Caitlin Halferty, IBM & Allen Crane, USAA | IBM CDO Summit Spring 2018
>> Announcer: Live from downtown San Francisco, it's theCUBE, covering IBM Chief Data Officers Strategy Summit 2018, brought to you by IBM. >> We're back in San Francisco, everybody. This is theCUBE, the leader in live tech coverage, and we're here covering exclusive coverage of IBM's Chief Data Officer Strategy Summit. This is the summit, as I said, they book in at each coast, San Francisco and Boston. Intimate, a lot of senior practitioners, chief data officers, data folks, people who love data. Caitlyn Halferty is back. She's the Client Engagement Executive and the Chief Data Officer office at IBM. Great. And, Allen Crane, Vice President at USAA. >> Thank you. >> Good to see you. Thanks for coming on. All right. >> Thanks for having us. >> You're welcome. Well, good day today, as I said, a very intimate crowd. You're here as a sort of defacto CDO, learning, sharing, connecting with peers. Set up your role, Allen. Tell us about that. >> At USA, we've got a distributed data and analytics organization where we have centralized functions in our hub, and then each of the lines of business have their own data offices. I happen to have responsibility for all the different ways that our members interact with us, so about 100 million phone calls a year, about a couple billion internet and digital sessions a year, most of that is on mobile, and always lookin' at the ways that we can give back time to our membership, as well as our customer service reps, who we call our member service reps, so that they can serve our members better. The faster and more predictive we can be with being able to understand our members better and prompt our MSRs with the right information to serve them, then the more they can get on to the actual value of that conversation. >> A lot of data. So, one of the things that Inderpal talked about the very first time I met him, in Boston, he talked about the Five Pillars, and the first one was you have to understand as a CDO, how your organization gets value out of data. You said that could be direct monetization or, I guess, increased revenue, cut costs. That's value. >> Right. >> That's right. >> That's the starting point. >> Right. >> So, how did you start? >> Well, actually, it was the internal monetization. So, first off, I want to say USA never sells any of our member data, so we don't think of monetization in that framework, but we do think of it terms of how do we give something that's even more precious than money back to our company and to our members and the MSRs? And, that is really that gift of time. By removing friction from the system, we've been able to reduce calls per member, through digitization activities, and reduced transfers and reduced misdirects by over 10% every year. We're doing work with AI and machine learning to be able to better anticipate what the member is calling about, so that we can get them to the right place at the right time to the right set member service representatives. And, so all these things have resulted in, not just time savings but, obviously, that translates directly to bottom line savings, but at the end of the day, it's about increasing that member service level, increasing your responsiveness, increasing the speed that you're answering the phone, and ultimately increasing that member satisfaction. >> Yeah, customer satisfaction, lowers churn rates, that's a form of monetization, >> Absolutely. >> so it's hard dollars to the CFO, right? >> Absolutely, yeah. >> All right, let's talk about the role of the CDO. This is something that we touched on earlier. >> Yes. >> We're bringing it home here. >> Yes. >> Last segment. Where are we at with the role of the CDO? It was sort of isolated for years in regulated industries, >> Correct. >> permeated to mainstream organizations. >> Correct. >> Many of those mainstream organizations can move faster, 'cause their not regulated, so have we sort of reached parody between the regulated and the unregulated, and what do you discern there in terms of patterns and states of innovation? >> Sure. I think when we kicked off these summits in 2014, many of our CDOs came from CIO type organizations, defensive posture, you know, king of the data warehouse that we joke about, and now annuls reports of that time were saying maybe 20% of large organizations were investing in the CDO or similar individual responsible for enterprise data, and now we see analysts reports coming out to say upwards of 85, even 90%, of organizations are investing in someone responsible for that role of the CDO type. In my opening remarks this morning, I polled the room to say who's here for the first time. It was interesting, 69, 70% of attendees were joining us for the first time, and I went back, okay, who's been here last year, year before, and I said who was here from the beginning, 2014 with us, and Allen is one of the individuals who's been with us. And, as much as the topics have changed and the role has grown and the purview and scope of responsibilities, some topics have remained, our attendees tell us, they're still important, top-of-mind, and data monetization is one of those. So, we always have a panel on data monetization, and we've had some good discussions recently, that the idea of it's just the external resell, or something to do with selling data externally is one view, but really driving that internal value, and the ways you drive out those efficiencies is another perspective on it. So, fortunate to have Allen here. >> Well, we've been able to, for that very reason, we've been able to grow our team from about six or seven people five years ago to well over a hundred people, that's focused on how we inefficiency out of the system. That mere 10%, when your call-per-member reduction, when you're taking 30 million calls in the bank, you know, that's real dollars, three million calls out of the system that you can monetize like that. So, it's real value that the company sees in us, and I think that, in a sense, is really how you want to be growing in a data organization, because people see value in you, are willing to give you more, and then you start getting into those interesting conversations, if I gave you more people, could you get me more results? >> Let's talk about digital transformation and how it relates to all this. Presumably, you've got a top down initiative, the CEO says, he or she says, okay, this is important. We got to do it. Boom, there's the North Star. Let's go. What's the right regime that you're seeing? Obviously, you've got to have the executive buy-in, you've got the Chief Data Officer, you have the Chief Digital Officer, the Chief Operating Officer, the CFO's always going to be there, making sure things are on track. How are you seeing that whole thing shake out, at least in your organization? >> Well, one thing that we've been seeing is digital digitization or the digital transformation is not about just going only digital. It's how does all this work together. It can't just be an additive function, where you're still taking just as many calls and so forth, but it's got to be something that that experience online has got to do something that's transformative in your organization. So, we really look at the member all the way through that whole ecosystem, and not just through the digital lens. And, that's really where teams like ours have really been able to stitch together the member experience across all their channels that they're interacting with us, whether that's the marketing channels or the digital channels or the call channel, so that we can better understand that experience. But, it's certainly a complementary one. It can't just be an additive one. >> I wonder if we could talk about complacency, in terms of digital transformation. I talk to a lot of companies and there's discussion about digital, but you talk to a lot of people who say, well, we're doing fine. Maybe not in our industry. Insurance is one that hasn't been highly disruptive, financial services, things like aerospace. I'll be retired by the time this all, I mean, that's true, right? And, probably accurate. So, are you seeing a sense of complacency or are you seeing a sense of urgency, or a mix or both? What are you seeing, Caitlyn? >> Well, it's interesting, and people may not be aware, but I'm constantly polling our attendees to ask what are top-of-mind topics, what are you struggling with, where are you seeing successes, and digital was one that came up for this particular session, which is why tomorrow's keynote, we have our Chief Digital Officer giving the morning keynote, to show how our data office and digital office are partnering to drive transformation internally. So, at least for our perspective, in the internal side of it, we have a priority initiative, a cognitive sales advisor, and it's essentially intended to bring in disparate part of customer data, obtained through many different channels, all the ways that they engage with us, online and other, and then, deliver it through sales advisor app that empowers our digital sellers to better meet their revenue targets and impact, and develop more of a quality client relationship and improve that customer experience. So, internally, at least, it's been interesting to see one of our strongest partnerships, in terms of business unit, has been our data and digital office. They say, look, the quality of the data is at the core, you then enable our digital sellers, and our clients benefit, for a better client experience. >> Well, about a year ago, we absolutely changed the organization to align the data office with the digital office, so that reports to our executive counsel level, so their peers, that reporting to the same organization, to ensure that those strategies are connected. >> Yeah, so as Caitlyn was saying, this Chief Data Officer kind of emerged from a defensive posture of compliance, governance, data quality. The Chief Digital Officer, kind of new, oftentimes associated with marketing, more of an external, perhaps, facing role, not always. And then, the CIO, we'll say, well, wait a minute, data is the CIO's job, but, of course, the CIO, she's too busy trying to keep the lights on and make everything work. So, where does the technology organization fit? >> Well, all that's together, so when we brought all those things together at the organizational level, digital, data, and technology were all together, and even design. So, you guys are all peers, reporting into the executive committee, essentially, is that right? Yes, our data, technology, and design, and digital office are all peers reporting to the same executive level. And then, one of the other pillars that Inderpal talks about is the relationship with the line of business. So, how is that connective tissue created? Well, being on the side that is responsible for how all of our members interact, my organization touches every product, every line of business, every channel that our members are interacting with, so our data is actually shared across the organization, so right now, really my focus is to make sure that that data is as accessible as it can be across our enterprise partners, it's as democratized as it can be, it's as high as quality. And then, things that we're doing around machine learning and AI, can be enabled and plugged into from all those different lines of business. >> What does success look like in your organization? How do you know you're doing well? I mean, obviously, dropping money to the bottom line, but how are you guys measuring yourselves and setting objectives? What's your North Star? >> I think success, for me, is when you're doing a good job, to the point that people say that question, could you do more if I gave you more? That, to me, is the ultimate validation. It's how we grew as an organization. You know, we don't have to play that justification game When people are already coming to the table saying, You're doing great work. How can you do more great work? >> So, what's next for these summits? Are you doing Boston again in the fall? Is that right? Are you planning >> We are, we are, >> on doing that? >> and you know, fall of last year, we released the blueprint, and the intent was to say, hey, here's the reflection of our 18 months, internal journey, as well as all our client interactions and their feedback, and we said, we're coming back in the spring and we're showing you the detail of how we really built out these internal platforms. So, we released our hybrid on-prem Cloud showcase today, which was great, and to the level of specificity that shows that the product solutions, what we're using, the Flash Storage, some of the AI components of machine learning models. >> The cognitive systems component? >> Exactly. And then, our vision, to your question to the fall, is coming back with the public Cloud showcases. So, we're already internally doing work on our public Cloud, in particular respect to our backup, some of our very sensitive client data, as well as some initial deep learning models, so those are the three pieces we're doing in public Cloud internally, and just as we made the commitment to come back and unveil and show those detail, we want to come back in the fall and show a variety of public Cloud showcases where we're doing this work. And then, hopefully, we'll continue to partner and say, hey, here's how we're doing it. We'd love to see how you're doing it. Let's share some best practices, accelerate, build these capabilities. And, I'll say to your business benefit question, what we've found is once we've built that platform, we call it, internally, a one IBM architecture, out our platform, we can then drive critical initiatives for the enterprise. So, for us, GVPR, you know, we own delivery of GVPR readiness across the IBM corporation, working with senior executives in all of our lines of business, to make sure we get there. But, now we've got the responsibility to drive out initiatives like that cross business unit, to your question on the partnerships. >> The evolution of this event seems to be, well, it's got a lot of evangelism early on, and now it's really practical, sort of sharing, like you say, the blueprint, how to apply it, a lot of people asking questions, you know, there's different levels of maturity. Now, you guys back tomorrow? You got to panel, you guys are doing a panel on data monetization? >> We're doing a panel on data monetization tomorrow. >> Okay, and then, you've got Bob Lord and Inderpal talking about that, so perfect juxtaposition and teamwork of those two major roles. >> And, this is the first time we've really showcased the data/digital partnership and connection, so I'm excited, want to appeal to the developer viewpoint of this. So, I think it'll be a great conversation about data at the core, driving digital transformation. And then, as you said, our data monetization panel, both external efforts, as well as a lot of the internal value that we're all driving, so I think that'll be a great session tomorrow. >> Well, and it's important, 'cause there's a lot of confusing, and still is a lot of confusion about those roles, and you made the point early today, is look, there's a big organizational issue you have to deal with, particularly around data silos, MyData. I presume you guys are attacking that challenge? >> Absolutely. >> Still, it's still a-- >> It's an ongoing-- >> Oh, absolutely. >> I think we're getting a lot better at it, but you've got to lean in, because if it's not internal, it's some of the external challenges around. Now we're picking Cloud vendors and so forth. Ten years ago, we had our own silos and our own warehouses, if we had a warehouse, and then, we were kind of moving into our own silos in our own databases, and then as we democratized that, we solved the one problem, but now our data's so big and compute needs are so large that we have no choice but to get more external into Cloud. So, you have to lean in, because everything is changing at such a rapid rate. >> And, it requires leadership. >> Yep. >> Absolutely. >> The whole digital data really requires excellent leadership, vision. IBM's catalyzing a lot of that conversation, so congratulations on getting this going. Last thoughts. >> Oh, I would just say, we were joking that 2014, the first couple of summits, small group, maybe 20-30 participants figuring out how to best organize from a structural perspective, you set up the office, what sort of outcomes, metrics, are we going to measure against, and those things, I think, will continue to be topics of discussion, but now we see we've got about 500 data leaders that are tracking our journey and that are involved and engaged with us. We've done a lot in North America, we're starting to do more outside the geographies, as well, which is great to see. So, I just have to say I think it's interesting to see the topics that continue to be of interest, the governance, the data monetization, and then, the new areas around AI, machine learning, data science, >> data science >> the empowering developers, the DevOps delivery, how we're going to deliver that type of training. So, it's been really exciting to see the community grow and all the best practices leveraged, and look forward to continuing to do more of that this year as well. >> Well, you obviously get a lot of value out of these events. You were here at the first one, you're here today. So, 2018. Your thoughts? >> I think the first one, we were all trying to figure out who we are, what's our role, and it varied from I'm a individual contributor, data evangelist in the organization to I'm king of the warehouse thing. >> Right. >> And, largely, from that defensive standpoint. I think, today, you see a lot more people that are leaning in, leading data science teams, leading the future of where the organizations are going to be going. This is really where the center of a lot of organizations are starting to pivot and look, and see, where is the future, and how does data become the leading edge of where the organization is going, so it's pretty cool to be a part of a community like this that's evolving that way, but then also being able to have that at a local level within your own organization. >> Well, another big take-away for me is the USAA example shows that this can pay for itself when you grow your own organization from a handful of people to a hundred plus individuals, driving value, so it makes it easier to justify, when you can demonstrate a business case. Well, guys, thanks very much for helping me wrap here. >> Absolutely. >> I appreciate you having us here. >> Thank you. >> It's been a great event. Always a pleasure, hopefully, we'll see you in the fall. >> Sounds good. Thank you so much. >> All right, thanks, everybody, for watching. We're out. This is theCUBE from IBM CDO Summit. Check out theCUBE.net for all of the videos, siliconangle.com for all the news summaries of this event, and wikibon.com for all the research. We'll see you next time. (techy music)
SUMMARY :
brought to you by IBM. and the Chief Data Officer office at IBM. Good to see you. Well, good day today, as I said, a very intimate crowd. and always lookin' at the ways that we can give back time and the first one was you have to understand as a CDO, so that we can get them to the right place at the right time This is something that we touched on earlier. Where are we at with the role of the CDO? and the ways you drive out that you can monetize like that. the CFO's always going to be there, so that we can better understand that experience. So, are you seeing a sense of complacency giving the morning keynote, to show how our so that reports to our executive counsel level, data is the CIO's job, is the relationship with the line of business. When people are already coming to the table saying, and we're showing you the detail in all of our lines of business, to make sure we get there. The evolution of this event seems to be, Okay, and then, you've got about data at the core, driving digital transformation. and you made the point early today, is look, and then as we democratized that, we solved the one problem, IBM's catalyzing a lot of that conversation, and that are involved and engaged with us. So, it's been really exciting to see the community grow Well, you obviously get a lot of value data evangelist in the organization so it's pretty cool to be a part of a community so it makes it easier to justify, Always a pleasure, hopefully, we'll see you in the fall. Thank you so much. siliconangle.com for all the news summaries of this event,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Raj | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Caitlyn | PERSON | 0.99+ |
Pierluca Chiodelli | PERSON | 0.99+ |
Jonathan | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Jim | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Lynn Lucas | PERSON | 0.99+ |
Caitlyn Halferty | PERSON | 0.99+ |
$3 | QUANTITY | 0.99+ |
Jonathan Ebinger | PERSON | 0.99+ |
Munyeb Minhazuddin | PERSON | 0.99+ |
Michael Dell | PERSON | 0.99+ |
Christy Parrish | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Ed Amoroso | PERSON | 0.99+ |
Adam Schmitt | PERSON | 0.99+ |
SoftBank | ORGANIZATION | 0.99+ |
Sanjay Ghemawat | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Verizon | ORGANIZATION | 0.99+ |
Ashley | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Greg Sands | PERSON | 0.99+ |
Craig Sanderson | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Cockroach Labs | ORGANIZATION | 0.99+ |
Jim Walker | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Blue Run Ventures | ORGANIZATION | 0.99+ |
Ashley Gaare | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
2014 | DATE | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Rob Emsley | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Lynn | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Allen Crane | PERSON | 0.99+ |
Caryn Woodruff, IBM & Ritesh Arora, HCL Technologies | IBM CDO Summit Spring 2018
>> Announcer: Live from downtown San Francisco, it's the Cube, covering IBM Chief Data Officer Strategy Summit 2018. Brought to you by IBM. >> Welcome back to San Francisco everybody. We're at the Parc 55 in Union Square and this is the Cube, the leader in live tech coverage and we're covering exclusive coverage of the IBM CDO strategy summit. IBM has these things, they book in on both coasts, one in San Francisco one in Boston, spring and fall. Great event, intimate event. 130, 150 chief data officers, learning, transferring knowledge, sharing ideas. Cayn Woodruff is here as the principle data scientist at IBM and she's joined by Ritesh Ororo, who is the director of digital analytics at HCL Technologies. Folks welcome to the Cube, thanks for coming on. >> Thank you >> Thanks for having us. >> You're welcome. So we're going to talk about data management, data engineering, we're going to talk about digital, as I said Ritesh because digital is in your title. It's a hot topic today. But Caryn let's start off with you. Principle Data Scientist, so you're the one that is in short supply. So a lot of demand, you're getting pulled in a lot of different directions. But talk about your role and how you manage all those demands on your time. >> Well, you know a lot of, a lot of our work is driven by business needs, so it's really understanding what is critical to the business, what's going to support our businesses strategy and you know, picking the projects that we work on based on those items. So it's you really do have to cultivate the things that you spend your time on and make sure you're spending your time on the things that matter and as Ritesh and I were talking about earlier, you know, a lot of that means building good relationships with the people who manage the systems and the people who manage the data so that you can get access to what you need to get the critical insights that the business needs, >> So Ritesh, data management I mean this means a lot of things to a lot of people. It's evolved over the years. Help us frame what data management is in this day and age. >> Sure, so there are two aspects of data in my opinion. One is the data management, another the data engineering, right? And over the period as the data has grown significantly. Whether it's unstructured data, whether it's structured data, or the transactional data. We need to have some kind of governance in the policies to secure data to make data as an asset for a company so the business can rely on your data. What you are delivering to them. Now, the another part comes is the data engineering. Data engineering is more about an IT function, which is data acquisition, data preparation and delivering the data to the end-user, right? It can be business, it can be third-party but it all comes under the governance, under the policies, which are designed to secure the data, how the data should be accessed to different parts of the company or the external parties. >> And how those two worlds come together? The business piece and the IT piece, is that where you come in? >> That is where data science definitely comes into the picture. So if you go online, you can find Venn diagrams that describe data science as a combination of computer science math and statistics and business acumen. And so where it comes in the middle is data science. So it's really being able to put those things together. But, you know, what's what's so critical is you know, Interpol, actually, shared at the beginning here and I think a few years ago here, talked about the five pillars to building a data strategy. And, you know, one of those things is use cases, like getting out, picking a need, solving it and then going from there and along the way you realize what systems are critical, what data you need, who the business users are. You know, what would it take to scale that? So these, like, Proof-point projects that, you know, eventually turn into these bigger things, and for them to turn into bigger things you've got to have that partnership. You've got to know where your trusted data is, you've got to know that, how it got there, who can touch it, how frequently it is updated. Just being able to really understand that and work with partners that manage the infrastructure so that you can leverage it and make it available to other people and transparent. >> I remember when I first interviewed Hilary Mason way back when and I was asking her about that Venn diagram and she threw in another one, which was data hacking. >> Caryn: Uh-huh, yeah. >> Well, talk about that. You've got to be curious about data. You need to, you know, take a bath in data. >> (laughs) Yes, yes. I mean yeah, you really.. Sometimes you have to be a detective and you have to really want to know more. And, I mean, understanding the data is like the majority of the battle. >> So Ritesh, we were talking off-camera about it's not how titles change, things evolve, data, digital. They're kind of interchangeable these days. I mean we always say the difference between a business and a digital business is how they have used data. And so digital being part of your role, everybody's trying to get digital transformation, right? As an SI, you guys are at the heart of it. Certainly, IBM as well. What kinds of questions are our clients asking you about digital? >> So I ultimately see data, whatever we drive from data, it is used by the business side. So we are trying to always solve a business problem, which is to optimize the issues the company is facing, or try to generate more revenues, right? Now, the digital as well as the data has been married together, right? Earlier there are, you can say we are trying to analyze the data to get more insights, what is happening in that company. And then we came up with a predictive modeling that based on the data that will statically collect, how can we predict different scenarios, right? Now digital, we, over the period of the last 10 20 years, as the data has grown, there are different sources of data has come in picture, we are talking about social media and so on, right? And nobody is looking for just reports out of the Excel, right? It is more about how you are presenting the data to the senior management, to the entire world and how easily they can understand it. That's where the digital from the data digitization, as well as the application digitization comes in picture. So the tools are developed over the period to have a better visualization, better understanding. How can we integrate annotation within the data? So these are all different aspects of digitization on the data and we try to integrate the digital concepts within our data and analytics, right? So I used to be more, I mean, I grew up as a data engineer, analytics engineer but now I'm looking more beyond just the data or the data preparation. It's more about presenting the data to the end-user and the business. How it is easy for them to understand it. >> Okay I got to ask you, so you guys are data wonks. I am too, kind of, but I'm not as skilled as you are, but, and I say that with all due respect. I mean you love data. >> Caryn: Yes. >> As data science becomes a more critical skill within organizations, we always talk about the amount of data, data growth, the stats are mind-boggling. But as a data scientist, do you feel like you have access to the right data and how much of a challenge is that with clients? >> So we do have access to the data but the challenge is, the company has so many systems, right? It's not just one or two applications. There are companies we have 50 or 60 or even hundreds of application built over last 20 years. And there are some applications, which are basically duplicate, which replicates the data. Now, the challenge is to integrate the data from different systems because they maintain different metadata. They have the quality of data is a concern. And sometimes with the international companies, the rules, for example, might be in US or India or China, the data acquisitions are different, right? And you are, as you become more global, you try to integrate the data beyond boundaries, which becomes a more compliance issue sometimes, also, beyond the technical issues of data integration. >> Any thoughts on that? >> Yeah, I think, you know one of the other issues too, you have, as you've heard of shadow IT, where people have, like, servers squirreled away under their desks. There's your shadow data, where people have spreadsheets and databases that, you know, they're storing on, like a small server or that they share within their department. And so you know, you were discussing, we were talking earlier about the different systems. And you might have a name in one system that's one way and a name in another system that's slightly different, and then a third system, where it's it's different and there's extra granularity to it or some extra twist. And so you really have to work with all of the people that own these processes and figure out what's the trusted source? What can we all agree on? So there's a lot of... It's funny, a lot of the data problems are people problems. So it's getting people to talk and getting people to agree on, well this is why I need it this way, and this is why I need it this way, and figuring out how you come to a common solution so you can even create those single trusted sources that then everybody can go to and everybody knows that they're working with the the right thing and the same thing that they all agree on. >> The politics of it and, I mean, politics is kind of a pejorative word but let's say dissonance, where you have maybe of a back-end syst6em, financial system and the CFO, he or she is looking at the data saying oh, this is what the data says and then... I remember I was talking to a, recently, a chef in a restaurant said that the CFO saw this but I know that's not the case, I don't have the data to prove it. So I'm going to go get the data. And so, and then as they collect that data they bring together. So I guess in some ways you guys are mediators. >> [Caryn And Ritesh] Yes, yes. Absolutely. >> 'Cause the data doesn't lie you just got to understand it. >> You have to ask the right question. Yes. And yeah. >> And sometimes when you see the data, you start, that you don't even know what questions you want to ask until you see the data. Is that is that a challenge for your clients? >> Caryn: Yes, all the time. Yeah >> So okay, what else do we want to we want to talk about? The state of collaboration, let's say, between the data scientists, the data engineer, the quality engineer, maybe even the application developers. Somebody, John Fourier often says, my co-host and business partner, data is the new development kit. Give me the data and I'll, you know, write some code and create an application. So how about collaboration amongst those roles, is that something... I know IBM's gone on about some products there but your point Caryn, it's a lot of times it's the people. >> It is. >> And the culture. What are you seeing in terms of evolution and maturity of that challenge? >> You know I have a very good friend who likes to say that data science is a team sport and so, you know, these should not be, like, solo projects where just one person is wading up to their elbows in data. This should be something where you've got engineers and scientists and business, people coming together to really work through it as a team