah about this too is seeing companies actually put action into initiatives. It's one thing for a company to say we're going to have you know, 50% females in our organization by 2030. It's a whole other ball game to actually create a strategy, execute on it, and share progress. So kudos to Intuit for what it's doing because that is more companies need to adopt that same sort of philosophy. And that's really cultural. >> Yeah. >> At an organization and culture can be hard to change, but it sounds like you guys kind of have it dialed in. >> I think we definitely do. That's why I really like working and Intuit. And I think that a lot of it is with the role modeling, diversity and inclusion, and by having women leaders. When you see a woman in leadership position, as a woman it makes you want to come work at this place. And as an evidence, when I build the team I started in Israel at Intuit, I have over 50% women in my team. >> Nice. >> Yeah, because when you have a woman in the interviewers panel, it's much easier, it's more inclusive. That's why we always try to have at least you know, one woman and also other minorities represented in our interviews panel. Yeah, and I think that in general it's very important as a leader to kind of know your own biases and trying to have defined standard and rubrics in how you evaluate people to avoid for those biases. So all of that inclusiveness and leadership really helps to get more diversity in your teams. >> It's critical. That thought diversity is so critical, especially if we talk about AI and we're almost out of time, I just wanted to bring up, you brought up a great point about the diversity and equity. With respect to data science and AI, we know in AI there's biases in data. We need to have more inclusivity, more representation to help start shifting that so the biases start to be dialed down and I think a conference like WiDS and it sounds like someone like you and what you've already done so far in the work that you're doing having so many females raise their hands to want to do talks at events is a good situation. It's a good scenario and hopefully it will continue to move the needle on the percentage of females in technical roles. So we thank you Shir for your time sharing with us your story, what you're doing, how Intuit and WiDS are working together. It sounds like there's great alignment there and I think we're at the tip of the iceberg with what we can do with data science and inclusion and equity. So we appreciate all of your insights and your time. >> Thank you very much. >> All right. >> I enjoyed very, very much >> Good. We hope, we aim to please. Thank you for our guests and for Hannah Freitag. This is Lisa Martin coming to you live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. Stick around, next guest will be here in just a minute.
SUMMARY :
Shir, it's great to have you. And I was just secrets girl talking We're happy to be with you. from the time you were small? and how interested it is to be able and of course we have these expectation So if you are a Intuit product user, the documents that you upload to TurboTax. the opportunity to work Yeah, in the past years Yeah, so can you I recently moved to the Bay Area. I like both of those. and data science to make and helps you do your taxes. Talk to me about how you stay done to further help you know, to have diverse teams I had the opportunity to start of females to give talk at the conference. Yeah, and I think that to chauffeur that the industry to you point, And I wonder is there the funnel to go downstream but it sounds like you guys I build the team I started to have at least you know, so the biases start to be dialed down This is Lisa Martin coming to you live
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Hannah Freitag | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Israel | LOCATION | 0.99+ |
Bangalore | LOCATION | 0.99+ |
27.6% | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Margaret | PERSON | 0.99+ |
Shir Meir Lador | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Bay Area | LOCATION | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
Tel Aviv | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
January | DATE | 0.99+ |
Shir | PERSON | 0.99+ |
20 submission | QUANTITY | 0.99+ |
50 | QUANTITY | 0.99+ |
Tracy | PERSON | 0.99+ |
2030 | DATE | 0.99+ |
100 | QUANTITY | 0.99+ |
35% | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
2015 | DATE | 0.99+ |
five | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
next week | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
sixth conference | QUANTITY | 0.99+ |
Intuits | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
OpenAI | ORGANIZATION | 0.99+ |
This year | DATE | 0.99+ |
Stanford | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
WiDS | EVENT | 0.98+ |
2018 | DATE | 0.98+ |
over 200 submissions | QUANTITY | 0.98+ |
Eighth Annual Women In Data Science | EVENT | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
TurboTax | TITLE | 0.98+ |
One | QUANTITY | 0.98+ |
over 50% | QUANTITY | 0.98+ |
over 35% | QUANTITY | 0.97+ |
five and a half years ago back | DATE | 0.97+ |
Stanford University | ORGANIZATION | 0.97+ |
first time | QUANTITY | 0.97+ |
Netflix | ORGANIZATION | 0.96+ |
one woman | QUANTITY | 0.96+ |
Mobile World Congress | EVENT | 0.94+ |
one thing | QUANTITY | 0.94+ |
AnitaB.org | ORGANIZATION | 0.93+ |
25% | QUANTITY | 0.92+ |
PyData Meetups | EVENT | 0.9+ |
Rhonda Crate, Boeing | WiDS 2023
(gentle music) >> Hey! Welcome back to theCUBE's coverage of WiDS 2023, the eighth Annual Women In Data Science Conference. I'm your host, Lisa Martin. We are at Stanford University, as you know we are every year, having some wonderful conversations with some very inspiring women and men in data science and technical roles. I'm very pleased to introduce Tracy Zhang, my co-host, who is in the Data Journalism program at Stanford. And Tracy and I are pleased to welcome our next guest, Rhonda Crate, Principal Data Scientist at Boeing. Great to have you on the program, Rhonda. >> Tracy: Welcome. >> Hey, thanks for having me. >> Were you always interested in data science or STEM from the time you were young? >> No, actually. I was always interested in archeology and anthropology. >> That's right, we were talking about that, anthropology. Interesting. >> We saw the anthropology background, not even a bachelor's degree, but also a master's degree in anthropology. >> So you were committed for a while. >> I was, I was. I actually started college as a fine arts major, but I always wanted to be an archeologist. So at the last minute, 11 credits in, left to switch to anthropology. And then when I did my master's, I focused a little bit more on quantitative research methods and then I got my Stat Degree. >> Interesting. Talk about some of the data science projects that you're working on. When I think of Boeing, I always think of aircraft. But you are doing a lot of really cool things in IT, data analytics. Talk about some of those intriguing data science projects that you're working on. >> Yeah. So when I first started at Boeing, I worked in information technology and data analytics. And Boeing, at the time, had cored up data science in there. And so we worked as a function across the enterprise working on anything from shared services to user experience in IT products, to airplane programs. So, it has a wide range. I worked on environment health and safety projects for a long time as well. So looking at ergonomics and how people actually put parts onto airplanes, along with things like scheduling and production line, part failures, software testing. Yeah, there's a wide spectrum of things. >> But I think that's so fantastic. We've been talking, Tracy, today about just what we often see at WiDS, which is this breadth of diversity in people's background. You talked about anthropology, archeology, you're doing data science. But also all of the different opportunities that you've had at Boeing. To see so many facets of that organization. I always think that breadth of thought diversity can be hugely impactful. >> Yeah. So I will say my anthropology degree has actually worked to my benefit. I'm a huge proponent of integrating liberal arts and sciences together. And it actually helps me. I'm in the Technical Fellowship program at Boeing, so we have different career paths. So you can go into management, you can be a regular employee, or you can go into the Fellowship program. So right now I'm an Associate Technical Fellow. And part of how I got into the Fellowship program was that diversity in my background, what made me different, what made me stand out on projects. Even applying a human aspect to things like ergonomics, as silly as that sounds, but how does a person actually interact in the space along with, here are the actual measurements coming off of whatever system it is that you're working on. So, I think there's a lot of opportunities, especially in safety as well, which is a big initiative for Boeing right now, as you can imagine. >> Tracy: Yeah, definitely. >> I can't go into too specifics. >> No, 'cause we were like, I think a theme for today that kind of we brought up in in all of our talk is how data is about people, how data is about how people understand the world and how these data can make impact on people's lives. So yeah, I think it's great that you brought this up, and I'm very happy that your anthropology background can tap into that and help in your day-to-day data work too. >> Yeah. And currently, right now, I actually switched over to Strategic Workforce Planning. So it's more how we understand our workforce, how we work towards retaining the talent, how do we get the right talent in our space, and making sure overall that we offer a culture and work environment that is great for our employees to come to. >> That culture is so important. You know, I was looking at some anitab.org stats from 2022 and you know, we always talk about the number of women in technical roles. For a long time it's been hovering around that 25% range. The data from anitab.org showed from '22, it's now 27.6%. So, a little increase. But one of the biggest challenges still, and Tracy and I and our other co-host, Hannah, have been talking about this, is attrition. Attrition more than doubled last year. What are some of the things that Boeing is doing on the retention side, because that is so important especially as, you know, there's this pipeline leakage of women leaving technical roles. Tell us about what Boeing's, how they're invested. >> Yeah, sure. We actually have a publicly available Global Diversity Report that anybody can go and look at and see our statistics for our organization. Right now, off the top of my head, I think we're hovering at about 24% in the US for women in our company. It has been a male majority company for many years. We've invested heavily in increasing the number of women in roles. One interesting thing about this year that came out is that even though with the great resignation and those types of things, the attrition level between men and women were actually pretty close to being equal, which is like the first time in our history. Usually it tends on more women leaving. >> Lisa: That's a good sign. >> Right. >> Yes, that's a good sign. >> And we've actually focused on hiring and bringing in more women and diversity in our company. >> Yeah, some of the stats too from anitab.org talked about the increase, and I have to scroll back and find my notes, the increase in 51% more women being hired in 2022 than 2021 for technical roles. So the data, pun intended, is showing us. I mean, the data is there to show the impact that having females in executive leadership positions make from a revenue perspective. >> Tracy: Definitely. >> Companies are more profitable when there's women at the head, or at least in senior leadership roles. But we're seeing some positive trends, especially in terms of representation of women technologists. One of the things though that I found interesting, and I'm curious to get your thoughts on this, Rhonda, is that the representation of women technologists is growing in all areas, except interns. >> Rhonda: Hmm. >> So I think, we've got to go downstream. You teach, I have to go back to my notes on you, did my due diligence, R programming classes through Boeings Ed Wells program, this is for WSU College of Arts and Sciences, talk about what you teach and how do you think that intern kind of glut could be solved? >> Yeah. So, they're actually two separate programs. So I teach a data analytics course at Washington State University as an Adjunct Professor. And then the Ed Wells program is a SPEEA, which is an Aerospace Union, focused on bringing up more technology and skills to the actual workforce itself. So it's kind of a couple different audiences. One is more seasoned employees, right? The other one is our undergraduates. I teach a Capstone class, so it's a great way to introduce students to what it's actually like to work on an industry project. We partner with Google and Microsoft and Boeing on those. The idea is also that maybe those companies have openings for the students when they're done. Since it's Senior Capstone, there's not a lot of opportunities for internships. But the opportunities to actually get hired increase a little bit. In regards to Boeing, we've actually invested a lot in hiring more women interns. I think the number was 40%, but you'd have to double check. >> Lisa: That's great, that's fantastic. >> Tracy: That's way above average, I think. >> That's a good point. Yeah, it is above average. >> Double check on that. That's all from my memory. >> Is this your first WiDS, or have you been before? >> I did virtually last year. >> Okay. One of the things that I love, I love covering this event every year. theCUBE's been covering it since it's inception in 2015. But it's just the inspiration, the vibe here at Stanford is so positive. WiDS is a movement. It's not an initiative, an organization. There are going to be, I think annually this year, there will be 200 different events. Obviously today we're live on International Women's Day. 60 plus countries, 100,000 plus people involved. So, this is such a positive environment for women and men, because we need everybody, underrepresented minorities, to be able to understand the implication that data has across our lives. If we think about stripping away titles in industries, everybody is a consumer, not everybody, most of mobile devices. And we have this expectation, I was in Barcelona last week at a Mobile World Congress, we have this expectation that we're going to be connected 24/7. I can get whatever I want wherever I am in the world, and that's all data driven. And the average person that isn't involved in data science wouldn't understand that. At the same time, they have expectations that depend on organizations like Boeing being data driven so that they can get that experience that they expect in their consumer lives in any aspect of their lives. And that's one of the things I find so interesting and inspiring about data science. What are some of the things that keep you motivated to continue pursuing this? >> Yeah I will say along those lines, I think it's great to invest in K-12 programs for Data Literacy. I know one of my mentors and directors of the Data Analytics program, Dr. Nairanjana Dasgupta, we're really familiar with each other. So, she runs a WSU program for K-12 Data Literacy. It's also something that we strive for at Boeing, and we have an internal Data Literacy program because, believe it or not, most people are in business. And there's a lot of disconnect between interpreting and understanding data. For me, what kind of drives me to continue data science is that connection between people and data and how we use it to improve our world, which is partly why I work at Boeing too 'cause I feel that they produce products that people need like satellites and airplanes, >> Absolutely. >> and everything. >> Well, it's tangible, it's relatable. We can understand it. Can you do me a quick favor and define data literacy for anyone that might not understand what that means? >> Yeah, so it's just being able to understand elements of data, whether that's a bar chart or even in a sentence, like how to read a statistic and interpret a statistic in a sentence, for example. >> Very cool. >> Yeah. And sounds like Boeing's doing a great job in these programs, and also trying to hire more women. So yeah, I wanted to ask, do you think there's something that Boeing needs to work on? Or where do you see yourself working on say the next five years? >> Yeah, I think as a company, we always think that there's always room for improvement. >> It never, never stops. >> Tracy: Definitely. (laughs) >> I know workforce strategy is an area that they're currently really heavily investing in, along with safety. How do we build safer products for people? How do we help inform the public about things like Covid transmission in airports? For example, we had the Confident Traveler Initiative which was a big push that we had, and we had to be able to inform people about data models around Covid, right? So yeah, I would say our future is more about an investment in our people and in our culture from my perspective >> That's so important. One of the hardest things to change especially for a legacy organization like Boeing, is culture. You know, when I talk with CEO's or CIO's or COO's about what's your company's vision, what's your strategy? Especially those companies that are on that digital journey that have no choice these days. Everybody expects to have a digital experience, whether you're transacting an an Uber ride, you're buying groceries, or you're traveling by air. That culture sounds like Boeing is really focused on that. And that's impressive because that's one of the hardest things to morph and mold, but it's so essential. You know, as we look around the room here at WiDS it's obviously mostly females, but we're talking about women, underrepresented minorities. We're talking about men as well who are mentors and sponsors to us. I'd love to get your advice to your younger self. What would you tell yourself in terms of where you are now to become a leader in the technology field? >> Yeah, I mean, it's kind of an interesting question because I always try to think, live with no regrets to an extent. >> Lisa: I like that. >> But, there's lots of failures along the way. (Tracy laughing) I don't know if I would tell myself anything different because honestly, if I did, I wouldn't be where I am. >> Lisa: Good for you. >> I started out in fine arts, and I didn't end up there. >> That's good. >> Such a good point, yeah. >> We've been talking about that and I find that a lot at events like WiDS, is women have these zigzaggy patterns. I studied biology, I have a master's in molecular biology, I'm in media and marketing. We talked about transportable skills. There's a case I made many years ago when I got into tech about, well in science you learn the art of interpreting esoteric data and creating a story from it. And that's a transportable skill. But I always say, you mentioned failure, I always say failure is not a bad F word. It allows us to kind of zig and zag and learn along the way. And I think that really fosters thought diversity. And in data science, that is one of the things we absolutely need to have is that diversity and thought. You know, we talk about AI models being biased, we need the data and we need the diverse brains to help ensure that the biases are identified, extracted, and removed. Speaking of AI, I've been geeking out with ChatGPT. So, I'm on it yesterday and I ask it, "What's hot in data science?" And I was like, is it going to get that? What's hot? And it did it, it came back with trends. I think if I ask anything, "What's hot?", I should be to Paris Hilton, but I didn't. And so I was geeking out. One of the things I learned recently that I thought was so super cool is the CTO of OpenAI is a woman, Mira Murati, which I didn't know until over the weekend. Because I always think if I had to name top females in tech, who would they be? And I always default to Sheryl Sandberg, Carly Fiorina, Susan Wojcicki running YouTube. Who are some of the people in your history, in your current, that are really inspiring to you? Men, women, indifferent. >> Sure. I think Boeing is one of the companies where you actually do see a lot of women in leadership roles. I think we're one of the top companies with a number of women executives, actually. Susan Doniz, who's our Chief Information Officer, I believe she's actually slotted to speak at a WiDS event come fall. >> Lisa: Cool. >> So that will be exciting. Susan's actually relatively newer to Boeing in some ways. A Boeing time skill is like three years is still kind of new. (laughs) But she's been around for a while and she's done a lot of inspiring things, I think, for women in the organization. She does a lot with Latino communities and things like that as well. For me personally, you know, when I started at Boeing Ahmad Yaghoobi was one of my mentors and my Technical Lead. He came from Iran during a lot of hard times in the 1980s. His brother actually wrote a memoir, (laughs) which is just a fun, interesting fact. >> Tracy: Oh my God! >> Lisa: Wow! >> And so, I kind of gravitate to people that I can learn from that's not in my sphere, that might make me uncomfortable. >> And you probably don't even think about how many people you're influencing along the way. >> No. >> We just keep going and learning from our mentors and probably lose sight of, "I wonder how many people actually admire me?" And I'm sure there are many that admire you, Rhonda, for what you've done, going from anthropology to archeology. You mentioned before we went live you were really interested in photography. Keep going and really gathering all that breadth 'cause it's only making you more inspiring to people like us. >> Exactly. >> We thank you so much for joining us on the program and sharing a little bit about you and what brought you to WiDS. Thank you so much, Rhonda. >> Yeah, thank you. >> Tracy: Thank you so much for being here. >> Lisa: Yeah. >> Alright. >> For our guests, and for Tracy Zhang, this is Lisa Martin live at Stanford University covering the eighth Annual Women In Data Science Conference. Stick around. Next guest will be here in just a second. (gentle music)
SUMMARY :
Great to have you on the program, Rhonda. I was always interested in That's right, we were talking We saw the anthropology background, So at the last minute, 11 credits in, Talk about some of the And Boeing, at the time, had But also all of the I'm in the Technical that you brought this up, and making sure overall that we offer about the number of women at about 24% in the US more women and diversity in our company. I mean, the data is is that the representation and how do you think for the students when they're done. Lisa: That's great, Tracy: That's That's a good point. That's all from my memory. One of the things that I love, I think it's great to for anyone that might not being able to understand that Boeing needs to work on? we always think that there's Tracy: Definitely. the public about things One of the hardest things to change I always try to think, live along the way. I started out in fine arts, And I always default to Sheryl I believe she's actually slotted to speak So that will be exciting. to people that I can learn And you probably don't even think about from anthropology to archeology. and what brought you to WiDS. Tracy: Thank you so covering the eighth Annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tracy | PERSON | 0.99+ |
Nairanjana Dasgupta | PERSON | 0.99+ |
Boeing | ORGANIZATION | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Rhonda | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Mira Murati | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Susan Wojcicki | PERSON | 0.99+ |
Rhonda Crate | PERSON | 0.99+ |
Susan Doniz | PERSON | 0.99+ |
Susan | PERSON | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
2015 | DATE | 0.99+ |
Barcelona | LOCATION | 0.99+ |
WSU College of Arts and Sciences | ORGANIZATION | 0.99+ |
40% | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Iran | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
International Women's Day | EVENT | 0.99+ |
11 credits | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
2021 | DATE | 0.99+ |
last year | DATE | 0.99+ |
51% | QUANTITY | 0.99+ |
Washington State University | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
Ahmad Yaghoobi | PERSON | 0.99+ |
200 different events | QUANTITY | 0.99+ |
Carly Fiorina | PERSON | 0.99+ |
60 plus countries | QUANTITY | 0.99+ |
1980s | DATE | 0.99+ |
US | LOCATION | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
100,000 plus people | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
'22 | DATE | 0.98+ |
eighth Annual Women In Data Science Conference | EVENT | 0.98+ |
One | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
two separate programs | QUANTITY | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
eighth Annual Women In Data Science Conference | EVENT | 0.98+ |
Global Diversity Report | TITLE | 0.98+ |
this year | DATE | 0.98+ |
Gayatree Ganu, Meta | WiDS 2023
(upbeat music) >> Hey everyone. Welcome back to "The Cube"'s live coverage of "Women in Data Science 2023". As every year we are here live at Stanford University, profiling some amazing women and men in the fields of data science. I have my co-host for this segment is Hannah Freitag. Hannah is from Stanford's Data Journalism program, really interesting, check it out. We're very pleased to welcome our first guest of the day fresh from the keynote stage, Gayatree Ganu, the VP of Data Science at Meta. Gayatree, It's great to have you on the program. >> Likewise, Thank you for having me. >> So you have a PhD in Computer Science. You shared some really cool stuff. Everyone knows Facebook, everyone uses it. I think my mom might be one of the biggest users (Gayatree laughs) and she's probably watching right now. People don't realize there's so much data behind that and data that drives decisions that we engage with. But talk to me a little bit about you first, PhD in Computer Science, were you always, were you like a STEM kid? Little Gayatree, little STEM, >> Yeah, I was a STEM kid. I grew up in Mumbai, India. My parents are actually pharmacists, so they were not like math or stats or anything like that, but I was always a STEM kid. I don't know, I think it, I think I was in sixth grade when we got our first personal computer and I obviously used it as a Pacman playing machine. >> Oh, that's okay. (all laugh) >> But I was so good at, and I, I honestly believe I think being good at games kind of got me more familiar and comfortable with computers. Yeah. I think I always liked computers, I, yeah. >> And so now you lead, I'm looking at my notes here, the Engagement Ecosystem and Monetization Data Science teams at Facebook, Meta. Talk about those, what are the missions of those teams and how does it impact the everyday user? >> Yeah, so the engagement is basically users coming back to our platform more, there's, no better way for users to tell us that they are finding value on the things that we are doing on Facebook, Instagram, WhatsApp, all the other products than coming back to our platform more. So the Engagement Ecosystem team is looking at trends, looking at where there are needs, looking at how users are changing their behaviors, and you know, helping build strategy for the long term, using that data knowledge. Monetization is very different. You know, obviously the top, top apex goal is have a sustainable business so that we can continue building products for our users. And so, but you know, I said this in my keynote today, it's not about making money, our mission statement is not, you know, maximize as much money as you can make. It's about building a meaningful connection between businesses, customers, users, and, you know especially in these last two or three funky, post-pandemic years, it's been such a big, an important thing to do for small businesses all over all, all around the world for users to find like goods and services and products that they care about and that they can connect to. So, you know, there is truly an connection between my engagement world and the monetization world. And you know, it's not very clear always till you go in to, like, you peel the layers. Everything we do in the ads world is also always first with users as our, you know, guiding principle. >> Yeah, you mentioned how you supported especially small businesses also during the pandemic. You touched a bit upon it in the keynote speech. Can you tell our audience what were like special or certain specific programs you implemented to support especially small businesses during these times? >> Yeah, so there are 200 million businesses on our platform. A lot of them small businesses, 10 million of them run ads. So there is a large number of like businesses on our platform who, you know use the power of social media to connect to the customers that matter to them, to like you, you know use the free products that we built. In the post-pandemic years, we built a lot of stuff very quickly when Covid first hit for business to get the word out, right? Like, they had to announce when special shopping hours existed for at-risk populations, or when certain goods and services were available versus not. We had grants, there's $100 million grant that we gave out to small businesses. Users could show sort of, you know show their support with a bunch of campaigns that we ran, and of course we continue running ads. Our ads are very effective, I guess, and, you know getting a very reliable connection with from the customer to the business. And so, you know, we've run all these studies. We support, I talked about two examples today. One of them is the largest black-owned, woman black-owned wine company, and how they needed to move to an online program and, you know, we gave them a grant, and supported them through their ads campaign and, you know, they saw 60% lift in purchases, or something like that. So, a lot of good stories, small stories, you know, on a scale of 200 million, that really sort of made me feel proud about the work we do. And you know, now more than ever before, I think people can connect so directly with businesses. You can WhatsApp them, I come from India, every business is on WhatsApp. And you can, you know, WhatsApp them, you can send them Facebook messages, and you can build this like direct connection with things that matter to you. >> We have this expectation that we can be connected anywhere. I was just at Mobile World Congress for MWC last week, where, obviously talking about connectivity. We want to be able to do any transaction, whether it's post on Facebook or call an Uber, or watch on Netflix if you're on the road, we expect that we're going to be connected. >> Yeah. >> And what we, I think a lot of us don't realize I mean, those of us in tech do, but how much data science is a facilitator of all of those interactions. >> Yeah! >> As we, Gayatree, as we talk about, like, any business, whether it is the black women-owned wine business, >> Yeah. >> great business, or a a grocer or a car dealer, everybody has to become data-driven. >> Yes. >> Because the consumer has the expectation. >> Yes. >> Talk about data science as a facilitator of just pretty much everything we are doing and conducting in our daily lives. >> Yeah, I think that's a great question. I think data science as a field wasn't really defined like maybe 15 years ago, right? So this is all in our lifetimes that we are seeing this. Even in data science today, People come from so many different backgrounds and bring their own expertise here. And I think we, you know, this conference, all of us get to define what that means and how we can bring data to do good in the world. Everything you do, as you said, there is a lot of data. Facebook has a lot of data, Meta has a lot of data, and how do we responsibly use this data? How do we use this data to make sure that we're, you know representing all diversity? You know, minorities? Like machine learning algorithms don't do well with small data, they do well with big data, but the small data matters. And how do you like, you know, bring that into algorithms? Yeah, so everything we do at Meta is very, very data-driven. I feel proud about that, to be honest, because while data gets a bad rap sometimes, having no data and making decisions in the blind is just the absolute worst thing you can do. And so, you know, we, the job as a data scientist at Facebook is to make sure that we use this data, use this responsibly, make sure that we are representing every aspect of the, you know, 3 billion users who come to our platform. Yeah, data serves all the products that we build here. >> The responsibility factor is, is huge. You know, we can't talk about AI without talking about ethics. One of the things that I was talking with Hannah and our other co-host, Tracy, about during our opening is something I just learned over the weekend. And that is that the CTO of ChatGPT is a woman. (Gayatree laughs) I didn't know that. And I thought, why isn't she getting more awareness? There's a lot of conversations with their CEO. >> Yeah. >> Everyone's using it, playing around with it. I actually asked it yesterday, "What's hot in Data Science?" (all laugh) I was like, should I have asked that to let itself in, what's hot? (Gayatree laughs) But it, I thought that was phenomenal, and we need to be talking about this more. >> Yeah. >> This is something that they're likening to the launch of the iPhone, which has transformed our lives. >> I know, it is. >> ChatGPT, and its chief technologist is a female, how great is that? >> And I don't know whether you, I don't know the stats around this, but I think CTO is even less, it's even more rare to have a woman there, like you have women CEOs because I mean, we are