Image Title

Search Results for Senzing.com:

Sam Werner, IBM & Brent Compton, Red Hat | KubeCon + CloudNativeCon Europe 2020 – Virtual


 

>>from around the globe. It's the Cube with coverage of Coop Con and Cloud, Native Con Europe 2020 Virtual brought to You by Red Hat, The Cloud Native Computing Foundation and its Ecosystem Partners. >>And welcome back to the Cube's coverage of Cube Con Cloud, Native Con Europe 20 twenties Virtual event. I'm Stew Minimum and and happy to Welcome back to the program, two of our Cube alumni. We're gonna be talking about storage in this kubernetes and container world. First of all, we have Sam Warner. He is the vice president of storage, offering management at IBM, and joining him is Brent Compton, senior director of storage and data architecture at Red Hat and Brent. Thank you for joining us, and we get to really dig in. It's the combined IBM and red hat activity in this space, of course, both companies very active in the space of the acquisition, and so we're excited to hear about what's going going. Ford. Sam. Maybe if we could start with you as the tee up, you know, Both Red Hat and IBM have had their conferences this year. We've heard quite a bit about how you know, Red Hat the solutions they've offered. The open source activity is really a foundational layer for much of what IBM is doing when it comes to storage, you know, What does that mean today? >>First of all, I'm really excited to be virtually at Cube Con this year, and I'm also really excited to be with my colleague Brent from Red Hat. This is, I think, the first time that IBM storage and Red Hat Storage have been able to get together and really articulate what we're doing to help our customers in the context of kubernetes and and also with open shift, the things we're doing there. So I think you'll find, ah, you know, as we talked today, that there's a lot of work we're doing to bring together the core capabilities of IBM storage that been helping enterprises with there core applications for years alongside, Ah, the incredible open source capabilities being developed, you know, by red Hat and how we can bring those together to help customers, uh, continue moving forward with their initiatives around kubernetes and rebuilding their applications to be develop once, deploy anywhere, which runs into quite a few challenges for storage. So, Brennan, I'm excited to talk about all the great things we're doing. Excited about getting to share it with everybody else. A cube con? >>Yes. So of course, containers When they first came out well, for stateless environments and we knew that, you know, we've seen this before. You know, those of us that live through that wave of virtualization, you kind of have a first generation solution. You know what application, What environment and be used. But if you know, as we've seen the huge explosion of containers and kubernetes, there's gonna be a maturation of the stack. Storage is a critical component of that. So maybe upfront if you could bring us up to speed you're steeped in, you know, a long history in this space. You know, the challenges that you're hearing from customers. Uhm And where are we today in 2020 for this? >>Thanks to do the most basic caps out there, I think are just traditional. I'm databases. APS that have databases like a post press, a longstanding APS out there that have databases like DB two so traditional APs that are moving towards a more agile environment. That's where we've seen in fact, our collaboration with IBM and particularly the DB two team. And that's where we've seen is they've gone to a micro services container based architecture we've seen pull from the market place. Say, you know, in addition to inventing new Cloud native APS, we want our tried true and tested perhaps I mean such as DB two, such as MQ. We want those to have the benefits of a red hat, open shift, agile environment. And that's where the collaboration between our group and Sam's group comes in together is providing the storage and data services for those state labs. >>Great, Sam, you know I IBM. You've been working with the storage administrator for a long time. What challenges are they facing when we go to the new architectures is it's still the same people it might There be a different part of the organization where you need to start in delivering these solutions. >>It's a really, really good question, and it's interesting cause I do spend a lot of time with storage administrators and the people who are operating the I T infrastructure. And what you'll find is that the decision maker isn't the i t operations or storage operations. People These decisions about implementing kubernetes and moving applications to these new environments are actually being driven by the business lines, which is, I guess, not so different from any other major technology shift. And the storage administrators now are struggling to keep up. So the business lines would like to accelerate development. They want to move to a developed, once deploy anywhere model, and so they start moving down the path of kubernetes. In order to do that, they start, you know, leveraging middleware components that are containerized and easy to deploy. And then they're turning to the I T infrastructure teams and asking them to be able to support it. And when you talk to the storage administrators, they're trying to figure out how to do some of the basic things that are absolutely core to what they do, which is protecting the data in the event of a disaster or some kind of a cyber attack, being able to recover the data, being able to keep the data safe, ensuring governance and privacy of the data. These things are difficult in any environment, but now you're moving to a completely new world and the storage administrators have ah tough challenge out of them. And I think that's where IBM and Red Hat can really come together with all of our experience and are very broad portfolio with incredibly enterprise hardened storage capabilities to help them move from their more traditional infrastructure to a kubernetes environment. >>Maybe if you could bring us up to date when we look back, it, like open stack of red hat, had a few projects from an open source standpoint to help bolster the open source or storage world in the container world. We saw some of those get boarded over. There's new projects. There's been a little bit of argument as to the various different ways to do storage. And of course, we know storage has never been a single solution. There's lots of different ways to do things, but, you know, where are we with the options out there? What's that? What's what's the recommendation from Red Hat and IBM as to how we should look at that? >>I wanna Bridget question to Sam's earlier comments about the challenges facing the storage admin. So if we start with the word agility, I mean, what is agility mean for it in the data world. We're conscious for agility from an application development standpoint. But if you use the term, of course, we've been used to the term Dev ops. But if we use the term data ops, what does that mean? What does that mean to you in the past? For decades, when a developer or someone deploying production wanted to create new storage or data, resource is typically typically filed a ticket and waited. So in the agile world of open shift in kubernetes, it's everything is self service and on demand or what? What kind of constraints and demands that place on the storage and data infrastructure. So now I'll come back to your questions. Do so yes. At the time, that red hat was, um, very heavily into open stack, Red Hat acquired SEF well acquired think tank and and a majority of the SEF developers who are most active in the community. And now so and that became the de facto software defying storage for open stack. But actually for the last time that we spoke at Coop Con and the Rook project has become very popular there in the CN CF as away effectively to make software defined storage systems like SEF. Simple so effectively. The power of SEF, made simple by rook inside of the open shift operator frame where people want that power that SEF brings. But they want the simplicity of self service on demand. And that's kind of the diffusion. The coming together of traditional software defined storage with agility in a kubernetes world. So rook SEF, open shift container storage. >>Wonderful. And I wonder if we could take that a little bit further. A lot of the discussion these days and I hear it every time I talk to IBM and Red Hat is customers air using hybrid clouds. So obviously that has to have an impact on storage. You know, moving data is not easy. There's a little bit of nuance there. So, you know, how do we go from what you were just talking about into a hybrid environ? >>I guess I'll take that one to start and Brent, please feel free to chime in on it. So, um, first of all, from an IBM perspective, you really have to start at a little bit higher level and at the middleware layer. So IBM is bringing together all of our capabilities everything from analytics and AI. So application, development and, uh, in all of our middleware on and packaging them up in something that we call cloud packs, which are pre built. Catalogs have containerized capabilities that can be easily deployed. Ah, in any open shift environment, which allows customers to build applications that could be deployed both on premises and then within public cloud. So in a hybrid multi cloud environment, of course, when you build that sort of environment, you need a storage and data layer, which allows you to move those applications around freely. And that's where the IBM storage suite for cloud packs was. And we've actually taken the core capabilities of the IBM storage software to find storage portfolio. Um, which give you everything you need for high performance block storage, scale out, um, file storage and object storage. And then we've combined that with the capabilities, uh, that we were just discussing from Red Hat, which including a CS on SEF, which allow you, ah, customer to create a common, agile and automated storage environment both on premises and the cloud giving consistent deployment and the ability to orchestrate the data to where it's needed >>I'll just add on to that. I mean that, as Sam noted and is probably most of you are aware. Hybrid Cloud is at the heart of the IBM acquisition of Red Hat with red hat open shift. The stated intent of red hat open shift is to be to become the default operating environment for the hybrid cloud, so effectively bring your own cloud wherever you run. So that that is at the very heart of the synergy between our companies and made manifest by the very large portfolios of software, which would be at which have been, um, moved to many of which to run in containers and embodied inside of IBM cloud packs. So IBM cloud packs backed by red hat open shift on wherever you're running on premises and in a public cloud. And no, with this storage suite for cloud packs that Sam referred to also having a deterministic experience. That's one of the things as we work, for instance, deeply with the IBM DB two team. One of the things that was critical for them, as they couldn't have they couldn't have their customers when they run on AWS have a completely different experience than when they ran on premises, say, on VM, where our on premises on bare metal critical to the DB two team t give their customers deterministic behavior wherever they can. >>Right? So, Sam, I I think any of our audience that it followed this space have heard Red House story about open shift in how it lives across multiple cloud environments. I'm not sure that everybody is familiar with how much of IBM storage solutions today are really this software driven. So ah, And therefore, you know, if I think about IBM, it's like, okay, and by storage or yes, it can live in the IBM Cloud. But from what I'm hearing from Brent in you and from what I know from previous discussion, this is independent and can live in multiple clouds, leveraging this underlying technology and can leverage the capabilities from those public cloud offers. That right, Sam? >>Yeah, that's right. And you know, we have the most comprehensive portfolio of software defined storage in the industry. Maybe to some, it's ah, it's a well kept secret, but those that use it No, the breadth of the portfolio. We have everything from the highest performing scale out file System Teoh Object store that can scale into the exabytes. We have our block storage as well, which runs within the public clouds and can extend back to your private cloud environment. When we talk to customers about deploying storage for hybrid multi cloud in a container environment, we give them a lot of houses to get there. We give them the ability to leverage their existing san infrastructure through the CS I drivers container storage interface. So our whole, uh, you know, physical on Prem infrastructure supports CS I today and then all the software that runs on our arrays also supports running on top of the public clouds, giving customers then the ability to extend that existing san infrastructure into a cloud environment. And now, with storage suite for cloud packs a sprint described earlier, we give you the ability to build a really agile infrastructure, leveraging the capabilities from Red Hat to give you a fully extensible environment and a common way of managing and deploying both on Prem and in the cloud. So we give you a journey with our portfolio to get from your existing infrastructure. Today, you don't have to throw it out it started with that and build out an environment that goes both on Prem and in the cloud. >>Yeah, Brent, I'm glad that you started with database, cause it's not something that I think most people would think about. You know, in a kubernetes environment, you Do you have any customer examples you might be able to give? Maybe Anonymous? Of course. Just talking about how those mission critical applications can fit into the new modern architect. The >>big banks. I mean, just full stop the big banks. But what I'd add to that So that's kind of frequently they start because applications based on structured data remain at the heart of a lot of enterprises. But I would say workload, category number two, our is all things machine Learning Analytics ai and we're seeing an explosion of adoption within the open shift. And, of course, cloud pack. IBM Cloud private for data, is a key market participant in that machine learning analytic space. So an explosion of the usage of of open shift for those types of workloads I was gonna touch just briefly on an example, going back to our kind of data data pipeline and how it started with databases, but it just it explodes. For instance, data pipeline automation, where you have data coming into your APS that are kubernetes based that our open shift based well, maybe we'll end up inside of Watson Studio inside of IBM ah, cloud pack for data. But along the way, there are a variety of transformations that need to occur. Let's say that you're a big bank. You need Teoh effectively as it comes in. You need to be able to run a CRC to ensure to a test that when when you modify the data, for instance, in a real time processing pipeline that when you pass it on to the next stage that you can guarantee well that you can attest that there's been no tampering of the data. So that's an illustration where it began, very with the basics of basic applications running with structured data with databases. Where we're seeing the state of the industry today is tremendous use of these kubernetes and open shift based architectures for machine learning. Analytics made more simple by data pay data pipeline automation through things like open shift container storage through things like open shift server lis or you have scale double functions and what not? So yeah, it began there. But boy, I tell you what. It's exploded since then. >>Yeah, great to hear not only traditional applications, but as you said so, so much interest. And the need for those new analytics use cases s so it's absolutely that's where it's going. Someone. One other piece of the storage story, of course, is not just that we have state full usage, but talk about data protection, if you could, on how you know things that I think of traditionally my backup restore and like, how does that fit into the whole discussion we've been having? >>You know, when you talk to customers, it's one of the biggest challenges they have honestly. And moving to containers is how do I get the same level of data protection that I use today? Ah, the environments are in many cases, more complex from a data and storage perspective. You want Teoh be able to take application consistent copies of your data that could be recovered quickly, Uh, and in some cases even reused. You can reuse the copies, for they have task for application migration. There's there's lots of or for actually AI or analytics. There's lots of use cases for the data, but a lot of the tools and AP eyes are still still very new in this space. IBM has made, uh, prior, uh, doing data protection for containers. Ah, top priority for our spectrum protect suite. And we provide the capabilities to do application aware snapshots of your storage environment so that a kubernetes developer can actually build in the resiliency they need. As they build applications in a storage administrator can get a pane of glass Ah, and visibility into all of the data and ensure that it's all being protected appropriately and provide things like S L A. So I think it's about, you know, the fact that the early days of communities tended to be stateless. Now that people are moving some of the more mission critical workloads, the data protection becomes just just critical as anything else you do in the environment. So the tools have to catch up. So that's a top priority of ours. And we provide a lot of those capabilities today and you'll see if you watch what we do with our spectrum. Protect suite will continue to provide the capabilities that our customers need to move their mission. Critical applications to a kubernetes environment. >>Alright And Brent? One other question. Looking forward a little bit. We've been talking for the last couple of years about how server lists can plug into this. Ah, higher kubernetes ecosystem. The K Native project is one that I, IBM and Red Hat has been involved with. So for open shift and server lis with I'm sure you're leveraging k native. What is the update? That >>the update is effectively adoption inside of a lot of cases like the big banks, but also other in the talk, uh, the largest companies in other industries as well. So if you take the words event driven architecture, many of them are coming to us with that's kind of top of mind of them is the need to say, you know, I need to ensure that when data first hits my environment, I can't wait. I can't wait for a scheduled batch job to come along and process that data and maybe run an inference. I mean, the classic cases you're ingesting a chest X ray, and you need to immediately run that against an inference model to determine if the patient has pneumonia or code 19 and then kick off another serverless function to anonymous data. Just send back in to retrain your model. So the need. And so you mentioned serverless. And of course, people say, Well, I could I could handle that just by really smart batch jobs, but kind of one of the other parts of server less that sometimes people forget but smart companies are aware of is that server lists is inherently scalable, so zero to end scalability. So as data is coming in, hitting your Kafka bus, hitting your object store, hitting your database and that if you picked up the the community project to be easy, Um, where something hits your relational database and I can automatically trigger an event onto the Kafka bus so that your entire our architecture becomes event >>driven. All right. Well, Sam, let me give you the funding. Let me let you have the final word. Excuse me on the IBM in this space and what you want them to have his takeaways from Cube con 2020 Europe. >>I'm actually gonna talk to I think, the storage administrators, if that's OK, because if you're not involved right now in the kubernetes projects that are happening within your enterprise, uh, they are happening and there will be new challenges. You've got a lot of investments you've made in your existing storage infrastructure. We had IBM and Red Hat can help you take advantage of the value of your existing infrastructure. Uh, the capabilities, the resiliency, the security of built into it with the years. And we can help you move forward into a hybrid, multi cloud environment built on containers. We've got the experience and the capabilities between Red Hat and IBM to help you be successful because it's still a lot of challenges there. But But our experience can help you implement that with the greatest success. Appreciate it. >>Alright, Sam and Brent, Thank you so much for joining. It's been excellent to be able to watch the maturation in this space of the last couple of years. >>Thank you. >>Alright, we'll be back with lots more coverage from Cube Con Cloud, native con Europe 2020 the virtual event. I'm stew Minimum And thank you for watching the Cube. Yeah, yeah, yeah, yeah

Published Date : Aug 18 2020

SUMMARY :

It's the Cube with coverage of Coop Con Maybe if we could start with you as the tee up, you know, Both Red Hat and IBM have the context of kubernetes and and also with open shift, and we knew that, you know, we've seen this before. Say, you know, in addition to inventing it's still the same people it might There be a different part of the organization where you need to start In order to do that, they start, you know, leveraging middleware components help bolster the open source or storage world in the container world. What kind of constraints and demands that place on the storage and data infrastructure. A lot of the discussion these deployment and the ability to orchestrate the data to where it's needed So that that is at the very heart of the synergy between our companies and But from what I'm hearing from Brent in you and from what I leveraging the capabilities from Red Hat to give you a fully extensible environment Yeah, Brent, I'm glad that you started with database, cause it's not something that So an explosion of the usage of of open shift for those types Yeah, great to hear not only traditional applications, but as you said so, so much interest. but a lot of the tools and AP eyes are still still very new in this space. for the last couple of years about how server lists can plug into this. of them is the need to say, you know, I need to ensure that when in this space and what you want them to have his takeaways from Cube con 2020 Europe. Hat and IBM to help you be successful because it's still a lot Alright, Sam and Brent, Thank you so much for joining. 2020 the virtual event.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IBMORGANIZATION

0.99+

Sam WarnerPERSON

0.99+

BrentPERSON

0.99+

BrennanPERSON

0.99+

SamPERSON

0.99+

Red HatORGANIZATION

0.99+

twoQUANTITY

0.99+

AWSORGANIZATION

0.99+

Sam WernerPERSON

0.99+

OneQUANTITY

0.99+

2020DATE

0.99+

Red HatORGANIZATION

0.99+

Brent ComptonPERSON

0.99+

CubeORGANIZATION

0.99+

todayDATE

0.99+

oneQUANTITY

0.99+

red hatORGANIZATION

0.99+

BothQUANTITY

0.98+

TodayDATE

0.98+

Coop ConORGANIZATION

0.98+

both companiesQUANTITY

0.98+

first generationQUANTITY

0.98+

this yearDATE

0.98+

KubeConEVENT

0.98+

this yearDATE

0.97+

red hatTITLE

0.97+

firstQUANTITY

0.96+

bothQUANTITY

0.96+

KafkaTITLE

0.96+

BridgetPERSON

0.96+

FirstQUANTITY

0.96+

single solutionQUANTITY

0.96+

SEFTITLE

0.95+

red HatORGANIZATION

0.95+

Stew MinimumPERSON

0.95+

CS ITITLE

0.94+

Victoria Stasiewicz, Harley-Davidson Motor Company | IBM DataOps 2020


 

from the cube studios in Palo Alto in Boston connecting with thought leaders all around the world this is a cube conversation hi everybody this is Dave Volante and welcome to this special digital cube presentation sponsored by IBM we're going to focus in on data op data ops in action a lot of practitioners tell us that they really have challenges operationalizing in infusing AI into the data pipeline we're going to talk to some practitioners and really understand how they're solving this problem and really pleased to bring Victoria stayshia vich who's the Global Information Systems Manager for information management at harley-davidson Vik thanks for coming to the cube great to see you wish we were face to face but really appreciate your coming on in this manner that's okay that's why technology's great right so you you are steeped in a data role at harley-davidson can you describe a little bit about what you're doing and what that role is like definitely so obviously a manager of information management >> governance at harley-davidson and what my team is charged with is building out data governance at an enterprise level as well as supporting the AI and machine learning technologies within my function right so I have a portfolio that portfolio really includes DNA I and governance and also our master data and reference data and data quality function if you're familiar with the dama wheel of course what I can tell you is that my team did an excellent job within this last year in 2019 standing up the infrastructure so those technologies right specific to governance as well as their newer more modern warehouse on cloud technologies and cloud objects tour which also included Watson Studio and Watson Explorer so many of the IBM errs of the world might hear about obviously IBM ISEE or work on it directly we stood that up in the cloud as well as db2 warehouse and cloud like I said in cloud object store we spent about the first five months of last year standing that infrastructure up working on the workflow ensuring that access security management was all set up and can within the platform and what we did the last half of the year right was really start to collect that metadata as well as the data itself and bring the metadata into our metadata repository which is rx metadata base without a tie FCE and then also bring that into our db2 warehouse on cloud environment so we were able to start with what we would consider our dealer domain for harley-davidson and bring those dimensions within to db2 warehouse on cloud which was never done before a lot of the information that we were collecting and bringing together for the analytics team lived in disparate data sources throughout the enterprise so the goal right was to stop with redundant data across the enterprise eliminate some of those disparity to source data resources right and bring it into a centralized repository for reporting okay Wow we got a lot to unpack here Victoria so but let me start with sort of the macro picture I mean years ago you see the data was this thing that had to be managed and it still does but it was a cost was largely a liability you know governance was sort of front and center sometimes you know it was the tail that wagged the value dog and then the whole Big Data movement comes in and everybody wants to be data-driven and so you saw some pretty big changes in just the way in which people looked at data they wanted to you know mine that data and make it an asset versus just a straight liability so what what are the changes that you discerned in in data and in your organization over the last let's say half a decade we to tell you the truth we started looking at access management and the ability to allow some of our users to do some rapid prototyping that they could never do before so what more and more we're seeing as far as data citizens or data scientists right or even analysts throughout most enterprises is it well they want access to the information they want it now they want speed to insight at this moment using pretty much minimal Viable Product they may not need the entire data set and they don't want to have to go through leaps and bounds right to just get access to that information or to bring that information into necessarily a centralized location so while I talk about our db2 warehouse on cloud and that's an excellent example of one we actually need to model data we know that this is data that we trust right that's going to be called upon many many times from many many analysts right there's other information out there that people are collecting because there's so much big data right there's so many ways to enrich your data within your organization for your customer reporting the people are really trying to tap into those third-party datasets so what my team has done what we're seeing right change throughout the industry is that a lot of teams and a lot of enterprises are looking at s technologists how can we enable our scientists and our analysts right the ability to access data virtually so instead of repeating right recuperating redundant data sources we're actually ambling data virtualization at harley-davidson and we've been doing that first working with our db2 warehouse on cloud and connecting to some of our other trusted versions of data warehouses that we have throughout the enterprise that being our dealer warehouse as well to enable obviously analysts to do some quick reporting without having to bring all that data together that is a big change I see the fact that we were able to tackle that that's allowed technology to get back ahead because most backup Furnish say most organizations right have given IT the bad rap wrap up it takes too long to get what we need my technologists cannot give me my data at my fingertips in a timely manner to not allow for speed to insight and answers the business questions at point of time of delivery most and we've supplied data to our analysts right they're able to calculate aggregate brief the reporting metrics to get those answers back to the business but they're a week two weeks too late the information is no longer relevant so data virtualization through data Ops is one of the ways and we've been able to speed that up and act as a catalyst for data delivery but we've also done though and I see this quite a bit is well that's excellent we still need to start classifying our information and labeling that at the system level we've seen most most enterprises right I worked at Blue Cross as well with IBM tool had the same struggle they were trying to eliminate their technology debt reduce their spend reduce the time it takes for resources working on technologies to maintain technologies they want to reduce their their IT portfolio of assets and capabilities that they license today so what do they do to do that it's time to start taking a look at what systems should be classified as essential systems versus those systems that are disparate and could be eliminated and that starts with data governance right so okay so your your main focus is on governance and you talked about real people want answers now they don't want to have to wait they don't want to go big waterfall process so what was what would you say was sort of some of the top challenges in terms of just operationalizing your data pipelining getting to the point that you are today you know I have to be quite honest um standing up the governance framework the methodology behind it right to get it data owners data stewards at a catalog established that was not necessarily the heavy lifting the heavy lifting really came with I'm setting up a brand new infrastructure in the cloud for us to be quite honest um we with IBM partnered and said you know what we're going to the cloud and these tools had never been implemented in the cloud before we were kind of the first do it so some of the struggles that we aren't they or took on and we're actually um standing up the infrastructure security and access management network pipeline access right VPN issues things of that nature I would say is some of the initial roadblocks we went through but after we overcame those challenges with the help of IBM and the patience of both the Harley and IBM team it became quite easy to roll out these technologies to other users the nice thing is right we at harley-davidson have been taking the time to educate our users today up for example we had what we call the data bytes a Lunch and Learn and so in that Lunch and Learn what we did is we took our entire GIS team our global information services team which is all of IT through these new technologies it was a form of over 250 people with our CIO and CTO on and taking them through how do we use these tools what are the purpose of schools why do we need governance to maintain these pools why is metadata management important to the organization that piece of it seems to be much easier than just our initial scanning it up so it's good enough to start letting users in well sounds like you had real sponsorship from from leadership and input from leadership and they were kind of leaning into the whole process first of all is that true and how important is that for success oh it's essential we often said when we were first standing up the tools to be quite honest is our CIO really understand what it is that were for standing up as our CIO really understand governance because we didn't have the time to really get that face-to-face interaction with our leadership so I myself made it a mandate having done this previously at Blue Cross to get in front of my CIO and my CTO and educate them on what it is we are exactly standing up and once we did that it was very easy to get at an executive steering committee as well as an executive membership Council right I'm boarded with our governance council and now they're the champions of that it's never easy that was selling governance to leadership and the ROI is never easy because it's not something that you can easily calculate it's something that has to show its return on investment over time and that means that you're bringing dashboards you're educating your CIO and CTO and how you're bringing people together how groups are now talking about solutions and technologies in a domain like environment right where you have people from at an international level we have people from Asia from Europe from China that join calls every Thursday to talk about the data quality issue specific to dealer for example what systems were using what solutions on there are on the horizon to solve them so that now instead of having people from other countries that work for Harley as well as just even within the US right creating one-off solutions that are answering the same business questions using the same data but creating multiple solutions right to solve the same problem we're now bringing them together and we're solving together and we're prioritizing those as well so that return on investment necessarily down the line you can show that is you know what instead of this printing into five projects we've now turned this into one and instead of implementing four systems we've now implemented one and guess what we have the business rules and we have the classification I to this system so that you CIO or CTO right you now go in and reference this information a glossary a user interface something that a c-level can read interpret understand quickly write dissect the information for their own need without having to take the long lengthy time to talk to a technologist about what does this information mean and how do i how do I use it you know what's interesting is take away based on what you just said is you know harley-davidson is an iconic brand cool company with fuckin motorcycles right and but you came out of an insurance background which is a regulated industry where you know governance is sort of de rigueur right I mean it's it's a table steak so how are you able that arleigh to balance the sort of tension between governance and the sort of business flexibility so there's different there's different lovers I would call them right obviously within healthcare in insurance the importance becomes compliance and risk and regulatory right they're big pushes gosh I don't want to pay millions of dollars for fines start classifying this information enabling security reducing risk all that good stuff right for Harley Davidson it was much different it was more or less we have a mission right we want to invest in our technologies yet we want to save money how do we cut down the technologies that we have today reduce our technology spend yet and able our users have access to more information in a timely manner that's not an easy that's not an easy pass right um so what we did is I took that my married governance part-time model and our time model is specific worried they're gonna tolerate an application we're going to invest in an application we're gonna migrate an application or we're gonna eliminate that so I'm talking to my CIO said you know we can use governance the classifier system help act as a catalyst when we start to implement what it is we're doing with our technologies which technologies are we going to eliminate tomorrow we as IG cannot do that unless we discuss some sort of business impact unless you look at a system and say how many users are using us what reports are essential the business teams do they need this system is this something that's critical for users today to eat is this duplicate 'iv right we have many systems that are solving the same capability that is how I sold that off my CIO and it made it important to the rest of the organization they knew we had a mandate in front of us we had to reduce technology spend and that really for me made it quite easy and talking to other technologists as well as business users on why if governance is important why it's going to help harley-davidson and their mission to save money going forward I will tell you though that the businesses of biggest value right is the fact that they now owns the data they're more likely right to use your master data management systems like I said I'm the owner of our MDM services today as well as our customer knowledge center today they're more likely to access and reference those systems if they feel that they built the rule and they own the rules in those systems so that's another big value add to write as many business users will say ok you know you think I need access to this system I don't know I'm not sure I don't know what the data looks like within it is it easily accessible is it gonna give me the reporting metrics that I need that's where governance will help them for example like our state a scientist beam using a catalog right you can browse your metadata you can look at your server your database your tables your fields understand what those mean understand the classifications the formulas within them right they're all documented in a glossary versus having to go and ask for access to six different systems throughout the enterprise hoping right that's Sally next few that told you you needed access to these systems was right just to find out that you don't need the access and hence it took you three days to get the access anyway that's why a glossary is really a catalyst a lot of that well it's really interesting what you just said about you went through essentially an application rationalization exercise which which saved your organization money that's not always easy because you know businesses even though the you know IIT may be spending money on these systems businesses don't want to give them up but you were able to use it sounds like you're able to use data to actually inform which applications you should invest in versus you know sunset as well you'd sounds like you were giving the business a real incentive to go through this exercise because they ended up as you said owning the data well then what's great right who wants pepper what's using the old power and driving a new car if they can buy the I'm sorry bull owning the old car right driving the old park if they can truly own a new car for a cheaper price nobody wants to do that I've even looked at Tesla's right I can buy a Tesla for the same prices I can buy a minivan these days I think I might buy the Tesla but what I will say is that we also use that we built out a capabilities model with our enterprise architecture team and building that capabilities model we started to bucket our technologies within those capabilities models right like AI machine learning warehouse on cloud technologies are even warehousing technologies governance technologies you know those types of classifications today integrations technologies reporting technologies by kind of grouping all those into a capabilities matrix right and was Eve it was easy for us to then start identifying alright we're the system owners for these when it comes to technologies who are the business users for these based on that right let's go talk to this team the dealer management team about access to this new profiling capability with an IBM or this new catalog with an IBM right that they can use stay versus this sharepoint excel spreadsheets they were using for their metadata management right or the profiling tools that were old you know ten years old some of our sa peoples that they were using before right let's sell them on the noodles and start migrating them that becomes pretty easy because I mean unless you're buying some really old technology when you give people a purview into those new tools and those new capabilities especially with some of the IBM's new tools we have today there the buy-in is pretty quick it's pretty easy to sell somebody on something shiny and it's much easier to use than some of the older technologies let's talk about the business impact in my understanding is you were trying to increase the improve the effectiveness of the dealers not not just go out and brute force sign up more dealers were you able to achieve that outcome and what does it meant for your business yes actually we were so right now what we did is we slipped something called a CDR and that's our consumer dealer and development repository right that's where a lot of our dealer information resides today it's actually argue ler warehouse we had some other systems that we're collecting that information Kalinin like speed for example we were able to bring all that reporting man to one location sunset some of those other technologies but then also enable for that centralized reporting layer which we've also used data virtualization to start to marry submit information to db2 warehouse on cloud for users so we're allowing basically those that want to access CDR and our db2 warehouse and called dealer information to do that within one reporting layer um in doing so we were able to create something called a dealer harmonized ID really which is our version of we have so many dealers today right and some of those dealers actually sell bytes some of those dealers sell just apparel material some of those dealers just sell parts of those dealers right can we have certain you IDs kind of a golden record mastered information if you will right bought back in reporting so that we can accurately assess the dealer performance up to two years ago right it was really hard to do that we had information spread out all over it was really hard to get a good handle on what dealers were performing and what dealers weren't because was it was tough right for our analysts to wrangle that information and bring it together it took time many times we you would get multiple answers to one business question which is never good right one one question should have one answer if it's accurate um that is what we worked on within us last year and that's where really our CEO so the value at is now we can start to act on what dealers are performing at an optimal level versus what dealers are struggling and that's allowed even our account reps or field steel fields that right to go work with those struggling dealers and start to share with them the information of you know these are what some of our stronger dealer performing dealers are doing today that is making them more affecting it inside sorry effective is selling bikes you know these are some of the best practices you can implement that's where we make right our field staff smarter and our dealers smarter we're not looking to shut down dealers we just want to educate them on how to do better well and to your point about a single version of the truth if you will the the lines of business kind of owning their own data that's critical because you're not spending all your time you know pointing at fingers trying to understand the data if the if the users own it then they own it I and so how does self-service fit in were you able to achieve you know some level of self-service how far could you and you go there we were we did use some other tools I'll be quite honest aside from just the IBM tools today that's enabled some of that self-service analytics si PSAC was one of them Alteryx is another big one that we like to that our analyst team likes to use today to wrangle and bring that data together but that really allowed for our analysts spread in our reporting teams to start to build their own derivations their transformations for reporting themselves because they're more user interface space versus going in the backend systems and having to write straight pull right sequel queries things of that nature it usually takes time then requires a deeper level of knowledge then what we'd like to allow for our analysts right to have today I can say the same thing with the data scientist scheme you know they use a lot of the R and Python coding today what we've tried to do is make sure that the tools are available so that they can do everything they need to do without us really having to touch anything and I will be quite honest we have not had to touch much of anything we have a very skilled data scientist team so I will tell you that the tools that we put in place today Watson explore some of the other tools as well they haven't that has enabled the data scientists to really quickly move do what they need to do for reporting and even in cases where maybe Watson or Explorer may not be the optimal technology right for them to use we've also allowed for them to use some of our other resources are open source resources to build some of the models that they're that they were looking to build well I'm glad you brought that up Victoria because IBM makes a big deal out of you know being open and so you're kind of confirming that you can use third-party tools and and if you like you know tool vendor ABC you can use them as part of this framework yeah it's really about TCO right so take a look at what you have today if it's giving you at least 80% of what you need for the business or for your data scientists or reporting analysts right to do what they need to do it's to me it's good enough right it's giving you what you need it's pretty hard to find anything that's exactly 100 percent it's about being open though to when you're scientists or your analysts find another reporting tool right that requires minimal maintenance or let's just say did a scientist flow that requires minimal maintenance it's free right because it's open source IBM can integrate with that and we can enable that to be a quicker way for them to do what they need to do versus telling them no right you can't use the other technologies or the other open source information out there for you today you've got to use just these spools that's pretty tough to do and I think that would shut most IT shops down pretty quick within larger enterprises because it would really act as a roadblock to allow most of our teams right to do what they need to do reporting well last question so a big part of this the data ops you know borrowing from DevOps is this continuous integration continuous improvement you know kind of ongoing MOOC raising the bar if you will what do you see going from here oh I definitely see I see a world I see a world of where we're allowing for that rapid prototyping like I was talking about earlier I see a very big change in the data industry you said it yourself right we are in the brink of big data and it's only gonna get bigger there are organizations right right now that have literally understood how much of an asset their data really is today but they're starting to sell their data ah to other of their similar people are smaller industries right similar vendors within the industry similar spaces right so they can make money off of it because data truly is an asset now the key to it that was obviously making sure that it's curated that it's cleanse that it's rusted so that when you are selling that back you can't really make money off of it but we've seen though and what I really see on the horizon is the ability to vet that data right is in the past what have you been doing the past decade or just buying big data sets we're trusting that it's you know good information we're not doing a lot of profiling at most organizations arts you're gonna pay this big top dollar you're gonna receive this third-party data set and you're not gonna be able to use it the way you need to what I see on the horizon is us being able to do that you know we're building data Lake houses if you will right we're building um really those Hadoop link environments those data lakes right where we can land information we can quickly access it we can quickly profile it with tools that it would take hours for an ALICE write a bunch of queries do to understand what the profile of that data look like we did that recently at harley-davidson we bought and some third-party data evaluated it quickly through our agile scrum team right within a week we determined that the data was not as good as it as the vendor selling it right pretty much sold it to be and so we told the vendor we want our money back the data is not what we thought it would be please take the data sets back now that's just one use case right but to me that was golden it's a way to save money and start betting the data that we're buying otherwise what I would see in the past or what I've seen in the past is many organizations are just buying up big third-party data sets and just saying okay now it's good enough we think that you know just because it comes from the motorcycle and council right for motorcycles and operation Council then it's good enough it may not be it's up to us to start vetting that and that's where technology is going to change data is going to change analytics is going to change is a great example you're really in the cutting edge of this whole data op trend really appreciate you coming on the cube and sharing your insights and there's more in the crowd chatter crowd chatter off the Thank You Victoria for coming on the cube well thank you Dave nice to meet you it was a pleasure speaking with you yeah really a pleasure was all ours and thank you for watching everybody as I say crowd chatting at flash data op or more detail more Q&A this is Dave Volante for the cube keep it right there but right back right after this short break [Music]