because everybody brings really different strengths to the table and it takes a lot of smart brains to figure out some of these really complicated things. >> I completely agree. Because we see the challenges, we always are trying to solve a business problem. It's important to marry IT as well as the business side. We have the technical expert but we don't have domain experts, subject matter experts who knows the business in IT, right? So it's very very important to collaborate closely with the business, right? And data scientist a intermediate layer between the IT as well as business I will say, right? Because a data scientist as they, over the years, as they try to analyze the information, they understand business better, right? And they need to collaborate with IT to either improve the quality, right? That kind of challenges they are facing and I need you to, the data engineer has to work very hard to make sure the data delivered to the data scientist or the business is accurate as much as possible because wrong data will lead to wrong predictions, right? And ultimately we need to make sure that we integrate the data in the right way. >> What's a different cultural dynamic that was, say ten years ago, where you'd go to a statistician, she'd fire up the SPSS.. >> Caryn: We still use that. >> I'm sure you still do but run some kind of squares give me some, you know, probabilities and you know maybe run some Monte Carlo simulation. But one person kind of doing all that it's your point, Caryn. >> Well you know, it's it's interesting. There are there are some students I mentor at a local university and you know we've been talking about the projects that they get and that you know, more often than not they get a nice clean dataset to go practice learning their modeling on, you know? And they don't have to get in there and clean it all up and normalize the fields and look for some crazy skew or no values or, you know, where you've just got so much noise that needs to be reduced into something more manageable. And so it's, you know, you made the point earlier about understanding the data. It's just, it really is important to be very curious and ask those tough questions and understand what you're dealing with. Before you really start jumping in and building a bunch of models. >> Let me add another point. That the way we have changed over the last ten years, especially from the technical point of view. Ten years back nobody talks about the real-time data analysis. There was no streaming application as such. Now nobody talks about the batch analysis, right? Everybody wants data on real-time basis. But not if not real-time might be near real-time basis. That has become a challenge. And it's not just that prediction, which are happening in their ERP environment or on the cloud, they want the real-time integration with the social media for the marketing and the sales and how they can immediately do the campaign, right? So, for example, if I go to Google and I search for for any product, right, for example, a pressure cooker, right? And I go to Facebook, immediately I see the ad within two minutes. >> Yeah, they're retargeting. >> So that's a real-time analytics is happening under different application, including the third-party data, which is coming from social media. So that has become a good source of data but it has become a challenge for the data analyst and the data scientist. How quickly we can turn around is called data analysis. >> Because it used to be you would get ads for a pressure cooker for months, even after you bought the pressure cooker and now it's only a few days, right? >> Ritesh: It's a minute. You close this application, you log into Facebook... >> Oh, no doubt. >> Ritesh: An ad is there. >> Caryn: There it is. >> Ritesh: Because everything is linked either your phone number or email ID you're done. >> It's interesting. We talked about disruption a lot. I wonder if that whole model is going to get disrupted in a new way because everybody started using the same ad. >> So that's a big change of our last 10 years. >> Do you think..oh go ahead. >> oh no, I was just going to say, you know, another thing is just there's so much that is available to everybody now, you know. There's not this small little set of tools that's restricted to people that are in these very specific jobs. But with open source and with so many software-as-a-service products that are out there, anybody can go out and get an account and just start, you know, practicing or playing or joining a cackle competition or, you know, start getting their hands on.. There's data sets that are out there that you can just download to practice and learn on and use. So, you know, it's much more open, I think, than it used to be. >> Yeah, community additions of software, open data. The number of open day sources just keeps growing. Do you think that machine intelligence can, or how can machine intelligence help with this data quality challenge? >> I think that it's it's always going to require people, you know? There's always going to be a need for people to train the machines on how to interpret the data. How to classify it, how to tag it. There's actually a really good article in Popular Science this month about a woman who was training a machine on fake news and, you know, it did a really nice job of finding some of the the same claims that she did. But she found a few more. So, you know, I think it's, on one hand we have machines that we can augment with data and they can help us make better decisions or sift through large volumes of data but then when we're teaching the machines to classify the data or to help us with metadata classification, for example, or, you know, to help us clean it. I think that it's going to be a while before we get to the point where that's the inverse. >> Right, so in that example you gave, the human actually did a better job from the machine. Now, this amazing to me how.. What, what machines couldn't do that humans could, you know last year and all of a sudden, you know, they can. It wasn't long ago that robots couldn't climb stairs. >> And now they can. >> And now they can. >> It's really creepy. >> I think the difference now is, earlier you know, you knew that there is an issue in the data. But you don't know that how much data is corrupt or wrong, right? Now, there are tools available and they're very sophisticated tools. They can pinpoint and provide you the percentage of accuracy, right? On different categories of data that that you come across, right? Even forget about the structure data. Even when you talk about unstructured data, the data which comes from social media or the comments and the remarks that you log or are logged by the customer service representative, there are very sophisticated text analytics tools available, which can talk very accurately about the data as well as the personality of the person who is who's giving that information. >> Tough problems but it seems like we're making progress. All you got to do is look at fraud detection as an example. Folks, thanks very much.. >> Thank you. >> Thank you very much. >> ...for sharing your insight. You're very welcome. Alright, keep it right there everybody. We're live from the IBM CTO conference in San Francisco. Be right back, you're watching the Cube. (electronic music)
SUMMARY :
Brought to you by IBM. of the IBM CDO strategy summit. and how you manage all those demands on your time. and you know, picking the projects that we work on I mean this means a lot of things to a lot of people. and delivering the data to the end-user, right? so that you can leverage it and make it available about that Venn diagram and she threw in another one, You need to, you know, take a bath in data. and you have to really want to know more. As an SI, you guys are at the heart of it. the data to get more insights, I mean you love data. and how much of a challenge is that with clients? Now, the challenge is to integrate the data And so you know, you were discussing, I don't have the data to prove it. [Caryn And Ritesh] Yes, yes. You have to ask the right question. And sometimes when you see the data, Caryn: Yes, all the time. Give me the data and I'll, you know, And the culture. and so, you know, these should not be, like, and I need you to, the data engineer that was, say ten years ago, and you know maybe run some Monte Carlo simulation. and that you know, more often than not And I go to Facebook, immediately I see the ad and the data scientist. You close this application, you log into Facebook... Ritesh: Because everything is linked I wonder if that whole model is going to get disrupted that is available to everybody now, you know. Do you think that machine intelligence going to require people, you know? Right, so in that example you gave, and the remarks that you log All you got to do is look at fraud detection as an example. We're live from the IBM CTO conference
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Ritesh Ororo | PERSON | 0.99+ |
Caryn | PERSON | 0.99+ |
John Fourier | PERSON | 0.99+ |
Ritesh | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
50 | QUANTITY | 0.99+ |
Cayn Woodruff | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
China | LOCATION | 0.99+ |
India | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
Excel | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
Caryn Woodruff | PERSON | 0.99+ |
Ritesh Arora | PERSON | 0.99+ |
Hilary Mason | PERSON | 0.99+ |
60 | QUANTITY | 0.99+ |
130 | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
Monte Carlo | TITLE | 0.99+ |
HCL Technologies | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
third system | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Interpol | ORGANIZATION | 0.98+ |
ten years ago | DATE | 0.98+ |
two applications | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
Parc 55 | LOCATION | 0.98+ |
five pillars | QUANTITY | 0.98+ |
one system | QUANTITY | 0.98+ |
ORGANIZATION | 0.97+ | |
two aspects | QUANTITY | 0.97+ |
both coasts | QUANTITY | 0.97+ |
one person | QUANTITY | 0.96+ |
Ten years back | DATE | 0.96+ |
two minutes | QUANTITY | 0.95+ |
this month | DATE | 0.95+ |
Union Square | LOCATION | 0.95+ |
two worlds | QUANTITY | 0.94+ |
Spring 2018 | DATE | 0.94+ |
Popular Science | TITLE | 0.9+ |
CTO | EVENT | 0.88+ |
days | QUANTITY | 0.88+ |
one way | QUANTITY | 0.87+ |
SPSS | TITLE | 0.86+ |
single trusted sources | QUANTITY | 0.85+ |
Venn | ORGANIZATION | 0.84+ |
few years ago | DATE | 0.84+ |
150 chief data officers | QUANTITY | 0.83+ |
last 10 20 years | DATE | 0.83+ |
Officer Strategy Summit 2018 | EVENT | 0.82+ |
hundreds of application | QUANTITY | 0.8+ |
last 10 years | DATE | 0.8+ |
Cube | COMMERCIAL_ITEM | 0.79+ |
IBM Chief | EVENT | 0.79+ |
IBM CDO strategy summit | EVENT | 0.72+ |
last ten years | DATE | 0.7+ |
IBM CDO Summit | EVENT | 0.7+ |
fall | DATE | 0.68+ |
Cube | TITLE | 0.66+ |
spring | DATE | 0.65+ |
last 20 years | DATE | 0.63+ |
minute | QUANTITY | 0.49+ |
John Thomas, IBM | IBM CDO Summit Spring 2018
>> Narrator: Live from downtown San Francisco, it's theCUBE, covering IBM Chief Data Officer Strategy Summit 2018, brought to you by IBM. >> We're back in San Francisco, we're here at the Parc 55 at the IBM Chief Data Officer Strategy Summit. You're watching theCUBE, the leader in live tech coverage. My name is Dave Vellante and IBM's Chief Data Officer Strategy Summit, they hold them on both coasts, one in Boston and one in San Francisco. A couple times each year, about 150 chief data officers coming in to learn how to apply their craft, learn what IBM is doing, share ideas. Great peer networking, really senior audience. John Thomas is here, he's a distinguished engineer and director at IBM, good to see you again John. >> Same to you. >> Thanks for coming back in theCUBE. So let's start with your role, distinguished engineer, we've had this conversation before but it just doesn't happen overnight, you've got to be accomplished, so congratulations on achieving that milestone, but what is your role? >> The road to distinguished engineer is long but today, these days I spend a lot of my time working on data science and in fact am part of what is called a data science elite team. We work with clients on data science engagements, so this is not consulting, this is not services, this is where a team of data scientists work collaboratively with a client on a specific use case and we build it out together. We bring data science expertise, machine learning, deep learning expertise. We work with the business and build out a set of tangible assets that are relevant to that particular client. >> So this is not a for-pay service, this is hey you're a great customer, a great client of ours, we're going to bring together some resources, you'll learn, we'll learn, we'll grow together, right? >> This is an investment IBM is making. It's a major investment for our top clients working with them on their use cases. >> This is a global initiative? >> This is global, yes. >> We're talking about, what, hundreds of clients, thousands of clients? >> Well eventually thousands but we're starting small. We are trying to scale now so obviously once you get into these engagements, you find out that it's not just about building some models. There are a lot of challenges that you've got to deal with in an enterprise setting. >> Dave: What are some of the challenges? >> Well in any data science engagement the first thing is to have clarity on the use case that you're engaging in. You don't want to build models for models' sake. Just because Tensorflow or scikit-learn is great and build models, that doesn't serve a purpose. That's the first thing, do you have clarity of the business use case itself? Then comes data, now I cannot stress this enough, Dave, there is no data science without data, and you might think this is the most obvious thing, of course there has to be data, but when I say data I'm talking about access to the right data. Do we have governance over the data? Do we know who touched the data? Do we have lineage on that data? Because garbage in, garbage out, you know this. Do we have access to the right data in the right control setting for my machine learning models we built. These are challenges and then there's another challenge around, okay, I built my models but how do I operationalize them? How do I weave those models into the fabric of my business? So these are all challenges that we have to deal with. >> That's interesting what you're saying about the data, it does sound obvious but having the right data model as well. I think about when I interact with Netflix, I don't talk to their customer service department or their marketing department or their sales department or their billing department, it's one experience. >> You just have an experience, exactly. >> This notion of incumbent disruptors, is that a logical starting point for these guys to get to that point where they have a data model that is a single data model? >> Single data model. (laughs) >> Dave: What does that mean, right? At least from an experienced standpoint. >> Once we know this is the kind of experience we want to target, what are the relevant data sets and data pieces that are necessary to make their experience happen or come together. Sometimes there's core enterprise data that you have in many cases, it has been augmented with external data. Do you have a strategy around handling your internal, external data, your structured transactional data, your semi-structured data, your newsfeeds. All of these need to come together in a consistent fashion for that experience to be true. It is not just about I've got my credit card transaction data but what else is augmenting that data? You need a model, you need a strategy around that. >> I talk to a lot of organizations and they say we have a good back-end reporting system, we have Cognos we can build cubes and all kinds of financial data that we have, but then it doesn't get down to the front line. We have an instrument at the front line, we talk about IOT and that portends change there but there's a lot of data that either isn't persisted or not stored or doesn't even exist, so is that one of the challenges that you see enterprises dealing with? >> It is a challenge. Do I have access to the right data, whether that is data at rest or in motion? Am I persisting it the way I can consume it later? Or am I just moving big volumes of data around because analytics is there, or machine learning is there and I have to move data out of my core systems into that area. That is just a waste of time, complexity, cost, hidden costs often, 'cause people don't usually think about the hidden costs of moving large volumes of data around. But instead of that can I bring analytics and machine learning and data science itself to where my data is. Not necessarily to move it around all the time. Whether you're dealing with streaming data or large volumes of data in your Hadoop environment or mainframes or whatever. Can I do ML in place and have the most value out of the data that is there? >> What's happening with all that Hadoop? Nobody talks about Hadoop anymore. Hadoop largely became a way to store data for less, but there's all this data now and a data lake. How are customers dealing with that? >> This is such an interesting thing. People used to talk about the big data, you're right. We jumped from there to the cognitive It's not like that right? No, without the data then there is no cognition there is no AI, there is no ML. In terms of existing investments in Hadoop for example, you have to absolutely be able to tap in and leverage those investments. For example, many large clients have investments in large Cloudera or Hortonworks environment, or Hadoop environments so if you're doing data science, how do you push down, how do you leverage that for scale, for example? How do you access the data using the same access control mechanisms that are already in place? Maybe you have Carbros as your mechanism how do you work with that? How do you avoid moving data off of that environment? How do you push down data prep into the spar cluster? How do you do model training in that spar cluster? All of these become important in terms of leveraging your existing investments. It is not just about accessing data where it is, it's also about leveraging the scale that the company has already invested in. You have hundred, 500 node Hadoop clusters well make the most of them in terms of scaling your data science operations. So push down and access data as much as possible in those environments. >> So Beth talked today, Beth Smith, about Watson's law, and she made a little joke about that, but to me its poignant because we are entering a new era. For decades this industry marched to the cadence of Moore's law, then of course Metcalfe's law in the internet era. I want to make an observation and see if it resonates. It seems like innovation is no longer going to come from doubling microprocessor speed and the network is there, it's built out, the internet is built. It seems like innovation comes from applying AI to data together to get insights and then being able to scale, so it's cloud economics. Marginal costs go to zero and massive network effects, and scale, ability to track innovation. That seems to be the innovation equation, but how do you operationalize that? >> To your point, Dave, when we say cloud scale, we want the flexibility to do that in an off RAM public cloud or in a private cloud or in between, in a hybrid cloud environment. When you talk about operationalizing, there's a couple different things. People think that, say I've got a super Python programmer and he's great with Tensorflow or scikit-learn or whatever and he builds these models, great, but what happens next, how do you actually operationalize those models? You need to be able to deploy those models easily. You need to be able to consume those models easily. For example you have a chatbot, a chatbot is dumb until it actually calls these machine learning models, real time to make decisions on which way the conversation should go. So how do you make that chatbot intelligent? It's when it consumes the ML models that have been built. So deploying models, consuming models, you create a model, you deploy it, you've got to push it through the development test staging production phases. Just the same rigor that you would have for any applications that are deployed. Then another thing is, a model is great on day one. Let's say I built a fraud detection model, it works great on day one. A week later, a month later it's useless because the data that it trained on is not what the fraudsters are using now. So patterns have changed, the model needs to be retrained How do I understand the performance of the model stays good over time? How do I do monitoring? How do I retrain the models? How do I do the life cycle management of the models and then scale? Which is okay I deployed this model out and its great, every application is calling it, maybe I have partners calling these models. How do I automatically scale? Whether what you are using behind the scenes or if you are going to use external clusters for scale? Technology is like spectrum connector from our HPC background are very interesting counterparts to this. How do I scale? How do I burst? How do I go from an on-frame to an off-frame environment? How do I build something behind the firewall but deploy it into the cloud? We have a chatbot or some other cloud-native application, all of these things become interesting in the operationalizing. >> So how do all these conversations that you're having with these global elite clients and the challenges that you're unpacking, how do they get back into innovation for IBM, what's that process like? >> It's an interesting place to be in because I am hearing and experiencing first hand real enterprise challenges and there we see our product doesn't handle this particular thing now? That is an immediate circling back with offering management and development. Hey guys we need this particular function because I'm seeing this happening again and again in customer engagements. So that helps us shape our products, shape our data science offerings, and sort of running with the flow of what everyone is doing, we'll look at that. What do our clients want? Where are they headed? And shape the products that way. >> Excellent, well John thanks very much for coming back in theCUBE and it's a pleasure to see you again. I appreciate your time. >> Thank you Dave. >> All right good to see you. Keep it right there everybody we'll be back with our next guest. We're live from the IBM CDO strategy summit in San Francisco, you're watching theCUBE.
SUMMARY :
brought to you by IBM. to see you again John. but what is your role? that are relevant to This is an investment IBM is making. into these engagements, you find out the first thing is to have but having the right data model as well. Single data model. Dave: What does that mean, right? for that experience to be true. so is that one of the challenges and I have to move data out but there's all this that the company has already invested in. and scale, ability to track innovation. How do I do the life cycle management to be in because I am hearing pleasure to see you again. All right good to see you.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
John Thomas | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
Beth Smith | PERSON | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Beth | PERSON | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
A week later | DATE | 0.99+ |
a month later | DATE | 0.99+ |
thousands | QUANTITY | 0.99+ |
Hadoop | TITLE | 0.99+ |
Watson | PERSON | 0.99+ |
one experience | QUANTITY | 0.99+ |
Moore | PERSON | 0.98+ |
today | DATE | 0.98+ |
Python | TITLE | 0.98+ |
Metcalfe | PERSON | 0.98+ |
Parc 55 | LOCATION | 0.97+ |
both coasts | QUANTITY | 0.97+ |
zero | QUANTITY | 0.96+ |
Single | QUANTITY | 0.96+ |
about 150 chief data officers | QUANTITY | 0.96+ |
day one | QUANTITY | 0.94+ |
Cognos | ORGANIZATION | 0.94+ |
each year | QUANTITY | 0.93+ |
hundreds of clients | QUANTITY | 0.92+ |
Hortonworks | ORGANIZATION | 0.91+ |
first thing | QUANTITY | 0.9+ |
Tensorflow | TITLE | 0.9+ |
IBM CDO Summit | EVENT | 0.87+ |
Strategy Summit | EVENT | 0.86+ |
hundred, 500 node Hadoop clusters | QUANTITY | 0.85+ |
thousands of clients | QUANTITY | 0.84+ |
single data model | QUANTITY | 0.81+ |
Strategy Summit 2018 | EVENT | 0.81+ |
Chief Data Officer | EVENT | 0.79+ |
IBM CDO strategy summit | EVENT | 0.79+ |
Chief Data Officer Strategy Summit | EVENT | 0.79+ |
couple times | QUANTITY | 0.77+ |
Cloudera | ORGANIZATION | 0.75+ |
decades | QUANTITY | 0.74+ |
Spring 2018 | DATE | 0.72+ |
Data Officer | EVENT | 0.67+ |
Carbros | ORGANIZATION | 0.63+ |
Tensorflow | ORGANIZATION | 0.61+ |
scikit | ORGANIZATION | 0.58+ |
theCUBE | ORGANIZATION | 0.58+ |
Sumit Gupta & Steven Eliuk, IBM | IBM CDO Summit Spring 2018
(music playing) >> Narrator: Live, from downtown San Francisco It's the Cube. Covering IBM Chief Data Officer Startegy Summit 2018. Brought to you by: IBM >> Welcome back to San Francisco everybody we're at the Parc 55 in Union Square. My name is Dave Vellante, and you're watching the Cube. The leader in live tech coverage and this is our exclusive coverage of IBM's Chief Data Officer Strategy Summit. They hold these both in San Francisco and in Boston. It's an intimate event, about 150 Chief Data Officers really absorbing what IBM has done internally and IBM transferring knowledge to its clients. Steven Eluk is here. He is one of those internal practitioners at IBM. He's the Vice President of Deep Learning and the Global Chief Data Office at IBM. We just heard from him and some of his strategies and used cases. He's joined by Sumit Gupta, a Cube alum. Who is the Vice President of Machine Learning and deep learning within IBM's cognitive systems group. Sumit. >> Thank you. >> Good to see you, welcome back Steven, lets get into it. So, I was um paying close attention when Bob Picciano took over the cognitive systems group. I said, "Hmm, that's interesting". Recently a software guy, of course I know he's got some hardware expertise. But bringing in someone who's deep into software and machine learning, and deep learning, and AI, and cognitive systems into a systems organization. So you guys specifically set out to develop solutions to solve problems like Steven's trying to solve. Right, explain that. >> Yeah, so I think ugh there's a revolution going on in the market the computing market where we have all these new machine learning, and deep learning technologies that are having meaningful impact or promise of having meaningful impact. But these new technologies, are actually significantly I would say complex and they require very complex and high performance computing systems. You know I think Bob and I think in particular IBM saw the opportunity and realized that we really need to architect a new class of infrastructure. Both software and hardware to address what data scientist like Steve are trying to do in the space, right? The open source software that's out there: Denzoflo, Cafe, Torch - These things are truly game changing. But they also require GPU accelerators. They also require multiple systems like... In fact interestingly enough you know some of the super computers that we've been building for the scientific computing world, those same technologies are now coming into the AI world and the enterprise. >> So, the infrastructure for AI, if I can use that term? It's got to be flexible, Steven we were sort of talking about that elastic versus I'm even extending it to plastic. As Sumit you just said, it's got to have that tooling, got to have that modern tooling, you've got to accommodate alternative processor capabilities um, and so, that forms what you've used Steven to sort of create new capabilities new business capabilities within IBM. I wanted to, we didn't touch upon this before, but we touched upon your data strategy before but tie it back to the line of business. You essentially are a presume a liaison between the line of business and the chief data office >> Steven: Yeah. >> Officer office. How did that all work out, and shake out? Did you defining the business outcomes, the requirements, how did you go about that? >> Well, actually, surprisingly, we have very little new use cases that we're generating internally from my organization. Because there's so many to pick from already throughout the organization, right? There's all these business units coming to us and saying, "Hey, now the data is in the data lake and now we know there's more data, now we want to do this. How do we do it?" You know, so that's where we come in, that's where we start touching and massaging and enabling them. And that's the main efforts that we have. We do have some derivative works that have come out, that have been like new offerings that you'll see here. But mostly we already have so many use cases that from those businesses units that we're really trying to heighten and bring extra value to those domains first. >> So, a lot of organizations sounds like IBM was similar you created the data lake you know, things like "a doop" made a lower cost to just put stuff in the data lake. But then, it's like "okay, now what?" >> Steven: Yeah. >> So is that right? So you've got the data and this bog of data and you're trying to make more sense out of it but get more value out of it? >> Steven: Absolutely. >> That's what they were pushing you to do? >> Yeah, absolutely. And with that, with more data you need more computational power. And actually Sumit and I go pretty far back and I can tell you from my previous roles I heightened to him many years ago some of the deficiencies in the current architecture in X86 etc and I said, "If you hit these points, I will buy these products." And what they went back and they did is they, they addressed all of the issues that I had. Like there's certain issues... >> That's when you were, sorry to interrupt, that's when you were a customer, right? >> Steven: That's when I was... >> An external customer >> Outside. I'm still an internal customer, so I've always been a customer I guess in that role right? >> Yep, yep. >> But, I need to get data to the computational device as quickly as possible. And with certain older gen technologies, like PTI Gen3 and certain issues around um x86. I couldn't get that data there for like high fidelity imaging for autonomous vehicles for ya know, high fidelity image analysis. But, with certain technologies in power we have like envy link and directly to the CPU. And we also have PTI Gen4, right? So, so these are big enablers for me so that I can really keep the utilization of those very expensive compute devices higher. Because they're not starved for data. >> And you've also put a lot of emphasis on IO, right? I mean that's... >> Yeah, you know if I may break it down right there's actually I would say three different pieces to the puzzle here right? The highest level from Steve's perspective, from Steven's teams perspective or any data scientist perspective is they need to just do their data science and not worry about the infrastructure, right? They actually don't want to know that there's an infrastructure. They want to say, "launch job" - right? That's the level of grand clarity we want, right? In the background, they want our schedulers, our software, our hardware to just seamlessly use either one system or scale to 100 systems, right? To use one GPU or to use 1,000 GPUs, right? So that's where our offerings come in, right. We went and built this offering called Powder and Powder essentially is open source software like TensorFlow, like Efi, like Torch. But performace and capabilities add it to make it much easier to use. So for example, we have an extremely terrific scheduling software that manages jobs called Spectrum Conductor for Spark. So as the name suggests, it uses Apache Spark. But again the data scientist doesn't know that. They say, "launch job". And the software actually goes and scales that job across tens of servers or hundreds of servers. The IT team can determine how many servers their going to allocate for data scientist. They can have all kinds of user management, data management, model management software. We take the open source software, we package it. You know surprisingly ugh most people don't realize this, the open source software like TensorFlow has primarily been built on a (mumbles). And most of our enterprise clients, including Steven, are on Redhat. So we, we engineered Redhat to be able to manage TensorFlow. And you know I chose those words carefully, there was a little bit of engineering both on Redhat and on TensorFlow to make that whole thing work together. Sounds trivial, took several months and huge value proposition to the enterprise clients. And then the last piece I think that Steven was referencing too, is we also trying to go and make the eye more accessible for non data scientist or I would say even data engineers. So we for example, have a software called Powder Vision. This takes images and videos, and automatically creates a trained deep learning model for them, right. So we analyze the images, you of course have to tell us in these images, for these hundred images here are the most important things. For example, you've identified: here are