building upon years and years of women not choosing technical fields and not choosing STEM, and it's going to take some time, but yeah, yeah, she's a woman. Isn't it amazing? It's wonderful. >> Yes, there was a great, there's a great "Fast Company" article on her that I was looking at yesterday and I just thought, we need to do what we can to help spread, Mira Murati is her name, because what she's doing is, one of the biggest technological breakthroughs we may ever see in our lifetime. It gives me goosebumps just thinking about it. (Gayatree laughs) I also wanted to share some stats, oh, sorry, go ahead, Hannah. >> Yeah, I was going to follow up on the thing that you mentioned that we had many years with like not enough women choosing a career path in STEM and that we have to overcome this trend. What are some, like what is some advice you have like as the Vice-President Data Science? Like what can we do to make this feel more, you know, approachable and >> Yeah. >> accessible for women? >> Yeah, I, there's so much that we have done already and you know, want to continue, keep doing. Of course conferences like these were, you know and I think there are high school students here there are students from my Alma Mater's undergrad year. It's amazing to like get all these women together to get them to see what success could look like. >> Yeah. >> What being a woman leader in this space could look like. So that's, you know, that's one, at Meta I lead recruiting at Meta and we've done a bunch to sort of open up the thinking around data science and technical jobs for women. Simple things like what you write in your job description. I don't know whether you know this, or this is a story you've heard before, when you see, when you have a job description and there are like 10 things that you need to, you know be good at to apply to this job, a woman sees those 10 and says, okay, I don't meet the qualifications of one of them and she doesn't apply. And a man sees one that he meets the qualifications to and he applies. And so, you know, there's small things you can do, and just how you write your job description, what goals you set for diversity and inclusion for your own organization. We have goals, Facebook's always been pretty up there in like, you know, speaking out for diversity and Sheryl Sandberg has been our Chief Business Officer for a very long time and she's been, like, amazing at like pushing from more women. So yeah, every step of the way, I think, we made a lot of progress, to be honest. I do think women choose STEM fields a lot more than they did. When I did my Computer Science I was often one of one or two women in the Computer Science class. It takes some time to, for it to percolate all the way to like having more CTOs and CEOs, >> Yeah. >> but it's going to happen in our lifetime, and you know, three of us know this, women are going to rule the world, and it (laughs) >> Drop the mic, girl! >> And it's going to happen in our lifetime, so I'm excited about it. >> And we have responsibility in helping make that happen. You know, I'm curious, you were in STEM, you talked about Computer Science, being one of the only females. One of the things that the nadb.org data from 2022 showed, some good numbers, the number of women in technical roles is now 27.6%, I believe, so up from 25, it's up in '22, which is good, more hiring of women. >> Yeah. >> One of the biggest challenges is attrition. What keeps you motivated? >> Yeah. >> To stay what, where you are doing what you're doing, managing a family and helping to drive these experiences at Facebook that we all expect are just going to happen? >> Yeah, two things come to mind. It does take a village. You do need people around you. You know, I'm grateful for my husband. You talked about managing a family, I did the very Indian thing and my parents live with us, and they help take care of the kids. >> Right! (laughs) >> (laughs) My kids are young, six and four, and I definitely needed help over the last few years. It takes mentors, it takes other people that you look up to, who've gone through all of those same challenges and can, you know, advise you to sort of continue working in the field. I remember when my kid was born when he was six months old, I was considering quitting. And my husband's like, to be a good role model for your children, you need to continue working. Like, just being a mother is not enough. And so, you know, so that's one. You know, the village that you build around you your supporters, your mentors who keep encouraging you. Sheryl Sandberg said this to me in my second month at Facebook. She said that women drop out of technical fields, they become managers, they become sort of administrative more, in their nature of their work, and her advice was, "Don't do that, Don't stop the technical". And I think that's the other thing I'd say to a lot of women. Technical stuff is hard, but you know, keeping up with that and keeping sort of on top of it actually does help you in the long run. And it's definitely helped me in my career at Facebook. >> I think one of the things, and Hannah and I and Tracy talked about this in the open, and I think you'll agree with us, is the whole saying of you can't be what you can't see, and I like to way, "Well, you can be what you can see". That visibility, the great thing that WiDS did, of having you on the stage as a speaker this morning so people can understand, everyone, like I said, everyone knows Meta, >> Yeah. >> everyone uses Facebook. And so it's important to bring that connection, >> Yeah. >> of how data is driving the experiences, the fact that it's User First, but we need to be able to see women in positions, >> Yes. >> like you, especially with Sheryl stepping down moving on to something else, or people that are like YouTube influencers, that have no idea that the head of YouTube for a very long time, Susan Wojcicki is a woman. >> (laughs) Yes. Who pioneered streaming, and I mean how often do you are you on YouTube every day? >> Yep, every day. >> But we have to be able to see and and raise the profile of these women and learn from them and be inspired, >> Absolutely. >> to keep going and going. I like what I do, I'm making a difference here. >> Yeah, yeah, absolutely. >> And I can be the, the sponsor or the mentor for somebody down the road. >> Absolutely. >> Yeah, and then referring back to what we talked in the beginning, show that data science is so diverse and it doesn't mean if you're like in IT, you're like sitting in your dark room, >> Right. (laughs) >> coding all day, but you know, >> (laughs) Right! >> to show the different facets of this job and >> Right! >> make this appealing to women, >> Yeah. for sure. >> And I said this in my keynote too, you know, one of the things that helped me most is complimenting the data and the techniques and the algorithms with how you work with people, and you know, empathy and alignment building and leadership, strategic thinking. And I think honestly, I think women do a lot of this stuff really well. We know how to work with people and so, you know, I've seen this at Meta for sure, like, you know, all of these skills soft skills, as we call them, go a long way, and like, you know, doing the right things and having a lasting impact. And like I said, women are going to rule the world, you know, in our lifetimes. (laughs) >> Oh, I can't, I can't wait to see that happen. There's some interesting female candidates that are already throwing their hats in the ring for the next presidential election. >> Yes. >> So we'll have to see where that goes. But some of the things that are so interesting to me, here we are in California and Palo Alto, technically Stanford is its own zip code, I believe. And we're in California, we're freaking out because we've gotten so much rain, it's absolutely unprecedented. We need it, we had a massive drought, an extreme drought, technically, for many years. I've got friends that live up in Tahoe, I've been getting pictures this morning of windows that are >> (laughs) that are covered? >> Yes, actually, yes. (Gayatree laughs) That, where windows like second-story windows are covered in snow. >> Yeah. >> Climate change. >> Climate change. >> There's so much that data science is doing to power and power our understanding of climate change whether it's that, or police violence. >> Yeah. (all talk together) >> We had talk today on that it was amazing. >> Yes. So I want more people to know what data science is really facilitating, that impacts all of us, whether you're in a technical role or not. >> And data wins arguments. >> Yes, I love that! >> I said this is my slide today, like, you know, there's always going to be doubters and naysayers and I mean, but there's hard evidence, there's hard data like, yeah. In all of these fields, I mean the data that climate change, the data science that we have done in the environmental and climate change areas and medical, and you know, medicine professions just so much, so much more opportunity, and like, how much we can learn more about the world. >> Yeah. >> Yeah, it's a pretty exciting time to be a data scientist. >> I feel like, we're just scratching the surface. >> Yeah. >> With the potential and the global impact that we can make with data science. Gayatree, it's been so great having you on theCUBE, thank you. >> Right, >> Thank you so much, Gayatree. >> So much, I love, >> Thank you. >> I'm going to take Data WiD's arguments into my personal life. (Gayatree laughs) I was actually just, just a quick anecdote, funny story. I was listening to the radio this morning and there was a commercial from an insurance company and I guess the joke is, it's an argument between two spouses, and the the voiceover comes in and says, "Let's watch a replay". I'm like, if only they, then they got the data that helped the woman win the argument. (laughs) >> (laughs) I will warn you it doesn't always help with arguments I have with my husband. (laughs) >> Okay, I'm going to keep it in the middle of my mind. >> Yes! >> Gayatree, thank you so much. >> Thank you so much, >> for sharing, >> Thank you both for the opportunity. >> And being a great female that we can look up to, we really appreciate your insights >> Oh, likewise. >> and your time. >> Thank you. >> All right, for our guest, for Hannah Freitag, I'm Lisa Martin, live at Stanford University covering "Women in Data Science '23". Stick around, our next guest joins us in just a minute. (upbeat music) I have been in the software and technology industry for over 12 years now, so I've had the opportunity as a marketer to really understand and interact with customers across the entire buyer's journey. Hi, I'm Lisa Martin and I'm a host of theCUBE. (upbeat music) Being a host on theCUBE has been a dream of mine for the last few years. I had the opportunity to meet Jeff and Dave and John at EMC World a few years ago and got the courage up to say, "Hey, I'm really interested in this. I love talking with customers, gimme a shot, let me come into the studio and do an interview and see if we can work together". I think where I really impact theCUBE is being a female in technology. We interview a lot of females in tech, we do a lot of women in technology events and one of the things I.
SUMMARY :
in the fields of data science. and data that drives and I obviously used it as a (all laugh) and comfortable with computers. And so now you lead, I'm and you know, helping build Yeah, you mentioned how and you can build this I was just at Mobile World a lot of us don't realize has to become data-driven. has the expectation. and conducting in our daily lives. And I think we, you know, this conference, And that is that the CTO and we need to be talking about this more. to the launch of the iPhone, which has like you have women CEOs and I just thought, we on the thing that you mentioned and you know, want to and just how you write And it's going to One of the things that the One of the biggest I did the very Indian thing and can, you know, advise you to sort of and I like to way, "Well, And so it's important to bring that have no idea that the head of YouTube and I mean how often do you I like what I do, I'm Yeah, yeah, for somebody down the road. (laughs) Yeah. and like, you know, doing the right things that are already throwing But some of the things that are covered in snow. There's so much that Yeah. on that it was amazing. that impacts all of us, and you know, medicine professions to be a data scientist. I feel like, and the global impact and I guess the joke is, (laughs) I will warn you I'm going to keep it in the and one of the things I.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Susan Wojcicki | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Hannah Freitag | PERSON | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Gayatree | PERSON | 0.99+ |
$100 million | QUANTITY | 0.99+ |
Jeff | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
Tahoe | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
Sheryl | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
India | LOCATION | 0.99+ |
200 million | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
six | QUANTITY | 0.99+ |
Meta | ORGANIZATION | 0.99+ |
10 things | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
two spouses | QUANTITY | 0.99+ |
Engagement Ecosystem | ORGANIZATION | 0.99+ |
10 million | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
today | DATE | 0.99+ |
last week | DATE | 0.99+ |
25 | QUANTITY | 0.99+ |
Mumbai, India | LOCATION | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
two examples | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
over 12 years | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
200 million businesses | QUANTITY | 0.98+ |
Stanford | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
Women in Data Science 2023 | TITLE | 0.98+ |
ORGANIZATION | 0.98+ | |
Gayatree Ganu | PERSON | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
second month | QUANTITY | 0.97+ |
nadb.org | ORGANIZATION | 0.97+ |
sixth grade | QUANTITY | 0.97+ |
first guest | QUANTITY | 0.97+ |
'22 | DATE | 0.97+ |
Breaking Analysis: H1 of ‘22 was ugly…H2 could be worse Here’s why we’re still optimistic
>> From theCUBE Studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> After a two-year epic run in tech, 2022 has been an epically bad year. Through yesterday, The NASDAQ composite is down 30%. The S$P 500 is off 21%. And the Dow Jones Industrial average 16% down. And the poor holders at Bitcoin have had to endure a nearly 60% decline year to date. But judging by the attendance and enthusiasm, in major in-person tech events this spring. You'd never know that tech was in the tank. Moreover, walking around the streets of Las Vegas, where most tech conferences are held these days. One can't help but notice that the good folks of Main Street, don't seem the least bit concerned that the economy is headed for a recession. Hello, and welcome to this weeks Wiki Bond Cube Insights powered by ETR. In this Breaking Analysis we'll share our main takeaways from the first half of 2022. And talk about the outlook for tech going forward, and why despite some pretty concerning headwinds we remain sanguine about tech generally, but especially enterprise tech. Look, here's the bumper sticker on why many folks are really bearish at the moment. Of course, inflation is high, other than last year, the previous inflation high this century was in July of 2008, it was 5.6%. Inflation has proven to be very, very hard to tame. You got gas at $7 dollars a gallon. Energy prices they're not going to suddenly drop. Interest rates are climbing, which will eventually damage housing. Going to have that ripple effect, no doubt. We're seeing layoffs at companies like Tesla and the crypto names are also trimming staff. Workers, however are still in short supply. So wages are going up. Companies in retail are really struggling with the right inventory, and they can't even accurately guide on their earnings. We've seen a version of this movie before. Now, as it pertains to tech, Crawford Del Prete, who's the CEO of IDC explained this on theCUBE this very week. And I thought he did a really good job. He said the following, >> Matt, you have a great statistic that 80% of companies used COVID as their point to pivot into digital transformation. And to invest in a different way. And so what we saw now is that tech is now where I think companies need to focus. They need to invest in tech. They need to make people more productive with tech and it played out in the numbers. Now so this year what's fascinating is we're looking at two vastly different markets. We got gasoline at $7 a gallon. We've got that affecting food prices. Interesting fun fact recently it now costs over $1,000 to fill an 18 wheeler. All right, based on, I mean, this just kind of can't continue. So you think about it. >> Don't put the boat in the water. >> Yeah, yeah, yeah. Good luck if ya, yeah exactly. So a family has kind of this bag of money, and that bag of money goes up by maybe three, 4% every year, depending upon earnings. So that is sort of sloshing around. So if food and fuel and rent is taking up more, gadgets and consumer tech are not, you're going to use that iPhone a little longer. You're going to use that Android phone a little longer. You're going to use that TV a little longer. So consumer tech is getting crushed, really it's very, very, and you saw it immediately in ad spending. You've seen it in Meta, you've seen it in Facebook. Consumer tech is doing very, very, it is tough. Enterprise tech, we haven't been in the office for two and a half years. We haven't upgraded whether that be campus wifi, whether that be servers, whether that be commercial PCs as much as we would have. So enterprise tech, we're seeing double digit order rates. We're seeing strong, strong demand. We have combined that with a component shortage, and you're seeing some enterprise companies with a quarter of backlog, I mean that's really unheard of. >> And higher prices, which also profit. >> And therefore that drives up the prices. >> And this is a theme that we've heard this year at major tech events, they've really come roaring back. Last year, theCUBE had a huge presence at AWS Reinvent. The first Reinvent since 2019, it was really well attended. Now this was before the effects of the omicron variant, before they were really well understood. And in the first quarter of 2022, things were pretty quiet as far as tech events go But theCUBE'a been really busy this spring and early into the summer. We did 12 physical events as we're showing here in the slide. Coupa, did Women in Data Science at Stanford, Coupa Inspire was in Las Vegas. Now these are both smaller events, but they were well attended and beat expectations. San Francisco Summit, the AWS San Francisco Summit was a bit off, frankly 'cause of the COVID concerns. They were on the rise, then we hit Dell Tech World which was packed, it had probably around 7,000 attendees. Now Dockercon was virtual, but we decided to include it here because it was a huge global event with watch parties and many, many tens of thousands of people attending. Now the Red Hat Summit was really interesting. The choice that Red Hat made this year. It was purposefully scaled down and turned into a smaller VIP event in Boston at the Western, a couple thousand people only. It was very intimate with a much larger virtual presence. VeeamON was very well attended, not as large as previous VeeamON events, but again beat expectations. KubeCon and Cloud Native Con was really successful in Spain, Valencia, Spain. PagerDuty Summit was again a smaller intimate event in San Francisco. And then MongoDB World was at the new Javits Center and really well attended over the three day period. There were lots of developers there, lots of business people, lots of ecosystem partners. And then the Snowflake summit in Las Vegas, it was the most vibrant from the standpoint of the ecosystem with nearly 10,000 attendees. And I'll come back to that in a moment. Amazon re:Mars is the Amazon AI robotic event, it's smaller but very, very cool, a lot of innovation. And just last week we were at HPE Discover. They had around 8,000 people attending which was really good. Now I've been to over a dozen HPE or HPE Discover events, within Europe and the United States over the past decade. And this was by far the most vibrant, lot of action. HPE had a little spring in its step because the company's much more focused now but people was really well attended and people were excited to be there, not only to be back at physical events, but also to hear about some of the new innovations that are coming and HPE has a long way to go in terms of building out that ecosystem, but it's starting to form. So we saw that last week. So tech events are back, but they are smaller. And of course now a virtual overlay, they're hybrid. And just to give you some context, theCUBE did, as I said 12 physical events in the first half of 2022. Just to compare that in 2019, through June of that year we had done 35 physical events. Yeah, 35. And what's perhaps more interesting is we had our largest first half ever in our 12 year history because we're doing so much hybrid and virtual to compliment the physical. So that's the new format is CUBE plus digital or sometimes just digital but that's really what's happening in our business. So I think it's a reflection of what's happening in the broader tech community. So everyone's still trying to figure that out but it's clear that events are back and there's no replacing face to face. Or as I like to say, belly to belly, because deals are done at physical events. All these events we've been to, the sales people are so excited. They're saying we're closing business. Pipelines coming out of these events are much stronger, than they are out of the virtual events but the post virtual event continues to deliver that long tail effect. So that's not going to go away. The bottom line is hybrid is the new model. Okay let's look at some of the big themes that we've taken away from the first half of 2022. Now of course, this is all happening under the umbrella of digital transformation. I'm not going to talk about that too much, you've had plenty of DX Kool-Aid injected into your veins over the last 27 months. But one of the first observations I'll share is that the so-called big data ecosystem that was forming during the hoop and around, the hadoop infrastructure days and years. then remember it dispersed, right when the cloud came in and kind of you know, not wiped out but definitely dampened the hadoop enthusiasm for on-prem, the ecosystem dispersed, but now it's reforming. There are large pockets that are obviously seen in the various clouds. And we definitely see a ecosystem forming around MongoDB and the open source community gathering in the data bricks ecosystem. But the most notable momentum is within the Snowflake ecosystem. Snowflake is moving fast to win the day in the data ecosystem. They're providing a single platform that's bringing different data types together. Live data from systems of record, systems of engagement together with so-called systems of insight. These are converging and while others notably, Oracle are architecting for this new reality, Snowflake is leading with the ecosystem momentum and a new stack is emerging that comprises cloud infrastructure at the bottom layer. Data PaaS layer for app dev and is enabling an ecosystem of partners to build data products and data services that can be monetized. That's the key, that's the top of the stack. So let's dig into that further in a moment but you're seeing machine intelligence and data being driven into applications and the data and application stacks they're coming together to support the acceleration of physical into digital. It's happening right before our eyes in every industry. We're also seeing the evolution of cloud. It started with the SaaS-ification of the enterprise where organizations realized that they didn't have to run their own software on-prem and it made sense to move to SaaS for CRM or HR, certainly email and collaboration and certain parts of ERP and early IS was really about getting out of the data center infrastructure management business called that cloud 1.0, and then 2.0 was really about changing the operating model. And now we're seeing that operating model spill into on-prem workloads finally. We're talking about here about initiatives like HPE's Green Lake, which we heard a lot about last week at Discover and Dell's Apex, which we heard about in May, in Las Vegas. John Furrier had a really interesting observation that basically this is HPE's and Dell's version of outposts. And I found that interesting because outpost was kind of a wake up call in 2018 and a shot across the bow at the legacy enterprise infrastructure players. And they initially responded with these flexible financial schemes, but finally we're seeing real platforms emerge. Again, we saw this at Discover and at Dell Tech World, early implementations of the cloud operating model on-prem. I mean, honestly, you're seeing things like consoles and billing, similar to AWS circa 2014, but players like Dell and HPE they have a distinct advantage with respect to their customer bases, their service organizations, their very large portfolios, especially in the case of Dell and the fact that they have more mature stacks and knowhow to run mission critical enterprise applications on-prem. So John's comment was quite interesting that these firms are basically building their own version of outposts. Outposts obviously came into their wheelhouse and now they've finally responded. And this is setting up cloud 3.0 or Supercloud, as we like to call it, an abstraction layer, that sits above the clouds that serves as a unifying experience across a continuum of on-prem across clouds, whether it's AWS, Azure, or Google. And out to both the near and far edge, near edge being a Lowes or a Home Depot, but far edge could be space. And that edge again is fragmented. You've got the examples like the retail stores at the near edge. Outer space maybe is the far edge and IOT devices is perhaps the tiny edge. No one really knows how the tiny edge is going to play out but it's pretty clear that it's not going to comprise traditional X86 systems with a cool name tossed out to the edge. Rather, it's likely going to require a new low cost, low power, high performance architecture, most likely RM based that will enable things like realtime AI inferencing at that edge. Now we've talked about this a lot on Breaking Analysis, so I'm not going to double click on it. But suffice to say that it's very possible that new innovations are going to emerge from the tiny edge that could really disrupt the enterprise in terms of price performance. Okay, two other quick observations. One is that data protection is becoming a much closer cohort to the security stack where data immutability and air gaps and fast recovery are increasingly becoming a fundamental component of the security strategy to combat ransomware and recover from other potential hacks or disasters. And I got to say from our observation, Veeam is leading the pack here. It's now claiming the number one revenue spot in a statistical dead heat with the Dell's data protection business. That's according to Veeam, according to IDC. And so that space continues to be of interest. And finally, Broadcom's acquisition of Dell. It's going to have ripple effects throughout the enterprise technology business. And there of course, there are a lot of questions that remain, but the one other thing that John Furrier and I were discussing last night John looked at me and said, "Dave imagine if VMware runs better on Broadcom components and OEMs that use Broadcom run VMware better, maybe Broadcom doesn't even have to raise prices on on VMware licenses. Maybe they'll just raise prices on the OEMs and let them raise prices to the end customer." Interesting thought, I think because Broadcom is so P&L focused that it's probably not going to be the prevailing model but we'll see what happens to some of the strategic projects rather like Monterey and Capitola and Thunder. We've talked a lot about project Monterey, the others we'll see if they can make the cut. That's one of the big concerns because it's how OEMs like the ones that are building their versions of outposts are going to compete with the cloud vendors, namely AWS in the future. I want to come back to the comment on the data stack for a moment that we were talking about earlier, we talked about how the big data ecosystem that was once coalescing around hadoop dispersed. Well, the data value chain is reforming and we think it looks something like this picture, where cloud infrastructure lives at the bottom. We've said many times the cloud is expanding and evolving. And if companies like Dell and HPE can truly build a super cloud infrastructure experience then they will be in a position to capture more of the data value. If not, then it's going to go to the cloud players. And there's a live data layer that is increasingly being converged into platforms that not only simplify the movement in ELTing of data but also allow organizations to compress the time to value. Now there's a layer above that, we sometimes call it the super PaaS layer if you will, that must comprise open source tooling, partners are going to write applications and leverage platform APIs and build data products and services that can be monetized at the top of the stack. So when you observe the battle for the data future it's unlikely that any one company is going to be able to do this all on their own, which is why I often joke that the 2020s version of a sweaty Steve Bomber running around the stage, screaming, developers, developers developers, and getting the whole audience into it is now about ecosystem ecosystem ecosystem. Because when you need to fill gaps and accelerate features and provide optionality a list of capabilities on the left hand side of this chart, that's going to come from a variety of different companies and places, we're talking about catalogs and AI tools and data science capabilities, data quality, governance tools and it should be of no surprise to followers of Breaking Analysis that on the right hand side of this chart we're including the four principles of data mesh, which of course were popularized by Zhamak Dehghani. So decentralized data ownership, data as products, self-serve platform and automated or computational governance. Now whether this vision becomes a reality via a proprietary platform like Snowflake or somehow is replicated by an open source remains to be seen but history generally shows that a defacto standard for more complex problems like this is often going to emerge prior to an open source alternative. And that would be where I would place my bets. Although even that proprietary platform has to include open source optionality. But it's not a winner take all market. It's plenty of room for multiple players and ecosystem innovators, but winner will definitely take more in my opinion. Okay, let's close with some ETR data that looks at some of those major platform plays who talk a lot about digital transformation and world changing impactful missions. And they have the resources really to compete. This is an XY graphic. It's a view that we often show, it's got net score on the vertical access. That's a measure of spending momentum, and overlap or presence in the ETR survey. That red, that's the horizontal access. The red dotted line at 40% indicates that the platform is among the highest in terms of spending velocity. Which is why I always point out how impressive that makes AWS and Azure because not only are they large on the horizontal axis, the spending momentum on those two platforms rivals even that of Snowflake which continues to lead all on the vertical access. Now, while Google has momentum, given its goals and resources, it's well behind the two leaders. We've added Service Now and Salesforce, two platform names that have become the next great software companies. Joining likes of Oracle, which we show here and SAP not shown along with IBM, you can see them on this chart. We've also plotted MongoDB, which we think has real momentum as a company generally but also with Atlas, it's managed cloud database as a service specifically and Red Hat with trying to become the standard for app dev in Kubernetes environments, which is the hottest trend right now in application development and application modernization. Everybody's doing something with Kubernetes and of course, Red Hat with OpenShift wants to make that a better experience than do it yourself. The DYI brings a lot more complexity. And finally, we've got HPE and Dell both of which we've talked about pretty extensively here and VMware and Cisco. Now Cisco is executing on its portfolio strategy. It's got a lot of diverse components to its company. And it's coming at the cloud of course from a networking and security perspective. And that's their position of strength. And VMware is a staple of the enterprise. Yes, there's some uncertainty with regards to the Broadcom acquisition, but one thing is clear vSphere isn't going anywhere. It's entrenched and will continue to run lots of IT for years to come because it's the best platform on the planet. Now, of course, these are just some of the players in the mix. We expect that numerous non-traditional technology companies this is important to emerge as new cloud players. We've put a lot of emphasis on the data ecosystem because to us that's really going to be the main spring of digital, i.e., a digital company is a data company and that means an ecosystem of data partners that can advance outcomes like better healthcare, faster drug discovery, less fraud, cleaner energy, autonomous vehicles that are safer, smarter, more efficient grids and factories, better government and virtually endless litany of societal improvements that can be addressed. And these companies will be building innovations on top of cloud platforms creating their own super clouds, if you will. And they'll come from non-traditional places, industries, finance that take their data, their software, their tooling bring them to their customers and run them on various clouds. Okay, that's it for today. Thanks to Alex Myerson, who is on production and does the podcast for Breaking Analysis, Kristin Martin and Cheryl Knight, they help get the word out. And Rob Hoofe is our editor and chief over at Silicon Angle who helps edit our posts. Remember all these episodes are available as podcasts wherever you listen. All you got to do is search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. You can email me directly at david.vellante@siliconangle.com or DM me at dvellante, or comment on my LinkedIn posts. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE's Insights powered by ETR. Thanks for watching be well. And we'll see you next time on Breaking Analysis. (upbeat music)
