Image Title

Search Results for I Ss National Labs:

General Keith Alexander, IronNet Cybersecurity & Gil Quiniones, NY Power Authority | AWS PS Awards


 

(bright music) >> Hello and welcome to today's session of the 2021 AWS Global Public Sector Partner Awards for the award for Best Partner Transformation, Best Cybersecurity Solution. I'm now honored to welcome our next guests, General Keith Alexander, Founder, and Co-CEO of IronNet Cybersecurity, as well as Gil Quiniones, President and CEO of the New York Power Authority. Welcome to the program gentlemen, delighted to have you here. >> Good to be here. >> Terrific. Well, General Alexander, I'd like to start with you. Tell us about the collective defense program or platform and why is it winning awards? >> Well, great question and it's great to have Gil here because it actually started with the energy sector. And the issue that we had is how do we protect the grid? The energy sector CEOs came together with me and several others and said, how do we protect this grid together? Because we can't defend it each by ourselves. We've got to defend it together. And so the strategy that IronNet is using is to go beyond what the conventional way of sharing information known as signature-based solutions to behavioral-based so that we can see the events that are happening, the unknown unknowns, share those among companies and among both small and large in a way that helps us defend because we can anonymize that data. We can also share it with the government. The government can see a tax on our country. That's the future, we believe, of cybersecurity and that collective defense is critical for our energy sector and for all the companies within it. >> Terrific. Well, Gil, I'd like to shift to you. As the CEO of the largest state public power utility in the United States, why do you think it's so important now to have a collective defense approach for utility companies? >> Well, the utility sector lied with the financial sector as number one targets by our adversaries and you can't really solve cybersecurity in silos. We, NYPA, my company, New York Power Authority alone cannot be the only one and other companies doing this in silos. So what's really going to be able to be effective if all of the utilities and even other sectors, financial sectors, telecom sectors cooperate in this collective defense situation. And as we transform the grid, the grid is getting transformed and decentralized. We'll have more electric cars, smart appliances. The grid is going to be more distributed with solar and batteries charging stations. So the threat surface and the threat points will be expanding significantly and it is critical that we address that issue collectively. >> Terrific. Well, General Alexander, with collective defense, what industries and business models are you now disrupting? >> Well, we're doing the energy sector, obviously. Now the defense industrial base, the healthcare sector, as well as international partners along the way. And we have a group of what we call technical and other companies that we also deal with and a series of partner companies, because no company alone can solve this problem, no cybersecurity company alone. So partners like Amazon and others partner with us to help bring this vision to life. >> Terrific. Well, staying with you, what role does data and cloud scale now play in solving these security threats that face the businesses, but also nations? >> That's a great question. Because without the cloud, bringing collective security together is very difficult. But with the cloud, we can move all this information into the cloud. We can correlate and show attacks that are going on against different companies. They can see that company A, B, C or D, it's anonymized, is being hit with the same thing. And the government, we can share that with the government. They can see a tax on critical infrastructure, energy, finance, healthcare, the defense industrial base or the government. In doing that, what we quickly see is a radar picture for cyber. That's what we're trying to build. That's where everybody's coming together. Imagine a future where attacks are coming against our country can be seen at network speed and the same for our allies and sharing that between our nation and our allies begins to broaden that picture, broaden our defensive base and provide insights for companies like NYPA and others. >> Terrific. Well, now Gil, I'd like to move it back to you. If you could describe the utility landscape and the unique threats that both large ones and small ones are facing in terms of cybersecurity and the risks, the populous that live there. >> Well, the power grid is an amazing machine, but it is controlled electronically and more and more digitally. So as I mentioned before, as we transform this grid to be a cleaner grid, to be more of an integrated energy network with solar panels and electric vehicle charging stations and wind farms, the threat is going to be multiple from a cyber perspective. Now we have many smaller utilities. There are towns and cities and villages that own their poles and wires. They're called municipal utilities, rural cooperative systems, and they are not as sophisticated and well-resourced as a company like the New York Power Authority or our investor on utilities across the nation. But as the saying goes, we're only as strong as our weakest link. And so we need- >> Terrific. >> we need to address the issues of our smaller utilities as well. >> Yeah, terrific. Do you see a potential for more collaboration between the larger utilities and the smaller ones? What do you see as the next phase of defense? >> Well, in fact, General Alexander's company, IronNet and NYPA are working together to help bring in the 51 smaller utilities here in New York in their collective defense tool, the IronDefense or the IronDome as we call it here in New York. We had a meeting the other day, where even thinking about bringing in critical state agencies and authorities. The Metropolitan Transportation Authority, Port Authority of New York and New Jersey, and other relevant critical infrastructure state agencies to be in this cloud and to be in this radar of cybersecurity. And the beauty of what IronNet is bringing to this arrangement is they're trying to develop a product that can be scalable and affordable by those smaller utilities. I think that's important because if we can achieve that, then we can replicate this across the country where you have a lot of smaller utilities and rural cooperative systems. >> Yeah. Terrific. Well, Gil, staying with you. I'd love to learn more about what was the solution that worked so well for you? >> In cybersecurity, you need public-private partnerships. So we have private companies like IronNet that we're partnering with and others, but also partnering with state and federal government because they have a lot of resources. So the key to all of this is bringing all of that information together and being able to react, the General mentioned, network speed, we call it machine speed, has to be quick and we need to protect and or isolate and be able to recover it and be resilient. So that's the beauty of this solution that we're currently developing here in New York. >> Terrific. Well, thank you for those points. Shifting back to General Alexander. With your depth of experience in the defense sector, in your view, how can we stay in front of the attacks, mitigate them, and then respond to them before any damage is done? >> So having run our nations, the offense. I know that the offense has the upper hand almost entirely because every company and every agency defends itself as an isolated entity. Think about 50 mid-sized companies, each with 10 people, they're all defending themselves and they depend on that defense individually and they're being attacked individually. Now take those 50 companies and their 10 people each and put them together and collect the defense where they share information, they share knowledge. This is the way to get out in front of the offense, the attackers that you just asked about. And when people start working together, that knowledge sharing and crowdsourcing is a solution for the future because it allows us to work together where now you have a unified approach between the public and private sectors that can share information and defend each of the sectors together. That is the future of cybersecurity. What makes it possible is the cloud, by being able to share this information into the cloud and move it around the cloud. So what Amazon has done with AWS has exactly that. It gives us the platform that allows us to now share that information and to go at network speed and share it with the government in an anonymized way. I believe that will change radically how we think about cybersecurity. >> Yeah. Terrific. Well, you mention data sharing, but how is it now a common tactic to get the best out of the data? And now, how is it sharing data among companies accelerated or changed over the past year? And what does it look like going forward when we think about moving out of the pandemic? >> So first, this issue of sharing data, there's two types of data. One about the known threats. So sharing that everybody knows because they use a signature-based system and a set of rules. That shared and that's the common approach to it. We need to go beyond that and share the unknown. And the way to share the unknown is with behavioral analytics. Detect behaviors out there that are anonymous or anomalous, are suspicious and are malicious and share those and get an understanding for what's going on in company A and see if there's correlations in B, C and D that give you insights to suspicious activity. Like solar winds, recognizes solar winds at 18,000 companies, each defending themselves. None of them were able to recognize that. Using our tools, we did recognize it in three of our companies. So what you can begin to see is a platform that can now expand and work at network speed to defend against these types of attacks. But you have to be able to see that information, the unknown unknowns, and quickly bring people together to understand what that means. Is this bad? Is this suspicious? What do I need to know about this? And if I can share that information anonymized with the government, they can reach in and say, this is bad. You need to do something about it. And we'll take the responsibility from here to block that from hitting our nation or hitting our allies. I think that's the key part about cybersecurity for the future. >> Terrific. General Alexander, ransomware of course, is the hottest topic at the moment. What do you see as the solution to that growing threat? >> So I think, a couple things on ransomware. First, doing what we're talking about here to detect the phishing and the other ways they get in is an advanced way. So protect yourself like that. But I think we have to go beyond, we have to attribute who's doing it, where they're doing it from and hold them accountable. So helping provide that information to our government as it's going on and going after these guys, making them pay a price is part of the future. It's too easy today. Look at what happened with the DarkSide and others. They hit Colonial Pipeline and they said, oh, we're not going to do that anymore. Then they hit a company in Japan and prior to that, they hit a company in Norway. So they're attacking and they pretty much operate at will. Now, let's indict some of them, hold them accountable, get other governments to come in on this. That's the way we stop it. And that requires us to work together, both the public and private sector. It means having these advanced tools, but also that public and private partnership. And I think we have to change the rhetoric. The first approach everybody takes is, Colonial, why did you let this happen? They're a victim. If they were hit with missiles, we wouldn't be asking that, but these were nation state like actors going after them. So now our government and the private sector have to work together and we need to change that to say, they're victim, and we're going to go after the guys that did this as a nation and with our allies. I think that's the way to solve it. >> Yeah. Well, terrific. Thank you so much for those insights. Gil, I'd also like to ask you some key questions and of course, certainly people today have a lot of concerns about security, but also about data sharing. How are you addressing those concerns? >> Well, data governance is critical for a utility like the New York Power Authority. A few years ago, we declared that we aspire to be the first end-to-end digital utility. And so by definition, protecting the data of our system, our industrial controls, and the data of our customers are paramount to us. So data governance, considering data or treating data as an asset, like a physical asset is very, very important. So we in our cybersecurity, plans that is a top priority for us. >> Yeah. And Gil thinking about industry 4.0, how has the surface area changed with Cloud and IoT? >> Well, it's grown significantly. At the power authority, we're installing sensors and smart meters at our power plants, at our substations and transmission lines, so that we can monitor them real time, all the time, know their health, know their status. Our customers we're monitoring about 15 to 20,000 state and local government buildings across our states. So just imagine the amount of data that we're streaming real time, all the time into our integrated smart operations center. So it's increasing and it will only increase with 5G, with quantum computing. This is just going to increase and we need to be prepared and integrate cyber into every part of what we do from beginning to end of our processes. >> Yeah. And to both of you actually, as we see industry 4.0 develop even further, are you more concerned about malign actors developing more sophistication? What steps can we take to really be ahead of them? Let's start with General Alexander. >> So, I think the key differentiator and what the energy sector is doing, the approach to cybersecurity is led by CEOs. So you bring CEOs like Gil Quiniones in, you've got other CEOs that are actually bringing together forums to talk about cybersecurity. It is CEO led. That the first part. And then the second part is how do we train and work together, that collective defense. How do we actually do this? I think that's another one that NYPA is leading with West Point in the Army Cyber Institute. How can we start to bring this training session together and train to defend ourselves? This is an area where we can uplift our people that are working in this process, our cyber analysts if you will at the security operations center level. By training them, giving them hard tests and continuing to go. That approach will uplift our cybersecurity and our cyber defense to the point where we can now stop these types of attacks. So I think CEO led, bring in companies that give us the good and bad about our products. We'd like to hear the good, we need to hear the bad, and we needed to improve that, and then how do we train and work together. I think that's part of that solution to the future. >> And Gil, what are your thoughts as we embrace industry 4.0? Are you worried that this malign actors are going to build up their own sophistication and strategy in terms of data breaches and cyber attacks against our utility systems? What can we do to really step up our game? >> Well, as the General said, the good thing with the energy sector is that on the foundational level, we're the only sector with mandatory regulatory requirements that we need to meet. So we are regulated by the Federal Energy Regulatory Commission and the North American Electric Reliability Corporation to meet certain standards in cyber and critical infrastructure. But as the General said, the good thing with the utility is by design, just like storms, we're used to working with each other. So this is just an extension of that storm restoration and other areas where we work all the time together. So we are naturally working together when it comes to to cyber. We work very closely with our federal government partners, Department of Homeland Security, Department of Energy and the National Labs. The National Labs have a lot of expertise. And with the private sector, like great companies like IronNet, NYPA, we stood up an excellence, center of excellence with private partners like IronNet and Siemens and others to start really advancing the art of the possible and the technology innovation in this area. And as the governor mentioned, we partnered with West Point because just like any sporting or just any sport, actual exercises of the red team, green team, and doing that constantly, tabletop exercises, and having others try and breach your walls. Those are good exercises to really be ready against the adversaries. >> Yeah. Terrific. Thank you so much for those insights. General Alexander, now I'd like to ask you this question. Can you share the innovation strategy as the world moves out of the pandemic? Are we seeing new threats, new realities? >> Well, I think, it's not just coming out of the pandemic, but the pandemic actually brought a lot of people into video teleconferences like we are right here. So more people are working from home. You add in the 5G that Gil talked about that gives you a huge attack surface. You're thinking now about instead of a hundred devices per square kilometer up to a million devices. And so you're increasing the attack surface. Everything is changing. So as we come out of the pandemic, people are going to work more from home. You're going to have this attack surface that's going on, it's growing, it's changing, it's challenging. We have to be really good about now, how we trained together, how we think about this new area and we have to continue to innovate, not only what are the cyber tools that we need for the IT side, the internet and the OT side, operational technology. So those kinds of issues are facing all of us and it's a constantly changing environment. So that's where that education, that training, that communication, working between companies, the customers, the NYPA's and the IronNet's and others and then working with the government to make sure that we're all in sync. It's going to grow and is growing at an increased rate exponentially. >> Terrific. Thank you for that. Now, Gil, same question for you. As a result of this pandemic, do you see any kind of new realities emerging? What is your position? >> Well, as the General said, most likely, many companies will be having this hybrid setup. And for company's life like mine, I'm thinking about, okay, how many employees do I have that can access our industrial controls in our power plants, in our substations, and transmission system remotely? And what will that mean from a risk perspective, but even on the IT side, our business information technology. You mentioned about the Colonial Pipeline type situation. How do we now really make sure that our cyber hygiene of our employees is always up-to-date and that we're always vigilant from potential entry whether it's through phishing or other techniques that our adversaries are using. Those are the kinds of things that keep myself like a CEO of a utility up at night. >> Yeah. Well, shifting gears a bit, this question for General Alexander. How come supply chain is such an issue? >> Well, the supply chain, of course, for a company like NYPA, you have hundreds or thousands of companies that you work with. Each of them have different ways of communicating with your company. And in those communications, you now get threats. If they get infected and they reach out to you, they're normally considered okay to talk to, but at the same time that threat could come in. So you have both suppliers that help you do your job. And smaller companies that Gil has, he's got the 47 munis and four co-ops out there, 51, that he's got to deal with and then all the state agencies. So his ecosystem has all these different companies that are part of his larger network. And when you think about that larger network, the issue becomes, how am I going to defend that? And I think, as Gil mentioned earlier, if we put them all together and we operate and train together and we defend together, then we know that we're doing the best we can, especially for those smaller companies, the munis and co-ops that don't have the people and a security ops centers and other things to defend them. But working together, we can help defend them collectively. >> Terrific. And I'd also like to ask you a bit more on IronDefense. You spoke about its behavioral capabilities, it's behavioral detection techniques, excuse me. How is it really different from the rest of the competitive landscape? What sets it apart from traditional cybersecurity tools? >> So traditional cybersecurity tools use what we call a signature-based system. Think of that as a barcode for the threat. It's a specific barcode. We use that barcode to identify the threat at the firewall or at the endpoint. Those are known threats. We can stop those and we do a really good job. We share those indicators of compromise in those barcodes, in the rules that we have, Suricata rules and others, those go out. The issue becomes, what about the things we don't know about? And to detect those, you need behavioral analytics. Behavioral analytics are a little bit noisier. So you want to collect all the data and anomalies with behavioral analytics using an expert system to sort them out and then use collected defense to share knowledge and actually look across those. And the great thing about behavioral analytics is you can detect all of the anomalies. You can share very quickly and you can operate at network speed. So that's going to be the future where you start to share that, and that becomes the engine if you will for the future radar picture for cybersecurity. You add in, as we have already machine learning and AI, artificial intelligence, people talk about that, but in this case, it's a clustering algorithms about all those events and the ways of looking at it that allow you to up that speed, up your confidence in and whether it's malicious, suspicious or benign and share that. I think that is part of that future that we're talking about. You've got to have that and the government can come in and say, you missed something. Here's something you should be concerned about. And up the call from suspicious to malicious that gives everybody in the nation and our allies insights, okay, that's bad. Let's defend against it. >> Yeah. Terrific. Well, how does the type of technology address the President's May 2021 executive order on cybersecurity as you mentioned the government? >> So there's two parts of that. And I think one of the things that I liked about the executive order is it talked about, in the first page, the public-private partnership. That's the key. We got to partner together. And the other thing it went into that was really key is how do we now bring in the IT infrastructure, what our company does with the OT companies like Dragos, how do we work together for the collective defense for the energy sector and other key parts. So I think it is hit two key parts. It also goes on about what you do about the supply chain for software were all needed, but that's a little bit outside what we're talking about here today. The real key is how we work together between the public and private sector. And I think it did a good job in that area. >> Terrific. Well, thank you so much for your insights and to you as well, Gil, really lovely to have you both on this program. That was General Keith Alexander, Founder and Co-CEO of IronNet Cybersecurity, as well as Gil Quiniones, the President and CEO of the New York Power Authority. That's all for this session of the 2021 AWS Global Public Sector Partner Awards. I'm your host for theCUBE, Natalie Erlich. Stay with us for more coverage. (bright music)

Published Date : Jun 30 2021

SUMMARY :

President and CEO of the I'd like to start with you. And the issue that we had is in the United States, why do and it is critical that we and business models and other companies that we also deal with that face the businesses, And the government, we can and the risks, the the threat is going to be we need to address the issues and the smaller ones? and to be in this radar of cybersecurity. I'd love to learn more So the key to all of this is bringing in the defense sector, and defend each of the sectors together. the best out of the data? and share the unknown. is the hottest topic at the moment. and the private sector and of course, certainly and the data of our customers how has the surface area and we need to be prepared What steps can we take to the approach to are going to build up and the North American Electric like to ask you this question. and the OT side, operational technology. do you see any kind of Well, as the General said, most likely, this question for General Alexander. doing the best we can, like to ask you a bit more and that becomes the engine if you will Well, how does the type And the other thing it went and to you as well, Gil, really lovely

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IronNetORGANIZATION

0.99+

SiemensORGANIZATION

0.99+

Natalie ErlichPERSON

0.99+

Federal Energy Regulatory CommissionORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Gil QuinionesPERSON

0.99+

North American Electric Reliability CorporationORGANIZATION

0.99+

New York Power AuthorityORGANIZATION

0.99+

JapanLOCATION

0.99+

New York Power AuthorityORGANIZATION

0.99+

two partsQUANTITY

0.99+

New YorkLOCATION

0.99+

NYPAORGANIZATION

0.99+

Department of Homeland SecurityORGANIZATION

0.99+

West PointORGANIZATION

0.99+

GilPERSON

0.99+

hundredsQUANTITY

0.99+

AWSORGANIZATION

0.99+

first pageQUANTITY

0.99+

Metropolitan Transportation AuthorityORGANIZATION

0.99+

Department of EnergyORGANIZATION

0.99+

NorwayLOCATION

0.99+

18,000 companiesQUANTITY

0.99+

IronNet CybersecurityORGANIZATION

0.99+

two key partsQUANTITY

0.99+

United StatesLOCATION

0.99+

IronDefenseORGANIZATION

0.99+

50 companiesQUANTITY

0.99+

National LabsORGANIZATION

0.99+

DragosORGANIZATION

0.99+

AlexanderPERSON

0.99+

FirstQUANTITY

0.99+

oneQUANTITY

0.99+

IronDomeORGANIZATION

0.99+

10 peopleQUANTITY

0.99+

first partQUANTITY

0.99+

NY Power AuthorityORGANIZATION

0.99+

bothQUANTITY

0.99+

second partQUANTITY

0.99+

todayDATE

0.99+

eachQUANTITY

0.99+

51 smaller utilitiesQUANTITY

0.99+

firstQUANTITY

0.99+

May 2021DATE

0.99+

2021 AWS Global Public Sector Partner AwardsEVENT

0.98+

Army Cyber InstituteORGANIZATION

0.98+

EachQUANTITY

0.98+

pandemicEVENT

0.98+

two typesQUANTITY

0.98+

OneQUANTITY

0.98+

GeneralPERSON

0.97+

Keith AlexanderPERSON

0.97+

50 mid-sized companiesQUANTITY

0.97+

Antonio and Lisa Interview Final


 

>>Welcome lisa and thank you for being here with us today >>Antonio It's wonderful to be here with you as always. And congratulations on your launch. Very, very exciting for you. >>Well, thank you lisa and uh, we love this partnership and especially our friendship, which has been very special for me for many, many years that we have worked together, but I wanted to have a conversation with you today and obviously digital transformation is a key topic. So we know the next wave for digital transformation is here being driven by massive amounts of data and increasingly distributed world and a new set of data intensive workloads. So how do you see a lot of optimization playing a role in addressing these new requirements? >>Yeah, absolutely Antonio. And I think, you know, if you look at the depth of our partnership over the last four or five years, it's really about bringing the best to our customers. And the truth is we're in this compute mega cycle right now. So it's amazing. Um you know, when I know when you talk to customers, when we talk to customers, they all need to do more and frankly, computers becoming quite specialized. So whether, you know, you're talking about large enterprises, um, or you're talking about research institutions trying to get to the next phase of compute so that workload optimization that we're able to do with our processors, your system design and then working closely with our software partners is really the next wave of this, this compute cycle. >>So thanks lisa you talk about mega cycle. So, I want to make sure we take a moment to celebrate The launch of our new generation 10 plus compute products with the latest announcement. Hp now has the broadest a nd server portfolio in the industry spanning from the edge to exa scale. How important is this partnership and the portfolio for our customers? >>Well, um Antonio I'm so excited, first of all, congratulations on your 19 world records with Milan and gen 10 plus. It really is building on sort of our, this is our third generation of partnership with Epic. And you know, you were with me right at the very beginning actually, if you recall you joined us in Austin for our first launch of Epic, you know, four years ago and I think what we've created now is just an incredible portfolio that really does go across. You know, all of the verticals that are required. We've always talked about, how do we customize and make things easier for our customers to use together? And so very excited about your portfolio, very excited about our partnership and more importantly, what we can do for our joint customers. >>It's amazing to see 19 world records. I think I'm really proud of the work our joint team do every generation, raising the bar. And that's where, you know, we, we think we have a shared goal of ensuring our customers get the solution, the services they need any way they want it. And one way we are addressing that need is by offering what we call as a service delivered to HP Green Lake. So let me ask a question, What feedback are you hearing from your customers with respect to choice, meaning consuming as a service? This new solutions? >>Yeah, great point. I think, first of all, you know, HP Green Lake is very, very impressive. So, congratulations to really having that solution. And I think we're hearing the same thing from customers and you know, the truth is, um, the computer infrastructure is getting more complex and everyone wants to be able to deploy, sort of the right compute at the right price point um you know, in in terms of also accelerating um time to deployment with the right security with the right quality. And I think these as a service offerings are going to become more and more important um as we go forward um in the compute capabilities and you know, Green Lake is a leadership product offering and we're very very pleased and honored to be part of it. >>Okay. Yeah. We feel uh lisa we are ahead of the competition and um you know, you think about some of our competitors is not coming with their own offerings, but I think the ability to drive joint innovation is what really differentiates us and that's why we value the partnership and what we have been doing together on given the customer's choice. Finally, you know, I know you and I above incredibly excited about the joint work with you and with the U. S. Department of Energy, the Oak Ridge National Laboratory we think about large data sets and you know and the complexity of the analytics we're running but we both are going to deliver the world first exa scale system. Which is remarkable to me. So what this milestone means to you and what type of impact do you think it will >>make? Yes Antonio I think our work with Oak Ridge National Labs and HP is just really pushing the envelope on what can be done with computing. And if you think about the science that we're going to be able to enable with the first extra scale machine, I would say there's a tremendous amount of innovation that has already gone in to the machine and we're so excited about delivering it together with HP. And you know we also think that the supercomputing technology that we're developing at this broad scale will end up being very, very important for enterprise computer as well. And so it's really an opportunity to kind of take that bleeding edge and really deploy it over the next few years. So super excited about it. I think you and I have a lot to do over the next few months here, but it's an example of the great partnership and and how much we're able to do when we put our teams together, um, to really create that innovation. >>I couldn't agree more. I mean, this is an incredible milestone for for us, for our industry and honestly for the country in many ways. And we have many, many people working 24 by seven to deliver against this mission. And it's going to change the future of compute no question about it. Um, and then honestly put it to work where we needed the most to advance life science to find cures, to improve the way people live and work, lisa, thank you again for joining us today and thank you more most importantly for the incredible partnership and, and the friendship. I really enjoy working with you and your team and together, I think we can change this industry once again. So thanks for your time today. >>Thank you so much Antonio and congratulations again to you and the entire HPI team for just a fantastic portfolio launch. >>Thank you.