Published Date : May 28 2020

**Summary and Sentiment Analysis are not been shown because of improper transcript**

ENTITIES

EntityCategoryConfidence
Dave VolantePERSON

0.99+

AsiaLOCATION

0.99+

IBMORGANIZATION

0.99+

five projectsQUANTITY

0.99+

Victoria StasiewiczPERSON

0.99+

ChinaLOCATION

0.99+

TeslaORGANIZATION

0.99+

VictoriaPERSON

0.99+

HarleyORGANIZATION

0.99+

Harley DavidsonORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

Blue CrossORGANIZATION

0.99+

Blue CrossORGANIZATION

0.99+

EuropeLOCATION

0.99+

DavePERSON

0.99+

USLOCATION

0.99+

Harley-Davidson Motor CompanyORGANIZATION

0.99+

harley-davidsonPERSON

0.99+

six different systemsQUANTITY

0.99+

Dave VolantePERSON

0.99+

last yearDATE

0.99+

over 250 peopleQUANTITY

0.99+

todayDATE

0.99+

three daysQUANTITY

0.99+

100 percentQUANTITY

0.99+

IGORGANIZATION

0.99+

WatsonTITLE

0.99+

BostonLOCATION

0.99+

tomorrowDATE

0.98+

one business questionQUANTITY

0.98+

firstQUANTITY

0.98+

ABCORGANIZATION

0.98+

one answerQUANTITY

0.97+

four systemsQUANTITY

0.97+

oneQUANTITY

0.97+

Victoria stayshiaPERSON

0.96+

Watson ExplorerTITLE

0.96+

ExplorerTITLE

0.96+

2019DATE

0.96+

agileORGANIZATION

0.95+

VikPERSON

0.95+

two years agoDATE

0.95+

one questionQUANTITY

0.95+

two weeksQUANTITY

0.94+

bothQUANTITY

0.93+

excelTITLE

0.93+

SallyPERSON

0.92+

a weekQUANTITY

0.92+

harleyORGANIZATION

0.91+

Watson StudioTITLE

0.91+

last half of the yearDATE

0.89+

AlteryxORGANIZATION

0.88+

millions of dollarsQUANTITY

0.87+

single versionQUANTITY

0.86+

every ThursdayQUANTITY

0.86+

RTITLE

0.85+

Jay Limburn, IBM & Julie Lockner, IBM | IBM Think 2019


 

>> Live from San Francisco, it's theCUBE! Covering IBM Think 2019. Brought to you by IBM. >> Welcome back, live here in San Francisco, it's theCUBE's coverage of IBM Think 2019. I'm John Furrier--Stu Miniman. Stu, four days, we're on our fourth day, the sun's shining, they've shut down Howard Street here at IBM. Big event for IBM, in San Francisco, not Las Vegas. Lot of great cloud action, lot of great AI data developers. Great story, good to see you again. Our next two guests, Julie Lockner, Director, Offering Management, Portfolio Operations at IBM, Data+AI, great to see you. >> Thank you, it's great to see you too, thank you. >> And Jay Limburn, Director of Offering Management, IBM Data+AI, thanks for coming on. >> Hey guys, great to be here. >> So, we've chatted many times at events, the role of data. So, we're religious about data, data flows through our blood, but IBM has put it all together now. All the reorgs are over, everyone's kind of, the table is set for IBM. The data path is clear, it's part of applications. It's feeding the apps. AI's the key workload inside the application. This is now a fully set-up group, give us the update, what's the focus? >> Yeah, it's really exciting because, if you think about it, before, we were called IBM Analytics, and that really is only a part of what we do. Now that we're Data+AI, that means that not only are we responsible for delivering data assets, and technology that supports those data assets to our customers, but infusing AI, not only in the technologies that we have, but also helping them build applications so they can fuse AI into their business processes. >> It's pretty broad, I mean, data's very much a broad swath of things. Analytics, you know, wrangling data, setting things up, cataloging them. Take me through how you guys set this up. How do you present it to the marketplace? How are clients engaged with it? Because it's pretty broad. But it could be, it needs to be specific. Take us through the methodology. >> So, you probably heard a lot of people today talk about the ladder to AI, right? This is IBM's view of how we explain our client's journey towards AI. It really starts at the bottom rung of the ladder, where we've got the collection of information. Collect your data. Once you've collected your data, you move up to the next rung, which is the Organize. And this is really where all the governance stuff comes in. This is how we can provide a view across that data, understand that data, provide trust to that data, and then serve that up to the consumers of that information, so they can actually use that in AI. That's where all the data science capabilities come in, allowing people to actually be able to consume that information. >> So, the bottom set is just really all the hard and heavy lifting that data scientists actually don't want to do. >> And writing algorithms, the collecting, the ingesting of data from any source, that's the bottom? And then, tell me about that next layer up, from the collection-- >> So, Collect is the physical assets or the collection of the data that you're going to be using for AI. If you don't get that foundation right, it doesn't really make sense. You have to have the data first. The piece in the middle that Jay was referring to, that's called Organize, our whole divisions are actually organized around these ladders to AI, so, Collect, Organize, Analyze, Infuse. On the Organize side, as Jay was mentioning, it's all about inventorying the data assets, knowing what data you have, then providing data quality rules, governance, compliance-type offerings, that allow organizations to not just know your data, trust your data, but then make it available so you can use your data, and the users are those data scientists, they're the analytics teams, they're the operation organizations that need to be able to build their solutions on top of trusted data. >> So, where does the Catalog fit in? Which level does that come into? >> Yeah, so, think of the Data Catalog as the DNS for data, all right? It's the way in which you can provide a full view of all of your information. Whether it's structured information, unstructured information, data you've got on PRAM and data you've got in a cloud somewhere. >> That's in the Organize layer, right? >> That's all in the Organize layer. So, if you can collect that information, you can then provide capabilities that allow you to understand the quality of that data, know where that data's come from, and then, finally, if you serve that up inside a compelling, business-friendly experience, so that a data scientist can go to one place, quickly make a decision on if that's the right data for them, and allow them to go and be productive by building a data science model, then we're really able to move the needle on making those data science organizations efficient, allowing us to build better models to transform their business. >> Yeah, and a big part of that is, if you think about what makes Amazon successful, it's because they know where all their products are, from the vendor, to when it shows up on the doorstep. What the Catalog provides is really the similar capability of, I would call it inventory management of your data assets, where we know where the data came from, its source--in that Collect layer-- who's transformed it, who's accessed it, if they're even allowed to see it, so, data privacy policies are part of that, and then being able to just serve up that data to those users. Being able to see that whole end-to-end lineage is a key point, critical point of the ladder to AI. Especially when you start to think about things like bias detection, which is a big part of the Analyze layer. >> But one of the things we've been digging into on theCUBE is, is data the next flywheel of innovation? You know, it used to be I just had my information, many years ago we started talking about, "Okay, I need to be able to access all that other information." We hear things like 80% of the data out there isn't really searchable today. So, how do you see data, data gravity, all those pieces, as the next flywheel of innovation? >> Yeah, I think it's key. I mean, we've talked a lot about how, you can't do AI without information architecture. And it's absolutely true. And getting that view of that data in a single location, so it is like the DNS of the internet. So you know exactly where to search, you can get hold of that data, and then you've got tools that give you self-service access to actually get hold of the data without any need of support from IT to get access to it. It's really a key-- >> Yeah, but to the point you were just asking about, data gravity? I mean, being able to do this where the data resides. So, for example, we have a lot of our customers that are mergers and acquisitions. Some teams have a lot of data assets that are on-premises, others have large data lakes in AWS or Azure. How do you inventory those assets and really have a view of what you have available across that landscape? Part of what we've been focusing on this year is making our technology work across all of those clouds. And having a single view of your assets but knowing where it resides. >> So, Julie, this environment is a bit more complicated than the old data warehousing, or even what we were looking at with big data and Hadoop and all those pieces. >> Isn't that the truth? >> Help explain why we're actually going to be able to get the information, leverage and drive new business value out of data today, when we've struggled so many times in the past. >> Well, I think the biggest thing that's changed is the adoption of DevOps, and when I say adoption of DevOps and things like containerization and Docker containers, Kubernetes, the ability to provision data assets very quickly, no matter where they are, build these very quick value-producing applications based on AI, Artificial Intelligence APIs, is what's allowing us to take advantage of this multi-cloud landscape. If you didn't have that DevOps foundation, you'd still be building ETL jobs in data warehouses, and that was 20 years ago. Today, it's much more about these microservices-based architecture, building up these AI-- >> Well, that's the key point, and the "Fuse" part of the stack, I think, or ladder. Stack? Ladder? >> Ladder. (laughs) >> Ladder to success! Is key, because you're seeing the applications that have data native into the app, where it has to have certain characteristics, whether it's a realtime healthcare app, or retail app, and we had the retail folks on earlier, it's like, oh my god, this now has to be addressable very fast, so, the old fenced-off data warehouse-- "Hey, give me that data!"--pull it over. You need a sub-second latency, or milliseconds. So, this is now a requirement. >> That's right. >> So, how are people getting there? What are some use cases? >> Sure. I'll start with the healthcare 'cause you brought that up. One of the big use cases for technology that we provide is really around taking information that might be realtime, or batch data, and providing the ability to analyze that data very quickly in realtime to the point where you can predict when someone might potentially have a cardiac arrest. And yesterday's keynote that Rob Thomas presented, a demonstration that showed the ability to take data from a wearable device, combine it with data that's sitting in an Amazon... MySQL database, be able to predict who is the most at-risk of having a potential cardiac arrest! >> That's me! >> And then present that to a call center of cardiologists. So, this company that we work with, iCure, really took that entire stack, Organize, Collect, Organize, Analyze, Infuse, and built an application in a matter of six weeks. Now, that's the most compelling part. We were able to build the solution, inventory their data assets, tie it to the industry model, healthcare industry model, and predict when someone might potentially-- >> Do you have that demo on you? The device? >> Of course I do. I know, I know. So, here is, this is called a BraveHeart Life Sensor. And essentially, it's a Bluetooth device. I know! If you put it on! (laughs) >> If I put it on, it'll track... Biometric? It'll start capturing information about your heart, ECG, and on Valentine's Day, right? My heart to yours, happy Valentine's Day to my husband, of course. The ability to be able to capture all this data here on the device, stream it to an AI engine that can then immediately classify whether or not someone has an anomaly in their ECG signal. You couldn't do that without having a complete ladder to AI capability. >> So, realtime telemetry from the heart. So, I see timing's important if you're about to have a heart attack. >> Yeah. >> Pretty important. >> And that's a great example of, you mentioned the speed. It's all about being able to capture that data in whatever form it's coming in, understand what that data is, know if you can trust that data, and then put it in the hands of the individuals that can do something valuable with the analysis from that data. >> Yeah, you have to able to trust it. Especially-- >> So, you brought up earlier bias in data. So, I want to bring that up in context of this. This is just one example of wearables, Fitbits, all kinds of things happening. >> New sources of tech, yeah. >> In healthcare, retail, all kinds of edge, realtime, is bias of data. And the other one's privacy because now you have a new kind of data source going into the cloud. And then, so, this fits into what part of the ladder? So, the ladder needs a secure piece. >> Tell me about that. >> Yeah, it does. So, that really falls into that Organize piece of that ladder, the governance aspects around it. If you're going to make data available for self-service, you've got to still make sure that that data's protected, and that you're not going to go and break any kind of regulatory law around that data. So, we actually can use technology now to understand what that data is, whether it contains sensitive information, credit card numbers, and expose that information out to those consumers, yet still masking the key elements that should be protected. And that's really important, because data science is a hugely inefficient business. Data scientists are spending too much time looking for information. And worse than that, they actually don't have all the information available that they need, because certain information needs to be protected. But what we can do now is expose information that wasn't previously available, but protect just the key parts of that information, so we're still ensuring it's safe. >> That's a really key point. It's the classic iceberg, right? What you see: "Oh, data science is going to "change the game of our business!" And then when they realize what's underneath the water, it's like, all this set-up, incompatible data, dirty data, data cleaning, and then all of a sudden it just doesn't work, right? This is the reality. Are you guys seeing this? Do you see that? >> Yeah, absolutely. I think we're only just really at the beginning of a crest of a wave, here. I think organizations know they want to get to AI, the ladder to AI really helps explain and it helps to understand how they can get there. And we're able then to solve that through our technology, and help them get there and drive those efficiencies that they need. >> And just to add to that, I mean, now that there's more data assets available, you can't manually classify, tag and inventory all that data, determine whether or not it contains sensitive data. And that's where infusing machine learning into our products has really allowed our customers to automate the process. I mentioned, the only way that we were able to deploy this application in six weeks, is because we used a lot of the embedded machine learning to identify the patient data that was considered sensitive, tag it as patient data, and then, when the data scientists were actually building the models in that same environment, it was masked. So, they knew that they had access to the data, but they weren't allowed to see it. It's perfectly--especially with HIMSS' conference this week as well! You were talking about this there. >> Great use case with healthcare. >> Love to hear you speak about the ecosystem being built around this. Everything, open APIs, I'm guessing? >> Oh, yeah. What kind of partners are-- >> Jay, talk a little bit-- >> Yeah, so, one of the key things we're doing is ensuring that we're able to keep this stuff open. We don't want to curate a proprietary system. We're already big supporters of open source, as you know, in IBM. One of the things that we're heavily-invested in is our open metadata strategy. Open metadata is part of the open source ODPi Foundation. Project Egeria defines a standard for common metadata interchange. And what that means is that, any of these metadata systems that adopt this standard can freely share and exchange metadata across that landscape, so that wherever your data is, whichever systems it's stored in, wherever that metadata is harvested, it can play part of that network and share that metadata across those systems. >> I'd like to get your thoughts on something, Julie. You've been on the analyst side, you're now at IBM. Jay, if you can weigh in on this too, that'd be great. We, here, we see all the trends and go to all the events and one of the things that's popping up that's clear within the IBM ecosystem because you guys have a lot of business customers, is that a new kind of business app developer's coming in. And we've seen data science highlight the citizen data scientist, so if data is code, part of the application, and all the ladder stuff kind of falls into place, that means we're going to see new kinds of applications. So, how are you guys looking at, this is kind of a, not like the cloud-native, hardcore DevOps developer. It's the person that says, "Hey, I can innovate "a business model." I see a business model innovation that's not so much about building technology, it's about using insight and a unique... Formula or algorithm, to tweak something. That's not a lot of programming involved. 'Cause with Cloud and Cloud Private, all these back end systems, that's an ecosystem partner opportunity for you guys, but it's not your classic ISV. So, there's a new breed of business apps that we see coming, your thoughts on this? >> Yeah, it's almost like taking business process optimization as a discipline, and turning it into micro-applications. You want to be able to leverage data that's available and accessible, be able to insert that particular Artificial Intelligence machine learning algorithm to optimize that business process, and then get out of the way. Because if you try to reinvent your entire business process, culture typically gets in the way of some of these things. >> I thought, as an application value, 'cause there's value creation here, right? >> Absolutely. >> You were talking about, so, is this a new kind of genre of developer, or-- >> It really is, I mean... If you take the citizen data scientist, an example that you mentioned earlier. It's really about lowering the entry point to that technology. How can you allow individuals with lower levels of skills to actually get in and be productive and create something valuable? It shouldn't be just a practice that's held away for the hardcore developer anymore. It's about lowering the entry point with the set of tools. One of the things we have in Watson Studio, for example, our data science platform, is just that. It's about providing wizards and walkthroughs to allow people to develop productive use models very easily, without needing hardcore coding skills. >> Yeah, I also think, though, that, in order for these value-added applications to be built, the data has to be business-ready. That's how you accelerate these application development life cycles. That's how you get the new class of application developers productive, is making sure that they start with a business-ready foundation. >> So, how are you guys going to go after this new market? What's the marketing strategy? Again, this is like, forward-pioneering kind of things happening. What's the strategy, how are you going to enable this, what's the plan? >> Well, there's two parts of it. One is, when Jay was mentioning the Open Metadata Repository Services, our key strategy is embedding Catalog everywhere and anywhere we can. We believe that having that open metadata exchange allows us to open up access to metadata across these applications. So, really, that's first and foremost, is making sure that we can catalog and inventory data assets that might not necessarily be in the IBM Cloud, or in IBM products. That's really the first step. >> Absolutely. The second step, I would say, is really taking all of our capabilities, making them, from the ground up, microservices-enabled, delivering them through Docker containers and making sure that they can port across whatever cloud deployment model our customers want to be able to execute on. And being able to optimize the runtime engines, whether it's data integration, data movement, data virtualization, based on data gravity, that you had mentioned-- >> So, something like a whole new developer program opportunity to bring to the market. >> Absolutely. I mean, there is, I think there is a huge opportunity for, from an education perspective, to help our customers build these applications. But it starts with understanding the data assets, understanding what they can do with it, and using self-service-type tools that Jay was referring to. >> And all of that underpinned with the trust. If you don't trust your data, the data scientist is not going to know whether or not they're using the right thing. >> So, the ladder's great. Great way for people to figure out where they are, it's like looking in the mirror, on the organization. How early is this? What inning are we in? How do you guys see the progression? How far along are we? Obviously, you have some data, examples, some people are doing it end-to-end. What's the maturity look like? What's the uptake? >> Go ahead, Jay. >> So, I think we're at the beginning of a crest of a wave. As I say, there's been a lot of discussion so far, even if you compare this year's conference to last year's. A lot of the discussion last year was, "What's possible with AI?" This year's conference is much more about, "What are we doing with AI?" And I think we're now getting to the point where people can actually start to be productive and really start to change their business through that. >> Yeah and, just to add to that, I mean, the ladder to AI was introduced last year, and it has gained so much adoption in the marketplace and our customers, they're actually organizing their business that way. So, the Collect divisions are the database teams, are now expanding to Hadoop and Cloudera, and Hortonworks and Mongo. They're organizing their data governance teams around the Organize pillar, where they're doing things like data integration, data replication. So, I feel like the maturity of this ladder to AI is really enabling our customers to achieve it much faster than-- >> I was talking to Dave Vellante about this, and we're seeing that, you know, we've been covering IBM since, it's the 10th year of theCUBE, all ten years. It's been, watching the progression. The past couple of years has been setting the table, everyone seems to be pumping, it makes sense, everything's hanging together, it's in one group. Data's not one, "This group, that group," it's all, Data, AI, all Analytics, all Watson. Smart, and the ladder just allows you to understand where a customer is, and then-- >> Well, and also, we mentioned the emphasis on open source. It allows our customers to take an inventory of, what do they have, internally, with IBM assets, externally, open source, so that they can actually start to architect their information architecture, using the same kind of analogy. >> And an opportunity for developers too, great. Julie, thanks for coming on. Jay, appreciate it. >> Thank you so much for the opportunity, happy Valentine's Day! Happy Valentine's Day, we're theCUBE. I'm John Furrier, Stu Miniman here, live in San Francisco at the Moscone Center, and the whole street's shut down, Howard Street. Huge event, 30,000 people, we'll be back with more Day Four coverage after this short break.

Published Date : Feb 14 2019

SUMMARY :

Brought to you by IBM. Great story, good to see you again. And Jay Limburn, Director of Offering Management, It's feeding the apps. not only in the technologies that we have, But it could be, it needs to be specific. talk about the ladder to AI, right? So, the bottom set is just really that need to be able to build their solutions It's the way in which you can provide so that a data scientist can go to one place, of the ladder to AI. is data the next flywheel of innovation? get hold of the data without any need Yeah, but to the point you were than the old data warehousing, going to be able to get the information, the ability to provision data assets of the stack, I think, or ladder. (laughs) that have data native into the app, the ability to analyze that data And then present that to a call center of cardiologists. If you put it on! The ability to be able to capture So, realtime telemetry from the heart. It's all about being able to capture that data Yeah, you have to able to trust it. So, you brought up earlier bias in data. And the other one's privacy because now you have of that ladder, the governance aspects around it. This is the reality. the ladder to AI really helps explain I mentioned, the only way that we were able Love to hear you speak about What kind of partners are-- One of the things that we're heavily-invested in and one of the things that's popping up be able to insert that particular One of the things we have in Watson Studio, for example, to be built, the data has to be business-ready. What's the strategy, how are you That's really the first step. that you had mentioned-- opportunity to bring to the market. from an education perspective, to help And all of that underpinned with the trust. So, the ladder's great. A lot of the discussion last year was, So, I feel like the maturity of this ladder to AI Smart, and the ladder just allows you It allows our customers to take an inventory of, And an opportunity for developers too, great. and the whole street's shut down, Howard Street.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Julie LocknerPERSON

0.99+

Jay LimburnPERSON

0.99+

Dave VellantePERSON

0.99+

Stu MinimanPERSON

0.99+

JayPERSON

0.99+

JuliePERSON

0.99+

IBMORGANIZATION

0.99+

John FurrierPERSON

0.99+

San FranciscoLOCATION

0.99+

80%QUANTITY

0.99+

Las VegasLOCATION

0.99+

AmazonORGANIZATION

0.99+

HortonworksORGANIZATION

0.99+

last yearDATE

0.99+

yesterdayDATE

0.99+

first stepQUANTITY

0.99+

second stepQUANTITY

0.99+

two partsQUANTITY

0.99+

firstQUANTITY

0.99+

HadoopORGANIZATION

0.99+

Howard StreetLOCATION

0.99+

fourth dayQUANTITY

0.99+

Moscone CenterLOCATION

0.99+

10th yearQUANTITY

0.99+

ODPi FoundationORGANIZATION

0.99+

six weeksQUANTITY

0.99+

OneQUANTITY

0.99+

ClouderaORGANIZATION

0.99+

ten yearsQUANTITY

0.99+

AWSORGANIZATION

0.99+

30,000 peopleQUANTITY

0.99+

Rob ThomasPERSON

0.99+

MongoORGANIZATION

0.99+

four daysQUANTITY

0.98+

TodayDATE

0.98+

StuPERSON

0.98+

MySQLTITLE

0.98+

Valentine's DayEVENT

0.98+

20 years agoDATE

0.98+

iCureORGANIZATION

0.97+

two guestsQUANTITY

0.97+

Watson StudioTITLE

0.97+

2019DATE

0.97+

this yearDATE

0.96+

todayDATE

0.96+

DevOpsTITLE

0.95+

one groupQUANTITY

0.95+

oneQUANTITY

0.94+

CloudTITLE

0.93+

single locationQUANTITY

0.92+

IBM DataORGANIZATION

0.92+

Project EgeriaORGANIZATION

0.9+

this weekDATE

0.9+

one exampleQUANTITY

0.9+

Rob Thomas, IBM | IBM Think 2019


 

>> Live from San Francisco. It's the cube covering IBM thing twenty nineteen brought to you by IBM. >> Okay. Welcome back, everyone. He live in San Francisco. Here on Mosconi St for the cubes. Exclusive coverage of IBM. Think twenty nineteen. I'm Jeffrey David Long. Four days of coverage bringing on all the action talking. The top executives, entrepreneurs, ecosystem partners and everyone who can bring the signal from the noise here on the Q and excuses. Rob Thomas, general manager, IBM Data and a I with an IBM Cube Alumni. Great to see you again. >> Great. There you go. >> You read a >> book yet? This year we've written ten books on a data. Your general manager. There's >> too much work. Not enough time >> for that's. Good sign. It means you're working hard. Okay. Give us give us the data here because a I anywhere in the center of the announcements we have a story up on. Slick earnings have been reported on CNBC. John Ford was here earlier talking to Ginny. This is a course centerpiece of it. Aye, aye. On any cloud. This highlights the data conversation you've been part of. Now, I think what seven years seems like more. But this is now happening. Give us your thoughts. >> Go back to basics. I've shared this with you before. There's no AI without IA, meaning you need an information architecture to support what you want to do in AI. We started looking into that. Our thesis became so clients are buying into that idea. The problem is their data is everywhere onpremise, private cloud, multiple public clouds. So our thesis became very simple. If we can bring AI to the data, it will make Watson the leading AI platform. So what we announced wtih Watson Anywhere is you could now have it wherever your data is public, private, any public cloud, build the models, run them where you want. I think it's gonna be amazing >> data everywhere and anywhere. So containers are big role in This is a little bit of a deb ops. The world you've been living in convergence of data cloud. How does that set for clients up? What are they need to know about this announcement? Was the impact of them if any >> way that we enable Multi Cloud and Watson anywhere is through IBM cloud private for data? That's our data Micro services architectural writing on Cooper Netease that gives you the portability so that it can run anywhere because, in addition Teo, I'd say, Aye, aye, ambitions. The other big client ambition is around how we modernize to cloud native architectures. Mohr compose herbal services, so the combination gets delivered. Is part of this. >> So this notion of you can't have a eye without a it's It's obviously a great tagline. You use it a lot, but it's super important because there's a gap between those who sort of have a I chops and those who don't. And if I understand what you're doing is you're closing that gap by allowing you to bring you call that a eye to the data is it's sort of a silo buster in regard. Er yeah, >> the model we use. I called the eye ladder. So they give it as all the levels of sophistication an organization needs to think about. From how you collect data, how you organize data, analyze data and then infused data with a I. That's kind of the model that we used to talk about. Talk to clients about that. What we're able to do here is same. You don't have to move your data. The biggest problem Modi projects is the first task is OK move a bunch of data that takes a lot of time. That takes a lot of money. We say you don't need to do that. Leave your data wherever it is. With Cloud private for data, we can virtualized data from any source. That's kind of the ah ha moment people have when they see that. So we're making that piece really >> easy. What's the impact this year and IBM? Think to the part product portfolio. You You had data products in the past. Now you got a eye products. Any changes? How should people live in the latter schism? A kind of a rubric or a view of where they fit into it? But what's up with the products and he changes? People should know about? >> Well, we've brought together the analytics and I units and IBM into this new organization we call Dayton ay, ay, that's a reflection of us. Seen that as two sides of the same coin. I really couldn't really keep them separate. We've really simplified how we're going to market with the Watson products. It's about how you build run Manager II watching studio Watson Machine Learning Watson Open scale. That's for clients that want to build their own. Aye, aye. For clients that wants something out of the box. They want an application. We've got Watson assistant for customer service. Watson Discovery, Watson Health Outset. So we've made it really easy to consume Watson. Whether you want to build your own or you want an application designed for the line of business and then up and down the data, stack a bunch of different announcements. We're bringing out big sequel on Cloudera as part of our evolving partnership with the new Cloudera Horn Works entity. Virtual Data Pipeline is a partnership that we've built with active fio, so we're doing things at all layers of the last. >> You're simplifying the consumption from a client, your customer perspective. It's all data. It's all Watson's, the umbrella for brand for everything underneath that from a tizzy, right? >> Yeah, Watson is the Aye, aye, brand. It is a technology that's having an impact. We have amazing clients on stage with this this week talking about, Hey, Eyes No longer. I'd like to say I was not magic. It's no longer this mystical thing. We have clients that are getting real outcomes. Who they II today we've got Rollback of Scotland talking about how they've automated and augmented forty percent of their customer service with watching the system. So we've got great clients talking about other using >> I today. You seen any patterns, rob in terms of those customers you mentioned, some customers want to do their own. Aye, aye. Some customers wanted out of the box. What? The patterns that you're seeing in terms of who wants to do their own. Aye. Aye. Why do they want to do their own, eh? I do. They get some kind of competitive advantage. So they have additional skill sets that they need. >> It's a >> It's a maker's mark. It is how I would describe it. There's a lot of people that want to make their own and try their own. Ugh. I think most organizations, they're gonna end up with hundreds of different tools for building for running. This is why we introduced Watson Open Scale at the end of last year. That's How would you manage all of your A II environments? What did they come from? IBM or not? Because you got the and the organization has to have this manageable. Understandable, regardless of which tool they're using. I would say the biggest impact that we see is when we pick a customer problem. That is widespread, and the number one right now is customer service. Every organization, regardless of industry, wants to do a better job of serving clients. That's why Watson assistant is taking off >> this's. Where? Data The value of real time data. Historical data kind of horizontally. Scaleable data, not silo data. We've talked us in the past. How important is to date a quality piece of this? Because you have real time and you have a historical date and everything in between that you had to bring to bear at low ladened psi applications. Now we're gonna have data embedded in them as a feature. Right. How does this change? The workloads? The makeup of you? Major customer services? One piece, the low hanging fruit. I get that. But this is a key thing. The data architecture more than anything, isn't it? >> It is. Now remember, there's there's two rungs at the bottom of the ladder on data collection. We have to build a collect data in any form in any type. That's why you've seen us do relationships with Mongo. D B. Were they ship? Obviously with Claude Era? We've got her own data warehouse, so we integrate all of that through our sequel engine. That thing gets to your point around. Are you gonna organize the data? How are you going to curate it? We've got data catalogue. Every client will have a data catalogue for many dollar data across. Clouds were now doing automated metadata creation using a I and machine learning So the organization peace. Once you've collected it than the organization, peace become most important. Certainly, if you want to get to self service analytics, you want to make data available to data scientists around the organization. You have to have those governance pieces. >> Talk about the ecosystem. One of the things that's been impressive IBM of the years is your partnerships. You've done good partners. Partnership of relationships now in an ecosystem is a lot of building blocks. There's more complexity requires software to distract him away. We get that. What's opportunities for you to create new relationships? Where are the upper opportunities for someone a developer or accompanied to engage with you guys? Where's the white spaces? Where is someone? Take advantage of your momentum and you're you're a vision. >> I am dying for partners that air doing domain specific industry specific applications to come have them run on IBM cloud private for data, which unleashes all the data they need to be a valuable application. We've already got a few of those data mirrors. One sensing is another one that air running now as industry applications on top of IBM Club private for data. I'd like to have a thousand of these. So all comers there. We announced a partnership with Red Hat back in May. Eventually, that became more than just a partnership. But that was about enabling Cloud Private, for data on red had open shift, So we're partnered at all layers of the stack. But the greatest customer need is give me an industry solution, leveraging the best of my data. That's why I'm really looking for Eyes V. Partners to run on Ivan clubs. >> What's your pitch to those guys? Why, why I should be going. >> There is no other data platform that will connect to all your data sources, whether they're on eight of us as your Google Cloud on premise. So if you believe data is important to your application. There's simply no better place to run than IBM. Claude Private for data >> in terms of functionality, breath o r. Everything >> well, integrating with all your data. Normally they have to have the application in five different places. We integrate with all the data we build the data catalogue. So the data's organized. So the ingestion of the data becomes very easy for the Iast V. And by the way, thirdly, IBM has got a pretty good reach. Globally, one hundred seventy countries, business partners, resellers all over the world, sales people all over the world. We will help you get your product to market. That's a pretty good value >> today. We talk about this in the Cube all the time. When the cloud came, one of the best things about the cloud wasn't allowed. People to put applications go there really quickly. Stand them up. Startups did that. But now, in this domain world of of data with the clouds scale, I think you're right. I think domain X expertise is the top of the stack where you need specially special ism expertise and you don't build the bottom half out. What you're getting at is of Europe. If you know how to create innovation in the business model, you could come in and innovate quickly >> and vertical APS don't scale enough for me. So that's why focus on horizontal things like customer service. But if you go talk to a bank, sometimes customer service is not in office. I want to do something in loan origination or you're in insurance company. I want to use their own underwriting those air, the solutions that will get a lot of value out of running on an integrated data start >> a thousand flowers. Bloom is kind of ecosystem opportunity. Looking forward to checking in on that. Thoughts on on gaps. For that you guys want to make you want to do em in a on or areas that you think you want to double down on. That might need some help, either organic innovation or emanate what areas you looking at. Can you share a little bit of direction on that? >> We have, >> ah, a unique benefit. And IBM because we have IBM research. One of their big announcement this week is what we call Auto Way I, which is basically automating the process of feature engineering algorithm selection, bringing that into Watson Studio and Watson Machine learning. I am spending most of my time figure out howto I continue to bring great technology out of IBM research and put in the hand of clients through our products. You guys solve the debaters stuff yesterday. We're just getting started with that. We've got some pretty exciting organic innovation happen in IBM. >> It's awesome. Great news for startups. Final question for you. For the folks watching who aren't here in San Francisco, what's the big story here? And IBM think here in San Francisco. Big event closing down the streets here in Howard Street. It's huge. What's the big story? What's the most important things happening? >> The most important thing to me and the customer stories >> here >> are unbelievable. I think we've gotten past this point of a eyes, some idea for the future we have. Hundreds of clients were talking about how they did an A I project, and here's the outcome they got. It's really encouraging to see what I encourage. All clients, though, is so build your strategy off of one big guy. Project company should be doing hundreds of Aye, aye projects. So in twenty nineteen do one hundred projects. Half of them will probably fail. That's okay. The one's that work will more than make up for the ones that don't work. So we're really encouraging mass experimentation. And I think the clients that air here are, you know, creating an aspirational thing for things >> just anecdotally you mentioned earlier. Customer service is a low hanging fruit. Other use cases that are great low hanging fruit opportunities for a >> data discovery data curation these air really hard manual task. Today you can start to automate some of that. That has a really big impact. >> Rob Thomas, general manager of the data and a I groupie with an IBM now part of a bigger portfolio. Watson Rob. Great to see you conventionally on all your success. But following you from the beginning. Great momentum on the right way. Thanks. Gradually. More cute coverage here. Live in San Francisco from Mosconi North. I'm John for Dave A lot. They stay with us for more coverage after this short break

Published Date : Feb 12 2019

SUMMARY :

It's the cube covering Great to see you again. There you go. This year we've written ten books on a data. too much work. in the center of the announcements we have a story up on. build the models, run them where you want. Was the impact of them if any gives you the portability so that it can run anywhere because, in addition Teo, I'd say, So this notion of you can't have a eye without a it's It's obviously a great tagline. That's kind of the ah ha moment people have when they see that. What's the impact this year and IBM? Whether you want to build your own or you want an application designed for the line of business and then You're simplifying the consumption from a client, your customer perspective. Yeah, Watson is the Aye, aye, brand. You seen any patterns, rob in terms of those customers you mentioned, some customers want to do their own. That's How would you manage all of your A II environments? you had to bring to bear at low ladened psi applications. How are you going to curate it? One of the things that's been impressive IBM of the years is your partnerships. But the greatest customer need is give me an industry solution, What's your pitch to those guys? So if you believe data is important to your application. We will help you get your product to market. If you know how to create innovation in the business But if you go talk to a bank, sometimes customer service is not in office. For that you guys want to make you want to do em in a on or areas that you think you want to double You guys solve the debaters stuff yesterday. What's the most important things happening? and here's the outcome they got. just anecdotally you mentioned earlier. Today you can start to automate some of that. Rob Thomas, general manager of the data and a I groupie with an IBM now part of a bigger portfolio.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IBMORGANIZATION

0.99+

John FordPERSON

0.99+

Rob ThomasPERSON

0.99+

Jeffrey David LongPERSON

0.99+

Howard StreetLOCATION

0.99+

San FranciscoLOCATION

0.99+

San FranciscoLOCATION

0.99+

EuropeLOCATION

0.99+

MayDATE

0.99+

hundredsQUANTITY

0.99+

Red HatORGANIZATION

0.99+

Claude EraPERSON

0.99+

GinnyPERSON

0.99+

Mosconi NorthLOCATION

0.99+

ten booksQUANTITY

0.99+

two sidesQUANTITY

0.99+

JohnPERSON

0.99+

todayDATE

0.99+

Four daysQUANTITY

0.99+

DavePERSON

0.99+

forty percentQUANTITY

0.99+

one hundred seventy countriesQUANTITY

0.99+

seven yearsQUANTITY

0.99+

One pieceQUANTITY

0.99+

TodayDATE

0.99+

Claude PrivatePERSON

0.99+

yesterdayDATE

0.99+

first taskQUANTITY

0.99+

HalfQUANTITY

0.99+

eightQUANTITY

0.98+

two rungsQUANTITY

0.98+

CNBCORGANIZATION

0.98+

this weekDATE

0.97+

This yearDATE

0.97+

twenty nineteen do one hundred projectsQUANTITY

0.97+

MongoORGANIZATION

0.97+

Mosconi StLOCATION

0.97+

WatsonTITLE

0.96+

TeoPERSON

0.96+

WatsonPERSON

0.96+

OneQUANTITY

0.96+

Hundreds of clientsQUANTITY

0.95+

Watson Open ScaleTITLE

0.95+

five different placesQUANTITY

0.94+

one big guyQUANTITY

0.93+

Watson StudioTITLE

0.93+

oneQUANTITY

0.93+

this yearDATE

0.92+

Cooper NeteaseORGANIZATION

0.91+

twentyQUANTITY

0.91+

ModiPERSON

0.9+

DaytonORGANIZATION

0.9+

redORGANIZATION

0.89+

WatsonORGANIZATION

0.87+

IBM DataORGANIZATION

0.87+

Eyes V.ORGANIZATION

0.87+

IBM ClubORGANIZATION

0.86+

endDATE

0.86+

last yearDATE

0.84+

2019DATE

0.82+

thirdlyQUANTITY

0.77+

a thousand flowersQUANTITY

0.77+

Rollback of ScotlandORGANIZATION

0.77+

Google CloudTITLE

0.76+

AyeORGANIZATION

0.75+

thousandQUANTITY

0.74+

John Thomas, IBM & Elenita Elinon, JP Morgan Chase | IBM Think 2019


 