SUMMARY :
This is Breaking Analysis that the good folks of Main Street, and it played out in the numbers. haven't been in the office And higher prices, And therefore that is that the so-called big data ecosystem
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
Rob Hoofe | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
July of 2008 | DATE | 0.99+ |
Europe | LOCATION | 0.99+ |
5.6% | QUANTITY | 0.99+ |
Matt | PERSON | 0.99+ |
Spain | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Boston | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Monterey | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
12 year | QUANTITY | 0.99+ |
2018 | DATE | 0.99+ |
Discover | ORGANIZATION | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2019 | DATE | 0.99+ |
May | DATE | 0.99+ |
June | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
IDC | ORGANIZATION | 0.99+ |
Last year | DATE | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Broadcom | ORGANIZATION | 0.99+ |
Silicon Angle | ORGANIZATION | 0.99+ |
Crawford Del Prete | PERSON | 0.99+ |
30% | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
12 physical events | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
KubeCon | EVENT | 0.99+ |
last week | DATE | 0.99+ |
United States | LOCATION | 0.99+ |
Android | TITLE | 0.99+ |
Dockercon | EVENT | 0.99+ |
40% | QUANTITY | 0.99+ |
two and a half years | QUANTITY | 0.99+ |
35 physical events | QUANTITY | 0.99+ |
Steve Bomber | PERSON | 0.99+ |
Capitola | ORGANIZATION | 0.99+ |
Cloud Native Con | EVENT | 0.99+ |
Red Hat Summit | EVENT | 0.99+ |
two leaders | QUANTITY | 0.99+ |
San Francisco Summit | EVENT | 0.99+ |
last year | DATE | 0.99+ |
21% | QUANTITY | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
Veeam | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
VeeamON | EVENT | 0.99+ |
this year | DATE | 0.99+ |
16% | QUANTITY | 0.99+ |
$7 a gallon | QUANTITY | 0.98+ |
each week | QUANTITY | 0.98+ |
over $1,000 | QUANTITY | 0.98+ |
35 | QUANTITY | 0.98+ |
PagerDuty Summit | EVENT | 0.98+ |
Breaking Analysis: Coronavirus - Pivoting From Physical to Digital Events
>> From the SiliconANGLE Media office in Boston, Massachusetts, it's "theCUBE." (intro music) Now, here's your host, Dave Vellante. >> Hello, everyone and welcome to this week's episode of Wikibon's CUBE Insights, Powered by ETR. In this Breaking Analysis, we're going to take a break from our traditional spending assessment and share with you our advice on how to deal with this crisis, specifically shifting your physical to digital in the age of Coronavirus. So, we're not going to be digging into the spending data. I talked to ETR this week, and they are obviously surveying on the impact of COVID-19, but those results won't be ready for a little bit. So, theCUBE team has been in discussions with over 20 companies that have events planned in the near term and the inbound call volume has been increasing very rapidly. Now, we've been doing digital for a decade, and we have a lot of experience, and are really excited to share our learnings, tools, and best practices with you as you try to plan through this crisis. So look, this is uncharted territory. We haven't ever seen a country quarantine 35 million people before, so of course everyone is panicked by this uncertainty but our message, like others, is don't panic but don't be complacent. You have to act and you have to make decisions. This will reduce uncertainty for your stakeholders, your employees, and of course, your community. Now as you well know, major physical events are dropping very fast as a risk mitigation measure. Mobile World Congress, HIMSS canceled, Kube-Con was postponed, IMB Think has gone digital, and so it goes. Look, if you have an event in the next three weeks, you have little choice but to cancel the physical attendee portion of that event. You really have three choices here. One is to cancel the event completely and wait until next year. Now the problem with that is, that type of capitulation doesn't really preserve any of the value related to why you were originally holding the physical event in the first place. Now you can do what Kube-Con did and postpone til the summer or kind of indefinitely. Okay, that's a near-term recision on the event, but now you're in limbo. But if you can sort out a venue down the road, that might work. The third option is to pivot to digital. It requires more thought but what it does is allow you to create an ongoing content ark that has benefits. The number-one complaint brands tell us about physical events is that after the event, they don't create a post-event halo effect. A digital strategy that expands time will enable that. This is important because when the market calms down, you're going to be able to better-leverage digital for your physical events. The key question you want to ask is, what are the most important aspects of that physical event that you want to preserve? And then start thinking about building a digital twin of those areas. But it's much more than that. And I'll address this opportunity that we think is unfolding for you a little later. Your challenge right now is to act decisively and turn lemons into lemonade with digital. Experiences are built around content, community, and the interaction of people. This is our philosophy. It's a virtuous cycle where data and machine intelligence are going to drive insights, discovery by users is going to bring navigation which leads to engagement and ultimately outcomes. Now, very importantly, this is not about which event software package to use. Do not start there. Start with the outcome that you want to achieve and work backwards. Identify the parts of that outcome that are achievable and then work from there. The technology decision will be easy and fall out of it if you take that path. So out of a high-level, you have two paths. One, which is the preferred path is to pivot to digital, on the right-hand side, especially if your event is in March or early April. Two is hold your physical event, but your general counsel is going to be all over you about the risks and precautions that you need to take. There are others better than I to advise you on those precautions. I've listed some here on the left-hand side and I'm going to publish this on Wikibon, but you know what to do there. But we are suggesting advising for the near-term events that you optimize for digital. That's the right side. Send out a crisp and clear communications, Adobe has a good example, that asks your loyal community to opt-in for updates and start the planning process. You want to identify the key objectives of your event and build a digital program that maximizes the value for your attendees and the maps to those objectives. We're going to share some examples that theCUBE participated in this week on what might look like the digital event, and we'll share that with you. Event software should come last. Don't even worry about that until you've envisioned your outcome. And I'll talk about software tools a little bit later. So new thinking is required, we believe. The old way was a big venue, big bang event, you get thousands of people. You're spending tons of money on a band. There's exhibitor halls. You're not going to preserve that, obviously. Rather, think about resetting the physical and optimizing for digital which really is about serving a community. Now let's talk about, again, what that might look like in the near-term and then we're going to close on how we see this evolving to a new era. The pattern emerging with our sponsors and our clients is, they want to preserve five key content areas from physical. Not necessarily all of them but in some combination. First is the keynotes. You bring together a captive audience, and you have your customers there, they want to hear from executives. Your customers have made a bet on you, and they want to feel good about it. So one is keynotes. Two is the breakout sessions, the deeper dives from subject matter experts. Third are technical sessions. A big reason customers attend these events is to get technical training. Four is to actually share news in a press conference-like format. And the fifth area that we've seen is, of course, theCUBE. Many of our customers have said, "We not only want you to turn to turnkey the digital event, we want to plug theCUBE into our digital production that we are running." Now these are not in stone, they're just examples of what some of the customers are doing, and they're blending keynotes into their press conference, and there's a lot of different news cases. I want to stress that, initially, everyone's mindset is to simply replicate physical to digital. It's fine to start there, but there's more to this story that we'll address later on. So let's have a look at what something like this might look like in the near-term. Here's an example of a digital event we did this week with a company called "Aviatrix." Small company but very nice look for their brand which is a priority for them. You can see the live audience vibe. This was live but it can be pre-recorded. All the speakers were together in one place. You can see the very high production value. Now, some of our clients have said, "Look, soon we want to do this completely remote with 100 percent of the speakers distributed." And our feeling is that's much more challenging for high-value events. Our strong recommendation is plan to get the speakers into a physical venue. And ideally, get a small VIP/influencer audience to be there. Make the audience feel important with a vibe of a VIP event. Yeah, you can wait a few weeks to see how this thing shakes out, and if travel loosens up, then you can pull this off. But for your Brand value, you really want to look as professional as possible. Same thing for keynotes. You can see how good this looks. Nice stage, lighting, the blue lights, and a live audience. This is a higher-end production with a venue, and food, and music for the intros and outros, very professional audio and visual. And this requires budget. You got to think about at least 200 to 300 thousand dollars and up for a full-blown event that you bring in influencers and the like. But you have options. You can scale it down. You can host the event at your facility. Host it off at our facility in Palo Alto. I'll talk about that a little later. Use your own people for the studio audience. Use your own production people and dial back the glam, which will lower the cost. Just depends on the brand that you want to convey, and of course, your budget. Now as well, you can run the event as a live or as a semi-live. You can pre-record some of all of the segments. You can have a portion, like the press conference and/or the keynotes, run live and then insert the breakouts into the stream as a semi-live, or as on-demand assets. You have options. Now before I talk about technical sessions, I want to share another best practice. theCUBE this week participated in a digital event at Stanford with the Women in Data Science organization, WiDS, and we plugged into their digital platform. WiDS is amazing. They created a hybrid physical/digital event, and again, had a small group of VIPs and speakers onsite at Stanford with keynotes and panels and breakouts, and then theCUBE interviews all were streaming. What was really cool is they connected to dozens and dozens of outposts around the globe, and these outposts hosted intimate meet-ups and participated in the live event. And, of course, all the content is hosted on-demand for a post-event halo effect. I want to talk a little bit about technical sessions. Where as with press conferences and keynotes, we're strongly recommending a higher scale and stronger brand production. With technical sessions, we see a different approach working. Technical people are fine with you earbuds and laptop speakers. Here's an example of a technical talk that Dan Hushon, who is the Senior VP and CTO at DXC, has run for years using the CrowdChat platform. He used the free community edition, along with Google Handouts, and has run dozens and dozens of these tech talks designed for learning and collaboration. Look, you can run these weekly as part of the pre-game, up to your digital event. You can run them day of the event, at the crescendo, and you can continue the cadence post-event for that halo effect that I've been talking about. Now let's spend the moment talking about software tooling. There are a lot of tools out there. Some, super functional. Some are monolithic and bloated. Some are just emerging. And you might have some of these, either licensed or you might be wed to one. Webinar software, like ON24 and Brightcove, and there's other platforms, that's great, awesome. From our standpoint, we plug right into any platform and are really agnostic to that. But the key is not to allow your software to dictate the outcome of your digital event. Technology should serve the outcome, not the reverse. Let me share with you theCUBE's approach to software. Now first thing I want to tell you is our software is free. We have a community editions that are very robust, they're not neutered. And we're making these available to our community. We've taken a CloudNative horizontally scalable angle bringing to bear the right tools for the right job. We don't think of software just to hold content. Rather, we think about members of the community and our goal is to allow teams to form and be successful. We see digital events creating new or evolving roles in organizations where the event may end, but the social organization and community aspect lives on. Think of theCUBE as providing a membrane to the conference team and a template for organizing and executing on digital events. Whether it's engaging in CrowdChats, curating video, telling stories post-event, hosting content, amplifying content, visualize your community as a whole and serve them. That's really the goal. Presence here is critical in a digital event, "Oh hey, I see you're here. "Great, let's talk." There are a number of news cases, and I encourage you to call us, contact us, and we'll focus on how to keep it simple. We have a really simple MVP use case that we're happy to share with you. All right, I got to wrap. The key point here is we see a permanent change. This is not a prediction about Coronavirus. Rather, we see a transformation created with new dynamics. Digital is about groups which are essentially a proxy for communities. Successful online communities require new thinking and we see new roles emerging. Think about the protocol stack for an event today and how that's going to change. Today is very structured. You have a captive audience, you got a big physical venue. In the future, it may evolve to multiple venues and many runs of shows. Remote pods rules around who is speaking. Self-forming schedules is not going to be the same as today. We think digital moves to a persistent commitment by the community where the group collectively catalyzes collaboration. Hosting an online event is cool, but a longterm digital strategy doesn't just move physical to digital. Rather, it reimagines events as an organic entity, not a mechanism or a piece of software. This is not about hosting content. Digital communities have an emotional impact that must be reflected through your brand. Now our mission at theCUBE has always been to serve communities with great content. And it's evolving to provide the tools, infrastructure, and data for communities, to both self-govern and succeed. Even though these times are uncertain and very difficult, we are really excited to serve you. We'll make the time to consult with you and are really thrilled to share what we've learned in the last 10 years and collaborate with you to create great outcomes for audiences. Okay, that's a wrap. As always, we really appreciate the comments that we get on our LinkedIn posts, and on Twitter, I'm @DVellante, so thanks for that. And thank you for watching, everyone. This is Dave Vellante for theCUBE Insights, Powered by ETR. And we'll see you next time. (outro music)
SUMMARY :
From the SiliconANGLE Media office We'll make the time to consult with you
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Justin Warren | PERSON | 0.99+ |
Sanjay Poonen | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Clarke | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Diane Greene | PERSON | 0.99+ |
Michele Paluso | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Sam Lightstone | PERSON | 0.99+ |
Dan Hushon | PERSON | 0.99+ |
Nutanix | ORGANIZATION | 0.99+ |
Teresa Carlson | PERSON | 0.99+ |
Kevin | PERSON | 0.99+ |
Andy Armstrong | PERSON | 0.99+ |
Michael Dell | PERSON | 0.99+ |
Pat Gelsinger | PERSON | 0.99+ |
John | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Lisa Martin | PERSON | 0.99+ |
Kevin Sheehan | PERSON | 0.99+ |
Leandro Nunez | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
EMC | ORGANIZATION | 0.99+ |
GE | ORGANIZATION | 0.99+ |
NetApp | ORGANIZATION | 0.99+ |
Keith | PERSON | 0.99+ |
Bob Metcalfe | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
90% | QUANTITY | 0.99+ |
Sam | PERSON | 0.99+ |
Larry Biagini | PERSON | 0.99+ |
Rebecca Knight | PERSON | 0.99+ |
Brendan | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Peter | PERSON | 0.99+ |
Clarke Patterson | PERSON | 0.99+ |
Wrap | WiDS 2018
>> Narrator: Live from Stanford University, in Palo Alto California, it's The Cube, Covering Women in Data Science Conference 2018. Brought to you by Stanford. >> Welcome back to The Cube, our continuing coverage of Women in Data Science 2018 continues. I'm Lisa Martin, live from Stanford University, and very excited to be joined by our Co-founder, Co-CEO of SiliconANGLE Media and The Cube, John Furrier. John, what an amazing event, the 3rd Annual WiDS event, the third time The Cube has been here, this event, the energy, the momentum, the excitement, you can feel it. >> I really wanted to interview with you all day, but I wanted to make sure that we had the right women in tech, women in data science. (Lisa laughs) You're an amazing host. I thought it was awesome. What a great powerhouse of women. It's just such an honor for The Cube team and SiliconANGLE to be here. We're listed as a global innovative sponsor on there, so it's like the recognition because they have high integrity. The organizers, Judy, Karen, and Margot, when we first met, when they first started, this "Can you bring The Cube?", of course we will! Because we knew the network effect was big here. They were early on, and they took a great approach. They really nailed the positioning of the event. Use Stanford University as a base, establish a global community, which they have now done. It is so successful, this is the future of events, in my opinion. The way they do it, the way they bring in the content curation here at Stanford, but it's open, it's inclusive, they created a network effect with satellite communities around the world. They've created a VIP network of power women, and it's a shortcut to trust. This is the trusted network of women in data science. It's super exciting. I'm so proud to be part of it in a small way. They get all the credit, but just capturing all the data, the interviews are great data. You've done a great job. The conversations were amazing. The hallway conversations went great. It was just fantastic. >> Yeah it was fantastic, and thank you for handing the keys to The Cube to me for this event. The remarkable thing-- One of the remarkable things to me about this event is that they have, in third year, they're going to reach 100,000 people with this event. There were 177 regional events in the last 24 hours, #WiDS2018, in 53 countries. And we were fortunate to have Margot Gerritsen on a few hours ago, and I said, "You must be pleasantly shocked at this massive trajectory, "but where do go from here?" "Sustaining, maintaining, but also reaching out," she said, "to even younger audiences in high schools "and being able to ignite the bunsen burner, "turn it up a little bit higher." What were some of the hallway conversations that you had? >> Well I think the big thing was is that, first of all, the panels on the conversation of the content was not about women, it was about data science, that happen to be women. >> Yes. So the quality of the conversations, if you close your eyes, you'll be like, "There are some serious pros on here". And they had some side discussions around how to be a woman in tech and data science, and how to use your integrity and reputation, but the content program was top-shelf. I mean, it was fantastic, so that was equalizing. The hallway conversations was global. I heard about global impact, I heard that data science is very mission-driven. And you're seeing a confluence of technology and innovation with technology like data analytics, data science, fueling mission-driven, so standard run your business on analytics, but now run society on analytics. So you're seeing a global framework developing around mission-driven, you'll hear the word "impact" a lot, and it was not just speeds-and-feeds data science, although they're plenty to geek out about, but it was more of a higher level order bit around mission, and society. So this is right around what we're seeing at The Cube around cloud computing, cryptocurrency and blockchain, that you're seeing a democracy being rewritten with technology. Data's the new oil. Oil's power in the new global economy, and you're seeing that in all kinds of decentralized forms of blockchain and cryptocurrency, you're seeing businesses transform with data science, so with that comes a lot of responsibility. So, ethics conversation in the hallway. I felt like I was at a TED talk, meets World Economic Forum, meets Stanford Think Tank, meets practitioner. It was like, really exciting. >> And they had keynotes, which we had a few on some tech tracks, and a career panel. Did you get to listen to the career panel? >> John: The career panel was interesting and I'd love to get your thoughts on some of your interviews that crossover, because it was really more about being proud and high integrity. So the word "democratization" came up, and the conversations in the audience when they had the Q&A was, "Isn't it more about respect?", democratization, not that there's anything wrong with that, but "Isn't it about integrity? "What is the integrity of us as a community, "as women in data science, what is the respect, "integrity, and mission of the role?" Of course democratization is a side effect of good news data, so that was super exciting. And then also, stand up, never give up, never worry about the failure, never worry about getting in a blocker, remove that blocker or as Teresa Carlson at Amazon would say. So there was definitely the woman vibe of "Listen, don't take things lying down. "Have a tough skin. "Take names and kick butt, but be proud." >> That's where a lot of the, when I'd ask some of our guests, "What advice would you give your younger self?" and a lot of them said the same thing, of "Don't be afraid to get out of your comfort zone". My mentor says, "Get comfortably uncomfortable." I think that's pretty hard for a lot-- If I look back at myself 20 years ago I wouldn't have been able to do that. It took a mentor, and just as Maria Klawe has said on The Cube before, the best time to reach and inspire the next generation of females to go into STEM is first semester yoo-nuh-ver-zhen, that's exactly when it happened for me and I didn't plan it, but it took someone to kind of go like Maria said this morning, "Don't be focused "on the things you think you're not good at." So that "failure is not a bad F word" was a theme that we heard a number of times today, and I think, incredibly important. >> And the tweets I tweeted out but it was kind of said differently, I don't know the exact tweet, but I'd kind of paraphrase it by saying Maria from Harvey Mudd said, "Look it, there's plenty of opportunities "in data science, go there." And she compared and contrasted her journey in a male-dominated world with "Look, if you're stuck or you're in a rut, "or you're in somewhere you're uncomfortable with, "from a male perspective or dogma, "or structural system that's not working for you, "just get out of it and go to another venue." Another venue being a growth market. So the message here was there's plenty of opportunities in data science than just data analytics. There's math career paths, there's cryptocurrency, there's blockchain, there's all kinds of different elements. Go where the growth is. If you go where the growth is, you can pioneer and find like-minded individuals. That was a great message I thought, for women, because you're going to find men in those markets that love collaborating with anyone who's smart, and since everyone here's smart, they're saying just go where the growth is. Don't try to go to a stagnant pond where all the dogma and the structural stuff is. That's going to take too long to change. That's my take, but I think that's kind of the message I thought was really, really powerful. And that's the message I'm going to tell my two daughters is "Stand tall, and go after the new territory." >> You can do anything, and that was also a theme of "Don't be afraid to take risks". In any way of life if we don't take risks, we risk losing out on something. That was something we heard a lot. >> John: Let me ask you a question then, because you did the interview. I was jealous, 'cause you know I hate to give up the microphone. >> I know you. (laughs) But I love this event, 'cause it's super awesome. What were some of the highlights for you? Was there a notable interview, was there some sound bites? What were some of the things that you found were inspiring, informational, or notable? >> Oh, all of the above. Everybody. I loved talking with Maria Klawe this morning who, to your point earlier, had to from many generations face the gender bias, and has such a... That her energy alone is so incredibly inspiring. And what she has been able to do as the first female president of Harvey Mudd and the transformation that she's facilitated so far is remarkable. Margot Gerritsen also was a great, inspiring guest for me. She had said, they had this idea three years ago, you were there from the beginning and I said how long was it from concept to first event? Six months. Whoa, strap on your seatbelt. And she said it was almost-- >> And they did it on a limited budget too, by the way. >> Sure. She said it was almost like the revenge conference. Tell us we can't do something, and I heard that theme as well, people saying, "Tell me I can't do something, "and I will prove you wrong in spades." (John laughs) And I think it's an important message. There's still such a gap in diversity. Not just in diversity in gender and ethnicity, there's a thought diversity gap that every industry is missing. That was another kind of common theme, and that was kind of a new term for me, thought diversity. I thought, "Wow, it's incredibly important "to bring in different perspectives." >> And on that point, one of the things I did here in the hallway was a conversation of, this is not just a movement, it's a collection of movements. So it's not one movement, this one is, or women in general, it's a collection of movements, but it's really one movement. So that was interesting, I was kind of like "Hmm", as being a guy I'm like, "Can you women-splain that to me please?" (Lisa and John laugh) >> Yeah, well the momentum that they-- >> What kind of movement is this? (laughing) >> They're achieving. (laughing) I'm sure there'll be a hashtag for that, and speaking of hashtags, I did think it was very cool that today is Monday, #MotivationMonday, this whole day was Motivation Monday to me. And I asked Margot, "Where do you go from here? "You've achieved this in the third year." And she said, "Doing more WiDS events throughout the year, "also starting to deliver resources on demand for folks". Not just females, to your point, this is people in data science, globally, to consume, and then going sort of downstream if you will, or maybe it's upstream, and starting to reach more of that high school age, those girls who might have a desire or interest in something but might think, "I don't think I can do this". >> Well I think one of the things that I'm seeing, and I was glad to be one of the men that stood up, and there's men here, is that men being part of it is super important because these newer markets, like I was just in the Bahamas for a cryptocurrency blockchain event, and there's a lot of younger generations, the whole gender thing to them, they think is nonsense. They should be all equal. So in these new growth areas they're kind of libertarian, but also they're really open and inclusive. It's because of their open-source ethos. So I think for the younger generation in the youth, we can kind of set the table now, and men got to be a part of that. So to be that kind of world where the conversation isn't about women in tech, means that it's all good now, >> Yeah. Right? So the question we've had on The Cube is when we're done with the diversity and inclusion discussion, that means we've accomplished the goal, which is there's no longer a need for that discussion because it's all kind of leveled up. So I mean, a long ways to go for sure, but that's the goal, and I think the younger generations are like, "You old people are like... "We don't view it that way", so we hope that structurally, we have these kinds of conferences where the conversation is not about just women, but the topics, and their gurus at their field. To me, that is the shining light that we want to focus on, because that's also inspirational. Now the stuff that needs to be fixed, is hard conversations, and it's tough but you can do both. And I think that's a message that I hear here. Phenomenal. >> Great to hear though from your perspectives, from what you're hearing with the millennials in the next generation going "Why are you even talking about this?" It would be great if we eventually get there, but some other things that are really key, and some of these companies are WiDS sponsors, Intel and SAP, and what they're doing to achieve, really aggressively, much more gender diversity. We heard Intel talk about it. We heard SAP talk about it today, Walmart Labs as well. And it's still obviously quite a need for it is what it's showing. >> The pay gap is still off. Way too off, yes. >> So that is like, the conversation needs to happen, I'm not trying to minimize that with my other point, but we got to get there. The other thing that's really off, the pay has got to get leveled up and people are working on that. That's great, let's see the progress. Let's look at the data. But the other one that no one's talking about is not only is the pay a problem, the big problem is the titles. So, we've been looking at data amongst a lot of the big companies. Women are getting some pay leveled up, but their titles aren't. So there's still a lot of these little things out there that matter. She's only a VP, and he's an SVP, but she's actually operating at an SVP level, or Senior Director, I mean, this is happening. So much more work to do, but again, the more that they come in with the skills that they got like in here, the networks that are forming, the VIP trust influence networks, it's just phenomenal. I think this is going to really accelerate the peer review, the peer relationships, access to the data, and just the more the merrier. Shine the light on it, turn the sunlight on. >> Exactly, shining a light on the awareness that they're generating, and also that we have a chance to share through The Cube, bringing more light to some of these things that you talked about, the faster, like you said, the more we're going to be able to accelerate making this a non-topic. >> It's our mission. The Cube's mission is to open the content up, get the conversations, document the folks, get them ingested into our network, share our networks open content. The more that that meta data and that knowledge can share digitally, that is the mission that we live for. As you know we love doing it. You did a great job today. >> Lisa: Thank you! It was my pleasure. It's an inspiring event, even just getting prepped for it, and you can hear all the buzz around us that it probably feels-- >> Cocktail party time. It is cocktail party time. Feels pretty darn good. Well John, thanks so much for being our fearless leader and allowing us to come here. And we want to thank you for watching The Cube. We have been live all day at WiDS 2018. Join the conversation. Follow us, @thecube. Join the conversation with #WiDS2018, and please join the conversation and share the videos of some of these fantastic leaders and inspirational folks that we had on the show today. For my co-host, John Furrier, I am Lisa Martin. We'll see ya next time. (electronic music)
SUMMARY :