Published Date : Apr 23 2021

SUMMARY :

Antonio It's wonderful to be here with you as always. So how do you see a lot of optimization playing a role in addressing So whether, you know, you're talking about large enterprises, um, or you're talking about research So thanks lisa you talk about mega cycle. And you know, you were with me right at the very beginning actually, if you recall you joined us in Austin So let me ask a question, What feedback are you hearing from your customers with respect to choice, And I think we're hearing the same thing from customers and you know, the truth is, um, So what this milestone means to you and what type of impact do you think it will And if you think about the science that we're going to be able to enable with the first extra I really enjoy working with you and your team and together, Thank you so much Antonio and congratulations again to you and the entire HPI team for just a fantastic

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AntonioPERSON

0.99+

lisaPERSON

0.99+

AustinLOCATION

0.99+

EpicORGANIZATION

0.99+

Oak Ridge National LabsORGANIZATION

0.99+

HPORGANIZATION

0.99+

LisaPERSON

0.99+

U. S. Department of EnergyORGANIZATION

0.99+

todayDATE

0.99+

third generationQUANTITY

0.99+

four years agoDATE

0.99+

Green LakeORGANIZATION

0.99+

oneQUANTITY

0.98+

24QUANTITY

0.98+

bothQUANTITY

0.96+

Oak Ridge National LaboratoryORGANIZATION

0.96+

HP Green LakeORGANIZATION

0.96+

sevenQUANTITY

0.95+

first launchQUANTITY

0.95+

19 world recordsQUANTITY

0.95+

firstQUANTITY

0.94+

first extra scaleQUANTITY

0.84+

10 plus computeQUANTITY

0.81+

first exa scale systemQUANTITY

0.81+

five yearsQUANTITY

0.77+

waveEVENT

0.75+

HPIORGANIZATION

0.72+

few yearsDATE

0.69+

MilanORGANIZATION

0.69+

gen 10 plusQUANTITY

0.68+

monthsDATE

0.59+

lastDATE

0.54+

fourQUANTITY

0.47+

HPE Accelerating Next | HPE Accelerating Next 2021


 