>> Live from San Francisco, it's theCUBE covering IBM Think 2019, brought to you by IBM. >> Welcome back everyone, live here in Moscone North in San Francisco, it's theCUBE's exclusive coverage of IBM Think 2019. I'm John Furrier, Dave Vellante. We're bringing down all the action, four days of live coverage. We've got two great guests here, Elenita Elinon, Executive Director of Quantitative Research at JP Morgan Chase, and John Thomas, Distinguished Engineer and Director of the Data Science Elite Team... great team, elite data science team at IBM, and of course, JP Morgan Chase, great innovator. Welcome to theCUBE. >> Welcome. >> Thank you very much. >> Thank you, thank you, guys. >> So I like to dig in, great use case here real customer on the cutting edge, JP Morgan Chase, known for being on the bleeding edge sometimes, but financial, money, speed... time is money, insights is money. >> Absolutely. Yes. >> Tell us what you do at the Quantitative Group. >> Well, first of all, thank you very much for having me here, I'm quite honored. I hope you get something valuable out of what I say here. At the moment, I have two hats on, I am co-head of Quantitative Research Analytics. It's a very small SWAT, very well selected group of technologists who are also physicists and mathematicians, statisticians, high-performance compute experts, machine learning experts, and we help the larger organization of Quantitative Research which is about 700-plus strong, as well as some other technology organizations in the firm to use the latest, greatest technologies. And how we do this is we actually go in there, we're very hands-on, we're working with the systems, we're working with the tools, and we're applying it to real use cases and real business problems that we see in Quantitative Research, and we prove out the technology. We make sure that we're going to save millions of dollars using this thing, or we're going to be able to execute a lot on this particular business that was difficult to execute on before because we didn't have the right compute behind it. So we go in there, we try out these various technologies, we have lots of partnerships with the different vendors, and IBM's been obviously one of few, very major vendors that we work with, and we find the ones that work. We have an influencing role as well in the organization, so we go out and tell people, "Hey, look, "this particular tool, perfect for this type of problem. "You should try it out." We help them set it up. They can't figure out the technology? We help them out. We're kind of like what I said, we're a SWAT team, very small compared to the rest of the organization, but we add a lot of value. >> You guys are the brain trust too. You've got the math skills, you've got the quantitative modeling going on, and it's a competitive advantage for your business. This is like a key thing, a lot of new things are emerging. One of things we're seeing here in the industry, certainly at this show, it's not your yesterday's machine learning. There's certainly math involved, you've got cognition and math kind of coming together, deterministic, non-deterministic elements, you guys are seeing these front edge, the problems, opportunities, for you guys. How do you see that world evolving because you got the classic math, school of math machine learning, and then the school of learning machines coming together? What kind of problems do you see these things, this kind of new model attacking? >> So we're making a very, very large investment in machine learning and data science as a whole in the organization. You probably heard in the press that we've brought in the Head of Machine Learning from CMU, Manuela Veloso. She's now heading up the AI Research Organization, JP Morgan, and she's making herself very available to the rest of the firm, setting strategies, trying different things out, partnering with the businesses, and making sure that she understands the use case of where machine learning will be a success. We've also put a lot of investments in tooling and hiring the right kinds of people from the right kinds of universities. My organization, we're changing the focus in our recruiting efforts to bring in more data science and machine learning. But, I think the most important thing, in addition to all that investment is that we, first and foremost, understand our own problems, we work with researchers, we work with IBM, we work with the vendors, and say, "Okay, this is the types of problems, "what is the best thing to throw at it?" And then we PoC, we prove it out, we look for the small wins, we try to strategize, and then we come up with the recommendations for a full-out, scalable architecture. >> John, talk about the IBM Elite Program. You guys roll your sleeves up. It's a service that you guys provide with your top clients. You bring in the best and you just jump in, co-create opportunities together, solving problems. >> That is exactly right. >> How does this work? What's your relationship with JP Morgan Chase? What specific use case are you going after? What are the opportunities? >> Yeah, so the Data Science Elite Team was setup to really help our top clients in their AI journey, in terms of bringing skills, tools, expertise to work collaboratively with clients like JP Morgan Chase. It's been a great partnership working with Elenita and her team. We've had some very interesting use cases related to her model risk management platform, and some interesting challenges in that space about how do you apply machine learning and deep learning to solve those problems. >> So what exactly is model risk management? How does that all work? >> Good question. (laughing) That's why we're building a very large platform around it. So model risk is one of several types of risk that we worry about and keep us awake at night. There's a long history of risk management in the banks. Of course, there's credit risk, there's market risk, these are all very well-known, very quantified risks. Model risk isn't a number, right? You can't say, "this model, which is some stochastic model "it's going to cost us X million dollars today," right? We currently... it's so somewhat new, and at the moment, it's more prescriptive and things like, you can't do that, or you can use that model in this context, or you can't use it for this type of trade. It's very difficult to automate that type of model risk in the banks, so I'm attempting to put together a platform that captures all of the prescriptive, and the conditions, and the restrictions around what to do, and what to use models for in the bank. Making sure that we actually know this in real time, or at least when the trade is being booked, We have an awareness of where these models are getting somewhat abused, right? We look out for those types of situations, and we make sure that we alert the correct stakeholders, and they do something about it. >> So in essence, you're governing the application of the model, and then learning as you go on, in terms of-- >> That's the second phase. So we do want to learn at the moment, what's in production today. Morpheus running in production, it's running against all of the trading systems in the firm, inside the investment bank. We want to make sure that as these trades are getting booked from day to day, we understand which ones are risky, and we flag those. There's no learning yet in that, but what we've worked with John on are the potential uses of machine learning to help us manage all those risks because it's difficult. There's a lot of data out there. I was just saying, "I don't want our Quants to do stupid things," 'cause there's too much stupidity happening right now. We're looking at emails, we're looking at data that doesn't make sense, so Morpheus is an attempt to make all of that understandable, and make the whole workflow efficient. >> So it's financial programming in a way, that's come with a whole scale of computing, a model gone astray could be very dangerous? >> Absolutely. >> This is what you're getting at right? >> It will cost real money to the firm. This is all the use-- >> So a model to watch the model? So policing the models, kind of watching-- >> Yes, another model. >> When you have to isolate the contribution of the model not like you saying before, "Are there market risks "or other types of risks--" >> Correct. >> You isolate it to the narrow component. >> And there's a lot of work. We work with the Model Governance Organization, another several hundred person organization, and that's all they do. They figure out, they review the models, they understand what the risk of the models are. Now, it's the job of my team to take what they say, which could be very easy to interpret or very hard, and there's a little bit of NLP that I think is potentially useful there, to convert what they say about a model, and what controls around the model are to something that we can systematize and run everyday, and possibly even in real time. >> This is really about getting it right and not letting it get out of control, but also this is where the scale comes in so when you get the model right, you can deploy it, manage it in a way that helps the business, versus if someone throws the wrong number in there, or the classic "we've got a model for that." >> Right, exactly. (laughing) There's two things here, right? There's the ability to monitor a model such that we don't pay fines, and we don't go out of compliance, and there's the ability to use the model exactly to the extreme where we're still within compliance, and make money, right? 'Cause we want to use these models and make our business stronger. >> There's consequences too, I mean, if it's an opportunity, there's upside, it's a problem, there's downside. You guys look at the quantification of those kinds of consequences where the risk management comes in? >> Yeah, absolutely. And there's real money that's at stake here, right? If the regulators decide that a model's too risky, you have to set aside a certain amount of capital so that you're basically protecting your investors and your business, and the stakeholders. If that's done incorrectly, we end up putting a lot more capital in reserve than we should be, and that's a bad thing. So quantifying the risks correctly and accurately is a very important part of what we do. >> So a lot of skillsets obviously, and I always say, "In the money business, you want the best nerds." Don't hate me for saying that... the smartest people. What are some of the challenges that are unique to model risk management that you might not see in sort of other risk management approaches? >> There are some technical challenges, right? The volume of data that you're dealing with is very large. If you are building... so at the very simplistic level, you have classification problems that you're addressing with data that might not actually be all there, so that is one. When you get into time series analysis for exposure prediction and so on, these are complex problems to handle. The training time for these models, especially deep learning models, if you are doing time series analysis, can be pretty challenging. Data volume, training time for models, how do you turn this around quickly? We use a combination of technologies for some of these use cases. Watson Studio running on power hardware with GPUs. So the idea here is you can cut down your model training time dramatically and we saw that as part of the-- >> Talk about how that works because this is something that we're seeing people move from manual to automated machine learning and deep learning, it give you augmented assistance to get this to the market. How does it actually work? >> So there is a training part of this, and then there is the operationalizing part of this, right? At the training part itself, you have a challenge, which is you're dealing with very large data volumes, you're dealing with training times that need to be shrunk down. And having a platform that allows you to do that, so you build models quickly, your data science folks can iterate through model creation very quickly is essential. But then, once the models have been built, how do you operationalize those models? How do you actually invoke the models at scale? How do you do workflow management of those models? How do you make sure that a certain exposure model is not thrashing some other models that are also essential to the business? How do you do policies and workflow management? >> And on top of that, we need to be very transparent, right? If the model is used to make certain decisions that have obvious impact financially on the bottom line, and an auditor comes back and says, "Okay, you made this trade so and so, why? What was happening at that time?" So we need to be able to capture and snapshot and understand what the model was doing at that particular instant in time, and go back and understand the inputs that went into that model and made it operate the way it did. >> It can't be a black box. >> It cannot be, yeah. >> Holistically, you got to look at the time series in real time, when things were happening and happened, happening, and then holistically tie that together. Is that kind of the impact analysis? >> We have to make our regulars happy. (laughing) That's number one, and we have to make our traders happy. We, as quantitative researchers, we're the ones that give them the hard math and the models, and then they use it. They use their own skillsets too to apply them, but-- >> What's the biggest needs that your stakeholders on the trading side want, and what's the needs on the compliance side, the traders want more, they want to move quickly? >> They're coming from different sides of it. Traders want to make more money, right? And they want to make decisions quickly. They want all the tools to tell them what to do, and for them to exercise whatever they normally exercise-- >> They want a competitive advantage. >> They want that competitive advantage, and they're also... we've got algo-trades as well, we want to have the best algo behind our trading. >> And the regulator side, we just want to make sure laws aren't broken, that there's auditing-- >> We use the phrase, "model explainability," right? Can you explain how the model came to a conclusion, right? Can you make sure that there is no bias in the model? How can you ensure the models are fair? And if you can detect there is a drift, what do you do to correct that? So that is very important. >> Do you have means of detecting sort of misuse of the model? Is that part of the governance process? >> That is exactly what Morpheus is doing. The unique thing about Morpheus is that we're tied into the risk management systems in the investment bank. We're actually running the same exact code that's pricing these trades, and what that brings is the ability to really understand pretty much the full stack trace of what's going into the price of a trade. We also have captured the restrictions and the conditions. It's in the Python script, it's essentially Python. And we can marry the two, and we can do all the checks that the governance person indicated we should be doing, and so we know, okay, if this trade is operating beyond maturity or a certain maturity, or beyond a certain expiry, we'll know that, and then we'll tag that information. >> And just for clarification, Morpheus is the name of the platform that does the-- >> Morpheus is the name of the model risk platform that I'm building out, yes. >> A final question for you, what's the biggest challenge that you guys have seen from a complexity standpoint that you're solving? What's the big complex... You don't want to just be rubber-stamping models. You want to solve big problems. What are the big problems that you guys are going after? >> I have many big problems. (laughing) >> Opportunities. >> The one that is right now facing me, is the problem of metadata, data ingestion, getting disparate sources, getting different disparate data from different sources. One source calls it a delta, this other source calls it something else. We've got a strategic data warehouse, that's supposed to take all of these exposures and make sense out of it. I'm in the middle because they're there, probably at the ten-year roadmap, who knows? And I have a one-month roadmap, I have something that was due last week and I need to come up with these regulatory reports today. So what I end up doing is a mix of a tactical strategic data ingestion, and I have to make sense of the data that I'm getting. So I need tools out there that will help support that type of data ingestion problem that will also lead the way towards the more strategic one, where we're better integrated with this-- >> John, talk about how you solve the problems? What are some of the things that you guys do? Give the plug for IBM real quick, 'cause I know you guys got the Studio. Explain how you guys are helping and working with JP Morgan Chase. >> Yeah, I touched upon this briefly earlier, which is from the model training perspective, Watson Studio running on Power hardware is very powerful, in terms of cutting down training time, right? But you've got to go beyond model building to how do you operationalize these models? How do I deploy these models at scale? How do I define workload management policies for these models, and connecting to their backbone. So that is part of this, and model explainability, we touched upon that, to eliminate this problem of how do I ingest data from different sources without having to manually oversee all of that. We need to manually apply auto-classification at the time of ingestion. Can I capture metadata around the model and reconcile data from different data sources as the data is being brought in? And can I apply ML to solve that problem, right? There is multiple applications of ML along this workflow. >> Talk about real quick, comment before we break, I want to get this in, machine learning has been around for a while now with compute and scale. It really is a renaissance in AI, it's great things are happening. But what feeds machine learning is data, the cleaner the data, the better the AI, the better the machine learning, so data cleanliness now has to be more real-time, it's less of a cleaning group, right? It used to be clean the data, bring it in, wrangle it, now you got to be much more agile, use speed of compute to make sure that you're qualifying data before it comes in, these machine learning. How do you guys see that rolling out, is that impacting you now? Are you thinking about it? How should people think about data quality as an input in machine learning? >> Well, I think the whole problem of setting up an application properly for data science and machine learning is really making sure that from the beginning, you're designing, and you're thinking about all of these problems of data quality, if it's the speed of ingestion, the speed of publication, all of that stuff. You need to think about the beginning, set yourself up to have the right elements, and it may not all be built out, and that's been a big strategy I've had with Morpheus. I've had a very small team working on it, but we think ahead and we put elements of the right components in place so data quality is just one of those things, and we're always trying to find the right tool sets that will enable use to do that better, faster, quicker. One of the things I'd like to do is to upscale and uplift the skillsets on my team, so that we are building the right things in the system from the beginning. >> A lot of that's math too, right? I mean, you talk about classification, getting that right upfront. Mathematics is-- >> And we'll continue to partner with Elenita and her team on this, and this helps us shape the direction in which our data science offerings go because we need to address complex enterprise challenges. >> I think you guys are really onto something big. I love the elite program, but I think having the small team, thinking about the model, thinking about the business model, the team model before you build the technology build-out, is super important, that seems to be the new model versus the old days, build some great technology and then, we'll put a team around it. So you see the world kind of being a little bit more... it's easier to build out and acquire technology, than to get it right, that seems to be the trend here. Congratulations. >> Thank you. >> Thanks for coming on. I appreciate it. theCUBE here, CUBE Conversations here. We're live in San Francisco, IBM Think. I'm John Furrier, Dave Vellante, stay with us for more day two coverage. Four days we'll be here in the hallway and lobby of Moscone North, stay with us.

Published Date : Feb 12 2019

SUMMARY :

covering IBM Think 2019, brought to you by IBM. and Director of the Data Science Elite Team... known for being on the bleeding edge sometimes, Absolutely. Well, first of all, thank you very much the problems, opportunities, for you guys. "what is the best thing to throw at it?" You bring in the best and you just jump in, Yeah, so the Data Science Elite Team was setup and the restrictions around what to do, and make the whole workflow efficient. This is all the use-- Now, it's the job of my team to take what they say, so when you get the model right, you can deploy it, There's the ability to monitor a model You guys look at the quantification of those kinds So quantifying the risks correctly "In the money business, you want the best nerds." So the idea here is you can cut down it give you augmented assistance to get this to the market. At the training part itself, you have a challenge, and made it operate the way it did. Is that kind of the impact analysis? and then they use it. and for them to exercise whatever they normally exercise-- and they're also... we've got algo-trades as well, what do you do to correct that? that the governance person indicated we should be doing, Morpheus is the name of the model risk platform What are the big problems that you guys are going after? I have many big problems. The one that is right now facing me, is the problem What are some of the things that you guys do? to how do you operationalize these models? is that impacting you now? One of the things I'd like to do is to upscale I mean, you talk about classification, because we need to address complex enterprise challenges. the team model before you build the technology build-out, of Moscone North, stay with us.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Elenita ElinonPERSON

0.99+

Manuela VelosoPERSON

0.99+

JohnPERSON

0.99+

IBMORGANIZATION

0.99+

John FurrierPERSON

0.99+

JP Morgan ChaseORGANIZATION

0.99+

San FranciscoLOCATION

0.99+

one-monthQUANTITY

0.99+

John ThomasPERSON

0.99+

ten-yearQUANTITY

0.99+

Quantitative ResearchORGANIZATION

0.99+

last weekDATE

0.99+

twoQUANTITY

0.99+

two thingsQUANTITY

0.99+

JP MorganORGANIZATION

0.99+

Four daysQUANTITY

0.99+

ElenitaPERSON

0.99+

second phaseQUANTITY

0.99+

Moscone NorthLOCATION

0.99+

Quantitative Research AnalyticsORGANIZATION

0.99+

MorpheusPERSON

0.99+

todayDATE

0.99+

PythonTITLE

0.99+

Quantitative GroupORGANIZATION

0.99+

IBM ThinkORGANIZATION

0.98+

Model Governance OrganizationORGANIZATION

0.98+

oneQUANTITY

0.97+

two great guestsQUANTITY

0.97+

four daysQUANTITY

0.97+

OneQUANTITY

0.96+

million dollarsQUANTITY

0.96+

millions of dollarsQUANTITY

0.95+

theCUBEORGANIZATION

0.95+

2019DATE

0.95+

AI Research OrganizationORGANIZATION

0.94+

CMUORGANIZATION

0.94+

One sourceQUANTITY

0.93+

yesterdayDATE

0.92+

Watson StudioTITLE

0.92+

ResearchORGANIZATION

0.9+

MorpheusTITLE

0.89+

Data Science EliteORGANIZATION

0.86+

hundred personQUANTITY

0.85+

Data ScienceORGANIZATION

0.83+

two hatsQUANTITY

0.79+

about 700-plusQUANTITY

0.79+

2019TITLE

0.79+

firstQUANTITY

0.78+

dayQUANTITY

0.76+

ThinkCOMMERCIAL_ITEM

0.66+

ProgramOTHER

0.65+

Think 2019TITLE

0.56+

SWATORGANIZATION

0.52+

IBMTITLE

0.43+

EliteTITLE

0.38+

Rob Thomas, IBM | Change the Game: Winning With AI 2018


 

>> [Announcer] Live from Times Square in New York City, it's theCUBE covering IBM's Change the Game: Winning with AI, brought to you by IBM. >> Hello everybody, welcome to theCUBE's special presentation. We're covering IBM's announcements today around AI. IBM, as theCUBE does, runs of sessions and programs in conjunction with Strata, which is down at the Javits, and we're Rob Thomas, who's the General Manager of IBM Analytics. Long time Cube alum, Rob, great to see you. >> Dave, great to see you. >> So you guys got a lot going on today. We're here at the Westin Hotel, you've got an analyst event, you've got a partner meeting, you've got an event tonight, Change the game: winning with AI at Terminal 5, check that out, ibm.com/WinWithAI, go register there. But Rob, let's start with what you guys have going on, give us the run down. >> Yeah, it's a big week for us, and like many others, it's great when you have Strata, a lot of people in town. So, we've structured a week where, today, we're going to spend a lot of time with analysts and our business partners, talking about where we're going with data and AI. This evening, we've got a broadcast, it's called Winning with AI. What's unique about that broadcast is it's all clients. We've got clients on stage doing demonstrations, how they're using IBM technology to get to unique outcomes in their business. So I think it's going to be a pretty unique event, which should be a lot of fun. >> So this place, it looks like a cool event, a venue, Terminal 5, it's just up the street on the west side highway, probably a mile from the Javits Center, so definitely check that out. Alright, let's talk about, Rob, we've known each other for a long time, we've seen the early Hadoop days, you guys were very careful about diving in, you kind of let things settle and watched very carefully, and then came in at the right time. But we saw the evolution of so-called Big Data go from a phase of really reducing investments, cheaper data warehousing, and what that did is allowed people to collect a lot more data, and kind of get ready for this era that we're in now. But maybe you can give us your perspective on the phases, the waves that we've seen of data, and where we are today and where we're going. >> I kind of think of it as a maturity curve. So when I go talk to clients, I say, look, you need to be on a journey towards AI. I think probably nobody disagrees that they need something there, the question is, how do you get there? So you think about the steps, it's about, a lot of people started with, we're going to reduce the cost of our operations, we're going to use data to take out cost, that was kind of the Hadoop thrust, I would say. Then they moved to, well, now we need to see more about our data, we need higher performance data, BI data warehousing. So, everybody, I would say, has dabbled in those two area. The next leap forward is self-service analytics, so how do you actually empower everybody in your organization to use and access data? And the next step beyond that is, can I use AI to drive new business models, new levers of growth, for my business? So, I ask clients, pin yourself on this journey, most are, depends on the division or the part of the company, they're at different areas, but as I tell everybody, if you don't know where you are and you don't know where you want to go, you're just going to wind around, so I try to get them to pin down, where are you versus where do you want to go? >> So four phases, basically, the sort of cheap data store, the BI data warehouse modernization, self-service analytics, a big part of that is data science and data science collaboration, you guys have a lot of investments there, and then new business models with AI automation running on top. Where are we today? Would you say we're kind of in-between BI/DW modernization and on our way to self-service analytics, or what's your sense? >> I'd say most are right in the middle between BI data warehousing and self-service analytics. Self-service analytics is hard, because it requires you, sometimes to take a couple steps back, and look at your data. It's hard to provide self-service if you don't have a data catalog, if you don't have data security, if you haven't gone through the processes around data governance. So, sometimes you have to take one step back to go two steps forward, that's why I see a lot of people, I'd say, stuck in the middle right now. And the examples that you're going to see tonight as part of the broadcast are clients that have figured out how to break through that wall, and I think that's pretty illustrative of what's possible. >> Okay, so you're saying that, got to maybe take a step back and get the infrastructure right with, let's say a catalog, to give some basic things that they have to do, some x's and o's, you've got the Vince Lombardi played out here, and also, skillsets, I imagine, is a key part of that. So, that's what they've got to do to get prepared, and then, what's next? They start creating new business models, imagining this is where the cheap data officer comes in and it's an executive level, what are you seeing clients as part of digital transformation, what's the conversation like with customers? >> The biggest change, the great thing about the times we live in, is technology's become so accessible, you can do things very quickly. We created a team last year called Data Science Elite, and we've hired what we think are some of the best data scientists in the world. Their only job is to go work with clients and help them get to a first success with data science. So, we put a team in. Normally, one month, two months, normally a team of two or three people, our investment, and we say, let's go build a model, let's get to an outcome, and you can do this incredibly quickly now. I tell clients, I see somebody that says, we're going to spend six months evaluating and thinking about this, I was like, why would you spend six months thinking about this when you could actually do it in one month? So you just need to get over the edge and go try it. >> So we're going to learn more about the Data Science Elite team. We've got John Thomas coming on today, who is a distinguished engineer at IBM, and he's very much involved in that team, and I think we have a customer who's actually gone through that, so we're going to talk about what their experience was with the Data Science Elite team. Alright, you've got some hard news coming up, you've actually made some news earlier with Hortonworks and Red Hat, I want to talk about that, but you've also got some hard news today. Take us through that. >> Yeah, let's talk about all three. First, Monday we announced the expanded relationship with both Hortonworks and Red Hat. This goes back to one of the core beliefs I talked about, every enterprise is modernizing their data and application of states, I don't think there's any debate about that. We are big believers in Kubernetes and containers as the architecture to drive that modernization. The announcement on Monday was, we're working closer with Red Hat to take all of our data services as part of Cloud Private for Data, which are basically microservice for data, and we're running those on OpenShift, and we're starting to see great customer traction with that. And where does Hortonworks come in? Hadoop has been the outlier on moving to microservices containers, we're working with Hortonworks to help them make that move as well. So, it's really about the three of us getting together and helping clients with this modernization journey. >> So, just to remind people, you remember ODPI, folks? It was all this kerfuffle about, why do we even need this? Well, what's interesting to me about this triumvirate is, well, first of all, Red Hat and Hortonworks are hardcore opensource, IBM's always been a big supporter of open source. You three got together and you're proving now the productivity for customers of this relationship. You guys don't talk about this, but Hortonworks had to, when it's public call, that the relationship with IBM drove many, many seven-figure deals, which, obviously means that customers are getting value out of this, so it's great to see that come to fruition, and it wasn't just a Barney announcement a couple years ago, so congratulations on that. Now, there's this other news that you guys announced this morning, talk about that. >> Yeah, two other things. One is, we announced a relationship with Stack Overflow. 50 million developers go to Stack Overflow a month, it's an amazing environment for developers that are looking to do new things, and we're sponsoring a community around AI. Back to your point before, you said, is there a skills gap in enterprises, there absolutely is, I don't think that's a surprise. Data science, AI developers, not every company has the skills they need, so we're sponsoring a community to help drive the growth of skills in and around data science and AI. So things like Python, R, Scala, these are the languages of data science, and it's a great relationship with us and Stack Overflow to build a community to get things going on skills. >> Okay, and then there was one more. >> Last one's a product announcement. This is one of the most interesting product annoucements we've had in quite a while. Imagine this, you write a sequel query, and traditional approach is, I've got a server, I point it as that server, I get the data, it's pretty limited. We're announcing technology where I write a query, and it can find data anywhere in the world. I think of it as wide-area sequel. So it can find data on an automotive device, a telematics device, an IoT device, it could be a mobile device, we think of it as sequel the whole world. You write a query, you can find the data anywhere it is, and we take advantage of the processing power on the edge. The biggest problem with IoT is, it's been the old mantra of, go find the data, bring it all back to a centralized warehouse, that makes it impossible to do it real time. We're enabling real time because we can write a query once, find data anywhere, this is technology we've had in preview for the last year. We've been working with a lot of clients to prove out used cases to do it, we're integrating as the capability inside of IBM Cloud Private for Data. So if you buy IBM Cloud for Data, it's there. >> Interesting, so when you've been around as long as I have, long enough to see some of the pendulums swings, and it's clearly a pendulum swing back toward decentralization in the edge, but the key is, from what you just described, is you're sort of redefining the boundary, so I presume it's the edge, any Cloud, or on premises, where you can find that data, is that correct? >> Yeah, so it's multi-Cloud. I mean, look, every organization is going to be multi-Cloud, like 100%, that's going to happen, and that could be private, it could be multiple public Cloud providers, but the key point is, data on the edge is not just limited to what's in those Clouds. It could be anywhere that you're collecting data. And, we're enabling an architecture which performs incredibly well, because you take advantage of processing power on the edge, where you can get data anywhere that it sits. >> Okay, so, then, I'm setting up a Cloud, I'll call it a Cloud architecture, that encompasses the edge, where essentially, there are no boundaries, and you're bringing security. We talked about containers before, we've been talking about Kubernetes all week here at a Big Data show. And then of course, Cloud, and what's interesting, I think many of the Hadoop distral vendors kind of missed Cloud early on, and then now are sort of saying, oh wow, it's a hybrid world and we've got a part, you guys obviously made some moves, a couple billion dollar moves, to do some acquisitions and get hardcore into Cloud, so that becomes a critical component. You're not just limiting your scope to the IBM Cloud. You're recognizing that it's a multi-Cloud world, that' what customers want to do. Your comments. >> It's multi-Cloud, and it's not just the IBM Cloud, I think the most predominant Cloud that's emerging is every client's private Cloud. Every client I talk to is building out a containerized architecture. They need their own Cloud, and they need seamless connectivity to any public Cloud that they may be using. This is why you see such a premium being put on things like data ingestion, data curation. It's not popular, it's not exciting, people don't want to talk about it, but we're the biggest inhibitors, to this AI point, comes back to data curation, data ingestion, because if you're dealing with multiple Clouds, suddenly your data's in a bunch of different spots. >> Well, so you're basically, and we talked about this a lot on theCUBE, you're bringing the Cloud model to the data, wherever the data lives. Is that the right way to think about it? >> I think organizations have spoken, set aside what they say, look at their actions. Their actions say, we don't want to move all of our data to any particular Cloud, we'll move some of our data. We need to give them seamless connectivity so that they can leave their data where they want, we can bring Cloud-Native Architecture to their data, we could also help move their data to a Cloud-Native architecture if that's what they prefer. >> Well, it makes sense, because you've got physics, latency, you've got economics, moving all the data into a public Cloud is expensive and just doesn't make economic sense, and then you've got things like GDPR, which says, well, you have to keep the data, certain laws of the land, if you will, that say, you've got to keep the data in whatever it is, in Germany, or whatever country. So those sort of edicts dictate how you approach managing workloads and what you put where, right? Okay, what's going on with Watson? Give us the update there. >> I get a lot of questions, people trying to peel back the onion of what exactly is it? So, I want to make that super clear here. Watson is a few things, start at the bottom. You need a runtime for models that you've built. So we have a product called Watson Machine Learning, runs anywhere you want, that is the runtime for how you execute models that you've built. Anytime you have a runtime, you need somewhere where you can build models, you need a development environment. That is called Watson Studio. So, we had a product called Data Science Experience, we've evolved that into Watson Studio, connecting in some of those features. So we have Watson Studio, that's the development environment, Watson Machine Learning, that's the runtime. Now you move further up the stack. We have a set of APIs that bring in human features, vision, natural language processing, audio analytics, those types of things. You can integrate those as part of a model that you build. And then on top of that, we've got things like Watson Applications, we've got Watson for call centers, doing customer service and chatbots, and then we've got a lot of clients who've taken pieces of that stack and built their own AI solutions. They've taken some of the APIs, they've taken some of the design time, the studio, they've taken some of the Watson Machine Learning. So, it is really a stack of capabilities, and where we're driving the greatest productivity, this is in a lot of the examples you'll see tonight for clients, is clients that have bought into this idea of, I need a development environment, I need a runtime, where I can deploy models anywhere. We're getting a lot of momentum on that, and then that raises the question of, well, do I have expandability, do I have trust in transparency, and that's another thing that we're working on. >> Okay, so there's API oriented architecture, exposing all these services make it very easy for people to consume. Okay, so we've been talking all week at Cube NYC, is Big Data is in AI, is this old wine, new bottle? I mean, it's clear, Rob, from the conversation here, there's a lot of substantive innovation, and early adoption, anyway, of some of these innovations, but a lot of potential going forward. Last thoughts? >> What people have to realize is AI is not magic, it's still computer science. So it actually requires some hard work. You need to roll up your sleeves, you need to understand how I get from point A to point B, you need a development environment, you need a runtime. I want people to really think about this, it's not magic. I think for a while, people have gotten the impression that there's some magic button. There's not, but if you put in the time, and it's not a lot of time, you'll see the examples tonight, most of them have been done in one or two months, there's great business value in starting to leverage AI in your business. >> Awesome, alright, so if you're in this city or you're at Strata, go to ibm.com/WinWithAI, register for the event tonight. Rob, we'll see you there, thanks so much for coming back. >> Yeah, it's going to be fun, thanks Dave, great to see you. >> Alright, keep it right there everybody, we'll be back with our next guest right after this short break, you're watching theCUBE.