Brought to you by Stanford. the momentum, the excitement, you can feel it. and it's a shortcut to trust. One of the remarkable things to me about this event the panels on the conversation of the content So the quality of the conversations, if you close your eyes, And they had keynotes, which we had a few "integrity, and mission of the role?" "on the things you think you're not good at." And that's the message I'm going to tell my two daughters You can do anything, and that was also a theme I was jealous, 'cause you know I hate What were some of the things that you found and the transformation that she's facilitated so far and that was kind of a new term for me, thought diversity. And on that point, one of the things I did and starting to reach more of that high school age, and men got to be a part of that. To me, that is the shining light that we want to focus on, and some of these companies are WiDS sponsors, The pay gap is still off. So that is like, the conversation needs to happen, the faster, like you said, the more we're going to be able that is the mission that we live for. and you can hear all the buzz around us and please join the conversation and share the videos
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Judy | PERSON | 0.99+ |
Margot | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Karen | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Maria Klawe | PERSON | 0.99+ |
Maria | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Teresa Carlson | PERSON | 0.99+ |
Margot Gerritsen | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
two daughters | QUANTITY | 0.99+ |
Six months | QUANTITY | 0.99+ |
Walmart Labs | ORGANIZATION | 0.99+ |
The Cube | TITLE | 0.99+ |
Bahamas | LOCATION | 0.99+ |
100,000 people | QUANTITY | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
Palo Alto California | LOCATION | 0.99+ |
#WiDS2018 | EVENT | 0.99+ |
today | DATE | 0.99+ |
The Cube | ORGANIZATION | 0.99+ |
Stanford University | ORGANIZATION | 0.99+ |
SiliconANGLE Media | ORGANIZATION | 0.99+ |
Stanford | ORGANIZATION | 0.99+ |
Monday | DATE | 0.99+ |
both | QUANTITY | 0.98+ |
three years ago | DATE | 0.98+ |
177 regional events | QUANTITY | 0.98+ |
53 countries | QUANTITY | 0.98+ |
third time | QUANTITY | 0.98+ |
SiliconANGLE | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
WiDS 2018 | EVENT | 0.98+ |
One | QUANTITY | 0.98+ |
third year | QUANTITY | 0.98+ |
SAP | ORGANIZATION | 0.97+ |
one movement | QUANTITY | 0.97+ |
Harvey Mudd | PERSON | 0.97+ |
first | QUANTITY | 0.97+ |
first event | QUANTITY | 0.96+ |
Women in Data Science 2018 | EVENT | 0.96+ |
WiDS | ORGANIZATION | 0.94+ |
20 years ago | DATE | 0.94+ |
this morning | DATE | 0.93+ |
3rd Annual WiDS | EVENT | 0.92+ |
few hours ago | DATE | 0.91+ |
Stanford Think Tank | ORGANIZATION | 0.91+ |
a number of times | QUANTITY | 0.91+ |
first female | QUANTITY | 0.86+ |
first semester | QUANTITY | 0.85+ |
@thecube | PERSON | 0.84+ |
The Cube, Covering Women in Data Science Conference 2018 | EVENT | 0.83+ |
Cube | ORGANIZATION | 0.72+ |
TED talk | EVENT | 0.69+ |
last 24 hours | DATE | 0.68+ |
World Economic Forum | EVENT | 0.67+ |
things | QUANTITY | 0.65+ |
plenty of opportunities | QUANTITY | 0.62+ |
Stanford | LOCATION | 0.51+ |
Cube | COMMERCIAL_ITEM | 0.35+ |
Latanya Sweeney, Harvard University | Women in Data Science (WiDS) 2018
>> Narrator: Live from Stanford University in Palo Alto, California. It's theCUBE. Covering Women in Data Science Conference 2018. Brought to you by Stanford. (upbeat music) >> Welcome back to theCUBE. We are live at Stanford University for the Third Annual Women in Data Science WiDS Conference. I'm Lisa Marten and we've had a great morning so far talking with a lot the speakers and participants at this event here at Stanford, which of course is going on globally as well. Very excited to be joined by one of the Keynotes this morning at WiDS, Latanya Sweeney, the Professor of Government and Technology from Harvard. Latanya, thank you so much for stopping by theCUBE. >> Well thank you for having me. >> Absolutely. So you are a computer scientist by training. WiDS as a mentioned is in its third year, they're expecting a 100,000 people to engage. There's a 177 I think, Margot said, regional WiDS events going on right now. In 53 countries. >> Isn't that amazing? >> It is! >> It's so exciting. >> Incredible in such a short period of time. What is it about WiDS that was attraction to you saying, "Yes, I want to participate in this event." >> Well one of the issues is just simply the idea the data science represents this sort of wave of change, of how do I analyze data? How do I make it different? And the conference itself celebrating the fact that women are taking the step, is hugely important. I mean, when I was a graduate student at MIT, I was the first black woman to get a PhD in Computer Science from MIT. And sort of, no women you really just didn't see women in this area at all. So when I come to a conference like WiDS, it's huge. It's just huge to see all these walls broken down. >> I love that walls breaking down, barriers kind of evaporating. In your time though at MIT, I'd love to understand a little bit more. Were you very conscience, "Hey I'm one of the very "few females here?" (Latanya laughs) Did it bother you or were you just, "You know what, "this is my passion, and I don't care. "I'm going to keep going forward." What was that experience like? >> Well, at first I was very naive, in a belief that you know all that really mattered was the work I did. And, I never had problems with the students, but I did have lots of problems with the professors, with this idea that you had to be like them in ways that was beyond your brain or your work, in order to really be exalted by them. And so, so whether I wanted to admit it, or whether I just wanted to ignore it, it just sort of came crashing down. >> Did you have mentors at that time, or did you think, "You know what, I'm not finding anybody "that I can really follow. "I've got to by my own mentor right now." >> Right, I mean I don't think my experience is really that uncommon for women in my generation. Very difficult to find mentors who would be complete mentors, complete see themselves in you and really try to exalt you and navigate you. What women often have found is that they can find a partial person here, and a partial person there. One who can help them in this regard, or that regard, but not the same kind of idea that you would be the superstar of one of these mentors. And it's not to take away from the fact that there have been these angels in my life, who made a big difference, and so I don't want to take away from that that somehow I did this all by myself. That's not true. >> So with the conference today, one of the things that Maria Klawe said in her welcome remarks was encouraging this generation, "Don't be worried if there's something "that you're not good at." So I loved how she was sort of encouraging people to sort of, women sort of, let go of maybe some of those preconceived notions that, "I can't do this. "I'm not good at that." I think that it's very liberating and still in 2018 with the fact there is such a diversity gap, it's still so needed. What were maybe some of the three takeaways, if you will, of your Keynote this morning that you imparted on the audience? >> Was that technology design is the new policy maker. That they're making policy, the design itself is making policy, but nobody's like monitoring it. But we could in fact use data science to monitor, to show the unforeseen consequences, and in the examples that we've done that, we've had big impact on the world. >> So share some of that with us, because that's your focus. You're in... What department in Harvard? You said government? >> So I sit in the government department. >> Unforeseen consequences of technology? >> Yes. >> Tell us about that. >> Well, you know, so in the Keynote, I talked about examples where technology is basically challenging every democratic value that we have. And sort of like no one's really aware, we kind of think about it here and there, but by doing simple data science experiments, we can quantify that. We can demonstrate it, and by doing that we shore up sort of those who can help us the most; the advocates, the regulators, and journalists. And so I gave examples from my own work and from the work of my students. >> Tell me a little bit about your students actually. Are they undergrads? Do you also have graduate students as well? >> I have both. >> You have both. >> Both. The talk was about, I teach a class called Data Science to Save the World, and we tackle three to four real world problems within the semester, that we solve. And then the students love to do their own independent projects, and at the end many of those go on to be published papers. >> Wow! I feel like you need to have a cape or some sort of superhero emblem. We can work on that later. But tell me about the diversity within the student body at Harvard in your classes. Are you finding, what's maybe the ratio of men to women, for example? >> Well you know many of the universities from my time have really changed. So when I was an undergraduate the typical classroom of Harvard undergrads would be all white men, or mostly all white men. >> Lisa: Sounds like a lot of STEM's still. (Latanya laughs) >> Yeah, but now if you walk into Harvard we see a lot more diversity within the university. I'm also a faculty dean at one of the residential houses, and so the diversity is huge. However, when you start getting into computer science, you start seeing, you don't see as much diversity. But in the Data Sciences of the World course, we get students from all over. They come from different backgrounds. They come in different colors, shapes, and sizes. Each with a skillset and a desire to learn how to have impact. >> I think that desire is key. How do you help them sort of build their own confidence in terms of, regardless of what color, flavor, you know my peer group is, I like this. I want to be in this. How do you help ignite that confidence within someone that's quite new into this? >> So if you're 20 something or almost 20, and you do something that a regulator changes their laws, or a newspaper article picks up, or you're on the Today Show, that pretty much changes the course of your life, and that's what we found with the students. That some of them have done just some remarkable work that's really been picked up and exalted, and it's stayed with them. It would change the direction in which they've gone. So what we do in the course, is we teach them that there's just so many problems that are low hanging, and how to spot a problem, an issue that they can solve, and how to solve it in a way that can be have impact. And that's really what the course focus is on. >> That impact is so important to just continue to fuel someones fire, and for that person to then be empowered to be able to ignite a fire under somebody else. I think one of the things that you mentioned sort of speaks to some of the things that we're seeing in these boundaries and lines are blurring. Not just so much even on from a gender perspective, but even career path A, B, C, D, now it's data is fueling the world. Every company is becoming a company because they have to be, right, to make consumer demands and just grow and be profitable as a business. But I also I like the parallel there that these rigid maybe, more rigid lines of careers are now opening up, because like you're saying, you can make impact being a data scientist. In every sector you can influence policy and wow, what a huge opportunity. It's almost like it's infinite, right? >> Yeah. I mean if you look at even the range of talks in the conference today, you get a great sense of not only new tools in different areas, but just the sheer spectrum of areas in which data science is playing. And that these women are already working it, already have the impact. >> So, speaking of the conference today, one of the things that I think is that we're hearing, is it's not just about inspiring, I think, Maria Klawe had said in theCUBE previous to today, that she found that young women in their first semester of university college courses, are probably like the right age and time in their lives to really ignite a spark, but I think there's also sort of a reinvigoration of the women that have been in technology and STEM fields for a while. Are you feeling and hearing kind of some of the same things from your peers and colleagues here? >> Definitely. We see it at the two levels. It's really important to try to get them in freshman year before they have a discipline defined for themselves, or how they see themselves. So that you can sort of ignite that spark and keep that spark alive. But then later women who, women or others, who are already in a field and looking for a way to sort of release and redefine themselves, data science is definitely giving them that opportunity. >> It really is. So what are some of the things that you're looking forward to for your career at Harvard as 2018 moves forward? >> Well, we, you know, the students we try to tackle the big problems. Election vulnerabilities has been a big one for us, on our agenda. The privacy of publicly available data is another big one that we've been working on. Well I think that's enough for awhile. (laughs) >> Lisa: That's pretty big. >> Yeah. >> I think so. >> Yeah, we'll get those done! >> Well that and you know, designing the logo for the t-shirt cause you definitely need to have a superpower t-shirt. So last question for you, if you could give young Latanya advice, when you were just starting out college, not knowing any of this was going to happen in terms of this movement that is WiDS and 2018, what would some of those key advice points for you, for your younger self be? >> To believe in yourself. To believe in yourself and that it's going to work out. One of the things that I grew to learn was how to turn lemons into lemonade, and that turns out to be very, very powerful, because it's a way to bounce back when you're faced with things that you can't control, that people are trying to put obstacles in your way, you just sort of find another way to keep going. And the world sort of bended towards me, so that was really cool. >> And also that failure is not a bad F word, right? (Latanya laughs) >> That's absolutely correct. >> It's part of a natural course and I think any leader and whatever and just you're in whatever, country whatever ethnicity, gender, everybody has I wouldn't even say missteps, it's just part of life, but I think... >> Yeah it's just part of the what... And Harvard like I said, I am the dean in one of the faculty houses, and one of the main things that we do each, throughout the year, is invite speakers and who're accomplished in whatever area they're in, but the one thing that they all have in common is they took this really roundabout way to get where they are. And a lot of that was because failures and blocks came in the way, and that's really important I think for young adults to really understand. >> I agree. Well, Latanya, thank you so much for carving out some time to stop by and chat with us on theCUBE. We are excited to have your wisdom shared to our audience and we wish you a great rest of the conference. >> Alright, thank you very much. >> We'll see you next time on theCUBE. >> Okay. >> We want to thank you for watching theCUBE. I'm Lisa Marten. We are live from the Third Annual Women in Data Science Conference at Stanford University. Stick around after this short break, I'll be back with my next guest. (upbeat music)
SUMMARY :
Brought to you by Stanford. Latanya, thank you so much for stopping by theCUBE. So you are a computer scientist by training. What is it about WiDS that was attraction to you saying, And sort of, no women you really just didn't Did it bother you or were you just, "You know what, in order to really be exalted by them. Did you have mentors at that time, or did you but not the same kind of idea that you would be the What were maybe some of the three takeaways, if you will, Was that technology design is the new policy maker. So share some of that with us, because that's your focus. and from the work of my students. Do you also have graduate students as well? And then the students love to do their own I feel like you need to have a cape Well you know many of the universities from my time Lisa: Sounds like a lot of STEM's still. But in the Data Sciences of the World course, How do you help ignite that confidence within someone that pretty much changes the course of your life, But I also I like the parallel there that these rigid in the conference today, you get a great sense sort of a reinvigoration of the women that have been So that you can sort of ignite that spark to for your career at Harvard as 2018 moves forward? Well, we, you know, the students Well that and you know, One of the things that I grew to learn was how to It's part of a natural course and I think And a lot of that was because failures and blocks We are excited to have your wisdom shared to our We want to thank you for watching theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Marten | PERSON | 0.99+ |
Latanya | PERSON | 0.99+ |
Margot | PERSON | 0.99+ |
Latanya Sweeney | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Maria Klawe | PERSON | 0.99+ |
2018 | DATE | 0.99+ |
20 | QUANTITY | 0.99+ |
Both | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
three takeaways | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
first semester | QUANTITY | 0.99+ |
100,000 people | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
one | QUANTITY | 0.98+ |
Harvard University | ORGANIZATION | 0.98+ |
WiDS | EVENT | 0.98+ |
two levels | QUANTITY | 0.98+ |
53 countries | QUANTITY | 0.98+ |
Each | QUANTITY | 0.98+ |
third year | QUANTITY | 0.98+ |
MIT | ORGANIZATION | 0.97+ |
four | QUANTITY | 0.97+ |
Stanford | LOCATION | 0.97+ |
Third Annual Women in Data Science WiDS Conference | EVENT | 0.97+ |
Today Show | TITLE | 0.97+ |
Stanford | ORGANIZATION | 0.97+ |
Harvard | ORGANIZATION | 0.96+ |
Third Annual Women in Data Science Conference | EVENT | 0.96+ |
One | QUANTITY | 0.95+ |
one thing | QUANTITY | 0.95+ |
each | QUANTITY | 0.94+ |
Stanford University | ORGANIZATION | 0.93+ |
Covering Women in Data Science Conference 2018 | EVENT | 0.92+ |
theCUBE | ORGANIZATION | 0.91+ |
177 | QUANTITY | 0.89+ |
Women in Data Science | ORGANIZATION | 0.89+ |
this morning | DATE | 0.89+ |
Data Science to Save the World | TITLE | 0.87+ |
Narrator | TITLE | 0.81+ |
Harvard | LOCATION | 0.77+ |
one of | QUANTITY | 0.74+ |
Professor of Government and Technology | PERSON | 0.69+ |
almost | QUANTITY | 0.66+ |
black | OTHER | 0.63+ |
Stanford University | LOCATION | 0.6+ |
Keynote | TITLE | 0.57+ |
world | QUANTITY | 0.5+ |
WiDS | ORGANIZATION | 0.49+ |
theCUBE | TITLE | 0.46+ |
Data Science for All: It's a Whole New Game
>> There's a movement that's sweeping across businesses everywhere here in this country and around the world. And it's all about data. Today businesses are being inundated with data. To the tune of over two and a half million gigabytes that'll be generated in the next 60 seconds alone. What do you do with all that data? To extract insights you typically turn to a data scientist. But not necessarily anymore. At least not exclusively. Today the ability to extract value from data is becoming a shared mission. A team effort that spans the organization extending far more widely than ever before. Today, data science is being democratized. >> Data Sciences for All: It's a Whole New Game. >> Welcome everyone, I'm Katie Linendoll. I'm a technology expert writer and I love reporting on all things tech. My fascination with tech started very young. I began coding when I was 12. Received my networking certs by 18 and a degree in IT and new media from Rochester Institute of Technology. So as you can tell, technology has always been a sure passion of mine. Having grown up in the digital age, I love having a career that keeps me at the forefront of science and technology innovations. I spend equal time in the field being hands on as I do on my laptop conducting in depth research. Whether I'm diving underwater with NASA astronauts, witnessing the new ways which mobile technology can help rebuild the Philippine's economy in the wake of super typhoons, or sharing a first look at the newest iPhones on The Today Show, yesterday, I'm always on the hunt for the latest and greatest tech stories. And that's what brought me here. I'll be your host for the next hour and as we explore the new phenomenon that is taking businesses around the world by storm. And data science continues to become democratized and extends beyond the domain of the data scientist. And why there's also a mandate for all of us to become data literate. Now that data science for all drives our AI culture. And we're going to be able to take to the streets and go behind the scenes as we uncover the factors that are fueling this phenomenon and giving rise to a movement that is reshaping how businesses leverage data. And putting organizations on the road to AI. So coming up, I'll be doing interviews with data scientists. We'll see real world demos and take a look at how IBM is changing the game with an open data science platform. We'll also be joined by legendary statistician Nate Silver, founder and editor-in-chief of FiveThirtyEight. Who will shed light on how a data driven mindset is changing everything from business to our culture. We also have a few people who are joining us in our studio, so thank you guys for joining us. Come on, I can do better than that, right? Live studio audience, the fun stuff. And for all of you during the program, I want to remind you to join that conversation on social media using the hashtag DSforAll, it's data science for all. Share your thoughts on what data science and AI means to you and your business. And, let's dive into a whole new game of data science. Now I'd like to welcome my co-host General Manager IBM Analytics, Rob Thomas. >> Hello, Katie. >> Come on guys. >> Yeah, seriously. >> No one's allowed to be quiet during this show, okay? >> Right. >> Or, I'll start calling people out. So Rob, thank you so much. I think you know this conversation, we're calling it a data explosion happening right now. And it's nothing new. And when you and I chatted about it. You've been talking about this for years. You have to ask, is this old news at this point? >> Yeah, I mean, well first of all, the data explosion is not coming, it's here. And everybody's in the middle of it right now. What is different is the economics have changed. And the scale and complexity of the data that organizations are having to deal with has changed. And to this day, 80% of the data in the world still sits behind corporate firewalls. So, that's becoming a problem. It's becoming unmanageable. IT struggles to manage it. The business can't get everything they need. Consumers can't consume it when they want. So we have a challenge here. >> It's challenging in the world of unmanageable. Crazy complexity. If I'm sitting here as an IT manager of my business, I'm probably thinking to myself, this is incredibly frustrating. How in the world am I going to get control of all this data? And probably not just me thinking it. Many individuals here as well. >> Yeah, indeed. Everybody's thinking about how am I going to put data to work in my organization in a way I haven't done before. Look, you've got to have the right expertise, the right tools. The other thing that's happening in the market right now is clients are dealing with multi cloud environments. So data behind the firewall in private cloud, multiple public clouds. And they have to find a way. How am I going to pull meaning out of this data? And that brings us to data science and AI. That's how you get there. >> I understand the data science part but I think we're all starting to hear more about AI. And it's incredible that this buzz word is happening. How do businesses adopt to this AI growth and boom and trend that's happening in this world right now? >> Well, let me define it this way. Data science is a discipline. And machine learning is one technique. And then AI puts both machine learning into practice and applies it to the business. So this is really about how getting your business where it needs to go. And to get to an AI future, you have to lay a data foundation today. I love the phrase, "there's no AI without IA." That means you're not going to get to AI unless you have the right information architecture to start with. >> Can you elaborate though in terms of how businesses can really adopt AI and get started. >> Look, I think there's four things you have to do if you're serious about AI. One is you need a strategy for data acquisition. Two is you need a modern data architecture. Three is you need pervasive automation. And four is you got to expand job roles in the organization. >> Data acquisition. First pillar in this you just discussed. Can we start there and explain why it's so critical in this process? >> Yeah, so let's think about how data acquisition has evolved through the years. 15 years ago, data acquisition was about how do I get data in and out of my ERP system? And that was pretty much solved. Then the mobile revolution happens. And suddenly you've got structured and non-structured data. More than you've ever dealt with. And now you get to where we are today. You're talking terabytes, petabytes of data. >> [Katie] Yottabytes, I heard that word the other day. >> I heard that too. >> Didn't even know what it meant. >> You know how many zeros that is? >> I thought we were in Star Wars. >> Yeah, I think it's a lot of zeroes. >> Yodabytes, it's new. >> So, it's becoming more and more complex in terms of how you acquire data. So that's the new data landscape that every client is dealing with. And if you don't have a strategy for how you acquire that and manage it, you're not going to get to that AI future. >> So a natural segue, if you are one of these businesses, how do you build for the data landscape? >> Yeah, so the question I always hear from customers is we need to evolve our data architecture to be ready for AI. And the way I think about that is it's really about moving from static data repositories to more of a fluid data layer. >> And we continue with the architecture. New data architecture is an interesting buzz word to hear. But it's also one of the four pillars. So if you could dive in there. >> Yeah, I mean it's a new twist on what I would call some core data science concepts. For example, you have to leverage tools with a modern, centralized data warehouse. But your data warehouse can't be stagnant to just what's right there. So you need a way to federate data across different environments. You need to be able to bring your analytics to the data because it's most efficient that way. And ultimately, it's about building an optimized data platform that is designed for data science and AI. Which means it has to be a lot more flexible than what clients have had in the past. >> All right. So we've laid out what you need for driving automation. But where does the machine learning kick in? >> Machine learning is what gives you the ability to automate tasks. And I think about machine learning. It's about predicting and automating. And this will really change the roles of data professionals and IT professionals. For example, a data scientist cannot possibly know every algorithm or every model that they could use. So we can automate the process of algorithm selection. Another example is things like automated data matching. Or metadata creation. Some of these things may not be exciting but they're hugely practical. And so when you think about the real use cases that are driving return on investment today, it's things like that. It's automating the mundane tasks. >> Let's go ahead and come back to something that you mentioned earlier because it's fascinating to be talking about this AI journey, but also significant is the new job roles. And what are those other participants in the analytics pipeline? >> Yeah I think we're just at the start of this idea of new job roles. We have data scientists. We have data engineers. Now you see machine learning engineers. Application developers. What's really happening is that data scientists are no longer allowed to work in their own silo. And so the new job roles is about how does everybody have data first in their mind? And then they're using tools to automate data science, to automate building machine learning into applications. So roles are going to change dramatically in organizations. >> I think that's confusing though because we have several organizations who saying is that highly specialized roles, just for data science? Or is it applicable to everybody across the board? >> Yeah, and that's the big question, right? Cause everybody's thinking how will this apply? Do I want this to be just a small set of people in the organization that will do this? But, our view is data science has to for everybody. It's about bring data science to everybody as a shared mission across the organization. Everybody in the company has to be data literate. And participate in this journey. >> So overall, group effort, has to be a common goal, and we all need to be data literate across the board. >> Absolutely. >> Done deal. But at the end of the day, it's kind of not an easy task. >> It's not. It's not easy but it's maybe not as big of a shift as you would think. Because you have to put data in the hands of people that can do something with it. So, it's very basic. Give access to data. Data's often locked up in a lot of organizations today. Give people the right tools. Embrace the idea of choice or diversity in terms of those tools. That gets you started on this path. >> It's interesting to hear you say essentially you need to train everyone though across the board when it comes to data literacy. And I think people that are coming into the work force don't necessarily have a background or a degree in data science. So how do you manage? >> Yeah, so in many cases that's true. I will tell you some universities are doing amazing work here. One example, University of California Berkeley. They offer a course for all majors. So no matter what you're majoring in, you have a course on foundations of data science. How do you bring data science to every role? So it's starting to happen. We at IBM provide data science courses through CognitiveClass.ai. It's for everybody. It's free. And look, if you want to get your hands on code and just dive right in, you go to datascience.ibm.com. The key point is this though. It's more about attitude than it is aptitude. I think anybody can figure this out. But it's about the attitude to say we're putting data first and we're going to figure out how to make this real in our organization. >> I also have to give a shout out to my alma mater because I have heard that there is an offering in MS in data analytics. And they are always on the forefront of new technologies and new majors and on trend. And I've heard that the placement behind those jobs, people graduating with the MS is high. >> I'm sure it's very high. >> So go Tigers. All right, tangential. Let me get back to something else you touched on earlier because you mentioned that a number of customers ask you how in the world do I get started with AI? It's an overwhelming question. Where do you even begin? What do you tell them? >> Yeah, well things are moving really fast. But the good thing is most organizations I see, they're already on the path, even if they don't know it. They might have a BI practice in place. They've got data warehouses. They've got data lakes. Let me give you an example. AMC Networks. They produce a lot of the shows that I'm sure you watch Katie. >> [Katie] Yes, Breaking Bad, Walking Dead, any fans? >> [Rob] Yeah, we've got a few. >> [Katie] Well you taught me something I didn't even know. Because it's amazing how we have all these different industries, but yet media in itself is impacted too. And this is a good example. >> Absolutely. So, AMC Networks, think about it. They've got ads to place. They want to track viewer behavior. What do people like? What do they dislike? So they have to optimize every aspect of their business from marketing campaigns to promotions to scheduling to ads. And their goal was transform data into business insights and really take the burden off of their IT team that was heavily burdened by obviously a huge increase in data. So their VP of BI took the approach of using machine learning to process large volumes of data. They used a platform that was designed for AI and data processing. It's the IBM analytics system where it's a data warehouse, data science tools are built in. It has in memory data processing. And just like that, they were ready for AI. And they're already seeing that impact in their business. >> Do you think a movement of that nature kind of presses other media conglomerates and organizations to say we need to be doing this too? >> I think it's inevitable that everybody, you're either going to be playing, you're either going to be leading, or you'll be playing catch up. And so, as we talk to clients we think about how do you start down this path now, even if you have to iterate over time? Because otherwise you're going to wake up and you're going to be behind. >> One thing worth noting is we've talked about analytics to the data. It's analytics first to the data, not the other way around. >> Right. So, look. We as a practice, we say you want to bring data to where the data sits. Because it's a lot more efficient that way. It gets you better outcomes in terms of how you train models and it's more efficient. And we think that leads to better outcomes. Other organization will say, "Hey move the data around." And everything becomes a big data movement exercise. But once an organization has started down this path, they're starting to get predictions, they want to do it where it's really easy. And that means analytics applied right where the data sits. >> And worth talking about the role of the data scientist in all of this. It's been called the hot job of the decade. And a Harvard Business Review even dubbed it the sexiest job of the 21st century. >> Yes. >> I want to see this on the cover of Vogue. Like I want to see the first data