momentum is gathering [Music] business is evolving more and more quickly moving through one transformation to the next because change never stops it only accelerates this is a world that demands a new kind of compute deployed from edge to core to cloud compute that can outpace the rapidly changing needs of businesses large and small unlocking new insights turning data into outcomes empowering new experiences compute that can scale up or scale down with minimum investment and effort guided by years of expertise protected by 360-degree security served up as a service to let it control own and manage massive workloads that weren't there yesterday and might not be there tomorrow this is the compute power that will drive progress giving your business what you need to be ready for what's next this is the compute power of hpe delivering your foundation for digital transformation welcome to accelerating next thank you so much for joining us today we have a great program we're going to talk tech with experts we'll be diving into the changing economics of our industry and how to think about the next phase of your digital transformation now very importantly we're also going to talk about how to optimize workloads from edge to exascale with full security and automation all coming to you as a service and with me to kick things off is neil mcdonald who's the gm of compute at hpe neil always a pleasure great to have you on it's great to see you dave now of course when we spoke a year ago you know we had hoped by this time we'd be face to face but you know here we are again you know this pandemic it's obviously affected businesses and people in in so many ways that we could never have imagined but in the reality is in reality tech companies have literally saved the day let's start off how is hpe contributing to helping your customers navigate through things that are so rapidly shifting in the marketplace well dave it's nice to be speaking to you again and i look forward to being able to do this in person some point the pandemic has really accelerated the need for transformation in businesses of all sizes more than three-quarters of cios report that the crisis has forced them to accelerate their strategic agendas organizations that were already transforming or having to transform faster and organizations that weren't on that journey yet are having to rapidly develop and execute a plan to adapt to this new reality our customers are on this journey and they need a partner for not just the compute technology but also the expertise and economics that they need for that digital transformation and for us this is all about unmatched optimization for workloads from the edge to the enterprise to exascale with 360 degree security and the intelligent automation all available in that as a service experience well you know as you well know it's a challenge to manage through any transformation let alone having to set up remote workers overnight securing them resetting budget priorities what are some of the barriers that you see customers are working hard to overcome simply per the organizations that we talk with are challenged in three areas they need the financial capacity to actually execute a transformation they need the access to the resource and the expertise needed to successfully deliver on a transformation and they have to find the way to match their investments with the revenues for the new services that they're putting in place to service their customers in this environment you know we have a data partner called etr enterprise technology research and the spending data that we see from them is it's quite dramatic i mean last year we saw a contraction of roughly five percent of in terms of i.t spending budgets etc and this year we're seeing a pretty significant rebound maybe a six to seven percent growth range is the prediction the challenge we see is organizations have to they've got to iterate on that i call it the forced march to digital transformation and yet they also have to balance their investments for example at the corporate headquarters which have kind of been neglected is there any help in sight for the customers that are trying to reduce their spend and also take advantage of their investment capacity i think you're right many businesses are understandably reluctant to loosen the purse strings right now given all of the uncertainty and often a digital transformation is viewed as a massive upfront investment that will pay off in the long term and that can be a real challenge in an environment like this but it doesn't need to be we work through hpe financial services to help our customers create the investment capacity to accelerate the transformation often by leveraging assets they already have and helping them monetize them in order to free up the capacity to accelerate what's next for their infrastructure and for their business so can we drill into that i wonder if we could add some specifics i mean how do you ensure a successful outcome what are you really paying attention to as those sort of markers for success well when you think about the journey that an organization is going through it's tough to be able to run the business and transform at the same time and one of the constraints is having the people with enough bandwidth and enough expertise to be able to do both so we're addressing that in two ways for our customers one is by helping them confidently deploy new solutions which we have engineered leveraging decades of expertise and experience in engineering to deliver those workload optimized portfolios that take the risk and the complexity out of assembling some of these solutions and give them a pre-packaged validated supported solution intact that simplifies that work for them but in other cases we can enhance our customers bandwidth by bringing them hpe point next experts with all of the capabilities we have to help them plan deliver and support these i.t projects and transformations organizations can get on a faster track of modernization getting greater insight and control as they do it we're a trusted partner to get the most for a business that's on this journey in making these critical compute investments to underpin the transformations and whether that's planning to optimizing to safe retirement at the end of life we can bring that expertise to bayer to help amplify what our customers already have in-house and help them accelerate and succeed in executing these transformations thank you for that neil so let's talk about some of the other changes that customers are seeing and the cloud has obviously forced customers and their suppliers to really rethink how technology is packaged how it's consumed how it's priced i mean there's no doubt in that to take green lake it's obviously a leading example of a pay as pay-as-you-scale infrastructure model and it could be applied on-prem or hybrid can you maybe give us a sense as to where you are today with green lake well it's really exciting you know from our first pay-as-you-go offering back in 2006 15 years ago to the introduction of green lake hpe has really been paving the way on consumption-based services through innovation and partnership to help meet the exact needs of our customers hpe green lake provides an experience that's the best of both worlds a simple pay-per-use technology model with the risk management of data that's under our customers direct control and it lets customers shift to everything as a service in order to free up capital and avoid that upfront expense that we talked about they can do this anywhere at any scale or any size and really hpe green lake is the cloud that comes to you like that so we've touched a little bit on how customers can maybe overcome some of the barriers to transformation what about the nature of transformations themselves i mean historically there was a lot of lip service paid to digital and and there's a lot of complacency frankly but you know that covered wrecking ball meme that so well describes that if you're not a digital business essentially you're going to be out of business so neil as things have evolved how is hpe addressed the new requirements well the new requirements are really about what customers are trying to achieve and four very common themes that we see are enabling the productivity of a remote workforce that was never really part of the plan for many organizations being able to develop and deliver new apps and services in order to service customers in a different way or drive new revenue streams being able to get insights from data so that in these tough times they can optimize their business more thoroughly and then finally think about the efficiency of an agile hybrid private cloud infrastructure especially one that now has to integrate the edge and we're really thrilled to be helping our customers accelerate all of these and more with hpe compute i want to double click on that remote workforce productivity i mean again the surveys that we see 46 percent of the cios say that productivity improved with the whole work from home remote work trend and on average those improvements were in the four percent range which is absolutely enormous i mean when you think about that how does hpe specifically you know help here what do you guys do well every organization in the world has had to adapt to a different style of working and with more remote workers than they had before and for many organizations that's going to become the new normal even post pandemic many it shops are not well equipped for the infrastructure to provide that experience because if all your workers are remote the resiliency of that infrastructure the latencies of that infrastructure the reliability of are all incredibly important so we provide comprehensive solutions expertise and as a service options that support that remote work through virtual desktop infrastructure or vdi so that our customers can support that new normal of virtual engagements online everything across industries wherever they are and that's just one example of many of the workload optimized solutions that we're providing for our customers is about taking out the guesswork and the uncertainty in delivering on these changes that they have to deploy as part of their transformation and we can deliver that range of workload optimized solutions across all of these different use cases because of our broad range of innovation in compute platforms that span from the ruggedized edge to the data center all the way up to exascale and hpc i mean that's key if you're trying to affect the digital transformation and you don't have to fine-tune you know be basically build your own optimized solutions if i can buy that rather than having to build it and rely on your r d you know that's key what else is hpe doing you know to deliver things new apps new services you know your microservices containers the whole developer trend what's going on there well that's really key because organizations are all seeking to evolve their mix of business and bring new services and new capabilities new ways to reach their customers new way to reach their employees new ways to interact in their ecosystem all digitally and that means app development and many organizations of course are embracing container technology to do that today so with the hpe container platform our customers can realize that agility and efficiency that comes with containerization and use it to provide insights to their data more and more that data of course is being machine generated or generated at the edge or the near edge and it can be a real challenge to manage that data holistically and not have silos and islands an hpe esmerald data fabric speeds the agility and access to data with a unified platform that can span across the data centers multiple clouds and even the edge and that enables data analytics that can create insights powering a data-driven production-oriented cloud-enabled analytics and ai available anytime anywhere in any scale and it's really exciting to see the kind of impact that that can have in helping businesses optimize their operations in these challenging times you got to go where the data is and the data is distributed it's decentralized so i i i like the esmerel of vision and execution there so that all sounds good but with digital transformation you get you're going to see more compute in in hybrid's deployments you mentioned edge so the surface area it's like the universe it's it's ever-expanding you mentioned you know remote work and work from home before so i'm curious where are you investing your resources from a cyber security perspective what can we count on from hpe there well you can count on continued leadership from hpe as the world's most secure industry standard server portfolio we provide an enhanced and holistic 360 degree view to security that begins in the manufacturing supply chain and concludes with a safeguarded end-of-life decommissioning and of course we've long set the bar for security with our work on silicon root of trust and we're extending that to the application tier but in addition to the security customers that are building this modern hybrid are private cloud including the integration of the edge need other elements too they need an intelligent software-defined control plane so that they can automate their compute fleets from all the way at the edge to the core and while scale and automation enable efficiency all private cloud infrastructures are competing with web scale economics and that's why we're democratizing web scale technologies like pinsando to bring web scale economics and web scale architecture to the private cloud our partners are so important in helping us serve our customers needs yeah i mean hp has really upped its ecosystem game since the the middle of last decade when when you guys reorganized it you became like even more partner friendly so maybe give us a preview of what's coming next in that regard from today's event well dave we're really excited to have hp's ceo antonio neri speaking with pat gelsinger from intel and later lisa sue from amd and later i'll have the chance to catch up with john chambers the founder and ceo of jc2 ventures to discuss the state of the market today yeah i'm jealous you guys had some good interviews coming up neil thanks so much for joining us today on the virtual cube you've really shared a lot of great insight how hpe is partnering with customers it's it's always great to catch up with you hopefully we can do so face to face you know sooner rather than later well i look forward to that and uh you know no doubt our world has changed and we're here to help our customers and partners with the technology the expertise and the economics they need for these digital transformations and we're going to bring them unmatched workload optimization from the edge to exascale with that 360 degree security with the intelligent automation and we're going to deliver it all as an as a service experience we're really excited to be helping our customers accelerate what's next for their businesses and it's been really great talking with you today about that dave thanks for having me you're very welcome it's been super neal and i actually you know i had the opportunity to speak with some of your customers about their digital transformation and the role of that hpe plays there so let's dive right in we're here on the cube covering hpe accelerating next and with me is rule siestermans who is the head of it at the netherlands cancer institute also known as nki welcome rule thank you very much great to be here hey what can you tell us about the netherlands cancer institute maybe you could talk about your core principles and and also if you could weave in your specific areas of expertise yeah maybe first introduction to the netherlands institute um we are one of the top 10 comprehensive cancers in the world and what we do is we combine a hospital for treating patients with cancer and a recent institute under one roof so discoveries we do we find within the research we can easily bring them back to the clinic and vis-a-versa so we have about 750 researchers and about 3 000 other employees doctors nurses and and my role is to uh to facilitate them at their best with it got it so i mean everybody talks about digital digital transformation to us it all comes down to data so i'm curious how you collect and take advantage of medical data specifically to support nki's goals maybe some of the challenges that your organization faces with the amount of data the speed of data coming in just you know the the complexities of data how do you handle that yeah it's uh it's it's it's challenge and uh yeah what we we have we have a really a large amount of data so we produce uh terabytes a day and we we have stored now more than one petabyte on data at this moment and yeah it's uh the challenge is to to reuse the data optimal for research and to share it with other institutions so that needs to have a flexible infrastructure for that so a fast really fast network uh big data storage environment but the real challenge is not not so much the i.t bus is more the quality of the data so we have a lot of medical systems all producing those data and how do we combine them and and yeah get the data fair so findable accessible interoperable and reusable uh for research uh purposes so i think that's the main challenge the quality of the data yeah very common themes that we hear from from other customers i wonder if you could paint a picture of your environment and maybe you can share where hpe solutions fit in what what value they bring to your organization's mission yeah i think it brings a lot of flexibility so what we did with hpe is that we we developed a software-defined data center and then a virtual workplace for our researchers and doctors and that's based on the hpe infrastructure and what we wanted to build is something that expect the needs of doctors and nurses but also the researchers and the two kind of different blood groups blood groups and with different needs so uh but we wanted to create one infrastructure because we wanted to make the connection between the hospital and the research that's that's more important so um hpe helped helped us not only with the the infrastructure itself but also designing the whole architecture of it and for example what we did is we we bought a lot of hardware and and and the hardware is really uh doing his his job between nine till five uh dennis everything is working within everyone is working within the institution but all the other time in evening and and nights hours and also the redundant environment we have for the for our healthcare uh that doesn't do nothing of much more or less uh in in those uh dark hours so what we created together with nvidia and hpe and vmware is that we we call it video by day compute by night so we reuse those those servers and those gpu capacity for computational research jobs within the research that's you mentioned flexibility for this genius and and so we're talking you said you know a lot of hard ways they're probably proliant i think synergy aruba networking is in there how are you using this environment actually the question really is when you think about nki's digital transformation i mean is this sort of the fundamental platform that you're using is it a maybe you could describe that yeah it's it's the fundamental platform to to to work on and and and what we see is that we have we have now everything in place for it but the real challenge is is the next steps we are in so we have a a software defined data center we are cloud ready so the next steps is to to make the connection to the cloud to to give more automation to our researchers so they don't have to wait a couple of weeks for it to do it but they can do it themselves with a couple of clicks so i think the basic is we are really flexible and we have a lot of opportunities for automation for example but the next step is uh to create that business value uh really for for our uh employees that's a great story and a very important mission really fascinating stuff thanks for sharing this with our audience today really appreciate your time thank you very much okay this is dave vellante with thecube stay right there for more great content you're watching accelerating next from hpe i'm really glad to have you with us today john i know you stepped out of vacation so thanks very much for joining us neil it's great to be joining you from hawaii and i love the partnership with hpe and the way you're reinventing an industry well you've always excelled john at catching market transitions and there are so many transitions and paradigm shifts happening in the market and tech specifically right now as you see companies rush to accelerate their transformation what do you see as the keys to success well i i think you're seeing actually an acceleration following the covet challenges that all of us faced and i wasn't sure that would happen it's probably at three times the paces before there was a discussion point about how quickly the companies need to go digital uh that's no longer a discussion point almost all companies are moving with tremendous feed on digital and it's the ability as the cloud moves to the edge with compute and security uh at the edge and how you deliver these services to where the majority of applications uh reside are going to determine i think the future of the next generation company leadership and it's the area that neil we're working together on in many many ways so i think it's about innovation it's about the cloud moving to the edge and an architectural play with silicon to speed up that innovation yes we certainly see our customers of all sizes trying to accelerate what's next and get that digital transformation moving even faster as a result of the environment that we're all living in and we're finding that workload focus is really key uh customers in all kinds of different scales are having to adapt and support the remote workforces with vdi and as you say john they're having to deal with the deployment of workloads at the edge with so much data getting generated at the edge and being acted upon at the edge the analytics and the infrastructure to manage that as these processes get digitized and automated is is so important for so many workflows we really believe that the choice of infrastructure partner that underpins those transformations really matters a partner that can help create the financial capacity that can help optimize your environments and enable our customers to focus on supporting their business are all super key to success and you mentioned that in the last year there's been a lot of rapid course correction for all of us a demand for velocity and the ability to deploy resources at scale is more and more needed maybe more than ever what are you hearing customers looking for as they're rolling out their digital transformation efforts well i think they're being realistic that they're going to have to move a lot faster than before and they're also realistic on core versus context they're they're their core capability is not the technology of themselves it's how to deploy it and they're we're looking for partners that can help bring them there together but that can also innovate and very often the leaders who might have been a leader in a prior generation may not be on this next move hence the opportunity for hpe and startups like vinsano to work together as the cloud moves the edge and perhaps really balance or even challenge some of the big big incumbents in this category as well as partners uniquely with our joint customers on how do we achieve their business goals tell me a little bit more about how you move from this being a technology positioning for hpe to literally helping your customers achieve their outcomes they want and and how are you changing hpe in that way well i think when you consider these transformations the infrastructure that you choose to underpin it is incredibly critical our customers need a software-defined management plan that enables them to automate so much of their infrastructure they need to be able to take faster action where the data is and to do all of this in a cloud-like experience where they can deliver their infrastructure as code anywhere from exascale through the enterprise data center to the edge and really critically they have to be able to do this securely which becomes an ever increasing challenge and doing it at the right economics relative to their alternatives and part of the right economics of course includes adopting the best practices from web scale architectures and bringing them to the heart of the enterprise and in our partnership with pensando we're working to enable these new ideas of web scale architecture and fleet management for the enterprise at scale you know what is fun is hpe has an unusual talent from the very beginning in silicon valley of working together with others and creating a win-win innovation approach if you watch what your team has been able to do and i want to say this for everybody listening you work with startups better than any other company i've seen in terms of how you do win win together and pinsando is just the example of that uh this startup which by the way is the ninth time i have done with this team a new generation of products and we're designing that together with hpe in terms of as the cloud moves to the edge how do we get the leverage out of that and produce the results for your customers on this to give the audience appeal for it you're talking with pensano alone in terms of the efficiency versus an amazon amazon web services of an order of magnitude i'm not talking 100 greater i'm talking 10x greater and things from throughput number of connections you do the jitter capability etc and it talks how two companies uniquely who believe in innovation and trust each other and have very similar cultures can work uniquely together on it how do you bring that to life with an hpe how do you get your company to really say let's harvest the advantages of your ecosystem in your advantages of startups well as you say more and more companies are faced with these challenges of hitting the right economics for the infrastructure and we see many enterprises of various sizes trying to come to terms with infrastructures that look a lot more like a service provider that require that software-defined management plane and the automation to deploy at scale and with the work we're doing with pinsando the benefits that we bring in terms of the observability and the telemetry and the encryption and the distributed network functions but also a security architecture that enables that efficiency on the individual nodes is just so key to building a competitive architecture moving forwards for an on-prem private cloud or internal service provider operation and we're really excited about the work we've done to bring that technology across our portfolio and bring that to our customers so that they can achieve those kind of economics and capabilities and go focus on their own transformations rather than building and running the infrastructure themselves artisanally and having to deal with integrating all of that great technology themselves makes tremendous sense you know neil you and i work on a board together et cetera i've watched your summarization skills and i always like to ask the question after you do a quick summary like this what are the three or four takeaways we would like for the audience to get out of our conversation well that's a great question thanks john we believe that customers need a trusted partner to work through these digital transformations that are facing them and confront the challenge of the time that the covet crisis has taken away as you said up front every organization is having to transform and transform more quickly and more digitally and working with a trusted partner with the expertise that only comes from decades of experience is a key enabler for that a partner with the ability to create the financial capacity to transform the workload expertise to get more from the infrastructure and optimize the environment so that you can focus on your own business a partner that can deliver the systems and the security and the automation that makes it easily deployable and manageable anywhere you need them at any scale whether the edge the enterprise data center or all the way up to exascale in high performance computing and can do that all as a service as we can at hpe through hpe green lake enabling our customers most critical workloads it's critical that all of that is underpinned by an ai powered digitally enabled service experience so that our customers can get on with their transformation and running their business instead of dealing with their infrastructure and really only hpe can provide this combination of capabilities and we're excited and committed to helping our customers accelerate what's next for their businesses neil it's fun i i love being your partner and your wingman our values and cultures are so similar thanks for letting me be a part of this discussion today thanks for being with us john it was great having you here oh it's friends for life okay now we're going to dig into the world of video which accounts for most of the data that we store and requires a lot of intense processing capabilities to stream here with me is jim brickmeyer who's the chief marketing and product officer at vlasics jim good to see you good to see you as well so tell us a little bit more about velocity what's your role in this tv streaming world and maybe maybe talk about your ideal customer sure sure so um we're leading provider of carrier great video solutions video streaming solutions and advertising uh technology to service providers around the globe so we primarily sell software-based solutions to uh cable telco wireless providers and broadcasters that are interested in launching their own um video streaming services to consumers yeah so this is this big time you know we're not talking about mom and pop you know a little video outfit but but maybe you can help us understand that and just the sheer scale of of the tv streaming that you're doing maybe relate it to you know the overall internet usage how much traffic are we talking about here yeah sure so uh yeah so our our customers tend to be some of the largest um network service providers around the globe uh and if you look at the uh the video traffic um with respect to the total amount of traffic that that goes through the internet video traffic accounts for about 90 of the total amount of data that uh that traverses the internet so video is uh is a pretty big component of um of how people when they look at internet technologies they look at video streaming technologies uh you know this is where we we focus our energy is in carrying that traffic as efficiently as possible and trying to make sure that from a consumer standpoint we're all consumers of video and uh make sure that the consumer experience is a high quality experience that you don't experience any glitches and that that ultimately if people are paying for that content that they're getting the value that they pay for their for their money uh in their entertainment experience i think people sometimes take it for granted it's like it's like we we all forget about dial up right those days are long gone but the early days of video was so jittery and restarting and and the thing too is that you know when you think about the pandemic and the boom in streaming that that hit you know we all sort of experienced that but the service levels were pretty good i mean how much how much did the pandemic affect traffic what kind of increases did you see and how did that that impact your business yeah sure so uh you know obviously while it was uh tragic to have a pandemic and have people locked down what we found was that when people returned to their homes what they did was they turned on their their television they watched on on their mobile devices and we saw a substantial increase in the amount of video streaming traffic um over service provider networks so what we saw was on the order of 30 to 50 percent increase in the amount of data that was traversing those networks so from a uh you know from an operator's standpoint a lot more traffic a lot more challenging to to go ahead and carry that traffic a lot of work also on our behalf and trying to help operators prepare because we could actually see geographically as the lockdowns happened [Music] certain areas locked down first and we saw that increase so we were able to help operators as as all the lockdowns happened around the world we could help them prepare for that increase in traffic i mean i was joking about dial-up performance again in the early days of the internet if your website got fifty percent more traffic you know suddenly you were you your site was coming down so so that says to me jim that architecturally you guys were prepared for that type of scale so maybe you could paint a picture tell us a little bit about the solutions you're using and how you differentiate yourself in your market to handle that type of scale sure yeah so we so we uh we really are focused on what we call carrier grade solutions which are designed for that massive amount of scale um so we really look at it you know at a very granular level when you look um at the software and and performance capabilities of the software what we're trying to do is get as many streams as possible out of each individual piece of hardware infrastructure so that we can um we can optimize first of all maximize the uh the efficiency of that device make sure that the costs are very low but one of the other challenges is as you get to millions and millions of streams and that's what we're delivering on a daily basis is millions and millions of video streams that you have to be able to scale those platforms out um in an effective in a cost effective way and to make sure that it's highly resilient as well so we don't we don't ever want a consumer to have a circumstance where a network glitch or a server issue or something along those lines causes some sort of uh glitch in their video and so there's a lot of work that we do in the software to make sure that it's a very very seamless uh stream and that we're always delivering at the very highest uh possible bit rate for consumers so that if you've got that giant 4k tv that we're able to present a very high resolution picture uh to those devices and what's the infrastructure look like underneath you you're using hpe solutions where do they fit in yeah that's right yeah so we uh we've had a long-standing partnership with hpe um and we work very closely with them to try to identify the specific types of hardware that are ideal for the the type of applications that we run so we run video streaming applications and video advertising applications targeted kinds of video advertising technologies and when you look at some of these applications they have different types of requirements in some cases it's uh throughput where we're taking a lot of data in and streaming a lot of data out in other cases it's storage where we have to have very high density high performance storage systems in other cases it's i gotta have really high capacity storage but the performance does not need to be quite as uh as high from an io perspective and so we work very closely with hpe on trying to find exactly the right box for the right application and then beyond that also talking with our customers to understand there are different maintenance considerations associated with different types of hardware so we tend to focus on as much as possible if we're going to place servers deep at the edge of the network we will make everything um maintenance free or as maintenance free as we can make it by putting very high performance solid state storage into those servers so that uh we we don't have to physically send people to those sites to uh to do any kind of maintenance so it's a it's a very cooperative relationship that we have with hpe to try to define those boxes great thank you for that so last question um maybe what the future looks like i love watching on my mobile device headphones in no distractions i'm getting better recommendations how do you see the future of tv streaming yeah so i i think the future of tv streaming is going to be a lot more personal right so uh this is what you're starting to see through all of the services that are out there is that most of the video service providers whether they're online providers or they're your traditional kinds of paid tv operators is that they're really focused on the consumer and trying to figure out what is of value to you personally in the past it used to be that services were one size fits all and um and so everybody watched the same program right at the same time and now that's uh that's we have this technology that allows us to deliver different types of content to people on different screens at different times and to advertise to those individuals and to cater to their individual preferences and so using that information that we have about how people watch and and what people's interests are we can create a much more engaging and compelling uh entertainment experience on all of those screens and um and ultimately provide more value to consumers awesome story jim thanks so much for keeping us helping us just keep entertained during the pandemic i really appreciate your time sure thanks all right keep it right there everybody you're watching hpes accelerating next first of all pat congratulations on your new role as intel ceo how are you approaching your new role and what are your top priorities over your first few months thanks antonio for having me it's great to be here with you all today to celebrate the launch of your gen 10 plus portfolio and the long history that our two companies share in deep collaboration to deliver amazing technology to our customers together you know what an exciting time it is to be in this industry technology has never been more important for humanity than it is today everything is becoming digital and driven by what i call the four key superpowers the cloud connectivity artificial intelligence and the intelligent edge they are super powers because each expands the impact of the others and together they are reshaping every aspect of our lives and work in this landscape of rapid digital disruption intel's technology and leadership products are more critical than ever and we are laser focused on bringing to bear the depth and breadth of software silicon and platforms packaging and process with at scale manufacturing to help you and our customers capitalize on these opportunities and fuel their next generation innovations i am incredibly excited about continuing the next chapter of a long partnership between our two companies the acceleration of the edge has been significant over the past year with this next wave of digital transformation we expect growth in the distributed edge and age build out what are you seeing on this front like you said antonio the growth of edge computing and build out is the next key transition in the market telecommunications service providers want to harness the potential of 5g to deliver new services across multiple locations in real time as we start building solutions that will be prevalent in a 5g digital environment we will need a scalable flexible and programmable network some use cases are the massive scale iot solutions more robust consumer devices and solutions ar vr remote health care autonomous robotics and manufacturing environments and ubiquitous smart city solutions intel and hp are partnering to meet this new wave head on for 5g build out and the rise of the distributed enterprise this build out will enable even more growth as businesses can explore how to deliver new experiences and unlock new insights from the new data creation beyond the four walls of traditional data centers and public cloud providers network operators need to significantly increase capacity and throughput without dramatically growing their capital footprint their ability to achieve this is built upon a virtualization foundation an area of intel expertise for example we've collaborated with verizon for many years and they are leading the industry and virtualizing their entire network from the core the edge a massive redesign effort this requires advancements in silicon and power management they expect intel to deliver the new capabilities in our roadmap so ecosystem partners can continue to provide innovative and efficient products with this optimization for hybrid we can jointly provide a strong foundation to take on the growth of data-centric workloads for data analytics and ai to build and deploy models faster to accelerate insights that will deliver additional transformation for organizations of all types the network transformation journey isn't easy we are continuing to unleash the capabilities of 5g and the power of the intelligent edge yeah the combination of the 5g built out and the massive new growth of data at the edge are the key drivers for the age of insight these new market drivers offer incredible new opportunities for our customers i am excited about recent launch of our new gen 10 plus portfolio with intel together we are laser focused on delivering joint innovation for customers that stretches from the edge to x scale how do you see new solutions that this helping our customers solve the toughest challenges today i talked earlier about the superpowers that are driving the rapid acceleration of digital transformation first the proliferation of the hybrid cloud is delivering new levels of efficiency and scale and the growth of the cloud is democratizing high-performance computing opening new frontiers of knowledge and discovery next we see ai and machine learning increasingly infused into every application from the edge to the network to the cloud to create dramatically better insights and the rapid adoption of 5g as i talked about already is fueling new use cases that demand lower latencies and higher bandwidth this in turn is pushing computing to the edge closer to where the data is created and consumed the confluence of these trends is leading to the biggest and fastest build out of computing in human history to keep pace with this rapid digital transformation we recognize that infrastructure has to be built with the flexibility to support a broad set of workloads and that's why over the last several years intel has built an unmatched portfolio to deliver every component of intelligent silicon our customers need to move store and process data from the cpus to fpgas from memory to ssds from ethernet to switch silicon to silicon photonics and software our 3rd gen intel xeon scalable processors and our data centric portfolio deliver new core performance and higher bandwidth providing our customers the capabilities they need to power these critical workloads and we love seeing all the unique ways customers like hpe leverage our technology and solution offerings to create opportunities and solve their most pressing challenges from cloud gaming to blood flow to brain scans to financial market security the opportunities are endless with flexible performance i am proud of the amazing innovation we are bringing to support our customers especially as they respond to new data-centric workloads like ai and analytics that are critical to digital transformation these new requirements create a need for compute that's warlord optimized for performance security ease of use and the economics of business now more than ever compute matters it is the foundation for this next wave of digital transformation by pairing our compute with our software and capabilities from hp green lake we can support our customers as they modernize their apps and data quickly they seamlessly and securely scale them anywhere at any size from edge to x scale but thank you for joining us for accelerating next today i know our audience appreciated hearing your perspective on the market and how we're partnering together to support their digital transformation journey i am incredibly excited about what lies ahead for hp and intel thank you thank you antonio great to be with you today we just compressed about a decade of online commerce progress into about 13 or 14 months so now we're going to look at how one retailer navigated through the pandemic and what the future of their business looks like and with me is alan jensen who's the chief information officer and senior vice president of the sawing group hello alan how are you fine thank you good to see you hey look you know when i look at the 100 year history plus of your company i mean it's marked by transformations and some of them are quite dramatic so you're denmark's largest retailer i wonder if you could share a little bit more about the company its history and and how it continues to improve the customer experience well at the same time keeping costs under control so vital in your business yeah yeah the company founded uh approximately 100 years ago with a department store in in oahu's in in denmark and i think in the 60s we founded the first supermarket in in denmark with the self-service and combined textile and food in in the same store and in beginning 70s we founded the first hyper market in in denmark and then the this calendar came from germany early in in 1980 and we started a discount chain and so we are actually building department store in hyber market info in in supermarket and in in the discount sector and today we are more than 1 500 stores in in three different countries in in denmark poland and germany and especially for the danish market we have a approximately 38 markets here and and is the the leader we have over the last 10 years developed further into online first in non-food and now uh in in food with home delivery with click and collect and we have done some magnetism acquisition in in the convenience with mailbox solutions to our customers and we have today also some restaurant burger chain and and we are running the starbuck in denmark so i can you can see a full plate of different opportunities for our customer in especially denmark it's an awesome story and of course the founder's name is still on the masthead what a great legacy now of course the pandemic is is it's forced many changes quite dramatic including the the behaviors of retail customers maybe you could talk a little bit about how your digital transformation at the sawing group prepared you for this shift in in consumption patterns and any other challenges that that you faced yeah i think uh luckily as for some of the you can say the core it solution in in 19 we just roll out using our computers via direct access so you can work from anywhere whether you are traveling from home and so on we introduced a new agile scrum delivery model and and we just finalized the rolling out teams in in in january february 20 and that was some very strong thing for suddenly moving all our employees from from office to to home and and more or less overnight we succeed uh continuing our work and and for it we have not missed any deadline or task for the business in in 2020 so i think that was pretty awesome to to see and for the business of course the pandemic changed a lot as the change in customer behavior more or less overnight with plus 50 80 on the online solution forced us to do some different priorities so we were looking at the food home delivery uh and and originally expected to start rolling out in in 2022 uh but took a fast decision in april last year to to launch immediately and and we have been developing that uh over the last eight months and has been live for the last three months now in the market so so you can say the pandemic really front loaded some of our strategic actions for for two to three years uh yeah that was very exciting what's that uh saying luck is the byproduct of great planning and preparation so let's talk about when you're in a company with some strong financial situation that you can move immediately with investment when you take such decision then then it's really thrilling yeah right awesome um two-part question talk about how you leverage data to support the solid groups mission and you know drive value for customers and maybe you could talk about some of the challenges you face with just the amount of data the speed of data et cetera yeah i said data is everything when you are in retail as a retailer's detail as you need to monitor your operation down to each store eats department and and if you can say we have challenge that that is that data is just growing rapidly as a year by year it's growing more and more because you are able to be more detailed you're able to capture more data and for a company like ours we need to be updated every morning as a our fully updated sales for all unit department single sku selling in in the stores is updated 3 o'clock in the night and send out to all top management and and our managers all over the company it's actually 8 000 reports going out before six o'clock every day in the morning we have introduced a loyalty program and and you are capturing a lot of data on on customer behavior what is their preferred offers what is their preferred time in the week for buying different things and all these data is now used to to personalize our offers to our cost of value customers so we can be exactly hitting the best time and and convert it to sales data is also now used for what we call intelligent price reductions as a so instead of just reducing prices with 50 if it's uh close to running out of date now the system automatically calculate whether a store has just enough to to finish with full price before end of day or actually have much too much and and need to maybe reduce by 80 before as being able to sell so so these automated [Music] solutions built on data is bringing efficiency into our operation wow you make it sound easy these are non-trivial items so congratulations on that i wonder if we could close hpe was kind enough to introduce us tell us a little bit about the infrastructure the solutions you're using how they differentiate you in the market and i'm interested in you know why hpe what distinguishes them why the choice there yeah as a when when you look out a lot is looking at moving data to the cloud but we we still believe that uh due to performance due to the availability uh more or less on demand we we still don't see the cloud uh strong enough for for for selling group uh capturing all our data we have been quite successfully having one data truth across the whole con company and and having one just one single bi solution and having that huge amount of data i think we have uh one of the 10 largest sub business warehouses in global and but on the other hand we also want to be agile and want to to scale when needed so getting close to a cloud solution we saw it be a green lake as a solution getting close to the cloud but still being on-prem and could deliver uh what we need to to have a fast performance on on data but still in a high quality and and still very secure for us to run great thank you for that and thank alan thanks so much for your for your time really appreciate your your insights and your congratulations on the progress and best of luck in the future thank you all right keep it right there we have tons more content coming you're watching accelerating next from hpe [Music] welcome lisa and thank you for being here with us today antonio it's wonderful to be here with you as always and congratulations on your launch very very exciting for you well thank you lisa and we love this partnership and especially our friendship which has been very special for me for the many many years that we have worked together but i wanted to have a conversation with you today and obviously digital transformation is a key topic so we know the next wave of digital transformation is here being driven by massive amounts of data an increasingly distributed world and a new set of data intensive workloads so how do you see world optimization playing a role in addressing these new requirements yeah no absolutely antonio and i think you know if you look at the depth of our partnership over the last you know four or five years it's really about bringing the best to our customers and you know the truth is we're in this compute mega cycle right now so it's amazing you know when i know when you talk to customers when we talk to customers they all need to do more and and frankly compute is becoming quite specialized so whether you're talking about large enterprises or you're talking about research institutions trying to get to the next phase of uh compute so that workload optimization that we're able to do with our processors your system design and then you know working closely with our software partners is really the next wave of this this compute cycle so thanks lisa you talk about mega cycle so i want to make sure we take a moment to celebrate the launch of our new generation 10 plus compute products with the latest announcement hp now has the broadest amd server portfolio in the industry spanning from the edge to exascale how important is this partnership and the portfolio for our customers well um antonio i'm so excited first of all congratulations on your 19 world records uh with uh milan and gen 10 plus it really is building on you know sort of our you know this is our third generation of partnership with epic and you know you are with me right at the very beginning actually uh if you recall you joined us in austin for our first launch of epic you know four years ago and i think what we've created now is just an incredible portfolio that really does go across um you know all of the uh you know the verticals that are required we've always talked about how do we customize and make things easier for our customers to use together and so i'm very excited about your portfolio very excited about our partnership and more importantly what we can do for our joint customers it's amazing to see 19 world records i think i'm really proud of the work our joint team do every generation raising the bar and that's where you know we we think we have a shared goal of ensuring that customers get the solution the services they need any way they want it and one way we are addressing that need is by offering what we call as a service delivered to hp green lake so let me ask a question what feedback are you hearing from your customers with respect to choice meaning consuming as a service these new solutions yeah now great point i think first of all you know hpe green lake is very very impressive so you know congratulations um to uh to really having that solution and i think we're hearing the same thing from customers and you know the truth is the compute infrastructure is getting more complex and everyone wants to be able to deploy sort of the right compute at the right price point um you know in in terms of also accelerating time to deployment with the right security with the right quality and i think these as a service offerings are going to become more and more important um as we go forward in the compute uh you know capabilities and you know green lake is a leadership product offering and we're very very you know pleased and and honored to be part of it yeah we feel uh lisa we are ahead of the competition and um you know you think about some of our competitors now coming with their own offerings but i think the ability to drive joint innovation is what really differentiate us and that's why we we value the partnership and what we have been doing together on giving the customers choice finally you know i know you and i are both incredibly excited about the joint work we're doing with the us department of energy the oak ridge national laboratory we think about large data sets and you know and the complexity of the analytics we're running but we both are going to deliver the world's first exascale system which is remarkable to me so what this milestone means to you and what type of impact do you think it will make yes antonio i think our work with oak ridge national labs and hpe is just really pushing the envelope on what can be done with computing and if you think about the science that we're going to be able to enable with the first exascale machine i would say there's a tremendous amount of innovation that has already gone in to the machine and we're so excited about delivering it together with hpe and you know we also think uh that the super computing technology that we're developing you know at this broad scale will end up being very very important for um you know enterprise compute as well and so it's really an opportunity to kind of take that bleeding edge and really deploy it over the next few years so super excited about it i think you know you and i have a lot to do over the uh the next few months here but it's an example of the great partnership and and how much we're able to do when we put our teams together um to really create that innovation i couldn't agree more i mean this is uh an incredible milestone for for us for our industry and honestly for the country in many ways and we have many many people working 24x7 to deliver against this mission and it's going to change the future of compute no question about it and then honestly put it to work where we need it the most to advance life science to find cures to improve the way people live and work but lisa thank you again for joining us today and thank you more most importantly for the incredible partnership and and the friendship i really enjoy working with you and your team and together i think we can change this industry once again so thanks for your time today thank you so much antonio and congratulations again to you and the entire hpe team for just a fantastic portfolio launch thank you okay well some pretty big hitters in those keynotes right actually i have to say those are some of my favorite cube alums and i'll add these are some of the execs that are stepping up to change not only our industry but also society and that's pretty cool and of course it's always good to hear from the practitioners the customer discussions have been great so far today now the accelerating next event continues as we move to a round table discussion with krista satrathwaite who's the vice president and gm of hpe core compute and krista is going to share more details on how hpe plans to help customers move ahead with adopting modern workloads as part of their digital transformations krista will be joined by hpe subject matter experts chris idler who's the vp and gm of the element and mark nickerson director of solutions product management as they share customer stories and advice on how to turn strategy into action and realize results within your business thank you for joining us for accelerate next event i hope you're enjoying it so far i know you've heard about the industry challenges the i.t trends hpe strategy from leaders in the industry and so today what we want to do is focus on going deep on workload solutions so in the most important workload solutions the ones we always get asked about and so today we want to share with you some best practices some examples of how we've helped other customers and how we can help you all right with that i'd like to start our panel now and introduce chris idler who's the vice president and general manager of the element chris has extensive uh solution expertise he's led hpe solution engineering programs in the past welcome chris and mark nickerson who is the director of product management and his team is responsible for solution offerings making sure we have the right solutions for our customers welcome guys thanks for joining me thanks for having us krista yeah so i'd like to start off with one of the big ones the ones that we get asked about all the time what we've been all been experienced in the last year remote work remote education and all the challenges that go along with that so let's talk a little bit about the challenges that customers have had in transitioning to this remote work and remote education environment uh so i i really think that there's a couple of things that have stood out for me when we're talking with customers about vdi first obviously there was a an unexpected and unprecedented level of interest in that area about a year ago and we all know the reasons why but what it really uncovered was how little planning had gone into this space around a couple of key dynamics one is scale it's one thing to say i'm going to enable vdi for a part of my workforce in a pre-pandemic environment where the office was still the the central hub of activity for work uh it's a completely different scale when you think about okay i'm going to have 50 60 80 maybe 100 of my workforce now distributed around the globe um whether that's in an educational environment where now you're trying to accommodate staff and students in virtual learning uh whether that's uh in the area of things like uh formula one racing where we had uh the desire to still have events going on but the need for a lot more social distancing not as many people able to be trackside but still needing to have that real-time experience this really manifested in a lot of ways and scale was something that i think a lot of customers hadn't put as much thought into initially the other area is around planning for experience a lot of times the vdi experience was planned out with very specific workloads or very specific applications in mind and when you take it to a more broad-based environment if we're going to support multiple functions multiple lines of business there hasn't been as much planning or investigation that's gone into the application side and so thinking about how graphically intense some applications are one customer that comes to mind would be tyler isd who did a fairly large roll out pre-pandemic and as part of their big modernization effort what they uncovered was even just changes in standard windows applications had become so much more graphically intense with windows 10 with the latest updates with programs like adobe that they were really needing to have an accelerated experience for a much larger percentage of their install base than than they had counted on so in addition to planning for scale you also need to have that visibility into what are the actual applications that are going to be used by these remote users how graphically intense those might be what's the login experience going to be as well as the operating experience and so really planning through that experience side as well as the scale and the number of users uh is is kind of really two of the biggest most important things that i've seen yeah mark i'll i'll just jump in real quick i think you you covered that pretty comprehensively there and and it was well done the couple of observations i've made one is just that um vdi suddenly become like mission critical for sales it's the front line you know for schools it's the classroom you know that this isn't a cost cutting measure or a optimization nit measure anymore this is about running the business in a way it's a digital transformation one aspect of about a thousand aspects of what does it mean to completely change how your business does and i think what that translates to is that there's no margin for error right you really need to deploy this in a way that that performs that understands what you're trying to use it for that gives that end user the experience that they expect on their screen or on their handheld device or wherever they might be whether it's a racetrack classroom or on the other end of a conference call or a boardroom right so what we do in in the engineering side of things when it comes to vdi or really understand what's a tech worker what's a knowledge worker what's a power worker what's a gp really going to look like what's time of day look like you know who's using it in the morning who's using it in the evening when do you power up when do you power down does the system behave does it just have the it works function and what our clients can can get from hpe is um you know a worldwide set of experiences that we can apply to making sure that the solution delivers on its promises so we're seeing the same thing you are krista you know we see it all the time on vdi and on the way businesses are changing the way they do business yeah and it's funny because when i talk to customers you know one of the things i heard that was a good tip is to roll it out to small groups first so you could really get a good sense of what the experience is before you roll it out to a lot of other people and then the expertise it's not like every other workload that people have done before so if you're new at it make sure you're getting the right advice expertise so that you're doing it the right way okay one of the other things we've been talking a lot about today is digital transformation and moving to the edge so now i'd like to shift gears and talk a little bit about how we've helped customers make that shift and this time i'll start with chris all right hey thanks okay so you know it's funny when it comes to edge because um the edge is different for for every customer in every client and every single client that i've ever spoken to of hp's has an edge somewhere you know whether just like we were talking about the classroom might be the edge but but i think the industry when we're talking about edge is talking about you know the internet of things if you remember that term from not to not too long ago you know and and the fact that everything's getting connected and how do we turn that into um into telemetry and and i think mark's going to be able to talk through a couple of examples of clients that we have in things like racing and automotive but what we're learning about edge is it's not just how do you make the edge work it's how do you integrate the edge into what you're already doing and nobody's just the edge right and and so if it's if it's um ai mldl there's that's one way you want to use the edge if it's a customer experience point of service it's another you know there's yet another way to use the edge so it turns out that having a broad set of expertise like hpe does to be able to understand the different workloads that you're trying to tie together including the ones that are running at the at the edge often it involves really making sure you understand the data pipeline you know what information is at the edge how does it flow to the data center how does it flow and then which data center uh which private cloud which public cloud are you using i think those are the areas where where we really sort of shine is that we we understand the interconnectedness of these things and so for example red bull and i know you're going to talk about that in a minute mark um uh the racing company you know for them the the edge is the racetrack and and you know milliseconds or partial seconds winning and losing races but then there's also an edge of um workers that are doing the design for for the cars and how do they get quick access so um we have a broad variety of infrastructure form factors and compute form factors to help with the edge and this is another real advantage we have is that we we know how to put the right piece of equipment with the right software we also have great containerized software with our esmeral container platform so we're really becoming um a perfect platform for hosting edge-centric workloads and applications and data processing yeah it's uh all the way down to things like our superdome flex in the background if you have some really really really big data that needs to be processed and of course our workhorse proliance that can be configured to support almost every um combination of workload you have so i know you started with edge krista but but and we're and we nail the edge with those different form factors but let's make sure you know if you're listening to this this show right now um make sure you you don't isolate the edge and make sure they integrate it with um with the rest of your operation mark you know what did i miss yeah to that point chris i mean and this kind of actually ties the two things together that we've been talking about here but the edge uh has become more critical as we have seen more work moving to the edge as where we do work changes and evolves and the edge has also become that much more closer because it has to be that much more connected um to your point uh talking about where that edge exists that edge can be a lot of different places but the one commonality really is that the edge is is an area where work still needs to get accomplished it can't just be a collection point and then everything gets shipped back to a data center or back to some some other area for the work it's where the work actually needs to get done whether that's edge work in a use case like vdi or whether that's edge work in the case of doing real-time analytics you mentioned red bull racing i'll i'll bring that up i mean you talk about uh an area where time is of the essence everything about that sport comes down to time you're talking about wins and losses that are measured as you said in milliseconds and that applies not just to how performance is happening on the track but how you're able to adapt and modify the needs of the car uh adapt to the evolving conditions on the track itself and so when you talk about putting together a solution for an edge like that you're right it can't just be here's a product that's going to allow us to collect data ship it back someplace else and and wait for it to be processed in a couple of days you have to have the ability to analyze that in real time when we pull together a solution involving our compute products our storage products our networking products when we're able to deliver that full package solution at the edge what you see are results like a 50 decrease in processing time to make real-time analytic decisions about configurations for the car and adapting to to real-time uh test and track conditions yeah really great point there um and i really love the example of edge and racing because i mean that is where it all every millisecond counts um and so important to process that at the edge now switching gears just a little bit let's talk a little bit about some examples of how we've helped customers when it comes to business agility and optimizing their workload for maximum outcome for business agility let's talk about some things that we've done to help customers with that mark yeah give it a shot so when we when we think about business agility what you're really talking about is the ability to to implement on the fly to be able to scale up to scale down the ability to adapt to real time changing situations and i think the last year has been has been an excellent example of exactly how so many businesses have been forced to do that i think one of the areas that that i think we've probably seen the most ability to help with customers in that agility area is around the space of private and hybrid clouds if you take a look at the need that customers have to to be able to migrate workloads and migrate data between public cloud environments app development environments that may be hosted on-site or maybe in the cloud the ability to move out of development and into production and having the agility to then scale those application rollouts up having the ability to have some of that some of that private cloud flexibility in addition to a public cloud environment is something that is becoming increasingly crucial for a lot of our customers all right well i we could keep going on and on but i'll stop it there uh thank you so much uh chris and mark this has been a great discussion thanks for sharing how we helped other customers and some tips and advice for approaching these workloads i thank you all for joining us and remind you to look at the on-demand sessions if you want to double click a little bit more into what we've been covering all day today you can learn a lot more in those sessions and i thank you for your time thanks for tuning in today many thanks to krista chris and mark we really appreciate you joining today to share how hpe is partnering to facilitate new workload adoption of course with your customers on their path to digital transformation now to round out our accelerating next event today we have a series of on-demand sessions available so you can explore more details around every step of that digital transformation from building a solid infrastructure strategy identifying the right compute and software to rounding out your solutions with management and financial support so please navigate to the agenda at the top of the page to take a look at what's available i just want to close by saying that despite the rush to digital during the pandemic most businesses they haven't completed their digital transformations far from it 2020 was more like a forced march than a planful strategy but now you have some time you've adjusted to this new abnormal and we hope the resources that you find at accelerating next will help you on your journey best of luck to you and be well [Music] [Applause] [Music] [Applause] [Music] [Applause] [Music] [Applause] [Music] [Applause] [Music] [Applause] [Music] [Music] [Applause] [Music] [Applause] [Music] [Applause] so [Music] [Applause] [Music] you