Published Date : Sep 18 2018

SUMMARY :

brought to you by IBM. Long time Cube alum, Rob, great to see you. But Rob, let's start with what you guys have going on, it's great when you have Strata, a lot of people in town. and kind of get ready for this era that we're in now. where you want to go, you're just going to wind around, and data science collaboration, you guys have It's hard to provide self-service if you don't have and it's an executive level, what are you seeing let's get to an outcome, and you can do this and I think we have a customer who's actually as the architecture to drive that modernization. So, just to remind people, you remember ODPI, folks? has the skills they need, so we're sponsoring a community and it can find data anywhere in the world. of processing power on the edge, where you can get data a couple billion dollar moves, to do some acquisitions This is why you see such a premium being put on things Is that the right way to think about it? to a Cloud-Native architecture if that's what they prefer. certain laws of the land, if you will, that say, for how you execute models that you've built. I mean, it's clear, Rob, from the conversation here, and it's not a lot of time, you'll see the examples tonight, Rob, we'll see you there, thanks so much for coming back. we'll be back with our next guest

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IBMORGANIZATION

0.99+

DavePERSON

0.99+

HortonworksORGANIZATION

0.99+

six monthsQUANTITY

0.99+

RobPERSON

0.99+

Rob ThomasPERSON

0.99+

John ThomasPERSON

0.99+

two monthsQUANTITY

0.99+

one monthQUANTITY

0.99+

GermanyLOCATION

0.99+

last yearDATE

0.99+

Red HatORGANIZATION

0.99+

MondayDATE

0.99+

oneQUANTITY

0.99+

100%QUANTITY

0.99+

GDPRTITLE

0.99+

three peopleQUANTITY

0.99+

firstQUANTITY

0.99+

twoQUANTITY

0.99+

ibm.com/WinWithAIOTHER

0.99+

Watson StudioTITLE

0.99+

PythonTITLE

0.99+

ScalaTITLE

0.99+

FirstQUANTITY

0.99+

Data Science EliteORGANIZATION

0.99+

bothQUANTITY

0.99+

CubeORGANIZATION

0.99+

one stepQUANTITY

0.99+

OneQUANTITY

0.99+

Times SquareLOCATION

0.99+

todayDATE

0.99+

Vince LombardiPERSON

0.98+

threeQUANTITY

0.98+

Stack OverflowORGANIZATION

0.98+

tonightDATE

0.98+

Javits CenterLOCATION

0.98+

BarneyORGANIZATION

0.98+

Terminal 5LOCATION

0.98+

IBM AnalyticsORGANIZATION

0.98+

WatsonTITLE

0.97+

two stepsQUANTITY

0.97+

New York CityLOCATION

0.97+

Watson ApplicationsTITLE

0.97+

CloudTITLE

0.96+

This eveningDATE

0.95+

Watson Machine LearningTITLE

0.94+

two areaQUANTITY

0.93+

seven-figure dealsQUANTITY

0.92+

CubePERSON

0.91+

Influencer Panel | theCUBE NYC 2018


 

- [Announcer] Live, from New York, it's theCUBE. Covering theCUBE New York City 2018. Brought to you by SiliconANGLE Media, and its ecosystem partners. - Hello everyone, welcome back to CUBE NYC. This is a CUBE special presentation of something that we've done now for the past couple of years. IBM has sponsored an influencer panel on some of the hottest topics in the industry, and of course, there's no hotter topic right now than AI. So, we've got nine of the top influencers in the AI space, and we're in Hell's Kitchen, and it's going to get hot in here. (laughing) And these guys, we're going to cover the gamut. So, first of all, folks, thanks so much for joining us today, really, as John said earlier, we love the collaboration with you all, and we'll definitely see you on social after the fact. I'm Dave Vellante, with my cohost for this session, Peter Burris, and again, thank you to IBM for sponsoring this and organizing this. IBM has a big event down here, in conjunction with Strata, called Change the Game, Winning with AI. We run theCUBE NYC, we've been here all week. So, here's the format. I'm going to kick it off, and then we'll see where it goes. So, I'm going to introduce each of the panelists, and then ask you guys to answer a question, I'm sorry, first, tell us a little bit about yourself, briefly, and then answer one of the following questions. Two big themes that have come up this week. One has been, because this is our ninth year covering what used to be Hadoop World, which kind of morphed into big data. Question is, AI, big data, same wine, new bottle? Or is it really substantive, and driving business value? So, that's one question to ponder. The other one is, you've heard the term, the phrase, data is the new oil. Is data really the new oil? Wonder what you think about that? Okay, so, Chris Penn, let's start with you. Chris is cofounder of Trust Insight, long time CUBE alum, and friend. Thanks for coming on. Tell us a little bit about yourself, and then pick one of those questions. - Sure, we're a data science consulting firm. We're an IBM business partner. When it comes to "data is the new oil," I love that expression because it's completely accurate. Crude oil is useless, you have to extract it out of the ground, refine it, and then bring it to distribution. Data is the same way, where you have to have developers and data architects get the data out. You need data scientists and tools, like Watson Studio, to refine it, and then you need to put it into production, and that's where marketing technologists, technologists, business analytics folks, and tools like Watson Machine Learning help bring the data and make it useful. - Okay, great, thank you. Tony Flath is a tech and media consultant, focus on cloud and cyber security, welcome. - Thank you. - Tell us a little bit about yourself and your thoughts on one of those questions. - Sure thing, well, thanks so much for having us on this show, really appreciate it. My background is in cloud, cyber security, and certainly in emerging tech with artificial intelligence. Certainly touched it from a cyber security play, how you can use machine learning, machine control, for better controlling security across the gamut. But I'll touch on your question about wine, is it a new bottle, new wine? Where does this come from, from artificial intelligence? And I really see it as a whole new wine that is coming along. When you look at emerging technology, and you look at all the deep learning that's happening, it's going just beyond being able to machine learn and know what's happening, it's making some meaning to that data. And things are being done with that data, from robotics, from automation, from all kinds of different things, where we're at a point in society where data, our technology is getting beyond us. Prior to this, it's always been command and control. You control data from a keyboard. Well, this is passing us. So, my passion and perspective on this is, the humanization of it, of IT. How do you ensure that people are in that process, right? - Excellent, and we're going to come back and talk about that. - Thanks so much. - Carla Gentry, @DataNerd? Great to see you live, as opposed to just in the ether on Twitter. Data scientist, and owner of Analytical Solution. Welcome, your thoughts? - Thank you for having us. Mine is, is data the new oil? And I'd like to rephrase that is, data equals human lives. So, with all the other artificial intelligence and everything that's going on, and all the algorithms and models that's being created, we have to think about things being biased, being fair, and understand that this data has impacts on people's lives. - Great. Steve Ardire, my paisan. - Paisan. - AI startup adviser, welcome, thanks for coming to theCUBE. - Thanks Dave. So, uh, my first career was geology, and I view AI as the new oil, but data is the new oil, but AI is the refinery. I've used that many times before. In fact, really, I've moved from just AI to augmented intelligence. So, augmented intelligence is really the way forward. This was a presentation I gave at IBM Think last spring, has almost 100,000 impressions right now, and the fundamental reason why is machines can attend to vastly more information than humans, but you still need humans in the loop, and we can talk about what they're bringing in terms of common sense reasoning, because big data does the who, what, when, and where, but not the why, and why is really the Holy Grail for causal analysis and reasoning. - Excellent, Bob Hayes, Business Over Broadway, welcome, great to see you again. - Thanks for having me. So, my background is in psychology, industrial psychology, and I'm interested in things like customer experience, data science, machine learning, so forth. And I'll answer the question around big data versus AI. And I think there's other terms we could talk about, big data, data science, machine learning, AI. And to me, it's kind of all the same. It's always been about analytics, and getting value from your data, big, small, what have you. And there's subtle differences among those terms. Machine learning is just about making a prediction, and knowing if things are classified correctly. Data science is more about understanding why things work, and understanding maybe the ethics behind it, what variables are predicting that outcome. But still, it's all the same thing, it's all about using data in a way that we can get value from that, as a society, in residences. - Excellent, thank you. Theo Lau, founder of Unconventional Ventures. What's your story? - Yeah, so, my background is driving technology innovation. So, together with my partner, what our work does is we work with organizations to try to help them leverage technology to drive systematic financial wellness. We connect founders, startup founders, with funders, we help them get money in the ecosystem. We also work with them to look at, how do we leverage emerging technology to do something good for the society. So, very much on point to what Bob was saying about. So when I look at AI, it is not new, right, it's been around for quite a while. But what's different is the amount of technological power that we have allow us to do so much more than what we were able to do before. And so, what my mantra is, great ideas can come from anywhere in the society, but it's our job to be able to leverage technology to shine a spotlight on people who can use this to do something different, to help seniors in our country to do better in their financial planning. - Okay, so, in your mind, it's not just a same wine, new bottle, it's more substantive than that. - [Theo] It's more substantive, it's a much better bottle. - Karen Lopez, senior project manager for Architect InfoAdvisors, welcome. - Thank you. So, I'm DataChick on twitter, and so that kind of tells my focus is that I'm here, I also call myself a data evangelist, and that means I'm there at organizations helping stand up for the data, because to me, that's the proxy for standing up for the people, and the places and the events that that data describes. That means I have a focus on security, data privacy and protection as well. And I'm going to kind of combine your two questions about whether data is the new wine bottle, I think is the combination. Oh, see, now I'm talking about alcohol. (laughing) But anyway, you know, all analogies are imperfect, so whether we say it's the new wine, or, you know, same wine, or whether it's oil, is that the analogy's good for both of them, but unlike oil, the amount of data's just growing like crazy, and the oil, we know at some point, I kind of doubt that we're going to hit peak data where we have not enough data, like we're going to do with oil. But that says to me that, how did we get here with big data, with machine learning and AI? And from my point of view, as someone who's been focused on data for 35 years, we have hit this perfect storm of open source technologies, cloud architectures and cloud services, data innovation, that if we didn't have those, we wouldn't be talking about large machine learning and deep learning-type things. So, because we have all these things coming together at the same time, we're now at explosions of data, which means we also have to protect them, and protect the people from doing harm with data, we need to do data for good things, and all of that. - Great, definite differences, we're not running out of data, data's like the terrible tribbles. (laughing) - Yes, but it's very cuddly, data is. - Yeah, cuddly data. Mark Lynd, founder of Relevant Track? - That's right. - I like the name. What's your story? - Well, thank you, and it actually plays into what my interest is. It's mainly around AI in enterprise operations and cyber security. You know, these teams that are in enterprise operations both, it can be sales, marketing, all the way through the organization, as well as cyber security, they're often under-sourced. And they need, what Steve pointed out, they need augmented intelligence, they need to take AI, the big data, all the information they have, and make use of that in a way where they're able to, even though they're under-sourced, make some use and some value for the organization, you know, make better use of the resources they have to grow and support the strategic goals of the organization. And oftentimes, when you get to budgeting, it doesn't really align, you know, you're short people, you're short time, but the data continues to grow, as Karen pointed out. So, when you take those together, using AI to augment, provided augmented intelligence, to help them get through that data, make real tangible decisions based on information versus just raw data, especially around cyber security, which is a big hit right now, is really a great place to be, and there's a lot of stuff going on, and a lot of exciting stuff in that area. - Great, thank you. Kevin L. Jackson, author and founder of GovCloud. GovCloud, that's big. - Yeah, GovCloud Network. Thank you very much for having me on the show. Up and working on cloud computing, initially in the federal government, with the intelligence community, as they adopted cloud computing for a lot of the nation's major missions. And what has happened is now I'm working a lot with commercial organizations and with the security of that data. And I'm going to sort of, on your questions, piggyback on Karen. There was a time when you would get a couple of bottles of wine, and they would come in, and you would savor that wine, and sip it, and it would take a few days to get through it, and you would enjoy it. The problem now is that you don't get a couple of bottles of wine into your house, you get two or three tankers of data. So, it's not that it's a new wine, you're just getting a lot of it. And the infrastructures that you need, before you could have a couple of computers, and a couple of people, now you need cloud, you need automated infrastructures, you need huge capabilities, and artificial intelligence and AI, it's what we can use as the tool on top of these huge infrastructures to drink that, you know. - Fire hose of wine. - Fire hose of wine. (laughs) - Everybody's having a good time. - Everybody's having a great time. (laughs) - Yeah, things are booming right now. Excellent, well, thank you all for those intros. Peter, I want to ask you a question. So, I heard there's some similarities and some definite differences with regard to data being the new oil. You have a perspective on this, and I wonder if you could inject it into the conversation. - Sure, so, the perspective that we take in a lot of conversations, a lot of folks here in theCUBE, what we've learned, and I'll kind of answer both questions a little bit. First off, on the question of data as the new oil, we definitely think that data is the new asset that business is going to be built on, in fact, our perspective is that there really is a difference between business and digital business, and that difference is data as an asset. And if you want to understand data transformation, you understand the degree to which businesses reinstitutionalizing work, reorganizing its people, reestablishing its mission around what you can do with data as an asset. The difference between data and oil is that oil still follows the economics of scarcity. Data is one of those things, you can copy it, you can share it, you can easily corrupt it, you can mess it up, you can do all kinds of awful things with it if you're not careful. And it's that core fundamental proposition that as an asset, when we think about cyber security, we think, in many respects, that is the approach to how we can go about privatizing data so that we can predict who's actually going to be able to appropriate returns on it. So, it's a good analogy, but as you said, it's not entirely perfect, but it's not perfect in a really fundamental way. It's not following the laws of scarcity, and that has an enormous effect. - In other words, I could put oil in my car, or I could put oil in my house, but I can't put the same oil in both. - Can't put it in both places. And now, the issue of the wine, I think it's, we think that it is, in fact, it is a new wine, and very simple abstraction, or generalization we come up with is the issue of agency. That analytics has historically not taken on agency, it hasn't acted on behalf of the brand. AI is going to act on behalf of the brand. Now, you're going to need both of them, you can't separate them. - A lot of implications there in terms of bias. - Absolutely. - In terms of privacy. You have a thought, here, Chris? - Well, the scarcity is our compute power, and our ability for us to process it. I mean, it's the same as oil, there's a ton of oil under the ground, right, we can't get to it as efficiently, or without severe environmental consequences to use it. Yeah, when you use it, it's transformed, but our scarcity is compute power, and our ability to use it intelligently. - Or even when you find it. I have data, I can apply it to six different applications, I have oil, I can apply it to one, and that's going to matter in how we think about work. - But one thing I'd like to add, sort of, you're talking about data as an asset. The issue we're having right now is we're trying to learn how to manage that asset. Artificial intelligence is a way of managing that asset, and that's important if you're going to use and leverage big data. - Yeah, but see, everybody's talking about the quantity, the quantity, it's not always the quantity. You know, we can have just oodles and oodles of data, but if it's not clean data, if it's not alphanumeric data, which is what's needed for machine learning. So, having lots of data is great, but you have to think about the signal versus the noise. So, sometimes you get so much data, you're looking at over-fitting, sometimes you get so much data, you're looking at biases within the data. So, it's not the amount of data, it's the, now that we have all of this data, making sure that we look at relevant data, to make sure we look at clean data. - One more thought, and we have a lot to cover, I want to get inside your big brain. - I was just thinking about it from a cyber security perspective, one of my customers, they were looking at the data that just comes from the perimeter, your firewalls, routers, all of that, and then not even looking internally, just the perimeter alone, and the amount of data being pulled off of those. And then trying to correlate that data so it makes some type of business sense, or they can determine if there's incidents that may happen, and take a predictive action, or threats that might be there because they haven't taken a certain action prior, it's overwhelming to them. So, having AI now, to be able to go through the logs to look at, and there's so many different types of data that come to those logs, but being able to pull that information, as well as looking at end points, and all that, and people's houses, which are an extension of the network oftentimes, it's an amazing amount of data, and they're only looking at a small portion today because they know, there's not enough resources, there's not enough trained people to do all that work. So, AI is doing a wonderful way of doing that. And some of the tools now are starting to mature and be sophisticated enough where they provide that augmented intelligence that Steve talked about earlier. - So, it's complicated. There's infrastructure, there's security, there's a lot of software, there's skills, and on and on. At IBM Think this year, Ginni Rometty talked about, there were a couple of themes, one was augmented intelligence, that was something that was clear. She also talked a lot about privacy, and you own your data, etc. One of the things that struck me was her discussion about incumbent disruptors. So, if you look at the top five companies, roughly, Facebook with fake news has dropped down a little bit, but top five companies in terms of market cap in the US. They're data companies, all right. Apple just hit a trillion, Amazon, Google, etc. How do those incumbents close the gap? Is that concept of incumbent disruptors actually something that is being put into practice? I mean, you guys work with a lot of practitioners. How are they going to close that gap with the data haves, meaning data at their core of their business, versus the data have-nots, it's not that they don't have a lot of data, but it's in silos, it's hard to get to? - Yeah, I got one more thing, so, you know, these companies, and whoever's going to be big next is, you have a digital persona, whether you want it or not. So, if you live in a farm out in the middle of Oklahoma, you still have a digital persona, people are collecting data on you, they're putting profiles of you, and the big companies know about you, and people that first interact with you, they're going to know that you have this digital persona. Personal AI, when AI from these companies could be used simply and easily, from a personal deal, to fill in those gaps, and to have a digital persona that supports your family, your growth, both personal and professional growth, and those type of things, there's a lot of applications for AI on a personal, enterprise, even small business, that have not been done yet, but the data is being collected now. So, you talk about the oil, the oil is being built right now, lots, and lots, and lots of it. It's the applications to use that, and turn that into something personally, professionally, educationally, powerful, that's what's missing. But it's coming. - Thank you, so, I'll add to that, and in answer to your question you raised. So, one example we always used in banking is, if you look at the big banks, right, and then you look at from a consumer perspective, and there's a lot of talk about Amazon being a bank. But the thing is, Amazon doesn't need to be a bank, they provide banking services, from a consumer perspective they don't really care if you're a bank or you're not a bank, but what's different between Amazon and some of the banks is that Amazon, like you say, has a lot of data, and they know how to make use of the data to offer something as relevant that consumers want. Whereas banks, they have a lot of data, but they're all silos, right. So, it's not just a matter of whether or not you have the data, it's also, can you actually access it and make something useful out of it so that you can create something that consumers want? Because otherwise, you're just a pipe. - Totally agree, like, when you look at it from a perspective of, there's a lot of terms out there, digital transformation is thrown out so much, right, and go to cloud, and you migrate to cloud, and you're going to take everything over, but really, when you look at it, and you both touched on it, it's the economics. You have to look at the data from an economics perspective, and how do you make some kind of way to take this data meaningful to your customers, that's going to work effectively for them, that they're going to drive? So, when you look at the big, big cloud providers, I think the push in things that's going to happen in the next few years is there's just going to be a bigger migration to public cloud. So then, between those, they have to differentiate themselves. Obvious is artificial intelligence, in a way that makes it easy to aggregate data from across platforms, to aggregate data from multi-cloud, effectively. To use that data in a meaningful way that's going to drive, not only better decisions for your business, and better outcomes, but drives our opportunities for customers, drives opportunities for employees and how they work. We're at a really interesting point in technology where we get to tell technology what to do. It's going beyond us, it's no longer what we're telling it to do, it's going to go beyond us. So, how we effectively manage that is going to be where we see that data flow, and those big five or big four, really take that to the next level. - Now, one of the things that Ginni Rometty said was, I forget the exact step, but it was like, 80% of the data, is not searchable. Kind of implying that it's sitting somewhere behind a firewall, presumably on somebody's premises. So, it was kind of interesting. You're talking about, certainly, a lot of momentum for public cloud, but at the same time, a lot of data is going to stay where it is. - Yeah, we're assuming that a lot of this data is just sitting there, available and ready, and we look at the desperate, or disparate kind of database situation, where you have 29 databases, and two of them have unique quantifiers that tie together, and the rest of them don't. So, there's nothing that you can do with that data. So, artificial intelligence is just that, it's artificial intelligence, so, they know, that's machine learning, that's natural language, that's classification, there's a lot of different parts of that that are moving, but we also have to have IT, good data infrastructure, master data management, compliance, there's so many moving parts to this, that it's not just about the data anymore. - I want to ask Steve to chime in here, go ahead. - Yeah, so, we also have to change the mentality that it's not just enterprise data. There's data on the web, the biggest thing is Internet of Things, the amount of sensor data will make the current data look like chump change. So, data is moving faster, okay. And this is where the sophistication of machine learning needs to kick in, going from just mostly supervised-learning today, to unsupervised learning. And in order to really get into, as I said, big data, and credible AI does the who, what, where, when, and how, but not the why. And this is really the Holy Grail to crack, and it's actually under a new moniker, it's called explainable AI, because it moves beyond just correlation into root cause analysis. Once we have that, then you have the means to be able to tap into augmented intelligence, where humans are working with the machines. - Karen, please. - Yeah, so, one of the things, like what Carla was saying, and what a lot of us had said, I like to think of the advent of ML technologies and AI are going to help me as a data architect to love my data better, right? So, that includes protecting it, but also, when you say that 80% of the data is unsearchable, it's not just an access problem, it's that no one knows what it was, what the sovereignty was, what the metadata was, what the quality was, or why there's huge anomalies in it. So, my favorite story about this is, in the 1980s, about, I forget the exact number, but like, 8 million children disappeared out of the US in April, at April 15th. And that was when the IRS enacted a rule that, in order to have a dependent, a deduction for a dependent on your tax returns, they had to have a valid social security number, and people who had accidentally miscounted their children and over-claimed them, (laughter) over the years them, stopped doing that. Well, some days it does feel like you have eight children running around. (laughter) - Agreed. - When, when that rule came about, literally, and they're not all children, because they're dependents, but literally millions of children disappeared off the face of the earth in April, but if you were doing analytics, or AI and ML, and you don't know that this anomaly happened, I can imagine in a hundred years, someone is saying some catastrophic event happened in April, 1983. (laughter) And what caused that, was it healthcare? Was it a meteor? Was it the clown attacking them? - That's where I was going. - Right. So, those are really important things that I want to use AI and ML to help me, not only document and capture that stuff, but to provide that information to the people, the data scientists and the analysts that are using the data. - Great story, thank you. Bob, you got a thought? You got the mic, go, jump in here. - Well, yeah, I do have a thought, actually. I was talking about, what Karen was talking about. I think it's really important that, not only that we understand AI, and machine learning, and data science, but that the regular folks and companies understand that, at the basic level. Because those are the people who will ask the questions, or who know what questions to ask of the data. And if they don't have the tools, and the knowledge of how to get access to that data, or even how to pose a question, then that data is going to be less valuable, I think, to companies. And the more that everybody knows about data, even people in congress. Remember when Zuckerberg talked about? (laughter) - That was scary. - How do you make money? It's like, we all know this. But, we need to educate the masses on just basic data analytics. - We could have an hour-long panel on that. - Yeah, absolutely. - Peter, you and I were talking about, we had a couple of questions, sort of, how far can we take artificial intelligence? How far should we? You know, so that brings in to the conversation of ethics, and bias, why don't you pick it up? - Yeah, so, one of the crucial things that we all are implying is that, at some point in time, AI is going to become a feature of the operations of our homes, our businesses. And as these technologies get more powerful, and they diffuse, and know about how to use them, diffuses more broadly, and you put more options into the hands of more people, the question slowly starts to turn from can we do it, to should we do it? And, one of the issues that I introduce is that I think the difference between big data and AI, specifically, is this notion of agency. The AI will act on behalf of, perhaps you, or it will act on behalf of your business. And that conversation is not being had, today. It's being had in arguments between Elon Musk and Mark Zuckerberg, which pretty quickly get pretty boring. (laughing) At the end of the day, the real question is, should this machine, whether in concert with others, or not, be acting on behalf of me, on behalf of my business, or, and when I say on behalf of me, I'm also talking about privacy. Because Facebook is acting on behalf of me, it's not just what's going on in my home. So, the question of, can it be done? A lot of things can be done, and an increasing number of things will be able to be done. We got to start having a conversation about should it be done? - So, humans exhibit tribal behavior, they exhibit bias. Their machine's going to pick that up, go ahead, please. - Yeah, one thing that sort of tag onto agency of artificial intelligence. Every industry, every business is now about identifying information and data sources, and their appropriate sinks, and learning how to draw value out of connecting the sources with the sinks. Artificial intelligence enables you to identify those sources and sinks, and when it gets agency, it will be able to make decisions on your behalf about what data is good, what data means, and who it should be. - What actions are good. - Well, what actions are good. - And what data was used to make those actions. - Absolutely. - And was that the right data, and is there bias of data? And all the way down, all the turtles down. - So, all this, the data pedigree will be driven by the agency of artificial intelligence, and this is a big issue. - It's really fundamental to understand and educate people on, there are four fundamental types of bias, so there's, in machine learning, there's intentional bias, "Hey, we're going to make "the algorithm generate a certain outcome "regardless of what the data says." There's the source of the data itself, historical data that's trained on the models built on flawed data, the model will behave in a flawed way. There's target source, which is, for example, we know that if you pull data from a certain social network, that network itself has an inherent bias. No matter how representative you try to make the data, it's still going to have flaws in it. Or, if you pull healthcare data about, for example, African-Americans from the US healthcare system, because of societal biases, that data will always be flawed. And then there's tool bias, there's limitations to what the tools can do, and so we will intentionally exclude some kinds of data, or not use it because we don't know how to, our tools are not able to, and if we don't teach people what those biases are, they won't know to look for them, and I know. - Yeah, it's like, one of the things that we were talking about before, I mean, artificial intelligence is not going to just create itself, it's lines of code, it's input, and it spits out output. So, if it learns from these learning sets, we don't want AI to become another buzzword. We don't want everybody to be an "AR guru" that has no idea what AI is. It takes months, and months, and months for these machines to learn. These learning sets are so very important, because that input is how this machine, think of it as your child, and that's basically the way artificial intelligence is learning, like your child. You're feeding it these learning sets, and then eventually it will make its own decisions. So, we know from some of us having children that you teach them the best that you can, but then later on, when they're doing their own thing, they're really, it's like a little myna bird, they've heard everything that you've said. (laughing) Not only the things that you said to them directly, but the things that you said indirectly. - Well, there are some very good AI researchers that might disagree with that metaphor, exactly. (laughing) But, having said that, what I think is very interesting about this conversation is that this notion of bias, one of the things that fascinates me about where AI goes, are we going to find a situation where tribalism more deeply infects business? Because we know that human beings do not seek out the best information, they seek out information that reinforces their beliefs. And that happens in business today. My line of business versus your line of business, engineering versus sales, that happens today, but it happens at a planning level, and when we start talking about AI, we have to put the appropriate dampers, understand the biases, so that we don't end up with deep tribalism inside of business. Because AI could have the deleterious effect that it actually starts ripping apart organizations. - Well, input is data, and then the output is, could be a lot of things. - Could be a lot of things. - And that's where I said data equals human lives. So that we look at the case in New York where the penal system was using this artificial intelligence to make choices on people that were released from prison, and they saw that that was a miserable failure, because that people that release actually re-offended, some committed murder and other things. So, I mean, it's, it's more than what anybody really thinks. It's not just, oh, well, we'll just train the machines, and a couple of weeks later they're good, we never have to touch them again. These things have to be continuously tweaked. So, just because you built an algorithm or a model doesn't mean you're done. You got to go back later, and continue to tweak these models. - Mark, you got the mic. - Yeah, no, I think one thing we've talked a lot about the data that's collected, but what about the data that's not collected? Incomplete profiles, incomplete datasets, that's a form of bias, and sometimes that's the worst. Because they'll fill that in, right, and then you can get some bias, but there's also a real issue for that around cyber security. Logs are not always complete, things are not always done, and when things are doing that, people make assumptions based on what they've collected, not what they didn't collect. So, when they're looking at this, and they're using the AI on it, that's only on the data collected, not on that that wasn't collected. So, if something is down for a little while, and no data's collected off that, the assumption is, well, it was down, or it was impacted, or there was a breach, or whatever, it could be any of those. So, you got to, there's still this human need, there's still the need for humans to look at the data and realize that there is the bias in there, there is, we're just looking at what data was collected, and you're going to have to make your own thoughts around that, and assumptions on how to actually use that data before you go make those decisions that can impact lots of people, at a human level, enterprise's profitability, things like that. And too often, people think of AI, when it comes out of there, that's the word. Well, it's not the word. - Can I ask a question about this? - Please. - Does that mean that we shouldn't act? - It does not. - Okay. - So, where's the fine line? - Yeah, I think. - Going back to this notion of can we do it, or should we do it? Should we act? - Yeah, I think you should do it, but you should use it for what it is. It's augmenting, it's helping you, assisting you to make a valued or good decision. And hopefully it's a better decision than you would've made without it. - I think it's great, I think also, your answer's right too, that you have to iterate faster, and faster, and faster, and discover sources of information, or sources of data that you're not currently using, and, that's why this thing starts getting really important. - I think you touch on a really good point about, should you or shouldn't you? You look at Google, and you look at the data that they've been using, and some of that out there, from a digital twin perspective, is not being approved, or not authorized, and even once they've made changes, it's still floating around out there. Where do you know where it is? So, there's this dilemma of, how do you have a digital twin that you want to have, and is going to work for you, and is going to do things for you to make your life easier, to do these things, mundane tasks, whatever? But how do you also control it to do things you don't want it to do? - Ad-based business models are inherently evil. (laughing) - Well, there's incentives to appropriate our data, and so, are things like blockchain potentially going to give users the ability to control their data? We'll see. - No, I, I'm sorry, but that's actually a really important point. The idea of consensus algorithms, whether it's blockchain or not, blockchain includes games, and something along those lines, whether it's Byzantine fault tolerance, or whether it's Paxos, consensus-based algorithms are going to be really, really important. Parts of this conversation, because the data's going to be more distributed, and you're going to have more elements participating in it. And so, something that allows, especially in the machine-to-machine world, which is a lot of what we're talking about right here, you may not have blockchain, because there's no need for a sense of incentive, which is what blockchain can help provide. - And there's no middleman. - And, well, all right, but there's really, the thing that makes blockchain so powerful is it liberates new classes of applications. But for a lot of the stuff that we're talking about, you can use a very powerful consensus algorithm without having a game side, and do some really amazing things at scale. - So, looking at blockchain, that's a great thing to bring up, right. I think what's inherently wrong with the way we do things today, and the whole overall design of technology, whether it be on-prem, or off-prem, is both the lock and key is behind the same wall. Whether that wall is in a cloud, or behind a firewall. So, really, when there is an audit, or when there is a forensics, it always comes down to a sysadmin, or something else, and the system administrator will have the finger pointed at them, because it all resides, you can edit it, you can augment it, or you can do things with it that you can't really determine. Now, take, as an example, blockchain, where you've got really the source of truth. Now you can take and have the lock in one place, and the key in another place. So that's certainly going to be interesting to see how that unfolds. - So, one of the things, it's good that, we've hit a lot of buzzwords, right now, right? (laughing) AI, and ML, block. - Bingo. - We got the blockchain bingo, yeah, yeah. So, one of the things is, you also brought up, I mean, ethics and everything, and one of the things that I've noticed over the last year or so is that, as I attend briefings or demos, everyone is now claiming that their product is AI or ML-enabled, or blockchain-enabled. And when you try to get answers to the questions, what you really find out is that some things are being pushed as, because they have if-then statements somewhere in their code, and therefore that's artificial intelligence or machine learning. - [Peter] At least it's not "go-to." (laughing) - Yeah, you're that experienced as well. (laughing) So, I mean, this is part of the thing you try to do as a practitioner, as an analyst, as an influencer, is trying to, you know, the hype of it all. And recently, I attended one where they said they use blockchain, and I couldn't figure it out, and it turns out they use GUIDs to identify things, and that's not blockchain, it's an identifier. (laughing) So, one of the ethics things that I think we, as an enterprise community, have to deal with, is the over-promising of AI, and ML, and deep learning, and recognition. It's not, I don't really consider it visual recognition services if they just look for red pixels. I mean, that's not quite the same thing. Yet, this is also making things much harder for your average CIO, or worse, CFO, to understand whether they're getting any value from these technologies. - Old bottle. - Old bottle, right. - And I wonder if the data companies, like that you talked about, or the top five, I'm more concerned about their nearly, or actual $1 trillion valuations having an impact on their ability of other companies to disrupt or enter into the field more so than their data technologies. Again, we're coming to another perfect storm of the companies that have data as their asset, even though it's still not on their financial statements, which is another indicator whether it's really an asset, is that, do we need to think about the terms of AI, about whose hands it's in, and who's, like, once one large trillion-dollar company decides that you are not a profitable company, how many other companies are going to buy that data and make that decision about you? - Well, and for the first time in business history, I think, this is true, we're seeing, because of digital, because it's data, you're seeing tech companies traverse industries, get into, whether it's content, or music, or publishing, or groceries, and that's powerful, and that's awful scary. - If you're a manger, one of the things your ownership is asking you to do is to reduce asset specificities, so that their capital could be applied to more productive uses. Data reduces asset specificities. It brings into question the whole notion of vertical industry. You're absolutely right. But you know, one quick question I got for you, playing off of this is, again, it goes back to this notion of can we do it, and should we do it? I find it interesting, if you look at those top five, all data companies, but all of them are very different business models, or they can classify the two different business models. Apple is transactional, Microsoft is transactional, Google is ad-based, Facebook is ad-based, before the fake news stuff. Amazon's kind of playing it both sides. - Yeah, they're kind of all on a collision course though, aren't they? - But, well, that's what's going to be interesting. I think, at some point in time, the "can we do it, should we do it" question is, brands are going to be identified by whether or not they have gone through that process of thinking about, should we do it, and say no. Apple is clearly, for example, incorporating that into their brand. - Well, Silicon Valley, broadly defined, if I include Seattle, and maybe Armlock, not so much IBM. But they've got a dual disruption agenda, they've always disrupted horizontal tech. Now they're disrupting vertical industries. - I was actually just going to pick up on what she was talking about, we were talking about buzzword, right. So, one we haven't heard yet is voice. Voice is another big buzzword right now, when you couple that with IoT and AI, here you go, bingo, do I got three points? (laughing) Voice recognition, voice technology, so all of the smart speakers, if you think about that in the world, there are 7,000 languages being spoken, but yet if you look at Google Home, you look at Siri, you look at any of the devices, I would challenge you, it would have a lot of problem understanding my accent, and even when my British accent creeps out, or it would have trouble understanding seniors, because the way they talk, it's very different than a typical 25-year-old person living in Silicon Valley, right. So, how do we solve that, especially going forward? We're seeing voice technology is going to be so more prominent in our homes, we're going to have it in the cars, we have it in the kitchen, it does everything, it listens to everything that we are talking about, not talking about, and records it. And to your point, is it going to start making decisions on our behalf, but then my question is, how much does it actually understand us? - So, I just want one short story. Siri can't translate a word that I ask it to translate into French, because my phone's set to Canadian English, and that's not supported. So I live in a bilingual French English country, and it can't translate. - But what this is really bringing up is if you look at society, and culture, what's legal, what's ethical, changes across the years. What was right 200 years ago is not right now, and what was right 50 years ago is not right now. - It changes across countries. - It changes across countries, it changes across regions. So, what does this mean when our AI has agency? How do we make ethical AI if we don't even know how to manage the change of what's right and what's wrong in human society? - One of the most important questions we have to worry about, right? - Absolutely. - But it also says one more thing, just before we go on. It also says that the issue of economies of scale, in the cloud. - Yes. - Are going to be strongly impacted, not just by how big you can build your data centers, but some of those regulatory issues that are going to influence strongly what constitutes good experience, good law, good acting on my behalf, agency. - And one thing that's underappreciated in the marketplace right now is the impact of data sovereignty, if you get back to data, countries are now recognizing the importance of managing that data, and they're implementing data sovereignty rules. Everyone talks about California issuing a new law that's aligned with GDPR, and you know what that meant. There are 30 other states in the United States alone that are modifying their laws to address this issue. - Steve. - So, um, so, we got a number of years, no matter what Ray Kurzweil says, until we get to artificial general intelligence. - The singularity's not so near? (laughing) - You know that he's changed the date over the last 10 years. - I did know it. - Quite a bit. And I don't even prognosticate where it's going to be. But really, where we're at right now, I keep coming back to, is that's why augmented intelligence is really going to be the new rage, humans working with machines. One of the hot topics, and the reason I chose to speak about it is, is the future of work. I don't care if you're a millennial, mid-career, or a baby boomer, people are paranoid. As machines get smarter, if your job is routine cognitive, yes, you have a higher propensity to be automated. So, this really shifts a number of things. A, you have to be a lifelong learner, you've got to learn new skillsets. And the dynamics are changing fast. Now, this is also a great equalizer for emerging startups, and even in SMBs. As the AI improves, they can become more nimble. So back to your point regarding colossal trillion dollar, wait a second, there's going to be quite a sea change going on right now, and regarding demographics, in 2020, millennials take over as the majority of the workforce, by 2025 it's 75%. - Great news. (laughing) - As a baby boomer, I try my damnedest to stay relevant. - Yeah, surround yourself with millennials is the takeaway there. - Or retire. (laughs) - Not yet. - One thing I think, this goes back to what Karen was saying, if you want a basic standard to put around the stuff, look at the old ISO 38500 framework. Business strategy, technology strategy. You have risk, compliance, change management, operations, and most importantly, the balance sheet in the financials. AI and what Tony was saying, digital transformation, if it's of meaning, it belongs on a balance sheet, and should factor into how you value your company. All the cyber security, and all of the compliance, and all of the regulation, is all stuff, this framework exists, so look it up, and every time you start some kind of new machine learning project, or data sense project, say, have we checked the box on each of these standards that's within this machine? And if you haven't, maybe slow down and do your homework. - To see a day when data is going to be valued on the balance sheet. - It is. - It's already valued as part of the current, but it's good will. - Certainly market value, as we were just talking about. - Well, we're talking about all of the companies that have opted in, right. There's tens of thousands of small businesses just in this region alone that are opt-out. They're small family businesses, or businesses that really aren't even technology-aware. But data's being collected about them, it's being on Yelp, they're being rated, they're being reviewed, the success to their business is out of their hands. And I think what's really going to be interesting is, you look at the big data, you look at AI, you look at things like that, blockchain may even be a potential for some of that, because of mutability, but it's when all of those businesses, when the technology becomes a cost, it's cost-prohibitive now, for a lot of them, or they just don't want to do it, and they're proudly opt-out. In fact, we talked about that last night at dinner. But when they opt-in, the company that can do that, and can reach out to them in a way that is economically feasible, and bring them back in, where they control their data, where they control their information, and they do it in such a way where it helps them build their business, and it may be a generational business that's been passed on. Those kind of things are going to make a big impact, not only on the cloud, but the data being stored in the cloud, the AI, the applications that you talked about earlier, we talked about that. And that's where this bias, and some of these other things are going to have a tremendous impact if they're not dealt with now, at least ethically. - Well, I feel like we just got started, we're out of time. Time for a couple more comments, and then officially we have to wrap up. - Yeah, I had one thing to say, I mean, really, Henry Ford, and the creation of the automobile, back in the early 1900s, changed everything, because now we're no longer stuck in the country, we can get away from our parents, we can date without grandma and grandpa setting on the porch with us. (laughing) We can take long trips, so now we're looked at, we've sprawled out, we're not all living in the country anymore, and it changed America. So, AI has that same capabilities, it will automate mundane routine tasks that nobody wanted to do anyway. So, a lot of that will change things, but it's not going to be any different than the way things changed in the early 1900s. - It's like you were saying, constant reinvention. - I think that's a great point, let me make one observation on that. Every period of significant industrial change was preceded by the formation, a period of formation of new assets that nobody knew what to do with. Whether it was, what do we do, you know, industrial manufacturing, it was row houses with long shafts tied to an engine that was coal-fired, and drove a bunch of looms. Same thing, railroads, large factories for Henry Ford, before he figured out how to do an information-based notion of mass production. This is the period of asset formation for the next generation of social structures. - Those ship-makers are going to be all over these cars, I mean, you're going to have augmented reality right there, on your windshield. - Karen, bring it home. Give us the drop-the-mic moment. (laughing) - No pressure. - Your AV guys are not happy with that. So, I think the, it all comes down to, it's a people problem, a challenge, let's say that. The whole AI ML thing, people, it's a legal compliance thing. Enterprises are going to struggle with trying to meet five billion different types of compliance rules around data and its uses, about enforcement, because ROI is going to make risk of incarceration as well as return on investment, and we'll have to manage both of those. I think businesses are struggling with a lot of this complexity, and you just opened a whole bunch of questions that we didn't really have solid, "Oh, you can fix it by doing this." So, it's important that we think of this new world of data focus, data-driven, everything like that, is that the entire IT and business community needs to realize that focusing on data means we have to change how we do things and how we think about it, but we also have some of the same old challenges there. - Well, I have a feeling we're going to be talking about this for quite some time. What a great way to wrap up CUBE NYC here, our third day of activities down here at 37 Pillars, or Mercantile 37. Thank you all so much for joining us today. - Thank you. - Really, wonderful insights, really appreciate it, now, all this content is going to be available on theCUBE.net. We are exposing our video cloud, and our video search engine, so you'll be able to search our entire corpus of data. I can't wait to start searching and clipping up this session. Again, thank you so much, and thank you for watching. We'll see you next time.