scientist. Female preferred, on the cover of Vogue. That would be amazing. >> Perhaps you can. >> People agree. So what changes for them? Is this challenging in terms of we talk data science for all. Where do all the data science, is it data science for everyone? And how does it change everything? >> Well, I think of it this way. AI gives software super powers. It really does. It changes the nature of software. And at the center of that is data scientists. So, a data scientist has a set of powers that they've never had before in any organization. And that's why it's a hot profession. Now, on one hand, this has been around for a while. We've had actuaries. We've had statisticians that have really transformed industries. But there are a few things that are new now. We have new tools. New languages. Broader recognition of this need. And while it's important to recognize this critical skill set, you can't just limit it to a few people. This is about scaling it across the organization. And truly making it accessible to all. >> So then do we need more data scientists? Or is this something you train like you said, across the board? >> Well, I think you want to do a little bit of both. We want more. But, we can also train more and make the ones we have more productive. The way I think about it is there's kind of two markets here. And we call it clickers and coders. >> [Katie] I like that. That's good. >> So, let's talk about what that means. So clickers are basically somebody that wants to use tools. Create models visually. It's drag and drop. Something that's very intuitive. Those are the clickers. Nothing wrong with that. It's been valuable for years. There's a new crop of data scientists. They want to code. They want to build with the latest open source tools. They want to write in Python or R. These are the coders. And both approaches are viable. Both approaches are critical. Organizations have to have a way to meet the needs of both of those types. And there's not a lot of things available today that do that. >> Well let's keep going on that. Because I hear you talking about the data scientists role and how it's critical to success, but with the new tools, data science and analytics skills can extend beyond the domain of just the data scientist. >> That's right. So look, we're unifying coders and clickers into a single platform, which we call IBM Data Science Experience. And as the demand for data science expertise grows, so does the need for these kind of tools. To bring them into the same environment. And my view is if you have the right platform, it enables the organization to collaborate. And suddenly you've changed the nature of data science from an individual sport to a team sport. >> So as somebody that, my background is in IT, the question is really is this an additional piece of what IT needs to do in 2017 and beyond? Or is it just another line item to the budget? >> So I'm afraid that some people might view it that way. As just another line item. But, I would challenge that and say data science is going to reinvent IT. It's going to change the nature of IT. And every organization needs to think about what are the skills that are critical? How do we engage a broader team to do this? Because once they get there, this is the chance to reinvent how they're performing IT. >> [Katie] Challenging or not? >> Look it's all a big challenge. Think about everything IT organizations have been through. Some of them were late to things like mobile, but then they caught up. Some were late to cloud, but then they caught up. I would just urge people, don't be late to data science. Use this as your chance to reinvent IT. Start with this notion of clickers and coders. This is a seminal moment. Much like mobile and cloud was. So don't be late. >> And I think it's critical because it could be so costly to wait. And Rob and I were even chatting earlier how data analytics is just moving into all different kinds of industries. And I can tell you even personally being effected by how important the analysis is in working in pediatric cancer for the last seven years. I personally implement virtual reality headsets to pediatric cancer hospitals across the country. And it's great. And it's working phenomenally. And the kids are amazed. And the staff is amazed. But the phase two of this project is putting in little metrics in the hardware that gather the breathing, the heart rate to show that we have data. Proof that we can hand over to the hospitals to continue making this program a success. So just in-- >> That's a great example. >> An interesting example. >> Saving lives? >> Yes. >> That's also applying a lot of what we talked about. >> Exciting stuff in the world of data science. >> Yes. Look, I just add this is an existential moment for every organization. Because what you do in this area is probably going to define how competitive you are going forward. And think about if you don't do something. What if one of your competitors goes and creates an application that's more engaging with clients? So my recommendation is start small. Experiment. Learn. Iterate on projects. Define the business outcomes. Then scale up. It's very doable. But you've got to take the first step. >> First step always critical. And now we're going to get to the fun hands on part of our story. Because in just a moment we're going to take a closer look at what data science can deliver. And where organizations are trying to get to. All right. Thank you Rob and now we've been joined by Siva Anne who is going to help us navigate this demo. First, welcome Siva. Give him a big round of applause. Yeah. All right, Rob break down what we're going to be looking at. You take over this demo. >> All right. So this is going to be pretty interesting. So Siva is going to take us through. So he's going to play the role of a financial adviser. Who wants to help better serve clients through recommendations. And I'm going to really illustrate three things. One is how do you federate data from multiple data sources? Inside the firewall, outside the firewall. How do you apply machine learning to predict and to automate? And then how do you move analytics closer to your data? So, what you're seeing here is a custom application for an investment firm. So, Siva, our financial adviser, welcome. So you can see at the top, we've got market data. We pulled that from an external source. And then we've got Siva's calendar in the middle. He's got clients on the right side. So page down, what else do you see down there Siva? >> [Siva] I can see the recent market news. And in here I can see that JP Morgan is calling for a US dollar rebound in the second half of the year. And, I have upcoming meeting with Leo Rakes. I can get-- >> [Rob] So let's go in there. Why don't you click on Leo Rakes. So, you're sitting at your desk, you're deciding how you're going to spend the day. You know you have a meeting with Leo. So you click on it. You immediately see, all right, so what do we know about him? We've got data governance implemented. So we know his age, we know his degree. We can see he's not that aggressive of a trader. Only six trades in the last few years. But then where it gets interesting is you go to the bottom. You start to see predicted industry affinity. Where did that come from? How do we have that? >> [Siva] So these green lines and red arrows here indicate the trending affinity of Leo Rakes for particular industry stocks. What we've done here is we've built machine learning models using customer's demographic data, his stock portfolios, and browsing behavior to build a model which can predict his affinity for a particular industry. >> [Rob] Interesting. So, I like to think of this, we call it celebrity experiences. So how do you treat every customer like they're a celebrity? So to some extent, we're reading his mind. Because without asking him, we know that he's going to have an affinity for auto stocks. So we go down. Now we look at his portfolio. You can see okay, he's got some different holdings. He's got Amazon, Google, Apple, and then he's got RACE, which is the ticker for Ferrari. You can see that's done incredibly well. And so, as a financial adviser, you look at this and you say, all right, we know he loves auto stocks. Ferrari's done very well. Let's create a hedge. Like what kind of security would interest him as a hedge against his position for Ferrari? Could we go figure that out? >> [Siva] Yes. Given I know that he's gotten an affinity for auto stocks, and I also see that Ferrari has got some terminus gains, I want to lock in these gains by hedging. And I want to do that by picking a auto stock which has got negative correlation with Ferrari. >> [Rob] So this is where we get to the idea of in database analytics. Cause you start clicking that and immediately we're getting instant answers of what's happening. So what did we find here? We're going to compare Ferrari and Honda. >> [Siva] I'm going to compare Ferrari with Honda. And what I see here instantly is that Honda has got a negative correlation with Ferrari, which makes it a perfect mix for his stock portfolio. Given he has an affinity for auto stocks and it correlates negatively with Ferrari. >> [Rob] These are very powerful tools at the hand of a financial adviser. You think about it. As a financial adviser, you wouldn't think about federating data, machine learning, pretty powerful. >> [Siva] Yes. So what we have seen here is that using the common SQL engine, we've been able to federate queries across multiple data sources. Db2 Warehouse in the cloud, IBM's Integrated Analytic System, and Hortonworks powered Hadoop platform for the new speeds. We've been able to use machine learning to derive innovative insights about his stock affinities. And drive the machine learning into the appliance. Closer to where the data resides to deliver high performance analytics. >> [Rob] At scale? >> [Siva] We're able to run millions of these correlations across stocks, currency, other factors. And even score hundreds of customers for their affinities on a daily basis. >> That's great. Siva, thank you for playing the role of financial adviser. So I just want to recap briefly. Cause this really powerful technology that's really simple. So we federated, we aggregated multiple data sources from all over the web and internal systems. And public cloud systems. Machine learning models were built that predicted Leo's affinity for a certain industry. In this case, automotive. And then you see when you deploy analytics next to your data, even a financial adviser, just with the click of a button is getting instant answers so they can go be more productive in their next meeting. This whole idea of celebrity experiences for your customer, that's available for everybody, if you take advantage of these types of capabilities. Katie, I'll hand it back to you. >> Good stuff. Thank you Rob. Thank you Siva. Powerful demonstration on what we've been talking about all afternoon. And thank you again to Siva for helping us navigate. Should be give him one more round of applause? We're going to be back in just a moment to look at how we operationalize all of this data. But in first, here's a message from me. If you're a part of a line of business, your main fear is disruption. You know data is the new goal that can create huge amounts of value. So does your competition. And they may be beating you to it. You're convinced there are new business models and revenue sources hidden in all the data. You just need to figure out how to leverage it. But with the scarcity of data scientists, you really can't rely solely on them. You may need more people throughout the organization that have the ability to extract value from data. And as a data science leader or data scientist, you have a lot of the same concerns. You spend way too much time looking for, prepping, and interpreting data and waiting for models to train. You know you need to operationalize the work you do to provide business value faster. What you want is an easier way to do data prep. And rapidly build models that can be easily deployed, monitored and automatically updated. So whether you're a data scientist, data science leader, or in a line of business, what's the solution? What'll it take to transform the way you work? That's what we're going to explore next. All right, now it's time to delve deeper into the nuts and bolts. The nitty gritty of operationalizing data science and creating a data driven culture. How do you actually do that? Well that's what these experts are here to share with us. I'm joined by Nir Kaldero, who's head of data science at Galvanize, which is an education and training organization. Tricia Wang, who is co-founder of Sudden Compass, a consultancy that helps companies understand people with data. And last, but certainly not least, Michael Li, founder and CEO of Data Incubator, which is a data science train company. All right guys. Shall we get right to it? >> All right. >> So data explosion happening right now. And we are seeing it across the board. I just shared an example of how it's impacting my philanthropic work in pediatric cancer. But you guys each have so many unique roles in your business life. How are you seeing it just blow up in your fields? Nir, your thing? >> Yeah, for example like in Galvanize we train many Fortune 500 companies. And just by looking at the demand of companies that wants us to help them go through this digital transformation is mind-blowing. Data point by itself. >> Okay. Well what we're seeing what's going on is that data science like as a theme, is that it's actually for everyone now. But what's happening is that it's actually meeting non technical people. But what we're seeing is that when non technical people are implementing these tools or coming at these tools without a base line of data literacy, they're often times using it in ways that distance themselves from the customer. Because they're implementing data science tools without a clear purpose, without a clear problem. And so what we do at Sudden Compass is that we work with companies to help them embrace and understand the complexity of their customers. Because often times they are misusing data science to try and flatten their understanding of the customer. As if you can just do more traditional marketing. Where you're putting people into boxes. And I think the whole ROI of data is that you can now understand people's relationships at a much more complex level at a greater scale before. But we have to do this with basic data literacy. And this has to involve technical and non technical people. >> Well you can have all the data in the world, and I think it speaks to, if you're not doing the proper movement with it, forget it. It means nothing at the same time. >> No absolutely. I mean, I think that when you look at the huge explosion in data, that comes with it a huge explosion in data experts. Right, we call them data scientists, data analysts. And sometimes they're people who are very, very talented, like the people here. But sometimes you have people who are maybe re-branding themselves, right? Trying to move up their title one notch to try to attract that higher salary. And I think that that's one of the things that customers are coming to us for, right? They're saying, hey look, there are a lot of people that call themselves data scientists, but we can't really distinguish. So, we have sort of run a fellowship where you help companies hire from a really talented group of folks, who are also truly data scientists and who know all those kind of really important data science tools. And we also help companies internally. Fortune 500 companies who are looking to grow that data science practice that they have. And we help clients like McKinsey, BCG, Bain, train up their customers, also their clients, also their workers to be more data talented. And to build up that data science capabilities. >> And Nir, this is something you work with a lot. A lot of Fortune 500 companies. And when we were speaking earlier, you were saying many of these companies can be in a panic. >> Yeah. >> Explain that. >> Yeah, so you know, not all Fortune 500 companies are fully data driven. And we know that the winners in this fourth industrial revolution, which I like to call the machine intelligence revolution, will be companies who navigate and transform their organization to unlock the power of data science and machine learning. And the companies that are not like that. Or not utilize data science and predictive power well, will pretty much get shredded. So they are in a panic. >> Tricia, companies have to deal with data behind the firewall and in the new multi cloud world. How do organizations start to become driven right to the core? >> I think the most urgent question to become data driven that companies should be asking is how do I bring the complex reality that our customers are experiencing on the ground in to a corporate office? Into the data models. So that question is critical because that's how you actually prevent any big data disasters. And that's how you leverage big data. Because when your data models are really far from your human models, that's when you're going to do things that are really far off from how, it's going to not feel right. That's when Tesco had their terrible big data disaster that they're still recovering from. And so that's why I think it's really important to understand that when you implement big data, you have to further embrace thick data. The qualitative, the emotional stuff, that is difficult to quantify. But then comes the difficult art and science that I think is the next level of data science. Which is that getting non technical and technical people together to ask how do we find those unknown nuggets of insights that are difficult to quantify? Then, how do we do the next step of figuring out how do you mathematically scale those insights into a data model? So that actually is reflective of human understanding? And then we can start making decisions at scale. But you have to have that first. >> That's absolutely right. And I think that when we think about what it means to be a data scientist, right? I always think about it in these sort of three pillars. You have the math side. You have to have that kind of stats, hardcore machine learning background. You have the programming side. You don't work with small amounts of data. You work with large amounts of data. You've got to be able to type the code to make those computers run. But then the last part is that human element. You have to understand the domain expertise. You have to understand what it is that I'm actually analyzing. What's the business proposition? And how are the clients, how are the users actually interacting with the system? That human element that you were talking about. And I think having somebody who understands all of those and not just in isolation, but is able to marry that understanding across those different topics, that's what makes a data scientist. >> But I find that we don't have people with those skill sets. And right now the way I see teams being set up inside companies is that they're creating these isolated data unicorns. These data scientists that have graduated from your programs, which are great. But, they don't involve the people who are the domain experts. They don't involve the designers, the consumer insight people, the people, the salespeople. The people who spend time with the customers day in and day out. Somehow they're left out of the room. They're consulted, but they're not a stakeholder. >> Can I actually >> Yeah, yeah please. >> Can I actually give a quick example? So for example, we at Galvanize train the executives and the managers. And then the technical people, the data scientists and the analysts. But in order to actually see all of the RY behind the data, you also have to have a creative fluid conversation between non technical and technical people. And this is a major trend now. And there's a major gap. And we need to increase awareness and kind of like create a new, kind of like environment where technical people also talks seamlessly with non technical ones. >> [Tricia] We call-- >> That's one of the things that we see a lot. Is one of the trends in-- >> A major trend. >> data science training is it's not just for the data science technical experts. It's not just for one type of person. So a lot of the training we do is sort of data engineers. People who are more on the software engineering side learning more about the stats of math. And then people who are sort of traditionally on the stat side learning more about the engineering. And then managers and people who are data analysts learning about both. >> Michael, I think you said something that was of interest too because I think we can look at IBM Watson as an example. And working in healthcare. The human component. Because often times we talk about machine learning and AI, and data and you get worried that you still need that human component. Especially in the world of healthcare. And I think that's a very strong point when it comes to the data analysis side. Is there any particular example you can speak to of that? >> So I think that there was this really excellent paper a while ago talking about all the neuro net stuff and trained on textual data. So looking at sort of different corpuses. And they found that these models were highly, highly sexist. They would read these corpuses and it's not because neuro nets themselves are sexist. It's because they're reading the things that we write. And it turns out that we write kind of sexist things. And they would sort of find all these patterns in there that were sort of latent, that had a lot of sort of things that maybe we would cringe at if we sort of saw. And I think that's one of the really important aspects of the human element, right? It's being able to come in and sort of say like, okay, I know what the biases of the system are, I know what the biases of the tools are. I need to figure out how to use that to make the tools, make the world a better place. And like another area where this comes up all the time is lending, right? So the federal government has said, and we have a lot of clients in the financial services space, so they're constantly under these kind of rules that they can't make discriminatory lending practices based on a whole set of protected categories. Race, sex, gender, things like that. But, it's very easy when you train a model on credit scores to pick that up. And then to have a model that's inadvertently sexist or racist. And that's where you need the human element to come back in and say okay, look, you're using the classic example would be zip code, you're using zip code as a variable. But when you look at it, zip codes actually highly correlated with race. And you can't do that. So you may inadvertently by sort of following the math and being a little naive about the problem, inadvertently introduce something really horrible into a model and that's where you need a human element to sort of step in and say, okay hold on. Slow things down. This isn't the right way to go. >> And the people who have -- >> I feel like, I can feel her ready to respond. >> Yes, I'm ready. >> She's like let me have at it. >> And the people here it is. And the people who are really great at providing that human intelligence are social scientists. We are trained to look for bias and to understand bias in data. Whether it's quantitative or qualitative. And I really think that we're going to have less of these kind of problems if we had more integrated teams. If it was a mandate from leadership to say no data science team should be without a social scientist, ethnographer, or qualitative researcher of some kind, to be able to help see these biases. >> The talent piece is actually the most crucial-- >> Yeah. >> one here. If you look about how to enable machine intelligence in organization there are the pillars that I have in my head which is the culture, the talent and the technology infrastructure. And I believe and I saw in working very closely with the Fortune 100 and 200 companies that the talent piece is actually the most important crucial hard to get. >> [Tricia] I totally agree. >> It's absolutely true. Yeah, no I mean I think that's sort of like how we came up with our business model. Companies were basically saying hey, I can't hire data scientists. And so we have a fellowship where we get 2,000 applicants each quarter. We take the top 2% and then we sort of train them up. And we work with hiring companies who then want to hire from that population. And so we're sort of helping them solve that problem. And the other half of it is really around training. Cause with a lot of industries, especially if you're sort of in a more regulated industry, there's a lot of nuances to what you're doing. And the fastest way to develop that data science or AI talent may not necessarily be to hire folks who are coming out of a PhD program. It may be to take folks internally who have a lot of that domain knowledge that you have and get them trained up on those data science techniques. So we've had large insurance companies come to us and say hey look, we hire three or four folks from you a quarter. That doesn't move the needle for us. What we really need is take the thousand actuaries and statisticians that we have and get all of them trained up to become a data scientist and become data literate in this new open source world. >> [Katie] Go ahead. >> All right, ladies first. >> Go ahead. >> Are you sure? >> No please, fight first. >> Go ahead. >> Go ahead Nir. >> So this is actually a trend that we have been seeing in the past year or so that companies kind of like start to look how to upscale and look for talent within the organization. So they can actually move them to become more literate and navigate 'em from analyst to data scientist. And from data scientist to machine learner. So this is actually a trend that is happening already for a year or so. >> Yeah, but I also find that after they've gone through that training in getting people skilled up in data science, the next problem that I get is executives coming to say we've invested in all of this. We're still not moving the needle. We've already invested in the right tools. We've gotten the right skills. We have enough scale of people who have these skills. Why are we not moving the needle? And what I explain to them is look, you're still making decisions in the same way. And you're still not involving enough of the non technical people. Especially from marketing, which is now, the CMO's are much more responsible for driving growth in their companies now. But often times it's so hard to change the old way of marketing, which is still like very segmentation. You know, demographic variable based, and we're trying to move people to say no, you have to understand the complexity of customers and not put them in boxes. >> And I think underlying a lot of this discussion is this question of culture, right? >> Yes. >> Absolutely. >> How do you build a data driven culture? And I think that that culture question, one of the ways that comes up quite often in especially in large, Fortune 500 enterprises, is that they are very, they're not very comfortable with sort of example, open source architecture. Open source tools. And there is some sort of residual bias that that's somehow dangerous. So security vulnerability. And I think that that's part of the cultural challenge that they often have in terms of how do I build a more data driven organization? Well a lot of the talent really wants to use these kind of tools. And I mean, just to give you an example, we are partnering with one of the major cloud providers to sort of help make open source tools more user friendly on their platform. So trying to help them attract the best technologists to use their platform because they want and they understand the value of having that kind of open source technology work seamlessly on their platforms. So I think that just sort of goes to show you how important open source is in this movement. And how much large companies and Fortune 500 companies and a lot of the ones we work with have to embrace that. >> Yeah, and I'm seeing it in our work. Even when we're working with Fortune 500 companies, is that they've already gone through the first phase of data science work. Where I explain it was all about the tools and getting the right tools and architecture in place. And then companies started moving into getting the right skill set in place. Getting the right talent. And what you're talking about with culture is really where I think we're talking about the third phase of data science, which is looking at communication of these technical frameworks so that we can get non technical people really comfortable in the same room with data scientists. That is going to be the phase, that's really where I see the pain point. And that's why at Sudden Compass, we're really dedicated to working with each other to figure out how do we solve this problem now? >> And I think that communication between the technical stakeholders and management and leadership. That's a very critical piece of this. You can't have a successful data science organization without that. >> Absolutely. >> And I think that actually some of the most popular trainings we've had recently are from managers and executives who are looking to say, how do I become more data savvy? How do I figure out what is this data science thing and how do I communicate with my data scientists? >> You guys made this way too easy. I was just going to get some popcorn and watch it play out. >> Nir, last 30 seconds. I want to leave you with an opportunity to, anything you want to add to this conversation? >> I think one thing to conclude is to say that companies that are not data driven is about time to hit refresh and figure how they transition the organization to become data driven. To become agile and nimble so they can actually see what opportunities from this important industrial revolution. Otherwise, unfortunately they will have hard time to survive. >> [Katie] All agreed? >> [Tricia] Absolutely, you're right. >> Michael, Trish, Nir, thank you so much. Fascinating discussion. And thank you guys again for joining us. We will be right back with another great demo. Right after this. >> Thank you Katie. >> Once again, thank you for an excellent discussion. Weren't they great guys? And thank you for everyone who's tuning in on the live webcast. As you can hear, we have an amazing studio audience here. And we're going to keep things moving. I'm now joined by Daniel Hernandez and Siva Anne. And we're going to turn our attention to how you can deliver on what they're talking about using data science experience to do data science faster. >> Thank you Katie. Siva and I are going to spend the next 10 minutes showing you how you can deliver on what they were saying using the IBM Data Science Experience to do data science faster. We'll demonstrate through new features we introduced this week how teams can work together more effectively across the entire analytics life cycle. How you can take advantage of any and all data no matter where it is and what it is. How you could use your favorite tools from open source. And finally how you could build models anywhere and employ them close to where your data is. Remember the financial adviser app Rob showed you? To build an app like that, we needed a team of data scientists, developers, data engineers, and IT staff to collaborate. We do this in the Data Science Experience through a concept we call projects. When I create a new project, I can now use the new Github integration feature. We're doing for data science what we've been doing for developers for years. Distributed teams can work together on analytics projects. And take advantage of Github's version management and change management features. This is a huge deal. Let's explore the project we created for the financial adviser app. As you can see, our data engineer Joane, our developer Rob, and others are collaborating this project. Joane got things started by bringing together the trusted data sources we need to build the app. Taking a closer look at the data, we see that our customer and profile data is stored on our recently announced IBM Integrated Analytics System, which runs safely behind our firewall. We also needed macro economic data, which she was able to find in the Federal Reserve. And she stored it in our Db2 Warehouse on Cloud. And finally, she selected stock news data from NASDAQ.com and landed that in a Hadoop cluster, which happens to be powered by Hortonworks. We added a new feature to the Data Science Experience so that when it's installed with Hortonworks, it automatically uses a need of security and governance controls within the cluster so your data is always secure and safe. Now we want to show you the news data we stored in the Hortonworks cluster. This is the mean administrative console. It's powered by an open source project called Ambari. And here's the news data. It's in parquet files stored in HDFS, which happens to be a distributive file system. To get the data from NASDAQ into our cluster, we used IBM's BigIntegrate and BigQuality to create automatic data pipelines that acquire, cleanse, and ingest that news data. Once the data's available, we use IBM's Big SQL to query that data using SQL statements that are much like the ones we would use for any relation of data, including the data that we have in the Integrated Analytics System and Db2 Warehouse on Cloud. This and the federation capabilities that Big SQL offers dramatically simplifies data acquisition. Now we want to show you how we support a brand new tool that we're excited about. Since we launched last summer, the Data Science Experience has supported Jupyter and R for data analysis and visualization. In this week's update, we deeply integrated another great open source project called Apache Zeppelin. It's known for having great visualization support, advanced collaboration features, and is growing in popularity amongst the