Published Date : Apr 19 2021

SUMMARY :

and the thing too is that you know when

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
jim brickmeyerPERSON

0.99+

lisaPERSON

0.99+

antonioPERSON

0.99+

2020DATE

0.99+

millionsQUANTITY

0.99+

sixQUANTITY

0.99+

2006DATE

0.99+

two companiesQUANTITY

0.99+

alan jensenPERSON

0.99+

2022DATE

0.99+

46 percentQUANTITY

0.99+

denmarkLOCATION

0.99+

threeQUANTITY

0.99+

twoQUANTITY

0.99+

3 o'clockDATE

0.99+

windows 10TITLE

0.99+

10xQUANTITY

0.99+

mark nickersonPERSON

0.99+

germanyLOCATION

0.99+

30QUANTITY

0.99+

hawaiiLOCATION

0.99+

tomorrowDATE

0.99+

fifty percentQUANTITY

0.99+

50QUANTITY

0.99+

360-degreeQUANTITY

0.99+

100QUANTITY

0.99+

360 degreeQUANTITY

0.99+

chrisPERSON

0.99+

100 yearQUANTITY

0.99+

80QUANTITY

0.99+

austinLOCATION

0.99+

360 degreeQUANTITY

0.99+

8 000 reportsQUANTITY

0.99+

april last yearDATE

0.99+

kristaPERSON

0.99+

todayDATE

0.99+

yesterdayDATE

0.99+

krista satrathwaitePERSON

0.99+

january february 20DATE

0.99+

netherlands cancer instituteORGANIZATION

0.99+

last yearDATE

0.99+

fourQUANTITY

0.99+

five yearsQUANTITY

0.99+

amazonORGANIZATION

0.99+

john chambersPERSON

0.99+

windowsTITLE

0.99+

two-partQUANTITY

0.99+

ninth timeQUANTITY

0.99+

more than 1 500 storesQUANTITY

0.99+

verizonORGANIZATION

0.99+

three yearsQUANTITY

0.99+

johnPERSON

0.99+

neil mcdonaldPERSON

0.99+

a year agoDATE

0.99+

pat gelsingerPERSON

0.99+

netherlands instituteORGANIZATION

0.99+

markPERSON

0.99+

vinsanoORGANIZATION

0.99+

lisa suePERSON

0.99+

four years agoDATE

0.98+

pandemicEVENT

0.98+

two kindQUANTITY

0.98+

HPEORGANIZATION

0.98+

about 750 researchersQUANTITY

0.98+

two thingsQUANTITY

0.98+

50 percentQUANTITY

0.98+

14 monthsQUANTITY

0.98+

adobeTITLE

0.98+

Computer Science & Space Exploration | Exascale Day


 

>>from around the globe. It's the Q. With digital coverage >>of exa scale day made possible by Hewlett Packard Enterprise. We're back at the celebration of Exa Scale Day. This is Dave Volant, and I'm pleased to welcome to great guests Brian Dance Berries Here. Here's what The ISS Program Science office at the Johnson Space Center. And Dr Mark Fernandez is back. He's the Americas HPC technology officer at Hewlett Packard Enterprise. Gentlemen, welcome. >>Thank you. Yeah, >>well, thanks for coming on. And, Mark, Good to see you again. And, Brian, I wonder if we could start with you and talk a little bit about your role. A T. I s s program Science office as a scientist. What's happening these days? What are you working on? >>Well, it's been my privilege the last few years to be working in the, uh, research integration area of of the space station office. And that's where we're looking at all of the different sponsors NASA, the other international partners, all the sponsors within NASA, and, uh, prioritizing what research gets to go up to station. What research gets conducted in that regard. And to give you a feel for the magnitude of the task, but we're coming up now on November 2nd for the 20th anniversary of continuous human presence on station. So we've been a space faring society now for coming up on 20 years, and I would like to point out because, you know, as an old guy myself, it impresses me. That's, you know, that's 25% of the US population. Everybody under the age of 20 has never had a moment when they were alive and we didn't have people living and working in space. So Okay, I got off on a tangent there. We'll move on in that 20 years we've done 3000 experiments on station and the station has really made ah, miraculously sort of evolution from, ah, basic platform, what is now really fully functioning national lab up there with, um, commercially run research facilities all the time. I think you can think of it as the world's largest satellite bus. We have, you know, four or five instruments looking down, measuring all kinds of things in the atmosphere during Earth observation data, looking out, doing astrophysics, research, measuring cosmic rays, X ray observatory, all kinds of things, plus inside the station you've got racks and racks of experiments going on typically scores, you know, if not more than 50 experiments going on at any one time. So, you know, the topic of this event is really important. Doesn't NASA, you know, data transmission Up and down, all of the cameras going on on on station the experiments. Um, you know, one of one of those astrophysics observatory's you know, it has collected over 15 billion um uh, impact data of cosmic rays. And so the massive amounts of data that that needs to be collected and transferred for all of these experiments to go on really hits to the core. And I'm glad I'm able toe be here and and speak with you today on this. This topic. >>Well, thank you for that, Bryan. A baby boomer, right? Grew up with the national pride of the moon landing. And of course, we've we've seen we saw the space shuttle. We've seen international collaboration, and it's just always been something, you know, part of our lives. So thank you for the great work that you guys were doing their mark. You and I had a great discussion about exa scale and kind of what it means for society and some of the innovations that we could maybe expect over the coming years. Now I wonder if you could talk about some of the collaboration between what you guys were doing and Brian's team. >>Uh, yeah, so yes, indeed. Thank you for having me early. Appreciate it. That was a great introduction. Brian, Uh, I'm the principal investigator on Space Born computer, too. And as the two implies, where there was one before it. And so we worked with Bryant and his team extensively over the past few years again high performance computing on board the International Space Station. Brian mentioned the thousands of experiments that have been done to date and that there are currently 50 orm or going on at any one time. And those experiments collect data. And up until recently, you've had to transmit that data down to Earth for processing. And that's a significant amount of bandwidth. Yeah, so with baseball and computer to we're inviting hello developers and others to take advantage of that onboard computational capability you mentioned exa scale. We plan to get the extra scale next year. We're currently in the era that's called PETA scale on. We've been in the past scale era since 2000 and seven, so it's taken us a while to make it that next lead. Well, 10 years after Earth had a PETA scale system in 2017 were able to put ah teraflop system on the International space station to prove that we could do a trillion calculations a second in space. That's where the data is originating. That's where it might be best to process it. So we want to be able to take those capabilities with us. And with H. P. E. Acting as a wonderful partner with Brian and NASA and the space station, we think we're able to do that for many of these experiments. >>It's mind boggling you were talking about. I was talking about the moon landing earlier and the limited power of computing power. Now we've got, you know, water, cool supercomputers in space. I'm interested. I'd love to explore this notion of private industry developing space capable computers. I think it's an interesting model where you have computer companies can repurpose technology that they're selling obviously greater scale for space exploration and apply that supercomputing technology instead of having government fund, proprietary purpose built systems that air. Essentially, you use case, if you will. So, Brian, what are the benefits of that model? The perhaps you wouldn't achieve with governments or maybe contractors, you know, kind of building these proprietary systems. >>Well, first of all, you know, any any tool, your using any, any new technology that has, you know, multiple users is going to mature quicker. You're gonna have, you know, greater features, greater capabilities, you know, not even talking about computers. Anything you're doing. So moving from, you know, governor government is a single, um, you know, user to off the shelf type products gives you that opportunity to have things that have been proven, have the technology is fully matured. Now, what had to happen is we had to mature the space station so that we had a platform where we could test these things and make sure they're gonna work in the high radiation environments, you know, And they're gonna be reliable, because first, you've got to make sure that that safety and reliability or taken care of so that that's that's why in the space program you're gonna you're gonna be behind the times in terms of the computing power of the equipment up there because, first of all and foremost, you needed to make sure that it was reliable and say, Now, my undergraduate degree was in aerospace engineering and what we care about is aerospace engineers is how heavy is it, how big and bulky is it because you know it z expensive? You know, every pound I once visited Gulfstream Aerospace, and they would pay their employees $1000 that they could come up with a way saving £1 in building that aircraft. That means you have more capacity for flying. It's on the orders of magnitude. More important to do that when you're taking payloads to space. So you know, particularly with space born computer, the opportunity there to use software and and check the reliability that way, Uh, without having to make the computer, you know, radiation resistance, if you will, with heavy, you know, bulky, um, packaging to protect it from that radiation is a really important thing, and it's gonna be a huge advantage moving forward as we go to the moon and on to Mars. >>Yeah, that's interesting. I mean, your point about cots commercial off the shelf technology. I mean, that's something that obviously governments have wanted to leverage for a long, long time for many, many decades. But but But Mark the issue was always the is. Brian was just saying the very stringent and difficult requirements of space. Well, you're obviously with space Born one. You got to the point where you had visibility of the economics made sense. It made commercial sense for companies like Hewlett Packard Enterprise. And now we've sort of closed that gap to the point where you're sort of now on that innovation curve. What if you could talk about that a little bit? >>Yeah, absolutely. Brian has some excellent points, you know, he said, anything we do today and requires computers, and that's absolutely correct. So I tell people that when you go to the moon and when you go to the Mars, you probably want to go with the iPhone 10 or 11 and not a flip phone. So before space born was sent up, you went with 2000 early two thousands computing technology there which, like you said many of the people born today weren't even around when the space station began and has been occupied so they don't even know how to program or use that type of computing. Power was based on one. We sent the exact same products that we were shipping to customers today, so they are current state of the art, and we had a mandate. Don't touch the hardware, have all the protection that you can via software. So that's what we've done. We've got several philosophical ways to do that. We've implemented those in software. They've been successful improving in the space for one, and now it's space born to. We're going to begin the experiments so that the rest of the community so that the rest of the community can figure out that it is economically viable, and it will accelerate their research and progress in space. I'm most excited about that. Every venture into space as Brian mentioned will require some computational capability, and HP has figured out that the economics air there we need to bring the customers through space ball into in order for them to learn that we are reliable but current state of the art, and that we could benefit them and all of humanity. >>Guys, I wanna ask you kind of a two part question. And, Brian, I'll start with you and it z somewhat philosophical. Uh, I mean, my understanding was and I want to say this was probably around the time of the Bush administration w two on and maybe certainly before that, but as technology progress, there was a debate about all right, Should we put our resource is on moon because of the proximity to Earth? Or should we, you know, go where no man has gone before and or woman and get to Mars? Where What's the thinking today, Brian? On that? That balance between Moon and Mars? >>Well, you know, our plans today are are to get back to the moon by 2024. That's the Artemus program. Uh, it's exciting. It makes sense from, you know, an engineering standpoint. You take, you know, you take baby steps as you continue to move forward. And so you have that opportunity, um, to to learn while you're still, you know, relatively close to home. You can get there in days, not months. If you're going to Mars, for example, toe have everything line up properly. You're looking at a multi year mission you know, it may take you nine months to get there. Then you have to wait for the Earth and Mars to get back in the right position to come back on that same kind of trajectory. So you have toe be there for more than a year before you can turn around and come back. So, you know, he was talking about the computing power. You know, right now that the beautiful thing about the space station is, it's right there. It's it's orbiting above us. It's only 250 miles away. Uh, so you can test out all of these technologies. You can rely on the ground to keep track of systems. There's not that much of a delay in terms of telemetry coming back. But as you get to the moon and then definitely is, you get get out to Mars. You know, there are enough minutes delay out there that you've got to take the computing power with you. You've got to take everything you need to be able to make those decisions you need to make because there's not time to, um, you know, get that information back on the ground, get back get it back to Earth, have people analyze the situation and then tell you what the next step is to do. That may be too late. So you've got to think the computing power with you. >>So extra scale bring some new possibilities. Both both for, you know, the moon and Mars. I know Space Born one did some simulations relative. Tomorrow we'll talk about that. But But, Brian, what are the things that you hope to get out of excess scale computing that maybe you couldn't do with previous generations? >>Well, you know, you know, market on a key point. You know, bandwidth up and down is, of course, always a limitation. In the more computing data analysis you can do on site, the more efficient you could be with parsing out that that bandwidth and to give you ah, feel for just that kind of think about those those observatory's earth observing and an astronomical I was talking about collecting data. Think about the hours of video that are being recorded daily as the astronauts work on various things to document what they're doing. They many of the biological experiments, one of the key key pieces of data that's coming back. Is that video of the the microbes growing or the plants growing or whatever fluid physics experiments going on? We do a lot of colloids research, which is suspended particles inside ah liquid. And that, of course, high speed video. Is he Thio doing that kind of research? Right now? We've got something called the I s s experience going on in there, which is basically recording and will eventually put out a syriza of basically a movie on virtual reality recording. That kind of data is so huge when you have a 360 degree camera up there recording all of that data, great virtual reality, they There's still a lot of times bringing that back on higher hard drives when the space six vehicles come back to the Earth. That's a lot of data going on. We recorded videos all the time, tremendous amount of bandwidth going on. And as you get to the moon and as you get further out, you can a man imagine how much more limiting that bandwidth it. >>Yeah, We used to joke in the old mainframe days that the fastest way to get data from point a to Point B was called C Tam, the Chevy truck access method. Just load >>up a >>truck, whatever it was, tapes or hard drive. So eso and mark, of course space born to was coming on. Spaceport one really was a pilot, but it proved that the commercial computers could actually work for long durations in space, and the economics were feasible. Thinking about, you know, future missions and space born to What are you hoping to accomplish? >>I'm hoping to bring. I'm hoping to bring that success from space born one to the rest of the community with space born to so that they can realize they can do. They're processing at the edge. The purpose of exploration is insight, not data collection. So all of these experiments begin with data collection. Whether that's videos or samples are mold growing, etcetera, collecting that data, we must process it to turn it into information and insight. And the faster we can do that, the faster we get. Our results and the better things are. I often talk Thio College in high school and sometimes grammar school students about this need to process at the edge and how the communication issues can prevent you from doing that. For example, many of us remember the communications with the moon. The moon is about 250,000 miles away, if I remember correctly, and the speed of light is 186,000 miles a second. So even if the speed of light it takes more than a second for the communications to get to the moon and back. So I can remember being stressed out when Houston will to make a statement. And we were wondering if the astronauts could answer Well, they answered as soon as possible. But that 1 to 2 second delay that was natural was what drove us crazy, which made us nervous. We were worried about them in the success of the mission. So Mars is millions of miles away. So flip it around. If you're a Mars explorer and you look out the window and there's a big red cloud coming at you that looks like a tornado and you might want to do some Mars dust storm modeling right then and there to figure out what's the safest thing to do. You don't have the time literally get that back to earth have been processing and get you the answer back. You've got to take those computational capabilities with you. And we're hoping that of these 52 thousands of experiments that are on board, the SS can show that in order to better accomplish their missions on the moon. And Omar, >>I'm so glad you brought that up because I was gonna ask you guys in the commercial world everybody talks about real time. Of course, we talk about the real time edge and AI influencing and and the time value of data I was gonna ask, you know, the real time, Nous, How do you handle that? I think Mark, you just answered that. But at the same time, people will say, you know, the commercial would like, for instance, in advertising. You know, the joke the best. It's not kind of a joke, but the best minds of our generation tryingto get people to click on ads. And it's somewhat true, unfortunately, but at any rate, the value of data diminishes over time. I would imagine in space exploration where where you're dealing and things like light years, that actually there's quite a bit of value in the historical data. But, Mark, you just You just gave a great example of where you need real time, compute capabilities on the ground. But but But, Brian, I wonder if I could ask you the value of this historic historical data, as you just described collecting so much data. Are you? Do you see that the value of that data actually persists over time, you could go back with better modeling and better a i and computing and actually learn from all that data. What are your thoughts on that, Brian? >>Definitely. I think the answer is yes to that. And, you know, as part of the evolution from from basically a platform to a station, we're also learning to make use of the experiments in the data that we have there. NASA has set up. Um, you know, unopened data access sites for some of our physical science experiments that taking place there and and gene lab for looking at some of the biological genomic experiments that have gone on. And I've seen papers already beginning to be generated not from the original experimenters and principal investigators, but from that data set that has been collected. And, you know, when you're sending something up to space and it to the space station and volume for cargo is so limited, you want to get the most you can out of that. So you you want to be is efficient as possible. And one of the ways you do that is you collect. You take these earth observing, uh, instruments. Then you take that data. And, sure, the principal investigators air using it for the key thing that they designed it for. But if that data is available, others will come along and make use of it in different ways. >>Yeah, So I wanna remind the audience and these these these air supercomputers, the space born computers, they're they're solar powered, obviously, and and they're mounted overhead, right? Is that is that correct? >>Yeah. Yes. Space borne computer was mounted in the overhead. I jokingly say that as soon as someone could figure out how to get a data center in orbit, they will have a 50 per cent denser data station that we could have down here instead of two robes side by side. You can also have one overhead on. The power is free. If you can drive it off a solar, and the cooling is free because it's pretty cold out there in space, so it's gonna be very efficient. Uh, space borne computer is the most energy efficient computer in existence. Uh, free electricity and free cooling. And now we're offering free cycles through all the experimenters on goal >>Eso Space born one exceeded its mission timeframe. You were able to run as it was mentioned before some simulations for future Mars missions. And, um and you talked a little bit about what you want to get out of, uh, space born to. I mean, are there other, like, wish list items, bucket bucket list items that people are talking about? >>Yeah, two of them. And these air kind of hypothetical. And Brian kind of alluded to them. Uh, one is having the data on board. So an example that halo developers talk to us about is Hey, I'm on Mars and I see this mold growing on my potatoes. That's not good. So let me let me sample that mold, do a gene sequencing, and then I've got stored all the historical data on space borne computer of all the bad molds out there and let me do a comparison right then and there before I have dinner with my fried potato. So that's that's one. That's very interesting. A second one closely related to it is we have offered up the storage on space borne computer to for all of your raw data that we process. So, Mr Scientist, if if you need the raw data and you need it now, of course, you can have it sent down. But if you don't let us just hold it there as long as they have space. And when we returned to Earth like you mentioned, Patrick will ship that solid state disk back to them so they could have a new person, but again, reserving that network bandwidth, uh, keeping all that raw data available for the entire duration of the mission so that it may have value later on. >>Great. Thank you for that. I want to end on just sort of talking about come back to the collaboration between I S s National Labs and Hewlett Packard Enterprise, and you've got your inviting project ideas using space Bourne to during the upcoming mission. Maybe you could talk about what that's about, and we have A We have a graphic we're gonna put up on DSM information that you can you can access. But please, mark share with us what you're planning there. >>So again, the collaboration has been outstanding. There. There's been a mention off How much savings is, uh, if you can reduce the weight by a pound. Well, our partners ice s national lab and NASA have taken on that cost of delivering baseball in computer to the international space station as part of their collaboration and powering and cooling us and giving us the technical support in return on our side, we're offering up space borne computer to for all the onboard experiments and all those that think they might be wanting doing experiments on space born on the S s in the future to take advantage of that. So we're very, very excited about that. >>Yeah, and you could go toe just email space born at hp dot com on just float some ideas. I'm sure at some point there'll be a website so you can email them or you can email me david dot volonte at at silicon angle dot com and I'll shoot you that that email one or that website once we get it. But, Brian, I wanna end with you. You've been so gracious with your time. Uh, yeah. Give us your final thoughts on on exa scale. Maybe how you're celebrating exa scale day? I was joking with Mark. Maybe we got a special exa scale drink for 10. 18 but, uh, what's your final thoughts, Brian? >>Uh, I'm going to digress just a little bit. I think I think I have a unique perspective to celebrate eggs a scale day because as an undergraduate student, I was interning at Langley Research Center in the wind tunnels and the wind tunnel. I was then, um, they they were very excited that they had a new state of the art giant room size computer to take that data we way worked on unsteady, um, aerodynamic forces. So you need a lot of computation, and you need to be ableto take data at a high bandwidth. To be able to do that, they'd always, you know, run their their wind tunnel for four or five hours. Almost the whole shift. Like that data and maybe a week later, been ableto look at the data to decide if they got what they were looking for? Well, at the time in the in the early eighties, this is definitely the before times that I got there. They had they had that computer in place. Yes, it was a punchcard computer. It was the one time in my life I got to put my hands on the punch cards and was told not to drop them there. Any trouble if I did that. But I was able thio immediately after, uh, actually, during their run, take that data, reduce it down, grabbed my colored pencils and graph paper and graph out coefficient lift coefficient of drag. Other things that they were measuring. Take it back to them. And they were so excited to have data two hours after they had taken it analyzed and looked at it just pickled them. Think that they could make decisions now on what they wanted to do for their next run. Well, we've come a long way since then. You know, extra scale day really, really emphasizes that point, you know? So it really brings it home to me. Yeah. >>Please, no, please carry on. >>Well, I was just gonna say, you know, you talked about the opportunities that that space borne computer provides and and Mark mentioned our colleagues at the I S s national lab. You know, um, the space station has been declared a national laboratory, and so about half of the, uh, capabilities we have for doing research is a portion to the national lab so that commercial entities so that HP can can do these sorts of projects and universities can access station and and other government agencies. And then NASA can focus in on those things we want to do purely to push our exploration programs. So the opportunities to take advantage of that are there marks opening up the door for a lot of opportunities. But others can just Google S s national laboratory and find some information on how to get in the way. Mark did originally using s national lab to maybe get a good experiment up there. >>Well, it's just astounding to see the progress that this industry is made when you go back and look, you know, the early days of supercomputing to imagine that they actually can be space born is just tremendous. Not only the impacts that it can have on Space six exploration, but also society in general. Mark Wayne talked about that. Guys, thanks so much for coming on the Cube and celebrating Exa scale day and helping expand the community. Great work. And, uh, thank you very much for all that you guys dio >>Thank you very much for having me on and everybody out there. Let's get the XO scale as quick as we can. Appreciate everything you all are >>doing. Let's do it. >>I've got a I've got a similar story. Humanity saw the first trillion calculations per second. Like I said in 1997. And it was over 100 racks of computer equipment. Well, space borne one is less than fourth of Iraq in only 20 years. So I'm gonna be celebrating exa scale day in anticipation off exa scale computers on earth and soon following within the national lab that exists in 20 plus years And being on Mars. >>That's awesome. That mark. Thank you for that. And and thank you for watching everybody. We're celebrating Exa scale day with the community. The supercomputing community on the Cube Right back