people, here are cars, here are traffic signs. But if you give us some of that labeled data, we automatically do the work that a data scientist would have done, and create this pre trained AI model for you. This really enables many rapid prototyping for a lot of clients who either kind of fought to have data scientists or don't want to have data scientists. >> So just to summarize that, the three pieces: It's making it simpler for the data scientists, just run the job - Um, the backend piece which is the schedulers, the hardware, the software doing its thing - and then its making that data science capability more accessible. >> Right, right, right. >> Those are the three layers. >> So you know, I'll resay it in my words maybe >> Yeah please. >> Ease of use right, hardware software optimized for performance and capability, and point and click AI, right. AI for non data scientists, right. It's like the three levels that I think of when I'm engaging with data scientists and clients. >> And essentially it's embedded AI right? I've been making the point today that a lot of the AI is going to be purchased from companies like IBM, and I'm just going to apply it. I'm not going to try to go build my own, own AI right? I mean, is that... >> No absolutely. >> Is that the right way to think about it as a practitioner >> I think, I think we talked about it a little bit about it on the panel earlier but if we can, if we can leverage these pre built models and just apply a little bit of training data it makes it so much easier for the organizations and so much cheaper. They don't have to invest in a crazy amount of infrastructure, all the labeling of data, they don't have to do that. So, I think it's definitely steering that way. It's going to take a little bit of time, we have some of them there. But as we as we iterate, we are going to get more and more of these types of you know, commodity type models that people could utilize. >> I'll give you an example, so we have a software called Intelligent Analytics at IBM. It's very good at taking any surveillance data and for example recognizing anomalies or you know if people aren't suppose to be in a zone. Ugh and we had a client who wanted to do worker safety compliance. So they want to make sure workers are wearing their safety jackets and their helmets when they're in a construction site. So we use surveillance data created a new AI model using Powder AI vision. We were then able to plug into this IVA - Intelligence Analytic Software. So they have the nice gooey base software for the dashboards and the alerts, yet we were able to do incremental training on their specific use case, which by the way, with their specific you know equipment and jackets and stuff like that. And create a new AI model, very quickly. For them to be able to apply and make sure their workers are actually complaint to all of the safety requirements they have on the construction site. >> Hmm interesting. So when I, Sometimes it's like a new form of capture says identify "all the pictures with bridges", right that's the kind of thing you're capable to do with these video analytics. >> That's exactly right. You, every, clients will have all kinds of uses I was at a, talking to a client, who's a major car manufacturer in the world and he was saying it would be great if I could identify the make and model of what cars people are driving into my dealership. Because I bet I can draw a ugh corelation between what they drive into and what they going to drive out of, right. Marketing insights, right. And, ugh, so there's a lot of things that people want to do with which would really be spoke in their use cases. And build on top of existing AI models that we have already. >> And you mentioned, X86 before. And not to start a food fight but um >> Steven: And we use both internally too, right. >> So lets talk about that a little bit, I mean where do you use X86 where do you use IBM Cognitive and Power Systems? >> I have a mix of both, >> Why, how do you decide? >> There's certain of work loads. I will delegate that over to Power, just because ya know they're data starved and we are noticing a complication is being impacted by it. Um, but because we deal with so many different organizations certain organizations optimize for X86 and some of them optimize for power and I can't pick, I have to have everything. Just like I mentioned earlier, I also have to support cloud on prim, I can't pick just to be on prim right, it so. >> I imagine the big cloud providers are in the same boat which I know some are your customers. You're betting on data, you're betting on digital and it's a good bet. >> Steven: Yeah, 100 percent. >> We're betting on data and AI, right. So I think data, you got to do something with the data, right? And analytics and AI is what people are doing with that data we have an advantage both at the hardware level and at the software level in these two I would say workloads or segments - which is data and AI, right. And we fundamentally have invested in the processor architecture to improve the performance and capabilities, right. You could offer a much larger AI models on a power system that you use than you can on an X86 system that you use. Right, that's one advantage. You can train and AI model four times faster on a power system than you can on an Intel Based System. So the clients who have a lot of data, who care about how fast their training runs, are the ones who are committing to power systems today. >> Mmm.Hmm. >> Latency requirements, things like that, really really big deal. >> So what that means for you as a practitioner is you can do more with less or is it I mean >> I can definitely do more with less, but the real value is that I'm able to get an outcome quicker. Everyone says, "Okay, you can just roll our more GPU's more GPU's, but run more experiments run more experiments". No no that's not actually it. I want to reduce the time for a an experiment Get it done as quickly as possible so I get that insight. 'Cause then what I can do I can get possibly cancel out a bunch of those jobs that are already running cause I already have the insight, knowing that that model is not doing anything. Alright, so it's very important to get the time down. Jeff Dean said it a few years ago, he uses the same slide often. But, you know, when things are taking months you know that's what happened basically from the 80's up until you know 2010. >> Right >> We didn't have the computation we didn't have the data. Once we were able to get that experimentation time down, we're able to iterate very very quickly on this. >> And throwing GPU's at the problem doesn't solve it because it's too much complexity or? >> It it helps the problem, there's no question. But when my GPU utilization goes from 95% down to 60% ya know I'm getting only a two-thirds return on investment there. It's a really really big deal, yeah. >> Sumit: I mean the key here I think Steven, and I'll draw it out again is this time to insight. Because time to insight actually is time to dollars, right. People are using AI either to make more money, right by providing better customer products, better products to the customers, giving better recommendations. Or they're saving on their operational costs right, they're improving their efficiencies. Maybe their routing their trucks in the right way, their routing their inventory in the right place, they're reducing the amount of inventory that they need. So in all cases you can actually coordinate AI to a revenue outcome or a dollar outcome. So the faster you can do that, you know, I tell most people that I engage with the hardware and software they get from us pays for itself very quickly. Because they make that much more money or they save that much more money, using power systems. >> We, we even see this internally I've heard stories and all that, Sumit kind of commented on this but - There's actually sales people that take this software & hardware out and they're able to get an outcome sometimes in certain situations where they just take the clients data and they're sales people they're not data scientists they train it it's so simple to use then they present the client with the outcomes the next day and the client is just like blown away. This isn't just a one time occurrence, like sales people are actually using this right. So it's getting to the area that it's so simple to use you're able to get those outcomes that we're even seeing it you know deals close quicker. >> Yeah, that's powerful. And Sumit to your point, the business case is actually really easy to make. You can say, "Okay, this initiative that you're driving what's your forecast for how much revenue?" Now lets make an assumption for how much faster we're going to be able to deliver it. And if I can show them a one day turn around, on a corpus of data, okay lets say two months times whatever, my time to break. I can run the business case very easily and communicate to the CFO or whomever the line of business head so. >> That's right. I mean just, I was at a retailer, at a grocery store a local grocery store in the bay area recently and he was telling me how In California we've passed legislation that does not allow plastic bags anymore. You have to pay for it. So people are bringing their own bags. But that's actually increased theft for them. Because people bring their own bag, put stuff in it and walk out. And he didn't want to have an analytic system that can detect if someone puts something in a bag and then did not buy it at purchase. So it's, in many ways they want to use the existing camera systems they have but automatically be able to detect fraudulent behavior or you know anomalies. And it's actually quite easy to do with a lot of the software we have around Power AI Vision, around video analytics from IBM right. And that's what we were talking about right? Take existing trained AI models on vision and enhance them for your specific use case and the scenarios you're looking for. >> Excellent. Guys we got to go. Thanks Steven, thanks Sumit for coming back on and appreciate the insights. >> Thank you >> Glad to be here >> You're welcome. Alright, keep it right there buddy we'll be back with our next guest. You're watching "The Cube" at IBM's CDO Strategy Summit from San Francisco. We'll be right back. (music playing)
SUMMARY :
Brought to you by: IBM and the Global Chief Data Office at IBM. So you guys specifically set out to develop solutions and realized that we really need to architect between the line of business and the chief data office how did you go about that? And that's the main efforts that we have. to just put stuff in the data lake. and I can tell you from my previous roles so I've always been a customer I guess in that role right? so that I can really keep the utilization And you've also put a lot of emphasis on IO, right? That's the level of grand clarity we want, right? So just to summarize that, the three pieces: It's like the three levels that I think of a lot of the AI is going to be purchased about it on the panel earlier but if we can, and for example recognizing anomalies or you know that's the kind of thing you're capable to do And build on top of existing AI models that we have And not to start a food fight but um and I can't pick, I have to have everything. I imagine the big cloud providers are in the same boat and at the software level in these two I would say really really big deal. but the real value is that We didn't have the computation we didn't have the data. It it helps the problem, there's no question. So the faster you can do that, you know, and they're able to get an outcome sometimes and communicate to the CFO or whomever and the scenarios you're looking for. appreciate the insights. with our next guest.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Steven Eluk | PERSON | 0.99+ |
Steve | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Bob Picciano | PERSON | 0.99+ |
Steven | PERSON | 0.99+ |
Sumit | PERSON | 0.99+ |
Jeff Dean | PERSON | 0.99+ |
Sumit Gupta | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Boston | LOCATION | 0.99+ |
Bob | PERSON | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Steven Eliuk | PERSON | 0.99+ |
three pieces | QUANTITY | 0.99+ |
100 systems | QUANTITY | 0.99+ |
two months | QUANTITY | 0.99+ |
100 percent | QUANTITY | 0.99+ |
2010 | DATE | 0.99+ |
hundred images | QUANTITY | 0.99+ |
1,000 GPUs | QUANTITY | 0.99+ |
95% | QUANTITY | 0.99+ |
The Cube | TITLE | 0.99+ |
one GPU | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
Denzoflo | ORGANIZATION | 0.99+ |
one system | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
tens of servers | QUANTITY | 0.99+ |
two-thirds | QUANTITY | 0.99+ |
Parc 55 | LOCATION | 0.99+ |
one day | QUANTITY | 0.98+ |
hundreds of servers | QUANTITY | 0.98+ |
one time | QUANTITY | 0.98+ |
X86 | COMMERCIAL_ITEM | 0.98+ |
IBM Cognitive | ORGANIZATION | 0.98+ |
80's | DATE | 0.98+ |
three levels | QUANTITY | 0.98+ |
today | DATE | 0.97+ |
Both | QUANTITY | 0.97+ |
CDO Strategy Summit | EVENT | 0.97+ |
Spark | TITLE | 0.96+ |
one advantage | QUANTITY | 0.96+ |
Spectrum Conductor | TITLE | 0.96+ |
Torch | TITLE | 0.96+ |
X86 | TITLE | 0.96+ |
Vice President | PERSON | 0.95+ |
three different pieces | QUANTITY | 0.95+ |
PTI Gen4 | COMMERCIAL_ITEM | 0.94+ |
three layers | QUANTITY | 0.94+ |
Union Square | LOCATION | 0.93+ |
TensorFlow | TITLE | 0.93+ |
Torch | ORGANIZATION | 0.93+ |
PTI Gen3 | COMMERCIAL_ITEM | 0.92+ |
Efi | TITLE | 0.92+ |
Startegy Summit 2018 | EVENT | 0.9+ |
Keynote Analysis | IBM CDO Summit Spring 2018
>> Announcer: Live from downtown San Francisco, it's theCUBE covering IBM Chief Data Officer Strategy Summit, 2018, brought to you by IBM. (techno music) >> Welcome to San Francisco everybody. My name is Dave Vellante and you're watching theCUBE, the leader in live tech coverage, and we're at the IBM CDO Strategy Summit, #IBMCDO. The chief data officer role emerged about a decade ago, and it was typically focused in regulated industries, health care, financial services, and government. And it sort of emerged from a dark, back office role of governance and compliance and data quality. But increasingly as the big data wave came to the market, people realized there was an opportunity to take that sort of wonky back office governance, compliance, discipline, and really point it toward generating value, whether that was with direct monetization of data or contributing to an organization's data strategy. And, over the next five to seven years, that chief data officer role... Couple things happen, one is got much much deeper into those regulated industries, but also permeated other non-regulated industries beyond those three that I mentioned. IBM is an organization that has targeted the chief data officer role as a key constituency as part of what IBM calls the cognitive enterprise. And IBM hosts shows in Boston and San Francisco each year, gathering chief data officers, about 100 to 150 chief data officers, in each city. These are very focused and targeted events that comprise of chief data officers, data analytics officers, and the like, people focused sometimes on compliance and governance. They're very intimate events and today, we heard from a number of IBM experts, Inderpal Bhandari, who's been on theCUBE a number of times, who is IBM's global chief data officer, laying out, sort of a blueprint, an enterprise blueprint, for data strategy. So the audience is filled with practitioners who are really sort of lapping up sort of the how to implement some of these techniques, and ultimately platforms. IBM has put together solutions, that not only involve, of course, Watson, but also some of the other components, whether its cognitive systems, governance systems, compliance systems, to create a solution that chief data officers and their colleagues can implement. So, this morning we heard about the cognitive enterprise blueprint, what IBM calls the AI enterprise, or the cognitive enterprise, talking about organizational issues. How do you break down silos of data? If you think about most incumbent organizations, the data lives in silos. It may be data in the marketing department, data in the sales department, data in the customer service department, data in the maintenance department. So these are sort of separate silos of data. How do you break those down? How do you bring those together so you can compete with some of these born digital AI-oriented companies, the likes of, just the perfect example is Facebook, Google, LinkedIn, et cetera, who have these sort of centralized data models. How do you take an existing organization, break down those silos, and deal with a data model that is accessible by everyone who needs to access that data, and as well, very importantly, make it secure, make it enterprise-ready. The other thing that IBM talked about was process. We always talk about on theCUBE, people, process, and technology. Technology is the easiest piece of that. It's the people and process components of that matrix that you need to really focus on before you even bring in the technology, and then, of course, there is the technology component. IBM is a technology company. We've heard about Watson. IBM has a number of hardware and software components that it brings to bear to try to help organizations affect their data strategy, and be more effective in the marketplace. So, as I say this is about 130, 150 chief data officers. We heard from Kaitlin Lafferty, who's going to come on a little later. She's going to be my quasi-co-host, which will be interesting. Beth Smith, who is the GM of Watson Data. She talked a lot about use cases. She gave an example of Orange Bank, a totally digital bank, using Watson to service customers. You can't call this bank. And they've got some interesting measurements that they'll share with us in terms of customer satisfaction and born-digital or all-digital bank. She also talked about partnerships that they're doing, not directly, sort of indirectly I inferred, she talked about IT service management embedding Watson into the IT service management from an HR perspective. I believe that she was referring to, even though she didn't mention it, a deal that IBM struck with ServiceNow. IBM's got similar deals with Watson with Salesforce. Salesforce Einstein is based on Watson. So what you're seeing is embedding AI into different applications, and we've talked about this a lot at siliconANGLE and theCUBE and at Wikibon. It's really those embedded use cases for AI that are going to drive adoption, as opposed to generalized horizontal AI. That seems to be not the recipe for adoption success, really more so specific use cases. I mean the obvious ones are some consumer ones, and even in the enterprise as well: security, facial recognition, natural language processing, for example. Very specific use cases for AI. We also heard from Inderpal Bhandari, the global chief data officer of IBM, talking about the AI enterprise, really showcasing IBM as a company that is bringing this AI enterprise to itself, and then teaching, sharing that knowledge with its clients and with its customers. I really like talking to Inderpal Bhandari. I learn a lot from him. This is his fourth CDO gig, okay. He was the very first CDO ever in health care when there, I mean I think he was the first of four or one of four, first CDOs in health care. Now there are thousands. So this is his fourth gig as a CDO. He talks about what a CDO has to do to get started, starting with a clear data strategy. When I've talked to him before, he said, he mentioned, how does data contribute to the monetization of your organization? Now it's not always monetization. If it's a non-public company or a health care company, for example, that's not-for-profit, it's not necessarily a monetization component, it's more of a how does it effect your strategy. But that's number one is sort of, how does data drive value for you organization? The second is, how do you implement the system that's based on governance and security? What's the management system look like? Who has data and who has access to that data? How do you affect privacy? And then, how do you become a central source for that AI-framework, being a service organization essentially to the entire organization? And then, developing deep analytics partnerships with lines of business. That's critical, because the domain expertise for the business is obviously going to live in the line of business, not in some centralized data organization. And, then, finally, very importantly, skills. What skills do you need, identify those skills, and then how do you get those people? How do you both train internally and find those people externally? Very hard to find those skills. He talked about AI systems having four attributes. Number one is expertise, domain knowledge. AI systems have to be smart about the problem that they're trying to solve. Natural human interaction, IBM talks about natural language processing, a lot of companies do. Everybody's familiar with the likes of Alexa, Google Home, and Siri. Well IBM Watson also has an NLP capability that's quite powerful. So that's very important. And interestingly he talked about, I'll ask him about this, the black box phenomenon. Most AI is a black box. If you think about it, AI can tell you if you're looking at a dog, but think about your own human frame. How do you know when you're actually seeing a dog? Try to explain to somebody someday how you go about recognizing that animal. It's sort of hard to do. Systems today can tell you that if it's a dog or for you Silicon Valley watchers, hot dog. But, it's a black box. What IBM is saying is no, we can't live with a black box in the enterprise. We have to open up that black box, make it a white box, and share with our customers exactly how that decision is being made. That's an interesting problem that I want to talk to him about. And then, next, the third piece is learning through education. How do you learn at scale? And then the fourth piece was, how do you evolve, how do you iterate, how do you become auto-didactic or self-learning with regard to the system and getting better and better and better over time. And that sets a foundation for this AI enterprise or cognitive enterprise blueprints, where the subject matter expert can actually interact with the system. We had some questions from the audience. One came up on cloud and security concerns, not surprising. Data exposure, how do you automate a lot of this stuff and provide access, at the same time ensuring privacy and security. So IBM's going to be addressing that today. So, we're here all day, wall-to-wall coverage of the IBM CDO Strategy Summit, #IBMCDO. Of course, we're running multiple live programs today. I'm covering this show in San Francisco. John Furrier is in Copenhagen at KubeCon with The Linux Foundation. Stu Miniman is holding down the fort with a very large crew at Dell Technology's World. So keep it right there everybody. This is theCUBE at IBM's CDO Strategy Summit in San Francisco. We'll be right back after this short break. (techno music) (dial tones)
SUMMARY :
brought to you by IBM. sort of the how to implement
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Beth Smith | PERSON | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
Inderpal Bhandari | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Copenhagen | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Kaitlin Lafferty | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
ORGANIZATION | 0.99+ | |
one | QUANTITY | 0.99+ |
fourth gig | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
third piece | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
Orange Bank | ORGANIZATION | 0.99+ |
fourth piece | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
Watson Data | ORGANIZATION | 0.99+ |
each year | QUANTITY | 0.99+ |
CDO Strategy Summit | EVENT | 0.99+ |
second | QUANTITY | 0.99+ |
Salesforce | ORGANIZATION | 0.98+ |
Silicon Valley | LOCATION | 0.98+ |
IBM CDO Strategy Summit | EVENT | 0.98+ |
Siri | TITLE | 0.98+ |
each city | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
about 130, 150 chief data officers | QUANTITY | 0.97+ |
Wikibon | ORGANIZATION | 0.97+ |
both | QUANTITY | 0.95+ |
150 chief data officers | QUANTITY | 0.95+ |
#IBMCDO | EVENT | 0.95+ |
first CDOs | QUANTITY | 0.94+ |
fourth CDO | QUANTITY | 0.94+ |
about 100 | QUANTITY | 0.94+ |
seven years | QUANTITY | 0.94+ |
KubeCon | EVENT | 0.93+ |
five | QUANTITY | 0.93+ |
Watson | TITLE | 0.92+ |
IBM CDO Summit | EVENT | 0.92+ |
this morning | DATE | 0.91+ |
One | QUANTITY | 0.91+ |
first CDO | QUANTITY | 0.9+ |
Dell Technology | ORGANIZATION | 0.9+ |
Couple | QUANTITY | 0.87+ |
Spring 2018 | DATE | 0.87+ |
IBM CDO Strategy Summit | EVENT | 0.82+ |
IBM Watson | ORGANIZATION | 0.81+ |
about a decade ago | DATE | 0.81+ |
four attributes | QUANTITY | 0.81+ |
siliconANGLE | ORGANIZATION | 0.79+ |
Alexa | TITLE | 0.78+ |
Number one | QUANTITY | 0.78+ |
theCUBE | ORGANIZATION | 0.77+ |
Strategy Summit | EVENT | 0.76+ |
Watson | ORGANIZATION | 0.75+ |
Chief | EVENT | 0.7+ |
Linux Foundation | ORGANIZATION | 0.7+ |
ServiceNow | TITLE | 0.65+ |
2018 | DATE | 0.64+ |
COMMERCIAL_ITEM | 0.6+ | |
big | EVENT | 0.59+ |
Caitlin Halferty Lepech, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE
(hip-hop music) (electronic music) >> Announcer: Live from Fisherman's Wharf in San Francisco, it's theCUBE, covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. (crowd) >> Hey welcome back everybody, Jeff Fricke here with Peter Burris. We're wrapping up a very full day here at the IBM Chief Data Officer Strategy Summit Spring 2017, Fisherman's Wharf, San Francisco. An all-day affair, really an intimate affair, 170 people, but Chief Data Officers with their peers, sharing information, getting good information from IBM. And it's an interesting event. They're doing a lot of them around the country, and eventually around the world. And we're excited to have kind of the power behind the whole thing. (laughing) Caitlin Lepech, she's the one who's driving the train. Don't believe the guys in the front. She's the one behind the curtain that's pulling all the levers. So we wanted to wrap the day. It's been a really good day, some fantastic conversations, great practitioners. >> Right. >> Want to get your impression of the day? Right, it's been great. The thing I love about this event the most is this is all client-led discussion, client-led conversation. And we're quite fortunate in that we get a lot leading CDOs to come join us. I've seen quite a number this time. We tried something new. We expanded to this 170 attendees, by far the largest group that we've ever had, so we ran these four breakout session tracks. And I am hearing some good feedback about some of the discussions. So I think it's been a good and full day (laughing). >> Yes, it has been. Any surprises? Anything that kind of jumped out to you that you didn't expect? >> Yeah, a couple of things. So we structure these breakout sessions... Pointed feedback from last session was, Hey, we want the opportunity to network with peers, share use cases, learn from each other, so I've got my notes here, and that we did a function builder. So these are all our CDOs that are starting to build the CDO office. They're new in the journey, right. We've got our data integrators, so they're really our data management, data wranglers, the business optimizers, thinking about how do I make sure I've got the impact throughout the business, and then market innovators. And one of the surprises is how many people are doing really innovative things, and they don't realize it. They tell me-- >> Jeff: Oh, really. >> Ahhh, I'm just in the early stages of setting up the office. I don't have the good use cases to share. And they absolutely do! They absolutely do! So that's always the surprise, is how many are actually quite more innovative than I think they give themselves credit. >> Well, that was a pretty consistent theme that came out today, is that you can't do all the foundational work, and then wait to get that finished before you start actually innovating delivering value. >> If you want to be successful. >> (laughing) Right, and keep your job (laughing) If you're one of the 41%. So you have to be parallel tracking, that first process'll never finish, but you've got to find some short-term wins that you can execute on right away. >> And that was one of our major objectives and sort of convening this event, and continuing to invest in the CDO community, is how do I improve the failure rate? We all agree, growth in the role, okay. But over half are going to fail. >> Right. >> And we start to see some of these folks now that they're four, six years in having some challenges. And so, what we're trying to do is reduce that failure rate. >> Jeff: Yeah, hopefully they-- >> But still four to six years in is still not a bad start. >> Caitlin: Yeah, yeah. >> There's most functions that fail quick... That fail tend to fail pretty quickly. >> Yeah. >> So one of the things that I was struck by, and I want to get your feedback on this, is that 170 people, sounds like a lot. >> Caitlin: Yeah, yeah. >> But it's not so much if there is a unity of purpose. >> Caitlin: Correct, correct! >> If there's pretty clear understanding of what it is they do and how they do it, and I think the CDO's role is still evolving very rapidly. So everybody's coming at this from a different perspective. And you mentioned the four tracks. But they seem to be honing in on the same end-state. >> Absolutely. >> So talk about what you think that end-state is. Where is the CDO in five years? >> Absolutely, so I did some live polling, as we kicked off the morning, and asked a couple of questions along those lines. Where do folks report? I think we mentioned this-- >> Right. >> When we kicked off. >> Right. >> A third to the CEO, a third to CIO, and a third to a CXO-type role, functional role. And reflected in the room was about that split. I saw about a third, third, third. And, yet, regardless of where in the organization, it's how do we get data governance, right? How do we get data management, right? And then there's this, I think, reflection around, okay, machine learning, deep learning, some of these new opportunities, new technologies. What sort of skills do we need to deliver? I had an interesting conversation with a CDO that said, We make a call across the board. We're not investing to build these technical skills in-house because we know in two years the guys I had doing Python and all that stuff, it's on to the next thing. And now I've got to get machine learning, deep learning, two years I need to move to the next. So it's more identifying technologies in partnership bringing those and bringing us through, and driving the business results. >> And we heard also very frequently the role the politics played. >> Caitlin: Oh, absolutely. >> And, in fact, Fow-wad Boot from-- >> Kaiser. >> Kaiser Permanente, yeah. >> Specifically talked about this... He's looking in the stewards that he's hiring in his function. He's looking for people that have learned the fine art of influencing others. >> And I think it's a stretch for a lot of these folks. Another poll we did is, who comes from an engineering, technical background. A lot of hands in the room. And we're seeing more and more come from line of business, and more and more emphasize the relationship component of it, relationship skills, which is I think is very interesting. We also see a high number of women in CDO roles, as compared to other C-suite roles. And I like to think, perhaps, it has to do-- >> Jeff: Right, right. >> With the relationship component of it as well because it is... >> Jeff: Yeah, well-- >> Peter: That's interesting. I'm not going to touch it, but it's interesting (laughing). >> Well, no, we were-- >> (laughing) I threw it out there. >> We were at the Stanford-- >> No, no, we-- >> Women in Data Science event, which is a phenomenal event. We've covered it for a couple years, and Jayna George from Western Digital, phenomenal, super smart lady, so it is an opportunity, and I don't think it's got so much of the legacy stuff that maybe some of the other things had that people can jump in. Diane Green kicked it off-- >> Yeah. >> So I think there is a lot of examples women doing their own thing in data science. >> Yeah, I agree, and I'll give you another context. In another CUBE, another event, I actually raised that issue, relationships, because men walk into a room, they get very competitive very quickly, who's the smartest guy in the room. And on what days is blah, blah, blah. And we're talking about the need to forge relationships that facilitate influence. >> Absolutely. >> And sharing of insight and sharing of knowledge. And it was a woman guest, and she... And I said, Do you see that women are better at this than others? And she looked at me, she said, Well, that's sexist. (laughing). And it was! I guess it kind of was. >> Right, right. >> But do you... You're saying that it's a place where, perhaps, women can actually take a step into senior roles in a technology-oriented space. >> Yeah. >> And have enormous success because of some of the things that they bring to the table. >> Yeah, one quote stuck with me is, when someone comes in with great experience, really smart, Are they here to hurt me or help me? And the trust component