data science community. This is an example of Apache Zeppelin and the notebook we created through it to explore some of our data. Notice how wonderful and easy the data visualizations are. Now we want to walk you through the Jupyter notebook we created to explore our customer preference for stocks. We use notebooks to understand and explore data. To identify the features that have some predictive power. Ultimately, we're trying to assess what ultimately is driving customer stock preference. Here we did the analysis to identify the attributes of customers that are likely to purchase auto stocks. We used this understanding to build our machine learning model. For building machine learning models, we've always had tools integrated into the Data Science Experience. But sometimes you need to use tools you already invested in. Like our very own SPSS as well as SAS. Through new import feature, you can easily import those models created with those tools. This helps you avoid vendor lock-in, and simplify the development, training, deployment, and management of all your models. To build the models we used in app, we could have coded, but we prefer a visual experience. We used our customer profile data in the Integrated Analytic System. Used the Auto Data Preparation to cleanse our data. Choose the binary classification algorithms. Let the Data Science Experience evaluate between logistic regression and gradient boosted tree. It's doing the heavy work for us. As you can see here, the Data Science Experience generated performance metrics that show us that the gradient boosted tree is the best performing algorithm for the data we gave it. Once we save this model, it's automatically deployed and available for developers to use. Any application developer can take this endpoint and consume it like they would any other API inside of the apps they built. We've made training and creating machine learning models super simple. But what about the operations? A lot of companies are struggling to ensure their model performance remains high over time. In our financial adviser app, we know that customer data changes constantly, so we need to always monitor model performance and ensure that our models are retrained as is necessary. This is a dashboard that shows the performance of our models and lets our teams monitor and retrain those models so that they're always performing to our standards. So far we've been showing you the Data Science Experience available behind the firewall that we're using to build and train models. Through a new publish feature, you can build models and deploy them anywhere. In another environment, private, public, or anywhere else with just a few clicks. So here we're publishing our model to the Watson machine learning service. It happens to be in the IBM cloud. And also deeply integrated with our Data Science Experience. After publishing and switching to the Watson machine learning service, you can see that our stock affinity and model that we just published is there and ready for use. So this is incredibly important. I just want to say it again. The Data Science Experience allows you to train models behind your own firewall, take advantage of your proprietary and sensitive data, and then deploy those models wherever you want with ease. So summarize what we just showed you. First, IBM's Data Science Experience supports all teams. You saw how our data engineer populated our project with trusted data sets. Our data scientists developed, trained, and tested a machine learning model. Our developers used APIs to integrate machine learning into their apps. And how IT can use our Integrated Model Management dashboard to monitor and manage model performance. Second, we support all data. On premises, in the cloud, structured, unstructured, inside of your firewall, and outside of it. We help you bring analytics and governance to where your data is. Third, we support all tools. The data science tools that you depend on are readily available and deeply integrated. This includes capabilities from great partners like Hortonworks. And powerful tools like our very own IBM SPSS. And fourth, and finally, we support all deployments. You can build your models anywhere, and deploy them right next to where your data is. Whether that's in the public cloud, private cloud, or even on the world's most reliable transaction platform, IBM z. So see for yourself. Go to the Data Science Experience website, take us for a spin. And if you happen to be ready right now, our recently created Data Science Elite Team can help you get started and run experiments alongside you with no charge. Thank you very much. >> Thank you very much Daniel. It seems like a great time to get started. And thanks to Siva for taking us through it. Rob and I will be back in just a moment to add some perspective right after this. All right, once again joined by Rob Thomas. And Rob obviously we got a lot of information here. >> Yes, we've covered a lot of ground. >> This is intense. You got to break it down for me cause I think we zoom out and see the big picture. What better data science can deliver to a business? Why is this so important? I mean we've heard it through and through. >> Yeah, well, I heard it a couple times. But it starts with businesses have to embrace a data driven culture. And it is a change. And we need to make data accessible with the right tools in a collaborative culture because we've got diverse skill sets in every organization. But data driven companies succeed when data science tools are in the hands of everyone. And I think that's a new thought. I think most companies think just get your data scientist some tools, you'll be fine. This is about tools in the hands of everyone. I think the panel did a great job of describing about how we get to data science for all. Building a data culture, making it a part of your everyday operations, and the highlights of what Daniel just showed us, that's some pretty cool features for how organizations can get to this, which is you can see IBM's Data Science Experience, how that supports all teams. You saw data analysts, data scientists, application developer, IT staff, all working together. Second, you saw how we support all tools. And your choice of tools. So the most popular data science libraries integrated into one platform. And we saw some new capabilities that help companies avoid lock-in, where you can import existing models created from specialist tools like SPSS or others. And then deploy them and manage them inside of Data Science Experience. That's pretty interesting. And lastly, you see we continue to build on this best of open tools. Partnering with companies like H2O, Hortonworks, and others. Third, you can see how you use all data no matter where it lives. That's a key challenge every organization's going to face. Private, public, federating all data sources. We announced new integration with the Hortonworks data platform where we deploy machine learning models where your data resides. That's been a key theme. Analytics where the data is. And lastly, supporting all types of deployments. Deploy them in your Hadoop cluster. Deploy them in your Integrated Analytic System. Or deploy them in z, just to name a few. A lot of different options here. But look, don't believe anything I say. Go try it for yourself. Data Science Experience, anybody can use it. Go to datascience.ibm.com and look, if you want to start right now, we just created a team that we call Data Science Elite. These are the best data scientists in the world that will come sit down with you and co-create solutions, models, and prove out a proof of concept. >> Good stuff. Thank you Rob. So you might be asking what does an organization look like that embraces data science for all? And how could it transform your role? I'm going to head back to the office and check it out. Let's start with the perspective of the line of business. What's changed? Well, now you're starting to explore new business models. You've uncovered opportunities for new revenue sources and all that hidden data. And being disrupted is no longer keeping you up at night. As a data science leader, you're beginning to collaborate with a line of business to better understand and translate the objectives into the models that are being built. Your data scientists are also starting to collaborate with the less technical team members and analysts who are working closest to the business problem. And as a data scientist, you stop feeling like you're falling behind. Open source tools are keeping you current. You're also starting to operationalize the work that you do. And you get to do more of what you love. Explore data, build models, put your models into production, and create business impact. All in all, it's not a bad scenario. Thanks. All right. We are back and coming up next, oh this is a special time right now. Cause we got a great guest speaker. New York Magazine called him the spreadsheet psychic and number crunching prodigy who went from correctly forecasting baseball games to correctly forecasting presidential elections. He even invented a proprietary algorithm called PECOTA for predicting future performance by baseball players and teams. And his New York Times bestselling book, The Signal and the Noise was named by Amazon.com as the number one best non-fiction book of 2012. He's currently the Editor in Chief of the award winning website, FiveThirtyEight and appears on ESPN as an on air commentator. Big round of applause. My pleasure to welcome Nate Silver. >> Thank you. We met backstage. >> Yes. >> It feels weird to re-shake your hand, but you know, for the audience. >> I had to give the intense firm grip. >> Definitely. >> The ninja grip. So you and I have crossed paths kind of digitally in the past, which it really interesting, is I started my career at ESPN. And I started as a production assistant, then later back on air for sports technology. And I go to you to talk about sports because-- >> Yeah. >> Wow, has ESPN upped their game in terms of understanding the importance of data and analytics. And what it brings. Not just to MLB, but across the board. >> No, it's really infused into the way they present the broadcast. You'll have win probability on the bottom line. And they'll incorporate FiveThirtyEight metrics into how they cover college football for example. So, ESPN ... Sports is maybe the perfect, if you're a data scientist, like the perfect kind of test case. And the reason being that sports consists of problems that have rules. And have structure. And when problems have rules and structure, then it's a lot easier to work with. So it's a great way to kind of improve your skills as a data scientist. Of course, there are also important real world problems that are more open ended, and those present different types of challenges. But it's such a natural fit. The teams. Think about the teams playing the World Series tonight. The Dodgers and the Astros are both like very data driven, especially Houston. Golden State Warriors, the NBA Champions, extremely data driven. New England Patriots, relative to an NFL team, it's shifted a little bit, the NFL bar is lower. But the Patriots are certainly very analytical in how they make decisions. So, you can't talk about sports without talking about analytics. >> And I was going to save the baseball question for later. Cause we are moments away from game seven. >> Yeah. >> Is everyone else watching game seven? It's been an incredible series. Probably one of the best of all time. >> Yeah, I mean-- >> You have a prediction here? >> You can mention that too. So I don't have a prediction. FiveThirtyEight has the Dodgers with a 60% chance of winning. >> [Katie] LA Fans. >> So you have two teams that are about equal. But the Dodgers pitching staff is in better shape at the moment. The end of a seven game series. And they're at home. >> But the statistics behind the two teams is pretty incredible. >> Yeah. It's like the first World Series in I think 56 years or something where you have two 100 win teams facing one another. There have been a lot of parity in baseball for a lot of years. Not that many offensive overall juggernauts. But this year, and last year with the Cubs and the Indians too really. But this year, you have really spectacular teams in the World Series. It kind of is a showcase of modern baseball. Lots of home runs. Lots of strikeouts. >> [Katie] Lots of extra innings. >> Lots of extra innings. Good defense. Lots of pitching changes. So if you love the modern baseball game, it's been about the best example that you've had. If you like a little bit more contact, and fewer strikeouts, maybe not so much. But it's been a spectacular and very exciting World Series. It's amazing to talk. MLB is huge with analysis. I mean, hands down. But across the board, if you can provide a few examples. Because there's so many teams in front offices putting such an, just a heavy intensity on the analysis side. And where the teams are going. And if you could provide any specific examples of teams that have really blown your mind. Especially over the last year or two. Because every year it gets more exciting if you will. I mean, so a big thing in baseball is defensive shifts. So if you watch tonight, you'll probably see a couple of plays where if you're used to watching baseball, a guy makes really solid contact. And there's a fielder there that you don't think should be there. But that's really very data driven where you analyze where's this guy hit the ball. That part's not so hard. But also there's game theory involved. Because you have to adjust for the fact that he knows where you're positioning the defenders. He's trying therefore to make adjustments to his own swing and so that's been a major innovation in how baseball is played. You know, how bullpens are used too. Where teams have realized that actually having a guy, across all sports pretty much, realizing the importance of rest. And of fatigue. And that you can be the best pitcher in the world, but guess what? After four or five innings, you're probably not as good as a guy who has a fresh arm necessarily. So I mean, it really is like, these are not subtle things anymore. It's not just oh, on base percentage is valuable. It really effects kind of every strategic decision in baseball. The NBA, if you watch an NBA game tonight, see how many three point shots are taken. That's in part because of data. And teams realizing hey, three points is worth more than two, once you're more than about five feet from the basket, the shooting percentage gets really flat. And so it's revolutionary, right? Like teams that will shoot almost half their shots from the three point range nowadays. Larry Bird, who wound up being one of the greatest three point shooters of all time, took only eight three pointers his first year in the NBA. It's quite noticeable if you watch baseball or basketball in particular. >> Not to focus too much on sports. One final question. In terms of Major League Soccer, and now in NFL, we're having the analysis and having wearables where it can now showcase if they wanted to on screen, heart rate and breathing and how much exertion. How much data is too much data? And when does it ruin the sport? >> So, I don't think, I mean, again, it goes sport by sport a little bit. I think in basketball you actually have a more exciting game. I think the game is more open now. You have more three pointers. You have guys getting higher assist totals. But you know, I don't know. I'm not one of those people who thinks look, if you love baseball or basketball, and you go in to work for the Astros, the Yankees or the Knicks, they probably need some help, right? You really have to be passionate about that sport. Because it's all based on what questions am I asking? As I'm a fan or I guess an employee of the team. Or a player watching the game. And there isn't really any substitute I don't think for the insight and intuition that a curious human has to kind of ask the right questions. So we can talk at great length about what tools do you then apply when you have those questions, but that still comes from people. I don't think machine learning could help with what questions do I want to ask of the data. It might help you get the answers. >> If you have a mid-fielder in a soccer game though, not exerting, only 80%, and you're seeing that on a screen as a fan, and you're saying could that person get fired at the end of the day? One day, with the data? >> So we found that actually some in soccer in particular, some of the better players are actually more still. So Leo Messi, maybe the best player in the world, doesn't move as much as other soccer players do. And the reason being that A) he kind of knows how to position himself in the first place. B) he realizes that you make a run, and you're out of position. That's quite fatiguing. And particularly soccer, like basketball, is a sport where it's incredibly fatiguing. And so, sometimes the guys who conserve their energy, that kind of old school mentality, you have to hustle at every moment. That is not helpful to the team if you're hustling on an irrelevant play. And therefore, on a critical play, can't get back on defense, for example. >> Sports, but also data is moving exponentially as we're just speaking about today. Tech, healthcare, every different industry. Is there any particular that's a favorite of yours to cover? And I imagine they're all different as well. >> I mean, I do like sports. We cover a lot of politics too. Which is different. I mean in politics I think people aren't intuitively as data driven as they might be in sports for example. It's impressive to follow the breakthroughs in artificial intelligence. It started out just as kind of playing games and playing chess and poker and Go and things like that. But you really have seen a lot of breakthroughs in the last couple of years. But yeah, it's kind of infused into everything really. >> You're known for your work in politics though. Especially presidential campaigns. >> Yeah. >> This year, in particular. Was it insanely challenging? What was the most notable thing that came out of any of your predictions? >> I mean, in some ways, looking at the polling was the easiest lens to look at it. So I think there's kind of a myth that last year's result was a big shock and it wasn't really. If you did the modeling in the right way, then you realized that number one, polls have a margin of error. And so when a candidate has a three point lead, that's not particularly safe. Number two, the outcome between different states is correlated. Meaning that it's not that much of a surprise that Clinton lost Wisconsin and Michigan and Pennsylvania and Ohio. You know I'm from Michigan. Have friends from all those states. Kind of the same types of people in those states. Those outcomes are all correlated. So what people thought was a big upset for the polls I think was an example of how data science done carefully and correctly where you understand probabilities, understand correlations. Our model gave Trump a 30% chance of winning. Others models gave him a 1% chance. And so that was interesting in that it showed that number one, that modeling strategies and skill do matter quite a lot. When you have someone saying 30% versus 1%. I mean, that's a very very big spread. And number two, that these aren't like solved problems necessarily. Although again, the problem with elections is that you only have one election every four years. So I can be very confident that I have a better model. Even one year of data doesn't really prove very much. Even five or 10 years doesn't really prove very much. And so, being aware of the limitations to some extent intrinsically in elections when you only get one kind of new training example every four years, there's not really any way around that. There are ways to be more robust to sparce data environments. But if you're identifying different types of business problems to solve, figuring out what's a solvable problem where I can add value with data science is a really key part of what you're doing. >> You're such a leader in this space. In data and analysis. It would be interesting to kind of peek back the curtain, understand how you operate but also how large is your team? How you're putting together information. How quickly you're putting it out. Cause I think in this right now world where everybody wants things instantly-- >> Yeah. >> There's also, you want to be first too in the world of journalism. But you don't want to be inaccurate because that's your credibility. >> We talked about this before, right? I think on average, speed is a little bit overrated in journalism. >> [Katie] I think it's a big problem in journalism. >> Yeah. >> Especially in the tech world. You have to be first. You have to be first. And it's just pumping out, pumping out. And there's got to be more time spent on stories if I can speak subjectively. >> Yeah, for sure. But at the same time, we are reacting to the news. And so we have people that come in, we hire most of our people actually from journalism. >> [Katie] How many people do you have on your team? >> About 35. But, if you get someone who comes in from an academic track for example, they might be surprised at how fast journalism is. That even though we might be slower than the average website, the fact that there's a tragic event in New York, are there things we have to say about that? A candidate drops out of the presidential race, are things we have to say about that. In periods ranging from minutes to days as opposed to kind of weeks to months to years in the academic world. The corporate world moves faster. What is a little different about journalism is that you are expected to have more precision where people notice when you make a mistake. In corporations, you have maybe less transparency. If you make 10 investments and seven of them turn out well, then you'll get a lot of profit from that, right? In journalism, it's a little different. If you make kind of seven predictions or say seven things, and seven of them are very accurate and three of them aren't, you'll still get criticized a lot for the three. Just because that's kind of the way that journalism is. And so the kind of combination of needing, not having that much tolerance for mistakes, but also needing to be fast. That is tricky. And I criticize other journalists sometimes including for not being data driven enough, but the best excuse any journalist has, this is happening really fast and it's my job to kind of figure out in real time what's going on and provide useful information to the readers. And that's really difficult. Especially in a world where literally, I'll probably get off the stage and check my phone and who knows what President Trump will have tweeted or what things will have happened. But it really is a kind of 24/7. >> Well because it's 24/7 with FiveThirtyEight, one of the most well known sites for data, are you feeling micromanagey on your people? Because you do have to hit this balance. You can't have something come out four or five days later. >> Yeah, I'm not -- >> Are you overseeing everything? >> I'm not by nature a micromanager. And so you try to hire well. You try and let people make mistakes. And the flip side of this is that if a news organization that never had any mistakes, never had any corrections, that's raw, right? You have to have some tolerance for error because you are trying to decide things in real time. And figure things out. I think transparency's a big part of that. Say here's what we think, and here's why we think it. If we have a model to say it's not just the final number, here's a lot of detail about how that's calculated. In some case we release the code and the raw data. Sometimes we don't because there's a proprietary advantage. But quite often we're saying we want you to trust us and it's so important that you trust us, here's the model. Go play around with it yourself. Here's the data. And that's also I think an important value. >> That speaks to open source. And your perspective on that in general. >> Yeah, I mean, look, I'm a big fan of open source. I worry that I think sometimes the trends are a little bit away from open source. But by the way, one thing that happens when you share your data or you share your thinking at least in lieu of the data, and you can definitely do both is that readers will catch embarrassing mistakes that you made. By the way, even having open sourceness within your team, I mean we have editors and copy editors who often save you from really embarrassing mistakes. And by the way, it's not necessarily people who have a training in data science. I would guess that of our 35 people, maybe only five to 10 have a kind of formal background in what you would call data science. >> [Katie] I think that speaks to the theme here. >> Yeah. >> [Katie] That everybody's kind of got to be data literate. >> But yeah, it is like you have a good intuition. You have a good BS detector basically. And you have a good intuition for hey, this looks a little bit out of line to me. And sometimes that can be based on domain knowledge, right? We have one of our copy editors, she's a big college football fan. And we had an algorithm we released that tries to predict what the human being selection committee will do, and she was like, why is LSU rated so high? Cause I know that LSU sucks this year. And we looked at it, and she was right. There was a bug where it had forgotten to account for their last game where they lost to Troy or something and so -- >> That also speaks to the human element as well. >> It does. In general as a rule, if you're designing a kind of regression based model, it's different in machine learning where you have more, when you kind of build in the tolerance for error. But if you're trying to do something more precise, then so much of it is just debugging. It's saying that looks wrong to me. And I'm going to investigate that. And sometimes it's not wrong. Sometimes your model actually has an insight that you didn't have yourself. But fairly often, it is. And I think kind of what you learn is like, hey if there's something that bothers me, I want to go investigate that now and debug that now. Because the last thing you want is where all of a sudden, the answer you're putting out there in the world hinges on a mistake that you made. Cause you never know if you have so to speak, 1,000 lines of code and they all perform something differently. You never know when you get in a weird edge case where this one decision you made winds up being the difference between your having a good forecast and a bad one. In a defensible position and a indefensible one. So we definitely are quite diligent and careful. But it's also kind of knowing like, hey, where is an approximation good enough and where do I need more precision? Cause you could also drive yourself crazy in the other direction where you know, it doesn't matter if the answer is 91.2 versus 90. And so you can kind of go 91.2, three, four and it's like kind of A) false precision and B) not a good use of your time. So that's where I do still spend a lot of time is thinking about which problems are "solvable" or approachable with data and which ones aren't. And when they're not by the way, you're still allowed to report on them. We are a news organization so we do traditional reporting as well. And then kind of figuring out when do you need precision versus when is being pointed in the right direction good enough? >> I would love to get inside your brain and see how you operate on just like an everyday walking to Walgreens movement. It's like oh, if I cross the street in .2-- >> It's not, I mean-- >> Is it like maddening in there? >> No, not really. I mean, I'm like-- >> This is an honest question. >> If I'm looking for airfares, I'm a little more careful. But no, part of it's like you don't want to waste time on unimportant decisions, right? I will sometimes, if I can't decide what to eat at a restaurant, I'll flip a coin. If the chicken and the pasta both sound really good-- >> That's not high tech Nate. We want better. >> But that's the point, right? It's like both the chicken and the pasta are going to be really darn good, right? So I'm not going to waste my time trying to figure it out. I'm just going to have an arbitrary way to decide. >> Serious and business, how organizations in the last three to five years have just evolved with this data boom. How are you seeing it as from a consultant point of view? Do you think it's an exciting time? Do you think it's a you must act now time? >> I mean, we do know that you definitely see a lot of talent among the younger generation now. That so FiveThirtyEight has been at ESPN for four years now. And man, the quality of the interns we get has improved so much in four years. The quality of the kind of young hires that we make straight out of college has improved so much in four years. So you definitely do see a younger generation for which this is just part of their bloodstream and part of their DNA. And also, particular fields that we're interested in. So we're interested in people who have both a data and a journalism background. We're interested in people who have a visualization and a coding background. A lot of what we do is very much interactive graphics and so forth. And so we do see those skill sets coming into play a lot more. And so the kind of shortage of talent that had I think frankly been a problem for a long time, I'm optimistic based on the young people in our office, it's a little anecdotal but you can tell that there are so many more programs that are kind of teaching students the right set of skills that maybe weren't taught as much a few years ago. >> But when you're seeing these big organizations, ESPN as perfect example, moving more towards data and analytics than ever before. >> Yeah. >> You would say that's obviously true. >> Oh for sure. >> If you're not moving that direction, you're going to fall behind quickly. >> Yeah and the thing is, if you read my book or I guess people have a copy of the book. In some ways it's saying hey, there are lot of ways to screw up when you're using data. And we've built bad models. We've had models that were bad and got good results. Good models that got bad results and everything else. But the point is that the reason to be out in front of the problem is so you give yourself more runway to make errors and mistakes. And to learn kind of what works and what doesn't and which people to put on the problem. I sometimes do worry that a company says oh we need data. And everyone kind of agrees on that now. We need data science. Then they have some big test case. And they have a failure. And they maybe have a failure because they didn't know really how to use it well enough. But learning from that and iterating on that. And so by the time that you're on the third generation of kind of a problem that you're trying to solve, and you're watching everyone else make the mistake that you made five years ago, I mean, that's really powerful. But that doesn't mean that getting invested in it now, getting invested both in technology and the human capital side is important. >> Final question for you as we run out of time. 2018 beyond, what is your biggest project in terms of data gathering that you're working on? >> There's a midterm election coming up. That's a big thing for us. We're also doing a lot of work with NBA data. So for four years now, the NBA has been collecting player tracking data. So they have 3D cameras in every arena. So they can actually kind of quantify for example how fast a fast break is, for example. Or literally where a player is and where the ball is. For every NBA game now for the past four or five years. And there hasn't really been an overall metric of player value that's taken advantage of that. The teams do it. But in the NBA, the teams are a little bit ahead of journalists and analysts. So we're trying to have a really truly next generation stat. It's a lot of data. Sometimes I now more oversee things than I once did myself. And so you're parsing through many, many, many lines of code. But yeah, so we hope to have that out at some point in the next few months. >> Anything you've personally been passionate about that you've wanted to work on and kind of solve? >> I mean, the NBA thing, I am a pretty big basketball fan. >> You can do better than that. Come on, I want something real personal that you're like I got to crunch the numbers. >> You know, we tried to figure out where the best burrito in America was a few years ago. >> I'm going to end it there. >> Okay. >> Nate, thank you so much for joining us. It's been an absolute pleasure. Thank you. >> Cool, thank you. >> I thought we were going to chat World Series, you know. Burritos, important. I want to thank everybody here in our audience. Let's give him a big round of applause. >> [Nate] Thank you everyone. >> Perfect way to end the day. And for a replay of today's program, just head on over to ibm.com/dsforall. I'm Katie Linendoll. And this has been Data Science for All: It's a Whole New Game. Test one, two. One, two, three. Hi guys, I just want to quickly let you know as you're exiting. A few heads up. Downstairs right now there's going to be a meet and greet with Nate. And we're going to be doing that with clients and customers who are interested. So I would recommend before the game starts, and you lose Nate, head on downstairs. And also the gallery is open until eight p.m. with demos and activations. And tomorrow, make sure to come back too. Because we have exciting stuff. I'll be joining you as your host. And we're kicking off at nine a.m. So bye everybody, thank you so much. >> [Announcer] Ladies and gentlemen, thank you for attending this evening's webcast. If you are not attending all cloud and cognitive summit tomorrow, we ask that you recycle your name badge at the registration desk. Thank you. Also, please note there are two exits on the back of the room on either side of the room. Have a good evening. Ladies and gentlemen, the meet and greet will be on stage. Thank you.