Published Date : Oct 16 2020

SUMMARY :

It's the Q. With digital coverage We're back at the celebration of Exa Scale Day. Thank you. And, Mark, Good to see you again. And to give you a feel for the magnitude of the task, of the collaboration between what you guys were doing and Brian's team. developers and others to take advantage of that onboard computational capability you with governments or maybe contractors, you know, kind of building these proprietary off the shelf type products gives you that opportunity to have things that have been proven, have the technology You got to the point where you had visibility of the economics made sense. So I tell people that when you go to the moon Or should we, you know, go where no man has gone before and or woman and You've got to take everything you need to be able to make those decisions you need to make because there's not time to, for, you know, the moon and Mars. the more efficient you could be with parsing out that that bandwidth and to give you ah, B was called C Tam, the Chevy truck access method. future missions and space born to What are you hoping to accomplish? get that back to earth have been processing and get you the answer back. the time value of data I was gonna ask, you know, the real time, And one of the ways you do that is you collect. If you can drive it off a solar, and the cooling is free because it's pretty cold about what you want to get out of, uh, space born to. So, Mr Scientist, if if you need the raw data and you need it now, that's about, and we have A We have a graphic we're gonna put up on DSM information that you can is, uh, if you can reduce the weight by a pound. so you can email them or you can email me david dot volonte at at silicon angle dot com and I'll shoot you that state of the art giant room size computer to take that data we way Well, I was just gonna say, you know, you talked about the opportunities that that space borne computer provides And, uh, thank you very much for all that you guys dio Thank you very much for having me on and everybody out there. Let's do it. Humanity saw the first trillion calculations And and thank you for watching everybody.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
BrianPERSON

0.99+

MarkPERSON

0.99+

Mark WaynePERSON

0.99+

BryanPERSON

0.99+

NASAORGANIZATION

0.99+

1997DATE

0.99+

MarsLOCATION

0.99+

BryantPERSON

0.99+

EarthLOCATION

0.99+

Dave VolantPERSON

0.99+

£1QUANTITY

0.99+

Hewlett Packard EnterpriseORGANIZATION

0.99+

360 degreeQUANTITY

0.99+

3000 experimentsQUANTITY

0.99+

2017DATE

0.99+

twoQUANTITY

0.99+

PatrickPERSON

0.99+

five hoursQUANTITY

0.99+

nine monthsQUANTITY

0.99+

November 2ndDATE

0.99+

HPORGANIZATION

0.99+

25%QUANTITY

0.99+

TomorrowDATE

0.99+

I S s National LabsORGANIZATION

0.99+

50 per centQUANTITY

0.99+

next yearDATE

0.99+

20 yearsQUANTITY

0.99+

iPhone 10COMMERCIAL_ITEM

0.99+

fourQUANTITY

0.99+

2024DATE

0.99+

1QUANTITY

0.99+

todayDATE

0.99+

earthLOCATION

0.99+

a week laterDATE

0.99+

two partQUANTITY

0.99+

OmarPERSON

0.99+

2000DATE

0.99+

Thio CollegeORGANIZATION

0.99+

11COMMERCIAL_ITEM

0.99+

more than a secondQUANTITY

0.99+

10. 18QUANTITY

0.99+

one timeQUANTITY

0.99+

2 secondQUANTITY

0.99+

BothQUANTITY

0.99+

over 100 racksQUANTITY

0.98+

The Impact of Exascale on Business | Exascale Day


 

>>from around the globe. It's the Q with digital coverage of exa scale day made possible by Hewlett Packard Enterprise. Welcome, everyone to the Cube celebration of Exa Scale Day. Shaheen Khan is here. He's the founding partner, an analyst at Orion X And, among other things, he is the co host of Radio free HPC Shaheen. Welcome. Thanks for coming on. >>Thanks for being here, Dave. Great to be here. How are you >>doing? Well, thanks. Crazy with doing these things, Cove in remote interviews. I wish we were face to face at us at a supercomputer show, but, hey, this thing is working. We can still have great conversations. And And I love talking to analysts like you because you bring an independent perspective. You're very wide observation space. So So let me, Like many analysts, you probably have sort of a mental model or a market model that you look at. So maybe talk about your your work, how you look at the market, and we could get into some of the mega trends that you see >>very well. Very well. Let me just quickly set the scene. We fundamentally track the megatrends of the Information Age And, of course, because we're in the information age, digital transformation falls out of that. And the megatrends that drive that in our mind is Ayotte, because that's the fountain of data five G. Because that's how it's gonna get communicated ai and HBC because that's how we're gonna make sense of it Blockchain and Cryptocurrencies because that's how it's gonna get transacted on. That's how value is going to get transferred from the place took place and then finally, quantum computing, because that exemplifies how things are gonna get accelerated. >>So let me ask you So I spent a lot of time, but I D. C and I had the pleasure of of the High Performance computing group reported into me. I wasn't an HPC analyst, but over time you listen to those guys, you learning. And as I recall, it was HPC was everywhere, and it sounds like we're still seeing that trend where, whether it was, you know, the Internet itself were certainly big data, you know, coming into play. Uh, you know, defense, obviously. But is your background mawr HPC or so that these other technologies that you're talking about it sounds like it's your high performance computing expert market watcher. And then you see it permeating into all these trends. Is that a fair statement? >>That's a fair statement. I did grow up in HPC. My first job out of school was working for an IBM fellow doing payroll processing in the old days on and and And it went from there, I worked for Cray Research. I worked for floating point systems, so I grew up in HPC. But then, over time, uh, we had experiences outside of HPC. So for a number of years, I had to go do commercial enterprise computing and learn about transaction processing and business intelligence and, you know, data warehousing and things like that, and then e commerce and then Web technology. So over time it's sort of expanded. But HPC is a like a bug. You get it and you can't get rid of because it's just so inspiring. So supercomputing has always been my home, so to say >>well and so the reason I ask is I wanted to touch on a little history of the industry is there was kind of a renaissance in many, many years ago, and you had all these startups you had Kendall Square Research Danny Hillis thinking machines. You had convex trying to make many supercomputers. And it was just this This is, you know, tons of money flowing in and and then, you know, things kind of consolidate a little bit and, uh, things got very, very specialized. And then with the big data craze, you know, we've seen HPC really at the heart of all that. So what's your take on on the ebb and flow of the HPC business and how it's evolved? >>Well, HBC was always trying to make sense of the world, was trying to make sense of nature. And of course, as much as we do know about nature, there's a lot we don't know about nature and problems in nature are you can classify those problems into basically linear and nonlinear problems. The linear ones are easy. They've already been solved. The nonlinear wants. Some of them are easy. Many of them are hard, the nonlinear, hard, chaotic. All of those problems are the ones that you really need to solve. The closer you get. So HBC was basically marching along trying to solve these things. It had a whole process, you know, with the scientific method going way back to Galileo, the experimentation that was part of it. And then between theory, you got to look at the experiment and the data. You kind of theorize things. And then you experimented to prove the theories and then simulation and using the computers to validate some things eventually became a third pillar of off science. On you had theory, experiment and simulation. So all of that was going on until the rest of the world, thanks to digitization, started needing some of those same techniques. Why? Because you've got too much data. Simply, there's too much data to ship to the cloud. There's too much data to, uh, make sense of without math and science. So now enterprise computing problems are starting to look like scientific problems. Enterprise data centers are starting to look like national lab data centers, and there is that sort of a convergence that has been taking place gradually, really over the past 34 decades. And it's starting to look really, really now >>interesting, I want I want to ask you about. I was like to talk to analysts about, you know, competition. The competitive landscape is the competition in HPC. Is it between vendors or countries? >>Well, this is a very interesting thing you're saying, because our other thesis is that we are moving a little bit beyond geopolitics to techno politics. And there are now, uh, imperatives at the political level that are driving some of these decisions. Obviously, five G is very visible as as as a piece of technology that is now in the middle of political discussions. Covert 19 as you mentioned itself, is a challenge that is a global challenge that needs to be solved at that level. Ai, who has access to how much data and what sort of algorithms. And it turns out as we all know that for a I, you need a lot more data than you thought. You do so suddenly. Data superiority is more important perhaps than even. It can lead to information superiority. So, yeah, that's really all happening. But the actors, of course, continue to be the vendors that are the embodiment of the algorithms and the data and the systems and infrastructure that feed the applications. So to say >>so let's get into some of these mega trends, and maybe I'll ask you some Colombo questions and weaken geek out a little bit. Let's start with a you know, again, it was one of this when I started the industry. It's all it was a i expert systems. It was all the rage. And then we should have had this long ai winter, even though, you know, the technology never went away. But But there were at least two things that happened. You had all this data on then the cost of computing. You know, declines came down so so rapidly over the years. So now a eyes back, we're seeing all kinds of applications getting infused into virtually every part of our lives. People trying to advertise to us, etcetera. Eso So talk about the intersection of AI and HPC. What are you seeing there? >>Yeah, definitely. Like you said, I has a long history. I mean, you know, it came out of MIT Media Lab and the AI Lab that they had back then and it was really, as you mentioned, all focused on expert systems. It was about logical processing. It was a lot of if then else. And then it morphed into search. How do I search for the right answer, you know, needle in the haystack. But then, at some point, it became computational. Neural nets are not a new idea. I remember you know, we had we had a We had a researcher in our lab who was doing neural networks, you know, years ago. And he was just saying how he was running out of computational power and we couldn't. We were wondering, you know what? What's taking all this difficult, You know, time. And it turns out that it is computational. So when deep neural nets showed up about a decade ago, arm or it finally started working and it was a confluence of a few things. Thalib rhythms were there, the data sets were there, and the technology was there in the form of GPS and accelerators that finally made distractible. So you really could say, as in I do say that a I was kind of languishing for decades before HPC Technologies reignited it. And when you look at deep learning, which is really the only part of a I that has been prominent and has made all this stuff work, it's all HPC. It's all matrix algebra. It's all signal processing algorithms. are computational. The infrastructure is similar to H B. C. The skill set that you need is the skill set of HPC. I see a lot of interest in HBC talent right now in part motivated by a I >>mhm awesome. Thank you on. Then I wanna talk about Blockchain and I can't talk about Blockchain without talking about crypto you've written. You've written about that? I think, you know, obviously supercomputers play a role. I think you had written that 50 of the top crypto supercomputers actually reside in in China A lot of times the vendor community doesn't like to talk about crypto because you know that you know the fraud and everything else. But it's one of the more interesting use cases is actually the primary use case for Blockchain even though Blockchain has so much other potential. But what do you see in Blockchain? The potential of that technology And maybe we can work in a little crypto talk as well. >>Yeah, I think 11 simple way to think of Blockchain is in terms off so called permission and permission less the permission block chains or when everybody kind of knows everybody and you don't really get to participate without people knowing who you are and as a result, have some basis to trust your behavior and your transactions. So things are a lot calmer. It's a lot easier. You don't really need all the supercomputing activity. Whereas for AI the assertion was that intelligence is computer herbal. And with some of these exa scale technologies, we're trying to, you know, we're getting to that point for permission. Less Blockchain. The assertion is that trust is computer ble and, it turns out for trust to be computer ble. It's really computational intensive because you want to provide an incentive based such that good actors are rewarded and back actors. Bad actors are punished, and it is worth their while to actually put all their effort towards good behavior. And that's really what you see, embodied in like a Bitcoin system where the chain has been safe over the many years. It's been no attacks, no breeches. Now people have lost money because they forgot the password or some other. You know, custody of the accounts have not been trustable, but the chain itself has managed to produce that, So that's an example of computational intensity yielding trust. So that suddenly becomes really interesting intelligence trust. What else is computer ble that we could do if we if we had enough power? >>Well, that's really interesting the way you described it, essentially the the confluence of crypto graphics software engineering and, uh, game theory, Really? Where the bad actors air Incentive Thio mined Bitcoin versus rip people off because it's because because there are lives better eso eso so that so So Okay, so make it make the connection. I mean, you sort of did. But But I want to better understand the connection between, you know, supercomputing and HPC and Blockchain. We know we get a crypto for sure, like in mind a Bitcoin which gets harder and harder and harder. Um and you mentioned there's other things that we can potentially compute on trust. Like what? What else? What do you thinking there? >>Well, I think that, you know, the next big thing that we are really seeing is in communication. And it turns out, as I was saying earlier, that these highly computational intensive algorithms and models show up in all sorts of places like, you know, in five g communication, there's something called the memo multi and multi out and to optimally manage that traffic such that you know exactly what beam it's going to and worth Antenna is coming from that turns out to be a non trivial, you know, partial differential equation. So next thing you know, you've got HPC in there as and he didn't expect it because there's so much data to be sent, you really have to do some data reduction and data processing almost at the point of inception, if not at the point of aggregation. So that has led to edge computing and edge data centers. And that, too, is now. People want some level of computational capability at that place like you're building a microcontroller, which traditionally would just be a, you know, small, low power, low cost thing. And people want victor instructions. There. People want matrix algebra there because it makes sense to process the data before you have to ship it. So HPCs cropping up really everywhere. And then finally, when you're trying to accelerate things that obviously GP use have been a great example of that mixed signal technologies air coming to do analog and digital at the same time, quantum technologies coming so you could do the you know, the usual analysts to buy to where you have analog, digital, classical quantum and then see which, you know, with what lies where all of that is coming. And all of that is essentially resting on HBC. >>That's interesting. I didn't realize that HBC had that position in five G with multi and multi out. That's great example and then I o t. I want to ask you about that because there's a lot of discussion about real time influencing AI influencing at the edge on you're seeing sort of new computing architectures, potentially emerging, uh, video. The acquisition of arm Perhaps, you know, amore efficient way, maybe a lower cost way of doing specialized computing at the edge it, But it sounds like you're envisioning, actually, supercomputing at the edge. Of course, we've talked to Dr Mark Fernandez about space born computers. That's like the ultimate edge you got. You have supercomputers hanging on the ceiling of the International space station, but But how far away are we from this sort of edge? Maybe not. Space is an extreme example, but you think factories and windmills and all kinds of edge examples where supercomputing is is playing a local role. >>Well, I think initially you're going to see it on base stations, Antenna towers, where you're aggregating data from a large number of endpoints and sensors that are gathering the data, maybe do some level of local processing and then ship it to the local antenna because it's no more than 100 m away sort of a thing. But there is enough there that that thing can now do the processing and do some level of learning and decide what data to ship back to the cloud and what data to get rid of and what data to just hold. Or now those edge data centers sitting on top of an antenna. They could have a half a dozen GPS in them. They're pretty powerful things. They could have, you know, one they could have to, but but it could be depending on what you do. A good a good case study. There is like surveillance cameras. You don't really need to ship every image back to the cloud. And if you ever need it, the guy who needs it is gonna be on the scene, not back at the cloud. So there is really no sense in sending it, Not certainly not every frame. So maybe you can do some processing and send an image every five seconds or every 10 seconds, and that way you can have a record of it. But you've reduced your bandwidth by orders of magnitude. So things like that are happening. And toe make sense of all of that is to recognize when things changed. Did somebody come into the scene or is it just you know that you know, they became night, So that's sort of a decision. Cannot be automated and fundamentally what is making it happen? It may not be supercomputing exa scale class, but it's definitely HPCs, definitely numerically oriented technologies. >>Shane, what do you see happening in chip architectures? Because, you see, you know the classical intel they're trying to put as much function on the real estate as possible. We've seen the emergence of alternative processors, particularly, uh, GP use. But even if f b g A s, I mentioned the arm acquisition, so you're seeing these alternative processors really gain momentum and you're seeing data processing units emerge and kind of interesting trends going on there. What do you see? And what's the relationship to HPC? >>Well, I think a few things are going on there. Of course, one is, uh, essentially the end of Moore's law, where you cannot make the cycle time be any faster, so you have to do architectural adjustments. And then if you have a killer app that lends itself to large volume, you can build silicon. That is especially good for that now. Graphics and gaming was an example of that, and people said, Oh my God, I've got all these cores in there. Why can't I use it for computation? So everybody got busy making it 64 bit capable and some grass capability, And then people say, Oh, I know I can use that for a I And you know, now you move it to a I say, Well, I don't really need 64 but maybe I can do it in 32 or 16. So now you do it for that, and then tens, of course, come about. And so there's that sort of a progression of architecture, er trumping, basically cycle time. That's one thing. The second thing is scale out and decentralization and distributed computing. And that means that the inter communication and intra communication among all these notes now becomes an issue big enough issue that maybe it makes sense to go to a DPU. Maybe it makes sense to go do some level of, you know, edge data centers like we were talking about on then. The third thing, really is that in many of these cases you have data streaming. What is really coming from I o t, especially an edge, is that data is streaming and when data streaming suddenly new architectures like F B G. A s become really interesting and and and hold promise. So I do see, I do see FPG's becoming more prominent just for that reason, but then finally got a program all of these things on. That's really a difficulty, because what happens now is that you need to get three different ecosystems together mobile programming, embedded programming and cloud programming. And those are really three different developer types. You can't hire somebody who's good at all three. I mean, maybe you can, but not many. So all of that is challenges that are driving this this this this industry, >>you kind of referred to this distributed network and a lot of people you know, they refer to this. The next generation cloud is this hyper distributed system. When you include the edge and multiple clouds that etcetera space, maybe that's too extreme. But to your point, at least I inferred there's a There's an issue of Leighton. See, there's the speed of light s So what? What? What is the implication then for HBC? Does that mean I have tow Have all the data in one place? Can I move the compute to the data architecturally, What are you seeing there? >>Well, you fundamentally want to optimize when to move data and when to move, Compute. Right. So is it better to move data to compute? Or is it better to bring compute to data and under what conditions? And the dancer is gonna be different for different use cases. It's like, really, is it worth my while to make the trip, get my processing done and then come back? Or should I just developed processing capability right here? Moving data is really expensive and relatively speaking. It has become even more expensive, while the price of everything has dropped down its price has dropped less than than than like processing. So it is now starting to make sense to do a lot of local processing because processing is cheap and moving data is expensive Deep Use an example of that, Uh, you know, we call this in C two processing like, you know, let's not move data. If you don't have to accept that we live in the age of big data, so data is huge and wants to be moved. And that optimization, I think, is part of what you're what you're referring to. >>Yeah, So a couple examples might be autonomous vehicles. You gotta have to make decisions in real time. You can't send data back to the cloud flip side of that is we talk about space borne computers. You're collecting all this data You can at some point. You know, maybe it's a year or two after the lived out its purpose. You ship that data back and a bunch of disk drives or flash drives, and then load it up into some kind of HPC system and then have at it and then you doom or modeling and learn from that data corpus, right? I mean those air, >>right? Exactly. Exactly. Yeah. I mean, you know, driverless vehicles is a great example, because it is obviously coming fast and furious, no pun intended. And also, it dovetails nicely with the smart city, which dovetails nicely with I o. T. Because it is in an urban area. Mostly, you can afford to have a lot of antenna, so you can give it the five g density that you want. And it requires the Layton sees. There's a notion of how about if my fleet could communicate with each other. What if the car in front of me could let me know what it sees, That sort of a thing. So, you know, vehicle fleets is going to be in a non opportunity. All of that can bring all of what we talked about. 21 place. >>Well, that's interesting. Okay, so yeah, the fleets talking to each other. So kind of a Byzantine fault. Tolerance. That problem that you talk about that z kind of cool. I wanna I wanna sort of clothes on quantum. It's hard to get your head around. Sometimes You see the demonstrations of quantum. It's not a one or zero. It could be both. And you go, What? How did come that being so? And And of course, there it's not stable. Uh, looks like it's quite a ways off, but the potential is enormous. It's of course, it's scary because we think all of our, you know, passwords are already, you know, not secure. And every password we know it's gonna get broken. But give us the give us the quantum 101 And let's talk about what the implications. >>All right, very well. So first off, we don't need to worry about our passwords quite yet. That that that's that's still ways off. It is true that analgesic DM came up that showed how quantum computers can fact arise numbers relatively fast and prime factory ization is at the core of a lot of cryptology algorithms. So if you can fact arise, you know, if you get you know, number 21 you say, Well, that's three times seven, and those three, you know, three and seven or prime numbers. Uh, that's an example of a problem that has been solved with quantum computing, but if you have an actual number, would like, you know, 2000 digits in it. That's really harder to do. It's impossible to do for existing computers and even for quantum computers. Ways off, however. So as you mentioned, cubits can be somewhere between zero and one, and you're trying to create cubits Now there are many different ways of building cubits. You can do trapped ions, trapped ion trapped atoms, photons, uh, sometimes with super cool, sometimes not super cool. But fundamentally, you're trying to get these quantum level elements or particles into a superimposed entanglement state. And there are different ways of doing that, which is why quantum computers out there are pursuing a lot of different ways. The whole somebody said it's really nice that quantum computing is simultaneously overhyped and underestimated on. And that is that is true because there's a lot of effort that is like ways off. On the other hand, it is so exciting that you don't want to miss out if it's going to get somewhere. So it is rapidly progressing, and it has now morphed into three different segments. Quantum computing, quantum communication and quantum sensing. Quantum sensing is when you can measure really precise my new things because when you perturb them the quantum effects can allow you to measure them. Quantum communication is working its way, especially in financial services, initially with quantum key distribution, where the key to your cryptography is sent in a quantum way. And the data sent a traditional way that our efforts to do quantum Internet, where you actually have a quantum photon going down the fiber optic lines and Brookhaven National Labs just now demonstrated a couple of weeks ago going pretty much across the, you know, Long Island and, like 87 miles or something. So it's really coming, and and fundamentally, it's going to be brand new algorithms. >>So these examples that you're giving these air all in the lab right there lab projects are actually >>some of them are in the lab projects. Some of them are out there. Of course, even traditional WiFi has benefited from quantum computing or quantum analysis and, you know, algorithms. But some of them are really like quantum key distribution. If you're a bank in New York City, you very well could go to a company and by quantum key distribution services and ship it across the you know, the waters to New Jersey on that is happening right now. Some researchers in China and Austria showed a quantum connection from, like somewhere in China, to Vienna, even as far away as that. When you then put the satellite and the nano satellites and you know, the bent pipe networks that are being talked about out there, that brings another flavor to it. So, yes, some of it is like real. Some of it is still kind of in the last. >>How about I said I would end the quantum? I just e wanna ask you mentioned earlier that sort of the geopolitical battles that are going on, who's who are the ones to watch in the Who? The horses on the track, obviously United States, China, Japan. Still pretty prominent. How is that shaping up in your >>view? Well, without a doubt, it's the US is to lose because it's got the density and the breadth and depth of all the technologies across the board. On the other hand, information age is a new eyes. Their revolution information revolution is is not trivial. And when revolutions happen, unpredictable things happen, so you gotta get it right and and one of the things that these technologies enforce one of these. These revolutions enforce is not just kind of technological and social and governance, but also culture, right? The example I give is that if you're a farmer, it takes you maybe a couple of seasons before you realize that you better get up at the crack of dawn and you better do it in this particular season. You're gonna starve six months later. So you do that to three years in a row. A culture has now been enforced on you because that's how it needs. And then when you go to industrialization, you realize that Gosh, I need these factories. And then, you know I need workers. And then next thing you know, you got 9 to 5 jobs and you didn't have that before. You don't have a command and control system. You had it in military, but not in business. And and some of those cultural shifts take place on and change. So I think the winner is going to be whoever shows the most agility in terms off cultural norms and governance and and and pursuit of actual knowledge and not being distracted by what you think. But what actually happens and Gosh, I think these exa scale technologies can make the difference. >>Shaheen Khan. Great cast. Thank you so much for joining us to celebrate the extra scale day, which is, uh, on 10. 18 on dso. Really? Appreciate your insights. >>Likewise. Thank you so much. >>All right. Thank you for watching. Keep it right there. We'll be back with our next guest right here in the Cube. We're celebrating Exa scale day right back.