of it and building the trust, And I think there is one event we do here, the second day of all of our CDO summits, so women in breakfast, the data divas' breakfast. And we explore some opportunities for women leaders, and it was well-attended by men and women. And I think there really is when you're establishing a data strategy for your entire organization, and you need lines of business to contribute money and funding and resources, and sign off, there is I feel sometimes like we're on the Hill. I'm back in D.C., working on Capitol Hill (laughing), and we're shopping around to deliver, so absolutely. Another tying back to what you mentioned about something that was surprising today, we started building out this trust as a service idea. And a couple people on panels mentioned thinking about the value of trust and how you instill trust. I'm hearing more and more about that, so that was interesting. >> We actually brought that up. >> Caitlin: Oh, did you! >> Yeah, we actually brought it up here in theCUBE. And it was specifically and I made an observation that when you start thinking about Watson and you start thinking about potentially-competitive offerings at some point in time they're going to offer alternative opinions-- >> Absolutely. >> And find ways to learn to offer their opinions better than their's just for competitive purposes. >> Absolutely. >> And so, this notion of trust becomes essential to the brand. >> Absolutely. >> My system is working in your best interest. >> Absolutely. >> Not my best interest. And that's not something that people have spent a lot of time thinking about. >> Exactly, and what it means when we say, when we work with clients and say, It's your data, your insight. So we certainly tap that information-- >> Sure. >> And that data to train Watson, but it's not... We don't to keep that, right. It's back to you, but how do you design that engagement model to fulfill the privacy concerns, the ethical use of data, establish that trust. >> Right. >> I think it's something we're just starting to really dig into. >> But also if you think about something like... I don't know if you ever heard of this, but this notion of principal agent theory. >> Umm-hmm. >> Where the principal being the owner, in typical-- >> Right. >> Economic terms. The agent being the manager that's working on behalf of the owner. >> Right. >> And how do their agendas align or misalign. >> Right. >> The same thing is just here. We're not talking about systems that have... Are able to undertake very, very complex problems. >> Right. >> Sometimes will do so, and people will sit back and say, I'm not sure how it actually worked. >> Yeah. >> So they have to be a good agent for the business. >> Absolutely, absolutely, definitely. >> And this notion of trust is essential to that. >> Absolutely, and it's both... It originated internally, right, trying to trust the answers you're getting-- >> Sure! >> On a client. Who's our largest... Where's our largest client opportunity, you get multiple answers, so it's kind of trusting the voracity of the data, but now it's also a competitive differentiator. As a brand you can offer that to your client. >> Right, the other big thing that came up is you guys doing it internally, and trying to drive your own internal transformation at IBM, which is interesting in of itself, but more interesting is the fact that (laughing) you actually want to publish what you're doing and how you did it-- >> Yeah. >> As a road map. I think you guys are calling it the Blueprint-- >> Yes. >> For your customers. And talk about publishing that actually in October, so I wonder if you can share a little bit more color around what exactly is this Blueprint-- >> Sure. >> How's it's going to be exposed? >> What should people look forward to? >> Sure, I'm very fortunate in that Inderpal Bhandari when he came on board as IBM's First Chief Data Officer, said, I want to be completely transparent with clients on what we're doing. And it started with the data strategy, here's how we arrived at the data strategy, here's how we're setting up our organization internally, here's how we're prioritizing selecting use cases, so client prefixes is important to us, here's why. Down at every level we've been very transparent about what we're doing internally. Here's the skill sets I'm bringing on board and why. One thing we've talked a lot about is the Business Unit Data Officer, so having someone that sits in the business unit responsible for requirements from the unit, but also ensuring that there's some level of consistency at the enterprise level. >> Right. >> So, we've had some Business Unit Data Officers that we've plucked (laughing) from other organizations that have come and joined IBM last year, which is great. And so, what we wanted to do is follow that up with an actual Blueprint, so I own the Blueprint for Inderpal, and what we want to do is deliver it along three components, so one, the technology component, what technology can you leverage. Two, the business processes both the CDO processes and the enterprise, like HR, finance, supply chain, procurement, et cetera. And then finally the organizational considerations, so what sort of strategy, culture, what talent do you need to recruit, how do you retain your existing workforce to meet some of these new technology needs. And then all the sort of relationship piece we were talking about earlier, the culture changes required. >> Right. >> How do you go out and solicit that buy-in. And so, our intent is to come back around in October and deliver that Blueprint in a way that can be implemented within organization. And, oh, one thing we were saying is the homework assignment from this event (laughing), we're going to send out the template. >> Right. And our version of it, and be very transparent, here's how we're doing it internally. And inviting clients to come back to say-- >> Right. >> You need to dig in deeper here, this part's relevant to me, along the information governance, the master data management, et cetera. And then hopefully come back in October and deliver something that's really of value and usable for our clients across the industry. >> So for folks who didn't make it today, too bad for them. >> Exactly, we missed them, (laughing) but... >> So what's the next summit? Where's it's going to be, how do people get involved? Give us a kind of a plug for the other people that wished they were here, but weren't able to make it today. >> Sure, so we will come back around in the fall, September, October timeframe, in Boston, and do our east coast version of this summit. So I hope to see you guys there. >> Jeff: Sure, we'll be there. >> It should be a lot of fun. And at that point we'll deliver the Blueprint, and I think that will be a fantastic event. We committed to 170 data executives here, which fortunately we were able to get to that point, and are targeting a little over 200 for the fall, so looking to, again, expand, continue to expand and invite folks to join us. >> Be careful, you're going to be interconnected before you know. >> (laughing) No, no, no, I want it small! >> (laughing) Okay. >> And then also as I mentioned earlier, we're starting to see more industry-specific financial services, government. We have a government CDO summit coming up, June six, seven, in Washington D.C. So I think that'll be another great event. And then we're starting to see outside of the U.S., outside of North America, more of the GO summits as well, so... >> Very exciting times. Well, thanks for inviting us along. >> Sure, it's been a great day! It's been a lot of fun. Thank you so much! >> (laughing) Alright, thank you, Caitlin. I'm Jeff Fricke with Peter Burris. You're watching theCUBE. We've been here all day at the IBM Chief Data Officer Strategy Summit, that's right the Spring version, 2017, in Fisherman's Wharf, San Francisco. Thanks for watching. We'll see you next time. (electronic music) (upbeat music)
SUMMARY :
Brought to you by IBM. and eventually around the world. of the day? Anything that kind of jumped out to you And one of the surprises is how many people are I don't have the good use cases to share. and then wait to get that finished before you start that you can execute on right away. And that was one of our major objectives And we start to But still four to six years in That fail tend to fail pretty quickly. So one of the things that And you mentioned the four tracks. Where is the CDO in five years? and asked a couple of questions along those lines. And reflected in the room was about that split. And we heard also very frequently He's looking for people that have learned the fine art and more and more emphasize the relationship With the relationship component of it as well I'm not going to touch it, that maybe some of the other things had So I think there is a lot and I'll give you another context. And I said, Do you see that women are better You're saying that it's a place where, perhaps, because of some of the things that they bring to the table. And the trust component of it and building the trust, and I made an observation that And find ways to learn And so, this notion of in your best interest. And that's not something that people have spent a lot Exactly, and what it means when we say, And that data I think it's something I don't know if you ever heard of this, of the owner. Are able to undertake very, very complex problems. and people will sit back and say, a good agent for the business. Absolutely, and it's both... As a brand you can offer that to your client. I think you guys are calling it the Blueprint-- And talk about publishing that actually in October, so having someone that sits in the business unit and the enterprise, like HR, finance, supply chain, And so, our intent is to come back around in October And our version of it, along the information governance, So for folks who didn't make it today, Where's it's going to be, So I hope to see you guys there. and are targeting a little over 200 for the fall, before you know. more of the GO summits as well, so... Well, thanks for inviting us along. Thank you so much! We've been here all day at the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Caitlin Lepech | PERSON | 0.99+ |
Jeff | PERSON | 0.99+ |
Jayna George | PERSON | 0.99+ |
Diane Green | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Jeff Fricke | PERSON | 0.99+ |
Peter Burris | PERSON | 0.99+ |
Caitlin | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
October | DATE | 0.99+ |
Peter | PERSON | 0.99+ |
Washington D.C. | LOCATION | 0.99+ |
four | QUANTITY | 0.99+ |
41% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
June six | DATE | 0.99+ |
D.C. | LOCATION | 0.99+ |
2017 | DATE | 0.99+ |
third | QUANTITY | 0.99+ |
170 attendees | QUANTITY | 0.99+ |
Inderpal Bhandari | PERSON | 0.99+ |
Python | TITLE | 0.99+ |
170 data executives | QUANTITY | 0.99+ |
six years | QUANTITY | 0.99+ |
170 people | QUANTITY | 0.99+ |
Inderpal | ORGANIZATION | 0.99+ |
North America | LOCATION | 0.99+ |
four tracks | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
two years | QUANTITY | 0.99+ |
one quote | QUANTITY | 0.99+ |
U.S. | LOCATION | 0.99+ |
September | DATE | 0.99+ |
Capitol Hill | LOCATION | 0.98+ |
San Francisco | LOCATION | 0.98+ |
second day | QUANTITY | 0.98+ |
one event | QUANTITY | 0.98+ |
Two | QUANTITY | 0.98+ |
Western Digital | ORGANIZATION | 0.98+ |
Watson | PERSON | 0.98+ |
today | DATE | 0.98+ |
Caitlin Halferty Lepech | PERSON | 0.98+ |
one | QUANTITY | 0.97+ |
five years | QUANTITY | 0.97+ |
first | QUANTITY | 0.97+ |
three components | QUANTITY | 0.97+ |
seven | DATE | 0.96+ |
Chief Data Officer | EVENT | 0.96+ |
One | QUANTITY | 0.96+ |
over 200 | QUANTITY | 0.95+ |
Fisherman's Wharf, San Francisco | LOCATION | 0.94+ |
over half | QUANTITY | 0.94+ |
First Chief Data Officer | PERSON | 0.9+ |
Blueprint | ORGANIZATION | 0.87+ |
Women in Data Science | EVENT | 0.86+ |
Kaiser Permanente | ORGANIZATION | 0.86+ |
Fisherman's Wharf | LOCATION | 0.81+ |
Chief Data Officer Strategy Summit Spring 2017 | EVENT | 0.8+ |
#IBMCDO | ORGANIZATION | 0.8+ |
Strategy Summit | EVENT | 0.78+ |
Priya Vijayarajendran & Rebecca Shockley, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE
(pulsating music) >> Live from Fisherman's Wharf in San Francisco, it's theCUBE! Covering IBM Chief Data Officer Strategy Summit, Spring 2017. Brought to you by IBM. >> Hey, welcome back everybody. Jeff Frick here with theCUBE. We're at Fisherman's Wharf in San Francisco at the IBM Chief Data Officer Strategy Summit, Spring 2017. It's a mouthful, it's a great event, and it's one of many CDO summits that IBM's putting in around the country, and soon around the world. So check it out. We're happy to be here and really talk to some of the thought leaders about getting into the nitty gritty detail of strategy and execution. So we're excited to be joined by our next guest, Rebecca Shockley. She's an Analytics Global Research Leader for the IBM Institute for Business Value. Welcome, Rebecca. I didn't know about the IBM Institute for Business Value. >> Thank you. >> Absolutely. And Priya V. She said Priya V's good, so you can see the whole name on the bottom, but Priya V. is the CTO of Cognitive/IOT/Watson Health at IBM. Welcome, Priya. >> Thank you. >> So first off, just impressions of the conference? It's been going on all day today. You've got 170 or some-odd CDO's here sharing best practices, listening to the sessions. Any surprising takeaways coming out of any of the sessions you've been at so far? >> On a daily basis I live and breathe data. That's what I help our customers to get better at it, and today is the day where we get to talk about how can we adopt something which is emerging in that space? We talk about data governance, what we need to look at in that space, and cognitive as being the fabric that we are integrating into this data governance actually. It's a great day, and I'm happy to talk to over, like you said, 170 CDO's representing different verticals. >> Excellent. And Rebecca, you do a lot of core research that feeds a lot of the statistics that we've seen on the keynote slides, this and that. And one of the interesting things we talked about off air, was really you guys are coming up with a playbook which is really to help CDO's basically execute and be successful CDO's. Can you tell us about the playbook? >> Well, the playbook was born out of a Gartner statistic that came out I guess two or three years ago that said by 2016 you'll have 90% of organizations will have a CDO and 50% of them will fail. And we didn't think that was very optimistic. >> Jeff: 90% will have them and 50% will fail? >> Yes, and so I can tell you that based on our survey of 6,000 global executives last fall, the number is at 41% in 2016. And I'm hoping that the playbook kept them from being a failure. So what we did with the playbook is basically laid out the six key questions that an organization needs to think about as they're either putting in a CDO office or revamping their CDO offices. Because Gartner wasn't completely unfounded in thinking a lot of CDO offices weren't doing well when they made that prediction. Because it is very difficult to put in place, mostly because of culture change, right? It's a very different kind of way to think. So, but we're certainly not seeing the turnover we were in the early years of CDO's or hopefully the failure rate that Gartner predicted. >> So what are the top two or three of those six that they need to be thinking about? >> So they need to think about their objectives. And one of the things that we found was that when we look at CDO's, there's three different categories that you can really put them in. A data integrator, so is the CDO primarily focused on getting the data together, getting the quality of the data, really bringing the organization up to speed. The next thing that most organizations look at is being a business optimizer. So can they use that data to optimize their internal processes or their external relationships? And then the third category is market innovator. Can they use that data to really innovate, bring in new business models, new data monetization strategies, things like that. The biggest problem we found is that CDO's that we surveyed, and we surveyed 800 CDO's, we're seeing that they're being assessed on all three of those things, and it's hard to do all three at once, largely because if you're still having to focus on getting your data in a place where you can start doing real science against it you're probably not going to be full-time market innovator either. You can't be full-time in two different places. That's not to say as a data integrator you can't bring in data scientists, do some skunk works on some of the early work, find... and we've seen organizations really, like Bank Itau down in Brazil, really in that early stages still come up with some very innovative things to do, but that's more of a one-off, right. If you're being judged on all three of those, that I think is where the failure rate comes in. >> But it sounds like those are kind of sequential, but you can't operate them sequentially cause in theory you never finish the first phase, right? >> You never finish, you're always keeping up with the data. But for some organizations, they really need to, they're still operating with very dirty, very siloed data that you really can't bring together for analytics. Now once you're able to look at that data, you can be doing the other two, optimizing and innovating, at the same time. But your primary focus has to be on getting the data straight. Once you've got a functioning data ecosystem, then the level of attention that you have to put there is going to go down, and you can start working on, focusing on innovation and optimization more as your full-time role. But no, data integrator never goes away completely. >> And cleanser. Then, that's a great strategy. Then, as you said, then the rubber's got to hit the road. And Priya, that's where you play in, the execution point. Like you say, you like to get your hands dirty with the CDO's. So what are you seeing from your point of view? In terms of actually executing, finding early wins, easy paths to success, you know, how to get those early wins basically, right? To validate what you're doing. That's right. Like you said, it's become a universal fact that data governance and things, everything around consolidating data and the value of insights we get off it, that's been established fact. Now CDO's and the rest of the organization, the CIO's and the CTO's, have this mandate to start executing on them. And how do we go about it? That's part of my job at IBM as well. As a CTO, I work with our customers to identify where are the dominant business value? Where are those things which is completely data-driven? Maybe it is cognitive forecasting, or your business requirement could be how can I maximize 40% of my service channel? Which in the end of the day could be a cognitive-enabled data-driven virtual assistant, which is automating and bringing a TCO of huge incredible value. Those are some of the key execution elements we are trying to bring. But like we said, yes, we have to bring in the data, we have to hire the right talent, and we have to have a strategy. All those great things happen. But I always start with a problem, a problem which actually anchors everything together. A problem is a business problem which demonstrates key business values, so we actually know what we are trying to solve, and work backwards in terms of what is the data element to it, what are the technologies and toolkits that we can put on top of it, and who are the right people that we can involve in parallel with the strategy that we have already established. So that's the way we've been going about. We have seen phenomenal successes, huge results, which has been transformative in nature and not just these 170 CDO's. I mean, we want to make sure every one of our customers is able to take advantage of that. >> But it's not just the CDO, it's the entire business. So the IBM Institute on Business Value looks at an enormous amount of research, or does an enormous amount of research and looks at a lot of different issues. So for example, your CDO report is phenomenal, I think you do one for the CMO, a number of different chief officers. How are other functions or other roles within business starting to acculturate to this notion of data as a driver of new behaviors? And then we can talk about, what are some of those new behaviors? The degree to which the leadership is ready to drive that? >> I think the executive suite is really starting to embrace data much more than it has in the past. Primarily because of the digitization of everything, right. Before, the amount of data that you had was somewhat limited. Often it was internal data, and the quality was suspect. As we started digitizing all the business processes and being able to bring in an enormous amount of external data, I think organizationally executives are getting much more comfortable with the ability to use that data to further their goals within the organization. >> So in general, the chief groups are starting to look at data as a way of doing things differently. >> Absolutely. >> And how is that translating into then doing things differently? >> Yeah, so I was just at the session where we talked about how organizations and business units are even coming together because of data governance and the data itself. Because they are having federated units where a certain part of business is enabled and having new insights because we are actually doing these things. And new businesses like monetizing data is something which is happening now. Data as a service. Actually having data as a platform where people can build new applications. I mean the whole new segment of people as data engineers, full stack developers, and data scientists actually. I mean, they are incubated and they end up building lots of new applications which has never been part of a typical business unit. So these are the cultural and the business changes we are starting to see in many organizations actually. Some of them are leading the way because they just did it without knowing actually that's the way they should be doing it. But that's how it influences many organizations. >> I think you were looking for kind of an example as well, so in the keynote this morning one of the gentlemen was talking about working with their CFO, their risk and compliance office, and were able to take the ability to identify a threat within their ecosystem from two days down to three milliseconds. So that's what can happen once you really start being able to utilize the data that's available to an organization much more effectively, is that kind of quantum leap change in being able to understand what's happening in the marketplace, bing able to understand what's happening with consumers or customers or clients, whichever flavor you have, and we see that throughout the organization. So it's not just the CFO, but the CMO, and being able to do much more targeted, much more focused on the consumer side or the client customer side, that's better for me, right. And the marketing teams are seeing 30, 40% increase in their ability to execute campaigns because they're more data-driven now. >> So has the bit flipped where the business units are now coming to the CDO's office and pounding on the door, saying "I need my team"? As opposed to trying to coerce that you no longer use intuition? >> So it depends upon where you are, where the company is. Because what we call that is the snowball effect. It's one of the reasons you have to have the governance in place and get things going kind of in parallel. Because what we see is that most organizations go in skeptically. They're used to running on their gut instinct. That's how they got their jobs mostly, right? They had good instincts, they made good decisions, they got promoted. And so making that transition to being a data-driven organization can be very difficult. What we find though, is that once one section, one segment, one flavor, one good campaign happens, as soon as those results start to mount up in the organization, you start to see a snowball effect. And what I was hearing particularly last year when I was talking to CDO's was that it had taken them so long to get started, but now they had so much demand coming from the business that they want to look at this, and they want to look at that, and they want to look at the other thing, because once you have results, everybody else in the organization wants those same kind of results. >> Just to add to that, data is not anymore viewed as a commodity. If you have seen valuable organizations who know what their asset is, it's not just a commodity. So the parity of... >> Peter: Or even a liability is what it used to be, right? >> Exactly. >> Peter: It's expensive to hold it and store it, and keep track of it. >> Exactly. So the parity of this is very different right now. So people are talking about, how can I take advantage of the intelligence? So business units, they don't come and pound the door rather they are trying to see what data that I can have, or what intelligence that I can have to make my business different shade, or I can value add something more. That's a type of... So I feel based on the experiences that we work with our customers, it's bringing organizations together. And for certain times, yes sometimes the smartness and the best practices come in place that how we can avoid some of the common mistakes that we do, in terms of replicating 800 times or not knowing who else is using. So some of the tools and techniques help us to master those things. It is bringing organizations and leveraging the intelligence that what you find might be useful to her, and what she finds might be useful. Or what we all don't know, that we go figure it out where we can get it. >> So what's the next step in the journey to increase the democratization of the utilization of that data? Because obviously Chief Data Officers, there aren't that many of them, their teams are relatively small. >> Well, 41% of businesses, so there's a large number of them out there. >> Yeah, but these are huge companies with a whole bunch of business units that have tremendous opportunity to optimize around things that they haven't done yet. So how do we continue to kind of move this democratization of both the access and the tools and the utilization of the insights that they're all sitting on? >> I have some bolder expectations on this, because data and the way in which data becomes an asset, not anymore a liability, actually folds up many of the layers of applications that we have. I used to come from an enterprise background in the past. We had layers of application programming which just used data as one single layer. In terms of opportunities for this, there is a lot more deserving silos and deserving layers of IT in a typical organization. When we build data-driven applications, this is all going to change. It's fascinating. This role is in the front and center of everything actually, around data-driven. And you also heard enough about cognitive computing these days, because it is the key ingredient for cognitive computing. We talked about full ease of cognitive computing. It has to start first learning, and data is the first step in terms of learning. And then it goes into process re-engineering, and then you reinvent things and you disrupt things and you bring new experiences or humanize your solution. So it's on a great trajectory. It's going tochange the way we do things. It's going to give new and unexpected things both from a consumer point and from an enterprise point as well. It'll bring effects like consumerization of enterprises and what-not. So I have bolder and broader expectations out of this fascinating data world. >> I think one of the things that made people hesitant before was an unfamiliarity with thinking about using data, say a CSR on the front line using data instead of the scripts he or she had been given, or their own experience. And I think what we're seeing now is A, everybody's personal life is much more digital than it was before, therefore everybody's somewhat more comfortable with interacting. And B, once you start to see those results and they realize that they can move from having to crunch numbers and do all the background work once we can automate that through robotic process automation or cognitive process automation, and let them focus on the more interesting, higher value parts of their job, we've seen that greatly impact the culture change. The culture change question comes whether people are thinking they're going to lose their job because of the data, or whether it's going to let them do more interesting things with their jobs. And I think hopefully we're getting past that "it's me or it" stage, into the, how can I use data to augment the work that I'm doing, and get more personal satisfaction, if not business satisfaction, out of the work that I'm doing. Hopefully getting rid of some of the mundane. >> I think there's also going to be a lot of software that's created that's going to be created in different ways and have different impacts. The reality is, we're creating data incredibly fast. We know that is has enormous value. People are not going to change that rapidly. New types of algorithms are coming on, but many of the algorithms are algorithms we've had for years, so in many respects it's how we render all of that in some of the new software that's not driven by process but driven by data. >> And the beauty of it is this software will be invisible. It will be self-healing, regeneratable software. >> Invisible to some, but very very highly visible to others. I think that's one of the big challenges that IT organizations face, and businesses face. Is how do they think through that new software? So you talked about today, or historically, you talked about your application stack, where you have stacks which would have some little view of the data, and in many respects we need to free that data up, remove it out of the application so we can do new things with it. So how is that process going to either be facilitated, or impeded by the fact that in so many organizations, data is regarded as a commodity, something that's disposable. Do we need to become more explicit in articulating or talking about what it means to think of data as an asset, as something that's valuable? What do you think? >> Yeah, so in the typical application world, when we start, if you really look at it, data comes at the very end of it. Because people start designing what is going to be their mockups, where are they going to integrate with what sources, am I talking to the bank as an API, et cetera. So the data representation comes at the very end. In the current generation of applications, the cognitive applications that we are building, first we start with the data. We understand what are we working on, and we start applying, taking advantage of machines and all these algorithms which existed like you said, many many decades ago. And we take advantage of machines to automate them to get the intelligence, and then we write applications. So you see the order has changed actually. It's a complete reversal. Yes we had typical three-tier, four-tier architecture. But the order of how we perceive and understand the problem is different. But we are very confident. We are trying to maximize 40% of your sales. We are trying to create digital connected dashboards for your CFO where the entire board can make decisions on the fly. So we know the business outcome, but we are starting with the data. So the fundamental change in how software is built, and all these modules of software which you are talking about, why I mentioned invisible, is some are generatable. The AI and cognitive is advanced in such a way that some are generatable. If it understands the data underlying, it can generate what it should do with the data. That's what we are teaching. That's what ontology and all this is about. So that's why I said it's limitless, it's pretty bold, and it's going to change the way we have done things in the past. And like she said, it's only going to complement humans, because we are always better decision-makers, but we need so much of cognitive capability to aid and supplement our decision-making. So that's going to be the way that we run our businesses. >> All right. Priya's painting a pretty picture. I like it. You know, some people see only the dark side. That's clearly the bright side. That's a terrific story, so thank you. So Priya and Rebecca, thanks for taking a few minutes. Hope you enjoy the rest of the show, surrounded by all this big brain power. And I appreciate you stopping by. >> Thanks so much. >> Thank you. >> All right. Jeff Frick and Peter Burris. You're watching theCUBE from the IBM Chief Data Officers Summit, Spring 2017. We'll be right back after this short break. Thanks for watching. (drums pound) (hands clap rhythmically) >> [Computerized Voice] You really crushed it. (quiet synthesizer music) >> My name is Dave Vellante, and I'm a long-time industry analyst. I was at IDC for a number of years and ran the company's largest and most profitable business. I focused on a lot of areas, infrastructure, software, organizations, the CIO community. Cut my teeth there.