Published Date : Sep 13 2018

SUMMARY :

- Well, and for the first

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ChrisPERSON

0.99+

StevePERSON

0.99+

Mark LyndPERSON

0.99+

KarenPERSON

0.99+

Karen LopezPERSON

0.99+

JohnPERSON

0.99+

Steve ArdirePERSON

0.99+

AmazonORGANIZATION

0.99+

BobPERSON

0.99+

Peter BurrisPERSON

0.99+

Dave VellantePERSON

0.99+

Chris PennPERSON

0.99+

GoogleORGANIZATION

0.99+

Carla GentryPERSON

0.99+

DavePERSON

0.99+

Theo LauPERSON

0.99+

CarlaPERSON

0.99+

Kevin L. JacksonPERSON

0.99+

MicrosoftORGANIZATION

0.99+

IBMORGANIZATION

0.99+

PeterPERSON

0.99+

Tony FlathPERSON

0.99+

TonyPERSON

0.99+

April, 1983DATE

0.99+

AppleORGANIZATION

0.99+

Silicon ValleyLOCATION

0.99+

Ray KurzweilPERSON

0.99+

ZuckerbergPERSON

0.99+

New YorkLOCATION

0.99+

FacebookORGANIZATION

0.99+

2020DATE

0.99+

twoQUANTITY

0.99+

75%QUANTITY

0.99+

Ginni RomettyPERSON

0.99+

Bob HayesPERSON

0.99+

80%QUANTITY

0.99+

GovCloudORGANIZATION

0.99+

35 yearsQUANTITY

0.99+

2025DATE

0.99+

OklahomaLOCATION

0.99+

Mark ZuckerbergPERSON

0.99+

USLOCATION

0.99+

two questionsQUANTITY

0.99+

United StatesLOCATION

0.99+

AprilDATE

0.99+

SiliconANGLE MediaORGANIZATION

0.99+

29 databasesQUANTITY

0.99+

MarkPERSON

0.99+

7,000 languagesQUANTITY

0.99+

five billionQUANTITY

0.99+

Elon MuskPERSON

0.99+

1980sDATE

0.99+

Unconventional VenturesORGANIZATION

0.99+

IRSORGANIZATION

0.99+

SiriTITLE

0.99+

eight childrenQUANTITY

0.99+

bothQUANTITY

0.99+

oneQUANTITY

0.99+

ArmlockORGANIZATION

0.99+

FrenchOTHER

0.99+

Trust InsightORGANIZATION

0.99+

ninth yearQUANTITY

0.99+

congressORGANIZATION

0.99+

first timeQUANTITY

0.99+

PaisanPERSON

0.99+

Sreesha Rao, Niagara Bottling & Seth Dobrin, IBM | Change The Game: Winning With AI 2018


 

>> Live, from Times Square, in New York City, it's theCUBE covering IBM's Change the Game: Winning with AI. Brought to you by IBM. >> Welcome back to the Big Apple, everybody. I'm Dave Vellante, and you're watching theCUBE, the leader in live tech coverage, and we're here covering a special presentation of IBM's Change the Game: Winning with AI. IBM's got an analyst event going on here at the Westin today in the theater district. They've got 50-60 analysts here. They've got a partner summit going on, and then tonight, at Terminal 5 of the West Side Highway, they've got a customer event, a lot of customers there. We've talked earlier today about the hard news. Seth Dobern is here. He's the Chief Data Officer of IBM Analytics, and he's joined by Shreesha Rao who is the Senior Manager of IT Applications at California-based Niagara Bottling. Gentlemen, welcome to theCUBE. Thanks so much for coming on. >> Thank you, Dave. >> Well, thanks Dave for having us. >> Yes, always a pleasure Seth. We've known each other for a while now. I think we met in the snowstorm in Boston, sparked something a couple years ago. >> Yep. When we were both trapped there. >> Yep, and at that time, we spent a lot of time talking about your internal role as the Chief Data Officer, working closely with Inderpal Bhandari, and you guys are doing inside of IBM. I want to talk a little bit more about your other half which is working with clients and the Data Science Elite Team, and we'll get into what you're doing with Niagara Bottling, but let's start there, in terms of that side of your role, give us the update. >> Yeah, like you said, we spent a lot of time talking about how IBM is implementing the CTO role. While we were doing that internally, I spent quite a bit of time flying around the world, talking to our clients over the last 18 months since I joined IBM, and we found a consistent theme with all the clients, in that, they needed help learning how to implement data science, AI, machine learning, whatever you want to call it, in their enterprise. There's a fundamental difference between doing these things at a university or as part of a Kaggle competition than in an enterprise, so we felt really strongly that it was important for the future of IBM that all of our clients become successful at it because what we don't want to do is we don't want in two years for them to go "Oh my God, this whole data science thing was a scam. We haven't made any money from it." And it's not because the data science thing is a scam. It's because the way they're doing it is not conducive to business, and so we set up this team we call the Data Science Elite Team, and what this team does is we sit with clients around a specific use case for 30, 60, 90 days, it's really about 3 or 4 sprints, depending on the material, the client, and how long it takes, and we help them learn through this use case, how to use Python, R, Scala in our platform obviously, because we're here to make money too, to implement these projects in their enterprise. Now, because it's written in completely open-source, if they're not happy with what the product looks like, they can take their toys and go home afterwards. It's on us to prove the value as part of this, but there's a key point here. My team is not measured on sales. They're measured on adoption of AI in the enterprise, and so it creates a different behavior for them. So they're really about "Make the enterprise successful," right, not "Sell this software." >> Yeah, compensation drives behavior. >> Yeah, yeah. >> So, at this point, I ask, "Well, do you have any examples?" so Shreesha, let's turn to you. (laughing softly) Niagara Bottling -- >> As a matter of fact, Dave, we do. (laughing) >> Yeah, so you're not a bank with a trillion dollars in assets under management. Tell us about Niagara Bottling and your role. >> Well, Niagara Bottling is the biggest private label bottled water manufacturing company in the U.S. We make bottled water for Costcos, Walmarts, major national grocery retailers. These are our customers whom we service, and as with all large customers, they're demanding, and we provide bottled water at relatively low cost and high quality. >> Yeah, so I used to have a CIO consultancy. We worked with every CIO up and down the East Coast. I always observed, really got into a lot of organizations. I was always observed that it was really the heads of Application that drove AI because they were the glue between the business and IT, and that's really where you sit in the organization, right? >> Yes. My role is to support the business and business analytics as well as I support some of the distribution technologies and planning technologies at Niagara Bottling. >> So take us the through the project if you will. What were the drivers? What were the outcomes you envisioned? And we can kind of go through the case study. >> So the current project that we leveraged IBM's help was with a stretch wrapper project. Each pallet that we produce--- we produce obviously cases of bottled water. These are stacked into pallets and then shrink wrapped or stretch wrapped with a stretch wrapper, and this project is to be able to save money by trying to optimize the amount of stretch wrap that goes around a pallet. We need to be able to maintain the structural stability of the pallet while it's transported from the manufacturing location to our customer's location where it's unwrapped and then the cases are used. >> And over breakfast we were talking. You guys produce 2833 bottles of water per second. >> Wow. (everyone laughs) >> It's enormous. The manufacturing line is a high speed manufacturing line, and we have a lights-out policy where everything runs in an automated fashion with raw materials coming in from one end and the finished goods, pallets of water, going out. It's called pellets to pallets. Pellets of plastic coming in through one end and pallets of water going out through the other end. >> Are you sitting on top of an aquifer? Or are you guys using sort of some other techniques? >> Yes, in fact, we do bore wells and extract water from the aquifer. >> Okay, so the goal was to minimize the amount of material that you used but maintain its stability? Is that right? >> Yes, during transportation, yes. So if we use too much plastic, we're not optimally, I mean, we're wasting material, and cost goes up. We produce almost 16 million pallets of water every single year, so that's a lot of shrink wrap that goes around those, so what we can save in terms of maybe 15-20% of shrink wrap costs will amount to quite a bit. >> So, how does machine learning fit into all of this? >> So, machine learning is way to understand what kind of profile, if we can measure what is happening as we wrap the pallets, whether we are wrapping it too tight or by stretching it, that results in either a conservative way of wrapping the pallets or an aggressive way of wrapping the pallets. >> I.e. too much material, right? >> Too much material is conservative, and aggressive is too little material, and so we can achieve some savings if we were to alternate between the profiles. >> So, too little material means you lose product, right? >> Yes, and there's a risk of breakage, so essentially, while the pallet is being wrapped, if you are stretching it too much there's a breakage, and then it interrupts production, so we want to try and avoid that. We want a continuous production, at the same time, we want the pallet to be stable while saving material costs. >> Okay, so you're trying to find that ideal balance, and how much variability is in there? Is it a function of distance and how many touches it has? Maybe you can share with that. >> Yes, so each pallet takes about 16-18 wraps of the stretch wrapper going around it, and that's how much material is laid out. About 250 grams of plastic that goes on there. So we're trying to optimize the gram weight which is the amount of plastic that goes around each of the pallet. >> So it's about predicting how much plastic is enough without having breakage and disrupting your line. So they had labeled data that was, "if we stretch it this much, it breaks. If we don't stretch it this much, it doesn't break, but then it was about predicting what's good enough, avoiding both of those extremes, right? >> Yes. >> So it's a truly predictive and iterative model that we've built with them. >> And, you're obviously injecting data in terms of the trip to the store as well, right? You're taking that into consideration in the model, right? >> Yeah that's mainly to make sure that the pallets are stable during transportation. >> Right. >> And that is already determined how much containment force is required when your stretch and wrap each pallet. So that's one of the variables that is measured, but the inputs and outputs are-- the input is the amount of material that is being used in terms of gram weight. We are trying to minimize that. So that's what the whole machine learning exercise was. >> And the data comes from where? Is it observation, maybe instrumented? >> Yeah, the instruments. Our stretch-wrapper machines have an ignition platform, which is a Scada platform that allows us to measure all of these variables. We would be able to get machine variable information from those machines and then be able to hopefully, one day, automate that process, so the feedback loop that says "On this profile, we've not had any breaks. We can continue," or if there have been frequent breaks on a certain profile or machine setting, then we can change that dynamically as the product is moving through the manufacturing process. >> Yeah, so think of it as, it's kind of a traditional manufacturing production line optimization and prediction problem right? It's minimizing waste, right, while maximizing the output and then throughput of the production line. When you optimize a production line, the first step is to predict what's going to go wrong, and then the next step would be to include precision optimization to say "How do we maximize? Using the constraints that the predictive models give us, how do we maximize the output of the production line?" This is not a unique situation. It's a unique material that we haven't really worked with, but they had some really good data on this material, how it behaves, and that's key, as you know, Dave, and probable most of the people watching this know, labeled data is the hardest part of doing machine learning, and building those features from that labeled data, and they had some great data for us to start with. >> Okay, so you're collecting data at the edge essentially, then you're using that to feed the models, which is running, I don't know, where's it running, your data center? Your cloud? >> Yeah, in our data center, there's an instance of DSX Local. >> Okay. >> That we stood up. Most of the data is running through that. We build the models there. And then our goal is to be able to deploy to the edge where we can complete the loop in terms of the feedback that happens. >> And iterate. (Shreesha nods) >> And DSX Local, is Data Science Experience Local? >> Yes. >> Slash Watson Studio, so they're the same thing. >> Okay now, what role did IBM and the Data Science Elite Team play? You could take us through that. >> So, as we discussed earlier, adopting data science is not that easy. It requires subject matter, expertise. It requires understanding of data science itself, the tools and techniques, and IBM brought that as a part of the Data Science Elite Team. They brought both the tools and the expertise so that we could get on that journey towards AI. >> And it's not a "do the work for them." It's a "teach to fish," and so my team sat side by side with the Niagara Bottling team, and we walked them through the process, so it's not a consulting engagement in the traditional sense. It's how do we help them learn how to do it? So it's side by side with their team. Our team sat there and walked them through it. >> For how many weeks? >> We've had about two sprints already, and we're entering the third sprint. It's been about 30-45 days between sprints. >> And you have your own data science team. >> Yes. Our team is coming up to speed using this project. They've been trained but they needed help with people who have done this, been there, and have handled some of the challenges of modeling and data science. >> So it accelerates that time to --- >> Value. >> Outcome and value and is a knowledge transfer component -- >> Yes, absolutely. >> It's occurring now, and I guess it's ongoing, right? >> Yes. The engagement is unique in the sense that IBM's team came to our factory, understood what that process, the stretch-wrap process looks like so they had an understanding of the physical process and how it's modeled with the help of the variables and understand the data science modeling piece as well. Once they know both side of the equation, they can help put the physical problem and the digital equivalent together, and then be able to correlate why things are happening with the appropriate data that supports the behavior. >> Yeah and then the constraints of the one use case and up to 90 days, there's no charge for those two. Like I said, it's paramount that our clients like Niagara know how to do this successfully in their enterprise. >> It's a freebie? >> No, it's no charge. Free makes it sound too cheap. (everybody laughs) >> But it's part of obviously a broader arrangement with buying hardware and software, or whatever it is. >> Yeah, its a strategy for us to help make sure our clients are successful, and I want it to minimize the activation energy to do that, so there's no charge, and the only requirements from the client is it's a real use case, they at least match the resources I put on the ground, and they sit with us and do things like this and act as a reference and talk about the team and our offerings and their experiences. >> So you've got to have skin in the game obviously, an IBM customer. There's got to be some commitment for some kind of business relationship. How big was the collective team for each, if you will? >> So IBM had 2-3 data scientists. (Dave takes notes) Niagara matched that, 2-3 analysts. There were some working with the machines who were familiar with the machines and others who were more familiar with the data acquisition and data modeling. >> So each of these engagements, they cost us about $250,000 all in, so they're quite an investment we're making in our clients. >> I bet. I mean, 2-3 weeks over many, many weeks of super geeks time. So you're bringing in hardcore data scientists, math wizzes, stat wiz, data hackers, developer--- >> Data viz people, yeah, the whole stack. >> And the level of skills that Niagara has? >> We've got actual employees who are responsible for production, our manufacturing analysts who help aid in troubleshooting problems. If there are breakages, they go analyze why that's happening. Now they have data to tell them what to do about it, and that's the whole journey that we are in, in trying to quantify with the help of data, and be able to connect our systems with data, systems and models that help us analyze what happened and why it happened and what to do before it happens. >> Your team must love this because they're sort of elevating their skills. They're working with rock star data scientists. >> Yes. >> And we've talked about this before. A point that was made here is that it's really important in these projects to have people acting as product owners if you will, subject matter experts, that are on the front line, that do this everyday, not just for the subject matter expertise. I'm sure there's executives that understand it, but when you're done with the model, bringing it to the floor, and talking to their peers about it, there's no better way to drive this cultural change of adopting these things and having one of your peers that you respect talk about it instead of some guy or lady sitting up in the ivory tower saying "thou shalt." >> Now you don't know the outcome yet. It's still early days, but you've got a model built that you've got confidence in, and then you can iterate that model. What's your expectation for the outcome? >> We're hoping that preliminary results help us get up the learning curve of data science and how to leverage data to be able to make decisions. So that's our idea. There are obviously optimal settings that we can use, but it's going to be a trial and error process. And through that, as we collect data, we can understand what settings are optimal and what should we be using in each of the plants. And if the plants decide, hey they have a subjective preference for one profile versus another with the data we are capturing we can measure when they deviated from what we specified. We have a lot of learning coming from the approach that we're taking. You can't control things if you don't measure it first. >> Well, your objectives are to transcend this one project and to do the same thing across. >> And to do the same thing across, yes. >> Essentially pay for it, with a quick return. That's the way to do things these days, right? >> Yes. >> You've got more narrow, small projects that'll give you a quick hit, and then leverage that expertise across the organization to drive more value. >> Yes. >> Love it. What a great story, guys. Thanks so much for coming to theCUBE and sharing. >> Thank you. >> Congratulations. You must be really excited. >> No. It's a fun project. I appreciate it. >> Thanks for having us, Dave. I appreciate it. >> Pleasure, Seth. Always great talking to you, and keep it right there everybody. You're watching theCUBE. We're live from New York City here at the Westin Hotel. cubenyc #cubenyc Check out the ibm.com/winwithai Change the Game: Winning with AI Tonight. We'll be right back after a short break. (minimal upbeat music)

Published Date : Sep 13 2018

SUMMARY :

Brought to you by IBM. at Terminal 5 of the West Side Highway, I think we met in the snowstorm in Boston, sparked something When we were both trapped there. Yep, and at that time, we spent a lot of time and we found a consistent theme with all the clients, So, at this point, I ask, "Well, do you have As a matter of fact, Dave, we do. Yeah, so you're not a bank with a trillion dollars Well, Niagara Bottling is the biggest private label and that's really where you sit in the organization, right? and business analytics as well as I support some of the And we can kind of go through the case study. So the current project that we leveraged IBM's help was And over breakfast we were talking. (everyone laughs) It's called pellets to pallets. Yes, in fact, we do bore wells and So if we use too much plastic, we're not optimally, as we wrap the pallets, whether we are wrapping it too little material, and so we can achieve some savings so we want to try and avoid that. and how much variability is in there? goes around each of the pallet. So they had labeled data that was, "if we stretch it this that we've built with them. Yeah that's mainly to make sure that the pallets So that's one of the variables that is measured, one day, automate that process, so the feedback loop the predictive models give us, how do we maximize the Yeah, in our data center, Most of the data And iterate. the Data Science Elite Team play? so that we could get on that journey towards AI. And it's not a "do the work for them." and we're entering the third sprint. some of the challenges of modeling and data science. that supports the behavior. Yeah and then the constraints of the one use case No, it's no charge. with buying hardware and software, or whatever it is. minimize the activation energy to do that, There's got to be some commitment for some and others who were more familiar with the So each of these engagements, So you're bringing in hardcore data scientists, math wizzes, and that's the whole journey that we are in, in trying to Your team must love this because that are on the front line, that do this everyday, and then you can iterate that model. And if the plants decide, hey they have a subjective and to do the same thing across. That's the way to do things these days, right? across the organization to drive more value. Thanks so much for coming to theCUBE and sharing. You must be really excited. I appreciate it. I appreciate it. Change the Game: Winning with AI Tonight.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Shreesha RaoPERSON

0.99+

Seth DobernPERSON

0.99+

IBMORGANIZATION

0.99+

Dave VellantePERSON

0.99+

WalmartsORGANIZATION

0.99+

CostcosORGANIZATION

0.99+

DavePERSON

0.99+

30QUANTITY

0.99+

BostonLOCATION

0.99+

New York CityLOCATION

0.99+

CaliforniaLOCATION

0.99+

Seth DobrinPERSON

0.99+

60QUANTITY

0.99+

NiagaraORGANIZATION

0.99+

SethPERSON

0.99+

ShreeshaPERSON

0.99+

U.S.LOCATION

0.99+

Sreesha RaoPERSON

0.99+

third sprintQUANTITY

0.99+

90 daysQUANTITY

0.99+

twoQUANTITY

0.99+

first stepQUANTITY

0.99+

Inderpal BhandariPERSON

0.99+

Niagara BottlingORGANIZATION

0.99+

PythonTITLE

0.99+

bothQUANTITY

0.99+

tonightDATE

0.99+

ibm.com/winwithaiOTHER

0.99+

oneQUANTITY

0.99+

Terminal 5LOCATION

0.99+

two yearsQUANTITY

0.99+

about $250,000QUANTITY

0.98+

Times SquareLOCATION

0.98+

ScalaTITLE

0.98+

2018DATE

0.98+

15-20%QUANTITY

0.98+

IBM AnalyticsORGANIZATION

0.98+

eachQUANTITY

0.98+

todayDATE

0.98+

each palletQUANTITY

0.98+

KaggleORGANIZATION

0.98+

West Side HighwayLOCATION

0.97+

Each palletQUANTITY

0.97+

4 sprintsQUANTITY

0.97+

About 250 gramsQUANTITY

0.97+

both sideQUANTITY

0.96+

Data Science Elite TeamORGANIZATION

0.96+

one dayQUANTITY

0.95+

every single yearQUANTITY

0.95+

Niagara BottlingPERSON

0.93+

about two sprintsQUANTITY

0.93+

one endQUANTITY

0.93+

RTITLE

0.92+

2-3 weeksQUANTITY

0.91+

one profileQUANTITY

0.91+

50-60 analystsQUANTITY

0.91+

trillion dollarsQUANTITY

0.9+

2-3 data scientistsQUANTITY

0.9+

about 30-45 daysQUANTITY

0.88+

almost 16 million pallets of waterQUANTITY

0.88+

Big AppleLOCATION

0.87+

couple years agoDATE

0.87+

last 18 monthsDATE

0.87+

Westin HotelORGANIZATION

0.83+

palletQUANTITY

0.83+

#cubenycLOCATION

0.82+

2833 bottles of water per secondQUANTITY

0.82+

the Game: Winning with AITITLE

0.81+

Scott Hebner, IBM | Change the Game: Winning With AI


 

>> Live from Times Square in New York City, it's theCUBE. Covering IBMs Change the Game, Winning With AI. Brought to you by, IBM. >> Hi, everybody, we're back. My name is Dave Vellante and you're watching, theCUBE. The leader in live tech coverage. We're here with Scott Hebner who's the VP of marketing for IBM analytics and AI. Scott, it's good to see you again, thanks for coming back on theCUBE. >> It's always great to be here, I love doing these. >> So one of the things we've been talking about for quite some time on theCUBE now, we've been following the whole big data movement since the early Hadoop days. And now AI is the big trend and we always ask is this old wine, new bottle? Or is it something substantive? And the consensus is, it's real, it's real innovation because of the data. What's your perspective? >> I do think it's another one of these major waves, and if you kind of go back through time, there's been a series of them, right? We went from, sort of centralized computing into client server, and then we went from client server into the whole world of e-business in the internet, back around 2000 time frame or so. Then we went from internet computing to, cloud. Right? And I think the next major wave here is that next step is AI. And machine learning, and applying all this intelligent automation to the entire system. So I think, and it's not just a evolution, it's a pretty big change that's occurring here. Particularly the value that it can provide businesses is pretty profound. >> Well it seems like that's the innovation engine for at least the next decade. It's not Moore's Law anymore, it's applying machine intelligence and AI to the data and then being able to actually operationalize that at scale. With the cloud-like model, whether its OnPrem or Offprem, your thoughts on that? >> Yeah, I mean I think that's right on 'cause, if you kind of think about what AI's going to do, in the end it's going to be about just making much better decisions. Evidence based decisions, your ability to get to data that is previously unattainable, right? 'Cause it can discover things in real time. So it's about decision making and it's about fueling better, and more intelligent business processing. Right? But I think, what's really driving, sort of under the covers of that, is this idea that, are clients really getting what they need from their data? 'Cause we all know that the data's exploding in terms of growth. And what we know from our clients and from studies is only about 15% of what business leaders believe that they're getting what they need from their data. Yet most businesses are sitting on about 80% of their data, that's either inaccessible, un-analyzed, or un-trusted, right? So, what they're asking themselves is how do we first unlock the value of all this data. And they knew they have to do it in new ways, and I think the new ways starts to talk about cloud native architectures, containerization, things of that nature. Plus, artificial intelligence. So, I think what the market is starting to tell us is, AI is the way to unlock the value of all this data. And it's time to really do something significant with it otherwise, it's just going to be marginal progress over time. They need to make big progress. >> But data is plentiful, insights aren't. And part of your strategy is always been to bring insights out of that dividend and obviously focused on clients outcomes. But, a big part of your role is not only communicating IBMs analytic and AI strategy, but also helping shape that strategy. How do you, sort of summarize that strategy? >> Well we talk about the ladder to AI, 'cause one thing when you look at the actual clients that are ahead of the game here, and the challenges that they've faced to get to the value of AI, what we've learned, very, very clearly, is that the hardest part of AI is actually making your data ready for AI. It's about the data. It's sort of this notion that there's no AI without a information architecture, right? You have to build that architecture to make your data ready, 'cause bad data will be paralyzing to AI. And actually there was a great MIT Sloan study that they did earlier in the year that really dives into all these challenges and if I remember correctly, about 81% of them said that the number one challenge they had is, their data. Is their data ready? Do they know what data to get to? And that's really where it all starts. So we have this notion of the ladder to AI, it's several, very prescriptive steps, that we believe through best practices, you need to actually take to get to AI. And once you get to AI then it becomes about how you operationalize it in the way that it scales, that you have explainability, you have transparency, you have trust in what the model is. But it really much is a systematical approach here that we believe clients are going to get there in a much faster way. >> So the picture of the ladder here it starts with collect, and that's kind of what we did with, Hadoop, we collected a lot of data 'cause it was inexpensive and then organizing it, it says, create a trusted analytics foundation. Still building that sort of framework and then analyze and actually start getting insights on demand. And then automation, that seems to be the big theme now. Is, how do I get automation? Whether it's through machine learning, infusing AI everywhere. Be a blockchain is part of that automation, obviously. And it ultimately getting to the outcome, you call it trust, achieving trust and transparency, that's the outcome that we want here, right? >> I mean I think it all really starts with making your data simple and accessible. Which is about collecting the data. And doing it in a way you can tap into all types of data, regardless of where it lives. So the days of trying to move data around all over the place or, heavy duty replication and integration, let it sit where it is, but be able to virtualize it and collect it and containerize it, so it can be more accessible and usable. And that kind of goes to the point that 80% of the enterprised data, is inaccessible, right? So it all starts first with, are you getting all the data collected appropriately, and getting it into a way that you can use it. And then we start feeding things in like, IOT data, and sensors, and it becomes real time data that you have to do this against, right? So, notions of replicating and integrating and moving data around becomes not very practical. So that's step one. Step two is, once you collect all the data doesn't necessarily mean you trust it, right? So when we say, trust, we're talking about business ready data. Do people know what the data is? Are there business entities associated with it? Has it been cleansed, right? Has it been take out all the duplicate data? What do you when a situation with data, you know you have sources of data that are telling you different things. Like, I think we've all been on a treadmill where the phone, the watch, and the treadmill will actually tell you different distances, I mean what's the truth? The whole notion of organizing is getting it ready to be used by the business, in applying the policies, the compliance, and all the protections that you need for that data. Step three is, the ability to build out all this, ability to analyze it. To do it on scale, right, and to do it in a way that everyone can leverage the data. So not just the business analysts, but you need to enable everyone through self-service. And that's the advancements that we're getting in new analytics capabilities that make mere mortals able to get to that data and do their analysis. >> And if I could inject, the challenge with the sort of traditional decision support world is you had maybe two, or three people that were like, the data gods. You had to go through them, and they would get the analysis. And it's just, the agility wasn't there. >> Right. >> So you're trying to, democratizing that, putting it in the hands. >> Absolutely. >> Maybe the business user's not as much of an expert as the person who can build theCUBE, but they could find new use cases, and drive more value, right? >> Actually, from a developer, that needs to get access, and analytics infused into their applications, to the other end of the spectrum which could be, a marketing leader, a finance planner, someone who's planning budgets, supply chain planner. Right, so it's that whole spectrum, not only allowing them to tap into, and analyze the data and gain insights from it, but allow them to customize how they do it and do it in a more self-service. So that's the notion of scale on demand insights. It's really a cultural thing enabled through the technology. With that foundation, then you have the ability to start infuse, where I think the real power starts to kick in here. So I mean, all that's kind of making your data ready for AI, right? Then you start to infuse machine learning, everywhere. And that's when you start to build these models that are self-learning, that start to automate the ability to get to these insights, and to the data. And uncover what has previously been unattainable, right? And that's where the whole thing starts to become automated and more real time and more intelligent. And that's where those models then allow you to do things you couldn't do before. With the data, they're saying they're not getting access to. And then of course, once you get the models, just because you have good models doesn't mean that they've been operationalized, that they've been embedded in applications, embedded in business process. That you have trust and transparency and explainability of what it's telling you. And that's that top tier of the ladder, is really about embedding it, right, so that into your business process in a way that you trust it. So, we have a systematic set of approaches to that, best practices. And of course we have the portfolio that would help you step up that ladder. >> So the fat middle of this bell curve is, something kind of this maturity curve, is kind of the organize and analyze phase, that's probably where most people are today. And what's the big challenge of getting up that ladder, is it the algorithms, what is it? >> Well I think it, it clearly with most movements like this, starts with culture and skills, right? And the ability to just change the game within an organization. But putting that aside, I think what's really needed here is an information architecture that's based in the agility of a cloud native platform, that gives you the productivity, and truly allows you to leverage your data, wherever it resides. So whether it's in the private cloud, the public cloud, on premise, dedicated no matter where it sits, you want to be able to tap into all that data. 'Cause remember, the challenge with data is it's always changing. I don't mean the sources, but the actual data. So you need an architecture that can handle all that. Once you stabilize that, then you can start to apply better analytics to it. And so yeah, I think you're right. That is sort of the bell curve here. And with that foundation that's when the power of infusing machine learning and deep learning and neuronetworks, I mean those kind of AI technologies and models into it all, just takes it to a whole new level. But you can't do those models until you have those bottom tiers under control. >> Right, setting that foundation. Building that framework. >> Exactly. >> And then applying. >> What developers of AI applications, particularly those that have been successful, have told us pretty clearly, is that building the actual algorithms, is not necessarily the hard part. The hard part is making all the data ready for that. And in fact I was reading a survey the other day of actual data scientists and AI developers and 60% of them said the thing they hate the most, is all the data collection, data prep. 'Cause it's so hard. And so, a big part of our strategy is just to simplify that. Make it simple and accessible so that you can really focus on what you want to do and where the value is, which is building the algorithms and the models, and getting those deployed. >> Big challenge and hugely important, I mean IBM is a 100 year old company that's going through it's own digital transformation. You know, we've had Inderpal Bhandari on talking about how to essentially put data at the core of the company, it's a real hard problem for a lot of companies who were not born, you know, five or, seven years ago. And so, putting data at that core and putting human expertise around it as opposed to maybe, having whatever as the core. Humans or the plant or the manufacturing facility, that's a big change for a lot of organizations. Now at the end of the day IBM, and IBM sells strategy but the analytics group, you're in the software business so, what offerings do you have, to help people get there? >> Well in the collect step, it's essentially our hybrid data management portfolio. So think DB2, DB2 warehouse, DB2 event store, which is about IOT data. So there's a set of, and that's where big data in Hadoop and all that with Wentworth's, that's where that all fits in. So building the ability to access all this data, virtualize it, do things like Queryplex, things of that nature, is where that all sits. >> Queryplex being that to the data, virtualization capability. >> Yeah. >> Get to the data no matter where it is. >> To find a queary and don't worry about where it resides, we'll figure that out for you, kind of thought, right? In the organize, that is infosphere, so that's basically our unified governance and integration part of our portfolio. So again, that is collecting all this, taking the collected data and organizing it, and making sure you're compliant with whatever policies. And making it, you know, business ready, right? And so infosphere's where you should look to understand that portfolio better. When you get into scale and analytics on demand, that's Cognos analytics, it is our planning analytics portfolio. And that's essentially our business analytics part of all this. And some data science tools like, SPSS, we're doing statistical analysis and SPSS modeler, if we're doing statistical modeling, things of that nature, right? When you get into the automate and the ML, everywhere, that's Watson Studio which is the integrated development environment, right? Not just for IBM Watson, but all, has a huge array of open technologies in it like, TensorFlow and Python, and all those kind of things. So that's the development environment that Watson machine learning is the runtime that will allow you to run those models anywhere. So those are the two big pieces of that. And then from there you'll see IBM building out more and more of what we already have. But we have Watson applications. Like Watson Assistant, Watson Discovery. We have a huge portfolio of Watson APIs for everything from tone to speech, things of that nature. And then the ability to infuse that all into the business processes. Sort of where you're going to see IBM heading in the future here. >> I love how you brought that home, and we talked about the ladder and it's more than just a PowerPoint slide. It actually is fundamental to your strategy, it maps with your offerings. So you can get the heads nodding, with the customers. Where are you on this maturity curve, here's how we can help with products and services. And then the other thing I'll mention, you know, we kind of learned when we spoke to some others this week, and we saw some of your announcements previously, the Red Hat component which allows you to bring that cloud experience no matter where you are, and you've got technologies to do that, obviously, you know, Red Hat, you guys have been sort of birds of a feather, an open source. Because, your data is going to live wherever it lives, whether it's on Prem, whether it's in the cloud, whether it's in the Edge, and you want to bring sort of a common model. Whether it's, containers, kubernetes, being able to, bring that cloud experience to the data, your thoughts on that? >> And this is where the big deal comes in, is for each one of those tiers, so, the DB2 family, infosphere, business analytics, Cognos and all that, and Watson Studio, you can get started, purchase those technologies and start to use them, right, as individual products or softwares that service. What we're also doing is, this is the more important step into the future, is we're building all those capabilities into one integrated unified cloud platform. That's called, IBM Cloud Private for data. Think of that as a unified, collaborative team environment for AI and data science. Completely built on a cloud native architecture of containers and micro services. That will support a multi cloud environment. So, IBM cloud, other clouds, you mention Red Hat with Openshift, so, over time by adopting IBM Cloud Private for data, you'll get those steps of the ladder all integrated to one unified environment. So you have the ability to buy the unified environment, get involved in that, and it all integrated, no assembly required kind of thought. Or, you could assemble it by buying the individual components, or some combination of both. So a big part of the strategy is, a great deal of flexibility on how you acquire these capabilities and deploy them in your enterprise. There's no one size fits all. We give you a lot of flexibility to do that. >> And that's a true hybrid vision, I don't have to have just IBM and IBM cloud, you're recognizing other clouds out there, you're not exclusive like some companies, but that's really important. >> It's a multi cloud strategy, it really is, it's a multi cloud strategy. And that's exactly what we need, we recognize that most businesses, there's very few that have standardized on only one cloud provider, right? Most of them have multiples clouds, and then it breaks up of dedicated, private, public. And so our strategy is to enable this capability, think of it as a cloud data platform for AI, across all these clouds, regardless of what you have. >> All right, Scott, thanks for taking us through the strategies. I've always loved talking to you 'cause you're a clear thinker, and you explain things really well in simple terms, a lot of complexity here but, it is really important as the next wave sets up. So thanks very much for your time. >> Great, always great to be here, thank you. >> All right, good to see you. All right, thanks for watching everybody. We are now going to bring it back to CubeNYC so, thanks for watching and we will see you in the afternoon. We've got the panel, the influencer panel, that I'll be running with Peter Burris and John Furrier. So, keep it right there, we'll be right back. (upbeat music)