Published Date : Oct 16 2020

SUMMARY :

he is the co host of Radio free HPC Shaheen. How are you to analysts like you because you bring an independent perspective. And the megatrends that drive that in our mind And then you see it permeating into all these trends. You get it and you can't get rid And it was just this This is, you know, tons of money flowing in and and then, And then you experimented to prove the theories you know, competition. And it turns out as we all know that for a I, you need a lot more data than you thought. ai winter, even though, you know, the technology never went away. is similar to H B. C. The skill set that you need is the skill set community doesn't like to talk about crypto because you know that you know the fraud and everything else. And with some of these exa scale technologies, we're trying to, you know, we're getting to that point for Well, that's really interesting the way you described it, essentially the the confluence of crypto is coming from that turns out to be a non trivial, you know, partial differential equation. I want to ask you about that because there's a lot of discussion about real time influencing AI influencing Did somebody come into the scene or is it just you know that you know, they became night, Because, you see, you know the classical intel they're trying to put And then people say, Oh, I know I can use that for a I And you know, now you move it to a I say, Can I move the compute to the data architecturally, What are you seeing there? an example of that, Uh, you know, we call this in C two processing like, it and then you doom or modeling and learn from that data corpus, so you can give it the five g density that you want. It's of course, it's scary because we think all of our, you know, passwords are already, So if you can fact arise, you know, if you get you know, number 21 you say, and ship it across the you know, the waters to New Jersey on that is happening I just e wanna ask you mentioned earlier that sort of the geopolitical And then next thing you know, you got 9 to 5 jobs and you didn't have that before. Thank you so much for joining us to celebrate the Thank you so much. Thank you for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Shaheen KhanPERSON

0.99+

ChinaLOCATION

0.99+

ViennaLOCATION

0.99+

AustriaLOCATION

0.99+

MIT Media LabORGANIZATION

0.99+

New York CityLOCATION

0.99+

Orion XORGANIZATION

0.99+

New JerseyLOCATION

0.99+

50QUANTITY

0.99+

IBMORGANIZATION

0.99+

DavePERSON

0.99+

9QUANTITY

0.99+

ShanePERSON

0.99+

Long IslandLOCATION

0.99+

AI LabORGANIZATION

0.99+

Cray ResearchORGANIZATION

0.99+

Brookhaven National LabsORGANIZATION

0.99+

JapanLOCATION

0.99+

Kendall Square ResearchORGANIZATION

0.99+

5 jobsQUANTITY

0.99+

CovePERSON

0.99+

2000 digitsQUANTITY

0.99+

United StatesLOCATION

0.99+

Hewlett Packard EnterpriseORGANIZATION

0.99+

Danny HillisPERSON

0.99+

a yearQUANTITY

0.99+

half a dozenQUANTITY

0.98+

third thingQUANTITY

0.98+

bothQUANTITY

0.98+

threeQUANTITY

0.98+

oneQUANTITY

0.98+

64QUANTITY

0.98+

Exa Scale DayEVENT

0.98+

32QUANTITY

0.98+

six months laterDATE

0.98+

64 bitQUANTITY

0.98+

third pillarQUANTITY

0.98+

16QUANTITY

0.97+

firstQUANTITY

0.97+

HBCORGANIZATION

0.97+

one placeQUANTITY

0.97+

87 milesQUANTITY

0.97+

tensQUANTITY

0.97+

Mark FernandezPERSON

0.97+

zeroQUANTITY

0.97+

ShaheenPERSON

0.97+

sevenQUANTITY

0.96+

first jobQUANTITY

0.96+

HPC TechnologiesORGANIZATION

0.96+

twoQUANTITY

0.94+

three different ecosystemsQUANTITY

0.94+

every 10 secondsQUANTITY

0.94+

every five secondsQUANTITY

0.93+

ByzantinePERSON

0.93+

Exa scale dayEVENT

0.93+

second thingQUANTITY

0.92+

MoorePERSON

0.9+

years agoDATE

0.89+

HPCORGANIZATION

0.89+

three yearsQUANTITY

0.89+

three different developerQUANTITY

0.89+

Exascale DayEVENT

0.88+

GalileoPERSON

0.88+

three timesQUANTITY

0.88+

a couple of weeks agoDATE

0.85+

exa scale dayEVENT

0.84+

D. CPERSON

0.84+

many years agoDATE

0.81+

a decade agoDATE

0.81+

aboutDATE

0.81+

C twoTITLE

0.81+

one thingQUANTITY

0.8+

10. 18DATE

0.8+

DrPERSON

0.79+

past 34 decadesDATE

0.77+

two thingsQUANTITY

0.76+

LeightonORGANIZATION

0.76+

11 simple wayQUANTITY

0.75+

21 placeQUANTITY

0.74+

three different segmentsQUANTITY

0.74+

more than 100 mQUANTITY

0.73+

FPGORGANIZATION

0.73+

decadesQUANTITY

0.71+

fiveQUANTITY

0.7+

Drug Discovery and How AI Makes a Difference Panel | Exascale Day


 

>> Hello everyone. On today's panel, the theme is Drug Discovery and how Artificial Intelligence can make a difference. On the panel today, we are honored to have Dr. Ryan Yates, principal scientist at The National Center for Natural Products Research, with a focus on botanicals specifically the pharmacokinetics, which is essentially how the drug changes over time in our body and pharmacodynamics which is essentially how drugs affects our body. And of particular interest to him is the use of AI in preclinical screening models to identify chemical combinations that can target chronic inflammatory processes such as fatty liver disease, cognitive impairment and aging. Welcome, Ryan. Thank you for coming. >> Good morning. Thank you for having me. >> The other distinguished panelist is Dr. Rangan Sukumar, our very own, is a distinguished technologist at the CTO office for High Performance Computing and Artificial Intelligence with a PHD in AI and 70 publications that can be applied in drug discovery, autonomous vehicles and social network analysis. Hey Rangan, welcome. Thank you for coming, by sparing the time. We have also our distinguished Chris Davidson. He is leader of our HPC and AI Application and Performance Engineering team. His job is to tune and benchmark applications, particularly in the applications of weather, energy, financial services and life sciences. Yes so particular interest is life sciences he spent 10 years in biotech and medical diagnostics. Hi Chris, welcome. Thank you for coming. >> Nice to see you. >> Well let's start with your Chris, yes, you're regularly interfaced with pharmaceutical companies and worked also on the COVID-19 White House Consortium. You know tell us, let's kick this off and tell us a little bit about your engagement in the drug discovery process. >> Right and that's a good question I think really setting the framework for what we're talking about here is to understand what is the drug discovery process. And that can be kind of broken down into I would say four different areas, there's the research and development space, the preclinical studies space, clinical trial and regulatory review. And if you're lucky, hopefully approval. Traditionally this is a slow arduous process it costs a lot of money and there's a high amount of error. Right, however this process by its very nature is highly iterate and has just huge amounts of data, right it's very data intensive, right and it's these characteristics that make this process a great target for kind of new approaches in different ways of doing things. Right, so for the sake of discussion, right, go ahead. >> Oh yes, so you mentioned data intensive brings to mind Artificial Intelligence, you know, so Artificial Intelligence making the difference here in this process, is that so? >> Right, and some of those novel approaches are actually based on Artificial Intelligence whether it's deep learning and machine learning, et cetera, you know, prime example would say, let's just say for the sake of discussion, let's say there's a brand new virus, causes flu-like symptoms, shall not be named if we focus kind of on the R and D phase, right our goal is really to identify target for the treatment and then screen compounds against it see which, you know, which ones we take forward right to this end, technologies like cryo-electron, cryogenic electron microscopy, just a form of microscopy can provide us a near atomic biomolecular map of the samples that we're studying, right whether that's a virus, a microbe, the cell that it's attaching to and so on, right AI, for instance, has been used in the particle picking aspect of this process. When you take all these images, you know, there are only certain particles that we want to take and study, right whether they have good resolution or not whether it's in the field of the frame and image recognition is a huge part of this, it's massive amounts of data in AI can be very easily, you know, used to approach that. Right, so with docking, you can take the biomolecular maps that you achieved from cryo-electron microscopy and you can take those and input that into the docking application and then run multiple iterations to figure out which will give you the best fit. AI again, right, this is iterative process it's extremely data intensive, it's an easy way to just apply AI and get that best fit doing something in a very, you know, analog manner that would just take humans very long time to do or traditional computing a very long time to do. >> Oh, Ryan, Ryan, you work at the NCNPR, you know, very exciting, you know after all, you know, at some point in history just about all drugs were from natural products yeah, so it's great to have you here today. Please tell us a little bit about your work with the pharmaceutical companies, especially when it is often that drug cocktails or what they call Polypharmacology, is the answer to complete drug therapy. Please tell us a bit more with your work there. >> Yeah thank you again for having me here this morning Dr. Goh, it's a pleasure to be here and as you said, I'm from the National Center for Natural Products Research you'll hear me refer to it as the NCNPR here in Oxford, Mississippi on the Ole Miss Campus, beautiful setting here in the South and so, what, as you said historically, what the drug discovery process has been, and it's really not a drug discovery process is really a therapy process, traditional medicine is we've looked at natural products from medicinal plants okay, in these extracts and so where I'd like to begin is really sort of talking about the assets that we have here at the NCNPR one of those prime assets, unique assets is our medicinal plant repository which comprises approximately 15,000 different medicinal plants. And what that allows us to do, right is to screen mine, that repository for activities so whether you have a disease of interest or whether you have a target of interest then you can use this medicinal plant repository to look for actives, in this case active plants. It's really important in today's environment of drug discovery to really understand what are the actives in these different medicinal plants which leads me to the second unique asset here at the NCNPR and that is our what I'll call a plant deconstruction laboratory so without going into great detail, but what that allows us to do is through a how to put workstation, right, is to facilitate rapid isolation and identification of phytochemicals in these different medicinal plants right, and so things that have historically taken us weeks and sometimes months, think acetylsalicylic acid from salicylic acid as a pain reliever in the willow bark or Taxol, right as an anti-cancer drug, right now we can do that with this system on the matter of days or weeks so now we're talking about activity from a plant and extract down to phytochemical characterization on a timescale, which starts to make sense in modern drug discovery, alright and so now if you look at these phytochemicals, right, and you ask yourself, well sort of who is interested in that and why, right what are traditional pharmaceutical companies, right which I've been working with for 20, over 25 years now, right, typically uses these natural products where historically has used these natural products as starting points for new drugs. Right, so in other words, take this phytochemical and make chemicals synthetic modifications in order to achieve a potential drug. But in the context of natural products, unlike the pharmaceutical realm, there is often times a big knowledge gap between a disease and a plant in other words I have a plant that has activity, but how to connect those dots has been really laborious time consuming so it took us probably 50 years to go from salicylic acid and willow bark to synthesize acetylsalicylic acid or aspirin it just doesn't work in today's environment. So casting about trying to figure out how we expedite that process that's when about four years ago, I read a really fascinating article in the Los Angeles Times about my colleague and business partner, Dr. Rangan Sukumar, describing all the interesting things that he was doing in the area of Artificial Intelligence. And one of my favorite parts of this story is basically, unannounced, I arrived at his doorstep in Oak Ridge, he was working Oak Ridge National Labs at the time, and I introduced myself to him didn't know what was coming, didn't know who I was, right and I said, hey, you don't know me you don't know why I'm here, I said, but let me tell you what I want to do with your system, right and so that kicked off a very fruitful collaboration and friendship over the last four years using Artificial Intelligence and it's culminated most recently in our COVID-19 project collaborative research between the NCNPR and HP in this case. >> From what I can understand also as Chris has mentioned highly iterative, especially with these combination mixture of chemicals right, in plants that could affect a disease. We need to put in effort to figure out what are the active components in that, that affects it yeah, the combination and given the layman's way of understanding it you know and therefore iterative and highly data intensive. And I can see why Rangan can play a huge significant role here, Rangan, thank you for joining us So it's just a nice segue to bring you in here, you know, given your work with Ryan over so many years now, tell I think I'm also quite interested in knowing a little about how it developed the first time you met and the process and the things you all work together on that culminated into the progress at the advanced level today. Please tell us a little bit about that history and also the current work. Rangan. >> So, Ryan, like he mentioned, walked into my office about four years ago and he was like hey, I'm working on this Omega-3 fatty acid, what can your system tell me about this Omega-3 fatty acid and I didn't even know how to spell Omega-3 fatty acids that's the disconnect between the technologist and the pharmacologist, they have terms of their own right since then we've come a long way I think I understand his terminologies now and he understands that I throw words like knowledge graphs and page rank and then all kinds of weird stuff that he's probably never heard in his life before right, so it's been on my mind off to different domains and terminologies in trying to accept each other's expertise in trying to work together on a collaborative project. I think the core of what Ryan's work and collaboration has led me to understanding is what happens with the drug discovery process, right so when we think about the discovery itself, we're looking at companies that are trying to accelerate the process to market, right an average drug is taking 12 years to get to market the process that Chris just mentioned, Right and so companies are trying to adopt what's called the in silico simulation techniques and in silico modeling techniques into what was predominantly an in vitro, in silico, in vivo environment, right. And so the in silico techniques could include things like molecular docking, could include Artificial Intelligence, could include other data-driven discovery methods and so forth, and the essential component of all the things that you know the discovery workflows have is the ability to augment human experts to do the best by assisting them with what computers do really really well. So, in terms of what we've done as examples is Ryan walks in and he's asking me a bunch of questions and few that come to mind immediately, the first few are, hey, you are an Artificial Intelligence expert can you sift through a database of molecules the 15,000 compounds that he described to prioritize a few for next lab experiments? So that's question number one. And he's come back into my office and asked me about hey, there's 30 million publications in PubMag and I don't have the time to read everything can you create an Artificial Intelligence system that once I've picked these few molecules will tell me everything about the molecule or everything about the virus, the unknown virus that shows up, right. Just trying to understand what are some ways in which he can augment his expertise, right. And then the third question, I think he described better than I'm going to was how can technology connect these dots. And typically it's not that the answer to a drug discovery problem sits in one database, right he probably has to think about uniproduct protein he has to think about phytochemical, chemical or informatics properties, data and so forth. Then he talked about the phytochemical interaction that's probably in another database. So when he is trying to answer other question and specifically in the context of an unknown virus that showed up in late last year, the question was, hey, do we know what happened in this particular virus compared to all the previous viruses? Do we know of any substructure that was studied or a different disease that's part of this unknown virus and can I use that information to go mine these databases to find out if these interactions can actually be used as a repurpose saying, hook, say this drug does not interact with this subsequence of a known virus that also seems to be part of this new virus, right? So to be able to connect that dot I think the abstraction that we are learning from working with pharma companies is that this drug discovery process is complex, it's iterative, and it's a sequence of needle in the haystack search problems, right and so one day, Ryan would be like, hey, I need to match genome, I need to match protein sequences between two different viruses. Another day it would be like, you know, I need to sift through a database of potential compounds, identified side effects and whatnot other day it could be, hey, I need to design a new molecule that never existed in the world before I'll figure out how to synthesize it later on, but I need a completely new molecule because of patentability reasons, right so it goes through the entire spectrum. And I think where HP has differentiated multiple times even the recent weeks is that the technology infusion into drug discovery, leads to several aha! Moments. And, aha moments typically happened in the other few seconds, and not the hours, days, months that Ryan has to laboriously work through. And what we've learned is pharma researchers love their aha moments and it leads to a sound valid, well founded hypothesis. Isn't that true Ryan? >> Absolutely. Absolutely. >> Yeah, at some point I would like to have a look at your, peak the list of your aha moments, yeah perhaps there's something quite interesting in there for other industries too, but we'll do it at another time. Chris, you know, with your regular work with pharmaceutical companies especially the big pharmas, right, do you see botanicals, coming, being talked about more and more there? >> Yeah, we do, right. Looking at kind of biosimilars and drugs that are already really in existence is kind of an important point and Dr. Yates and Rangan, with your work with databases this is something important to bring up and much of the drug discovery in today's world, isn't from going out and finding a brand new molecule per se. It's really looking at all the different databases, right all the different compounds that already exist and sifting through those, right of course data is mind, and it is gold essentially, right so a lot of companies don't want to share their data. A lot of those botanicals data sets are actually open to the public to use in many cases and people are wanting to have more collaborative efforts around those databases so that's really interesting to kind of see that being picked up more and more. >> Mm, well and Ryan that's where NCNPR hosts much of those datasets, yeah right and it's interesting to me, right you know, you were describing the traditional way of drug discovery where you have a target and a compound, right that can affect that target, very very specific. But from a botanical point of view, you really say for example, I have an extract from a plant that has combination of chemicals and somehow you know, it affects this disease but then you have to reverse engineer what those chemicals are and what the active ones are. Is that very much the issue, the work that has to be put in for botanicals in this area? >> Yes Doctor Goh, you hit it exactly. >> Now I can understand why a highly iterative intensive and data intensive, and perhaps that's why Rangan, you're highly valuable here, right. So tell us about the challenge, right the many to many intersection to try and find what the targets are, right given these botanicals that seem to affect the disease here what methods do you use, right in AI, to help with this? >> Fantastic question, I'm going to go a little bit deeper and speak like Ryan in terminology, but here we go. So with going back to about starting of our conversation right, so let's say we have a database of molecules on one side, and then we've got the database of potential targets in a particular, could be a virus, could be bacteria, could be whatever, a disease target that you've identified, right >> Oh this process so, for example, on a virus, you can have a number of targets on the virus itself some have the spike protein, some have the other proteins on the surface so there are about three different targets and others on a virus itself, yeah so a lot of people focus on the spike protein, right but there are other targets too on that virus, correct? >> That is exactly right. So for example, so the work that we did with Ryan we realized that, you know, COVID-19 protein sequence has an overlap, a significant overlap with previous SARS-CoV-1 virus, not only that, but it overlap with MERS, that's overlapped with some bad coronavirus that was studied before and so forth, right so knowing that and it's actually broken down into multiple and Ryan I'm going to steal your words, non-structural proteins, envelope proteins, S proteins, there's a whole substructure that you can associate an amino acid sequence with, right so on the one hand, you have different targets and again, since we did the work it's 160 different targets even on the COVID-19 mark, right and so you find a match, that we say around 36, 37 million molecules that are potentially synthesizable and try to figure it out which one of those or which few of those is actually going to be mapping to which one of these targets and actually have a mechanism of action that Ryan's looking for, that'll inhibit the symptoms on a human body, right so that's the challenge there. And so I think the techniques that we can unrule go back to how much do we know about the target and how much do we know about the molecule, alright. And if you start off a problem with I don't know anything about the molecule and I don't know anything about the target, you go with the traditional approaches of docking and molecular dynamics simulations and whatnot, right. But then, you've done so much docking before on the same database for different targets, you'll learn some new things about the ligands, the molecules that Ryan's talking about that can predict potential targets. So can you use that information of previous protein interactions or previous binding to known existing targets with some of the structures and so forth to build a model that will capture that essence of what we have learnt from the docking before? And so that's the second level of how do we infuse Artificial Intelligence. The third level, is to say okay, I can do this for a database of molecules, but then what if the protein-protein interactions are all over the literature study for millions of other viruses? How do I connect the dots across different mechanisms of actions too? Right and so this is where the knowledge graph component that Ryan was talking about comes in. So we've put together a database of about 150 billion medical facts from literature that Ryan is able to connect the dots and say okay, I'm starting with this molecule, what interactions do I know about the molecule? Is there a pretty intruding interaction that affects the mechanism of pathway for the symptoms that a disease is causing? And then he can go and figure out which protein and protein in the virus could potentially be working with this drug so that inhibiting certain activities would stop that progression of the disease from happening, right so like I said, your method of options, the options you've got is going to be, how much do you know about the target? How much do you know the drug database that you have and how much information can you leverage from previous research as you go down this pipeline, right so in that sense, I think we mix and match different methods and we've actually found that, you know mixing and matching different methods produces better synergies for people like Ryan. So. >> Well, the synergies I think is really important concept, Rangan, in additivities, synergistic, however you want to catch that. Right. But it goes back to your initial question Dr. Goh, which is this idea of polypharmacology and historically what we've done with traditional medicines there's more than one active, more than one network that's impacted, okay. You remember how I sort of put you on both ends of the spectrum which is the traditional sort of approach where we really don't know much about target ligand interaction to the completely interpretal side of it, right where now we are all, we're focused on is, in a single molecule interacting with a target. And so where I'm going with this is interesting enough, pharma has sort of migrate, started to migrate back toward the middle and what I mean by that, right, is we had these in a concept of polypharmacology, we had this idea, a regulatory pathway of so-called, fixed drug combinations. Okay, so now you start to see over the last 20 years pharmaceutical companies taking known, approved drugs and putting them in different combinations to impact different diseases. Okay. And so I think there's a really unique opportunity here for Artificial Intelligence or as Rangan has taught me, Augmented Intelligence, right to give you insight into how to combine those approved drugs to come up with unique indications. So is that patentability right, getting back to right how is it that it becomes commercially viable for entities like pharmaceutical companies but I think at the end of the day what's most interesting to me is sort of that, almost movement back toward that complex mixture of fixed drug combination as opposed to single drug entity, single target approach. I think that opens up some really neat avenues for us. As far as the expansion, the applicability of Artificial Intelligence is I'd like to talk to, briefly about one other aspect, right so what Rang and I have talked about is how do we take this concept of an active phytochemical and work backwards. In other words, let's say you identify a phytochemical from an in silico screening process, right, which was done for COVID-19 one of the first publications out of a group, Dr. Jeremy Smith's group at Oak Ridge National Lab, right, identified a natural product as one of the interesting actives, right and so it raises the question to our botanical guy, says, okay, where in nature do we find that phytochemical? What plants do I go after to try and source botanical drugs to achieve that particular end point right? And so, what Rangan's system allows us to do is to say, okay, let's take this phytochemical in this case, a phytochemical flavanone called eriodictyol and say, where else in nature is this found, right that's a trivial question for an Artificial Intelligence system. But for a guy like me left to my own devices without AI, I spend weeks combing the literature. >> Wow. So, this is brilliant I've learned something here today, right, If you find a chemical that actually, you know, affects and addresses a disease, right you can actually try and go the reverse way to figure out what botanicals can give you those chemicals as opposed to trying to synthesize them. >> Well, there's that and there's the other, I'm going to steal Rangan's thunder here, right he always teach me, Ryan, don't forget everything we talk about has properties, plants have properties, chemicals have properties, et cetera it's really understanding those properties and using those properties to make those connections, those edges, those sort of interfaces, right. And so, yes, we can take something like an eriodictyol right, that example I gave before and say, okay, now, based upon the properties of eriodictyol, tell me other phytochemicals, other flavonoid in this case, such as that phytochemical class of eriodictyols part right, now tell me how, what other phytochemicals match that profile, have the same properties. It might be more economically viable, right in other words, this particular phytochemical is found in a unique Himalayan plant that I've never been able to source, but can we find something similar or same thing growing in, you know a bush found all throughout the Southeast for example, like. >> Wow. So, Chris, on the pharmaceutical companies, right are they looking at this approach of getting, building drugs yeah, developing drugs? >> Yeah, absolutely Dr. Goh, really what Dr. Yates is talking about, right it doesn't help us if we find a plant and that plant lives on one mountain only on the North side in the Himalayas, we're never going to be able to create enough of a drug to manufacture and to provide to the masses, right assuming that the disease is widespread or affects a large enough portion of the population, right so understanding, you know, not only where is that botanical or that compound but understanding the chemical nature of the chemical interaction and the physics of it as well where which aspect affects the binding site, which aspect of the compound actually does the work, if you will and then being able to make that at scale, right. If you go to these pharmaceutical companies today, many of them look like breweries to be honest with you, it's large scale, it's large back everybody's clean room and it's, they're making the microbes do the work for them or they have these, you know, unique processes, right. So. >> So they're not brewing beer okay, but drugs instead. (Christopher laughs) >> Not quite, although there are pharmaceutical companies out there that have had a foray into the brewery business and vice versa, so. >> We should, we should visit one of those, yeah (chuckles) Right, so what's next, right? So you've described to us the process and how you develop your relationship with Dr. Yates Ryan over the years right, five years, was it? And culminating in today's, the many to many fast screening methods, yeah what would you think would be the next exciting things you would do other than letting me peek at your aha moments, right what would you say are the next exciting steps you're hoping to take? >> Thinking long term, again this is where Ryan and I are working on this long-term project about, we don't know enough about botanicals as much as we know about the synthetic molecules, right and so this is a story that's inspired from Simon Sinek's "Infinite Game" book, trying to figure it out if human population has to survive for a long time which we've done so far with natural products we are going to need natural products, right. So what can we do to help organizations like NCNPR to stage genomes of natural products to stage and understand the evolution as we go to understand the evolution to map the drugs and so forth. So the vision is huge, right so it's not something that we want to do on a one off project and go away but in the process, just like you are learning today, Dr. Goh I'm going to be learning quite a bit, having fun with life. So, Ryan what do you think? >> Ryan, we're learning from you. >> So my paternal grandfather lived to be 104 years of age. I've got a few years to get there, but back to "The Infinite Game" concept that Rang had mentioned he and I discussed that quite frequently, I'd like to throw out a vision for you that's well beyond that sort of time horizon that we have as humans, right and that's this right, is our current strategy and it's understandable is really treatment centric. In other words, we have a disease we develop a treatment for that disease. But we all recognize, whether you're a healthcare practitioner, whether you're a scientist, whether you're a business person, right or whatever occupation you realize that prevention, right the old ounce, prevention worth a pound of cure, right is how can we use something like Artificial Intelligence to develop preventive sorts of strategies that we are able to predict with time, right that's why we don't have preventive treatment approach right, we can't do a traditional clinical trial and say, did we prevent type two diabetes in an 18 year old? Well, we can't do that on a timescale that is reasonable, okay. And then the other part of that is why focus on botanicals? Is because, for the most part and there are exceptions I want to be very clear, I don't want to paint the picture that botanicals are all safe, you should just take botanicals dietary supplements and you'll be safe, right there are exceptions, but for the most part botanicals, natural products are in fact safe and have undergone testing, human testing for thousands of years, right. So how do we connect those dots? A preventive strategy with existing extent botanicals to really develop a healthcare system that becomes preventive centric as opposed to treatment centric. If I could wave a magic wand, that's the vision that I would figure out how we could achieve, right and I do think with guys like Rangan and Chris and folks like yourself, Eng Lim, that that's possible. Maybe it's in my lifetime I got 50 years to go to get to my grandfather's age, but you never know, right? >> You bring really, up two really good points there Ryan, it's really a systems approach, right understanding that things aren't just linear, right? And as you go through it, there's no impact to anything else, right taking that systems approach to understand every aspect of how things are being impacted. And then number two was really kind of the downstream, really we've been discussing the drug discovery process a lot and kind of the kind of preclinical in vitro studies and in vivo models, but once you get to the clinical trial there are many drugs that just fail, just fail miserably and the botanicals, right known to be safe, right, in many instances you can have a much higher success rate and that would be really interesting to see, you know, more of at least growing in the market. >> Well, these are very visionary statements from each of you, especially Dr. Yates, right, prevention better than cure, right, being proactive better than being reactive. Reactive is important, but we also need to focus on being proactive. Yes. Well, thank you very much, right this has been a brilliant panel with brilliant panelists, Dr. Ryan Yates, Dr. Rangan Sukumar and Chris Davidson. Thank you very much for joining us on this panel and highly illuminating conversation. Yeah. All for the future of drug discovery, that includes botanicals. Thank you very much. >> Thank you. >> Thank you.