SUMMARY :
Brought to you by IBM. and really talk to some of the thought leaders but Priya V. is the CTO of Cognitive/IOT/Watson Health So first off, just impressions of the conference? and cognitive as being the fabric that we are integrating And one of the interesting things we talked about off air, Well, the playbook was born out of a Gartner statistic And I'm hoping that the playbook And one of the things that we found was that is going to go down, and you can start working on, and the value of insights we get off it, So the IBM Institute on Business Value Before, the amount of data that you had So in general, the chief groups and the data itself. So it's not just the CFO, but the CMO, in the organization, you start to see a snowball effect. So the parity of... Peter: It's expensive to hold it and store it, and the best practices come in place in the journey to increase the democratization Well, 41% of businesses, and the utilization of the insights and data is the first step in terms of learning. because of the data, but many of the algorithms And the beauty of it is this software will be invisible. and in many respects we need to free that data up, So that's going to be the way that we run our businesses. You know, some people see only the dark side. from the IBM Chief Data Officers Summit, Spring 2017. [Computerized Voice] You really crushed it. and ran the company's largest and most profitable business.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Rebecca | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Rebecca Shockley | PERSON | 0.99+ |
Peter Burris | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Priya | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
Priya Vijayarajendran | PERSON | 0.99+ |
90% | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
Peter | PERSON | 0.99+ |
40% | QUANTITY | 0.99+ |
Brazil | LOCATION | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
six key questions | QUANTITY | 0.99+ |
41% | QUANTITY | 0.99+ |
Priya V | PERSON | 0.99+ |
Priya V. | PERSON | 0.99+ |
third category | QUANTITY | 0.99+ |
Jeff | PERSON | 0.99+ |
two | DATE | 0.99+ |
last year | DATE | 0.99+ |
two days | QUANTITY | 0.99+ |
6,000 global executives | QUANTITY | 0.99+ |
IBM Institute for Business Value | ORGANIZATION | 0.99+ |
Spring 2017 | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
one segment | QUANTITY | 0.99+ |
first phase | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
one flavor | QUANTITY | 0.99+ |
first step | QUANTITY | 0.99+ |
last fall | DATE | 0.98+ |
Bank Itau | ORGANIZATION | 0.98+ |
170 | QUANTITY | 0.98+ |
three milliseconds | QUANTITY | 0.98+ |
San Francisco | LOCATION | 0.98+ |
four-tier | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
six | QUANTITY | 0.98+ |
three-tier | QUANTITY | 0.98+ |
CDO | TITLE | 0.98+ |
three years ago | DATE | 0.98+ |
Watson Health | ORGANIZATION | 0.98+ |
one section | QUANTITY | 0.97+ |
Fisherman's Wharf | LOCATION | 0.97+ |
three different categories | QUANTITY | 0.97+ |
one single layer | QUANTITY | 0.97+ |
two different places | QUANTITY | 0.96+ |
IBM Institute on Business Value | ORGANIZATION | 0.96+ |
IBM Chief Data Officers Summit | EVENT | 0.96+ |
IOT | ORGANIZATION | 0.96+ |
first | QUANTITY | 0.93+ |
IBM Chief Data Officer Strategy Summit | EVENT | 0.93+ |
first learning | QUANTITY | 0.91+ |
800 CDO | QUANTITY | 0.9+ |
IDC | ORGANIZATION | 0.89+ |
top two | QUANTITY | 0.88+ |
this morning | DATE | 0.87+ |
Cortnie Abercrombie & Caitlin Halferty Lepech, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE
>> Announcer: Live from Fisherman's Wharf in San Francisco, it's theCUBE, covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. >> Hey, welcome back, everybody. Jeff Frick here with theCUBE. We're at Fisherman's Wharf in San Francisco at the IBM Chief Data Officer Strategy Summit Spring 2017. It's a mouthful, it's 170 people here, all high-level CXOs learning about data, and it's part of an ongoing series that IBM is doing around chief data officers and data, part of a big initiative with Cognitive and Watson, I'm sure you've heard all about it, Watson TV if nothing else, if not going to the shows, and we're really excited to have the drivers behind this activity with us today, also Peter Burris from Wikibon, chief strategy officer, but we've got Caitlin Lepech who's really driving this whole show. She is the Communications and Client Engagement Executive, IBM Global Chief Data Office. That's a mouthful, she's got a really big card. And Cortnie Abercrombie, who I'm thrilled to see you, seen her many, many times, I'm sure, at the MIT CDOIQ, so she's been playing in this space for a long time. She is a Cognitive and Analytics Offerings leader, IBM Global Business. So first off, welcome. >> Thank you, great to be here. >> Thanks, always a pleasure on theCUBE. It's so comfortable, I forget you guys aren't just buddies hanging out. >> Before we jump into it, let's talk about kind of what is this series? Because it's not World of Watson, it's not InterConnect, it's a much smaller, more intimate event, but you're having a series of them, and in the keynote is a lot of talk about what's coming next and what's coming in October, so I don't know. >> Let me let you start, because this was originally Cortnie's program. >> This was a long time ago. >> 2014. >> Yeah, 2014, the role was just starting, and I was tasked with can we identify and start to build relationships with this new line of business role that's cropping up everywhere. And at that time there were only 50 chief data officers worldwide. And so I-- >> Jeff: 50? In 2014. >> 50, and I can tell you that earnestly because I knew every single of them. >> More than that here today. >> I made it a point of my career over the last three years to get to know every single chief data officer as they took their jobs. I would literally, well, hopefully I'm not a chief data officer stalker, but I basically was calling them once I'd see them on LinkedIn, or if I saw a press announcement, I would call them up and say, "You've got a tough job. "Let me help connect you with each other "and share best practices." And before we knew, it became a whole summit. It became, there were so many always asking to be connected to each other, and how do we share best practices, and what do you guys know as IBM because you're always working with different clients on this stuff? >> And Cortnie and I first started working in 2014, we wrote IBM's first paper on chief data officers, and at the time, there was a lot of skepticism within our organization, why spend the time with data officers? There's other C-suite roles you may want to focus on instead. But we were saying just the rise of data, external data, unstructured data, lot of opportunity to rise in the role, and so, I think we're seeing it reflected in the numbers. Again, first summit three years ago, 30 participants. We have 170 data executives, clients joining us today and tomorrow. >> And six papers later, and we're goin' strong still. >> And six papers later. >> Exactly, exactly. >> Before we jump into the details, some of the really top-level stuff that, again, you talked about with John and David, MIT CDOIQ, in terms of reporting structure. Where do CDOs report? What exactly are they responsible for? You covered some of that earlier in the keynote, I wonder if you can review some of those findings. >> Yeah, that was amazing >> Sure, I can share that, and then, have Cortnie add. So, we find about a third report directly to the CEO, a third report through the CIO's office, sort of the traditional relationship with CIOs, and then, a third, and what we see growing quite a bit, are CXOs, so functional or business line function. Originally, traditionally it was really a spin-off of CIO, a lot of technical folks coming up, and we're seeing more and more the shift to business expertise, and the focus on making sure we're demonstrating the business impact these data programs are driving for our organization. >> Yeah, it kind of started more as a data governance type of role, and so, it was born out of IT to some degree because, but IT was having problems with getting the line of business leaders to come to the table, and we knew that there had to be a shift over to the business leaders to get them to come and share their domain expertise because as every chief data officer will tell you, you can't have lineage or know anything about all of this great data unless you have the experts who have been sitting there creating all of that data through their processes. And so, that's kind of how we came to have this line of business type of function. >> And Inderpal really talked about, in terms of the strategy, if you don't start from the business strategy-- >> Inderpal? >> Yeah, on the keynote. >> Peter: Yeah, yeah, yeah, yeah. >> You are really in big risk of the boiling the ocean problem. I mean, you can't just come at it from the data first. You really have to come at it from the business problem first. >> It was interesting, so Inderpal was one of our clients as a CEO three times prior to rejoining IBM a year ago, and so, Cortnie and I have known him-- >> Express Scripts, Cambia. >> Exactly, we've interviewed him, featured him in our research prior, too, so when he joined IBM in December a year ago, his first task was data strategy. And where we see a lot of our clients struggle is they make data strategy an 18-month, 24-month process, getting the strategy mapped out and implemented. And we say, "You don't have the time for it." You don't have 18 months to come to data, to come to a data strategy and get by and get it implemented. >> Nail something right away. >> Exactly. >> Get it in the door, start showing some results right away. You cannot wait, or your line of business people will just, you know. >> What is a data strategy? >> Sure, so I can say what we've done internally, and then, I know you've worked with a lot of clients on what they're building. For us internally, it started with the value proposition of the data office, and so, we got very clear on what that was, and it was the ability to take internal, external data, structured, unstructured, and pull that together. If I can summarize it, it's drive to cognitive business, and it's infusing cognition across all of our business processes internally. And then, we identified all of these use cases that'll help accelerate, and the catalyst that will get us there faster. And so, Client 360, product catalog, et cetera. We took data strategy, got buy-in at the highest levels at our organization, senior vice president level, and then, once we had that support and mandate from the top, went to the implementation piece. It was moving very quickly to specify, for us, it's about transforming to cognitive business. That then guides what's critical data and critical use cases for us. >> Before you answer, before you get into it, so is a data strategy a means to cognitive, or is it an end in itself? >> I would say it, to be most effective, it's a succinct, one-page description of how you're going to get to that end. And so, we always say-- >> Peter: Of cognitive? >> Exactly, for us, it's cognitive. So, we always ask very simple question, how is your company going to make money? Not today, what's its monetization strategy for the future? For us, it's coming to cognitive business. I have a lot of clients that say, "We're product-centric. "We want to become customer, client-centric. "That's our key piece there." So, it's that key at the highest level for us becoming a cognitive business. >> Well, and data strategies are as big or as small as you want them to be, quite frankly. They're better when they have a larger vision, but let's just face it, some companies have a crisis going on, and they need to know, what's my data strategy to get myself through this crisis and into the next step so that I don't become the person whose cheese moved overnight. Am I giving myself away? Do you all know the cheese, you know, Who Moved My Cheese? >> Every time the new iOS comes up, my wife's like-- >> I don't know if the younger people don't know that term, I don't think. >> Ah, but who cares about them? >> Who cares about the millenials? I do, I love the millenials. But yes, cheese, you don't want your cheese to move overnight. >> But the reason I ask the question, and the reason why I think it's important is because strategy is many things to many people, but anybody who has a view on strategy ultimately concludes that the strategic process is what's important. It's the process of creating consensus amongst planners, executives, financial people about what we're going to do. And so, the concept of a data strategy has to be, I presume, as crucial to getting the organization to build a consensus about the role the data's going to play in business. >> Absolutely. >> And that is the hardest. That is the hardest job. Everybody thinks of a data officer as being a technical, highly technical person, when in fact, the best thing you can be as a chief data officer is political, very, very adept at politics and understanding what drives the business forward and how to bring results that the CEO will get behind and that the C-suite table will get behind. >> And by politics here you mean influencing others to get on board and participate in this process? >> Even just understanding, sometimes leaders of business don't articulate very well in terms of data and analytics, what is it that they actually need to accomplish to get to their end goal, and you find them kind of stammering when it comes to, "Well, I don't really know "how you as Inderpal Bhandari can help me, "but here's what I've got to do." And it's a crisis usually. "I've got to get this done, "and I've got to make these numbers by this date. "How can you help me do that?" And that's when the chief data officer kicks into gear and is very creative and actually brings a whole new mindset to the person to understand their business and really dive in and understand, "Okay, this is how "we're going to help you meet that sales number," or, "This is how we're going to help you "get the new revenue growth." >> In certain respects, there's a business strategy, and then, you have to resource the business strategy. And the data strategy then is how are we going to use data as a resource to achieve our business strategy? >> Cortnie: Yes. >> So, let me test something. The way that we at SiliconANGLE, Wikibon have defined digital business is that a business, a digital business uses data as an asset to differentially create and keep customers. >> Caitlin: Right. >> Does that work for you guys? >> Cortnie: Yeah, sure. >> It's focused on, and therefore, you can look at a business and say is it more or less digital based on how, whether it's more or less focused on data as an asset and as a resource that's going to differentiate how it's business behaves and what it does for customers. >> Cortnie: And it goes from the front office all the way to the back. >> Yes, because it's not just, but that's what, create and keep, I'm borrowing from Peter Drucker, right. Peter Drucker said the goal of business is to create and keep customers. >> Yeah, that's right. Absolutely, at the end of the day-- >> He included front end and back end. >> You got to make money and you got to have customers. >> Exactly. >> You got to have customers to make the money. >> So data becomes a de-differentiating asset in the digital business, and increasingly, digital is becoming the differentiating approach in all business. >> I would argue it's not the data, because everybody's drowning in data, it's how you use the data and how creative you can be to come up with the methods that you're going to employ. And I'll give you an example. Here's just an example that I've been using with retailers lately. I can look at all kinds of digital exhaust, that's what we call it these days. Let's say you have a personal digital shopping experience that you're creating for these new millenials, we'll go with that example, because shoppers, 'cause retailers really do need to get more millenials in the door. They're used to their Amazon.coms and their online shopping, so they're trying to get more of them in the door. When you start to combine all of that data that's underlying all of these cool things that you're doing, so personal shopping, thumbs up, thumb down, you like this dress, you like that cut, you like these heels? Yeah, yes, yes or no, yes or no. I'm getting all this rich data that I'm building with my app, 'cause you got to be opted in, no violating privacy here, but you're opting in all the way along, and we're building and building, and so, we even have, for us, we have this Metro Pulse retail asset that we use that actually has hyperlocal information. So, you could, knowing that millenials like, for example, food trucks, we all like food trucks, let's just face it, but millenials really love food trucks. You could even, if you are a retailer, you could even provide a fashion truck directly to their location outside their office equipped with things that you know they like because you've mined that digital exhaust that's coming off the personal digital shopping experience, and you've understood how they like to pair up what they've got, so you're doing a next best action type of thing where you're cross-selling, up-selling. And now, you bring it into the actual real world for them, and you take it straight to them. That's a new experience, that's a new millennial experience for retail. But it's how creative you are with all that data, 'cause you could have just sat there before and done nothing about that. You could have just looked at it and said, "Well, let's run some reports, "let's look at a dashboard." But unless you actually have someone creative enough, and usually it's a pairing of data scientist, chief data officers, digital officers all working together who come up with these great ideas, and it's all based, if you go back to what my example was, that example is how do I create a new experience that will get millenials through my doors, or at least get them buying from me in a different way. If you think about that was the goal, but how I combined it was data, a digital process, and then, I put it together in a brand new way to take action on it. That's how you get somewhere. >> Let me see if I can summarize very quickly. And again, just as an also test, 'cause this is the way we're looking at it as well, that there's human beings operate and businesses operate in an analog world, so the first test is to take analog data and turn it into digital data. IOT does that. >> Cortnie: Otherwise, there's not digital exhaust. >> Otherwise, there's no digital anything. >> Cortnie: That's right. >> And we call it IOT and P, Internet of Things and People, because of the people element is so crucial in this process. Then we have analytics, big data, that's taking those data streams and turning them into models that have suggestions and predictions about what might be the right way to go about doing things, and then there's these systems of action, or what we've been calling systems of enactment, but we're going to lose that battle, it's probably going to be called systems of action that then take and transduce the output of the model back into the real world, and that's going to be a combination of digital and physical. >> And robotic process automation. We won't even introduce that yet. >> Which is all great. >> But that's fun. >> That's going to be in October. >> But I really like the example that you gave of the fashion truck because people don't look at a truck and say, "Oh, that's digital business." >> Cortnie: Right, but it manifested in that. >> But it absolutely is digital business because the data allows you to bring a more personal experience >> Understand it, that's right. >> right there at that moment, and it's virtually impossible to even conceive of how you can make money doing that unless you're able to intercept that person with that ensemble in a way that makes both parties happy. >> And wouldn't that be cheaper than having big, huge retail stores? Someone's going to take me up on that. Retailers are going to take me up on this, I'm telling you. >> But I think the other part is-- >> Right next to the taco truck. >> There could be other trucks in that, a much cleaner truck, and this and that. But one thing, Cortnie, you talk about and you got to still have a hypothesis, I think of the early false promises of big data and Hadoop, just that you throw all this stuff in, and the answer just comes out. That just isn't the way. You've got to be creative, and you have to have a hypothesis to test, and I'm just curious from your experience, how ready are people to take in the external data sources and the unstructured data sources and start to incorporate that in with the proprietary data, 'cause that's a really important piece of the puzzle? It's very different now. >> I think they're ready to do it, it depends on who in the business you are working with. Digital offices, marketing offices, merchandising offices, medical offices, they're very interested in how can we do this, but they don't know what they need. They need guidance from a data officer or a data science head, or something like this, because it's all about the creativity of what can I bring together to actually reach that patient diagnostic, that whatever the case may be, the right fashion truck mix, or whatever. Taco Tuesday. >> So, does somebody from the chief data office, if you will, you know, get assigned to, you're assigned to marketing and you're assigned to finance, and you're assigned to sales. >> I have somebody assigned to us. >> To put this in-- >> Caitlin: Exactly, exactly. >> To put this in kind of a common or more modern parlance, there's a design element. You have to have use case design, and what are we going, how are we going to get better at designing use cases so we can go off and explore the role that data is going to play, how we're going to combine it with other things, and to your point, and it's a great point, how that turns into a new business activity. >> And if I can connect two points there, the single biggest question I get from clients is how do you prioritize your use cases. >> Oh, gosh, yeah. >> How can you help me select where I'm going to have the biggest impact? And it goes, I think my thing's falling again. (laughing) >> Jeff: It's nice and quiet in here. >> Okay, good. It goes back to what you were saying about data strategy. We say what's your data strategy? What's your overarching mission of the organization? For us, it's becoming cognitive business, so for us, it's selecting projects where we can infuse cognition the quickest way, so Client 360, for example. We'll often say what's your strategy, and that guides your prioritization. That's the question we get the most, what use case do I select? Where am I going to have the most impact for the business, and that's where you have to work with close partnership with the business. >> But is it the most impact, which just sounds scary, and you could get in analysis paralysis, or where can I show some impact the easiest or the fastest? >> You're going to delineate both, right? >> Exactly. >> Inderpal's got his shortlist, and he's got his long list. Here's the long term that we need to be focused on to make sure that we are becoming holistically a cognitive company so that we can be flexible and agile in this marketplace and respond to all kinds of different situations, whether they're HR and we need more skills and talent, 'cause let's face it, we're a technology company who's rapidly evolving to fit with the marketplace, or whether it's just good old-fashioned we need more consultants. Whatever the case may be. >> Always, always. >> Yes! >> I worked my business in. >> More consultants! >> Alright, we could go, we could go and go and go, but we're running out of time, we had a full slate. >> Caitlin: We just started. >> I know. >> I agree, we're just starting this convers, I started a whole other conversation to him. We haven't even hit the robotics yet. >> We need to keep going, guys. >> Get control. >> Cortnie: Less coffee for us. >> What do people think about when they think about this series? What should they look forward to, what's the next one for the people that didn't make it here today, where should they go on the calendar and book in their calendars? >> So, I'll speak to the summits first. It's great, we do Spring in San Francisco. We'll come back, reconvene in Boston in fall, so that'll be September, October frame. I'm seeing two other trends, which I'm quite excited about, we're also looking at more industry-specific CDO summits. So, for those of our friends that are in government sectors, we'll be in June 6th and 7th at a government CDO summit in D.C., so we're starting to see more of the industry-specific, as well as global, so we just ran our first in Rio, Brazil for that area. We're working on a South Africa summit. >> Cortnie: I know, right. >> We actually have a CDO here with us that traveled from South Africa from a bank to see our summit here and hoping to take some of that back. >> We have several from Peru and Mexico and Chile, so yeah. >> We'll continue to do our two flagship North America-based summits, but I'm seeing a lot of growth out in our geographies, which is fantastic. >> And it was interesting, too, in your keynote talking about people's request for more networking time. You know, it is really a sharing of best practices amongst peers, and that cannot be overstated. >> Well, it's community. A community is building. >> It really is. >> It's a family, it really is. >> We joke, this is a reunion. >> We all come in and hug, I don't know if you noticed, but we're all hugging each other. >> Everybody likes to hug their own team. It's a CUBE thing, too. >> It's like therapy. It's like data therapy, that's what it is. >> Alright, well, Caitlin, Cortnie, again, thanks for having us, congratulations on a great event, and I'm sure it's going to be a super productive day. >> Thank you so much. Pleasure. >> Thanks. >> Jeff Frick with Peter Burris, you're watchin' theCUBE from the IBM Chief Data Officer Summit Spring 2017 San Francisco, thanks for watching. (electronic keyboard music)
SUMMARY :
Brought to you by IBM. and we're really excited to have the drivers It's so comfortable, I forget you guys and in the keynote is a lot of talk about what's coming next Let me let you start, because this was and start to build relationships with this new Jeff: 50? 50, and I can tell you that and what do you guys know as IBM and at the time, there was a lot of skepticism and we're goin' strong still. You covered some of that earlier in the keynote, and the focus on making sure the line of business leaders to come to the table, I mean, you can't just come at it from the data first. You don't have 18 months to come to data, Get it in the door, start showing some results right away. and then, once we had that support and mandate And so, we always say-- So, it's that key at the highest level so that I don't become the person the younger people don't know that term, I don't think. I do, I love the millenials. about the role the data's going to play in business. and that the C-suite table will get behind. "we're going to help you meet that sales number," and then, you have to resource the business strategy. as an asset to differentially create and keep customers. and what it does for customers. Cortnie: And it goes from the front office is to create and keep customers. Absolutely, at the end of the day-- digital is becoming the differentiating approach and how creative you can be to come up with so the first test is to take analog data and that's going to be a combination of digital and physical. And robotic process automation. But I really like the example that you gave how you can make money doing that Retailers are going to take me up on this, I'm telling you. You've got to be creative, and you have to have because it's all about the creativity of from the chief data office, if you will, assigned to us. and to your point, and it's a great point, is how do you prioritize your use cases. How can you help me and that's where you have to work with and respond to all kinds of different situations, Alright, we could go, We haven't even hit the robotics yet. So, I'll speak to the summits first. to see our summit here and hoping to take some of that back. We'll continue to do our two flagship And it was interesting, too, in your keynote Well, it's community. We all come in and hug, I don't know if you noticed, Everybody likes to hug their own team. It's like data therapy, that's what it is. and I'm sure it's going to be a super productive day. Thank you so much. Jeff Frick with Peter Burris,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Caitlin Lepech | PERSON | 0.99+ |
Cortnie Abercrombie | PERSON | 0.99+ |
Peter Burris | PERSON | 0.99+ |
Peru | LOCATION | 0.99+ |
2014 | DATE | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Cortnie | PERSON | 0.99+ |
Jeff | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
South Africa | LOCATION | 0.99+ |
Caitlin | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
D.C. | LOCATION | 0.99+ |
two points | QUANTITY | 0.99+ |
Chile | LOCATION | 0.99+ |
October | DATE | 0.99+ |
18 months | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Mexico | LOCATION | 0.99+ |
18-month | QUANTITY | 0.99+ |
Peter Drucker | PERSON | 0.99+ |
Cognitive | ORGANIZATION | 0.99+ |
Inderpal Bhandari | PERSON | 0.99+ |
30 participants | QUANTITY | 0.99+ |
Amazon.coms | ORGANIZATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
50 | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
24-month | QUANTITY | 0.99+ |
first test | QUANTITY | 0.99+ |
three years ago | DATE | 0.99+ |
170 people | QUANTITY | 0.99+ |
third report | QUANTITY | 0.99+ |
June 6th | DATE | 0.99+ |
today | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
IBM Global | ORGANIZATION | 0.99+ |
Rio, Brazil | LOCATION | 0.99+ |
David | PERSON | 0.99+ |
first paper | QUANTITY | 0.98+ |
both parties | QUANTITY | 0.98+ |
a year ago | DATE | 0.98+ |
one-page | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
7th | DATE | 0.98+ |
iOS | TITLE | 0.98+ |
first task | QUANTITY | 0.98+ |
December a year ago | DATE | 0.98+ |
first | QUANTITY | 0.98+ |
IBM Global Business | ORGANIZATION | 0.97+ |
Wikibon | ORGANIZATION | 0.97+ |
North America | LOCATION | 0.97+ |
Spring 2017 | DATE | 0.97+ |
third | QUANTITY | 0.97+ |
170 data executives | QUANTITY | 0.96+ |
50 chief data officers | QUANTITY | 0.96+ |
Seth Dobrin, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE
>> (lively music) (lively music) >> [Narrator] Live, from Fisherman's Wharf in San Francisco, it's theCUBE. Covering IBM Chief Data Officers Strategy Summit Spring 2017. Brought to you by IBM. >> Hey, welcome back everybody. >> Jeff Flick here with theCUBE alongside Peter Burris, our chief research officer from Wikibon. We're at the IBM Chief Data Officers Strategy Summit Sprint 2017. It's a mouthful but it's an important event. There's 170 plus CDO's here sharing information, really binding their community, sharing best practices and of course, IBM is sharing their journey which is pretty interesting cause they're taking their own transformational journey, writing up a blue print and going to deliver it in October. Drinking their own champagne as they like to say. We're really excited to have CUBE alumni, many time visitor Seth Dobrin. He is the chief data officer of IBM Analytics. Seth welcome. >> Yeah, thanks for having me again. >> Absolutely, so again, these events are interesting. There's a series of them. They're in multiple cities. They're, now, going to go to multiple countries. And it's really intended, I believe, or tell me, it's a learning experience in this great, little, tight community for this, very specific, role. >> Yeah, so these events are, actually, really good. I've been participating in these since the second one. >> So, since the first one in Boston about 2 1/2 years ago. They're really great events because it's an opportunity for CDO's or de facto CDO's in organizations to have in depth conversations with their peers about struggles, challenges, successes. >> It really helps to, kind of, one piece says you can benchmark yourself, how are we doing as an organization and how am I doing as a CDO and where do I fit within the bigger community or within your industry? >> How have you seen it evolve? Not just the role, per say, but some of the specific challenges or implementation issues that these people have had in trying to deliver a value inside their company. >> Yeah, so when they started, three years ago, there, really, were not a whole lot of tools that CDO's could use to solve your data science problems, to solve your cloud problems, to solve your governance problem. We're starting to get to a place in the world where there are actual tools out there that help you do these things. So you don't struggle to figure out how do I find talent that can build the tools internally and deploy em. It's now getting the talent to, actually, start implementing things that already exist. >> Is the CDO job well enough defined at this point in time? Do you think that you can, actually, start thinking about tools as opposed to the challenges of the business? In other words, is every CDO different or are the practices, now, becoming a little bit more and the conventions becoming a little bit better understood and stable so you >> can outdo a better job of practicing the CDO role? >> Yeah, I think today, the CDO role is still very ill defined. It's, really, industry by industry and company by company even, CDO's play different roles within each of those. I've only been with IBM for the last four months. I've been spending a lot of that time talking to our clients. Financial services, manufacturing, all over the board and really, the CDO's in those people are all industry specific, they're in different places and even company by company, they're in different places. It really depends on where the company's are on their data and digital journey what role the CDO has. Is it really a defensive play to make sure we're not going to violate any regulations or is it an offensive play and how do we disrupt our industry instead of being disrupted because, really, every industry is in a place where you're either going to be the disruptor or you're going to be the distruptee. And so, that's the scope, the breadth of, I think, the role the CDO plays. >> Do you see it all eventually converging to a common point? Cause, obviously, the CFO and the CMO, those are pretty good at standardized functions over time that wasn't always that way. >> Well, I sure hope it does. I think CDO's are becoming pretty pervasive. I think you're starting to see, when this started, the first one I went to, there were, literally, 35 people >> and only 1/2 of then were called CDO's. We've progressed now where we've got 100 people over 170 some odd people that are here that are CDO's. Most of them have the CDO title even. >> The fact that that title is much more pervasive says that we're heading that way. I think industry by industry you'll start seeing similar responsibilities for CDO's but I don't think you'll start seeing it across the board like a CFO where a CFO does the same thing regardless of the industry. I don't think you'll see that in a CDO for quite some time. >> Well one of the things, certainly, we find interesting is that the role the data's playing in business involvement. And it, partly, the CDO's job is to explain to his or her peers, at that chief level, how using data is going to change the way that they do things from the way that they're function works. And that's part of the reason, I think, why you're suggesting that on a vertical basis that the CDO's job is different. Cause different industries are being impacted themselves by data differently. So as you think about the job that you're performing and the job the CDO's are performing, what part is technical? What part is organizational? What part is political? Et cetera. >> I think a lot of the role of a CDO is political. Most of the CDO's that I know have built their careers on stomping on people's toes. How do I drive change by infringing on other people's turf effectively? >> Peter: In a nice way. >> Well, it depends. In the appropriate way, right? >> Peter: In a productive way. >> In the appropriate way. It could be nice, it could not be nice >> depending on the politics and the culture of the organization. I think a lot of the role of a CDO, it's, almost, like chief disruption officer as much as it is data officer. I think it's a lot about using data >> but, I think, more importantly, it's about using analytics. >> So how do you use analytics to, actually, drive insights and next best action from the data? I think just looking at data and still using gut based on data is not good enough. For chief data officers to really have an impact and really be successful, it's how do you use analytics on that data whether it's machine learning, deep learning, operations research, to really change how the business operates? Because as chief data officers, you need to justify your existence a lot. The way you do that is you tie real value to decisions that your company is making. The data and the analytics that are needed for those decisions. That's, really, the role of a CDO in my mind is, how do I tie value of data based on decisions and how do I use analytics to make those decisions more effective? >> Were the early days more defensive and now, shifting to offensive? It sounds like it. That's a typical case where you use technology, initially, often to save money before you start to use it to create new value, new revenue streams. Is that consistent here? By answering that, you say they have to defend themselves sometimes when you would think it'd be patently obvious >> that if you're not getting on a data software defined train, you're going to be left behind. >> I think there's two types. There's CDO's that are there to protect freedom to operate and that's what I call, think of, as defensive. And then, there's offensive CDO's and that's really bringing more value out of existing processes. In my mind, every company is on this digital transformation journey and there's two steps to it. >> One is this data science transformation which is where you use data and analytics to accelerate your businesses current goals. How do I use data analytics to accelerate my businesses march towards it's current goals? Then there's the second stage which is the true digital transformation which is how do I use data and analytics to, fundamentally, change how my industry and my company operates? So, actually, changing the goals of the industry. For example, moving from selling physical products to selling outcomes. You can't do that until you've done this data transformation till you've started operating on data, till you've started operating on analytics. You can't sell outcomes until you've done that. It's this two step journey. >> You said this a couple of times and I want to test an idea on you and see what you think. Industry classifications are tied back to assets. So, you look at industries and they have common organization of assets, right? >> Seth: Yep. Data, as an asset, has very, very, different attributes because it can be shared. It's not scarce, it's something that can be shared. As we become more digital and as this notion of data science or analytics, the world of data places in asset and analytics plays as assets becomes more pervasive, does that start to change the notion of industry because, now, by using data differently, you can use other assets and deploy other assets differently? >> Yeah, I think it, fundamentally, changes how business operates and even how businesses are measured because you hit on this point pretty well which is data is reusable. And so as I build these data or digital assets, the quality of a company's margins should change. For every dollar of revenue I generate. Maybe today I generate 15% profit. As you start moving to a digital being a more digital company built on data and analytics, that percent of profit based on revenue should go up. Because these assets that you're building to reuse them is extremely cheap. I don't have to build another factory to scale up, I buy a little bit more compute time. Or I develop a new machine learning model. And so it's very scalable unlike building physical products. I think you will see a fundamental shift in how businesses are measured. What standards that investors hold businesses to. I think, another good point is, a mind set shift that needs to happen for companies is that companies need to stop thinking of data as a digital dropping of applications and start thinking of it as an asset. Cause data has value. It's no longer just something that's dropped on the table from applications that I built. It's we are building to, fundamentally, create data to drive analytics, to generate value, to build new revenue for a company that didn't exist today. >> Well the thing that changes the least, ultimately, is the customer. And so it suggests that companies that have customers can use data to get in a new product, or new service domains faster than companies who don't think about data as an asset and are locked into how can I take my core set up, my organization, >> my plant, my machinery and keep stamping out something that's common to it or similar to it. So this notion of customer becomes the driver, increasingly, of what industry you're in or what activities you perform. Does that make sense? >> I think everything needs to be driven from the prospective of the customer. As you become a data driven or a digital company, everything needs to be shifted in that organization from the perspective of the customer. Even companies that are B to B. B to B companies need to start thinking about what is the ultimate end user. How are they going to use what I'm building, for my business partner, my B to B partner, >> what is their, actual, human being that's sitting down using it, how are they going to use it? How are they going to interact with it? It really, fundamentally, changes how businesses approach B to B relationships. It, fundamentally, changes the type of information that, if I'm a B to B company, how do I get more information about the end users and how do I connect? Even if I don't come in direct contact with them, how do I understand how they're using my product better. That's a fundamental just like you need to stop thinking of data as a digital dropping. Every question needs to come from how is the end user, ultimately, going to use this? How do I better deploy that? >> So the utility that the customer gets capturing data about the use of that, the generation of that utility and drive it all the way back. Does the CDO have to take a more explicit role in getting people to see that? >> Yes, absolutely. I think that's part of the cultural shift that needs to happen. >> Peter: So how does the CDO do that? >> I think every question needs to start with what impact does this have on the end user? >> What is the customer perspective on this? Really starting to think about. >> I'm sorry for interrupting. I'd turn that around. I would say it's what impact does the customer have on us? Because you don't know unless you capture data. That notion of the customer impact measurement >> which we heard last time, the measureability and then drive that all the way back. That seems like it's going to become an increasingly, a central design point. >> Yeah, it's a loop and you got to start using these new methodologies that are out there. These design thinking methodologies. It's not just about building an Uber app. It's not just about building an app. It's about how do I, fundamentally, shift my business to this design thinking methodology to start thinking cause that's what design thinking is all about. It's all about how is this going to be used? And every aspect of your business you need to approach that way. >> Seth, I'm afraid they're going to put us in the chaffing dish here if we don't get off soon. >> Seth: I think so too, yeah. >> So we're going to leave it there. It's great to see you again and we look forward to seeing you at the next one of these things. >> Yeah, thanks so much. >> He's Seth, he's Peter, I'm Jeff. You're watching theCUBE from the IBM Chief Data Officers Strategy Summit Spring 2017, I got it all in in a mouthful. We'll be back after lunch which they're >> setting up right now. (laughs) (lively music) (drum beats)
SUMMARY :
Brought to you by IBM. Drinking their own champagne as they like to say. They're, now, going to go to multiple countries. Yeah, so these events are, actually, really good. to have in depth conversations with their peers but some of the specific challenges data science problems, to solve your cloud problems, And so, that's the scope, the breadth of, Cause, obviously, the CFO and the CMO, I think you're starting to see, that are here that are CDO's. seeing it across the board like a CFO And it, partly, the CDO's job is to explain Most of the CDO's that I know have built In the appropriate way, right? In the appropriate way. and the culture of the organization. it's about using analytics. For chief data officers to really have an impact and now, shifting to offensive? that if you're not getting on There's CDO's that are there to protect freedom to operate So, actually, changing the goals of the industry. and see what you think. does that start to change the notion of industry is that companies need to stop thinking Well the thing that changes the least, something that's common to it or similar to it. in that organization from the perspective of the customer. how are they going to use it? Does the CDO have to take a more that needs to happen. What is the customer perspective on this? That notion of the customer impact measurement That seems like it's going to become It's all about how is this going to be used? Seth, I'm afraid they're going to It's great to see you again the IBM Chief Data Officers Strategy Summit (lively music)
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Peter Burris | PERSON | 0.99+ |
Jeff Flick | PERSON | 0.99+ |
Seth Dobrin | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Jeff | PERSON | 0.99+ |
Seth | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
October | DATE | 0.99+ |
two types | QUANTITY | 0.99+ |
second stage | QUANTITY | 0.99+ |
two step | QUANTITY | 0.99+ |
IBM Analytics | ORGANIZATION | 0.99+ |
35 people | QUANTITY | 0.99+ |
100 people | QUANTITY | 0.99+ |
two steps | QUANTITY | 0.99+ |
second one | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
first one | QUANTITY | 0.99+ |
San Francisco | LOCATION | 0.99+ |
today | DATE | 0.99+ |
three years ago | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
one piece | QUANTITY | 0.98+ |
one | QUANTITY | 0.97+ |
each | QUANTITY | 0.94+ |
Wikibon | ORGANIZATION | 0.92+ |
last four months | DATE | 0.9+ |
IBM Chief Data Officers Strategy Summit Sprint 2017 | EVENT | 0.9+ |
about 2 1/2 years ago | DATE | 0.89+ |
Chief Data Officers Strategy Summit | EVENT | 0.88+ |
Spring 2017 | DATE | 0.85+ |
over 170 | QUANTITY | 0.85+ |
IBM Chief Data Officers Strategy Summit Spring 2017 | EVENT | 0.84+ |
15% profit | QUANTITY | 0.83+ |
CDO | TITLE | 0.82+ |
170 plus CDO | QUANTITY | 0.79+ |
CDO Strategy Summit | EVENT | 0.77+ |
Fisherman's Wharf | LOCATION | 0.76+ |
1/2 | QUANTITY | 0.75+ |
CUBE | ORGANIZATION | 0.73+ |
#IBMCDO | ORGANIZATION | 0.69+ |
theCUBE | ORGANIZATION | 0.52+ |
IBM | EVENT | 0.51+ |
Inderpal Bhandari & Jesus Mantas | IBM CDO Strategy Summit 2017
(inspiring piano and string music) >> Announcer: Live from Fisherman's Wharf in San Francisco, it's theCUBE, covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. >> Hey, welcome back, everybody. Jeff Frick here with theCUBE. We're in downtown San Francisco at the IBM Chief Data Officer Strategy Summit Spring 2017. That's a mouthful, but it's important because there's a series of these strategy summits that are happening not only in the United States, but they're expanding it all over the world, and it's really a chance for practitioners to come together, the chief data officers, to share best practices, really learn from the best, and as we love to do on theCUBE, we get the smartest people we can find, and we have them here. So first off, let me introduce Peter Burris, Chief Research Officer from Wikibon, but from IBM coming right off the keynote-- >> The smart people. >> The smart people, Inderpal Bhandari, he is the IBM Global Chief Data Officer, which is a short title and a big job, and Jesus Mantas, he's the General Manager, Cognitive Transformation, IBM Global Business Services. First off, gentlemen, welcome. >> Thank you. >> Thank you. >> It's really interesting how this chief data officer space has evolved. We've been watching it for years, back to some of the MIT CDOIQ, I think like three or four years ago nobody knew who they were, who were they going to report to, what are they going to do, what's the scope of the job. That's changed dramatically, and it really says something to IBM's credit that they just went out and got one to help really to refine and define for your customers where this is going. So first off, welcome, and let's get into it. How is the role starting to solidify as to what do chief data officers do? >> So, I'll take that. In terms of chief data officers, if you think in terms of the advent of the position, when it started out, I was one of the earliest in 2006, and I've done the job four times, and it has been continuously evolving ever since. When the job was first, in my very first job, I actually had to create the job because there was a company very interested in recruiting me, and they said they sensed that data was critical. It was a company in pharmaceutical insurance, so really very data based, right, everything is driven through data. And so, they had a sense that data was going to be extremely important, extremely relevant, but they didn't really have the position, or they didn't coin the phrase. And I suggested that there were three other chief data officers at that time in the U.S., and so, I became the fourth. At that time, it had to do with, essentially aligning data with strategy, with the strategy of the company, which means how is the company actually planning to monetize itself? Not its data, but itself. And then, essentially make sure that the data is now fit for purpose, to help them with that monetization. And so, that's all about aligning with the corporate strategy, and you have to have an officer who's capable of doing that and has that focus and is able to push that because then, once you start with that strategy, and then, there are plenty of different branches that shoot off, like governance, centralization of data, analytics, data science, and so on and so forth, and then, you have to manage that process. >> And data used to be kind of a liability, hard to think today looking back, 'cause you had to buy servers and storage, and it was expensive, and what do you do with it all? You can't analyze it. Boy, how the world has flipped. Now, data is probably one of your most important assets, but then, the big question, right, what do you do with it to really make it an asset? >> It is, it is, and it's actually fascinating to see here in the summit how even the role that was created in a few years, chief data officer, is coupled with this change in the nature of the value of that role has changed. To your point, I remember meeting some CIO friends 10 years ago that they were telling me how they were deleting data because it was too costly to have it. Now, those same CIOs would give whatever they could have to get that data back and have that history and be able to monetize the data. Because of the evolution of computing, and because now, not only the portion of the physical world that we've been able to represent with data for the last 50 years with information technology, but we're adding to that space all of this 80% of the data that even if digitized we were unable to use in processes, in decision making, in manufacturing. Now we have cognitive technology that can actually use that data, the role of the chief data officer is actually expanding significantly from what used to be the element of data science, of data governance, of data sovereignty, of data security, to now this idea of value creation with basically five times more categories of data, and it actually is a dialogue that we're having here at the summit that is the fascinating from the people who are doing this job every day. >> If you think about the challenges associated with the chief data officer, it's a job that's evolving, but partly one of the reasons why the chief data officer job is evolving is the very concept of the role that data plays in business is evolving, and that's forcing every job in business to evolve. So, the CMO's job's evolving, the CEO's job's evolving, and the CIO's job is evolving. How are you navigating this interesting combination of forces on the role of the CDO as you stake out, this is the value I'm going to bring to the business, even as other jobs start to themselves change and respond to this concept of the value of data? >> People ask me to describe my job, and there are just two words that I use to describe it. It's change agent, and that's exactly how a CDO needs to be, needs to look at their job, and also, actually act on that. Because to your point, it's not just the CDO job is evolving, it's all these other jobs are all evolving simultaneously, and there are times when I'm sitting at the table, it appears that, well, you don't really own anything because everybody else owns all the processes in the business. On the other hand, sometimes you're sitting there, and you're thinking, no, you actually own everything because the data that feeds those processes or comes out of those process is not coming back to you. I think the best way to think about the CDO job is that of a change agent. You are essentially entrusted with creating value from the data, as Jesus said, and then, enabling all the other jobs to change, to take advantage of this. >> 'Cause it's the enablement that that's where you bring the multiplier effect, it's the democratization of the data across the organization, across business roles, across departments is where you're going to get this huge multiplier. >> Yeah, and I think the role of one of the things that we're seeing and the partnership that Inderpal and I have in the way that we do this within IBM, but also, we do it for the rest of our clients is that change agency element of it is the constant infusion of design. Chief data officers were very well-known for the data science elements of it, but part of the constraint is actually no longer the computing capability or the algorithms themselves or the access to the data, which solved those constraints, is now actually preparing the business leaders to consume that and to actually create value, which changes the nature of their job as well, and that's the resistance point where embedding these technologies in the workflows, in a way that they create value in the natural flow of what these jobs actually do is extremely important. Otherwise, I mean, we were having a fascinating discussion before this, even if the data is correct, many business leaders will say, "Well, I don't believe it." And then, if you don't adopt it, you don't get the value. >> You guys are putting together this wonderful community of CDOs, chief data officers, trying to diffuse what the job is, how you go about doing the job. If you're giving advice and counsel to a CEO or board of directors who are interested in trying to apply this role in their business, what should they be looking for? What type of person, what type of background, what type of skills? >> I'll take it, and then, you can. I think it's almost what I would call a new Da Vinci. >> Peter: A new Da Vinci? >> A new Da Vinci is the Renaissance of someone that is, he's got a technology background, because you need to actually understand the mathematical and the data and the technology co-engineering aspect. >> So, if not an IT background, at least a STEM background. >> Exactly, it's a STEM background, but combined with enough knowledge of business architecture. So I call it Da Vinci because if you see the most remarkable paintings and products of Da Vinci was the fusion of mathematics and arts in a way that hadn't been done before. I think the new role of a data science is someone that can be in the boardroom elegantly describing a very sophisticated problem in a very easy to understand manner, but still having the depth of really understanding what's behind it and drawing the line versus what's possible and what's likely to happen. >> I think that's right on. I think the biggest hurdle for a chief data officer is the culture change, and to do that, you actually have to be a Da Vinci, otherwise, you really can't pull that off. >> Peter: You have to be a Da Vinci? >> You have to be a Da Vinci to pull that off. It's not just, you have to appreciate not just the technology, but also the business architecture as well as the fact that people are used to working in certain ways which are now changing on them, and then, there is an aspect of anxiety that goes with it, so you have to be able to understand that, and actually, perhaps even harness that to your advantage as you move forward as opposed to letting that become some kind of a threat or counterproductive mechanism as you move forward. >> I've done a fair amount of research over the years on the relationship between business model, business model design profitability, and this is, there's a lot of different ways of attacking this problem, I'm not going to tell you I have the right answer yet, but one of the things that I discovered when talking to businesses about this is that often it fails when the business fails to, I'm going to use the word secure, but it may not be the right word, secure the ongoing rents or value streams from the intellectual property that they create as part of the strategy. Companies with great business model design also find ways to appropriate that value from what they're doing over an extended period of time, and in digital business, increasingly that's data. That raises this interesting question, what is the relationship between data, value streams over time, ownership, intellectual property? Do you have any insight into that? It's a big question. >> Yeah, no no, I mean, I think we touched on it also in the discussion, both Jesus and I touched on that. We've staked out a very clear ground on that, and when I say we, I mean IBM, the way we are defining that is we are pretty clear that for all the reasons you just outlined, the client's data has to be their data. >> Peter: Has to be? >> Has to be their data. It has to be their insight because otherwise, you run into this notion of, well, whose intellectual property is it, whose expertise is it? Because these systems learn as they go. And so, we're architecting towards offerings that are very clear on that, that we're going to make it possible for a client that, for instance, just wants to keep their data and derive whatever insight they can from that data and not let anybody else derive that insight, and it'll be possible for them to do that. As well as clients where they're actually comfortable setting up a community, and perhaps within an industry-specific setup, they will allow insights that are then shared across that. We think that's extremely important to be really clear about that up front and to be able to architect to support that, in a way that that is going to be welcomed by the business. >> Is that part of the CDO's remit within business to work with legal and work with others to ensure that the rules and mechanisms to sustain management of intellectual property and retain rents out of intellectual property, some call it the monetization process, are in place, are enforced, are sustained? >> That's always been part of the CDO remit, right. I mean, in the sense that even before cognition that was always part of it, that if we were bringing in data or if data was leaving the company that we wanted to make sure that it was being done in the right way. And so, that partnership not just with legal but also with IT, also with the business areas, that we had to put in place, and that's the essence of governance. In the broadest sense, you could think of governance as doing that, as protecting the data asset that the company has. >> They have the derivatives now, though. You're getting stacked derivatives. >> Inderpal: It's much more complicated. >> Of data, and then insight combined, so it's not just that core baseline data anymore. >> And I like to make it an element. You've heard us say for the last five years we believe that data has become the new natural resource for the business. And when you go back to other natural resources, and you see what happened with people that were in charge of them, you can kind of predict a little bit that evolution on the chief data officer role. If you were a landowner in Texas when there was no ability to basically either extract or decline petroleum, you were not preoccupied with how would you protect land rights under the line that you can see. So, as a landowner you have a job, but you were basically focused on what's over the surface. Once actually was known that below the surface there was massive amount of value that could be obtained, suddenly that land ownership expanded in responsibility. You then have to be preoccupied, "Okay, wait a minute, who owns those land rights "to actually get that oil, and who's going to do that?" I think you can project that to the role of the chief data officer. If you don't have a business model that monetizes data, you are not preoccupied to actually figure out how to govern it or how to monetize it or how to put royalties on it, you are just preoccupied with just making sure that the data you have, it was well-maintained and it could be usable. The role's massively expanding to this whole below the line where not only the data is being used for internal purposes, but it's becoming a potential element of a strategy that is new. >> The value proposition, simply stated. >> Jesus: Value proposition, exactly. >> But you're right, so I agree with that, but data as an asset has different characteristics than oil as an asset, or people as an asset. People can effectively be applied to one thing at a time. I mean, we can multitask, but right now, you're having a conversation with us, and so, IBM is not seeing you talk to customers here at the show, for example. Data does not follow the economics of scarcity. >> Jesus: Right. >> It follows a new economics, it's easy to copy, it's easy to share. If it's done right, it's easy to integrate. You can do an enormous number of things with data that you've never been able to do with any other asset ever, and that's one of the reasons why this digital transformation is so interesting and challenging, and fraught with risk, but also potentially rewarding. So, as you think about the CDO role and being the executive in the business that is looking at taking care of an asset, but a special type of asset, how that does change the idea of taking care of the energy or the oil to now doing it a little bit differently because it can be shared, because it can be combined. >> I mean, I think in the way as technology has moved from being a mechanism to provide efficiency to the business to actually being core to defining what the business is, I think every role related to technology is following that theme, so I would say, for example, Inderpal and I, when we're working with clients or on our models, he's not just focused on the data, he's actually forming what is possible for the business to do. What should be the components of the new business architecture? It's this homogenized role, and that's why I kept saying it's like, you could have been one of those Da Vincis. I mean, you get to do it every day, but I don't know if you want to comment on that. >> I think that's exactly right. You are right in the sense that it is a different kind of asset, it has certain characteristics which are different from what you'd find in, say, land or oil or something like a natural resource, but in terms of, and you can create a lot of value at times by holding onto it, or you could create a lot of value by sharing it, and we've seen examples of both metaphors. I think as part of being the CDO, it's being cognizant that there is going to be a lot of change in this role as data is changing, not just in its nature in the sense that now you have a lot more unstructured data, many different forms of data, but also in terms of that's application within the business, and this expansion to changing processes and transforming processes, which was never the case when I first did the job in 2006. It was not about process transformation. It was about a much more classic view of an asset where it's, we create this data warehouse, that becomes the corporate asset, and now, you generate some insights from it, disseminate the insights. Now it's all about actually transforming the business by changing the processes, reimagining what they could be, because the nature of data has changed. >> I have one quick question. >> Last one. >> Very quickly, well, maybe it's not a quick question, so if you could just give me a quick answer. A couple times you both have mentioned the relationship between the CDO and business architecture. Currently, there's a relationship between the CIO and IT architecture, even the CIO and data architecture at a technical level. At IBM, do you actually have staff that does business architecture work? Is there someone, is that a formal, defined set of resources that you have, or should CDOs have access to a group of people who do business architecture? What do you think? >> We've traditionally had business architects at IBM, I think for a long time, that predates me. But again, as Jesus said, their role is also evolving. As it becomes much more about process transformation, it's different than it was before. I mean, this is much more now about a collaborative effort where you essentially sit down in a squad in an agile setting, and you're working together to redesign and reinvent the process that's there. And then, there's business value. It's less about creating large monolithic architectures that span an entire enterprise. It's all about being agile, data-driven, and reacting to the changes that are happening. >> So, turning strategy into action. >> Yes. >> And I think, again, in IBM, one of the things that we have done, our CIO, that is the organization that actually is the custodian of this cognitive enterprise architecture of which Inderpal actually is part of. So, we are actually putting it all together. It used to be an organization. Most COOs have evolved from running operations to defining shared services to now have to figure out what is the digital services version of the enterprise they need to implement, and they can't do that without a CDO in place, they just can't. >> Alright, gentlemen. Unfortunately, we'll have to leave it there. For viewers at home, tune into season two with Inderpal and Jesus. Really a great topic. Congratulations on the event, and we look to forward to the next time. >> Thank you. >> Thank you very much. >> Absolutely. With Peter Burris, I'm Jeff Frick. You're watching theCUBE from the IBM Chief Data Officer Strategy Summit Spring 2017. Be right back with more after this short break. Thanks for watching. (electronic keyboard music)