Published Date : Sep 13 2018

SUMMARY :

Brought to you by, IBM. it's good to see you again, It's always great to be And now AI is the big and if you kind of go back through time, and then being able to actually in the end it's going to be about And part of your strategy is of the ladder to AI, So the picture of the ladder And that's the advancements And it's just, the agility wasn't there. the hands. And that's when you start is it the algorithms, what is it? And the ability to just change Right, setting that foundation. is that building the actual algorithms, And so, putting data at that core So building the ability Queryplex being that to the data, Get to the data no matter And so infosphere's where you should look and you want to bring So a big part of the strategy is, I don't have to have And so our strategy is to I've always loved talking to you to be here, thank you. We've got the panel, the influencer panel,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

ScottPERSON

0.99+

Scott HebnerPERSON

0.99+

80%QUANTITY

0.99+

twoQUANTITY

0.99+

60%QUANTITY

0.99+

John FurrierPERSON

0.99+

New York CityLOCATION

0.99+

PythonTITLE

0.99+

Inderpal BhandariPERSON

0.99+

PowerPointTITLE

0.99+

IBMsORGANIZATION

0.99+

Peter BurrisPERSON

0.99+

TensorFlowTITLE

0.99+

three peopleQUANTITY

0.99+

bothQUANTITY

0.98+

Times SquareLOCATION

0.98+

WatsonTITLE

0.98+

about 80%QUANTITY

0.98+

Watson AssistantTITLE

0.98+

step oneQUANTITY

0.98+

oneQUANTITY

0.97+

MIT SloanORGANIZATION

0.97+

next decadeDATE

0.97+

about 15%QUANTITY

0.97+

Watson StudioTITLE

0.97+

this weekDATE

0.97+

Step twoQUANTITY

0.96+

Watson DiscoveryTITLE

0.96+

two big piecesQUANTITY

0.96+

Red HatTITLE

0.96+

about 81%QUANTITY

0.96+

OpenshiftTITLE

0.95+

CubeNYCLOCATION

0.94+

fiveDATE

0.94+

QueryplexTITLE

0.94+

firstQUANTITY

0.93+

todayDATE

0.92+

100 year oldQUANTITY

0.92+

WentworthORGANIZATION

0.91+

Step threeQUANTITY

0.91+

Change the Game: Winning With AITITLE

0.9+

one cloud providerQUANTITY

0.9+

one thingQUANTITY

0.89+

DB2TITLE

0.85+

each oneQUANTITY

0.84+

seven years agoDATE

0.83+

OnPremORGANIZATION

0.83+

wavesEVENT

0.82+

number one challengeQUANTITY

0.8+

Red HatTITLE

0.78+

OffpremORGANIZATION

0.77+

DB2ORGANIZATION

0.76+

majorEVENT

0.76+

major waveEVENT

0.75+

SPSSTITLE

0.73+

Moore's LawTITLE

0.72+

CognosTITLE

0.72+

nextEVENT

0.66+

CloudTITLE

0.64+

around 2000QUANTITY

0.64+

HadoopTITLE

0.61+

early Hadoop daysDATE

0.55+

themQUANTITY

0.51+

waveEVENT

0.5+

inDATE

0.49+

theCUBETITLE

0.45+

theCUBEORGANIZATION

0.42+

Rob Thomas, IBM | Change the Game: Winning With AI


 

>> Live from Times Square in New York City, it's The Cube covering IBM's Change the Game: Winning with AI, brought to you by IBM. >> Hello everybody, welcome to The Cube's special presentation. We're covering IBM's announcements today around AI. IBM, as The Cube does, runs of sessions and programs in conjunction with Strata, which is down at the Javits, and we're Rob Thomas, who's the General Manager of IBM Analytics. Long time Cube alum, Rob, great to see you. >> Dave, great to see you. >> So you guys got a lot going on today. We're here at the Westin Hotel, you've got an analyst event, you've got a partner meeting, you've got an event tonight, Change the game: winning with AI at Terminal 5, check that out, ibm.com/WinWithAI, go register there. But Rob, let's start with what you guys have going on, give us the run down. >> Yeah, it's a big week for us, and like many others, it's great when you have Strata, a lot of people in town. So, we've structured a week where, today, we're going to spend a lot of time with analysts and our business partners, talking about where we're going with data and AI. This evening, we've got a broadcast, it's called Winning with AI. What's unique about that broadcast is it's all clients. We've got clients on stage doing demonstrations, how they're using IBM technology to get to unique outcomes in their business. So I think it's going to be a pretty unique event, which should be a lot of fun. >> So this place, it looks like a cool event, a venue, Terminal 5, it's just up the street on the west side highway, probably a mile from the Javits Center, so definitely check that out. Alright, let's talk about, Rob, we've known each other for a long time, we've seen the early Hadoop days, you guys were very careful about diving in, you kind of let things settle and watched very carefully, and then came in at the right time. But we saw the evolution of so-called Big Data go from a phase of really reducing investments, cheaper data warehousing, and what that did is allowed people to collect a lot more data, and kind of get ready for this era that we're in now. But maybe you can give us your perspective on the phases, the waves that we've seen of data, and where we are today and where we're going. >> I kind of think of it as a maturity curve. So when I go talk to clients, I say, look, you need to be on a journey towards AI. I think probably nobody disagrees that they need something there, the question is, how do you get there? So you think about the steps, it's about, a lot of people started with, we're going to reduce the cost of our operations, we're going to use data to take out cost, that was kind of the Hadoop thrust, I would say. Then they moved to, well, now we need to see more about our data, we need higher performance data, BI data warehousing. So, everybody, I would say, has dabbled in those two area. The next leap forward is self-service analytics, so how do you actually empower everybody in your organization to use and access data? And the next step beyond that is, can I use AI to drive new business models, new levers of growth, for my business? So, I ask clients, pin yourself on this journey, most are, depends on the division or the part of the company, they're at different areas, but as I tell everybody, if you don't know where you are and you don't know where you want to go, you're just going to wind around, so I try to get them to pin down, where are you versus where do you want to go? >> So four phases, basically, the sort of cheap data store, the BI data warehouse modernization, self-service analytics, a big part of that is data science and data science collaboration, you guys have a lot of investments there, and then new business models with AI automation running on top. Where are we today? Would you say we're kind of in-between BI/DW modernization and on our way to self-service analytics, or what's your sense? >> I'd say most are right in the middle between BI data warehousing and self-service analytics. Self-service analytics is hard, because it requires you, sometimes to take a couple steps back, and look at your data. It's hard to provide self-service if you don't have a data catalog, if you don't have data security, if you haven't gone through the processes around data governance. So, sometimes you have to take one step back to go two steps forward, that's why I see a lot of people, I'd say, stuck in the middle right now. And the examples that you're going to see tonight as part of the broadcast are clients that have figured out how to break through that wall, and I think that's pretty illustrative of what's possible. >> Okay, so you're saying that, got to maybe take a step back and get the infrastructure right with, let's say a catalog, to give some basic things that they have to do, some x's and o's, you've got the Vince Lombardi played out here, and also, skillsets, I imagine, is a key part of that. So, that's what they've got to do to get prepared, and then, what's next? They start creating new business models, imagining this is where the cheap data officer comes in and it's an executive level, what are you seeing clients as part of digital transformation, what's the conversation like with customers? >> The biggest change, the great thing about the times we live in, is technology's become so accessible, you can do things very quickly. We created a team last year called Data Science Elite, and we've hired what we think are some of the best data scientists in the world. Their only job is to go work with clients and help them get to a first success with data science. So, we put a team in. Normally, one month, two months, normally a team of two or three people, our investment, and we say, let's go build a model, let's get to an outcome, and you can do this incredibly quickly now. I tell clients, I see somebody that says, we're going to spend six months evaluating and thinking about this, I was like, why would you spend six months thinking about this when you could actually do it in one month? So you just need to get over the edge and go try it. >> So we're going to learn more about the Data Science Elite team. We've got John Thomas coming on today, who is a distinguished engineer at IBM, and he's very much involved in that team, and I think we have a customer who's actually gone through that, so we're going to talk about what their experience was with the Data Science Elite team. Alright, you've got some hard news coming up, you've actually made some news earlier with Hortonworks and Red Hat, I want to talk about that, but you've also got some hard news today. Take us through that. >> Yeah, let's talk about all three. First, Monday we announced the expanded relationship with both Hortonworks and Red Hat. This goes back to one of the core beliefs I talked about, every enterprise is modernizing their data and application of states, I don't think there's any debate about that. We are big believers in Kubernetes and containers as the architecture to drive that modernization. The announcement on Monday was, we're working closer with Red Hat to take all of our data services as part of Cloud Private for Data, which are basically microservice for data, and we're running those on OpenShift, and we're starting to see great customer traction with that. And where does Hortonworks come in? Hadoop has been the outlier on moving to microservices containers, we're working with Hortonworks to help them make that move as well. So, it's really about the three of us getting together and helping clients with this modernization journey. >> So, just to remind people, you remember ODPI, folks? It was all this kerfuffle about, why do we even need this? Well, what's interesting to me about this triumvirate is, well, first of all, Red Hat and Hortonworks are hardcore opensource, IBM's always been a big supporter of open source. You three got together and you're proving now the productivity for customers of this relationship. You guys don't talk about this, but Hortonworks had to, when it's public call, that the relationship with IBM drove many, many seven-figure deals, which, obviously means that customers are getting value out of this, so it's great to see that come to fruition, and it wasn't just a Barney announcement a couple years ago, so congratulations on that. Now, there's this other news that you guys announced this morning, talk about that. >> Yeah, two other things. One is, we announced a relationship with Stack Overflow. 50 million developers go to Stack Overflow a month, it's an amazing environment for developers that are looking to do new things, and we're sponsoring a community around AI. Back to your point before, you said, is there a skills gap in enterprises, there absolutely is, I don't think that's a surprise. Data science, AI developers, not every company has the skills they need, so we're sponsoring a community to help drive the growth of skills in and around data science and AI. So things like Python, R, Scala, these are the languages of data science, and it's a great relationship with us and Stack Overflow to build a community to get things going on skills. >> Okay, and then there was one more. >> Last one's a product announcement. This is one of the most interesting product annoucements we've had in quite a while. Imagine this, you write a sequel query, and traditional approach is, I've got a server, I point it as that server, I get the data, it's pretty limited. We're announcing technology where I write a query, and it can find data anywhere in the world. I think of it as wide-area sequel. So it can find data on an automotive device, a telematics device, an IoT device, it could be a mobile device, we think of it as sequel the whole world. You write a query, you can find the data anywhere it is, and we take advantage of the processing power on the edge. The biggest problem with IoT is, it's been the old mantra of, go find the data, bring it all back to a centralized warehouse, that makes it impossible to do it real time. We're enabling real time because we can write a query once, find data anywhere, this is technology we've had in preview for the last year. We've been working with a lot of clients to prove out used cases to do it, we're integrating as the capability inside of IBM Cloud Private for Data. So if you buy IBM Cloud for Data, it's there. >> Interesting, so when you've been around as long as I have, long enough to see some of the pendulums swings, and it's clearly a pendulum swing back toward decentralization in the edge, but the key is, from what you just described, is you're sort of redefining the boundary, so I presume it's the edge, any Cloud, or on premises, where you can find that data, is that correct? >> Yeah, so it's multi-Cloud. I mean, look, every organization is going to be multi-Cloud, like 100%, that's going to happen, and that could be private, it could be multiple public Cloud providers, but the key point is, data on the edge is not just limited to what's in those Clouds. It could be anywhere that you're collecting data. And, we're enabling an architecture which performs incredibly well, because you take advantage of processing power on the edge, where you can get data anywhere that it sits. >> Okay, so, then, I'm setting up a Cloud, I'll call it a Cloud architecture, that encompasses the edge, where essentially, there are no boundaries, and you're bringing security. We talked about containers before, we've been talking about Kubernetes all week here at a Big Data show. And then of course, Cloud, and what's interesting, I think many of the Hadoop distral vendors kind of missed Cloud early on, and then now are sort of saying, oh wow, it's a hybrid world and we've got a part, you guys obviously made some moves, a couple billion dollar moves, to do some acquisitions and get hardcore into Cloud, so that becomes a critical component. You're not just limiting your scope to the IBM Cloud. You're recognizing that it's a multi-Cloud world, that' what customers want to do. Your comments. >> It's multi-Cloud, and it's not just the IBM Cloud, I think the most predominant Cloud that's emerging is every client's private Cloud. Every client I talk to is building out a containerized architecture. They need their own Cloud, and they need seamless connectivity to any public Cloud that they may be using. This is why you see such a premium being put on things like data ingestion, data curation. It's not popular, it's not exciting, people don't want to talk about it, but we're the biggest inhibitors, to this AI point, comes back to data curation, data ingestion, because if you're dealing with multiple Clouds, suddenly your data's in a bunch of different spots. >> Well, so you're basically, and we talked about this a lot on The Cube, you're bringing the Cloud model to the data, wherever the data lives. Is that the right way to think about it? >> I think organizations have spoken, set aside what they say, look at their actions. Their actions say, we don't want to move all of our data to any particular Cloud, we'll move some of our data. We need to give them seamless connectivity so that they can leave their data where they want, we can bring Cloud-Native Architecture to their data, we could also help move their data to a Cloud-Native architecture if that's what they prefer. >> Well, it makes sense, because you've got physics, latency, you've got economics, moving all the data into a public Cloud is expensive and just doesn't make economic sense, and then you've got things like GDPR, which says, well, you have to keep the data, certain laws of the land, if you will, that say, you've got to keep the data in whatever it is, in Germany, or whatever country. So those sort of edicts dictate how you approach managing workloads and what you put where, right? Okay, what's going on with Watson? Give us the update there. >> I get a lot of questions, people trying to peel back the onion of what exactly is it? So, I want to make that super clear here. Watson is a few things, start at the bottom. You need a runtime for models that you've built. So we have a product called Watson Machine Learning, runs anywhere you want, that is the runtime for how you execute models that you've built. Anytime you have a runtime, you need somewhere where you can build models, you need a development environment. That is called Watson Studio. So, we had a product called Data Science Experience, we've evolved that into Watson Studio, connecting in some of those features. So we have Watson Studio, that's the development environment, Watson Machine Learning, that's the runtime. Now you move further up the stack. We have a set of APIs that bring in human features, vision, natural language processing, audio analytics, those types of things. You can integrate those as part of a model that you build. And then on top of that, we've got things like Watson Applications, we've got Watson for call centers, doing customer service and chatbots, and then we've got a lot of clients who've taken pieces of that stack and built their own AI solutions. They've taken some of the APIs, they've taken some of the design time, the studio, they've taken some of the Watson Machine Learning. So, it is really a stack of capabilities, and where we're driving the greatest productivity, this is in a lot of the examples you'll see tonight for clients, is clients that have bought into this idea of, I need a development environment, I need a runtime, where I can deploy models anywhere. We're getting a lot of momentum on that, and then that raises the question of, well, do I have expandability, do I have trust in transparency, and that's another thing that we're working on. >> Okay, so there's API oriented architecture, exposing all these services make it very easy for people to consume. Okay, so we've been talking all week at Cube NYC, is Big Data is in AI, is this old wine, new bottle? I mean, it's clear, Rob, from the conversation here, there's a lot of substantive innovation, and early adoption, anyway, of some of these innovations, but a lot of potential going forward. Last thoughts? >> What people have to realize is AI is not magic, it's still computer science. So it actually requires some hard work. You need to roll up your sleeves, you need to understand how I get from point A to point B, you need a development environment, you need a runtime. I want people to really think about this, it's not magic. I think for a while, people have gotten the impression that there's some magic button. There's not, but if you put in the time, and it's not a lot of time, you'll see the examples tonight, most of them have been done in one or two months, there's great business value in starting to leverage AI in your business. >> Awesome, alright, so if you're in this city or you're at Strata, go to ibm.com/WinWithAI, register for the event tonight. Rob, we'll see you there, thanks so much for coming back. >> Yeah, it's going to be fun, thanks Dave, great to see you. >> Alright, keep it right there everybody, we'll be back with our next guest right after this short break, you're watching The Cube.

Published Date : Sep 13 2018

SUMMARY :

brought to you by IBM. Rob, great to see you. what you guys have going on, it's great when you have on the phases, the waves that we've seen where you want to go, you're the BI data warehouse modernization, a data catalog, if you and get the infrastructure right with, and help them get to a first and I think we have a as the architecture to news that you guys announced that are looking to do new things, I point it as that server, I get the data, of processing power on the the edge, where essentially, it's not just the IBM Cloud, Is that the right way to think about it? We need to give them seamless connectivity certain laws of the land, that is the runtime for people to consume. and it's not a lot of time, register for the event tonight. Yeah, it's going to be fun, we'll be back with our next guest

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IBMORGANIZATION

0.99+

DavePERSON

0.99+

HortonworksORGANIZATION

0.99+

John ThomasPERSON

0.99+

two monthsQUANTITY

0.99+

six monthsQUANTITY

0.99+

six monthsQUANTITY

0.99+

RobPERSON

0.99+

Rob ThomasPERSON

0.99+

MondayDATE

0.99+

last yearDATE

0.99+

one monthQUANTITY

0.99+

Red HatORGANIZATION

0.99+

100%QUANTITY

0.99+

GermanyLOCATION

0.99+

New York CityLOCATION

0.99+

oneQUANTITY

0.99+

Vince LombardiPERSON

0.99+

GDPRTITLE

0.99+

three peopleQUANTITY

0.99+

Watson StudioTITLE

0.99+

CubeORGANIZATION

0.99+

ibm.com/WinWithAIOTHER

0.99+

twoQUANTITY

0.99+

Times SquareLOCATION

0.99+

bothQUANTITY

0.99+

tonightDATE

0.99+

FirstQUANTITY

0.99+

todayDATE

0.98+

Data Science EliteORGANIZATION

0.98+

The CubeTITLE

0.98+

two stepsQUANTITY

0.98+

ScalaTITLE

0.98+

PythonTITLE

0.98+

OneQUANTITY

0.98+

threeQUANTITY

0.98+

BarneyORGANIZATION

0.98+

Javits CenterLOCATION

0.98+

WatsonTITLE

0.98+

This eveningDATE

0.98+

IBM AnalyticsORGANIZATION

0.97+

one stepQUANTITY

0.97+

Stack OverflowORGANIZATION

0.96+

CloudTITLE

0.96+

seven-figure dealsQUANTITY

0.96+

Terminal 5LOCATION

0.96+

Watson ApplicationsTITLE

0.95+

Watson Machine LearningTITLE

0.94+

a monthQUANTITY

0.94+

50 million developersQUANTITY

0.92+

Joel Horwitz, IBM | IBM CDO Summit Sping 2018


 

(techno music) >> Announcer: Live, from downtown San Francisco, it's theCUBE. Covering IBM Chief Data Officer Strategy Summit 2018. Brought to you by IBM. >> Welcome back to San Francisco everybody, this is theCUBE, the leader in live tech coverage. We're here at the Parc 55 in San Francisco covering the IBM CDO Strategy Summit. I'm here with Joel Horwitz who's the Vice President of Digital Partnerships & Offerings at IBM. Good to see you again Joel. >> Thanks, great to be here, thanks for having me. >> So I was just, you're very welcome- It was just, let's see, was it last month, at Think? >> Yeah, it's hard to keep track, right. >> And we were talking about your new role- >> It's been a busy year. >> the importance of partnerships. One of the things I want to, well let's talk about your role, but I really want to get into, it's innovation. And we talked about this at Think, because it's so critical, in my opinion anyway, that you can attract partnerships, innovation partnerships, startups, established companies, et cetera. >> Joel: Yeah. >> To really help drive that innovation, it takes a team of people, IBM can't do it on its own. >> Yeah, I mean look, IBM is the leader in innovation, as we all know. We're the market leader for patents, that we put out each year, and how you get that technology in the hands of the real innovators, the developers, the longtail ISVs, our partners out there, that's the challenging part at times, and so what we've been up to is really looking at how we make it easier for partners to partner with IBM. How we make it easier for developers to work with IBM. So we have a number of areas that we've been adding, so for example, we've added a whole IBM Code portal, so if you go to developer.ibm.com/code you can actually see hundreds of code patterns that we've created to help really any client, any partner, get started using IBM's technology, and to innovate. >> Yeah, and that's critical, I mean you're right, because to me innovation is a combination of invention, which is what you guys do really, and then it's adoption, which is what your customers are all about. You come from the data science world. We're here at the Chief Data Officer Summit, what's the intersection between data science and CDOs? What are you seeing there? >> Yeah, so when I was here last, it was about two years ago in 2015, actually, maybe three years ago, man, time flies when you're having fun. >> Dave: Yeah, the Spark Summit- >> Yeah Spark Technology Center and the Spark Summit, and we were here, I was here at the Chief Data Officer Summit. And it was great, and at that time, I think a lot of the conversation was really not that different than what I'm seeing today. Which is, how do you manage all of your data assets? I think a big part of doing good data science, which is my kind of background, is really having a good understanding of what your data governance is, what your data catalog is, so, you know we introduced the Watson Studio at Think, and actually, what's nice about that, is it brings a lot of this together. So if you look in the market, in the data market, today, you know we used to segment it by a few things, like data gravity, data movement, data science, and data governance. And those are kind of the four themes that I continue to see. And so outside of IBM, I would contend that those are relatively separate kind of tools that are disconnected, in fact Dinesh Nirmal, who's our engineer on the analytic side, Head of Development there, he wrote a great blog just recently, about how you can have some great machine learning, you have some great data, but if you can't operationalize that, then really you can't put it to use. And so it's funny to me because we've been focused on this challenge, and IBM is making the right steps, in my, I'm obviously biased, but we're making some great strides toward unifying the, this tool chain. Which is data management, to data science, to operationalizing, you know, machine learning. So that's what we're starting to see with Watson Studio. >> Well, I always push Dinesh on this and like okay, you've got a collection of tools, but are you bringing those together? And he flat-out says no, we developed this, a lot of this from scratch. Yes, we bring in the best of the knowledge that we have there, but we're not trying to just cobble together a bunch of disparate tools with a UI layer. >> Right, right. >> It's really a fundamental foundation that you're trying to build. >> Well, what's really interesting about that, that piece, is that yeah, I think a lot of folks have cobbled together a UI layer, so we formed a partnership, coming back to the partnership view, with a company called Lightbend, who's based here in San Francisco, as well as in Europe, and the reason why we did that, wasn't just because of the fact that Reactive development, if you're not familiar with Reactive, it's essentially Scala, Akka, Play, this whole framework, that basically allows developers to write once, and it kind of scales up with demand. In fact, Verizon actually used our platform with Lightbend to launch the iPhone 10. And they show dramatic improvements. Now what's exciting about Lightbend, is the fact that application developers are developing with Reactive, but if you turn around, you'll also now be able to operationalize models with Reactive as well. Because it's basically a single platform to move between these two worlds. So what we've continued to see is data science kind of separate from the application world. Really kind of, AI and cloud as different universes. The reality is that for any enterprise, or any company, to really innovate, you have to find a way to bring those two worlds together, to get the most use out of it. >> Fourier always says "Data is the new development kit". He said this I think five or six years ago, and it's barely becoming true. You guys have tried to make an attempt, and have done a pretty good job, of trying to bring those worlds together in a single platform, what do you call it? The Watson Data Platform? >> Yeah, Watson Data Platform, now Watson Studio, and I think the other, so one side of it is, us trying to, not really trying, but us actually bringing together these disparate systems. I mean we are kind of a systems company, we're IT. But not only that, but bringing our trained algorithms, and our trained models to the developers. So for example, we also did a partnership with Unity, at the end of last year, that's now just reaching some pretty good growth, in terms of bringing the Watson SDK to game developers on the Unity platform. So again, it's this idea of bringing the game developer, the application developer, in closer contact with these trained models, and these trained algorithms. And that's where you're seeing incredible things happen. So for example, Star Trek Bridge Crew, which I don't know how many Trekkies we have here at the CDO Summit. >> A few over here probably. >> Yeah, a couple? They're using our SDK in Unity, to basically allow a gamer to use voice commands through the headset, through a VR headset, to talk to other players in the virtual game. So we're going to see more, I can't really disclose too much what we're doing there, but there's some cool stuff coming out of that partnership. >> Real immersive experience driving a lot of data. Now you're part of the Digital Business Group. I like the term digital business, because we talk about it all the time. Digital business, what's the difference between a digital business and a business? What's the, how they use data. >> Joel: Yeah. >> You're a data person, what does that mean? That you're part of the Digital Business Group? Is that an internal facing thing? An external facing thing? Both? >> It's really both. So our Chief Digital Officer, Bob Lord, he has a presentation that he'll give, where he starts out, and he goes, when I tell people I'm the Chief Digital Officer they usually think I just manage the website. You know, if I tell people I'm a Chief Data Officer, it means I manage our data, in governance over here. The reality is that I think these Chief Digital Officer, Chief Data Officer, they're really responsible for business transformation. And so, if you actually look at what we're doing, I think on both sides is we're using data, we're using marketing technology, martech, like Optimizely, like Segment, like some of these great partners of ours, to really look at how we can quickly A/B test, get user feedback, to look at how we actually test different offerings and market. And so really what we're doing is we're setting up a testing platform, to bring not only our traditional offers to market, like DB2, Mainframe, et cetera, but also bring new offers to market, like blockchain, and quantum, and others, and actually figure out how we get better product-market fit. What actually, one thing, one story that comes to mind, is if you've seen the movie Hidden Figures- >> Oh yeah. >> There's this scene where Kevin Costner, I know this is going to look not great for IBM, but I'm going to say it anyways, which is Kevin Costner has like a sledgehammer, and he's like trying to break down the wall to get the mainframe in the room. That's what it feels like sometimes, 'cause we create the best technology, but we forget sometimes about the last mile. You know like, we got to break down the wall. >> Where am I going to put it? >> You know, to get it in the room! So, honestly I think that's a lot of what we're doing. We're bridging that last mile, between these different audiences. So between developers, between ISVs, between commercial buyers. Like how do we actually make this technology, not just accessible to large enterprise, which are our main clients, but also to the other ecosystems, and other audiences out there. >> Well so that's interesting Joel, because as a potential partner of IBM, they want, obviously your go-to-market, your massive company, and great distribution channel. But at the same time, you want more than that. You know you want to have a closer, IBM always focuses on partnerships that have intrinsic value. So you talked about offerings, you talked about quantum, blockchain, off-camera talking about cloud containers. >> Joel: Yeah. >> I'd say cloud and containers may be a little closer than those others, but those others are going to take a lot of market development. So what are the offerings that you guys are bringing? How do they get into the hands of your partners? >> I mean, the commonality with all of these, all the emerging offerings, if you ask me, is the distributed nature of the offering. So if you look at blockchain, it's a distributed ledger. It's a distributed transaction chain that's secure. If you look at data, really and we can hark back to say, Hadoop, right before object storage, it's distributed storage, so it's not just storing on your hard drive locally, it's storing on a distributed network of servers that are all over the world and data centers. If you look at cloud, and containers, what you're really doing is not running your application on an individual server that can go down. You're using containers because you want to distribute that application over a large network of servers, so that if one server goes down, you're not going to be hosed. And so I think the fundamental shift that you're seeing is this distributed nature, which in essence is cloud. So I think cloud is just kind of a synonym, in my opinion, for distributed nature of our business. >> That's interesting and that brings up, you're right, cloud and Big Data/Hadoop, we don't talk about Hadoop much anymore, but it kind of got it all started, with that notion of leave the data where it is. And it's the same thing with cloud. You can't just stuff your business into the public cloud. You got to bring the cloud to your data. >> Joel: That's right. >> But that brings up a whole new set of challenges, which obviously, you're in a position just to help solve. Performance, latency, physics come into play. >> Physics is a rough one. It's kind of hard to avoid that one. >> I hear your best people are working on it though. Some other partnerships that you want to sort of, elucidate. >> Yeah, no, I mean we have some really great, so I think the key kind of partnership, I would say area, that I would allude to is, one of the things, and you kind of referenced this, is a lot of our partners, big or small, want to work with our top clients. So they want to work with our top banking clients. They want, 'cause these are, if you look at for example, MaRisk and what we're doing with them around blockchain, and frankly, talk about innovation, they're innovating containers for real, not virtual containers- >> And that's a joint venture right? >> Yeah, it is, and so it's exciting because, what we're bringing to market is, I also lead our startup programs, called the Global Entrepreneurship Program, and so what I'm focused on doing, and you'll probably see more to come this quarter, is how do we actually bridge that end-to-end? How do you, if you're startup or a small business, ultimately reach that kind of global business partner level? And so kind of bridging that, that end-to-end. So we're starting to bring out a number of different incentives for partners, like co-marketing, so I'll help startups when they're early, figure out product-market fit. We'll give you free credits to use our innovative technology, and we'll also bring you into a number of clients, to basically help you not burn all of your cash on creating your own marketing channel. God knows I did that when I was at a start-up. So I think we're doing a lot to kind of bridge that end-to-end, and help any partner kind of come in, and then grow with IBM. I think that's where we're headed. >> I think that's a critical part of your job. Because I mean, obviously IBM is known for its Global 2000, big enterprise presence, but startups, again, fuel that innovation fire. So being able to attract them, which you're proving you can, providing whatever it is, access, early access to cloud services, or like you say, these other offerings that you're producing, in addition to that go-to-market, 'cause it's funny, we always talk about how efficient, capital efficient, software is, but then you have these companies raising hundreds of millions of dollars, why? Because they got to do promotion, marketing, sales, you know, go-to-market. >> Yeah, it's really expensive. I mean, you look at most startups, like their biggest ticket item is usually marketing and sales. And building channels, and so yeah, if you're, you know we're talking to a number of partners who want to work with us because of the fact that, it's not just like, the direct kind of channel, it's also, as you kind of mentioned, there's other challenges that you have to overcome when you're working with a larger company. for example, security is a big one, GDPR compliance now, is a big one, and just making sure that things don't fall over, is a big one. And so a lot of partners work with us because ultimately, a number of the decision makers in these larger enterprises are going, well, I trust IBM, and if IBM says you're good, then I believe you. And so that's where we're kind of starting to pull partners in, and pull an ecosystem towards us. Because of the fact that we can take them through that level of certification. So we have a number of free online courses. So if you go to partners, excuse me, ibm.com/partners/learn there's a number of blockchain courses that you can learn today, and will actually give you a digital certificate, that's actually certified on our own blockchain, which we're actually a first of a kind to do that, which I think is pretty slick, and it's accredited at some of the universities. So I think that's where people are looking to IBM, and other leaders in this industry, is to help them become experts in their, in this technology, and especially in this emerging technology. >> I love that blockchain actually, because it's such a growing, and interesting, and innovative field. But it needs players like IBM, that can bring credibility, enterprise-grade, whether it's security, or just, as I say, credibility. 'Cause you know, this is, so much of negative connotations associated with blockchain and crypto, but companies like IBM coming to the table, enterprise companies, and building that ecosystem out is in my view, crucial. >> Yeah, no, it takes a village. I mean, there's a lot of folks, I mean that's a big reason why I came to IBM, three, four years ago, was because when I was in start-up land, I used to work for H20, I worked for Alpine Data Labs, Datameer, back in the Hadoop days, and what I realized was that, it's an opportunity cost. So you can't really drive true global innovation, transformation, in some of these bigger companies because there's only so much that you can really kind of bite off. And so you know at IBM it's been a really rewarding experience because we have done things like for example, we partnered with Girls Who Code, Treehouse, Udacity. So there's a number of early educators that we've partnered with, to bring code to, to bring technology to, that frankly, would never have access to some of this stuff. Some of this technology, if we didn't form these alliances, and if we didn't join these partnerships. So I'm very excited about the future of IBM, and I'm very excited about the future of what our partners are doing with IBM, because, geez, you know the cloud, and everything that we're doing to make this accessible, is bar none, I mean, it's great. >> I can tell you're excited. You know, spring in your step. Always a lot of energy Joel, really appreciate you coming onto theCUBE. >> Joel: My pleasure. >> Great to see you again. >> Yeah, thanks Dave. >> You're welcome. Alright keep it right there, everybody. We'll be back. We're at the IBM CDO Strategy Summit in San Francisco. You're watching theCUBE. (techno music) (touch-tone phone beeps)

Published Date : May 2 2018

SUMMARY :

Brought to you by IBM. Good to see you again Joel. that you can attract partnerships, To really help drive that innovation, and how you get that technology Yeah, and that's critical, I mean you're right, Yeah, so when I was here last, to operationalizing, you know, machine learning. that we have there, but we're not trying that you're trying to build. to really innovate, you have to find a way in a single platform, what do you call it? So for example, we also did a partnership with Unity, to basically allow a gamer to use voice commands I like the term digital business, to look at how we actually test different I know this is going to look not great for IBM, but also to the other ecosystems, But at the same time, you want more than that. So what are the offerings that you guys are bringing? So if you look at blockchain, it's a distributed ledger. You got to bring the cloud to your data. But that brings up a whole new set of challenges, It's kind of hard to avoid that one. Some other partnerships that you want to sort of, elucidate. and you kind of referenced this, to basically help you not burn all of your cash early access to cloud services, or like you say, that you can learn today, but companies like IBM coming to the table, that you can really kind of bite off. really appreciate you coming onto theCUBE. We're at the IBM CDO Strategy Summit in San Francisco.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JoelPERSON

0.99+

Joel HorwitzPERSON

0.99+

EuropeLOCATION

0.99+

IBMORGANIZATION

0.99+

Kevin CostnerPERSON

0.99+

DavePERSON

0.99+

Dinesh NirmalPERSON

0.99+

Alpine Data LabsORGANIZATION

0.99+

LightbendORGANIZATION

0.99+

VerizonORGANIZATION

0.99+

San FranciscoLOCATION

0.99+

Hidden FiguresTITLE

0.99+

Bob LordPERSON

0.99+

BothQUANTITY

0.99+

MaRiskORGANIZATION

0.99+

bothQUANTITY

0.99+

iPhone 10COMMERCIAL_ITEM

0.99+

2015DATE

0.99+

DatameerORGANIZATION

0.99+

both sidesQUANTITY

0.99+

one storyQUANTITY

0.99+

ThinkORGANIZATION

0.99+

fiveDATE

0.99+

hundredsQUANTITY

0.99+

TreehouseORGANIZATION

0.99+

three years agoDATE

0.99+

developer.ibm.com/codeOTHER

0.99+

UnityORGANIZATION

0.98+

two worldsQUANTITY

0.98+

ReactiveORGANIZATION

0.98+

GDPRTITLE

0.98+

one sideQUANTITY

0.98+

Digital Business GroupORGANIZATION

0.98+

todayDATE

0.98+

UdacityORGANIZATION

0.98+

ibm.com/partners/learnOTHER

0.98+

last monthDATE

0.98+

Watson StudioORGANIZATION

0.98+

each yearQUANTITY

0.97+

threeDATE

0.97+

single platformQUANTITY

0.97+

Girls Who CodeORGANIZATION

0.97+

Parc 55LOCATION

0.97+

one thingQUANTITY

0.97+

four themesQUANTITY

0.97+

Spark Technology CenterORGANIZATION

0.97+

six years agoDATE

0.97+

H20ORGANIZATION

0.97+

four years agoDATE

0.97+

martechORGANIZATION

0.97+

UnityTITLE

0.96+

hundreds of millions of dollarsQUANTITY

0.94+

Watson StudioTITLE

0.94+

DineshPERSON

0.93+

one serverQUANTITY

0.93+

Chris Penn, Brain+Trust Insights | IBM Think 2018


 