Published Date : Oct 16 2020

SUMMARY :

And of particular interest to him Thank you for having me. technologist at the CTO office in the drug discovery process. is to understand what is and you can take those and input that is the answer to complete drug therapy. and friendship over the last four years and the things you all work together on of all the things that you know Absolutely. especially the big pharmas, right, and much of the drug and somehow you know, the many to many intersection and then we've got the database so on the one hand, you and so it raises the question and go the reverse way that I've never been able to source, approach of getting, and the physics of it as well where okay, but drugs instead. foray into the brewery business the many to many fast and so this is a story that's inspired I'd like to throw out a vision for you and the botanicals, right All for the future of drug discovery,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ChrisPERSON

0.99+

RyanPERSON

0.99+

Chris DavidsonPERSON

0.99+

NCNPRORGANIZATION

0.99+

Rangan SukumarPERSON

0.99+

National Center for Natural Products ResearchORGANIZATION

0.99+

RanganPERSON

0.99+

Simon SinekPERSON

0.99+

ChristopherPERSON

0.99+

HPORGANIZATION

0.99+

12 yearsQUANTITY

0.99+

third questionQUANTITY

0.99+

50 yearsQUANTITY

0.99+

Rangan SukumarPERSON

0.99+

10 yearsQUANTITY

0.99+

Infinite GameTITLE

0.99+

15,000 compoundsQUANTITY

0.99+

Jeremy SmithPERSON

0.99+

104 yearsQUANTITY

0.99+

COVID-19OTHER

0.99+

Ryan YatesPERSON

0.99+

30 million publicationsQUANTITY

0.99+

five yearsQUANTITY

0.99+

third levelQUANTITY

0.99+

70 publicationsQUANTITY

0.99+

Eng LimPERSON

0.99+

Oak Ridge National LabsORGANIZATION

0.99+

160 different targetsQUANTITY

0.99+

20QUANTITY

0.99+

thousands of yearsQUANTITY

0.99+

second levelQUANTITY

0.99+

GohPERSON

0.99+

The Infinite GameTITLE

0.99+

HimalayasLOCATION

0.99+

over 25 yearsQUANTITY

0.99+

two different virusesQUANTITY

0.98+

more than one networkQUANTITY

0.98+

YatesPERSON

0.98+

late last yearDATE

0.98+

oneQUANTITY

0.98+

todayDATE

0.98+

about 150 billion medical factsQUANTITY

0.98+

one databaseQUANTITY

0.97+

both endsQUANTITY

0.97+

SARS-CoV-1 virusOTHER

0.97+

second unique assetQUANTITY

0.97+

single drugQUANTITY

0.97+

Oak Ridge National LabORGANIZATION

0.97+

Oak RidgeLOCATION

0.97+

Jane Hite-Syed, Carol Jones, & Suzanne McGovern | Splunk .conf19


 

>>live from Las Vegas. It's the Cube covering Splunk dot com. 19. Brought to you by spunk. >>Okay, welcome back. Everyone secures live coverage in Las Vegas response dot com. I'm John Ferrier, host of the Cube. We're here for three days is a spunk. Spunk dot com 10 anniversary of their end user conference way Got some great guests here. They talk about diversity, inclusion breaking the barrier. Women in tech We got some great guests. Jane Heights, I add Si io National government service is Thanks for joining us. Appreciate it. Carol Jones, CEO Sandy and National Labs from Albuquerque Think coming on to CEOs of excited Suzanne McGovern. Diversity and inclusion talent leader for Splunk Thanks for guys joining us. Really appreciate it. I want to get into a panel you guys discuss because this is the area of really important to the workforce. Global workforce is made up of men and women, but most of the software text built by mostly men. But we get that second. I want to get in, find out what you guys are doing in your rolls because you guys, the journey is breaking through the barrier. Start with you. What's your role. What do you do? Their CEO. >>So I am CEO for National Government Service Is we do Medicare claims processing for the federal government. We also have a number of I t contracts with CMS. And, um, I organ. I have an organization of 331 people. Very different organization, Data center, infrastructure security gambit of I t, if you will. A great group of people divers were in Baltimore. Where? In Indianapolis. We're out of the kingdom office. How >>long have you been in 19 >>My career. So yes. Yeah. The waves. Yes. I have seen the waves have Daryl >>Jones and I'm c i o same National Laboratories. It's a federally funded research and development center. So we do research and development from on behalf of the U. S. Government. I have about 500 employees and 400 contractors. So we provide the I T for Sadia, all gametes of it, including some classified environments. >>A lot of security, your role. What's wrong? >>I'm the chief diversity officer. It's Plus I get the pleasure to do that every day. A swell, a cz. It's everyone's job. Not just magically explode. But I'm very honored to do that. How to look after talent. >>I want to compliment you guys on your new branding. Thank not only is a cool and really picking orange, but also that position is very broad and everything is trade message. But the big posters have diversity. Not a bunch of men on the posters. So congratulations, it's anger. Representative is really important. Worth mentioning. Okay, let's start with the journey. The topic you guys just talked about on a panel here in Las Vegas is female leaders smashing the glass ceiling. So when you smash his last ceiling, did you get caught? Was her bleeding? What happened? Take us for your journey. What was big? Take away. What's the learnings? Share your stories. >>Well, a lot of it, as I shared today with Panel, is really learning and be having that Lerner mindset and learning from something that you do, which is part of your life. And I use the example of I'm married to an Indian Muslim, went to India, spent some time with his family, and they told me Let's be ready at 6 30 and I said, Okay, I'm ready. I'm ready. Dressed in 6 30 nobody else was ready. And everyone in the room said, Well, we're gonna have Chai first we're gonna have some tea And I was like, Well, you said 6 30 and I'm ready And, um, everyone said, Well, you know, we need to relax. We need to connect. We need to have some time So I took that back and said, You know what? We all need to make time for tea Way. All need to connect with our people and the individuals that work with us, And I've kind of taken that on through the last 20 years of being married, Tim. But connecting with individuals and your teams and your partner's is what's important and as what Lead Meeks. I've built those allies and that great group of people that >>being people centric, relationship driven, not so much chasing promotions or those kinds. >>That's what's worked for me. Yes, >>Carol, it's been your journey. Stories >>start a little bit of beginnings. I've been in Tech over 30 years. I got a bachelor's and marketing, and then I was looking to get my master's. So I got, um, I s degree, but I didn't know even to go into that field. So my professor said you needed to go into my s, so don't know that's too hard. You can't do that. You know, you could do it. So it's always been challenging myself and continuing learning. I worked at IBM then I was there in the time when they did great layoffs. So no, e he was 93 right to left. Only wonder he's gonna be left by the end of the year. >>You know, for the younger audience out there M I s stands from management information systems. Before that, there was data processing division which actually relevant today. Quite a journey. What a great spirit. What's the one thing that you could share? Folks, this is a lot of young women coming into the workforce, and a lot of people are looking at inspirational figures like yourselves that have been there and done that. There's a lot of mentoring going on is a lot of navigation for young women and understand minorities. And they just you guys, there's no real playbook. You guys have experiences. What's your advice, folks out watching >>my number one advice. And I gave this to people who are wanting to go into leadership. Trust yourself. Trust to you. Are you all got to this place because of the successful person you are and just continue to trust yourself to take advantage of those opportunities. Take a risk. I took a risk when my total focus was in Medicare. I was asked to do another job and I took another, you know, position. And it wasn't in Medicare. So you have to take those opportunities and risk and just trust that you're gonna get yourself. >>Carol. You're >>similar. It's to continue to grow and to be resilient, there'll be times in your career like a layoff where you don't know what you're gonna do. You bounce back and make it into uneven. Better job on. Take risks. I took a risk. I went into cybersecurity. Spent 10 years there, continuing learning and the Brazilian >>learnings key, right? I mean, one of the things about security mentioned 10 years. So much has changed, hasn't it? >>Well, it's bad. Guys still outnumber the good guys. That has changed faster. Exactly. Technologies change. >>Just talk about the diversity inclusion efforts. You guys have a Splunk Splunk cultures very open transparent on the technology solutions very enabling you actually enabling a lot of change on the solution side. Now we're seeing tech for good kind of stories because Texas Tech Tech for business. But also you're seeing speed and times value time to mission value, a new term way kicked around this morning. It's time to mission value. >>Yes. So I'm glad you mentioned data, right? We're data company, and we're very proud that we actually whole star diversity inclusion numbers, right? So way moved the needle 1.8% on gender last year, year on year pride, but not satisfied. We understand that there's much more to diversity inclusion than just gender, But our strategy is threefold for diversity. Inclusion. So it's work force, workplace marketplace farces around just where talk is improving our representation so that these women are no longer the only. These are in the minority that were much more represented, and we're lucky we have three women and our board. We have four women in our C suite, so we're making good good progress. But there's a lot more to do, and as I say, it's not just about gender. We want to do way, nor the innovation is fueled by diversity. So we want to try. You know, folks of different races, different ethnicity, military veterans, people with disability. We need everyone. It's belongs to be, since >>you guys are all three leaders in the industry, Thanks for coming on. Appreciate that. I want to ask you guys because culture seems to be a common thread. I mean, I do so money talks and interviews with leaders for all types, from digital transformation to Dev ops, the security and they always talk speeds in fees. But all the change comes from culture people on what I'm seeing is a pattern of success. Diversity inclusion works well if it's in the culture of the company, so one filter for anyone a woman or anyone is this is a company culturally aligned with it. So that's the question is what do you do when you have a culture that's aligned with it? And what do you do? There's a culture that's not allow, so you want to get out. But how do you unwind and how do you navigate and how do you see the size of signals? Because the date is there >>a way to certainly really harness and failed a culture of inclusion. And that's through employee resource groups in particular. So it's plunks. More than 50% of our spelunkers are actually members. Followers are allies on employee resource. So gives community. It gives that sense of inclusion so that everyone could bring their whole Selves to work. So, to your point, it really does build a different culture, different level of connection. And it's super different. >>Any thoughts on culture and signals look for good, bad, ugly, I mean, because you see a good ways taken right. Why not >>take a chance, right? Right. No, I think, you know, like you look at it and you decide, like some young women we were talking to, You know, Is this the right company for you? And if not, can you find an ally? You know, it's a feeling that the culture isn't there and helped educate him on help to get him to be Jack of what does he and his leaders, I think we have to always ask ourselves, Are we being inclusive for everyone >>and mine? I would spend it a little bit. Is that diversity and thoughts And how? When I joined this organization. Culture is a big factor that needs to change and some of the things that I'm working on, but to bring people to the table and hear those different thoughts and listen to them because they all do think differently. No matter color, race, gender, that sort of thing. So diversity and thought is really something that I try to focus in on >>carry. Palin was just on the Cuban CMO of Splunk and top of the logo's on the branding and, she said, was a great team effort. Love that because she's just really cool about that. And she said we had a lot of diversity and thought, which is a code word for debate. So when you have diversity, I want to get your thoughts on this because this is interesting. We live in a time where speed is a competitive advantage speed, creativity, productivity, relevance, scale. These air kind of the key kind of modern efforts. Diversity could slow things down, too, so but the benefit of diversity is more thought, more access to data. So the question is, what do you guys think about how companies or individuals could not lose the speed keep the game going on the speed and scale and get the benefits of the diversity because you don't want things to grind down. Toe halts way Slugs in the speed game get data more diverse. Data comes in. That's a technical issue. But with diversity, you >>want a challenge that, to be honest, because we're a data company in the details. Irrefutable. Right? So gender diverse Teams up inform homogeneous teams by about 15% if you take that to race and ethnicity was up to 33%. Companies like ourselves, of course, their numbers see an uptick in share price. It's a business imperative, right? We get that. It's the right thing to do. But this notion that it slows things down, you find a way right. You're really high performance. You find a way best time. So it doesn't always come fast, right? Sometimes it's about patients and leadership. So I'm on the side of data and the data is there. If you tickle, di bear seems just perform better, >>so if it is slowing down, your position would be that it's not working >>well. Yes, I know. I think you got to find a way to work together, you know? And that's a beautiful thing about places like spun were hyper cool, right? It's crazy. Tons of work to do different things were just talking about this in the break way have this unwritten rule that we don't hire. I'll see jerks for >>gender neutral data, saris, origin, gender neutral data. >>Yeah, absolutely no hiring folks are really gonna, you know, have a different cultural impact there. No cultural adds the organization way. Need everyone on bats. Beautiful thing. And that's what makes it special. >>I think you know, is you start to work and be more inclusive. You start to build trust. So it goes back to what Jane was talking about relationships. And so you gotta have that foundation and you can move fast and still be reversed. I >>think that's a very key point. Trust is critical because people are taking chances whether they're male or female. If the team works there like you see a Splunk, it shouldn't be an issue becomes an issue when it's issue. All right, so big Walk away and learnings over the years in your journey. What was some moments of greatness? Moments of struggle where you brought your whole self to bear around resolving in persevering what were some challenges in growth moments that really made a difference in your life breaking through that ceiling. >>Wow. Well, um, I'm a breast cancer survivor, and I, uh, used my job and my strength to pull me through that. And I was working during the time, and I had a great leader who took it upon herself to make sure that I could work if I wanted. Thio are not. And it really opened that up for me to be able to say, I can still bring my whole self, whatever that is today that I'm doing. And I look back at that time and that was a strength from inside that gave me that trust myself. You're going to get through it. And that was a challenging personal time, But yet had so many learnings in it, from a career perspective to >>story thanks for sharing Caroline stories and struggles and successes that made him big impact of you. Your >>life. It was my first level one manager job. I got into cybersecurity and I didn't know what I was doing. I came back. My boss of Carol. I don't know what you did this year, and so I really had to learn to communicate. But prior to that, you know that I would never have been on TV. Never would have done public speaking like we did today. So I had to hire a coach and learn hadn't forward on communications. Thanks for sharing stories, I think a >>pivotal moment for me. I was in management, consultants say, for the first half of my career, Dad's first child and I was on the highway with a local Klein seven in the morning. Closet Night started on a Sunday midday, so I didn't see her a week the first night. I know many women who do it just wasn't my personal choice. So I decided to take a roll internal and not find Jason and was told that my career would be over, that I would be on a track, that I wouldn't get partner anymore. And it really wasn't the case. I find my passions in the people agenda did leadership development. I didn't teach our role. I got into diversity, including which I absolutely love. So I think some of those pivotal moments you talked about resilient earlier in the panel is just to dig, dying to know what's important to you personally and for the family and really follow your to north and you know, it works out in the end, >>you guys air inspiration. Thank you for sharing that, I guess on a personal question for me, as a male, there's a lot of men who want to do good. They want to be inclusive as well. Some don't know what to do. Don't even are free to ask for directions, right? So what would you advise men? How could they help in today's culture to move the needle forward, to support beach there from trust and all these critical things that make a difference what you say to that? >>So the research says that women don't suffer from a lack of mentorship. The sucker suffer from a lack of advocacy. So I would say if you want to do something super easy and impactful, go advocate for women, go advocate for women. You know who is amazing I there and go help her forward >>in Korea. And you can do that. Whatever gender you are, you can advocate for others. Yeah, also echo the advocacy. I would agree. >>Trust relationships, yes, across the board >>way, said Thio. Some of the women and our allies today WAAS bring your whole self. And I would just encourage men to do that, to bring your whole self to work, because that's what speeds up the data exchange. That's what it speeds up. Results >>take a chance, >>Take a chance, bring your whole self >>get trust going right. He opened a communicated and look at the date on the photo booth. Datable driver. Thank you guys so much for sharing your stories in The Cube, you think. Uses the stories on the Cube segments. Cube coverage here in Las Vegas for the 10th stop. Compass Accused seventh year John Ferrier with Q. Thanks for watching.

Published Date : Oct 23 2019

SUMMARY :

19. Brought to you by spunk. I want to get in, find out what you guys are doing in your rolls if you will. I have seen the waves have Daryl So we do research and development from on behalf of the U. A lot of security, your role. It's Plus I get the pleasure to do that I want to compliment you guys on your new branding. and be having that Lerner mindset and learning from something that you do, being people centric, relationship driven, not so much chasing promotions That's what's worked for me. Carol, it's been your journey. So my professor said you needed to go into my s, so don't know that's too hard. What's the one thing that you could share? of the successful person you are and just continue to trust yourself to take advantage of You're and the Brazilian I mean, one of the things about security mentioned 10 years. Guys still outnumber the good guys. very enabling you actually enabling a lot of change on the solution side. These are in the minority that were much more represented, So that's the question is what do you do So, to your point, it really does build a different culture, because you see a good ways taken right. And if not, can you find an ally? Culture is a big factor that needs to change and some of the things that I'm working on, So the question is, what do you guys think about how So I'm on the side of data and the data is there. I think you got to find a way to work together, really gonna, you know, have a different cultural impact there. I think you know, is you start to work and be more inclusive. If the team works there like you see a Splunk, it shouldn't be an issue And I look back at that time and that that made him big impact of you. I don't know what you did this year, and so I really you talked about resilient earlier in the panel is just to dig, dying to know what's important to you So what would you advise men? So I would say if you want to do something super easy And you can do that. to bring your whole self to work, because that's what speeds up the data exchange. Thank you guys so much for sharing your

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IndianapolisLOCATION

0.99+

KoreaLOCATION

0.99+

Carol JonesPERSON

0.99+

Suzanne McGovernPERSON

0.99+

John FerrierPERSON

0.99+

ThioPERSON

0.99+

BaltimoreLOCATION

0.99+

CarolPERSON

0.99+

JanePERSON

0.99+

JasonPERSON

0.99+

Las VegasLOCATION

0.99+

Las VegasLOCATION

0.99+

U. S. GovernmentORGANIZATION

0.99+

Jane Hite-SyedPERSON

0.99+

CarolinePERSON

0.99+

IBMORGANIZATION

0.99+

PalinPERSON

0.99+

10 yearsQUANTITY

0.99+

TimPERSON

0.99+

Jane HeightsPERSON

0.99+

first childQUANTITY

0.99+

IndiaLOCATION

0.99+

400 contractorsQUANTITY

0.99+

National Government ServiceORGANIZATION

0.99+

93QUANTITY

0.99+

first halfQUANTITY

0.99+

JonesPERSON

0.99+

More than 50%QUANTITY

0.99+

10th stopQUANTITY

0.99+

331 peopleQUANTITY

0.99+

Spunk dot comORGANIZATION

0.99+

1.8%QUANTITY

0.99+

Texas Tech TechORGANIZATION

0.99+

6 30DATE

0.99+

three womenQUANTITY

0.99+

about 500 employeesQUANTITY

0.99+

todayDATE

0.98+

last yearDATE

0.98+

three daysQUANTITY

0.98+

DarylPERSON

0.98+

seventh yearQUANTITY

0.98+

this yearDATE

0.98+

IndianOTHER

0.98+

four womenQUANTITY

0.97+

over 30 yearsQUANTITY

0.97+

about 15%QUANTITY

0.96+

first levelQUANTITY

0.96+

secondQUANTITY

0.96+

CubeCOMMERCIAL_ITEM

0.95+

a weekQUANTITY

0.95+

Sandy andORGANIZATION

0.95+

three leadersQUANTITY

0.94+

SplunkORGANIZATION

0.93+

up to 33%QUANTITY

0.93+

National LaboratoriesORGANIZATION

0.93+

CompassORGANIZATION

0.93+

first nightQUANTITY

0.92+

JackPERSON

0.92+

oneQUANTITY

0.92+

SadiaORGANIZATION

0.91+

AlbuquerqueLOCATION

0.91+

Splunk .conf19OTHER

0.9+

Splunk dot comORGANIZATION

0.9+

Lead MeeksORGANIZATION

0.87+

CubanOTHER

0.86+

one thingQUANTITY

0.85+

10 anniversaryQUANTITY

0.85+

Sunday middayDATE

0.84+

National LabsORGANIZATION

0.82+

BrazilianOTHER

0.82+

wavesEVENT

0.8+

Tons of workQUANTITY

0.79+

CubeORGANIZATION

0.79+

firstQUANTITY

0.76+

19DATE

0.69+

KleinORGANIZATION

0.67+

this morningDATE

0.66+

sevenQUANTITY

0.63+

Arista Thurman III, Argonne | Veritas Vision Solution Day 2018


 