SUMMARY :
Brought to you by IBM. that are happening not only in the United States, and Jesus Mantas, he's the General Manager, How is the role starting to solidify the corporate strategy, and you have to have an officer and it was expensive, and what do you do with it all? and because now, not only the portion of the physical world of forces on the role of the CDO as you stake out, and then, enabling all the other jobs to change, it's the democratization of the data or the access to the data, which solved those constraints, to a CEO or board of directors I'll take it, and then, you can. and the data and the technology co-engineering aspect. is someone that can be in the boardroom is the culture change, and to do that, and actually, perhaps even harness that to your advantage of attacking this problem, I'm not going to tell you the client's data has to be their data. and to be able to architect to support that, and that's the essence of governance. They have the derivatives now, though. so it's not just that core baseline data anymore. that the data you have, Data does not follow the economics of scarcity. and being the executive in the business for the business to do. in the sense that now you have the relationship between the CDO and business architecture. and reacting to the changes So, turning strategy that is the organization that actually Congratulations on the event, Be right back with more after this short break.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Peter Burris | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Inderpal Bhandari | PERSON | 0.99+ |
Texas | LOCATION | 0.99+ |
2006 | DATE | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
Inderpal | PERSON | 0.99+ |
Jesus Mantas | PERSON | 0.99+ |
Jesus | PERSON | 0.99+ |
80% | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
two words | QUANTITY | 0.99+ |
fourth | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Inderpal | ORGANIZATION | 0.99+ |
three | DATE | 0.99+ |
10 years ago | DATE | 0.99+ |
five times | QUANTITY | 0.99+ |
San Francisco | LOCATION | 0.99+ |
U.S. | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
first job | QUANTITY | 0.98+ |
Da Vinci | PERSON | 0.98+ |
one | QUANTITY | 0.98+ |
Da Vincis | PERSON | 0.98+ |
one thing | QUANTITY | 0.98+ |
First | QUANTITY | 0.97+ |
three other chief data officers | QUANTITY | 0.96+ |
one quick question | QUANTITY | 0.95+ |
IBM Global Business Services | ORGANIZATION | 0.95+ |
four years ago | DATE | 0.94+ |
Wikibon | ORGANIZATION | 0.94+ |
both metaphors | QUANTITY | 0.94+ |
k question | QUANTITY | 0.94+ |
four times | QUANTITY | 0.93+ |
Chief Data Officer | EVENT | 0.92+ |
today | DATE | 0.9+ |
Strategy Summit Spring 2017 | EVENT | 0.9+ |
couple times | QUANTITY | 0.88+ |
Spring 2017 | DATE | 0.87+ |
Strategy Summit | EVENT | 0.85+ |
last five years | DATE | 0.83+ |
MIT CDOIQ | ORGANIZATION | 0.83+ |
season two | QUANTITY | 0.79+ |
Chief Research Officer | PERSON | 0.78+ |
last 50 years | DATE | 0.77+ |
IBM | EVENT | 0.76+ |
CDO Strategy Summit 2017 | EVENT | 0.76+ |
CDO | TITLE | 0.73+ |
things | QUANTITY | 0.67+ |
Fisherman's Wharf | LOCATION | 0.51+ |
Allen Crane, USAA & Cortnie Abercrombie, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE
>> It's the Cube covering IBM cheap Data Officer Strategy Summit brought to you by IBM. Now, here are your hosts Day villain day and still minimum. >> Welcome back to Boston, everybody. This is the Cube, the worldwide leader in live tech coverage. We here at the Chief Data Officers Summit that IBM is hosting in Boston. I'm joined by Courtney Abercrombie. According your your title's too long. I'm just gonna call you a cognitive rockstar on >> Alec Crane is >> here from Yusa. System by President, Vice President at that firm. Welcome to the Cube. Great to see you guys. Thank you. So this event I love it. I mean, we first met at the, uh, the mighty chief data officer conference. You were all over that networking with the CEO's helping him out and just really, I think identified early on the importance of this constituency. Why? How did you sort of realize and where have you taken it? >> It's more important than it's ever been. And we're so grateful every time that we see a new chief data officer coming in because you just can't govern and do data by committee. Um, if you really hope to be transformational in your company. All these huge, different technologies that are out there, All this amazing, rich data like weather data and the ability to leverage, you know, social media information, bringing that all together and really establishing an innovation platform for your company. You can't do that by committee. You really have to have a leader in charge of it. and that’s what chief data officers are here to do. And so every time we see one, we're so grateful >> that just so >> that we just heard from Inderpal Bhandari on his recommendation for how you get started. It was pretty precise and prescriptive. But I wonder, Alan. So tell us about the chief data officer role at USAA. Hasn't been around for a while. Of course, it's a regulated business. So probably Maur, data oriented are cognizant than most businesses. But tell us about your journey. >> We started probably about 4 or 5 years ago, and it was a combination of trying to consolidate data and analytics operations and then decentralized them, and we found that there was advantages and pros and cons of doing both. You'd get the efficiencies, but once you got the efficiencies, you'd lose the business expertise, and then we'd have to tow decentralize. So we ended up landing a couple of years ago. What we call a hub and spoke system where we have centralized governance and management of key data assets, uh, data modelling data science type work. And then we still allow the, uh, various lines of business to have their own data offices. And the one I run for USAA is our distribution channels office for all of the data and analytics. And we take about 100,000,000 phone calls a year. About 2,000,000,000 webb interactions. Mobile interactions. We take about 18,000 hours. That's really roughly two years of phone conversation data in per day. Uh, we take about 50,000,000 lines of, uh, Web analytic traffic per day as well. So trying to make sense of that to nurture remember, relationships, reinforce trust and remove obstacles >> for your supporting the agent systems. Is that right? >> I support the agent systems as well as the, um, digital >> systems. Okay. And so the objective is obviously toe to grow the business, keep it running, keep the customers happy. Very operate, agent Just efficient. Okay. Um and so when you that's really interesting. This sort of hub and spoke of decentralization gets you speed and closer to the business. Centralization get you that that efficiency. Do you feel like you found that right balance? I mean, if you think so. I >> think you know, early on, we it was mme or we had more cerebral alignment, you know, meaning that it seemed logical to us. But actually, once the last couple of years, we've had some growing pains with roles, responsibilities, overlaps, some redundancy, those types of things. But I think we've landed in a good place. And that's that's what I'm pretty proud of because we've been able to balance the agility with the governance necessary toe, have good governance and put in place, but then also be able to move at the speed the businessmen. >> So Courtney, one of things we heard one of the themes this morning within IBM it's of the role of the chief Data officer's office is to really empower the lines of business with data so that you can empower your customers is what Bob Tatiana was telling us, right? With data. So how are you doing? That is you have new services. You have processes or how is that all working >> right? We dio We have a lot of things, actually, because we've been working so much with people like Allen's group who have been leaders at, quite frankly, in establishing best practices on even how to set up these husbands votes. A lot of people are, you know, want to talk, Teo, um, the CDO and they've spun off even a lot of CEOs into other organizations, in fact, but I mean, they're really a leader in this area. So one of the things that we've noticed is you know, the thing that gives everybody the biggest grief is trying to figure out how to work with unstructured data. Um, and all this volume of data, it's just insane. And just like I was saying in the panel earlier, only about 5% of your actual internal data is enough to actually create a context around your customers. You really have to be able to go with all this exogenous data to understand what were the bigger ramifications that were going on in any customer event, whether it's a call in or whether it's, uh, you know, I'm not happy today with something that you tried to sell me or something that you didn't respond too fast enough, which I'm sure Alan could, you know, equate to. But so we have this new data as a service that we've put together based on the way the weather data has, the weather company has put their platform together. We're using a lot of the same kind of like micro services that you saw Bob put on the screen. You know, everything from, I mean, open source. As much open sources we can get, get it. And it's all cloud based. So and it's it's ways to digest and mix up both that internal data with all of that big, voluminous external data. >> So I'm interested in. So you get the organizational part down. Least you've settled on approach. What are some of the other big challenges that you face in terms of analytics and cognitive projects? Your organization? How are you dealing with those? >> Well, uh, >> to take a step back, use a We're, uh, financial services company that supports the military and their families. We now have 12 million members, and we're known for our service. And most of the time, those moments of truth, if you will, where our service really shines has been when someone talks to you, us on the phone when those member service reps are giving that incredible service that they're known for on the reason being is that the MSR is the aggregator of all that data. When you call in, it's all about you. There's two screens full of your information and the MSR is not interested in anything else but just serving you, our digital experiences more transactional in orientation. And it was It's more utilitarian, and we're trying to make it more personal, trying to make it more How do we know about you? And so one of the cues that were that were taking from the MSR community through cognitive learning is we like to say the only way to get into the call is to get into the call, and that is to truly get into the speech to text, Then do the text mining on that to see what are the other topics that are coming out that could surface that we're not actually capturing. And then how do we use those topics at a member level two then help inform the digital experience to make it more personal. How do I detect life events? Our MSR's are actually trained to listen for things like words like fiance, marriage moving, maybe even a baby crying in the background. How do we take that knowledge and turn that into something that machine learning can give us insights that can feedback into our digital transact actions. So >> this's what our group. >> It's a big task. So So how are >> you doing that? I mean, it's obviously we always talk about people processing technology. Yeah, break that down for us. I mean, how are you approaching that massive opportunity? >> Part of it is is, uh, you know, I look at it. It is like a set of those, you know, Russian nesting dolls. You know, every time you solve one problem, there's another problem inside of it. The first problem is getting access to the data. You know, where and where do you store? We're taking in two years of data per day of phone call data into a system where you put all that right and then you're where you put a week's worth a month's worth a quarter's worth of data like that. Then once you solve that problem, how do you read Act all that personal information So that that private information that you really don't need that data exhaust that would actually create a liability for you in our in our world so that you can really stay focused on what of the key themes that the member needs? And then the third thing is now had. Now that you've got access to the data, it's transcribed for you. It's been redacted from its P I I type work well, now you need the horse power and of analysts on, we're exploring partnerships with IBM, both locally and in in the States as well as internationally to look at data science as a service and try to understand How can we tap into this huge volume of data that we've got to explore those types of themes that are coming up The biggest challenges in typical transaction logging systems. You have to know what your logging You have to know what you're looking for before you know what to put the date, where to put the data. And so it's almost like you kind of have to already know that it's there to know how much you're acquiring for it and what we need to do more as we pivot more towards machine learning is that we need the data to tell us what's important to look at. And that's really the vat on the value of working with these folks. >> So obviously, date is increasingly on structure we heard this morning and whatever, 80 90% is structured. So here you're no whatever. You're putting it into whatever data fake swamp, ocean, everything center everywhere, and you're using sort of machine learning toe both find signal, but also protected yourself from risk. Right. So you've got a T said you gotta redact private information. So much of that information could be and not not no schema? Absolutely. Okay, So you're where are you in terms of solving that problem in the first inning or you deeper than that, >> we're probably would say beyond the first inning, but we so we've kind of figured out what that process is to get the data and all the piece parts working together. We've made some incredible insights already. Things that people, you know, I had no idea that was there. Um, but, uh, I'd say we still have a long way to go. Is particularly terms of scaling scaling the process, scaling the thie analytics, scaling the partnerships, figuring out how do we get the most throughput? I would say it's It's one of those things. We're measuring it on, maybe having a couple of good wins this year. A couple of really good projects that have come across. We want to kind of take that tube out 10 projects next year in this space. And that's how we're kind of measuring the velocity and the success >> data divas. I walked away and >> there was one of them Was breakfast this morning. Data divas. You hold this every year. >> D'oh! It's growing. Now we got data, >> dudes. So I was one of the few data dudes way walked in >> one of the women chief date officers. I got no problem with people calling me a P. >> I No. Yeah, I just sell. Sit down. Really? Bath s o. But also, >> what's the intent of that? What learning is that you take out of those? >> I think it's >> more. It's You know, you could honestly say this isn't just a data Debo problem. This is also, you know, anybody who feels like they're not being heard. Um, it's really easy to get drowned out in a lot of voices when it comes to data and analytics. Um, everybody has an opinion. I think. Remember, Ursula is always saying, Ah, all's fair in love, war and data. Um and it feels like, you know, sometimes you go, I'll come to the table and whoever has the loudest voice and whoever bangs their test the loudest, um, kind of wins the game. But I think in this case, you know, a lot of women are taking these roles. In fact, we saw, you know, a while back from Gardner that number about 25% of chief data officers are actually women because the role is evolving out of the business lines as opposed Thio more lines. And so I mean, it makes sense that, you know, were natural collaborators. I mean, like the biggest struggle and data governance isn't setting up frameworks. It's getting people to actually cooperate and bring data to the table and talk about their business processes that support that. And that's something that women do really well. But we've got to find our voice and our strength and our resolve. And we've got to support each other in trying to bring more diverse thinking to the table, you know? So it's it's all those kinds of issues and how do you balance family? I mean, >> we're seeing >> more and more. You know, I don't know if you know this, but there's actual statistics around millennials and that males are actually starting to take on more more role of being the the caregiver in the family. So I mean as we see that it's an interesting turnabout because now all the sudden, it's no longer, you know, women having that traditional role of, you know, I gotta always be home. Now we're actually starting to see a flip of that, which is which is, >> You know, I think it's kind of welcome. My husband's definitely >> I say he's a better parent than me. >> Friday. It's >> honest he'll watch this and he >> can thank me later that it was >> a great discussion this morning. Alan, I want to get your feedback on this event and also you participate in a couple of sessions yesterday. Maybe you could share with our audience Some of the key takeaways in the event of general and specific ones that you worked on yesterday. >> Well, I've been fortunate to come to the event for a couple of years now. And when we were just what 50 or so of us that were showing up? So, you know, I see that the evolution just in a couple of years time conversations have really changed. First meeting that we had people were saying, Where do you report in the organization? Um, how many people do you have? What do you do for your job? They were very different answers to any of that everywhere. From I'm an independent contributor that's a data evangelist to I run legions of data analysts and reporting shops, you know, and so forth and everything in between. And so what I see what it's offers in first year was really kind of a coalescing of what it really means to be a data officer in the company that actually happened pretty quickly in my mind, Um, when by seeing it through through the lens of my peers here, the other thing was when you when you think about the topics the topics are getting a lot more pointed. They're getting more pointed around the monetization of data communicating data through visualization, storytelling, key insights that you, you know, using different technologies. And we talked a lot yesterday about storytelling and storytelling is not through visual days in storytelling is not just about like who has the most, you know, colors on on a slide or or ah you know, animation of your bubble charts and things like that. But sometimes the best stories are told with the most simple charts because they resonate with your customers. And so what I think is it's almost like kind of getting a back to the basics when it comes to taking data and making it meaningful. We're only going to grow our organizations and data and data scientists and analysts. If we can communicate to the rest of the organization, our value and the key to creating that value is they can see themselves in our data. >> Yeah, the visit is we like to call it sometimes is critical to that to that storytelling. Sometimes I worry and we go onto these conferences and you go into a booth and look what we can do with machine learning, and we would just be looking at just this data. So what do I do? What >> I do with all this? Yeah. >> I don't know how it would make sense of it. So So is there a special storyteller role within your organization or you all storytellers? Do you cross train on that? Or >> it's funny you'd ask that one of the gentlemen of my team. He actually came to me about six months ago, and he says I'm really good at at the analysis part, but I really have a passion for things like Photoshopped things like, uh uh, uh the various, uh, video and video editing type software. He says I want to be your storyteller. I want to be creating a team of data and analytics storytellers for the rest of the organization. So we pitched the idea to our central hub and spoke leadership group. They loved it. They loved the idea. And he is now, um, oversubscribed. You would say in terms of demand for how do you tell the data? How do you tell the data story and how it's moving the business forward? And that takes the form kind of everything from infographics tell you also about how do you make it personal when, when? Now 7,000 m s. Ours have access to their own data. You know, really telling that at a at a very personal level, almost like a vignette of animus are who's now able to manage themselves using the data that they were not able able tto have before we're in the past, only managers had access to their performance results. This video, actually, you know, pulls on the heartstrings. But it it not only does that, but it really tells the story of how doing these types of things and creating these different data assets for the rest of your organization can actually have a very meaningful benefit to how they view work and how they view autonomy and how they view their own personal growth. >> That's critical, especially in a decentralized organization. Leased a quasi decentralized organization, getting everybody on the same page and understand You know what the vision is and what the direction is. It s so often if you don't have that storytelling capability, you have thousands of stories, and a lot of times there's dissonance. I mean, I'm not saying there's not in your in your organization, but have you seen the organization because of that storytelling capability become Mohr? Yeah, Joe. At least Mohr sort of effective and efficient, moving forward to the objectives. Well, >> you know, as a as a data person, I'm always biased thatyou know data, you know, can win an argument if presented the right way. It's the The challenge is when you're trying to overcome or go into a direction. And in this case, it was. We wanted to give more autonomy. Toothy MSR community. Well, the management of that call center were 94 year old company. And so the management of that of that call center has been doing things a certain way for many, many, many, many years. And the manager's having access to the data. The reps not That was how we did things, you know. And so when you make a change like that, there's a lot of hesitation of what is this going to do to us? How is this going to change? And what we're able to show with data and with through these visualizations is you really don't have anything to worry about? You're only gonna have upside, you know, in this conversation because at the end of the day, what's going to empower people this having access and power of >> their own destiny? Yeah, access is really the key isn't because we've all been in the meetings where somebody stands up and they've got some data point in there pounding the table, >> right? Oftentimes it's a man, all right. It >> is a powerful pl leader on jamming data down your throats, and you don't necessarily know the poor sap that he's, you know, beating up. Doesn't think Target doesn't have access to the data. This concept of citizen data scientists begins to a level that playing field doesn't want you seeing that >> it does. And I want to actually >> come back to what you're saying because there's a larger thought there, which is that we don't often address, and that's this change banishment concept. I mean, we we look at all these. I mean, everybody looks at all these technologies and all this information, and how much data can you possibly get your >> hands on? But at the end of >> the day, it's all about trying to create an outcome. A some joint outcome for the business and it could be threatening. It could be threatening to the C suite people who are actually deploying the use of these data driven tools because >> it may go >> against their gut. And, you >> know, oftentimes the poor messenger of that, >> When when you have to be the one that stands up and go against that, that senior vice presidents got it, the one who's pounding and saying No, but I know better >> That could be a >> tough position to be in without having some sort of change management philosophy going on with the introduction of data and analytics and with the introduction of tools, because there's a whole reframing that, Hey, my gut instinct that got me here all the way to the top doesn't necessarily mean that it's going to continue to scale in this new world with all of all of our competitors and all these, you know, massive changes going on in the market place right now. My guts not going to get me there anymore. So it's hard, it's hard, and I think a lot of executives don't really know to invest in that change management, if you know that goes with it that you need to change philosophies and mindsets and slowly introduced visualizations and things that get people slowly onboard, as opposed to just throwing it at him and saying here, believe it. >> Think I mean, it wasn't that >> long ago. Certainly this this millennium, where you know, publications like Harvard Business Review had, uh, cover stories on why gut feel, you know, beats, you know, analysis by paralysis. >> That seems to be changing. And >> the data purists would say the data doesn't lie. It was long as you could interpret it correctly. Let the data tell us what to do, as opposed to trying to push an agenda. But they're still politics. >> There's just things out >> there that you can't even perceive of that air coming your way. I mean, like, Blockbuster Netflix, Alibaba versus standard retailers. I mean, >> there's just things out >> there that without the use of things like machine learning and being comfortable with the use, the things like mission learning a lot of people think of that kind of stuff is >> Well, don't get your >> hoodoo voodoo into my business. You know, I don't know what that algorithm stuff does. It's >> going Yeah, I mean, e. I mean to say, What the hell is this? And now, yeah, it's coming and >> you need to get ready. >> There's an >> important role, though I think instinct, you know, you don't want to dismiss a 20 year leader in a particular operations because they've they've they've getting themselves where they're at because in large part, maybe they didn't have all the data. But they learned through a lot of those things, and I think it's when you marry those things up. And if you kenbrell in a kind of humble way to that kind of leader and win them over and show how it may be validating some of their, um uh yeah, that some of their points Or maybe how it explains it in a different way. Maybe it's not exactly what they want to see, but it's helping to inform their business, and you come into him as a partner, as opposed to gotcha, you know. Then then you know you can really change the business that way. And >> what is it? Was Linda Limbic brain is it just doesn't feel right. Is that the part of the brain that informs you that? And so It's hard to sometimes put, but you're right. Uh, there there is a component of this which is gut feel instinct and probably relates to to experience. So it's It's like, uh, when, when, uh, Deep blue beat Garry Kasparov. We talk about this all the time. It turns out that the best chess player in the world isn't a machine. It's a It's a human in the machine. >> That's right. That's exactly right. It's always the training that people training these things, that's where it gets its information. So at the end of the day, you're right. It's always still instinct to some >> level. I could We gotta go. All right. Last word on the event. You know what's next? >> Don't love my team. Data officer. Miss, you guys. It is good >> to be here. We appreciate it. All right, We'll leave it there. Thank you, guys. Thank you. All right, keep right. Everybody, this is Cuba. Live from IBM Chief Data Officer, Summit in Boston Right back. My name is Dave Volante.