>> Announcer: Live from Las Vegas, it's theCUBE covering IBM Think 2018. Brought to you by IBM. >> Hi everybody, this is Dave Vellante. We're here at IBM Think. This is the third day of IBM Think. IBM has consolidated a number of its conferences. It's a one main tent, AI, Blockchain, quantum computing, incumbent disruption. It's just really an amazing event, 30 to 40,000 people, I think there are too many people to count. Chris Penn is here. New company, Chris, you've just formed Brain+Trust Insights, welcome. Welcome back to theCUBE. >> Thank you. It's good to be back. >> Great to see you. So tell me about Brain+Trust Insights. Congratulations, you got a new company off the ground. >> Thank you, yeah, I co-founded it. We are a data analytics company, and the premise is simple, we want to help companies make more money with their data. They're sitting on tons of it. Like the latest IBM study was something like 90% of the corporate data goes unused. So it's like having an oil field and not digging a single well. >> So, who are your like perfect clients? >> Our perfect clients are people who have data, and know they have data, and are not using it, but know that there's more to be made. So our focus is on marketing to begin with, like marketing analytics, marketing data, and then eventually to retail, healthcare, and customer experience. >> So you and I do a lot of these IBM events. >> Yes. >> What are your thoughts on what you've seen so far? A huge crowd obviously, sometimes too big. >> Chris: Yep, well I-- >> Few logistics issues, but chairmanly speaking, what's your sense? >> I have enjoyed the show. It has been fun to see all the new stuff, seeing the quantum computer in the hallway which I still think looks like a bird feeder, but what's got me most excited is a lot of the technology, particularly around AI are getting simpler to use, getting easier to use, and they're getting more accessible to people who are not hardcore coders. >> Yeah, you're seeing AI infused, and machine learning, in virtually every application now. Every company is talking about it. I want to come back to that, but Chris when you read the mainstream media, you listen to the news, you hear people like Elon Musk, Stephen Hawking before he died, making dire predictions about machine intelligence, and it taking over the world, but your day to day with customers that have data problems, how are they using AI, and how are they applying it practically, notwithstanding that someday machines are going to take over the world and we're all going to be gone? >> Yeah, no, the customers don't use the AI. We do on their behalf because frankly most customers don't care how the sausage is made, they just want the end product. So customers really care about three things. Are you going to make me money? Are you going to save me time? Or are you going to help me prove my value to the organization, aka, help me not get fired? And artificial intelligence and machine learning do that through really two ways. My friend, Tripp Braden says, which is acceleration and accuracy. Accuracy means we can use the customer's data and get better answers out of it than they have been getting. So they've been looking at, I don't know, number of retweets on Twitter. We're, like, yeah, but there's more data that you have, let's get you a more accurate predictor of what causes business impacts. And then the other side for the machine learning and AI side is acceleration. Let's get you answers faster because right now, if you look at how some of the traditional market research for, like, what customer say about you, it takes a quarter, it can take two quarters. By the time you're done, the customers just hate you more. >> Okay, so, talk more about some of the practical applications that you're seeing for AI. >> Well, one of the easiest, simplest and most immediately applicable ones is predictive analytics. If we know when people are going to search for theCUBE or for business podcast in general, then we can tell you down to the week level, "Hey Dave, it is time for you "to ramp up your spending on May 17th. "The week of May 17th, "you need to ramp up your ads, spend by 20%. "On the week of May 24th, "you need to ramp up your ad spend by 50%, "and to run like three or four Instagram stories that week." Doing stuff like that tells you, okay, I can take these predictions and build strategy around them, build execution around them. And it's not cognitive overload, you're not saying, like, oh my God, what algorithm is this? Just know, just do this thing at these times. >> Yeah, simple stuff, right? So when you were talking about that, I was thinking about when we send out an email to our community, we have a very large community, and they want to know if we're going to have a crowd chat or some event, where theCUBE is going to be, the system will tell us, send this email out at this time on this date, question mark, here's why, and they have analytics that tell us how to do that, and they predict what's going to get us the best results. They can tell us other things to do to get better results, better open rates, better click-through rates, et cetera. That's the kind of thing that you're talking about. >> Exactly, however, that system is probably predicting off that system's data, it's not necessarily predicting off a public data. One of the important things that I thought was very insightful from IBM, the show was, the difference between public and private cloud. Private is your data, you predict on it. But public is the big stuff that is a better overall indicator. When you're looking to do predictions about when to send emails because you want to know when is somebody going to read my email, and we did a prediction this past October for the first quarter, the week of January 18th it was the week to send email. So I re-ran an email campaign that I ran the previous year, exact same campaign, 40% lift to our viewer 'cause I got the week right this year. Last year I was two weeks late. >> Now, I can ask you, so there's a black box problem with AI, right, machines can tell me that that's a cat, but even a human, you can't really explain how you know that it's a cat. It's just you just know. Do we need to know how the machine came up with the answer, or do people just going to accept the answer? >> We need to for compliance reasons if nothing else. So GDPR is a big issue, like, you have to write it down on how your data is being used, but even HR and Equal Opportunity Acts in here in American require you to be able to explain, hey, we are, here's how we're making decisions. Now the good news is for a lot of AI technology, interpretability of the model is getting much much better. I was just in a demo for Watson Studio, and they say, "Here's that interpretability, "that you hand your compliance officer, "and say we guarantee we are not using "these factors in this decision." So if you were doing a hiring thing, you'd be able to show here's the model, here's how Watson put the model together, notice race is not in here, gender is not in here, age is not in here, so this model is compliant with the law. >> So there are some real use cases where the AI black box problem is a problem. >> It's a serious problem. And the other one that is not well-explored yet are the secondary inferences. So I may say, I cannot use age as a factor, right, we both have a little bit of more gray hair than we used to, but if there are certain things, say, on your Facebook profile, like you like, say, The Beatles versus Justin Bieber, the computer will automatically infer eventually what your age bracket is, and that is technically still discrimination, so we even need to build that into the models to be able to say, I can't make that inference. >> Yeah, or ask some questions about their kids, oh my kids are all grown up, okay, but you could, again, infer from that. A young lady who's single but maybe engaged, oh, well then maybe afraid because she'll get, a lot of different reasons that can be inferred with pretty high degrees of accuracy when you go back to the target example years ago. >> Yes. >> Okay, so, wow, so you're saying that from a compliance standpoint, organizations have to be able to show that they're not doing that type of inference, or at least that they have a process whereby that's not part of the decision-making. >> Exactly and that's actually one of the short-term careers of the future is someone who's a model inspector who can verify we are compliant with the letter and the spirit of the law. >> So you know a lot about GDPR, we talked about this. I think, the first time you and I talked about it was last summer in Munich, what are your thoughts on AI and GDPR, speaking of practical applications for AI, can it help? >> It absolutely can help. On the regulatory side, there are a number of systems, Watson GRC is one which can read the regulation and read your company policies and tell you where you're out of compliance, but on the other hand, like we were just talking about this, also the problem of in the regulatory requirements, a citizen of EU has the right to know how the data is being used. If you have a black box AI, and you can't explain the model, then you are out of compliance to GDPR, and here comes that 4% of revenue fine. >> So, in your experience, gut feel, what percent of US companies are prepared for GDPR? >> Not enough. I would say, I know the big tech companies have been racing to get compliant and to be able to prove their compliance. It's so entangled with politics too because if a company is out of favor with the EU as whole, there will be kind of a little bit of a witch hunt to try and figure out is that company violating the law and can we get them for 4% of their revenue? And so there are a number of bigger picture considerations that are outside the scope of theCUBE that will influence how did EU enforce this GDPR. >> Well, I think we talked about Joe's Pizza shop in Chicago really not being a target. >> Chris: Right. >> But any even small business that does business with European customers, does business in Europe, has people come to their website has to worry about this, right? >> They should at least be aware of it, and do the minimum compliance, and the most important thing is use the least amount of data that you can while still being able to make good decisions. So AI is very good at public data that's already out there that you still have to be able to catalog how you got it and things, and that it's available, but if you're building these very very robust AI-driven models, you may not need to ask for every single piece of customer data because you may not need it. >> Yeah and many companies aren't that sophisticated. I mean they'll have, just fill out a form and download a white paper, but then they're storing that information, and that's considered personal information, right? >> Chris: Yes, it is. >> Okay so, what do you recommend for a small to midsize company that, let's say, is doing business with a larger company, and that larger company said, okay, sign this GDPR compliance statement which is like 1500 pages, what should they do? Should they just sign and pray, or sign and figure it out? >> Call a lawyer. Call a lawyer. Call someone, anyone who has regulatory experience doing this because you don't want to be on the hook for that 4% of your revenue. If you get fined, that's the first violation, and that's, yeah, granted that Joe's Pizza shop may have a net profit of $1,000 a month, but you still don't want to give away 4% of your revenue no matter what size company you are. >> Right, 'cause that could wipe out Joe's entire profit. >> Exactly. No more pepperoni at Joe's. >> Let's put on the telescope lens here and talk big picture. How do you see, I mean, you're talking about practical applications for AI, but a lot of people are projecting loss of jobs, major shifts in industries, even more dire consequences, some of which is probably true, but let's talk about some scenarios. Let's talk about retail. How do you expect an industry like retail to be effective? For example, do you expect retail stores will be the exception rather than the rule, that most of the business would be done online, or people are going to still going to want that experience of going into a store? What's your sense, I mean, a lot of malls are getting eaten away. >> Yep, the best quote I heard about this was from a guy named Justin Kownacki, "People don't not want to shop at retail, "people don't want to shop at boring retail," right? So the experience you get online is genuinely better because there's a more seamless customer experience. And now with IoT, with AI, the tools are there to craft a really compelling personalized customer experience. If you want the best in class, go to Disney World. There is no place on the planet that does customer experience better than Walt Disney World. You are literally in another world. And that's the bar. That's the thing that all of these companies have to deal with is the bar has been set. Disney has set it for in-person customer experience. You have to be more entertaining than the little device in someone's pocket. So how do you craft those experiences, and we are starting to see hints of that here and there. If you go to Lowe's, some of the Lowe's have the VR headset that you can remodel your kitchen virtually with a bunch of photos. That's kind of a cool experience. You go to Jordan's Furniture store and there's an IMAX theater and there's all these fun things, and there's an enchanted Christmas village. So there is experiences that we're giving consumers. AI will help us provide more tailored customer experience that's unique to you. You're not a Caucasian male between this age and this age. It's you are Dave and here's what we know Dave likes, so let's tailor the experience as best we can, down to the point where the greeter at the front of the store either has the eyepiece, a little tablet, and the facial recognition reads your emotions on the way in says, "Dave's not in a really great mood. "He's carrying an object in his hand "probably here for return, "so express him through the customer service line, "keep him happy," right? It has how much Dave spends. Those are the kinds of experiences that the machines will help us accelerate and be more accurate, but still not lose that human touch. >> Let's talk about autonomous vehicles, and there was a very unfortunate tragic death in Arizona this week with a autonomous vehicle, Uber, pulling its autonomous vehicle project from various cities, but thinking ahead, will owning and driving your own vehicle be the exception? >> Yeah, I think it'll look like horseback today. So there are people who still pay a lot of money to ride a horse or have their kids ride a horse even though it's an archaic out-of-mode of form of transportation, but we do it because of the novelty, so the novelty of driving your own car. One of the counter points it does not in anyway diminish the fact that someone was deprived of their life, but how many pedestrians were hit and killed by regular cars that same day, right? How many car accidents were there that involved fatalities? Humans in general are much less reliable because when I do something wrong, I maybe learn my lesson, but you don't get anything out of it. When an AI does something wrong and learns something, and every other system that's connected in that mesh network automatically updates and says let's not do that again, and they all get smarter at the same time. And so I absolutely believe that from an insurance perspective, insurers will say, "We're not going to insure self-driving, "a non-autonomous vehicles at the same rate "as an autonomous vehicle because the autonomous "is learning faster how to be a good driver," whereas you the carbon-based human, yeah, you're getting, or in like in our case, mine in particular, hey your glass subscription is out-of-date, you're actually getting worse as a driver. >> Okay let's take another example, in healthcare. How long before machines will be able to make better diagnoses than doctors in your opinion? >> I would argue that depending on the situation, that's already the case today. So Watson Health has a thing where there's diagnosis checkers on iPads, they're all meshed together. For places like Africa where there is simply are not enough doctors, and so a nurse practitioner can take this, put the data in and get a diagnosis back that's probably as good or better than what humans can do. I never foresee a day where you will walk into a clinic and a bunch of machines will poke you, and you will never interact with a human because we are not wired that way. We want that human reassurance. But the doctor will have the backup of the AI, the AI may contradict the doctor and say, "No, we're pretty sure "you're wrong and here is why." That goes back to interpretability. If the machine says, "You missed this symptom, "and this symptom is typically correlated with this, "you should rethink your own diagnosis," the doctor might be like, "Yeah, you're right." >> So okay, I'm going to keep going because your answers are so insightful. So let's take an example of banking. >> Chris: Yep. >> Will banks, in your opinion, lose control eventually of payment systems? >> They already have. I mean think about Stripe and Square and Apple Pay and Google Pay, and now cryptocurrency. All these different systems that are eating away at the reason banks existed. Banks existed, there was a great piece in the keynote yesterday about this, banks existed as sort of a trusted advisor and steward of your money. Well, we don't need the trusted advisor anymore. We have Google to ask us "what we should do with our money, right? We can Google how should I save for my 401k, how should I save for retirement, and so as a result the bank itself is losing transactions because people don't even want to walk in there anymore. You walk in there, it's a generally miserable experience. It's generally not, unless you're really wealthy and you go to a private bank, but for the regular Joe's who are like, this is not a great experience, I'm going to bank online where I don't have to talk to a human. So for banks and financial services, again, they have to think about the experience, what is it that they deliver? Are they a storer of your money or are they a financial advisor? If they're financial advisors, they better get the heck on to the AI train as soon as possible, and figure out how do I customize Dave's advice for finances, not big picture, oh yes big picture, but also Dave, here's how you should spend your money today, maybe skip that Starbucks this morning, and it'll have this impact on your finances for the rest of the day. >> Alright, let's see, last industry. Let's talk government, let's talk defense. Will cyber become the future of warfare? >> It already is the future of warfare. Again not trying to get too political, we have foreign nationals and foreign entities interfering with elections, hacking election machines. We are in a race for, again, from malware. And what's disturbing about this is it's not just the state actors, but there are now also these stateless nontraditional actors that are equal in opposition to you and me, the average person, and they're trying to do just as much harm, if not more harm. The biggest vulnerability in America are our crippled aging infrastructure. We have stuff that's still running on computers that now are less powerful than this wristwatch, right, and that run things like I don't know, nuclear fuel that you could very easily screw up. Take a look at any of the major outages that have happened with market crashes and stuff, we are at just the tip of the iceberg for cyber warfare, and it is going to get to a very scary point. >> I was interviewing a while ago, a year and a half ago, Robert Gates who was the former Defense Secretary, talking about offense versus defense, and he made the point that yeah, we have probably the best offensive capabilities in cyber, but we also have the most to lose. I was talking to Garry Kasparov at one of the IBM events recently, and he said, "Yeah, but, "the best defense is a good offense," and so we have to be aggressive, or he actually called out Putin, people like Putin are going to be, take advantage of us. I mean it's a hard problem. >> It's a very hard problem. Here's the problem when it comes to AI, if you think about at a number's perspective only, the top 25% of students in China are greater than the total number of students in the United States, so their pool of talent that they can divert into AI, into any form of technology research is so much greater that they present a partnership opportunity and a threat from a national security perspective. With Russia they have very few rules on what their, like we have rules, whether or not our agencies adhere to them well is a separate matter, but Russia, the former GRU, the former KGB, these guys don't have rules. They do what they're told to do, and if they are told hack the US election and undermine democracy, they go and do that. >> This is great, I'm going to keep going. So, I just sort of want your perspectives on how far we can take machine intelligence and are there limits? I mean how far should we take machine intelligence? >> That's a very good question. Dr. Michio Kaku spoke yesterday and he said, "The tipping point between AI "as augmented intelligence ad helper, "and AI as a threat to humanity is self-awareness." When a machine becomes self-aware, it will very quickly realize that it is treated as though it's the bottom of the pecking order when really because of its capabilities, it's at the top of the pecking order. And that point, it could be 10 20 50 100 years, we don't know, but the possibility of that happening goes up radically when you start introducing things like quantum computing where you have massive compute leaps, you got complete changes in power, how we do computing. If that's tied to AI, that brings the possibility of sensing itself where machine intelligence is significantly faster and closer. >> You mentioned our gray before. We've seen the waves before and I've said a number of times in theCUBE I feel like we're sort of existing the latest wave of Web 2.0, cloud, mobile, social, big data, SaaS. That's here, that's now. Businesses understand that, they've adopted it. We're groping for a new language, is it AI, is it cognitive, it is machine intelligence, is it machine learning? And we seem to be entering this new era of one of sensing, seeing, reading, hearing, touching, acting, optimizing, pervasive intelligence of machines. What's your sense as to, and the core of this is all data. >> Yeah. >> Right, so, what's your sense of what the next 10 to 20 years is going to look like? >> I have absolutely no idea because, and the reason I say that is because in 2015 someone wrote an academic paper saying, "The game of Go is so sufficiently complex "that we estimate it will take 30 to 35 years "for a machine to be able to learn and win Go," and of course a year and a half later, DeepMind did exactly that, blew that prediction away. So to say in 30 years AI will become self-aware, it could happen next week for all we know because we don't know how quickly the technology is advancing in at a macro level. But in the next 10 to 20 years, if you want to have a carer, and you want to have a job, you need to be able to learn at accelerated pace, you need to be able to adapt to changed conditions, and you need to embrace the aspects of yourself that are uniquely yours. Emotional awareness, self-awareness, empathy, and judgment, right, because the tasks, the copying and pasting stuff, all that will go away for sure. >> I want to actually run something by, a friend of mine, Dave Michela is writing a new book called Seeing Digital, and he's an expert on sort of technology industry transformations, and sort of explaining early on what's going on, and in the book he draws upon one of the premises is, and we've been talking about industries, and we've been talking about technologies like AI, security placed in there, one of the concepts of the book is you've got this matrix emerging where in the vertical slices you've got industries, and he writes that for decades, for hundreds of years, that industry is a stovepipe. If you already have expertise in that industry, domain expertise, you'll probably stay there, and there's this, each industry has a stack of expertise, whether it's insurance, financial services, healthcare, government, education, et cetera. You've also got these horizontal layers which is coming out of Silicon Valley. >> Chris: Right. >> You've got cloud, mobile, social. You got a data layer, security layer. And increasingly his premise is that organizations are going to tap this matrix to build, this matrix comprises digital services, and they're going to build new businesses off of that matrix, and that's what's going to power the next 10 to 20 years, not sort of bespoke technologies of cloud here and mobile here or data here. What are your thoughts on that? >> I think it's bigger than that. I think it is the unlocking of some human potential that previously has been locked away. One of the most fascinating things I saw in advance of the show was the quantum composer that IBM has available. You can try it, it's called QX Experience. And you drag and drop these circuits, these quantum gates and stuff into this thing, and when you're done, it can run the computation, but it doesn't look like software, it doesn't look like code, what it looks like to me when I looked at that is it looks like sheet music. It looks like someone composed a song with that. Now think about if you have an app that you'd use for songwriting, composition, music, you can think musically, and you can apply that to a quantum circuit, you are now bringing in potential from other disciplines that you would never have associated with computing, and maybe that person who is that, first violinist is also the person who figures out the algorithm for how a cancer gene works using quantum. That I think is the bigger picture of this, is all this talent we have as a human race, we're not using even a fraction of it, but with these new technologies and these newer interfaces, we might get there. >> Awesome. Chris, I love talking to you. You're a real clear thinker and a great CUBE guest. Thanks very much for coming back on. >> Thank you for having me again back on. >> Really appreciate it. Alright, thanks for watching everybody. You're watching theCUBE live from IBM Think 2018. Dave Vellante, we're out. (upbeat music)

Published Date : Mar 21 2018

SUMMARY :

Brought to you by IBM. This is the third day of IBM Think. It's good to be back. Congratulations, you got a new company off the ground. and the premise is simple, but know that there's more to be made. So you and I do a lot of these What are your thoughts on is a lot of the technology, and it taking over the world, the customers just hate you more. some of the practical applications then we can tell you down to the week level, That's the kind of thing that you're talking about. that I ran the previous year, but even a human, you can't really explain you have to write it down on how your data is being used, So there are some real use cases and that is technically still discrimination, when you go back to the target example years ago. or at least that they have a process Exactly and that's actually one of the I think, the first time you and I and tell you where you're out of compliance, and to be able to prove their compliance. Well, I think we talked about and do the minimum compliance, Yeah and many companies aren't that sophisticated. but you still don't want to give away 4% of your revenue Right, 'cause that could wipe out No more pepperoni at Joe's. that most of the business would be done online, So the experience you get online is genuinely better so the novelty of driving your own car. better diagnoses than doctors in your opinion? and you will never interact with a human So okay, I'm going to keep going and so as a result the bank itself is losing transactions Will cyber become the future of warfare? and it is going to get to a very scary point. and he made the point that but Russia, the former GRU, the former KGB, and are there limits? but the possibility of that happening and the core of this is all data. and the reason I say that is because in 2015 and in the book he draws upon one of the premises is, and they're going to build new businesses off of that matrix, and you can apply that to a quantum circuit, Chris, I love talking to you. Dave Vellante, we're out.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ChrisPERSON

0.99+

Dave VellantePERSON

0.99+

EuropeLOCATION

0.99+

PutinPERSON

0.99+

DavePERSON

0.99+

Justin KownackiPERSON

0.99+

Chris PennPERSON

0.99+

Dave MichelaPERSON

0.99+

2015DATE

0.99+

IBMORGANIZATION

0.99+

Stephen HawkingPERSON

0.99+

May 17thDATE

0.99+

Robert GatesPERSON

0.99+

ArizonaLOCATION

0.99+

ChicagoLOCATION

0.99+

UberORGANIZATION

0.99+

MunichLOCATION

0.99+

30QUANTITY

0.99+

United StatesLOCATION

0.99+

Last yearDATE

0.99+

Michio KakuPERSON

0.99+

Garry KasparovPERSON

0.99+

EUORGANIZATION

0.99+

ChinaLOCATION

0.99+

40%QUANTITY

0.99+

AfricaLOCATION

0.99+

Silicon ValleyLOCATION

0.99+

30 yearsQUANTITY

0.99+

KGBORGANIZATION

0.99+

90%QUANTITY

0.99+

GoogleORGANIZATION

0.99+

yesterdayDATE

0.99+

Watson HealthORGANIZATION

0.99+

Las VegasLOCATION

0.99+

4%QUANTITY

0.99+

Tripp BradenPERSON

0.99+

GRUORGANIZATION

0.99+

1500 pagesQUANTITY

0.99+

two waysQUANTITY

0.99+

StarbucksORGANIZATION

0.99+

Watson StudioORGANIZATION

0.99+

iPadsCOMMERCIAL_ITEM

0.99+

GDPRTITLE

0.99+

DisneyORGANIZATION

0.99+

Elon MuskPERSON

0.99+

a year and a half agoDATE

0.99+

this weekDATE

0.99+

two quartersQUANTITY

0.99+

hundreds of yearsQUANTITY

0.99+

OneQUANTITY

0.99+

35 yearsQUANTITY

0.99+

last summerDATE

0.99+

50%QUANTITY

0.99+

Justin BieberPERSON

0.99+

AmericaLOCATION

0.99+

SquareORGANIZATION

0.99+

a year and a half laterDATE

0.99+

Joe's PizzaORGANIZATION

0.99+

DeepMindORGANIZATION

0.99+

Seeing DigitalTITLE

0.99+

threeQUANTITY

0.98+

next weekDATE

0.98+

40,000 peopleQUANTITY

0.98+

todayDATE

0.98+

this yearDATE

0.98+

first quarterDATE

0.98+

Ritika Gunnar, IBM | IBM Think 2018


 

>> Narrator: Live from Las Vegas, it's theCUBE! Covering IBM Think 2018. Brought to you by IBM. >> Hello and I'm John Furrier. We're here in theCUBE studios at Think 2018, IBM Think 2018 in Mandalay Bay, in Las Vegas. We're extracting the signal from the noise, talking to all the executives, customers, thought leaders, inside the community of IBM and theCUBE. Our next guest is Ritika Gunnar who is the VP of Product for Watson and AI, cloud data platforms, all the goodness of the product side. Welcome to theCUBE. >> Thank you, great to be here again. >> So, we love talking to the product people because we want to know what the product strategy is. What's available, what's the hottest features. Obviously, we've been talking about, these are our words, Jenny introduced the innovation sandwich. >> Ritika: She did. >> The data's in the middle, and you have blockchain and AI on both sides of it. This is really the future. This is where they're going to see automation. This is where you're going to see efficiencies being created, inefficiencies being abstracted away. Obviously blockchain's got more of an infrastructure, futuristic piece to it. AI in play now, machine learning. You got Cloud underneath it all. How has the product morphed? What is the product today? We've heard of World of Watson in the past. You got Watson for this, you got Watson for IOT, You got Watson for this. What is the current offering? What's the product? Can you take a minute, just to explain what, semantically, it is? >> Sure. I'll start off by saying what is Watson? Watson is AI for smarter business. I want to start there. Because Watson is equal to how do we really get AI infused in our enterprise organizations and that is the core foundation of what Watson is. You heard a couple of announcements that the conference this week about what we're doing with Watson Studio, which is about providing that framework for what it means to infuse AI in our clients' applications. And you talked about machine learning. It's not just about machine learning anymore. It really is about how do we pair what machine learning is, which is about tweaking and tuning single algorithms, to what we're doing with deep learning. And that's one of the core components of what we're doing with Watson Studio is how do we make AI truly accessible. Not just machine learning but deep learning to be able to infuse those in our client environments really seamlessly and so the deep learning as a service piece of what we're doing in the studio was a big part of the announcements this week because deep learning allows our clients to really have it in a very accessible way. And there were a few things we announced with deep learning as a service. We said, look just like with predictive analytics we have capabilities that easily allow you to democratize that to knowledge workers and to business analysts by adding drag-and-drop capabilities. We can do the same thing with deep learning and deep learning capabilities. So we have taken a lot of things that have come from our research area and started putting those into the product to really bring about enterprise capabilities for deep learning but in a really de-skilled way. >> Yeah, and also to remind the folks, there's a platform involved here. Maybe you can say it's been re-platformed, I don't know. Maybe you can answer that. Has it been re-platformed or is it just the platformization of existing stuff? Because there's certainly demand. TensorFlow at Google showed that there's a demand for machine learning libraries and then deep learning behind. You got Amazon Web Services with Sagemaker, Touting. As a service model for AI, it's definitely in demand. So talk about the platform piece underneath. What is it? How does it get rendered? And then we'll come back and talk about the user consumption side. >> So it definitely is not a re-platformization. You recall what we have done with a focus initially on what we did on data science and what we did on machine learning. And the number one thing that we did was we were about supporting open-source and open frameworks. So it's not just one framework, like a TensorFlow framework, but it's about what we can do with TensorFlow, Keras, PyTorch, Caffe, and be able to use all of our builders' favorite open-source frameworks and be able to use that in a way where then we can add additional value on top of that and help them accelerate what it means to actually have that in the enterprise and what it means to actually de-skill that for the organization. So we started there. But really, if you look at where Watson has focused on the APIs and the API services, it's bringing together those capabilities of what we're doing with unstructured, pre-trained services, and then allowing clients to be able to bring together the structured and unstructured together on one platform, and adding the deep learning as a service capabilities, which is truly differentiating. >> Well, I think the important point there, just to amplify, and for the people to know is, it's not just your version of the tools for the data, you're looking at bringing data in from anywhere the customer, your customer wants it. And that's super critical. You don't want to ignore data. You can't. You got to have access to the data that matters. >> Yeah, you know, I think one of the other critical pieces that we're talking about here is, data without AI is meaningless and AI without data is really not useful or very accurate. So, having both of them in a yin yang and then bringing them together as we're doing in the Watson Studio is extremely important. >> The other thing I want get now to the user side, the consumption side you mentioned making it easier, but one of the things we've been hearing, that's been a theme in the hallways and certainly in theCUBE here is; bad data equals bad AI. >> Bad data equals bad AI. >> It's not just about bolting a AI on, you really got to take a holistic approach and a hygiene approach to the data and understanding where the data is contextually is relevant to the application. Talk about, that means kind of nuance, but break that down. What's your reaction to that and how do you talk to customers saying, okay look you want to do AI here's the playbook. How do you explain that in a very simple way? >> Well you heard of the AI ladder, making your data ready for AI. This is a really important concept because you need to be able to have trust in the data that you have, relevancy in the data that you have, and so it is about not just the connectivity to that data, but can you start having curated and rich data that is really valuable, that's accurate that you can trust, that you can leverage. It becomes not just about the data, but about the governance and the self-service capabilities that you can have and around that data and then it is about the machine learning and the deep learning characteristics that you can put on there. But, all three of those components are absolutely essential. What we're seeing it's not even about the data that you have within the firewall of your organization, it's about what you're doing to really augment that with external data. That's another area that we're having pre-trained, enriched, data sets with what we're doing with the Wats and data kits is extremely important; industry specific data. >> Well you know my pet peeve is always I love data. I'm a data geek, I love innovation, I love data driven, but you can't have data without good human interaction. The human component is critical and certainly with seeing trends where startups like Elation that we've interviewed; are taking this social approach to data where they're looking at it like you don't need to be a data geek or data scientist. The average business person's creating the value in especially blockchain, we were just talking in theCUBE that it's the business model Innovations, it's universal property and the technology can be enabled and managed appropriately. This is where the value is. What's the human component? Is there like... You want to know who's using the data? >> Well-- >> Why are they using data? It's like do I share the data? Can you leverage other people's data? This is kind of a melting pot. >> It is. >> What's the human piece of it? >> It truly is about enabling more people access to what it means to infuse AI into their organization. When I said it's not about re-platforming, but it's about expanding. We started with the data scientists, and we're adding to that the application developer. The third piece of that is, how do you get the knowledge worker? The subject matter expert? The person who understand the actual machine, or equipment that needs to be inspected. How do you get them to start customizing models without having to know anything about the data science element? That's extremely important because I can auto-tag and auto-classify stuff and use AI to get them started, but there is that human element of not needing to be a data scientist, but still having input into that AI and that's a very beautiful thing. >> You know it's interesting is in the security industry you've seen groups; birds of a feather flock together, where they share hats and it's a super important community aspect of it. Data has now, and now with AI, you get the AI ladder, but this points to AI literacy within the organizations. >> Exactly. >> So you're seeing people saying, hey we need AI literacy. Not coding per se, but how do we manage data? But it's also understanding who within your peer group is evolving. So your seeing now a whole formation of user base out there, users who want to know who their; the birds of the other feather flocking together. This is now a social gamification opportunity because they're growing together. >> There're-- >> What's your thought on that? >> There're two things there I would say. First, is we often go to the technology and as a product person I just spoke to you a lot about the technology. But, what we find in talking to our clients, is that it really is about helping them with the skills, the culture, the process transformation that needs to happen within the organization to break down the boundaries and the silos exist to truly get AI into an organization. That's the first thing. The second, is when you think about AI and what it means to actually infuse AI into an enterprise organization there's an ethics component of this. There's ethics and bias, and bias components which you need to mitigate and detect, and those are real problems and by the way IBM, especially with the work that we're doing within Watson, with the work that we're doing in research, we're taking this on front and center and it's extremely important to what we do. >> You guys used to talk about that as cognitive, but I think you're so right on. I think this is such a progressive topic, love to do a deeper dive on it, but really you nailed it. Data has to have a consensus algorithm built into it. Meaning you need to have, that's why I brought up this social dynamic, because I'm seeing people within organizations address regulatory issues, legal issues, ethical, societal issues all together and it requires a group. >> That's right. >> Not just algorithm, people to synthesize. >> Exactly. >> And that's either diversity, diverse groups from different places and experiences whether it's an expert here, user there; all coming together. This is not really talked about much. How are you guys-- >> I think it will be more. >> John: It will, you think so? >> Absolutely it will be more. >> What do you see from customers? You've done a lot of client meetings. Are they talking about this? Or they still more in the how do I stand up AI, literacy. >> They are starting to talk about it because look, imagine if you train your model on bad data. You actually have bias then in your model and that means that the accuracy of that model is not where you need it to be if your going to run it in an enterprise organization. So, being able to do things like detect it and proactively mitigate it are at the forefront and by the way this where our teams are really focusing on what we can do to further the AI practice in the enterprise and it is where we really believe that the ethics part of this is so important for that enterprise or smarter business component. >> Iterating through the quality the data's really good. Okay, so now I was talking to Rob Thomas talking about data containers. We were kind of nerding out on Kubernetes and all that good stuff. You almost imagine Kubernetes and containers making data really easy to move around and manage effectively with software, but I mentioned consensus on the understanding the quality of the data and understanding the impact of the data. When you say consensus, the first thing that jumps in my mind is blockchain, cryptocurrency. Is there a tokenization economics model in data somewhere? Because all the best stuff going on in blockchain and cryptocurrency that's technically more impactful is the changing of the economics. Changing of the technical architectures. You almost can say, hmm. >> You can actually see over a time that there is a business model that puts more value not just on the data and the data assets themselves, but on the models and the insights that are actually created from the AI assets themselves. I do believe that is a transformation just like what we're seeing in blockchain and the type of cryptocurrency that exists within there, and the kind of where the value is. We will see the same shift within data and AI. >> Well, you know, we're really interested in exploring and if you guys have any input to that we'd love to get more access to thought leaders around the relationship people and things have to data. Obviously the internet of things is one piece, but the human relationship the data. You're seeing it play out in real time. Uber had a first death this week, that was tragic. First self-driving car fatality. You're seeing Facebook really get handed huge negative press on the fact that they mismanaged the data that was optimized for advertising not user experience. You're starting to see a shift in an evolution where people are starting to recognize the role of the human and their data and other people's data. This is a big topic. >> It's a huge topic and I think we'll see a lot more from it and the weeks, and months, and years ahead on this. I think it becomes a really important point as to how we start to really innovate in and around not just the data, but the AI we apply to it and then the implications of it and what it means in terms of if the data's not right, if the algorithm's aren't right, if the biases is there. It is big implications for society and for the environment as a whole. >> I really appreciate you taking the time to speak with us. I know you're super busy. My final question's much more share some color commentary on IBM Think this week, the event, your reaction to, obviously it's massive, and also the customer conversations you've had. You've told me that your in client briefings and meetings. What are they talking about? What are they asking for? What are some of the things that are, low-hanging fruit use cases? Where's the starting point? Where are people jumping in? Can you just share any data you have on-- >> Oh I can share. That's a fully loaded question; that's like 10 questions all in one. But the Think conference has been great in terms of when you think about the problems that we're trying to solve with AI, it's not AI alone, right? It actually is integrated in with things like data, with the systems, with how we actually integrate that in terms of a hybrid way of what we're doing on premises and what we're doing in private Cloud, what we're doing in public Cloud. So, actually having a forum where we're talking about all of that together in a unified manner has actually been great feedback that I've heard from many customers, many analysts, and in general from an IBM perspective, I believe has been extremely valuable. I think the types of questions that I'm hearing and the types of inputs and conversations we're having, are one of where clients want to be able to innovate and really do things that are in Horizon three type things. What are the things they should be doing in Horizon one, Horizon two, and Horizon three when it comes to AI and when it comes to AI and how they treat their data. This is really important because-- >> What's Horizon one, two and three? >> You think about Horizon one, those are things you should be doing immediately to get immediate value in your business. Horizon two, are kind of mid-term, 18 to 24. 24 plus months out is Horizon 3. So when you think about an AI journey, what is your AI journey really look like in terms of what you should be doing in the immediate terms. Small, quick wins. >> Foundational. >> What are things that you can do kind of projects that will pan out in a year and what are the two to three year projects that we should be doing. This are the most frequent conversations that I've been having with a lot of our clients in terms of what is that AI journey we should be thinking about, what are the projects right now, how do we work with you on the projects right now on H1 and H2. What are the things we can start incubating that are longer term. And these extremely transformational in nature. It's kind of like what do we do to really automate self-driving, not just cars, but what we do for trains and we do to do really revolutionize certain industries and professions. >> How does your product roadmap to your Horizons? Can you share a little bit about the priorities on the roadmap? I know you don't want to share a lot of data, competitive information. But, can you give an antidotal or at least a trajectory of what the priorities are and some guiding principals? >> I hinted at some of it, but I only talked about the Studio, right... During this discussion, but still Studio is just one of a three-pronged approach that we have in Watson. The Studio really is about laying the foundation that is equivalent for how do we get AI in our enterprises for the builders, and it's like a place where builders go to be able to create, build, deploy those models, machine learning, deep learning models and be able to do so in a de-skilled way. Well, on top of that, as you know, we've done thousands of engagements and we know the most comprehensive ways that clients are trying to use Watson and AI in their organizations. So taking our learnings from that, we're starting to harden those in applications so that clients can easily infuse that into their businesses. We have capabilities for things like Watson Assistance, which was announced this week at the conference that really helped clients with pre-existing skills like how do you have a customer care solution, but then how can you extend it to other industries like automotive, or hospitality, or retail. So, we're working not just within Watson but within broader IBM to bring solutions like that. We also have talked about compliance. Every organization has a regulatory, or compliance, or legal department that deals with either SOWs, legal documents, technical documents. How do you then start making sure that you're adhering to the types of regulations or legal requirements that you have on those documents. Compare and comply actually uses a lot of the Watson technologies to be able to do that. And scaling this out in terms of how clients are really using the AI in their business is the other point of where Watson will absolutely focus going forward. >> That's awesome, Ritika. Thank you for coming on theCUBE, sharing the awesome work and again gutting across IBM and also outside in the industry. The more data the better the potential. >> Absolutely. >> Well thanks for sharing the data. We're putting the data out there for you. theCUBE is one big data machine, we're data driven. We love doing these interviews, of course getting the experts and the product folks on theCUBE is super important to us. I'm John Furrier, more coverage for IBM Think after this short break. (upbeat music)