SUMMARY :
Today the ability to extract value from data is becoming a shared mission. And for all of you during the program, I want to remind you to join that conversation on And when you and I chatted about it. And the scale and complexity of the data that organizations are having to deal with has It's challenging in the world of unmanageable. And they have to find a way. AI. And it's incredible that this buzz word is happening. And to get to an AI future, you have to lay a data foundation today. And four is you got to expand job roles in the organization. First pillar in this you just discussed. And now you get to where we are today. And if you don't have a strategy for how you acquire that and manage it, you're not going And the way I think about that is it's really about moving from static data repositories And we continue with the architecture. So you need a way to federate data across different environments. So we've laid out what you need for driving automation. And so when you think about the real use cases that are driving return on investment today, Let's go ahead and come back to something that you mentioned earlier because it's fascinating And so the new job roles is about how does everybody have data first in their mind? Everybody in the company has to be data literate. So overall, group effort, has to be a common goal, and we all need to be data literate But at the end of the day, it's kind of not an easy task. It's not easy but it's maybe not as big of a shift as you would think. It's interesting to hear you say essentially you need to train everyone though across the And look, if you want to get your hands on code and just dive right in, you go to datascience.ibm.com. And I've heard that the placement behind those jobs, people graduating with the MS is high. Let me get back to something else you touched on earlier because you mentioned that a number They produce a lot of the shows that I'm sure you watch Katie. And this is a good example. So they have to optimize every aspect of their business from marketing campaigns to promotions And so, as we talk to clients we think about how do you start down this path now, even It's analytics first to the data, not the other way around. We as a practice, we say you want to bring data to where the data sits. And a Harvard Business Review even dubbed it the sexiest job of the 21st century. Female preferred, on the cover of Vogue. And how does it change everything? And while it's important to recognize this critical skill set, you can't just limit it And we call it clickers and coders. [Katie] I like that. And there's not a lot of things available today that do that. Because I hear you talking about the data scientists role and how it's critical to success, And my view is if you have the right platform, it enables the organization to collaborate. And every organization needs to think about what are the skills that are critical? Use this as your chance to reinvent IT. And I can tell you even personally being effected by how important the analysis is in working And think about if you don't do something. And now we're going to get to the fun hands on part of our story. And then how do you move analytics closer to your data? And in here I can see that JP Morgan is calling for a US dollar rebound in the second half But then where it gets interesting is you go to the bottom. data, his stock portfolios, and browsing behavior to build a model which can predict his affinity And so, as a financial adviser, you look at this and you say, all right, we know he loves And I want to do that by picking a auto stock which has got negative correlation with Ferrari. Cause you start clicking that and immediately we're getting instant answers of what's happening. And what I see here instantly is that Honda has got a negative correlation with Ferrari, As a financial adviser, you wouldn't think about federating data, machine learning, pretty And drive the machine learning into the appliance. And even score hundreds of customers for their affinities on a daily basis. And then you see when you deploy analytics next to your data, even a financial adviser, And as a data science leader or data scientist, you have a lot of the same concerns. But you guys each have so many unique roles in your business life. And just by looking at the demand of companies that wants us to help them go through this And I think the whole ROI of data is that you can now understand people's relationships Well you can have all the data in the world, and I think it speaks to, if you're not doing And I think that that's one of the things that customers are coming to us for, right? And Nir, this is something you work with a lot. And the companies that are not like that. Tricia, companies have to deal with data behind the firewall and in the new multi cloud And so that's why I think it's really important to understand that when you implement big And how are the clients, how are the users actually interacting with the system? And right now the way I see teams being set up inside companies is that they're creating But in order to actually see all of the RY behind the data, you also have to have a creative That's one of the things that we see a lot. So a lot of the training we do is sort of data engineers. And I think that's a very strong point when it comes to the data analysis side. And that's where you need the human element to come back in and say okay, look, you're And the people who are really great at providing that human intelligence are social scientists. the talent piece is actually the most important crucial hard to get. It may be to take folks internally who have a lot of that domain knowledge that you have And from data scientist to machine learner. And what I explain to them is look, you're still making decisions in the same way. And I mean, just to give you an example, we are partnering with one of the major cloud And what you're talking about with culture is really where I think we're talking about And I think that communication between the technical stakeholders and management You guys made this way too easy. I want to leave you with an opportunity to, anything you want to add to this conversation? I think one thing to conclude is to say that companies that are not data driven is And thank you guys again for joining us. And we're going to turn our attention to how you can deliver on what they're talking about And finally how you could build models anywhere and employ them close to where your data is. And thanks to Siva for taking us through it. You got to break it down for me cause I think we zoom out and see the big picture. And we saw some new capabilities that help companies avoid lock-in, where you can import And as a data scientist, you stop feeling like you're falling behind. We met backstage. And I go to you to talk about sports because-- And what it brings. And the reason being that sports consists of problems that have rules. And I was going to save the baseball question for later. Probably one of the best of all time. FiveThirtyEight has the Dodgers with a 60% chance of winning. So you have two teams that are about equal. It's like the first World Series in I think 56 years or something where you have two 100 And that you can be the best pitcher in the world, but guess what? And when does it ruin the sport? So we can talk at great length about what tools do you then apply when you have those And the reason being that A) he kind of knows how to position himself in the first place. And I imagine they're all different as well. But you really have seen a lot of breakthroughs in the last couple of years. You're known for your work in politics though. What was the most notable thing that came out of any of your predictions? And so, being aware of the limitations to some extent intrinsically in elections when It would be interesting to kind of peek back the curtain, understand how you operate but But you don't want to be inaccurate because that's your credibility. I think on average, speed is a little bit overrated in journalism. And there's got to be more time spent on stories if I can speak subjectively. And so we have people that come in, we hire most of our people actually from journalism. And so the kind of combination of needing, not having that much tolerance for mistakes, Because you do have to hit this balance. And so you try to hire well. And your perspective on that in general. But by the way, one thing that happens when you share your data or you share your thinking And you have a good intuition for hey, this looks a little bit out of line to me. And I think kind of what you learn is like, hey if there's something that bothers me, It's like oh, if I cross the street in .2-- I mean, I'm like-- But no, part of it's like you don't want to waste time on unimportant decisions, right? We want better. It's like both the chicken and the pasta are going to be really darn good, right? Serious and business, how organizations in the last three to five years have just And man, the quality of the interns we get has improved so much in four years. But when you're seeing these big organizations, ESPN as perfect example, moving more towards But the point is that the reason to be out in front of the problem is so you give yourself Final question for you as we run out of time. And so you're parsing through many, many, many lines of code. You can do better than that. You know, we tried to figure out where the best burrito in America was a few years Nate, thank you so much for joining us. I thought we were going to chat World Series, you know. And also the gallery is open until eight p.m. with demos and activations. If you are not attending all cloud and cognitive summit tomorrow, we ask that you recycle your
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tricia Wang | PERSON | 0.99+ |
Katie | PERSON | 0.99+ |
Katie Linendoll | PERSON | 0.99+ |
Rob | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Joane | PERSON | 0.99+ |
Daniel | PERSON | 0.99+ |
Michael Li | PERSON | 0.99+ |
Nate Silver | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
Hortonworks | ORGANIZATION | 0.99+ |
Trump | PERSON | 0.99+ |
Nate | PERSON | 0.99+ |
Honda | ORGANIZATION | 0.99+ |
Siva | PERSON | 0.99+ |
McKinsey | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Larry Bird | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
Rob Thomas | PERSON | 0.99+ |
Michigan | LOCATION | 0.99+ |
Yankees | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Clinton | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Tesco | ORGANIZATION | 0.99+ |
Michael | PERSON | 0.99+ |
America | LOCATION | 0.99+ |
Leo | PERSON | 0.99+ |
four years | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
30% | QUANTITY | 0.99+ |
Astros | ORGANIZATION | 0.99+ |
Trish | PERSON | 0.99+ |
Sudden Compass | ORGANIZATION | 0.99+ |
Leo Messi | PERSON | 0.99+ |
two teams | QUANTITY | 0.99+ |
1,000 lines | QUANTITY | 0.99+ |
one year | QUANTITY | 0.99+ |
10 investments | QUANTITY | 0.99+ |
NASDAQ | ORGANIZATION | 0.99+ |
The Signal and the Noise | TITLE | 0.99+ |
Tricia | PERSON | 0.99+ |
Nir Kaldero | PERSON | 0.99+ |
80% | QUANTITY | 0.99+ |
BCG | ORGANIZATION | 0.99+ |
Daniel Hernandez | PERSON | 0.99+ |
ESPN | ORGANIZATION | 0.99+ |
H2O | ORGANIZATION | 0.99+ |
Ferrari | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
18 | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
Data Incubator | ORGANIZATION | 0.99+ |
Patriots | ORGANIZATION | 0.99+ |
Rob Thomas, IBM Analytics | IBM Fast Track Your Data 2017
>> Announcer: Live from Munich, Germany, it's theCUBE. Covering IBM: Fast Track Your Data. Brought to you by IBM. >> Welcome, everybody, to Munich, Germany. This is Fast Track Your Data brought to you by IBM, and this is theCUBE, the leader in live tech coverage. We go out to the events, we extract the signal from the noise. My name is Dave Vellante, and I'm here with my co-host Jim Kobielus. Rob Thomas is here, he's the General Manager of IBM Analytics, and longtime CUBE guest, good to see you again, Rob. >> Hey, great to see you. Thanks for being here. >> Dave: You're welcome, thanks for having us. So we're talking about, we missed each other last week at the Hortonworks DataWorks Summit, but you came on theCUBE, you guys had the big announcement there. You're sort of getting out, doing a Hadoop distribution, right? TheCUBE gave up our Hadoop distributions several years ago so. It's good that you joined us. But, um, that's tongue-in-cheek. Talk about what's going on with Hortonworks. You guys are now going to be partnering with them essentially to replace BigInsights, you're going to continue to service those customers. But there's more than that. What's that announcement all about? >> We're really excited about that announcement, that relationship, just to kind of recap for those that didn't see it last week. We are making a huge partnership with Hortonworks, where we're bringing data science and machine learning to the Hadoop community. So IBM will be adopting HDP as our distribution, and that's what we will drive into the market from a Hadoop perspective. Hortonworks is adopting IBM Data Science Experience and IBM machine learning to be a core part of their Hadoop platform. And I'd say this is a recognition. One is, companies should do what they do best. We think we're great at data science and machine learning. Hortonworks is the best at Hadoop. Combine those two things, it'll be great for clients. And, we also talked about extending that to things like Big SQL, where they're partnering with us on Big SQL, around modernizing data environments. And then third, which relates a little bit to what we're here in Munich talking about, is governance, where we're partnering closely with them around unified governance, Apache Atlas, advancing Atlas in the enterprise. And so, it's a lot of dimensions to the relationship, but I can tell you since I was on theCUBE a week ago with Rob Bearden, client response has been amazing. Rob and I have done a number of client visits together, and clients see the value of unlocking insights in their Hadoop data, and they love this, which is great. >> Now, I mean, the Hadoop distro, I mean early on you got into that business, just, you had to do it. You had to be relevant, you want to be part of the community, and a number of folks did that. But it's really sort of best left to a few guys who want to do that, and Apache open source is really, I think, the way to go there. Let's talk about Munich. You guys chose this venue. There's a lot of talk about GDPR, you've got some announcements around unified government, but why Munich? >> So, there's something interesting that I see happening in the market. So first of all, you look at the last five years. There's only 10 companies in the world that have outperformed the S&P 500, in each of those five years. And we started digging into who those companies are and what they do. They are all applying data science and machine learning at scale to drive their business. And so, something's happening in the market. That's what leaders are doing. And I look at what's happening in Europe, and I say, I don't see the European market being that aggressive yet around data science, machine learning, how you apply data for competitive advantage, so we wanted to come do this in Munich. And it's a bit of a wake-up call, almost, to say hey, this is what's happening. We want to encourage clients across Europe to think about how do they start to do something now. >> Yeah, of course, GDPR is also a hook. The European Union and you guys have made some talk about that, you've got some keynotes today, and some breakout sessions that are discussing that, but talk about the two announcements that you guys made. There's one on DB2, there's another one around unified governance, what do those mean for clients? >> Yeah, sure, so first of all on GDPR, it's interesting to me, it's kind of the inverse of Y2K, which is there's very little hype, but there's huge ramifications. And Y2K was kind of the opposite. So look, it's coming, May 2018, clients have to be GDPR-compliant. And there's a misconception in the market that that only impacts companies in Europe. It actually impacts any company that does any type of business in Europe. So, it impacts everybody. So we are announcing a platform for unified governance that makes sure clients are GDPR-compliant. We've integrated software technology across analytics, IBM security, some of the assets from the Promontory acquisition that IBM did last year, and we are delivering the only platform for unified governance. And that's what clients need to be GDPR-compliant. The second piece is data has to become a lot simpler. As you think about my comment, who's leading the market today? Data's hard, and so we're trying to make data dramatically simpler. And so for example, with DB2, what we're announcing is you can download and get started using DB2 in 15 minutes or less, and anybody can do it. Even you can do it, Dave, which is amazing. >> Dave: (laughs) >> For the first time ever, you can-- >> We'll test that, Rob. >> Let's go test that. I would love to see you do it, because I guarantee you can. Even my son can do it. I had my son do it this weekend before I came here, because I wanted to see how simple it was. So that announcement is really about bringing, or introducing a new era of simplicity to data and analytics. We call it Download And Go. We started with SPSS, we did that back in March. Now we're bringing Download And Go to DB2, and to our governance catalog. So the idea is make data really simple for enterprises. >> You had a community edition previous to this, correct? There was-- >> Rob: We did, but it wasn't this easy. >> Wasn't this simple, okay. >> Not anybody could do it, and I want to make it so anybody can do it. >> Is simplicity, the rate of simplicity, the only differentiator of the latest edition, or I believe you have Kubernetes support now with this new addition, can you describe what that involves? >> Yeah, sure, so there's two main things that are new functionally-wise, Jim, to your point. So one is, look, we're big supporters of Kubernetes. And as we are helping clients build out private clouds, the best answer for that in our mind is Kubernetes, and so when we released Data Science Experience for Private Cloud earlier this quarter, that was on Kubernetes, extending that now to other parts of the portfolio. The other thing we're doing with DB2 is we're extending JSON support for DB2. So think of it as, you're working in a relational environment, now just through SQL you can integrate with non-relational environments, JSON, documents, any type of no-SQL environment. So we're finally bringing to fruition this idea of a data fabric, which is I can access all my data from a single interface, and that's pretty powerful for clients. >> Yeah, more cloud data development. Rob, I wonder if you can, we can go back to the machine learning, one of the core focuses of this particular event and the announcements you're making. Back in the fall, IBM made an announcement of Watson machine learning, for IBM Cloud, and World of Watson. In February, you made an announcement of IBM machine learning for the z platform. What are the machine learning announcements at this particular event, and can you sort of connect the dots in terms of where you're going, in terms of what sort of innovations are you driving into your machine learning portfolio going forward? >> I have a fundamental belief that machine learning is best when it's brought to the data. So, we started with, like you said, Watson machine learning on IBM Cloud, and then we said well, what's the next big corpus of data in the world? That's an easy answer, it's the mainframe, that's where all the world's transactional data sits, so we did that. Last week with the Hortonworks announcement, we said we're bringing machine learning to Hadoop, so we've kind of covered all the landscape of where data is. Now, the next step is about how do we bring a community into this? And the way that you do that is we don't dictate a language, we don't dictate a framework. So if you want to work with IBM on machine learning, or in Data Science Experience, you choose your language. Python, great. Scala or Java, you pick whatever language you want. You pick whatever machine learning framework you want, we're not trying to dictate that because there's different preferences in the market, so what we're really talking about here this week in Munich is this idea of an open platform for data science and machine learning. And we think that is going to bring a lot of people to the table. >> And with open, one thing, with open platform in mind, one thing to me that is conspicuously missing from the announcement today, correct me if I'm wrong, is any indication that you're bringing support for the deep learning frameworks like TensorFlow into this overall machine learning environment. Am I wrong? I know you have Power AI. Is there a piece of Power AI in these announcements today? >> So, stay tuned on that. We are, it takes some time to do that right, and we are doing that. But we want to optimize so that you can do machine learning with GPU acceleration on Power AI, so stay tuned on that one. But we are supporting multiple frameworks, so if you want to use TensorFlow, that's great. If you want to use Caffe, that's great. If you want to use Theano, that's great. That is our approach here. We're going to allow you to decide what's the best framework for you. >> So as you look forward, maybe it's a question for you, Jim, but Rob I'd love you to chime in. What does that mean for businesses? I mean, is it just more automation, more capabilities as you evolve that timeline, without divulging any sort of secrets? What do you think, Jim? Or do you want me to ask-- >> What do I think, what do I think you're doing? >> No, you ask about deep learning, like, okay, that's, I don't see that, Rob says okay, stay tuned. What does it mean for a business, that, if like-- >> Yeah. >> If I'm planning my roadmap, what does that mean for me in terms of how I should think about the capabilities going forward? >> Yeah, well what it means for a business, first of all, is what they're going, they're using deep learning for, is doing things like video analytics, and speech analytics and more of the challenges involving convolution of neural networks to do pattern recognition on complex data objects for things like connected cars, and so forth. Those are the kind of things that can be done with deep learning. >> Okay. And so, Rob, you're talking about here in Europe how the uptick in some of the data orientation has been a little bit slower, so I presume from your standpoint you don't want to over-rotate, to some of these things. But what do you think, I mean, it sounds like there is difference between certainly Europe and those top 10 companies in the S&P, outperforming the S&P 500. What's the barrier, is it just an understanding of how to take advantage of data, is it cultural, what's your sense of this? >> So, to some extent, data science is easy, data culture is really hard. And so I do think that culture's a big piece of it. And the reason we're kind of starting with a focus on machine learning, simplistic view, machine learning is a general-purpose framework. And so it invites a lot of experimentation, a lot of engagement, we're trying to make it easier for people to on-board. As you get to things like deep learning as Jim's describing, that's where the market's going, there's no question. Those tend to be very domain-specific, vertical-type use cases and to some extent, what I see clients struggle with, they say well, I don't know what my use case is. So we're saying, look, okay, start with the basics. A general purpose framework, do some tests, do some iteration, do some experiments, and once you find out what's hunting and what's working, then you can go to a deep learning type of approach. And so I think you'll see an evolution towards that over time, it's not either-or. It's more of a question of sequencing. >> One of the things we've talked to you about on theCUBE in the past, you and others, is that IBM obviously is a big services business. This big data is complicated, but great for services, but one of the challenges that IBM and other companies have had is how do you take that service expertise, codify it to software and scale it at large volumes and make it adoptable? I thought the Watson data platform announcement last fall, I think at the time you called it Data Works, and then so the name evolved, was really a strong attempt to do that, to package a lot of expertise that you guys had developed over the years, maybe even some different software modules, but bring them together in a scalable software package. So is that the right interpretation, how's that going, what's the uptake been like? >> So, it's going incredibly well. What's interesting to me is what everybody remembers from that announcement is the Watson Data Platform, which is a decomposable framework for doing these types of use cases on the IBM cloud. But there was another piece of that announcement that is just as critical, which is we introduced something called the Data First method. And that is the recipe book to say to a client, so given where you are, how do you get to this future on the cloud? And that's the part that people, clients, struggle with, is how do I get from step to step? So with Data First, we said, well look. There's different approaches to this. You can start with governance, you can start with data science, you can start with data management, you can start with visualization, there's different entry points. You figure out the right one for you, and then we help clients through that. And we've made Data First method available to all of our business partners so they can go do that. We work closely with our own consulting business on that, GBS. But that to me is actually the thing from that event that has had, I'd say, the biggest impact on the market, is just helping clients map out an approach, a methodology, to getting on this journey. >> So that was a catalyst, so this is not a sequential process, you can start, you can enter, like you said, wherever you want, and then pick up the other pieces from majority model standpoint? Exactly, because everybody is at a different place in their own life cycle, and so we want to make that flexible. >> I have a question about the clients, the customers' use of Watson Data Platform in a DevOps context. So, are more of your customers looking to use Watson Data Platform to automate more of the stages of the machine learning development and the training and deployment pipeline, and do you see, IBM, do you see yourself taking the platform and evolving it into a more full-fledged automated data science release pipelining tool? Or am I misunderstanding that? >> Rob: No, I think that-- >> Your strategy. >> Rob: You got it right, I would just, I would expand a little bit. So, one is it's a very flexible way to manage data. When you look at the Watson Data Platform, we've got relational stores, we've got column stores, we've got in-memory stores, we've got the whole suite of open-source databases under the composed-IO umbrella, we've got cloud in. So we've delivered a very flexible data layer. Now, in terms of how you apply data science, we say, again, choose your model, choose your language, choose your framework, that's up to you, and we allow clients, many clients start by building models on their private cloud, then we say you can deploy those into the Watson Data Platform, so therefore then they're running on the data that you have as part of that data fabric. So, we're continuing to deliver a very fluid data layer which then you can apply data science, apply machine learning there, and there's a lot of data moving into the Watson Data Platform because clients see that flexibility. >> All right, Rob, we're out of time, but I want to kind of set up the day. We're doing CUBE interviews all morning here, and then we cut over to the main tent. You can get all of this on IBMgo.com, you'll see the schedule. Rob, you've got, you're kicking off a session. We've got Hilary Mason, we've got a breakout session on GDPR, maybe set up the main tent for us. >> Yeah, main tent's going to be exciting. We're going to debunk a lot of misconceptions about data and about what's happening. Marc Altshuller has got a great segment on what he calls the death of correlations, so we've got some pretty engaging stuff. Hilary's got a great piece that she was talking to me about this morning. It's going to be interesting. We think it's going to provoke some thought and ultimately provoke action, and that's the intent of this week. >> Excellent, well Rob, thanks again for coming to theCUBE. It's always a pleasure to see you. >> Rob: Thanks, guys, great to see you. >> You're welcome; all right, keep it right there, buddy, We'll be back with our next guest. This is theCUBE, we're live from Munich, Fast Track Your Data, right back. (upbeat electronic music)