SUMMARY :
brought to you by IBM. I'm just gonna call you a cognitive rockstar on Great to see you guys. data and the ability to leverage, you know, social media information, that we just heard from Inderpal Bhandari on his recommendation for how you get started. but once you got the efficiencies, you'd lose the business expertise, and then we'd have to tow decentralize. Is that right? I mean, if you think so. alignment, you know, meaning that it seemed logical to us. it's of the role of the chief Data officer's office is to really empower the So one of the things that we've noticed is you know, the thing that gives everybody the biggest grief is trying What are some of the other big challenges that you face in terms of analytics and cognitive projects? get into the speech to text, Then do the text mining on that to see what are the other So So how are I mean, how are you approaching that massive opportunity? Part of it is is, uh, you know, I look at it. inning or you deeper than that, Things that people, you know, I had no idea that was there. I walked away and You hold this every year. Now we got data, So I was one of the few data dudes way walked in one of the women chief date officers. Bath s But I think in this case, you know, a lot of women are taking these it's no longer, you know, women having that traditional role of, you know, You know, I think it's kind of welcome. It's in the event of general and specific ones that you worked on yesterday. the other thing was when you when you think about the topics the topics are getting a lot more pointed. Sometimes I worry and we go onto these conferences and you go into a booth and look what we can do with machine learning, I do with all this? Do you cross train on that? And that takes the form kind of everything from infographics tell you also about how do you make it personal It s so often if you don't have that storytelling capability, you have thousands of stories, And what we're able to show with data and with through these visualizations is you Oftentimes it's a man, all right. data scientists begins to a level that playing field doesn't want you seeing that And I want to actually these technologies and all this information, and how much data can you possibly get your It could be threatening to the C suite people who are actually deploying the use of these data driven tools because And, you know to invest in that change management, if you know that goes with it that you need to change philosophies Certainly this this millennium, where you know, publications like Harvard Business Review That seems to be changing. It was long as you could interpret it correctly. there that you can't even perceive of that air coming your way. You know, I don't know what that algorithm stuff does. going Yeah, I mean, e. I mean to say, What the hell is this? important role, though I think instinct, you know, you don't want to dismiss a 20 year leader in Is that the part of the brain that informs you that? So at the end of the day, you're right. I could We gotta go. Miss, you guys. to be here.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
IBM | ORGANIZATION | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
Ursula | PERSON | 0.99+ |
Alan | PERSON | 0.99+ |
Inderpal Bhandari | PERSON | 0.99+ |
two years | QUANTITY | 0.99+ |
Bob Tatiana | PERSON | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
Alec Crane | PERSON | 0.99+ |
20 year | QUANTITY | 0.99+ |
50 | QUANTITY | 0.99+ |
Garry Kasparov | PERSON | 0.99+ |
next year | DATE | 0.99+ |
Joe | PERSON | 0.99+ |
94 year | QUANTITY | 0.99+ |
Cuba | LOCATION | 0.99+ |
Linda Limbic | PERSON | 0.99+ |
10 projects | QUANTITY | 0.99+ |
Courtney Abercrombie | PERSON | 0.99+ |
USAA | ORGANIZATION | 0.99+ |
Friday | DATE | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Target | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
Courtney | PERSON | 0.99+ |
Thio | PERSON | 0.99+ |
both | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Cortnie Abercrombie | PERSON | 0.99+ |
a quarter | QUANTITY | 0.99+ |
Bob | PERSON | 0.98+ |
two screens | QUANTITY | 0.98+ |
one problem | QUANTITY | 0.98+ |
first inning | QUANTITY | 0.98+ |
first inning | QUANTITY | 0.98+ |
this year | DATE | 0.98+ |
about 18,000 hours | QUANTITY | 0.98+ |
about 50,000,000 lines | QUANTITY | 0.98+ |
a month | QUANTITY | 0.98+ |
a week | QUANTITY | 0.97+ |
12 million members | QUANTITY | 0.97+ |
about 25% | QUANTITY | 0.97+ |
7,000 m s. | QUANTITY | 0.97+ |
Mohr | PERSON | 0.97+ |
first year | QUANTITY | 0.97+ |
third thing | QUANTITY | 0.96+ |
about 5% | QUANTITY | 0.96+ |
this morning | DATE | 0.96+ |
first | QUANTITY | 0.96+ |
first problem | QUANTITY | 0.96+ |
thousands of stories | QUANTITY | 0.95+ |
First meeting | QUANTITY | 0.95+ |
5 years ago | DATE | 0.95+ |
Gardner | PERSON | 0.95+ |
Allen Crane | PERSON | 0.95+ |
couple of years ago | DATE | 0.94+ |
80 90% | QUANTITY | 0.94+ |
about 100,000,000 phone calls a year | QUANTITY | 0.93+ |
Chief Data Officers Summit | EVENT | 0.93+ |
Harvard Business Review | TITLE | 0.92+ |
Russian | OTHER | 0.88+ |
Data Officer Strategy Summit | EVENT | 0.86+ |
Maur | PERSON | 0.84+ |
Chief Data Officer | PERSON | 0.83+ |
About 2,000,000,000 webb interactions | QUANTITY | 0.83+ |
CDO Strategy Summit | EVENT | 0.82+ |
Cube | ORGANIZATION | 0.8+ |
about six months ago | DATE | 0.8+ |
Allen | PERSON | 0.76+ |
Caitlin Lepech & Dave Schubmehl - IBM Chief Data Officer Strategy Summit - #IBMCDO - #theCUBE
>> live from Boston, Massachusetts. >> It's the Cube >> covering IBM Chief Data Officer Strategy Summit brought to you by IBM. Now, here are your hosts. Day villain Day and >> stew minimum. Welcome back to Boston, everybody. This is the IBM Chief Data Officer Summit. And this is the Cube, the worldwide leader in live tech coverage. Caitlin Lepic is here. She's an executive within the chief data officer office at IBM. And she's joined by Dave Shoot Mel, who's a research director at, uh D. C. And he covers cognitive systems and content analytics. Folks, welcome to the Cube. Good to see you. Thank you. Can't. Then we'll start with you. You were You kicked off the morning and I referenced the Forbes article or CDOs. Miracle workers. That's great. I hadn't read that article. You put up their scanned it very quickly, but you set up the event. It started yesterday afternoon at noon. You're going through, uh, this afternoon? What's it all about? This is evolved. Since, what, 2014 >> it has, um, we started our first CDO summit back in 2014. And at that time, we estimated there were maybe 200 or so CDOs worldwide, give or take and we had 30, 30 people at our first event. and we joked that we had one small corner of the conference room and we were really quite excited to start the event in 30 2014. And we've really grown. So this year we have about 170 folks joining us, 70 of which are CEOs, more acting, the studios in the organization. And so we've really been able to grow the community over the last two years and are really excited to see to see how we can continue to do that moving forward. >> And IBM has always had a big presence at the conference that we've covered the CDO event. So that's nice that you can leverage that community and continue to cultivate it. Didn't want to ask you, so it used that we were talking when we first met this morning. It used to be dated was such a wonky topic, you know, data was data value. People would try to put a value on data, and but it was just a really kind of boring but important topic. Now it's front and center with cognitive with analytics. What are you seeing in the marketplace. >> Yeah, I think. Well, what we're seeing in the market is this emphasis on predictive applications, predictive analytics, cognitive applications, artificial intelligence of deep learning. All of those those types of applications are derived and really run by data. So unless you have really good authoritative data to actually make these models work, you know, the systems aren't going to be effective. So we're seeing an emerging marketplace in both people looking at how they can leverage their first party data, which, you know, IBM is really talking about what you know, Bob Picciotto talked about this morning. But also, we're seeing thie emergency of a second party and third party data market to help build these models out even further so that I think that's what we're really seeing is the combination of the third party data along with the first party data really being the instrument for building these kind of predictive models, you know, they're going to take us hopefully, you know, far into the future. >> Okay, so, Caitlin square the circle for us. So the CDO roll generally is not perceived. Is it technology role? Correct. Yet as Davis to saying, we're talking about machine learning cognitive. Aye, aye. These air like heavy technical topics. So how does the miracle worker deal with all this stuff generally? And how does IBM deal with it inside the CDO office? Specifically? >> Sure. So it is. It's a very good point, you know, Traditionally, Seo's really have a business background, and we find that the most successful CDO sit in the business organization. So they report somewhere in a line of business. Um, and there are certainly some that have a technical background, but far more come from business background and sit in the business. I can't tell you how we are setting up our studio office at IBM. Um, so are new. And our first global chief date officer joined in December of last year. Interpol Bhandari, um and I started working for him shortly thereafter, and the way he's setting up his office is really three pillars. So first and foremost, we focused on the data engineering data sign. So getting that team in place next, it's information, governance and policy. How are we going to govern access, manage, work with data, both data that we own within our organization as well as the long list of of external data sources that that we bring in and then third is the business integration filler. So the idea is CDOs are going to be most successful when they deliver those data Science data engineering. Um, they manage and govern the data, but they pull it through the business, so ensuring that were really, you know, grounded in business unit and doing this. And so those there are three primary pillars at this point. So prior >> to formalizing the CDO role at I b m e mean remnants of these roles existed. There was a date, equality, you know, function. There was certainly governance in policy, and somebody was responsible to integrate between, you know, from the i t. To the applications, tow the business. Were those part of I t where they sort of, you know, by committee and and how did you bring all those pieces together? That couldn't have been trivial, >> and I would say it's filling. It's still going filling ongoing process. But absolutely, I would say they typically resided within particular business units, um, and so certainly have mature functions within the unit. But when we're looking for enterprise wide answers to questions about certain customers, certain business opportunities. That's where I think the role the studio really comes in and what we're What we're doing now is we are partnering very closely with business units. One example is IBM analytic. Seen it. So we're here with Bob Luciano and other business units to ensure that, as they provide us, you know, their data were able to create the single trusted source of data across the organization across the enterprise. And so I agree with you, I think, ah, lot of those capabilities and functions quite mature, they, you know, existed within units. And now it's about pulling that up to the enterprise level and then our next step. The next vision is starting to make that cognitive and starting to add some of those capabilities in particular data science, engineering, the deep learning on starting to move toward cognitive. >> Dave, I think Caitlin brought up something really interesting. We've been digging into the last couple of years is you know, there's that governance peace, but a lot of CEOs are put into that role with a mandate for innovation on. That's something that you know a lot of times it has been accused of not being all that innovative. Is that what you're seeing? You know what? Because some of the kind of is it project based or, you know, best initiatives that air driving forward with CEOs. I think what we're seeing is that enterprises they're beginning to recognize that it's not just enough to be a manufacturer. It's not just enough to be a retail organization. You need to be the one of the best one of the top two or the top three. And the only way to get to that top two or top three is to have that innovation that you're talking about and that innovation relies on having accurate data for decision making. It also relies on having accurate data for operations. So we're seeing a lot of organizations that are really, you know, looking at how data and predictive models and innovation all become part of the operational fabric of a company. Uh, you know, and if you think about the companies that are there, you know, just beating it together. You know Amazon, for example. I mean, Amazon is a completely data driven company. When you get your recommendations for, you know what to buy, or that's all coming from the data when they set up these logistics centers where they're, you know, shipping the latest supplies. They're doing that because they know where their customers are. You know, they have all this data, so they're they're integrating data into their day to day decision making. And I think that's what we're seeing, You know, throughout industry is this this idea of integrating decision data into the decision making process and elevating it? And I think that's why the CDO rule has become so much more important over the last 2 to 3 years. >> We heard this morning at 88% percent of data is dark data. Papa Geno talked about that. So thinking about the CEOs scope roll agenda, you've got data sources. You've gotto identify those. You gotta deal with data quality and then Dave, with some of the things you've been talking about, you've got predictive models that out of the box they may not be the best predictive models in the world. You've got iterated them. So how does an organization, because not every organizations like Amazon with virtually unlimited resource is capital? How does an organization balance What are you seeing in terms of getting new data sources? Refining those data source is putting my emphasis on the data vs refining and calibrating the predictive models. How organizations balancing that Maybe we start with how IBM is doing. It's what you're seeing in the field. >> So So I would say, from what we're doing from a setting up the chief data office role, we've taken a step back to say, What's the company's monitor monetization strategy? Not how your mind monetizing data. How are how are you? What's your strategy? Moving forward, Um, for Mance station. And so with IBM we've talked about it is moved to enabling cognition throughout the enterprise. And so we've really talked about taking all of your standard business processes, whether they be procurement HR finance and infusing those with cognitive and figuring out how to make those smarter. We talking examples with contracts, for example. Every organization has a lot of contracts, and right now it's, you know, quite a manual process to go through and try and discern the sorts of information you need to make better decisions and optimize the contract process. And so the idea is, you start with that strategy for us. IBM, it's cognitive. And that then dictates what sort of data sources you need. Because that's the problem you're trying to solve in the opportunity you're chasing down. And so then we talk about Okay, we've got some of that data currently residing today internally, typically in silos, typically in business units, you know, some different databases. And then what? What are longer term vision is, is we want to build the intelligence that pulls in that internal data and then really does pull in the external data that we've that we've all talked about. You know, the social data, the sentiment analysis, analysis, the weather. You know, all of that sort of external data to help us. Ultimately, in our value proposition, our mission is, you know, data driven enablement cognition. So helps us achieve our our strategy there. >> Thank you, Dad, to that. Yeah, >> I mean, I think I mean, you could take a number of examples. I mean, there's there's ah, uh, small insurance company in Florida, for example. Uh, and what they've done is they have organized their emergency situation, their emergency processing to be able to deal with tweets and to be able to deal with, you know, SMS messages and things like that. They're using sentiment analysis. They're using Tex analytics to identify where problems are occurring when hurricane happens. So they're what they're doing is they're they're organizing that kind of data and >> there and there were >> relatively small insurance company. And a lot of this is being done to the cloud, but they're basically getting that kind of sentiment analysis being ableto interpret that and add that to their decision making process. About where should I land a person? Where should I land? You know, an insurance adjuster and agent, you know, based on the tweets, that air coming in rather than than just the phone calls that air coming into the into the organization, you know? So that's a That's a simple example. And you were talking about Not everybody has the resources of an Amazon, but, you know, certainly small insurance companies, small manufacturers, small retail organizations, you, Khun get started by, you know, analyzing your You know what people are saying about you. You know, what are people saying about me on Twitter? What are people saying about me on Facebook? You know how can I use that to improve my customer service? Uh, you know, we're seeing ah whole range of solutions coming out, and and IBM actually has a broad range of solutions for things like that. But, you know, they're not the only points out there. There's there's a lot of folks do it that kind of thing, you know, in terms of the dark data analysis and barely providing that, you know, as part of the solution to help people make better decisions. >> So the answers to the questions both You're doing both new sources of data and trying to improve the the the analytics and the models. But it's a balancing act, and you could come back to the E. R. A. Y question. It sounds like IBM strategies to supercharge your existing businesses by infusing them with new data and new insights. Is >> that correctly? I would say that is correct. >> Okay, where is in many cases, the R A. Y of analytics projects that date have been a reduction on investment? You know, I'm going to move stuff from my traditional W two. A dupe is cheaper, and we feels like Dave, we're entering a new wave now maybe could talk about that a little bit. >> Yeah. I mean, I think I think there's a desk in the traditional way of measuring ROI. And I think what people are trying to do now is look at how you mentioned disruption, for example. You know what I think? Disruption is a huge opportunity. How can I increase my sales? How can I increase my revenue? How can I find new customers, you know, through these mechanisms? And I think that's what we're starting to see in the organization. And we're starting to see start ups that are dedicated to providing this level of disruption and helping address new markets. You know, by using these kinds of technologies, uh, in in new and interesting ways. I mean, everybody uses the airbnb example. Everybody uses uber example. You know that these are people who don't own cars. They don't know what hotel rooms. But, you know, they provide analytics to disrupt the hotel industry and disrupt the taxi industry. It's not just limited to those two industries. It's, you know, virtually everything you know. And I think that's what we're starting to see is this height of, uh, virtual disruption based on the dark data, uh, that people can actually begin to analyze >> within IBM. Uh, the chief data officer reports to whom. >> So the way we've set up in our organization is our CBO reports to our senior vice president of transformation and operations, who then reports to our CEO our recommendation as we talked with clients. I mean, we see this as a CEO level reporting relationship, and and oftentimes we advocate, you know, for that is where we're talking with customers and clients. It fits nicely in our organization within transformation operations, because this line is really responsible for transforming IBM. And so they're really charged with a number of initiatives throughout the organization to have better skills alignment with some of the new opportunities. To really improve process is to bring new folks on board s. So it made sense to fit within, uh, organization that the mandate is really transformation of the company of the >> and the CDO was a peer of the CIA. Is that right? Yes. >> Yes, that's right. That's right. Um, and then in our organization, the role of split and that we have a chief data officer as well as a chief analytics officer. Um, but, you know, we often see one person serving both of those roles as well. So that's kind of, you know, depend on the organizational structure of the company. >> So you can't run the business. So to grow the business, which I guess is the P and L manager's role and transformed the business, which is where the CDO comes. >> Right? Right, right. Exactly. >> I can't give you the last word. Sort of Put a bumper sticker on this event. Where do you want to see it go? In the future? >> Yes. Eso last word. You know, we try Tio, we tried a couple new things. Uh, this this year we had our deep dive breakout sessions yesterday. And the feedback I've been hearing from folks is the opportunity to talk about certain topics they really care about. Is their governance or is innovation being able to talk? How do you get started in the 1st 90 days? What? What do you do first? You know, we we have sort of a five steps that we talk through around, you know, getting your data strategy and your plan together and how you execute against that. Um And I have to tell you, those topics continue to be of interest to our to our participants every year. So we're going to continue to have those, um, and I just I love to see the community grow. I saw the first Chief data officer University, you know, announced earlier this year. I did notice a lot of PR and media around. Role of studio is miracle workers, As you mentioned, doing a lot of great work. So, you know, we're really supportive. Were big supporters of the role we'll continue to host in person events. Uh, do virtual events continue to support studios? To be successful on our big plug is will be world of Watson. Eyes are big IBM Analytics event in October, last week of October in Vegas. So we certainly invite folks to join us. There >> will be, >> and he'll be there. Right? >> Get still, try to get Jimmy on. So, Jenny, if you're watching, talking to come on the Q. >> So we do a second interview >> and we'll see. We get Teo, And I saw Hillary Mason is going to be the oh so fantastic to see her so well. Excellent. Congratulations. on being ahead of the curve with the chief date officer can theme. And I really appreciate you coming to Cube, Dave. Thank you. Thank you. All right, Keep right there. Everybody stew and I were back with our next guest. We're live from the Chief Data Officers Summit. IBM sze event in Boston Right back. My name is Dave Volante on DH. I'm a longtime industry analysts.
SUMMARY :
covering IBM Chief Data Officer Strategy Summit brought to you by You put up their scanned it very quickly, but you set up the event. And at that time, we estimated there were maybe 200 or so CDOs worldwide, give or take and we had 30, 30 people at our first event. the studios in the organization. a wonky topic, you know, data was data value. data to actually make these models work, you know, the systems aren't going to be effective. So how does the miracle worker deal with all this stuff generally? so ensuring that were really, you know, grounded in business unit and doing this. and somebody was responsible to integrate between, you know, from the i t. units to ensure that, as they provide us, you know, their data were able to create the single that are really, you know, looking at how data and are you seeing in terms of getting new data sources? And so the idea is, you start with that Thank you, Dad, to that. to be able to deal with, you know, SMS messages and things like that. You know, an insurance adjuster and agent, you know, based on the tweets, that air coming in rather than than just So the answers to the questions both You're doing both new sources of data and trying to improve I would say that is correct. You know, I'm going to move stuff from my traditional W two. And I think what people are trying to do now is look at how you mentioned disruption, Uh, the chief data officer reports to whom. you know, for that is where we're talking with customers and clients. and the CDO was a peer of the CIA. So that's kind of, you know, depend on the organizational structure of So you can't run the business. Right? I can't give you the last word. I saw the first Chief data officer University, you know, announced earlier this and he'll be there. So, Jenny, if you're watching, talking to come on the Q. And I really appreciate you coming to Cube, Dave.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Caitlin Lepic | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
CIA | ORGANIZATION | 0.99+ |
Dave Schubmehl | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Florida | LOCATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Bob Luciano | PERSON | 0.99+ |
Bob Picciotto | PERSON | 0.99+ |
Jenny | PERSON | 0.99+ |
Dave Shoot Mel | PERSON | 0.99+ |
Caitlin Lepech | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Davis | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
uber | ORGANIZATION | 0.99+ |
Teo | PERSON | 0.99+ |
70 | QUANTITY | 0.99+ |
Vegas | LOCATION | 0.99+ |
2014 | DATE | 0.99+ |
Jimmy | PERSON | 0.99+ |
Hillary Mason | PERSON | 0.99+ |
October | DATE | 0.99+ |
Boston, Massachusetts | LOCATION | 0.99+ |
Caitlin | PERSON | 0.99+ |
first | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
200 | QUANTITY | 0.99+ |
both people | QUANTITY | 0.99+ |
third | QUANTITY | 0.99+ |
first event | QUANTITY | 0.99+ |
One example | QUANTITY | 0.99+ |
two industries | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
five steps | QUANTITY | 0.99+ |
second interview | QUANTITY | 0.98+ |
single | QUANTITY | 0.98+ |
top three | QUANTITY | 0.98+ |
December of last year | DATE | 0.98+ |
this afternoon | DATE | 0.97+ |
1st 90 days | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
Chief Data Officers Summit | EVENT | 0.97+ |
IBM Chief Data Officer | EVENT | 0.96+ |
one person | QUANTITY | 0.96+ |
this year | DATE | 0.96+ |
last week of October | DATE | 0.95+ |
about 170 folks | QUANTITY | 0.95+ |
both data | QUANTITY | 0.95+ |
earlier this year | DATE | 0.95+ |
top two | QUANTITY | 0.95+ |
yesterday afternoon at noon | DATE | 0.94+ |
30 2014 | DATE | 0.94+ |
CDO | EVENT | 0.94+ |
88% percent | QUANTITY | 0.93+ |
three primary pillars | QUANTITY | 0.93+ |
first party | QUANTITY | 0.9+ |
this morning | DATE | 0.89+ |
CDO | ORGANIZATION | 0.89+ |
30, | QUANTITY | 0.88+ |
Khun | ORGANIZATION | 0.88+ |
D. C. | PERSON | 0.88+ |
three pillars | QUANTITY | 0.87+ |
one small corner | QUANTITY | 0.87+ |