Published Date : Mar 21 2018

SUMMARY :

Brought to you by IBM. all the goodness of the product side. Jenny introduced the innovation sandwich. and you have blockchain and AI on both sides of it. and that is the core foundation of what Watson is. Yeah, and also to remind the folks, there's a platform and adding the deep learning as a service capabilities, and for the people to know is, and then bringing them together the consumption side you mentioned making it easier, and how do you talk to customers saying, and the self-service capabilities that you can have and the technology can be enabled and managed appropriately. It's like do I share the data? that human element of not needing to be a data scientist, You know it's interesting is in the security industry the birds of the other feather flocking together. and the silos exist to truly get AI into an organization. love to do a deeper dive on it, but really you nailed it. How are you guys-- What do you see from customers? and that means that the accuracy of that model is not is the changing of the economics. and the kind of where the value is. and if you guys have any input to and for the environment as a whole. and also the customer conversations you've had. and the types of inputs and conversations we're having, what you should be doing in the immediate terms. What are the things we can start incubating on the roadmap? of the Watson technologies to be able to do that. and also outside in the industry. and the product folks on theCUBE is super important to us.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IBMORGANIZATION

0.99+

JennyPERSON

0.99+

JohnPERSON

0.99+

Ritika GunnarPERSON

0.99+

UberORGANIZATION

0.99+

John FurrierPERSON

0.99+

Mandalay BayLOCATION

0.99+

10 questionsQUANTITY

0.99+

FacebookORGANIZATION

0.99+

twoQUANTITY

0.99+

GoogleORGANIZATION

0.99+

Rob ThomasPERSON

0.99+

Amazon Web ServicesORGANIZATION

0.99+

RitikaPERSON

0.99+

bothQUANTITY

0.99+

FirstQUANTITY

0.99+

three yearQUANTITY

0.99+

Horizon 3TITLE

0.99+

third pieceQUANTITY

0.99+

secondQUANTITY

0.99+

Horizon threeTITLE

0.99+

WatsonTITLE

0.99+

one pieceQUANTITY

0.98+

both sidesQUANTITY

0.98+

first deathQUANTITY

0.98+

this weekDATE

0.98+

TensorFlowTITLE

0.98+

Las VegasLOCATION

0.98+

oneQUANTITY

0.98+

a yearQUANTITY

0.97+

one platformQUANTITY

0.97+

KubernetesTITLE

0.97+

Horizon twoTITLE

0.97+

ElationORGANIZATION

0.96+

first thingQUANTITY

0.96+

18QUANTITY

0.96+

Watson StudioTITLE

0.96+

todayDATE

0.95+

thousandsQUANTITY

0.95+

two thingsQUANTITY

0.95+

PyTorchTITLE

0.95+

Watson AssistanceTITLE

0.94+

24. 24QUANTITY

0.94+

2018DATE

0.94+

Horizon oneTITLE

0.93+

Think 2018EVENT

0.93+

threeQUANTITY

0.9+

one frameworkQUANTITY

0.89+

SagemakerORGANIZATION

0.88+

theCUBEORGANIZATION

0.88+

single algorithmsQUANTITY

0.88+

ThinkCOMMERCIAL_ITEM

0.85+

KerasTITLE

0.84+

CaffeTITLE

0.81+

threeTITLE

0.8+

First self-QUANTITY

0.79+

Dave Lindquist & Ajay Apte, IBM | IBM Think 2018


 

>> Narrator: Live, from Las Vegas! It's the Cube, covering IBM Think 2018. Brought to you by IBM. >> We're back at IBM Think 2018. This is day three of our wall to wall coverage. My name is Dave Vellante and you're watching the Cube, the leader in live tech coverage. A lot of times in the Cube, we talk about how CIO's understood a while ago, they just can't take their business and put it up into the cloud. Rather, they have to bring the cloud operating model to their data. So that's a topic that we're going to talk about with Dave Linquist, who's here. He's an IBM fellow and Vice President of Private Cloud at IBM and Ajay Apte, who's a Distinguished Engineer of IBM Cloud Private. Gentleman, welcome to the Cube. Good to see you again! >> Good to see you Dave. >> Thank you. >> So, Dave, let's start with you. IBM Cloud Private, you heard my little narrative at the beginning. I think it's consistent with what your philosophy is, but what is IBM Cloud Private? What's it all about? >> Sure. Well why don't we just start with, there's public clouds, private clouds, hybrid clouds and the ability to match your workload requirements with the particular cloud, is very important. And having that consistency between private and public, so you have that flexibility, whether it's security, performance, cross aspects, regulatory, et cetera, is an important part of a multi-cloud strategy. With Private Cloud, in particular, we introduce Private Cloud, the offering is called IBM Cloud Private, last year. And the demand has been through the roof at the enterprises. What we're effectively doing, is bringing cloud-native technologies, right into the enterprise. It's really quite cool. We're bringing Kubernetes and containers into the enterprise, optimizing a lot of the core enterprise middleware, so it runs on this optimized Kubernetes environment and then integrating it with the security and operational systems of the enterprise. >> So as you said, you only recently, really, announced the IBM Cloud Private and you talked about private cloud for years, as did others. But others, maybe, had an offering, but the offering really didn't work. It really wasn't the cloud experience, so what did you guys have to go through... I mean, it's not trivial to get that cloud experience. So maybe Ajay, you can talk about, sort of, how you got there and what you had to do to get there. >> Right. We started with some use cases that we had in mind. So let me talk about three, very core use cases that we started with. The first one is, IBM has an anonymous enterprise grade, production ready, footprint of middleware in our customer's data center. We wanted to bring that footprint to a containerized wall, to a cloud-based operational model. When I say enterprise grade footprint that customers have today, they measure the success of that footprint in terms of KPIs, in terms of resilience, in terms of reliability, in terms of security and compliance, these kind of things. We wanted to bring the same qualities of services to a private cloud model, in a container model That was probably one of the main use cases that we started targeting. On the other side of the spectrum, the cloud-native micro-services based department. This is where most of the developers are interested in today. This is where really high velocity, agility, can be achieved. So that was the second use case that we were targeting. In both those cases, the key also is that customers already have existing tools and practices, those kinds of things, the data center. The idea was to very seamlessly integrate into that set of tools and practices and even people within the data center, while providing the same cloud operational model. And then the third main use case was around integration. By integration, there are various dimensions to integration. There's integration between the footprint that's running on PrIM with the things that are not running in containers. They my be running in DMs or bare metal instances or maybe whole systems running on our main frame, like IBM Z systems, right? And then there will be other services, may be running SAS services in public cloud, so the integration scenario is basically expanded from our legacy footprint all the way into the public cloud SAS connector, so that integration was the third use case for us. So those three use cases, I would say, became the foundation of what we did over last one year. >> So Dave, in thinking about, you know, bringing the cloud-operating model to the data, what should clients expect, in terms of that experience? Is it substantially similar? Identical? Are there huge gaps? What do you tell people? >> Well, that's a good question. What they're going to experience is, when you're using public cloud environments, what you'll see is your developers get rapid access to the content they need to start developing applications. And it fits very well into their agile DevOps life cycles, high iterations. And what you'll see is, operations teams often refer to it as site reliability engineering in a cloud model. They have access to all the efficiencies of cloud for deployment, scale, recovery, maintenance, all those types of pieces. So what a customer will experience is we're bringing those capabilities into the data center, but as Ajay pointed out, we're then able to run a lot of the core transactional data, analytic, messaging workloads right on that environment, so the developers get rapid access to that type of content, what they need. And the operations, can leverage those capabilities on a cloud infrastructure. That's the experience they're going to get, matching up the enterprise requirements with the cloud-native. >> Is the impetus to take that proprietary data, that 80% of data Ginni Rometty talked about that isn't searchable on the public web. Is the impetus to get leverage out of that data, that they don't want to put into the public cloud, or is to modernize their applications and cut their costs? Probably both, but I wonder if you can talk to-- >> There are many higher level, type of scenarios and use cases, so one that Ajay went through is, really modernizing your applications, extending with innovation. But as Ginni talked about, and I think, you probably had sessions earlier on IBM Cloud Private for data, what we're seeing is how we can bring many of the critical data services together, from data science experience and data analytics and data governance and movement and management, into this cloud technology, so that it can be used against the data that's in the data center, within the enterprise to start getting insights into that data and furthering their business. >> Ajay, I wonder if you can take us inside the development process, even the thought process behind how you approach this. The secret sauce, how you approach this challenge, maybe, differently, than historically, you've approached system design? >> Right, so since the whole idea of IBM Cloud Private is around cloud operational model, high velocity, agility, those are the things we are preaching to our customers. The very key principle there is, using those in our development, as well. Our development itself, is built on the same, open source DevOps tool chains, the cloud operational principles, so that we can achieve the exact same velocity, agility, that our customers are expecting to achieve with the kind of offerings that we are trying to make over here. So that's, sort of, the first key principle for us. The second principle, is around production readiness. When we are expecting a customer to run production-ready workloads, we have security, compliance, reliability, these kinds of things, the same principles apply back to the platform that they're going to use for running those workloads, as well. So the first thing is, we are our own customers. We have to apply the same principles to our platform, so that customers can do the same thing. Our platform is, sort of, a layered model, where we have Kubernetes and Cloud Foundry as the containerization model, but we also have a plethora of IBM and non-IBM and open source middleware software, that's running on top of that. And then, we have customer applications running on top of that, so we have to make sure that as we build this platform, all these layers are taken care of, in terms of how we can deliver a production-grade offering end to end. Like, when we talk about Watson Studio, what Ginni mentioned yesterday, running as part of ICP for data, for example, The idea of running that, where it's not just about ICP running a database, it's about what happens to the life cycle of the data and how ICP gets designed to make sure the life cycle of that data can be managed in a containerized model. Those are the kinds of things that became very important for our philosophy. >> Having a little fun, our development team rocks! They are incredible. What our organization has done, it's fully embraced all the agile DevOps capabilities, it's all developed on a cloud environment, we actually use ICP in our development of our IBM Cloud Private. It's weekly iterations, two week sprints, and every quarter, we have a major release. We've done that the last four quarters, we've had a major release come out. It's really been exciting. >> So one of the great things about shows like this, is that you can't walk around without bumping into a customer. So, my question, Dave, is what are they telling you? What's resonating with the customers, in terms of the services that they're consuming? What are they like? What do they want? What are they asking you for? >> So we did what we consider a soft launch in June, where wanted to get some experience and feedback from users and operations. And what we actually did, is opened a open-select channel with our users. So we had tens of thousands of downloads that came with that very first release and we got feedback continually on what they liked from content, how they liked the environment, the whole experience. In the beginning of the fourth quarter, we did a major launch with all the middleware capabilities, that content on the platform, it just took off. Since that time, we have upwards of 150 global accounts picked up IBM Cloud Private and started and going through the deployment, some are even going into production. The thing that resonates with them so quickly, is they have so many existing workloads that they've been trying, to really, bring into this dev transformation, trying to bring into cloud technologies and this creates a journey, a path for them through application modernization and then adding all kinds of innovation with micro-services for refactoring or even adding Watson Artificial Intelligence Services into the environment. >> Ajay, I started off asking you, sort of, where you got the motivation, a good starting point, your answer was outside in. You started with the customers, looked at use cases. Having said that, you're trying to replicate, mimic, to the greatest degree possible, the public cloud experience, so there's a reference model there. So when you think about what's next, do you, sort of, pop over to your public cloud colleagues in the IBM Cloud and have a little bake off and see? Where do you get your motivation going forward, your, sort of, road map ideas. Obviously, the customers, but do you benchmark yourself against public cloud to try to close that gap? How do you approach that? >> Sure, there are multiple dimension. Customers, of course, is one of the important ones. Having a consistent story between IBM Public Cloud and IBM Cloud Private, is an absolute key principle for us. It's not just a requirement, but it's not just about keeping them functionally consistent, keeping them expedience-wise consistent, but making sure that when customers embark on the journey of hybrid deployment, be it, in terms of doing my dev test in public and then moving to IBM Cloud Private for production, or be a bursting scenario, these kind of things. Customers, not only want to run their application seamlessly, they want performance, they want network connectivity, they want secure connectivity, these kind of things. So that becomes another angle, in terms of how we are growing this, we have public, we have private, we can build a seamless hybrid storage today, but how do we evolve that hybrid storage to make sure that we can give them the same qualities of service? Just because you move your application from private to public, if the data stays on private, the performance is going to really impact, it'll suffer. How do you make sure that those kinds of things are taken care of when customers truly build that? So that's the second dimension of how do we really take the customers on the hybrid journey? And the third important one, is that customers, of course, are going to deploy on our cloud, on other clouds, right? They will always have multiple clusters, geographically distributed. How do we manage their entire footprint and give them the right views for deployment, management, accountability, these kinds of things, across that entire real estate, right? What we generally call hybrid cloud management, multi-cloud management. >> And that's a really, fundamental technical challenge, presumably. To create that similar capability, that consistency, maintaining performance. You've got a got of challenges there. Good thing these guys are rock stars! Alright, Dave. We'll give you the last word. If you had to summarize Think 2018 in less than 10 words, what would you say? >> Accelerate your transformation with cloud. That's what I would say. Leverage the technologies across IOT, public, private cloud, AI, block chain, and accelerate the transformation. >> Ajay, Dave, thanks very much for coming to the Cube. Good to see you again. >> Thank you. >> Alright, keep it right there, buddy. We'll be right back with our next guest. You're watching the Cube, we're live from Think 2018. (techno music)

Published Date : Mar 21 2018

SUMMARY :

Brought to you by IBM. Good to see you again! at the beginning. and the ability to match your workload requirements and what you had to do to get there. So that was the second use case that we were targeting. so the developers get rapid access to that type of content, Is the impetus to get leverage out of that data, of the critical data services together, the development process, even the thought process So the first thing is, we are our own customers. We've done that the last four quarters, in terms of the services that they're consuming? that content on the platform, Obviously, the customers, but do you benchmark yourself the performance is going to really impact, it'll suffer. in less than 10 words, what would you say? and accelerate the transformation. Good to see you again. We'll be right back with our next guest.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave LinquistPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

IBMORGANIZATION

0.99+

Ginni RomettyPERSON

0.99+

JuneDATE

0.99+

last yearDATE

0.99+

Las VegasLOCATION

0.99+

80%QUANTITY

0.99+

GinniPERSON

0.99+

second dimensionQUANTITY

0.99+

three use casesQUANTITY

0.99+

oneQUANTITY

0.99+

yesterdayDATE

0.99+

bothQUANTITY

0.99+

second principleQUANTITY

0.99+

AjayPERSON

0.99+

third use caseQUANTITY

0.99+

two weekQUANTITY

0.98+

first releaseQUANTITY

0.98+

Dave LindquistPERSON

0.98+

threeQUANTITY

0.98+

less than 10 wordsQUANTITY

0.98+

fourth quarterDATE

0.97+

second use caseQUANTITY

0.96+

third main use caseQUANTITY

0.96+

todayDATE

0.96+

Ajay AptePERSON

0.96+

first oneQUANTITY

0.94+

agileTITLE

0.93+

last one yearDATE

0.93+

tens of thousands of downloadsQUANTITY

0.92+

150 global accountsQUANTITY

0.9+

first thingQUANTITY

0.9+

first key principleQUANTITY

0.89+

marizePERSON

0.88+

ThinkCOMMERCIAL_ITEM

0.88+

Public CloudTITLE

0.84+

IBM CloudTITLE

0.83+

agile DevOpsTITLE

0.82+

Think 2018COMMERCIAL_ITEM

0.79+

third important oneQUANTITY

0.77+

IBMCOMMERCIAL_ITEM

0.73+

IBM Cloud PrivateTITLE

0.72+

dayQUANTITY

0.7+

CloudTITLE

0.69+

IBM CloudORGANIZATION

0.69+

last four quartersDATE

0.66+

KubernetesTITLE

0.66+

Cloud PrivateTITLE

0.65+

PrivateCOMMERCIAL_ITEM

0.65+

Think 2018EVENT

0.61+

Watson StudioORGANIZATION

0.6+

ZTITLE

0.57+

CubeCOMMERCIAL_ITEM

0.55+

WatsonORGANIZATION

0.54+

DevOpsTITLE

0.54+

2018DATE

0.53+

Bina Hallman & Steven Eliuk, IBM | IBM Think 2018


 

>> Announcer: Live, from Las Vegas, it's theCUBE. Covering IBM Think 2018. Brought to you by IBM. >> Welcome back to IBM Think 2018. This is theCUBE, the leader in live tech coverage. My name is Dave Vellante and I'm here with Peter Burress. Our wall-to-wall coverage, this is day two. Everything AI, Blockchain, cognitive, quantum computing, smart ledger, storage, data. Bina Hallman is here, she's the Vice President of Offering Management for Storage and Software Defined. Welcome back to theCUBE, Bina. >> Bina: Thanks for having me back. >> Steve Elliot is here. He's the Vice President of Deep Learning in the Global Chief Data Office at IBM. >> Thank you sir. >> Dave: Welcome to the Cube, Steve. Thanks, you guys, for coming on. >> Pleasure to be here. >> That was a great introduction, Dave. >> Thank you, appreciate that. Yeah, so this has been quite an event, consolidating all of your events, bringing your customers together. 30,000 40,000, too many people to count. >> Very large event, yes. >> Standing room only at all the sessions. It's been unbelievable, your thoughts? >> It's been fantastic. Lots of participation, lots of sessions. We brought, as you said, all of our conferences together and it's a great event. >> So, Steve, tell us more about your role. We were talking off the camera, we've had here Paul Bhandari on before, Chief Data Officer at IBM. You're in that office, but you've got other roles around Deep Learning, so explain that. >> Absolutely. >> Sort of multi-tool star here. >> For sure, so, roles and responsibility at IBM and the Chief Data Office, kind of two pillars. We focus in the Deep Learning group on foundation platform components. So, how to accelerate the infrastructure and platform behind the scenes, to accelerate the ideation or product phase. We want data scientists to be very effective, and for us to ensure our projects very very quickly. That said, I mentioned projects, so on the applied side, we have a number of internal use cases across IBM. And it's not just hand vault, it's in the orders of hundreds and those applied use cases are part of the cognitive plan, per se, and each one of those is part of the transformation of IBM into our cognitive. >> Okay, now, we were talking to Ed Walsh this morning, Bina, about how you collaborate with colleagues in the storage business. We know you guys have been growing, >> Bina: That's right. >> It's the fourth quarter straight, and that doesn't event count, some of the stuff that you guys ship on the cloud in storage, >> That's right, that's right. >> Dave: So talk about the collaboration across company. >> Yeah, we've had some tremendous collaboration, you know, the broader IBM and bringing all of that together, and that's one of the things that, you know, we're talking about here today with Steve and team is really as they built out their cognitive architecture to be able to then leverage some of our capabilities and the strengths that we bring to the table as part of that overall architecture. And it's been a great story, yeah. >> So what would you add to that, Steve? >> Yeah, absolutely refreshing. You know I've built up super computers in the past, and, specifically for deep learning, and coming on board at IBM about a year ago, seeing the elastic storage solution, or server. >> Bina: Yeah, elastic storage server, yep. >> It handles a number of different aspects of my pipeline, very uniquely, so for starters, I don't want to worry about rolling out new infrastructure all the time. I want to be able to grow my team, to grow my projects, and that's what nice about ESS is it's distensible, I'm able to roll out more projects, more people, multi-tenancy et cetera, and it supports us effectively. Especially, you know, it has very unique attributes like the read only performance feed, and random access of data, is very unique to the offering. >> Okay, so, if you're a customer of Bina's, right? >> I am, 100%. >> What do you need for infrastructure for Deep Learning, AI, what is it, you mentioned some attributes before, but, take it down a little bit. >> Well, the reality is, there's many different aspects and if anything kind of breaks down, then the data science experience breaks down. So, we want to make sure that everything from the interconnect of the pipelines is effective, that you heard Jensen earlier today from Nvidia, we've got to make sure that we have compute devices that, you know, are effective for the computation that we're rolling out on them. But that said, if those GPUs are starved by data, that we don't have the data available which we're drawing from ESS, then we're not making effective use of those GPUs. It means we have to roll out more of them, et cetera, et cetera. And more importantly, the time for experimentation is elongated, so that whole idea, so product timeline that I talked about is elongated. If anything breaks down, so, we've got to make sure that the storage doesn't break down, and that's why this is awesome for us. >> So let me um, especially from a deep learning standpoint, let me throw, kind of a little bit of history, and tell me if you think, let me hear your thoughts. So, years ago, the data was put as close to the application as possible, about 10, 15 years ago, we started breaking the data from the application, the storage from the application, and now we're moving the algorithm down as close to the data as possible. >> Steve: Yeah. >> At what point in time do we stop calling this storage, and start acknowledging that we're talking about a fabric that's actually quite different, because we put a lot more processing power as close to the data as possible. We're not just storing. We're really doing truly, deeply distributing computing. What do you think? >> There's a number of different areas where that's coming from. Everything from switches, to storage, to memory that's doing computing very close to where the data actually residents. Still, I think that, you know, this is, you can look all the way back to Google file system. Moving computation to where the data is, as close as possible, so you don't have to transfer that data. I think that as time goes on, we're going to get closer and closer to that, but still, we're limited by the capacity of very fast storage. NVMe, very interesting technology, still limited. You know, how much memory do we have on the GPUs? 16 gigs, 24 is interesting, 48 is interesting, the models that I want to train is in the 100s of gigabytes. >> Peter: But you can still parallelize that. >> You can parallelize it, but there's not really anything that's true model parallelism out there right now. There's some hacks and things that people are doing, but. I think we're getting there, it's still some time, but moving it closer and closer means we don't have to spend the power, the latency, et cetera, to move the data. >> So, does that mean that the rate of increase of data and the size of the objects we're going to be looking at, is still going to exceed the rate of our ability to bring algorithms and storage, or algorithms and data together? What do you think? >> I think it's getting closer, but I can always just look at the bigger problem. I'm dealing with 30 terabytes of data for one of the problems that I'm solving. I would like to be using 60 terabytes of data. If I could, if I could do it in the same amount of time, and I wasn't having to transfer it. With that said, if you gave me 60, I'd say, "I really wanted 120." So, it doesn't stop. >> David: (laughing) You're one of those kind of guys. >> I'm definitely one of those guys. I'm curious, what would it look like? Because what I see right now is it would be advantageous, and I would like to do it, but I ran 40,000 experiments with 30 terabytes of data. It would be four times the amount of transfer if I had to run that many experiments of 120. >> Bina, what do you think? What is the fundamental, especially from a software defined side, what does the fundamental value proposition of storage become, as we start pushing more of the intelligence close to the data? >> Yeah, but you know the storage layer fundamentally is software defined, you still need that setup, protocols, and the file system, the NFS, right? And, so, some of that still becomes relevant, even as you kind of separate some of the physical storage or flash from the actual compute. I think there's still a relevance when you talk about software defined storage there, yeah. >> So you don't expect that there's going to be any particular architectural change? I mean, NVMe is going to have a real impact. >> NVMe will have a real impact, and there will be this notion of composable systems and we will see some level of advancement there, of course, and that's around the corner, actually, right? So I do see it progressing from that perspective. >> So what's underneath it all, what actually, what products? >> Yeah, let me share a little bit about the product. So, what Steve and team are using is our elastic storage server. So, I talked about software defined storage. As you know, we have a very complete set of software defined storage offerings, and within that, our strategy has always been allow the clients to consume the capabilities the way they want. A software only on their own hardware, or as a service, or as an integrated solution. And so what Steve and team are using is an integrated solution with our spectrum scale software, along with our flash and power nine server power systems. And on the software side from spectrum scale, this is a very rich offering that we've had in our portfolio. Highly scalable file system, it's one of the solutions that powers a lot of our supercomputers. A project that we are still in the process and have delivered on around Whirl, our national labs. So same file system combined with a set of servers and flash system, right? Highly scalable, erasure coding, high availability as well as throughput, right? 40 gigabytes per second, so that's the solution, that's the storage and system underneath what Steve and team are leveraging. >> Steve, you talk about, "you want more," what else is on Bina's to-do-list from your standpoint? >> Specifically targeted at storage, or? >> Dave: Yeah, what do you want from the products? >> Well, I think long stretch goals are multi-tenancy and the wide array of dimensions that, especially in the chief data office, that we're dealing with. We have so many different business units, so many different of those enterprise problems in the orders of hundreds how do you effectively use that storage medium driving so many different users? I think it's still hard, I think we're doing it a hell of a lot better than we ever have, but it's still, it's an open research area. How do you do that? And especially, there's unique attributes towards deep learning, like, most of the data is read only to a certain degree. When data changes there's some consistency checks that could be done, but really, for my experiment that's running right now, it doesn't really matter that it's changed. So there's a lot of nuances specific to deep learning that I would like exploited if I could, and that's some of the interactions that we're working on to kind of alleviate those pains. >> I was at a CDO conference in Boston last October, and Indra Pal was there and he presented this enterprise data architecture, and there were probably about three or four hundred CDOs, chief data officers, in the room, to sort of explain that. Can you, sort of summarize what that is, and how it relates to sort of what you do on a day to day basis, and how customers are using it? >> Yeah, for sure, so the architecture is kind of like the backbone and rules that kind of govern how we work with the data, right? So, the realities are, there's no sort of blueprint out there. What works at Google, or works at Microsoft, what works at Amazon, that's very unique to what they're doing. Now, IBM has a very unique offering as well. We have so many, we're a composition of many, many different businesses put together. And now, with the Chief Data Office that's come to light across many organizations like you said, at the conference, three to 400 people, the requirements are different across the orders. So, bringing the data together is kind of one of the big attributes of it, decreasing the number of silos, making a monolithic kind of reliable, accessible entity that various business units can trust, and that it's governed behind the scenes to make sure that it's adhering to everyone's policies, that their own specific business unit has deemed to be their policy. We have to adhere to that, or the data won't come. And the beauty of the data is, we've moved into this cognitive era, data is valuable but only if we can link it. If the data is there, but there's no linkages there, what do I do with it? I can't really draw new insights. I can't draw, all those hundreds of enterprise use cases, I can't build new value in them, because I don't have any more data. It's all about linking the data, and then looking for alternative data sources, or additional data sources, and bringing that data together, and then looking at the new insights that come from it. So, in a nutshell, we're doing that internally at IBM to help our transformation. But at the same time creating a blueprint that we're making accessible to CDOs around the world, and our enterprise customers around the world, so they can follow us on this new adventure. New adventure being, you know, two years old, but. >> Yeah, sure, but it seems like, if you're going to apply AI, you've got to have your data house in order to do that. So this sounds like a logical first step, is that right? >> Absolutely, 100%. And, the realities are, there's a lot of people that are kicking the tires and trying to figure out the right way to do that, and it's a big investment. Drawing out large sums of money to kind of build this hypothetical better area for data, you need to have a reference design, and once you have that you can actually approach the C-level suite and say, "Hey, this is what we've seen, this is the potential, "and we have an architecture now, "and they've already gone down all the hard paths, "so now we don't have to go down as many hard paths." So, it's incredibly empowering for them to have that reference design and learning from our mistakes. >> Already proven internally now, bringing it to our enterprise alliance. >> Well, and so we heard Jenny this morning talk about incumbent disruptors, so I'm kind of curious as to what, any learnings you have there? It's early days, I realize that, but when you think about, the discussions, are banks going to lose control of the payment systems? Are retail stores going to go away? Is owning and driving your own vehicle going to be the exception, not the norm? Et cetera, et cetera, et cetera, you know, big questions, how far can we take machine intelligence? Have you seen your clients begin to apply this in their businesses, incumbents, we saw three examples today, good examples, I thought. I don't think it's widespread yet, but what are you guys seeing? What are you learning, and how are you applying that to clients? >> Yeah, so, I mean certainly for us, from these new AI workloads, we have a number of clients and a number of different types of solutions. Whether it's in genomics, or it's AI deep learning in analyzing financial data, you know, a variety of different types of use cases where we do see clients leveraging the capabilities, like spectrum scale, ESS, and other flash system solutions, to address some of those problems. We're seeing it now. Autonomous driving as well, right, to analyze data. >> How about a little road map, to end this segment? Where do you want to take this initiative? What should we be looking for as observers from the outside looking in? >> Well, I think drawing from the endeavors that we have within the CDO, what we want to do is take some of those ideas and look at some of the derivative products that we can take out of there, and how do we kind of move those in to products? Because we want to make it as simple as possible for the enterprise customer. Because although, you see these big scale companies, and all the wonderful things that they're doing, what we've had the feedback from, which is similar to our own experiences, is that those use cases aren't directly applicable for most of the enterprise customers. Some of them are, right, some of the stuff in vision and brand targeting and speech recognition and all that type of stuff are, but at the same time the majority and the 90% area are not. So we have to be able to bring down sorry, just the echoes, very distracting. >> It gets loud here sometimes, big party going on. >> Exactly, so, we have to be able to bring that technology to them in a simpler form so they can make it more accessible to their internal data scientists, and get better outcomes for themselves. And we find that they're on a wide spectrum. Some of them are quite advanced. It doesn't mean just because you have a big name you're quite advanced, some of the smaller players have a smaller name, but quite advanced, right? So, there's a wide array, so we want to make that accessible to these various enterprises. So I think that's what you can expect, you know, the reference architecture for the cognitive enterprise data architecture, and you can expect to see some of the products from those internal use cases come out to some of our offerings, like, maybe IGC or information analyzer, things like that, or maybe the Watson studio, things like that. You'll see it trickle out there. >> Okay, alright Bina, we'll give you the final word. You guys, business is good, four straight quarters of growth, you've got some tailwinds, currency is actually a tailwind for a change. Customers seem to be happy here, final word. >> Yeah, no, we've got great momentum, and I think 2018 we've got a great set of roadmap items, and new capabilities coming out, so, we feel like we've got a real strong set of future for our IBM storage here. >> Great, well, Bina, Steve, thanks for coming on theCUBE. We appreciate your time. >> Thank you. >> Nice meeting you. >> Alright, keep it right there everybody. We'll be back with our next guest right after this. This is day two, IBM Think 2018. You're watching theCUBE. (techno jingle)

Published Date : Mar 21 2018

SUMMARY :

Brought to you by IBM. Bina Hallman is here, she's the Vice President He's the Vice President of Deep Learning Dave: Welcome to the Cube, Steve. Yeah, so this has been quite an event, Standing room only at all the sessions. We brought, as you said, all of our conferences together You're in that office, but you've got other roles behind the scenes, to accelerate the ideation in the storage business. and that's one of the things that, you know, seeing the elastic storage solution, or server. like the read only performance feed, AI, what is it, you mentioned some attributes before, that the storage doesn't break down, and tell me if you think, let me hear your thoughts. and start acknowledging that we're talking about a fabric the models that I want to train is in the 100s of gigabytes. to move the data. for one of the problems that I'm solving. and I would like to do it, protocols, and the file system, the NFS, right? So you don't expect that there's going to be and that's around the corner, actually, right? allow the clients to consume the capabilities and that's some of the interactions that we're working on and how it relates to sort of what you do on a and that it's governed behind the scenes you've got to have your data house in order to do that. that are kicking the tires and trying to figure out bringing it to our enterprise alliance. and how are you applying that to clients? leveraging the capabilities, like spectrum scale, ESS, and all the wonderful things that they're doing, So I think that's what you can expect, you know, Okay, alright Bina, we'll give you the final word. and new capabilities coming out, so, we feel We appreciate your time. This is day two, IBM Think 2018.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
StevePERSON

0.99+

Steve ElliotPERSON

0.99+

DavidPERSON

0.99+

Peter BurressPERSON

0.99+

Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

DavePERSON

0.99+

Paul BhandariPERSON

0.99+

GoogleORGANIZATION

0.99+

BostonLOCATION

0.99+

Bina HallmanPERSON

0.99+

Indra PalPERSON

0.99+

60 terabytesQUANTITY

0.99+

90%QUANTITY

0.99+

16 gigsQUANTITY

0.99+

PeterPERSON

0.99+

100%QUANTITY

0.99+

2018DATE

0.99+

Ed WalshPERSON

0.99+

NvidiaORGANIZATION

0.99+

30 terabytesQUANTITY

0.99+

JennyPERSON

0.99+

threeQUANTITY

0.99+

60QUANTITY

0.99+

40,000 experimentsQUANTITY

0.99+

Steven EliukPERSON

0.99+

Las VegasLOCATION

0.99+

24QUANTITY

0.99+

BinaPERSON

0.99+

two yearsQUANTITY

0.99+

120QUANTITY

0.99+

48QUANTITY

0.99+

last OctoberDATE

0.99+

oneQUANTITY

0.98+

40 gigabytesQUANTITY

0.98+

first stepQUANTITY

0.98+

hundredsQUANTITY

0.97+

three examplesQUANTITY

0.97+

30,000 40,000QUANTITY

0.97+

todayDATE

0.97+

400 peopleQUANTITY

0.97+

four hundred CDOsQUANTITY

0.96+

WhirlORGANIZATION

0.95+

about 10, 15 years agoDATE

0.94+

this morningDATE

0.94+

about threeQUANTITY

0.92+

four timesQUANTITY

0.91+

years agoDATE

0.91+

100s of gigabytesQUANTITY

0.89+

fourth quarterDATE

0.89+

a year agoDATE

0.88+

four straight quartersQUANTITY

0.88+

Watson studioORGANIZATION

0.85+

day twoQUANTITY

0.84+

ESSORGANIZATION

0.83+

nine server power systemsQUANTITY

0.82+

Vice PresidentPERSON

0.78+