SUMMARY :
Brought to you by IBM. This is Fast Track Your Data brought to you by IBM, Hey, great to see you. It's good that you joined us. and machine learning to the Hadoop community. You had to be relevant, you want to be part of the community, So first of all, you look at the last five years. but talk about the two announcements that you guys made. Even you can do it, Dave, which is amazing. I would love to see you do it, because I guarantee you can. but it wasn't this easy. and I want to make it so anybody can do it. extending that now to other parts of the portfolio. What are the machine learning announcements at this And the way that you do that is we don't dictate I know you have Power AI. We're going to allow you to decide So as you look forward, maybe it's a question No, you ask about deep learning, like, okay, that's, and speech analytics and more of the challenges But what do you think, I mean, it sounds like And the reason we're kind of starting with a focus One of the things we've talked to you about on theCUBE And that is the recipe book to say to a client, process, you can start, you can enter, and deployment pipeline, and do you see, IBM, models on their private cloud, then we say you can deploy and then we cut over to the main tent. and that's the intent of this week. It's always a pleasure to see you. This is theCUBE, we're live from Munich,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jim Kobielus | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Jim | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Rob | PERSON | 0.99+ |
Marc Altshuller | PERSON | 0.99+ |
Hilary | PERSON | 0.99+ |
Hilary Mason | PERSON | 0.99+ |
Rob Bearden | PERSON | 0.99+ |
February | DATE | 0.99+ |
Dave | PERSON | 0.99+ |
Hortonworks | ORGANIZATION | 0.99+ |
Rob Thomas | PERSON | 0.99+ |
May 2018 | DATE | 0.99+ |
March | DATE | 0.99+ |
Munich | LOCATION | 0.99+ |
Scala | TITLE | 0.99+ |
Apache | ORGANIZATION | 0.99+ |
second piece | QUANTITY | 0.99+ |
Last week | DATE | 0.99+ |
Java | TITLE | 0.99+ |
last year | DATE | 0.99+ |
two announcements | QUANTITY | 0.99+ |
10 companies | QUANTITY | 0.99+ |
GDPR | TITLE | 0.99+ |
Python | TITLE | 0.99+ |
DB2 | TITLE | 0.99+ |
15 minutes | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
IBM Analytics | ORGANIZATION | 0.99+ |
European Union | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
JSON | TITLE | 0.99+ |
Watson Data Platform | TITLE | 0.99+ |
third | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
this week | DATE | 0.98+ |
today | DATE | 0.98+ |
a week ago | DATE | 0.98+ |
two things | QUANTITY | 0.98+ |
SQL | TITLE | 0.98+ |
last fall | DATE | 0.98+ |
2017 | DATE | 0.98+ |
Munich, Germany | LOCATION | 0.98+ |
each | QUANTITY | 0.98+ |
Y2K | ORGANIZATION | 0.98+ |
James Kobielus, IBM - IBM Machine Learning Launch - #IBMML - #theCUBE
>> [Announcer] Live from New York, it's the Cube. Covering the IBM Machine Learning Launch Event. Brought to you by IBM. Now here are your hosts Dave Vellante and Stu Miniman. >> Welcome back to New York City everybody, this is the CUBE. We're here live at the IBM Machine Learning Launch Event. Bringing analytics and transactions together on Z, extending an announcement that IBM made a couple years ago, sort of laid out that vision, and now bringing machine learning to the mainframe platform. We're here with Jim Kobielus. Jim is the Director of IBM's Community Engagement for Data Science and a long time CUBE alum and friend. Great to see you again James. >> Great to always be back here with you. Wonderful folks from the CUBE. You ask really great questions and >> Well thank you. >> I'm prepared to answer. >> So we saw you last week at Spark Summit so back to back, you know, continuous streaming, machine learning, give us the lay of the land from your perspective of machine learning. >> Yeah well machine learning very much is at the heart of what modern application developers build and that's really the core secret sauce in many of the most disruptive applications. So machine learning has become the core of, of course, what data scientists do day in and day out or what they're asked to do which is to build, essentially artificial neural networks that can process big data and find patterns that couldn't normally be found using other approaches. And then as Dinesh and Rob indicated a lot of it's for regression analysis and classification and the other core things that data scientists have been doing for a long time, but machine learning has come into its own because of the potential for great automation of this function of finding patterns and correlations within data sets. So today at the IBM Machine Learning Launch Event, and we've already announced it, IBM Machine Learning for ZOS takes that automation promised to the next step. And so we're real excited and there'll be more details today in the main event. >> One of the most funs I had, most fun I had last year, most fun interviews I had last year was with you, when we interviewed, I think it was 10 data scientists, rock star data scientists, and Dinesh had a quote, he said, "Machine learning is 20% fun, 80% elbow grease." And data scientists sort of echoed that last year. We spent 80% of our time wrangling data. >> [Jim] Yeah. >> It gets kind of tedious. You guys have made announcements to address that, is the needle moving? >> To some degree the needle's moving. Greater automation of data sourcing and preparation and cleansing is ongoing. Machine learning is being used for that function as well. But nonetheless there is still a lot of need in the data science, sort of, pipeline for a lot of manual effort. So if you look at the core of what machine learning is all about, it's supervised learning involves humans, meaning data scientists, to train their algorithms with data and so that involves finding the right data and then of course doing the feature engineering which is a very human and creative process. And then to be training the data and iterating through models to improve the fit of the machine learning algorithms to the data. In many ways there's still a lot of manual functions that need expertise of data scientists to do it right. There's a lot of ways to do machine learning wrong you know there's a lot of, as it were, tricks of the trade you have to learn just through trial and error. A lot of things like the new generation of things like generative adversarial models ride on machine learning or deep learning in this case, a multilayered, and they're not easy to get going and get working effectively the first time around. I mean with the first run of your training data set, so that's just an example of how, the fact is there's a lot of functions that can't be fully automated yet in the whole machine learning process, but a great many can in fact, especially data preparation and transformation. It's being automated to a great degree, so that data scientists can focus on the more creative work that involves subject matter expertise and really also application development and working with larger teams of coders and subject matter experts and others, to be able to take the machine learning algorithms that have been proved out, have been trained, and to dry them to all manner of applications to deliver some disruptive business value. >> James, can you expand for us a little bit this democratization of before it was not just data but now the machine learning, the analytics, you know, when we put these massive capabilities in the broader hands of the business analysts the business people themselves, what are you seeing your customers, what can they do now that they couldn't do before? Why is this such an exciting period of time for the leveraging of data analytics? >> I don't know that it's really an issue of now versus before. Machine learning has been around for a number of years. It's artificial neural networks at the very heart, and that got going actually in many ways in the late 50s and it steadily improved in terms of sophistication and so forth. But what's going on now is that machine learning tools have become commercialized and refined to a greater degree and now they're in a form in the cloud, like with IBM machine learning for the private cloud on ZOS, or Watson machine learning for the blue mixed public cloud. They're at a level of consumability that they've never been at before. With software as a service offering you just, you pay for it, it's available to you. If you're a data scientist you being doing work right away to build applications, derive quick value. So in other words, the time to value on a machine learning project continues to shorten and shorten, due to the consumability, the packaging of these capabilities and to cloud offerings and into other tools that are prebuilt to deliver success. That's what's fundamentally different now and it's just an ongoing process. You sort of see the recent parallels with the business intelligence market. 10 years ago BI was reporting and OLEP and so forth, was only for the, what we now call data scientists or the technical experts and all that area. But in the last 10 years we've seen the business intelligence community and the industry including IBM's tools, move toward more self service, interactive visualization, visual design, BI and predictive analytics, you know, through our cognos and SPSS portfolios. A similar dynamic is coming in to the progress of machine learning, the democratization, to use your term, the more self service model wherein everybody potentially will be able to be, to do machine learning, to build machine learning and deep learning models without a whole of university training. That day is coming and it's coming fairly rapidly. It's just a matter of the maturation of this technology in the marketplace. >> So I want to ask you, you're right, 1950s it was artificial neural networks or AI, sort of was invented I guess, the concept, and then in the late 70s and early 80s it was heavily hyped. It kind of died in the late 80s or in the 90s, you never heard about it even the early 2000s. Why now, why is it here now? Is it because IBM's putting so much muscle behind it? Is it because we have Siri? What is it that has enabled that? >> Well I wish that IBM putting muscle behind a technology can launch anything to success. And we've done a lot of things in that regard. But the thing is, if you look back at the historical progress of AI, I mean, it's older than me and you in terms of when it got going in the middle 50s as a passion or a focus of computer scientists. What we had for the last, most of the last half century is AI or expert systems that were built on having to do essentially programming is right, declared a rule defining how AI systems could process data whatever under various scenarios. That didn't prove scalable. It didn't prove agile enough to learn on the fly from the statistical patterns within the data that you're trying to process. For face recognition and voice recognition, pattern recognition, you need statistical analysis, you need something along the lines of an artificial neural network that doesn't have to be pre-programmed. That's what's new now about in the last this is the turn of this century, is that AI has become predominantly now focused not so much on declarative rules, expert systems of old, but statistical analysis, artificial neural networks that learn from the data. See the, in the long historical sweep of computing, we have three eras of computing. The first era before the second world war was all electromechanical computing devices like IBM's start of course, like everybody's, was in that era. The business logic was burned into the hardware as it were. The second era from the second world war really to the present day, is all about software, programming, it's COBAL, 4trans, C, Java, where the business logic has to be developed, coded by a cadre of programmers. Since the turn of this millennium and really since the turn of this decade, it's all moved towards the third era, which is the cognitive era, where you're learning the business rules automatically from the data itself, and that involves machine learning at its very heart. So most of what has been commercialized and most of what is being deployed in the real world working, successful AI, is all built on artificial neural networks and cognitive computing in the way that I laid out. Where, you still need human beings in the equation, it can't be completely automated. There's things like unsupervised learning that take the automation of machine learning to a greater extent, but you still have the bulk of machine learning is supervised learning where you have training data sets and you need experts, data scientists, to manage that whole process, that over time supervised learning is evolving towards who's going to label the training data sets, especially when you have so much data flooding in from the internet of things and social media and so forth. A lot of that is being outsourced to crowd sourcing environments in terms of the ongoing labeling of data for machine learning projects of all sorts. That trend will continue a pace. So less and less of the actual labeling of the data for machine learning will need to be manually coded by data scientists or data engineers. >> So the more data the better. See I would argue in the enablement pie. You're going to disagree with that which is good. Let's have a discussion [Jim Laughs]. In the enablement pie, I would say the profundity of Hadup was two things. One is I can leave data where it is and bring code to data. >> [Jim] Yeah. >> 5 megabytes of code to petabyte of data, but the second was the dramatic reduction in the cost to store more data, hence my statement of the more data the better, but you're saying, meh maybe not. Certainly for compliance and other things you might not want to have data lying around. >> Well it's an open issue. How much data do you actually need to find the patterns of interest to you, the correlations of interest to you? Sampling of your data set, 10% sample or whatever, in most cases that might be sufficient to find the correlations you're looking for. But if you're looking for some highly deepened rare nuances in terms of anomalies or outliers or whatever within your data set, you may only find those if you have a petabyte of data of the population of interest. So but if you're just looking for broad historical trends and to do predictions against broad trends, you may not need anywhere near that amount. I mean, if it's a large data set, you may only need five to 10% sample. >> So I love this conversation because people have been on the CUBE, Abi Metter for example said, "Dave, sampling is dead." Now a statistician said that's BS, no way. Of course it's not dead. >> Storage isn't free first of all so you can't necessarily save and process all the data. Compute power isn't free yet, memory isn't free yet, so forth so there's lots... >> You're working on that though. >> Yeah sure, it's asymptotically all moving towards zero. But the bottom line is if the underlying resources, including the expertise of your data scientists that's not for free, these are human beings who need to make a living. So you've got to do a lot of things. A, automate functions on the data science side so that your, these experts can radically improve their productivity. Which is why the announcement today of IBM machine learning is so important, it enables greater automation in the creation and the training and deployment of machine learning models. It is a, as Rob Thomas indicated, it's very much a multiplier of productivity of your data science teams, the capability we offer. So that's the core value. Because our customers live and die increasingly by machine learning models. And the data science teams themselves are highly inelastic in the sense that you can't find highly skilled people that easily at an affordable price if you're a business. And you got to make the most of the team that you have and help them to develop their machine learning muscle. >> Okay, I want to ask you to weigh in on one of Stu's favorite topics which is man versus machine. >> Humans versus mechanisms. Actually humans versus bots, let's, okay go ahead. >> Okay so, you know a lot of discussions, about, machines have always replaced humans for jobs, but for the first time it's really beginning to replace cognitive functions. >> [Jim] Yeah. >> What does that mean for jobs, for skill sets? The greatest, I love the comment, the greatest chess player in the world is not a machine. It's humans and machines, but what do you see in terms of the skill set shift when you talk to your data science colleagues in these communities that you're building? Is that the right way to think about it, that it's the creativity of humans and machines that will drive innovation going forward. >> I think it's symbiotic. If you take Watson, of course, that's a star case of a cognitive AI driven machine in the cloud. We use a Watson all the time of course in IBM. I use it all the time in my job for example. Just to give an example of one knowledge worker and how he happens to use AI and machine learning. Watson is an awesome search engine. Through multi-structure data types and in real time enabling you to ask a sequence of very detailed questions and Watson is a relevance ranking engine, all that stuff. What I've found is it's helped me as a knowledge worker to be far more efficient in doing my upfront research for anything that I might be working on. You see I write blogs and I speak and I put together slide decks that I present and so forth. So if you look at knowledge workers in general, AI as driving far more powerful search capabilities in the cloud helps us to eliminate a lot of the grunt work that normally was attended upon doing deep research into like a knowledge corpus that may be preexisting. And that way we can then ask more questions and more intelligent questions and really work through our quest for answers far more rapidly and entertain and rule out more options when we're trying to develop a strategy. Because we have all the data at our fingertips and we've got this expert resource increasingly in a conversational back and forth that's working on our behalf predictively to find what we need. So if you look at that, everybody who's a knowledge worker which is really the bulk now of the economy, can be far more productive cause you have this high performance virtual assistant in the cloud. I don't know that it's really going, AI or deep learning or machine learning, is really going to eliminate a lot of those jobs. It'll just make us far smarter and more efficient doing what we do. That's, I don't want to belittle, I don't want to minimize the potential for some structural dislocation in some fields. >> Well it's interesting because as an example, you're like the, you're already productive, now you become this hyper-productive individual, but you're also very creative and can pick and choose different toolings and so I think people like you it's huge opportunities. If you're a person who used to put up billboards maybe it's time for retraining. >> Yeah well maybe you know a lot of the people like the research assistants and so forth who would support someone like me and most knowledge worker organizations, maybe those people might be displaced cause we would have less need for them. In the same way that one of my very first jobs out of college before I got into my career, I was a file clerk in a court in Detroit, it's like you know, a totally manual job, and there was no automation or anything. You know that most of those functions, I haven't revisited that court in recent years, I'm sure are automated because you have this thing called computers, especially PCs and LANs and so forth that came along since then. So a fair amount of those kinds of feather bedding jobs have gone away and in any number of bureaucracies due to automation and machine learning is all about automation. So who knows where we'll all end up. >> Alright well we got to go but I wanted to ask you about... >> [Jim] I love unions by the way. >> And you got to meet a lot of lawyers I'm sure. >> Okay cool. >> So I got to ask you about your community of data scientists that you're building. You've been early on in that. It's been a persona that you've really tried to cultivate and collaborate with. So give us an update there. What's your, what's the latest, what's your effort like these days? >> Yeah, well, what we're doing is, I'm on a team now that's managing and bringing together all of our program for community engagement programs for really for across portfolio not just data scientists. That involves meet ups and hack-a-thons and developer days and user groups and so forth. These are really important professional forums for our customers, our developers, our partners, to get together and share their expertise and provide guidance to each other. And these are very very important for these people to become very good at, to help them, get better at what they do, help them stay up to speed on the latest technologies. Like deep learning, machine learning and so forth. So we take it very seriously at IBM that communities are really where customers can realize value and grow their human capital ongoing so we're making significant investments in growing those efforts and bringing them together in a unified way and making it easier for like developers and IT administrators to find the right forums, the right events, the right content, within IBM channels and so forth, to help them do their jobs effectively and machine learning is at the heart, not just of data science, but other professions within the IT and business analytics universe, relying more heavily now on machine learning and understanding the tools of the trade to be effective in their jobs. So we're bringing, we're educating our communities on machine learning, why it's so critically important to the future of IT. >> Well your content machine is great content so congratulations on not only kicking that off but continuing it. Thanks Jim for coming on the CUBE. It's good to see you. >> Thanks for having me. >> You're welcome. Alright keep it right there everybody, we'll be back with our next guest. The CUBE, we're live from the Waldorf-Astoria in New York City at the IBM Machine Learning Launch Event right back. (techno music)
SUMMARY :
Brought to you by IBM. Great to see you again James. Wonderful folks from the CUBE. so back to back, you know, continuous streaming, and that's really the core secret sauce in many One of the most funs I had, most fun I had last year, is the needle moving? of the machine learning algorithms to the data. of machine learning, the democratization, to use your term, It kind of died in the late 80s or in the 90s, So less and less of the actual labeling of the data So the more data the better. but the second was the dramatic reduction in the cost the correlations of interest to you? because people have been on the CUBE, so you can't necessarily save and process all the data. and the training and deployment of machine learning models. Okay, I want to ask you to weigh in Actually humans versus bots, let's, okay go ahead. but for the first time it's really beginning that it's the creativity of humans and machines and in real time enabling you to ask now you become this hyper-productive individual, In the same way that one of my very first jobs So I got to ask you about your community and machine learning is at the heart, Thanks Jim for coming on the CUBE. in New York City at the IBM Machine Learning
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jim Kobielus | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jim | PERSON | 0.99+ |
Dinesh | PERSON | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
James | PERSON | 0.99+ |
80% | QUANTITY | 0.99+ |
James Kobielus | PERSON | 0.99+ |
20% | QUANTITY | 0.99+ |
Jim Laughs | PERSON | 0.99+ |
five | QUANTITY | 0.99+ |
Rob Thomas | PERSON | 0.99+ |
Detroit | LOCATION | 0.99+ |
1950s | DATE | 0.99+ |
last year | DATE | 0.99+ |
New York | LOCATION | 0.99+ |
New York City | LOCATION | 0.99+ |
10 data scientists | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
Siri | TITLE | 0.99+ |
Dave | PERSON | 0.99+ |
10% | QUANTITY | 0.99+ |
5 megabytes | QUANTITY | 0.99+ |
Abi Metter | PERSON | 0.99+ |
two things | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
second | QUANTITY | 0.99+ |
90s | DATE | 0.99+ |
ZOS | TITLE | 0.99+ |
Rob | PERSON | 0.99+ |
last half century | DATE | 0.99+ |
today | DATE | 0.99+ |
early 2000s | DATE | 0.98+ |
Java | TITLE | 0.98+ |
one | QUANTITY | 0.98+ |
C | TITLE | 0.98+ |
10 years ago | DATE | 0.98+ |
first run | QUANTITY | 0.98+ |
late 80s | DATE | 0.98+ |
Watson | TITLE | 0.97+ |
late 70s | DATE | 0.97+ |
late 50s | DATE | 0.97+ |
zero | QUANTITY | 0.97+ |
IBM Machine Learning Launch Event | EVENT | 0.96+ |
early 80s | DATE | 0.96+ |
4trans | TITLE | 0.96+ |
second world war | EVENT | 0.95+ |
IBM Machine Learning Launch Event | EVENT | 0.94+ |
second era | QUANTITY | 0.94+ |
IBM Machine Learning Launch | EVENT | 0.93+ |
Stu | PERSON | 0.92+ |
first jobs | QUANTITY | 0.92+ |
middle 50s | DATE | 0.91+ |
couple years ago | DATE | 0.89+ |
agile | TITLE | 0.87+ |
petabyte | QUANTITY | 0.85+ |
BAL | TITLE | 0.84+ |
this decade | DATE | 0.81+ |
three eras | QUANTITY | 0.78+ |
last 10 years | DATE | 0.78+ |
this millennium | DATE | 0.75+ |
third era | QUANTITY | 0.72+ |