>> Narrator: From Chicago, it's The Cube. Covering Veritas Vision Solution Day 2018. Brought to you by Veritas. >> Welcome back to the Windy City everybody. You're watching The Cube, the leader in live tech coverage. We're goin' out to the events, we extract a signal from the noise. We're here at the Veritas Vision Solution Days in Chicago. We were just a few weeks ago we were at the iconic Tavern on the Green in New York City. We're here at the Palmer House Hotel, beautiful hotel right in downtown Chicago near the lake. It's just an awesome venue, it's great to be here. Arista Thurman III is here, he's the principle computer engineer at the Argonne National Labs. Great to see you, thanks for coming on The Cube. >> Yah, good to be here, thanks. >> So tell the audience about Argonne National Labs. What do you guys all about? >> About science, so we're all about the advancement of science. We do a lot of different experiments from technology for batteries and chemistry. The project we're working on is the advanced photon source, which is a light source that's used to collect data in experiments with a photon source. >> OK, so you're an IT practitioner, >> Arista Thurman: That is correct. >> Serving scientists. >> Arista Thurman: Yes. >> What's that like? Is that like an IT guy serving doctors? Are they kind of particular? >> Arista Thurman: A little bit. >> There's some challenges there, but yah it's great. So basically you have a unique customer base, and they have additional requirements. So, it's not like a normal customer base. They're very smart people. They have a lot of demands and needs, and we do our best to provide all the services they require. >> Yah, so given that they're technical people, they may not be IT people but they have an affinity to technology. First of all, it must be hard to BS them, right? (laughter) >> Arista Thurman: No doubt, no doubt. >> They'd cut through that, so you got to be straight with them. And they're probably pretty demanding, right? I mean, they have limited resources and limited time and limited budgets, and they're probably pounding you pretty hard. Is that the case, or are they more forgiving? >> They're great people to work with, but there can be some challenges. I mean, it's unique in the idea that they work on multiple platforms. So it's from Unix to Linux to Mac. Multiple computers in their offices, multiple data requirements. And a lot of things happen without a lot of process and planning. Some things are ad hoc. So, it puts a little bit of strain sometimes on you to try to make everything happen in the amount of time they have. And everything is There's some challenges with regard to how to get things done in a timely fashion when you don't know what's going to happen with some of these experiments. >> I mean I imagine, right? They can probably deal with a lot of uncertain processes because that's kind of their lives, right? You must have to cobble things together for them to get them a solution sometimes, is that the case? >> We do sometimes. I think it's all about getting enough funding and enough resources to take care of all the different experiments. >> Dave Vellante: A balancing act. >> Yah. >> Dave Vellante: Ya so you look after, compute and storage. >> Arista Thurman: Yes. >> Right, so talk about what's happening generally there and then specifically data protection. >> So in general, my primary focus is Linux. Linus administration, Red Hat Linux. And we've seen a lot of data growth over the last five years and we've got projection for more growth as we are planning for an upgrade. So we're going to change our bmine and make it more efficient. Have a better light source and that's all planned in the next two to three years. And so, there's a lot of extra projects on top of our normal workload. We have a lot of equipment that probably needs to be refreshed. There's resources and with IT and any kind of data management things change. So whatever we're doing today, in the next three years we'll be doing something different because things change with regard to CPU speeds, performance of IO networking, storage requirements. All those things are continually growing exponentially. And when scientists want to do more experiments and they get new resources in, it's going to require more resources for us to maintain and keep them operational at the speeds and performance they want. >> Yah, we do hundreds of events with The Cube. We do about 130 events this year, and a lot of them are so-called "big data" orientation. And when you go to those data oriented events, you hear a lot of, sort of the roots of that. Or at least similarities to the scientific technical computing areas and it's sort of evolved into big data. A lot of the disciplines are similar. So, you're talking about a lot of data here. Sometimes it's really fast data, and there's a lot of variety, presumably, in that data. So how much data are we talking about? Is it huge volumes? Maybe you could describe your data environment. >> Primarily we have things broken up into different areas. So we have some block storage, and that provides a lot of our virtual the back-end for our virtualization environments which is either Microsoft or Red Hat RHV. I would estimate that's somewhere in a petabyte range. And then we also have our NAS file systems which spread across multiple environments providing NFS version three and four and also to Windows clients CIFS and some of the Mac clients also utilize that. And that's at about a little less than a petabyte. We also have high performance computing and that's a couple petabytes, at least. And all those numbers are just estimates because we're constantly growing. >> Any given time it's changing. But you're talking about multiple petabytes. So how do you back up, how do you protect multiple petabytes? >> Well I think it has to, it's all about a balancing act 'cause it's hard to back up everything in that same time window. So we have multiple backup environments providing resources for individual platforms. Like for Windows we'd do something a little different than we'd do for Linux. And we have different retention policies. Some environments need to be retained, retention is three years and some is six months, some three months, and so you have to have a system of migrating your storage to faster discs and then layer off the tape for long term retention. It's a challenge that we're constantly fighting with. >> How do you use Veritas? You're a customer obviously? >> Yah, we've been a Veritas customer for many years and we utilize Veritas in our virtualization environments. They kind of help us out with central platform. We've actually explored other things but the most cost effective thing to us at this point has been Veritas. We utilize them to back up primarily our NAS and our black files, our black file systems that provide most of the virtualization. >> Why Veritas? What is it about them that you have an affinity for? There's a zillion other backup software vendors out there, why Veritas? >> I think we have invested a lot in Veritas over the years. Predating my time at Argonne we've been using Veritas. In my previous career, in Sun Microsystems we also had some kind of relationship with Veritas. So it's easy and I think, like I mentioned earlier, we explored other things but it wasn't cost effective to make that kind of change. And it's been a reliable product. It does require work but it has been a reliable product. >> So, you'd mentioned your Linux, Red Hat Linux. >> Arista Thurman: Yes. >> So you saw this IBM announced it's going to buy Red Hat for 34 billion dollars. What were your thoughts when you heard that news? >> I was like, "Wow, what is going to happen now?" I was like, "How is that going to impact us?" Is it going to change our licensing model? Or is it going to be a good thing, or a bad thing? Right now we just don't really know. We're just kind of waiting and seeing. But it's like, OK, I mean that's a big deal. It is a biggest deal certainly from IBM. Their biggest previous deal was I think Cognos at five billion, so this dwarfs that. The deal of course doesn't close probably till the second half of 2019. So it's going to take a while. But look, IBM is known when it buys software companies, saw this with SPSS, you've seen it with other companies that it buys, it often times will change the pricing model. How do you license Red Hat? Do you have an enterprise license agreement? Do you know offhand? >> We do have an agreement with them. >> Dave Vellante: Lock that in. Lock that long term in now before the deal goes down. >> One of my counterparts is in charge of that part of it. So I'm sure we'll be having that conversation shortly. >> Yah, interesting. Well listen, Arista thanks very much for coming on The Cube, really appreciate your insight. >> Thank you. >> It's great to meet you, all right, you're welcome. Thanks for watching everybody, it's a wrap from Chicago. This has been The Cube, Veritas Vision Days. Check out SiliconAngle.com for all the news. TheCube.net is where you'll find these videos and a lot of others. You'll see where The Cube is next. Wikibon.com for all the research. Thanks for the team here, appreciate your help on the ground. We're out from Chicago, this is Dave Vellante. We'll see ya next time.

Published Date : Nov 10 2018

SUMMARY :

Brought to you by Veritas. Arista Thurman III is here, he's the principle So tell the audience about Argonne National Labs. We do a lot of different experiments So basically you have a unique customer base, First of all, it must be hard to BS them, right? Is that the case, or are they more forgiving? So it's from Unix to Linux to Mac. and enough resources to take care of Right, so talk about what's happening We have a lot of equipment that A lot of the disciplines are similar. and some of the Mac clients also utilize that. So how do you back up, how do you protect 'cause it's hard to back up everything but the most cost effective thing to us at this point I think we have invested a lot in Veritas over the years. So you saw this IBM announced it's going to buy So it's going to take a while. Lock that long term in now before the deal goes down. One of my counterparts is in charge of that part of it. for coming on The Cube, really appreciate your insight. and a lot of others.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

Argonne National LabsORGANIZATION

0.99+

Arista ThurmanPERSON

0.99+

three yearsQUANTITY

0.99+

VeritasORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

six monthsQUANTITY

0.99+

ChicagoLOCATION

0.99+

five billionQUANTITY

0.99+

34 billion dollarsQUANTITY

0.99+

Sun MicrosystemsORGANIZATION

0.99+

WindowsTITLE

0.99+

ArgonneORGANIZATION

0.99+

Arista Thurman IIIPERSON

0.99+

OneQUANTITY

0.99+

ArgonnePERSON

0.99+

AristaPERSON

0.99+

three monthsQUANTITY

0.99+

this yearDATE

0.99+

CognosORGANIZATION

0.98+

New York CityLOCATION

0.98+

LinuxTITLE

0.98+

second half of 2019DATE

0.97+

UnixTITLE

0.96+

todayDATE

0.95+

Wikibon.comORGANIZATION

0.94+

FirstQUANTITY

0.94+

Red HatORGANIZATION

0.92+

about 130 eventsQUANTITY

0.92+

Windy CityLOCATION

0.91+

hundreds of eventsQUANTITY

0.91+

Veritas Vision Solution Day 2018EVENT

0.91+

few weeks agoDATE

0.87+

Palmer House HotelORGANIZATION

0.87+

last five yearsDATE

0.86+

MacCOMMERCIAL_ITEM

0.85+

Veritas Vision Solution DaysEVENT

0.83+

TheCube.netOTHER

0.8+

less than a petabyteQUANTITY

0.77+

couple petabytesQUANTITY

0.76+

LinusORGANIZATION

0.73+

SPSSORGANIZATION

0.73+

SiliconAngle.comORGANIZATION

0.73+

Red Hat LinuxTITLE

0.72+

Veritas VisionEVENT

0.72+

CubeORGANIZATION

0.71+

twoQUANTITY

0.71+

Tavern on the GreenLOCATION

0.67+

CubeTITLE

0.67+

next three yearsDATE

0.65+

The CubeORGANIZATION

0.62+

The CubeTITLE

0.61+

fourQUANTITY

0.52+

versionQUANTITY

0.47+

petabytesQUANTITY

0.44+

yearsQUANTITY

0.44+

zillionQUANTITY

0.44+

RHVTITLE

0.43+

threeOTHER

0.24+

Ken King & Sumit Gupta, IBM | IBM Think 2018


 

>> Narrator: Live from Las Vegas, it's the Cube, covering IBM Think 2018, brought to you by IBM. >> We're back at IBM Think 2018. You're watching the Cube, the leader in live tech coverage. My name is Dave Vellante and I'm here with my co-host, Peter Burris. Ken King is here; he's the general manager of OpenPOWER from IBM, and Sumit Gupta, PhD, who is the VP, HPC, AI, ML for IBM Cognitive. Gentleman, welcome to the Cube >> Sumit: Thank you. >> Thank you for having us. >> So, really, guys, a pleasure. We had dinner last night, talked about Picciano who runs the OpenPOWER business, appreciate you guys comin' on, but, I got to ask you, Sumit, I'll start with you. OpenPOWER, Cognitive systems, a lot of people say, "Well, that's just the power system. "This is the old AIX business, it's just renaming it. "It's a branding thing.", what do you say? >> I think we had a fundamental strategy shift where we realized that AI was going to be the dominant workload moving into the future, and the systems that have been designed today or in the past are not the right systems for the AI future. So, we also believe that it's not just about silicon and even a single server. It's about the software, it's about thinking at the react level and the data center level. So, fundamentally, Cognitive Systems is about co-designing hardware and software with an open ecosystem of partners who are innovating to maximize the data and AI support at a react level. >> Somebody was talkin' to Steve Mills, probably about 10 years ago, and he said, "Listen, if you're going to compete with Intel, "you can copy them, that's not what we're going to do." You know, he didn't like the spark strategy. "We have a better strategy.", is what he said, and "Oh, strategies, we're going to open it up, "we're going to try to get 10% of the market. "You know, we'll see if we can get there.", but, Ken, I wonder if you could sort of talk about, just from a high level, the strategy and maybe go into the segments. >> Yeah, absolutely, so, yeah, you're absolutely right on the strategy. You know, we have completely opened up the architecture. Our focus on growth is around having an ecosystem and an open architecture so everybody can innovate on top of it effectively and everybody in the ecosystem can profit from it and gains good margins. So, that's the strategy, that's how we design the OpenPOWER ecosystem, but, you know, our segments, our core segments, AIX in Unix is still a core, very big core segment of ours. Unix itself is flat to declining, but AIX is continuing to take share in that segment through all the new innovations we're delivering. The other segments are all growth segments, high growth segments, whether it's SAP HANA, our cognitive infrastructure in modern day to platform, or even what we're doing in the HyperScale data centers. Those are all significant growth opportunities for us, and those are all Linux based, and, so, that is really where a lot of the OpenPOWER initiatives are driving growth for us and leveraging the fact that, through that ecosystem, we're getting a lot of incremental innovation that's occurring and it's delivering competitive differentiation for our platform. I say for our platform, but that doesn't mean just for IBM, but for all the ecosystem partners as well, and a lot of that was on display on Monday when we had our OpenPOWER summit. >> So, to talk about more about the OpenPOWER summit, what was that all about, who was there? Give us some stats on OpenPOWER and ecosystem. >> Yeah, absolutely. So, it was a good day, we're up to well over 300 members. We have over 50 different systems that are coming out in the market from IBM or our partners. Over 20 different manufacturers out there actually developing OpenPOWER systems. A lot of announcements or a lot of statements that were made at the summit that we thought were extremely valuable, first of all, we got the number one server vendor in Europe, Atos, designing and developing P9, the number on in Japan, Hitachi, the number one in China, Inspur. We got top ODMs like Super Micro, Wistron, and others that are also developing their power nine. We have a lot of different component providers on the new PCIe gen four, on the open cabinet capabilities, a lot of announcements made by a number of component partners and accelerator partners at the summit as well. The other thing I'm excited about is we have over 70 ISVs now on the platform, and a number of statements were made and announcements on Monday from people like MapD, Anaconda, H2O, Conetica and others who are leveraging those innovations bought on the platform like NVLink and the coherency between GPU and CPU to do accelerated analytics and accelerated GPU database kind of capabilities, but the thing that had me the most excited on Monday were the end users. I've always said, and the analysts always ask me the questions of when are you going to start penetration in the market? When are you going to show that you've got a lot of end users deploying this? And there were a lot of statements by a lot of big players on Monday. Google was on stage and publicly said the IO was amazing, the memory bandwidth is amazing. We are deploying Zaius, which is the power nine server, in our data centers and we're ready for scale, and it's now Google strong which is basically saying that this thing is hardened and ready for production, but we also (laughs) had a number of other significant ones, Tencent talkin' about deploying OpenPOWER, 30% better efficiency, 30% less server resources required, the cloud armor of Alibaba talkin' about how they're putting on their on their X-Dragon, they have it in a piler program, they're asking everybody to use it now so they can figure out how do they go into production. PayPal made statements about how they're using it, but the machine learning and deep learning to do fraud detection, and we even had Limelight, who is not as big a name, but >> CDN, yeah. >> They're a CDN tool provider to people like Netflix and others. We're talkin' about the great capability with the IO and the ability to reduce the buffering and improve the streaming for all these CDN providers out there. So, we were really excited about all those end users and all the things they're saying. That demonstrates the power of this ecosystem. >> Alright, so just to comment on the architecture and then, I want to get into the Cognitive piece. I mean, you guys did, years ago, little Indians, recognizing you got to get software based to be compatible. You mentioned, Ken, bandwidth, IO bandwidth, CAPI stuff that you've done. So, there's a lot of incentives, especially for the big hyperscale guys, to be able to do more with less, but, to me, let's get into the AI, the Cognitive piece. Bob Picciano comes over from running a $15 billion analytics business, so, obviously, he's got some knowledge. He's bringin' in people like you with all these cool buzzwords in your title. So, talk a little bit about infrastructure for AI and why power is the right platform. >> Sure, so, I think we all recognize that the performance advantages and even power advantages that we were getting from Dennard scaling, also known as Moore's law, is over, right. So, people talk about the end of Moore's Law, and that's really the end of gaining processor performance with Dennard scaling and the Moore's Law. What we believe is that to continue to meet the performance needs of all of these new AI and data workloads, you need accelerators, and not just computer accelerators, you actually need accelerated networking. You need accelerated storage, you need high-density memory sitting very close to the compute power, and, if you really think about it, what's happened is, again, system view, right, we're not silicon view, we're looking at the system. The minute you start looking at the silicon you realize you want to get the data to where the computer is, or the computer where the data is. So, it all becomes about creating bigger pipelines, factor of pipelines, to move data around to get to the right compute piece. For example, we put much more emphasis on a much faster memory system to make sure we are getting data from the system memory to the CPU. >> Coherently. >> Coherently, that's the main memory. We put interfaces on power nine including NVLink, OpenCAPI, and PCIe gen four, and that enabled us to get that data either from the network to the system memory, or out back to the network, or to storage, or to accelerators like GPUs. We built and embedded these high-speed interconnects into power nine, into the processor. Nvidia put NVLink into their GPU, and we've been working with marketers like Xilinx and Mellanox on getting OpenCAPI onto their components. >> And we're seeing up to 10x for both memory bandwidth and IO over x86 which is significant. You should talk about how we're seeing up to 4x improvement in training of MLDL algorithms over x86 which is dramatic in how quickly you can get from data to insight, right? You could take training and turn it from weeks to days, or days to hours, or even hours to minutes, and that makes a huge difference in what you can do in any industry as far as getting insight out of your data which is the competitive differentiator in today's environment. >> Let's talk about this notion of architecture, or systems especially. The basic platform for how we've been building systems has been relatively consistent for a long time. The basic approach to how we think about building systems has been relatively consistent. You start with the database manager, you run it on an Intel processor, you build your application, you scale it up based on SMP needs. There's been some variations; we're going into clustering, because we do some other things, but you guys are talking about something fundamentally different, and flash memory, the ability to do flash storage, which dramatically changes the relationship between the processor and the data, means that we're not going to see all of the organization of the workloads around the server, see how much we can do in it. It's really going to be much more of a balanced approach. How is power going to provide that more balanced systems approach across as we distribute data, as we distribute processing, as we create a cloud experience that isn't in one place, but is in more places. >> Well, this ties exactly to the point I made around it's not just accelerated compute, which we've all talked about a lot over the years, it's also about accelerated storage, accelerated networking, and accelerated memories, right. This is really, the point being, that the compute, if you don't have a fast pipeline into the processor from all of this wonderful storage and flash technology, there's going to be a choke point in the network, or they'll be a choke point once the data gets to the server, you're choked then. So, a lot of our focus has been, first of all, partnering with a company like Mellanox which builds extremely high bandwidth, high-speed >> And EOF. >> Right, right, and I'm using one as an example right. >> Sure. >> I'm using one as an example and that's where the large partnerships, we have like 300 partnerships, as Ken talked about in the OpenPOWER foundation. Those partnerships is because we brought together all of these technology providers. We believe that no one company can own the agenda of technology. No one company can invest enough to continue to give us the performance we need to meet the needs of the AI workloads, and that's why we want to partner with all these technology vendors who've all invested billions of dollars to provide the best systems and software for AI and data. >> But fundamentally, >> It's the whole construct of data centric systems, right? >> Right. >> I mean, sometimes you got to process the data in the network, right? Sometimes you got to process the data in the storage. It's not just at the CPU, the GPUs a huge place for processing that data. >> Sure. >> How do you do that all coherently and how do things work together in a system environment is crucial versus a vertically integrated capability where the CPU provider continues to put more and more into the processor and disenfranchise the rest of the ecosystem. >> Well, that was the counter building strategies that we want to talk about. You have Intel who wants to put as much on the die as possible. It's worked quite well for Intel over the years. You had to take a different strategy. If you tried to take Intel on with that strategy, you would have failed. So, talk about the different philosophies, but really I'm interested in what it means for things like alternative processing and your relationship in your ecosystem. >> This is not about company strategies, right. I mean, Intel is a semiconductor company and they think like a semiconductor company. We're a systems and software company, we think like that, but this is not about company strategy. This is about what the market needs, what client workloads need, and if you start there, you start with a data centric strategy. You start with data centric systems. You think about moving data around and making sure there is heritage in this computer, there is accelerated computer, you have very fast networks. So, we just built the US's fastest supercomputer. We're currently building the US's fastest supercomputer which is the project name is Coral, but there are two supercomputers, one at Oak Ridge National Labs and one at Lawrence Livermore. These are the ultimate HPC and AI machines, right. Its computer's a very important part of them, but networking and storage is just as important. The file system is just as important. The cluster management software is just as important, right, because if you are serving data scientists and a biologist, they don't want to deal with, "How many servers do I need to launch this job on? "How do I manage the jobs, how do I manage the server?" You want them to just scale, right. So, we do a lot of work on our scalability. We do a lot of work in using Apache Spark to enable cluster virtualization and user virtualization. >> Well, if we think about, I don't like the term data gravity, it's wrong a lot of different perspectives, but if we think about it, you guys are trying to build systems in a world that's centered on data, as opposed to a world that's centered on the server. >> That's exactly right. >> That's right. >> You got that, right? >> That's exactly right. >> Yeah, absolutely. >> Alright, you guys got to go, we got to wrap, but I just want to close with, I mean, always says infrastructure matters. You got Z growing, you got power growing, you got storage growing, it's given a good tailwind to IBM, so, guys, great work. Congratulations, got a lot more to do, I know, but thanks for >> It's going to be a fun year. comin' on the Cube, appreciate it. >> Thank you very much. >> Thank you. >> Appreciate you having us. >> Alright, keep it right there, everybody. We'll be back with our next guest. You're watching the Cube live from IBM Think 2018. We'll be right back. (techno beat)

Published Date : Mar 21 2018

SUMMARY :

covering IBM Think 2018, brought to you by IBM. Ken King is here; he's the general manager "This is the old AIX business, it's just renaming it. and the systems that have been designed today or in the past You know, he didn't like the spark strategy. So, that's the strategy, that's how we design So, to talk about more about the OpenPOWER summit, the questions of when are you going to and the ability to reduce the buffering the big hyperscale guys, to be able to do more with less, from the system memory to the CPU. Coherently, that's the main memory. and that makes a huge difference in what you can do and flash memory, the ability to do flash storage, This is really, the point being, that the compute, Right, right, and I'm using one as an example the large partnerships, we have like 300 partnerships, It's not just at the CPU, the GPUs and disenfranchise the rest of the ecosystem. So, talk about the different philosophies, "How do I manage the jobs, how do I manage the server?" but if we think about it, you guys are trying You got Z growing, you got power growing, comin' on the Cube, appreciate it. We'll be back with our next guest.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Peter BurrisPERSON

0.99+

Dave VellantePERSON

0.99+

Ken KingPERSON

0.99+

IBMORGANIZATION

0.99+

Steve MillsPERSON

0.99+

KenPERSON

0.99+

SumitPERSON

0.99+

Bob PiccianoPERSON

0.99+

ChinaLOCATION

0.99+

MondayDATE

0.99+

EuropeLOCATION

0.99+

MellanoxORGANIZATION

0.99+

PayPalORGANIZATION

0.99+

10%QUANTITY

0.99+

AlibabaORGANIZATION

0.99+

JapanLOCATION

0.99+

Sumit GuptaPERSON

0.99+

OpenPOWERORGANIZATION

0.99+

30%QUANTITY

0.99+

$15 billionQUANTITY

0.99+

oneQUANTITY

0.99+

NvidiaORGANIZATION

0.99+

HitachiORGANIZATION

0.99+

ConeticaORGANIZATION

0.99+

XilinxORGANIZATION

0.99+

Las VegasLOCATION

0.99+

OpenPOWEREVENT

0.99+

GoogleORGANIZATION

0.99+

NetflixORGANIZATION

0.99+

AtosORGANIZATION

0.99+

PiccianoPERSON

0.99+

300 partnershipsQUANTITY

0.99+

IntelORGANIZATION

0.99+

AnacondaORGANIZATION

0.99+

InspurORGANIZATION

0.98+

two supercomputersQUANTITY

0.98+

LinuxTITLE

0.98+

Moore's LawTITLE

0.98+

over 300 membersQUANTITY

0.98+

USLOCATION

0.98+

SAP HANATITLE

0.97+

AIXORGANIZATION

0.97+

over 50 different systemsQUANTITY

0.97+

WistronORGANIZATION

0.97+

bothQUANTITY

0.97+

LimelightORGANIZATION

0.97+

H2OORGANIZATION

0.97+

UnixTITLE

0.97+

over 70 ISVsQUANTITY

0.97+

Over 20 different manufacturersQUANTITY

0.97+

billions of dollarsQUANTITY

0.96+

MapDORGANIZATION

0.96+

DennardORGANIZATION

0.95+

OpenCAPITITLE

0.95+

Moore's lawTITLE

0.95+

todayDATE

0.95+

single serverQUANTITY

0.94+

LawrenceLOCATION

0.93+

Oak Ridge National LabsORGANIZATION

0.93+

IBM CognitiveORGANIZATION

0.93+

TencentORGANIZATION

0.93+

nineQUANTITY

0.92+

one placeQUANTITY

0.91+

up to 10xQUANTITY

0.9+

X-DragonCOMMERCIAL_ITEM

0.9+

30% lessQUANTITY

0.9+

P9COMMERCIAL_ITEM

0.89+

last nightDATE

0.88+

CoralORGANIZATION

0.88+

AIXTITLE

0.87+

Cognitive SystemsORGANIZATION

0.86+